WO2013147083A1 - ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子 - Google Patents

ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子 Download PDF

Info

Publication number
WO2013147083A1
WO2013147083A1 PCT/JP2013/059380 JP2013059380W WO2013147083A1 WO 2013147083 A1 WO2013147083 A1 WO 2013147083A1 JP 2013059380 W JP2013059380 W JP 2013059380W WO 2013147083 A1 WO2013147083 A1 WO 2013147083A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
polyamic acid
crystal aligning
acid ester
Prior art date
Application number
PCT/JP2013/059380
Other languages
English (en)
French (fr)
Inventor
裕充 松本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201380016101.1A priority Critical patent/CN104204925A/zh
Priority to JP2014508059A priority patent/JP6064997B2/ja
Priority to KR1020147027347A priority patent/KR102058764B1/ko
Publication of WO2013147083A1 publication Critical patent/WO2013147083A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a polyimide-based liquid crystal alignment treatment agent, a liquid crystal alignment film using the same, and a liquid crystal display element.
  • the liquid crystal display element has a structure in which liquid crystal molecules are sandwiched between liquid crystal alignment films formed on a substrate, and is a display element utilizing the response of the liquid crystal molecules by voltage.
  • the liquid crystal alignment film has an important role of controlling the alignment direction and pretilt angle of the liquid crystal molecules in an arbitrary state.
  • the liquid crystal alignment film is generally produced by performing a so-called “rubbing process” in which the surface of a polyimide film formed on a substrate is rubbed against the surface with rayon, nylon cloth, or the like. The rubbing treatment determines the alignment direction of the liquid crystal molecules.
  • means for increasing the pretilt angle of the liquid crystal means for introducing a long-chain alkyl group into the structure of the polyimide forming the liquid crystal alignment film is known (for example, see Patent Document 1).
  • a method of applying a solution such as polyamic acid and imidizing on the substrate there are a method of applying a solution of soluble polyimide.
  • the method using a soluble polyimide solution is capable of forming a polyimide film having good characteristics when used as a liquid crystal alignment film, even when firing at a relatively low temperature.
  • the strength of the film is low, and the rubbing treatment tends to cause scratches and peeling of the film surface.
  • flexographic printing is widely used industrially as a means for applying a polymer solution to a substrate when preparing a liquid crystal alignment film.
  • a solution of a soluble polyimide having a high imidization rate is inferior in printability such as causing a whitening phenomenon, it is necessary to devise such as using a mixture of soluble polyimides having a low imidization rate (for example, Patent Document 2). reference).
  • Patent Document 2 a long-chain alkyl group is introduced into the structure of the soluble polyimide in order to give a large pretilt angle to the liquid crystal, this printability tends to deteriorate.
  • Japanese Unexamined Patent Publication No. 2-282726 Japanese Laid-Open Patent Publication No. 9-297312 Japanese Unexamined Patent Publication No. 2-037324
  • the object of the present invention is to obtain a liquid crystal alignment film having good rubbing resistance, good printability even when the imidization ratio of soluble polyimide is high, voltage holding ratio (VHR), accumulated charge (
  • An object of the present invention is to provide a polyimide-based liquid crystal aligning agent containing soluble polyimide having excellent electrical characteristics such as (RDC).
  • the present inventor conducted research to improve the printing characteristics at the time of film formation without impairing the characteristics and electrical characteristics of the polyimide-based liquid crystal aligning agent containing the soluble polyimide. It discovered that the liquid-crystal aligning agent containing the polyamic acid ester which has a specific structure with the soluble polyimide which has can achieve this objective. That is, the liquid crystal aligning agent containing a polyamic acid ester having a specific structure together with a soluble polyimide having a specific structure does not cause a whitening phenomenon at the time of coating film formation even if the imidization rate is high, and has good printability. In addition, it is possible to provide a liquid crystal alignment film having good coating film rubbing resistance. Further, the obtained liquid crystal alignment film was found to have excellent electrical characteristics, and in particular, has excellent characteristics that are not found in the past in terms of voltage holding ratio and accumulated charge (RDC).
  • RDC accumulated charge
  • a liquid crystal aligning agent comprising a soluble polyimide represented by the following formula (1) and a polyamic acid ester represented by the following formula (2).
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group.
  • X 2 is a tetravalent organic group
  • Y 2 is 2.
  • R 1 is an alkyl group having 1 to 5 carbon atoms
  • a 1 and A 2 are each independently a hydrogen atom or an optionally substituted carbon atom having 1 to 5 carbon atoms. 10 alkyl groups, alkenyl groups or alkynyl groups.
  • 6. The liquid crystal aligning agent according to any one of 1 to 5 above, wherein the polyamic acid ester has a weight average molecular weight of 5,000 to 200,000.
  • liquid crystal aligning agent according to any one of 1 to 6 above, wherein the soluble polyimide has an imidization ratio of 50% or more and has a weight average molecular weight of 5,000 to 200,000. 8).
  • the ratio of the content of the soluble polyimide and the content of the polyamic acid ester is 1/9 to 9/1 in a mass ratio of 1 to 7 above
  • the liquid-crystal aligning agent in any one.
  • the organic solvent that dissolves the soluble polyimide and the polyamic acid ester, and the total content of the soluble polyimide and the polyamic acid ester is 0.5 to 15% by mass with respect to 100% by mass of the organic solvent.
  • the liquid crystal aligning agent according to any one of 1 to 8. 10.
  • the liquid crystal aligning agent according to 11 above, wherein the solvent is butyl cellosolve. 13.
  • 14 14 The liquid crystal alignment film as described in 13 above, wherein the coating film obtained by applying and baking the liquid crystal alignment treatment agent has a thickness of 5 to 300 nm.
  • 15. 15 A liquid crystal display device comprising the liquid crystal alignment film as described in 13 or 14 above.
  • the liquid crystal aligning agent of the present invention even if the imidization ratio of the soluble polyimide is high, the liquid crystal has good printability without causing a whitening phenomenon at the time of coating film formation, and good rubbing resistance of the coating film. An alignment film is obtained. Further, the obtained liquid crystal alignment film has excellent electrical characteristics, and in particular, has excellent characteristics that are not present in terms of voltage holding ratio and accumulated charge (RDC).
  • the polyamic acid ester by using a polyamic acid ester, the polarity and fat solubility are close to those of a soluble polyimide. Therefore, the polyamic acid ester does not have two layers as shown below, and the polyamic acid ester has a concentration at the interface in contact with the liquid crystal. It seems that it exists in.
  • liquid crystal aligning agent of the present invention when a polyamic acid is used instead of the polyamic acid ester contained in the liquid crystal aligning agent of the present invention, the whitening phenomenon at the time of coating film formation is improved, but the obtained liquid crystal alignment film has a voltage holding Results in unsatisfactory results in properties such as rate, stored charge (RDC), etc.
  • polyamic acid is used instead of polyamic acid ester, the cause of deterioration in electrical characteristics is not always clear, but when polyamic acid is used, the polarity and fat solubility are different from soluble polyimide, so liquid crystal alignment This is probably due to a two-layer system in which a soluble polyimide component is located in the upper layer of the film and a polyamic acid component is located in the lower layer.
  • the soluble polyimide used in the present invention has a structure represented by the following formula (1).
  • X 1 is a tetravalent organic group.
  • Specific preferred examples of X 1 include X-1 to X-46 shown below. From the availability of monomers, X 1 is X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X-21, X-25, X-26, X-27, X-28 or X-32 is preferred. Of these, X 1 is, in a case having an aliphatic structure or alicyclic structure is preferable because the resulting liquid crystal alignment film has a high voltage holding ratio characteristics.
  • X 1 having a preferred aliphatic structure is preferably X-1, X-16, X-19, and particularly preferably X-1, X-19.
  • Y 1 is a divalent organic group and is not particularly limited.
  • Y 1 includes Y-7, Y-10, Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y- 27, Y-41, Y-42, Y-43, Y-44, Y-45, Y-46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75 and Y-98 are more preferred, and diamine compounds having these structures are preferred.
  • Y 1 is Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86, In the case of Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, or Y-97, The pretilt angle can be increased.
  • the soluble polyimide used in the present invention can be obtained by imidizing a polyimide precursor by a known method.
  • a polyimide precursor means a polyamic acid or a polyamic acid ester.
  • the polyamic acid is produced by dehydrating and ring-closing, and in the case of using a polyamic acid ester, the polyamic acid ester is produced by heating and ring-closing.
  • the method of dehydrating and ring-closing polyamic acid is more preferable because the imidization rate can be increased.
  • the imidation ratio of the soluble polyimide in the present invention can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, etc. in the imidization reaction.
  • the imide rate is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the imidization rate is more preferably 80 to 90%.
  • a polyamic acid is obtained by a known method by the reaction of a diamine component and a tetracarboxylic acid dihydrate.
  • the polyamic acid ester can be reacted with a diamine component and a tetracarboxylic acid diester dichloride in the presence of a base or a tetracarboxylic acid diester and a diamine in the presence of an appropriate condensing agent or base according to a known method. Can be obtained.
  • the polyamic acid ester used in the present invention has a structure represented by the following formula (2).
  • R 1 is an alkyl group having 1 to 5 carbon atoms.
  • R 1 is preferably an alkyl group having 1 or 2 carbon atoms, particularly a methyl group, from the viewpoint of ease of imidization by heat.
  • X 2 includes an X 1 in the formula (1), Y 2 in the formula (2), and Y 1 in the formula (1), the same definition, respectively.
  • X 2 in the formula (2) is, when having an aromatic structure is preferable because the resulting liquid crystal alignment film has a high voltage holding ratio characteristics.
  • X 2 having an aromatic structure includes X-26 to X-45 described above, and X-26 is particularly preferable.
  • a 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms which may have a substituent include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, and a cyclopentyl group.
  • alkenyl group having 1 to 10 carbon atoms which may have a substituent include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with a CH ⁇ CH structure, More specifically, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group And cyclohexenyl group.
  • alkynyl group having 1 to 10 carbon atoms which may have a substituent examples include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more Specific examples include an ethynyl group, a 1-propynyl group, and a 2-propynyl group.
  • a 1 and A 2 are each independently preferably a hydrogen atom, a methyl group, an ethyl group, a vinyl group or an allyl group, more preferably a hydrogen atom or a methyl group.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
  • the polyamic acid ester represented by the above formula (2) is obtained by reacting any of the tetracarboxylic acid derivatives represented by the following formulas (6) to (8) with the diamine compound represented by the formula (9). be able to. (In the above formula, X 2 , Y 2 , R 1 , A 1 and A 2 are as defined above.)
  • the polyamic acid ester represented by the above formula (2) can be synthesized by any of the methods (A) to (C) described below.
  • (A) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
  • esterifying agent those that can be easily removed by purification are preferable.
  • N, N-dimethylformamide dimethyl acetal is preferable.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, more preferably 3 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the viewpoint of the solubility of the polymer. These may be used alone or in combination of two or more. It may be used.
  • the concentration of the polymer at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine are mixed in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times by mole, more preferably 2 to 3 times by mole with respect to the tetracarboxylic acid diester dichloride, from the viewpoint that it can be easily removed and a high molecular weight product is easily obtained.
  • the organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • a tetracarboxylic acid diester and a diamine are mixed in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be synthesized by reacting for a time.
  • Condensation agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol, more preferably 2 to 3 times mol with respect to the diamine component, from the viewpoint of easy removal and high molecular weight.
  • the organic solvent used in the above reaction N-methyl-2-pyrrolidone and ⁇ -butyrolactone are preferable in view of the solubility of the monomer and the polymer. These may be used alone or in combination.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 0.2 to 0.5-fold mol based on the diamine component.
  • a high molecular weight polyamic acid ester is obtained, and therefore the method (A) or the method (B) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned, Methanol and ethanol are preferable.
  • the liquid-crystal aligning agent of this invention contains the soluble polyimide represented by above-described Formula (1), and the polyamic acid ester represented by Formula (2).
  • the liquid-crystal aligning agent of this invention is a form of the solution which melt
  • a polyamic acid ester and / or polyamic acid is synthesized in an organic solvent
  • the resulting reaction solution itself may be used. It may be diluted.
  • the polyamic acid ester and / or polyamic acid is obtained as a powder, it may be dissolved in an organic solvent to form a solution.
  • the weight average molecular weight of the soluble polyimide is preferably 5,000 to 200,000, and more preferably 10,000 to 100,000, because of its solubility in an organic solvent.
  • the number average molecular weight is preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
  • the weight average molecular weight of the polyamic acid ester is preferably 5,000 to 200,000, and more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
  • the content of the polyimide and the content of the polyamic acid ester are preferably polyamic acid ester / polyamic acid (mass ratio) of 1/9 to 9/1, more preferably. Is from 2/8 to 8/2, particularly preferably from 3/7 to 7/3. By setting the ratio within this range, it is possible to provide a liquid crystal alignment treatment agent having both good liquid crystal alignment properties and electrical characteristics.
  • the content (concentration) of the polymer in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but from the viewpoint of forming a uniform and defect-free coating film.
  • the content of the polymer component is preferably 0.5% by mass or more with respect to 100% by mass of the organic solvent, and is preferably 15% by mass or less, more preferably 1 to 10% by mass from the viewpoint of storage stability of the solution. %.
  • a solution having a high concentration of polymer may be prepared in advance, and the concentrated solution may be diluted when used as a liquid crystal alignment treatment agent.
  • the concentration of the concentrated solution of the polymer component is preferably 10 to 30% by mass, and more preferably 10 to 15% by mass.
  • the polymer component powder may be heated when dissolved in an organic solvent to prepare a solution.
  • the heating temperature is preferably 20 to 150 ° C, particularly preferably 20 to 80 ° C.
  • the organic solvent contained in the liquid-crystal aligning agent of this invention will not be specifically limited if a polymer component melt
  • a polymer component melt dissolves uniformly.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • those having high polarity such as N-methyl-pyrrolidone and N-ethyl-pyrrolidone are preferable from the viewpoint of solubility.
  • an organic solvent you may use 1 type or in mixture of 2 or more types. Moreover, even if it is an organic solvent in which a polymer component cannot be melt
  • the liquid-crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like.
  • butyrocellosolve ethyl carbitol and the like are preferably used. Two types of these solvents may be used in combination.
  • the above organic solvent for dissolving the polymer component and the solvent for improving the uniformity of the coating film may be used in combination,
  • the volume ratio is 30/70 to 90/10, preferably 60/40 to 80/20.
  • the liquid crystal alignment treatment agent of the present invention may contain various additives such as a silane coupling agent and a crosslinking agent.
  • the silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment treatment agent is applied and the liquid crystal alignment film formed thereon.
  • a silane coupling agent is given to the following, it is not limited to this.
  • the amount of the silane coupling agent added is too large, unreacted ones may adversely affect the liquid crystal orientation, and if too small, the effect on adhesion will not appear, so the amount of the silane coupling agent is 0 with respect to the solid content of the polymer. 0.01 to 5.0% by weight is preferable, and 0.1 to 1.0% by weight is more preferable.
  • silane coupling agent when adding a silane coupling agent, add it to the polyamic acid ester solution, the polyamic acid solution, or both the polyamic acid ester solution and the polyamic acid solution before mixing the polyamic acid ester solution and the polyamic acid solution. Can do. Moreover, it can add to the mixed solution of polyamic acid ester and polyamic acid. Since the silane coupling agent is added for the purpose of improving the adhesion between the polymer and the substrate, as a method for adding the silane coupling agent, the silane coupling agent is added to a polyamic acid solution that can be unevenly distributed in the film and the substrate interface, and the polymer is added.
  • a method in which the silane coupling agent is sufficiently reacted with the polyamic acid ester solution is more preferable.
  • the liquid crystal aligning agent of this invention After applying the liquid crystal aligning agent of this invention to a board
  • the specific example of the imidation promoter of polyamic acid ester is given to the following, it is not limited to this.
  • each D is independently a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
  • the content of the imidization accelerator is not particularly limited as long as the effect of promoting thermal imidation of the polyamic acid ester is obtained, but the following formula contained in the polyamic acid ester in the liquid crystal aligning agent is not limited.
  • the imidization accelerator itself remaining in the film after baking minimizes adverse effects on various properties of the liquid crystal alignment film, the following formula (included in the polyamic acid ester in the liquid crystal alignment treatment agent (The amount of the imidization accelerator is preferably 2 mol or less, more preferably 1 mol or less, and still more preferably 0.5 mol or less with respect to 1 mol of the amic acid ester moiety of 12).
  • the liquid crystal alignment film of this invention is a film
  • the substrate to which the liquid crystal alignment treatment agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include spin coating, printing, and inkjet.
  • Arbitrary temperature and time can be selected for the drying and baking process after apply
  • drying is performed at 50 to 120 ° C. for 1 minute to 10 minutes, preferably 60 to 100 ° C. for 2 to 5 minutes, and then at 150 to 300 ° C. for 5 minutes to 120 minutes. Baked at a temperature of 180 to 230 ° C. for 10 to 60 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method, but the liquid crystal aligning agent of the present invention is particularly useful when used in the rubbing method.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method and performing alignment treatment, and then preparing a liquid crystal cell by a known method.
  • the manufacturing method of the liquid crystal cell is not particularly limited.
  • a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 to 30 ⁇ m, more preferably 2 to 2 with the liquid crystal alignment film surface inside.
  • a method is generally employed in which a 10 ⁇ m spacer is placed and then the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method in which sealing is performed after dropping the liquid crystal.
  • DMT-MM 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholin-4-nium (organic solvent)
  • NMP N-methyl-2-pyrrolidone
  • BC Butyl cellosolve
  • ⁇ -BL ⁇ -butyrolactone
  • Example 1 CBDA (70) PMDA / B76 (30) 3ABA (50) APC16 As a tetracarboxylic dianhydride component, 13.53 g (0.069 mol) of CBDA, 6.54 g (0.030 mol) of PMDA, 6.10 g (0.030 mol) of B76 as a diamine component, 3-ABA Using 6.11 g (0.050 mol) and 6.96 g (0.020 mol) of C18DAB, the reaction was carried out in NMP 222.39 g at room temperature for 24 hours to obtain a polyamic acid solution (PAA-1).
  • PAA-1 polyamic acid solution
  • TDA / p-PDA (90) APC18 As the tetracarboxylic dianhydride component, 7.51 g (0.025 mol) of TDA, 2.43 g (0.023 mol) of p-PDA and 0.94 g (0.0025 mol) of C18DAB were used as the diamine component, The reaction was performed in 61.66 g of NMP at 50 ° C. for 24 hours to obtain a polyamic acid solution (PAA-2).
  • PAA-2 polyamic acid solution
  • Example 3 CBDE (50) PMDE / DDM
  • DDM dicarboxylic acid diester component
  • 10 g (0.050 mol) 83.20 g (0.30 mol) of DMT-MM was used as a condensing agent and reacted in NMP 719.18 g at room temperature for 3 hours to obtain a polyamic acid ester solution (PAE-1).
  • PAE-1 polyamic acid ester solution
  • This polyamic acid ester solution was put into 4692 g of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyamic acid ester (PAE-1). The number average molecular weight of this polyamic acid ester was 12,900, and the weight average molecular weight was 28,800. To 2.15 g of the obtained polyamic acid ester (PAE-1), 15.77 g of NMP was added and stirred at room temperature for 4 hours. At the end of stirring, the polyamic acid ester was completely dissolved.
  • CBDE / Me-DADPA 50) DADPA (30) DDM
  • DDM As the dicarboxylic acid diester component, 8.57 g (0.033 mol) of CBDE, as the diamine component, 3.73 g (0.018 mol) of Me-DADPA, 2.10 g (0.011 mol) of DADDA, and 1.39 g of DDM (0.0070 mol), 1.81 g (0.018 mol) of triethylamine as a base, and 25.19 g (0.091 mol) of DMT-MM as a condensing agent were reacted in 247.11 g of NMP at room temperature for 4 hours. A polyamic acid ester solution (PAE-2) was obtained.
  • This polyamic acid ester solution was put into 1594 g of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyamic acid ester (PAE-2).
  • the number average molecular weight of this polyamic acid ester was 12,300, and the weight average molecular weight was 33,500.
  • NMP 19.62g was added to 2.18g of obtained polyamic acid ester (PAE-2), and it stirred at room temperature for 5 hours. At the end of stirring, the polyamic acid ester was completely dissolved. Further, 1.01 g of ⁇ -BL and 6.54 g of BC were added to this solution and stirred at room temperature for 1 hour.
  • the polyamic acid ester was 6% by mass, ⁇ -BL was 57% by mass, NMP was 17% by mass, and BC was 20% by mass. % Solution was prepared. The prepared polyamic acid ester solution was used as a liquid crystal aligning agent (AL-4). Evaluation similar to Example 1 was performed using this coating liquid.
  • CBDA 50
  • PMDA PMDA
  • DDM diamine
  • PAA-1 polyamic acid solution
  • polyamic acid solution PAA-1
  • PAA-1 polyamic acid solution
  • ⁇ -BL 14.63 g
  • NMP nuclear magnetic resonance
  • BC solid content
  • ⁇ -BL 59% by mass
  • a solution containing 20% by mass of NMP and 15% by mass of BC was prepared.
  • This polyamic acid had a number average molecular weight of 20,900 and a weight average molecular weight of 57,900.
  • SPI-1 polyimide solution prepared in Example 1
  • PAE-1 polyamic ester acid solution prepared in Example 3
  • SPI-2 polyimide solution
  • PAE-1 polyamic ester acid solution
  • Example 3 3/7
  • the polyimide solution (SPI-2) prepared in Example 1 and the polyamic ester acid solution (PAE-1) prepared in Example 3 were mixed at a weight ratio of 30:70.
  • the mixture was stirred for a time to obtain a liquid crystal aligning agent (AL-6). Evaluation similar to Example 1 was performed using this coating liquid.
  • the polyimide solution (SPI-1) prepared in Example 1 and the polyamic ester acid solution (PAE-2) prepared in Example 4 were mixed at a weight ratio of 30:70.
  • the mixture was stirred for a time to obtain a liquid crystal aligning agent (AL-7). Evaluation similar to Example 1 was performed using this coating liquid.
  • the polyimide solution (SPI-2) prepared in Example 2 and the polyamic ester acid solution (PAE-2) prepared in Example 4 were mixed at a weight ratio of 30:70.
  • the mixture was stirred for a period of time to obtain a liquid crystal aligning agent (AL-8). Evaluation similar to Example 1 was performed using this coating liquid.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (molecular weight: about 12,000, 4,000, and molecular weight manufactured by Polymer Laboratories) 1,000).
  • liquid crystal cells were produced as follows.
  • a liquid crystal alignment treatment agent is spin-coated on a glass substrate with a transparent electrode, dried on a 70 ° C. hot plate for 70 seconds, and then baked on a 210 ° C. hot plate for 10 minutes to form a coating film having a thickness of 100 nm. I let you.
  • This coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • VHR voltage holding ratio
  • the voltage holding ratio of the manufactured twisted nematic liquid crystal cell is measured by applying a voltage of 4 V for 60 ⁇ s at a temperature of 90 ° C. and measuring the voltage after 166.7 ms to determine how much the voltage can be held. Calculated as retention.
  • the voltage holding ratio was measured using a voltage holding ratio measuring device (VHR-1) manufactured by Toyo Technica.
  • RDC (after OFF) shows the value immediately after applying AC voltage 3.0V and DC voltage 5.0V for 1 hour
  • RDC (after 5 minutes) is the AC voltage immediately after OFF and 30 minutes after OFF.
  • the liquid crystal aligning agent of the present invention even if the imidization ratio of the soluble polyimide is high, the liquid crystal has good printability without causing a whitening phenomenon at the time of coating film formation, and good rubbing resistance of the coating film.
  • An alignment film can be obtained, and electrical characteristics such as voltage holding ratio (VHR) and accumulated charge (RDC) of the obtained liquid crystal alignment film are excellent.
  • a liquid crystal display element having the liquid crystal alignment film is a TN element, STN It is widely useful for devices, TFT liquid crystal devices, and vertical alignment type liquid crystal display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 耐ラビング性、及びイミド化率が高くても印刷性が良く、かつ電圧保持率、蓄積電荷等に優れた液晶配向膜を形成する液晶配向処理剤を提供する。 下記式(1)で表される可溶性ポリイミドと、下記式(2)で表されるポリアミック酸エステルを含有することを特徴とする液晶配向処理剤。 (Xは4価の有機基であり、Yは2価の有機基である。Xは4価の有機基であり、Yは2価の有機基であり、Rは、炭素数1~5のアルキル基である。A及びAは、それぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)

Description

ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子
 本発明は、ポリイミド系の液晶配向処理剤、それを用いた液晶配向膜、及び液晶表示素子に関する。
 液晶表示素子は、液晶分子が基板上に形成された液晶配向膜で挟まれた構造をしており、この液晶分子が電圧によって応答することを利用した表示素子である。
 液晶配向膜は、液晶分子の配向方向とプレチルト角を任意の状態に制御するという重要な役割を有する。
 液晶配向膜は、一般的には基板上に形成されたポリイミド膜の表面を、レーヨン、ナイロン布などによってその表面に圧力をかけて擦る、いわゆる“ラビング処理”を行って作製されている。このラビング処理によって液晶分子の配向方向が決定される。
 液晶のプレチルト角を大きくする手段としては、液晶配向膜を形成しているポリイミドの構造中に長鎖のアルキル基を導入する手段が知られている(例えば、特許文献1参照)。
 基板上にポリイミド膜を形成させる手段としては、ポリアミック酸などの溶液を塗布して基板上でイミド化させる方法と、可溶性ポリイミドの溶液を塗布する方法とがある。中でも、可溶性ポリイミドの溶液を使用する方法は、比較的低温の焼成であっても、液晶配向膜としたときの特性が良好なポリイミド膜を形成させることが可能であるという反面、形成された膜の強度が低く、ラビング処理により膜表面への傷及び膜の剥離が起き易いという問題がある。
 また、液晶配向膜を作製する際にポリマー溶液を基板へ塗布する手段として、現在、工業的にはフレキソ印刷法が広く用いられている。しかし、イミド化率の高い可溶性ポリイミドの溶液は白化現象を起こすなど印刷性が劣るため、イミド化率の低い可溶性ポリイミドなどを混合して用いるなどの工夫が必要であった(例えば、特許文献2参照)。
 更には、液晶に大きいプレチルト角を与える為に、可溶性ポリイミドの構造に長鎖アルキル基を導入すると、この印刷性が悪化する傾向があった。
 ポリマー溶液の基板への印刷性の改善手段としては、ブチルセロソルブなどの溶媒を加える方法が知られている(例えば、特許文献3参照)。
 しかし、一般的に可溶性ポリイミドはポリアミック酸などと比較して溶解性が低いため、ブチルセロソルブなどの溶媒を多量に使用することはできなかった。
日本特開平2-282726号公報 日本特開平9-297312号公報 日本特開平2-037324号公報
 本発明の目的は、耐ラビング性が良好である液晶配向膜が得られ、かつ、可溶性ポリイミドのイミド化率が高くても印刷性が良好であり、かつ電圧保持率(VHR)、蓄積電荷(RDC)などの電気的特性に優れた、可溶性ポリイミドを含むポリイミド系の液晶配向処理剤を提供することにある。
 本発明者は、上記可溶性ポリイミドを含むポリイミド系の液晶配向処理剤の特性、電気的特性を損なうことなく、特に、被膜形成時における印刷特性を改善すべく研究を進めたところ、特定の構造を有する可溶性ポリイミドとともに、特定の構造を有するポリアミック酸エステルを含有する液晶配向処理剤が、かかる目的を達成できることを見出した。
 すなわち、特定の構造を有する可溶性ポリイミドとともに、特定の構造を有するポリアミック酸エステルを含有する液晶配向処理剤は、イミド化率が高くても塗膜形成時において白化現象を起こさず、印刷性が良好であり、かつ塗膜の耐ラビング性が良好である液晶配向膜の提供が可能である。また、得られる液晶配向膜は、電気的特性に優れ、特に、電圧保持率及び蓄積電荷(RDC)においては、従来にない優れた特性を有することを見出した。
 すなわち、本発明は、上記の知見に基づいてなされたものであり、下記の要旨を有するものである。
1.下記式(1)で表される可溶性ポリイミドと、下記式(2)で表されるポリアミック酸エステルを含有することを特徴とする液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Xは4価の有機基であり、Yは2価の有機基である。式(2)中、Xは4価の有機基であり、Yは2価の有機基であり、Rは、炭素数1~5のアルキル基である。A及びAは、それぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)
2.式(2)中のRがメチル基である上記1に記載の液晶配向処理剤。
3.式(1)、式(2)におけるX及びXが、それぞれ独立して、下記式で表される構造から選ばれる少なくとも1種である上記1又は2に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000005
4.式(2)において、Xが芳香族環を有する以下の構造である上記1~3のいずれかに記載の液晶配向処理剤。

Figure JPOXMLDOC01-appb-C000006

5.式(1)において、Xが脂肪族構造又は脂環式構造を有する上記1~3のいずれかに記載の液晶配向処理剤。
6.前記ポリアミック酸エステルの重量平均分子量が、5,000~200,000ある上記1~5のいずれかに記載の液晶配向処理剤。
7.前記可溶性ポリイミドが、イミド化率50%以上を有し、かつ重量平均分子量が5,000~200,000である上記1~6のいずれかに記載の液晶配向処理剤。
8.前記可溶性ポリイミドの含有量と前記ポリアミック酸エステルの含有量との比(可溶性ポリイミドの含有量/ポリアミック酸エステルの含有量)が、質量比率で1/9~9/1である上記1~7のいずれかに記載の液晶配向処理剤。
9.前記可溶性ポリイミドと前記ポリアミック酸エステルとを溶解する有機溶媒を含み、可溶性ポリイミドの含有量とポリアミック酸エステルとの合計量が、有機溶媒100質量%に対して0.5~15質量%である上記1~8のいずれかに記載の液晶配向処理剤。
10.前記有機溶媒が、N-メチル-ピロリドン、N-エチル-ピロリドン、及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種を含有する上記9に記載の液晶配向処理剤。
11.さらに、溶媒を含む上記1~10のいずれかに記載の液晶配向処理剤。
12.前記溶媒が、ブチルセロソルブである上記11に記載の液晶配向処理剤。
13.上記1~12のいずれかに記載の液晶配向処理剤を塗布し、焼成して得られる液晶配向膜。
14.前記液晶配向処理剤を塗布し、焼成して得られた塗膜の厚さが、5~300nmである上記13に記載の液晶配向膜。
15.上記13又は14に記載の液晶配向膜を具備する液晶表示素子。
 本発明の液晶配向処理剤によれば、可溶性ポリイミドのイミド化率が高くても塗膜形成時において白化現象を起こさず印刷性が良好であり、かつ塗膜の耐ラビング性が良好である液晶配向膜が得られる。また、得られた液晶配向膜は、電気的特性に優れ、特に、電圧保持率及び蓄積電荷(RDC)においては、従来にない優れた特性を有する。
 本発明においては、ポリアミック酸エステルを使用することにより、極性や脂溶性が可溶性ポリイミドと近いために、下記のような2層とはならず、液晶と接する界面においても、ポリアミック酸エステルがある濃度で存在するためと思われる。
 一方、本発明の液晶配向処理剤に含まれるポリアミック酸エステルの代わりに、ポリアミック酸を使用した場合には、塗膜形成時における白化現象は改善されるものの、得られる液晶配向膜は、電圧保持率、蓄積電荷(RDC)等の特性において、満足し得ない結果をもたらす。
 ポリアミック酸エステルの代わりにポリアミック酸を使用した場合における、電気的特性の低下をもたらす原因は必ずしも明らかではないが、ポリアミック酸を使用した場合、極性や脂溶性が可溶性ポリイミドと異なるために、液晶配向膜の上層に可溶性ポリイミド成分、下層にポリアミック酸成分が位置する二層系になることに起因するものと思われる。
<可溶性ポリイミド>
 本発明に用いられる可溶性ポリイミドは、下記の式(1)に示される構造を有する。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)において、Xは、4価の有機基である。
 Xの好ましい具体例を示すならば、以下に示すX-1~X-46が挙げられる。モノマーの入手性から、Xは、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28又はX-32が好ましい。
 なかでも、Xは、脂肪族構造又は脂環式構造を有する場合に、得られる液晶配向膜が高い電圧保持率特性を有するために好ましい。好ましい脂肪族構造を有するXは、X-1,X-16,X-19が好ましく、特に、X-1,X-19が好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 また、式(1)において、Yは2価の有機基であり、特に限定されるものではない。Yの好ましい具体例を示すと、下記のY-1~Y-97が挙げられる。
 なかでも、Yとしては、Y-7、Y-10、Y-11、Y-12、Y-13、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-41、Y-42、Y-43、Y-44、Y-45、Y-46、Y-48、Y-61、Y-63、Y-64、Y-71、Y-72、Y-73、Y-74、Y-75、Y-98がより好ましく、これらの構造を有するジアミン化合物が好ましい。
 また、Yが、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、又はY-97である場合には、プレチルト角を高くすることができる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 本発明で使用される可溶性ポリイミドは、ポリイミド前駆体を既知の方法によりイミド化することにより得られる。ポリイミド前駆体とは、ポリアミック酸又はポリアミック酸エステルを意味する。
 イミド化においてポリアミック酸を使用する場合には、ポリアミック酸を脱水閉環することにより、また、ポリアミック酸エステルを使用する場合には、ポリアミック酸エステルを加熱閉環することにより製造される。
 なかでも、本発明では、ポリアミック酸を脱水閉環する方法がイミド化率を上げることができるためにより好ましい。
 本発明における可溶性ポリイミドのイミド化率は、イミド化反応における、触媒量、反応温度、反応時間などを調節することにより制御することができる。本発明では、イミド化率が高いポリイミドでも使用できるので、イミド率は50%以上が好ましく、70%以上がより好ましく、80%以上が特に好ましい。なかでも、イミド化率は80~90%がより好ましい。
 ポリアミック酸は、ジアミン成分とテトラカルボン酸二水物との反応により既知の方法により得られる。
 また、ポリアミック酸エステルは、既知の方法にしたがって、ジアミン成分とテトラカルボン酸ジエステルジクロリドを塩基の存在下で反応させる、又はテトラカルボン酸ジエステルとジアミンを適当な縮合剤、塩基の存在下に反応させることによって得られる。
<ポリアミック酸エステル>
 本発明に用いられるポリアミック酸エステルは、下記の式(2)に示される構造を有する。
Figure JPOXMLDOC01-appb-C000025
 上記式(2)において、Rは炭素数1~5のアルキル基である。
 ポリアミック酸エステルは、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなる。そのため、R1は、熱によるイミド化のしやすさの観点から、炭素数1又は2のアルキル基、特にメチル基が好ましい。
 上記式(2)において、Xは、上記式(1)におけるXと、上記式(2)のYは、上記式(1)におけるYと、それぞれ同じ定義を有する。なかでも、式(2)におけるXが、芳香族構造を有する場合は、得られる液晶配向膜が高い電圧保持率特性を有するために好ましい。芳香族構造を有する好ましいXとしては、上記したX-26~X-45が挙げられ、特には、X-26が好ましい。
 上記式(2)において、A及びAは、それぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。
 置換基を有してもよい炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。
 置換基を有してもよい炭素数1~10のアルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 置換基を有してもよい炭素数1~10のアルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 A及びAとしては、それぞれ独立して、水素原子、メチル基、エチル基、ビニル基、アリル基が好ましく、水素原子、メチル基がより好ましい。
 上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 上記式(2)で表されるポリアミック酸エステルは、下記式(6)~(8)で表されるテトラカルボン酸誘導体のいずれかと、式(9)で表されるジアミン化合物との反応によって得ることができる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(上記式中、X、Y、R、A及びAはそれぞれ上記で定義したとおりである。)
 上記式(2)で表されるポリアミック酸エステルは、以下に記載する(A)~(C)のいずれかの方法で合成することができる。
(A)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
Figure JPOXMLDOC01-appb-C000028
 具体的には、ポリアミック酸とエステル化剤を有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。なかでもN,N-ジメチルホルムアミドジメチルアセタールが好ましい。
 エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、3~4モル当量がより好ましい。
 上記の反応に用いる有機溶媒は、ポリマーの溶解性の点から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時のポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(B)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
Figure JPOXMLDOC01-appb-C000029
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。
 塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルが好ましく、2~3倍モルがより好ましい。
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる有機溶媒は、できるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(C)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
Figure JPOXMLDOC01-appb-C000030
 具体的には、テトラカルボン酸ジエステルとジアミンを、縮合剤、塩基、及び有機溶媒の存在下で、0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
 縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。
 縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましく、2~2.5倍モルがより好ましい。
 塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。
 塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましく、2~3倍モルがより好ましい。
 上記の反応に用いる有機溶媒としては、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましく、0.2~0.5倍モルがより好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(A)又は上記(B)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、メタノール、エタノールが好ましい。
<液晶配向処理剤>
 本発明の液晶配向処理剤は、上記した式(1)で表わされる可溶性ポリイミドと式(2)で表わされるポリアミック酸エステルとを含有する。通常、本発明の液晶配向処理剤は、可溶性ポリイミド及びポリアミック酸エステル(以下、合わせて、ポリマーという場合がある。)が有機溶媒中に溶解した溶液の形態である。かかる溶液の形態を有する限り、例えば、ポリアミック酸エステル及び/又はポリアミック酸を有機溶媒中で合成した場合には、得られる反応溶液そのものであってもよく、また、この反応溶液を適宜の溶媒で希釈したものであってもよい。また、ポリアミック酸エステル及び/又はポリアミック酸を粉末として得た場合は、これを有機溶媒に溶解させて溶液としたものであってもよい。
 可溶性ポリイミドは、有機溶媒への溶解性の関係上、その重量平均分子量は、好ましくは5,000~200,000であり、より好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、5,000~100,000であり、より好ましくは、10,000~50,000である。
 一方、ポリアミック酸エステルの重量平均分子量は、好ましくは5,000~200,000であり、より好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、5,000~100,000であり、より好ましくは、10,000~50,000である。
 本発明の液晶配向処理剤における前記ポリイミドの含有量と前記ポリアミック酸エステルの含有量は、ポリアミック酸エステル/ポリアミック酸(質量比率)で、1/9~9/1であるのが好ましく、より好ましくは2/8~8/2であり、特に好ましくは3/7~7/3である。かかる比率をこの範囲にせしめることにより、液晶配向性と電気特性のいずれもが良好な液晶配向処理剤を提供することができる。
 本発明の液晶配向処理剤におけるポリマーの含有量(濃度)は、形成させようとする液晶配向膜の厚みによっても適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、有機溶媒100質量%に対して、ポリマー成分の含有量は、0.5質量%以上が好ましく、溶液の保存安定性の点からは15質量%以下が好ましく、より好ましくは、1~10質量%である。
 なお、この場合、予め、ポリマーの濃度の濃い溶液を作製し、かかる濃厚な溶液を、液晶配向処理剤とする時に希釈してもよい。かかるポリマー成分の濃厚な溶液の濃度は、10~30質量%が好ましく、10~15質量%がより好ましい。
 また、ポリマー成分の粉末を有機溶媒に溶解して溶液を作製する際に加熱してもよい。加熱温度は、20~150℃が好ましく、20~80℃が特に好ましい。
 本発明の液晶配向処理剤に含有される有機溶媒は、ポリマー成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。なかでも、溶解性の点から、N-メチル-ピロリドン、N-エチル-ピロリドンなどの極性の大きいものが好ましい。
 有機溶媒としては、1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない有機溶媒であっても、ポリマーが析出しない範囲であれば、混合して用いてもよい。
 本発明の液晶配向処理剤は、ポリマー成分を溶解させるための有機溶媒の他に、液晶配向処理剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。なかでも、ブチロセロソルブ、エチルカルビトール等が好ましく用いられる。これらの溶媒は2種類上を併用してもよい。
 本発明の液晶配向処理剤においては、ポリマー成分を溶解するための上記有機溶媒と、塗膜の均一性を向上させるための溶媒を併用する場合があるが、有機溶媒と溶媒の使用量は、容積比率で30/70~90/10、好ましくは60/40~80/20である。
 また、本発明の液晶配向処理剤は、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向処理剤が塗布される基板と、そこに形成される液晶配向膜との密着性を向上させる目的で添加される。以下にシランカップリング剤の具体例を挙げるが、これに限定されるものではない。
 3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-アミノプロピルジエトキシメチルシランなどのアミン系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシランなどのビニル系シランカップリング剤;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤;ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシランなどのメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤;トリエトキシシリルブチルアルデヒドなどのアルデヒド系シランカップリング剤;トリエトキシシリルプロピルメチルカルバメート、(3-トリエトキシシリルプロピル)-t-ブチルカルバメートなどのカルバメート系シランカップリング剤。
 上記シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01~5.0重量%が好ましく、0.1~1.0重量%がより好ましい。
 上記シランカップリング剤を添加する場合は、ポリマーの析出を防ぐために、前記した塗膜均一性を向上させるための溶媒を加える前に添加するのが好ましい。また、シランカップリング剤を添加する場合は、ポリアミック酸エステル溶液とポリアミック酸溶液を混合する前に、ポリアミック酸エステル溶液、ポリアミック酸溶液、又はポリアミック酸エステル溶液とポリアミック酸溶液の両方に添加することができる。また、ポリアミック酸エステルとポリアミック酸との混合溶液に添加することができる。
 シランカップリング剤はポリマーと基板との密着性を向上させる目的で添加するため、シランカップリング剤の添加方法としては、膜内部及び基板界面に偏在することができるポリアミック酸溶液に添加し、ポリマーとシランカップリング剤を十分に反応させてから、ポリアミック酸エステル溶液と混合する方法がより好ましい。
 本発明の液晶配向処理剤を基板へ塗布した後、塗膜を焼成する際にポリアミック酸エステルのイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。
 以下にポリアミック酸エステルのイミド化促進剤の具体例を挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 上記式(B-1)~(B-17)におけるDは、それぞれ独立して、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である。なお、(B-14)~(B-17)には、ひとつの式に複数のDが存在するが、これらは互いに同一であっても異なってもよい。
 ポリアミック酸エステルの熱イミド化を促進する効果が得られる範囲であれば、イミド化促進剤の含有量は特に制限されるものではないが、液晶配向処理剤中のポリアミック酸エステルに含まれる下記式(12)のアミック酸エステル部位1モルに対して、好ましくは0.01モル以上、より好ましくは0.05モル以上、更に好ましくは0.1モル以上である。また、焼成後の膜中に残留するイミド化促進剤自体が、液晶配向膜の諸特性に及ぼす悪影響を最小限に留めるという点から、液晶配向処理剤中のポリアミック酸エステルに含まれる下記式(12)のアミック酸エステル部位1モルに対して、好ましくはイミド化促進剤が2モル以下、より好ましくは1モル以下、更に好ましくは0.5モル以下である。
Figure JPOXMLDOC01-appb-C000033

 イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向処理剤を基板に塗布し、乾燥した後、焼成して得られる膜である。
 本発明の液晶配向処理剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 本発明の液晶配向処理剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向処理剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50~120℃で1分~10分、好ましくは60~100℃で2~5分乾燥させ、その後150~300℃で5分~120分、好ましくは180~230℃で10~60分焼成される。
 焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられるが、本発明の液晶配向処理剤は、ラビング法で使用する場合に特に有用である。
[液晶表示素子]
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得、配向処理を行った後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を、液晶配向膜面を内側にして、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。
 液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後で液晶を注入する真空法、液晶を滴下した後で封止を行う滴下法などが例示できる。
 以下に実施例を挙げて、さらに、本発明を具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されないことはもちろんである。
 なお、実施例及び比較例で使用する略号、及び各特性の測定方法は、以下のとおりである。
(テトラカルボン酸二無水物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
PMDA:2,5-ビス(メトキシカルボニル)テレフタル酸
TDA:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
(ジカルボン酸ジエステル)
CBDE:2,4-ビス(メトキシカルボニル)シクロブタン1,3-ジカルボン酸
PMDE:2,5-ビス(メトキシカルボニル)テレフタル酸
(ジアミン)
Me-DADPA:N1-(4-アミノフェニル)-N1-メチルベンゼン-1,4-ジアミン
DADPA:4,4’-ジアミノジフェニルアミン
p-PDA:p-フェニレンジアミン
DDM:4,4’-ジアミノジフェニルメタン
B76:2,4-ジアミノ-N,N-ジアリルアニリン
3-ABA:3-(アミノメチル)アニリン
C16DAB:4-ヘキサデシルオキシ-1,3-ジアミノベンゼン
C18DAB:4-オクタデシルオキシ-1,3-ジアミノベンゼン
(縮合剤)
DMT-MM:4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリン-4-ニウム
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
γ-BL:γ-ブチロラクトン
(実施例1)
 CBDA(70)PMDA/B76(30)3ABA(50)APC16
 テトラカルボン酸二無水物成分として、CBDAを13.53g(0.069mol)、PMDAを6.54g(0.030mol)、ジアミン成分として、B76を6.10g(0.030mol)、3-ABAを6.11g(0.050mol)、C18DABを6.96g(0.020mol)を用い、NMP222.39g中、室温で24時間反応させポリアミック酸溶液(PAA-1)を得た。
 ポリアミック酸溶液(PAA-1)20.00gに、NMPを30.00g、無水酢酸を3.90g、及びピリジンを1.81g加え、室温で30分攪拌した後、50℃で3時間攪拌し反応させた。反応終了後、195gのメタノール中にゆっくり注ぎ、ポリマーを析出させた後、30分攪拌し、濾過により固体を回収した。得られた個体をメタノールで十分洗浄した後、100℃で真空乾燥させることにより、ポリイミド粉末(SPI-1)を得た。このポリイミドの数平均分子量は13,600、重量平均分子量は33,800、イミド化率は90%であった。
 ポリイミド粉末(SPI-1)6.47gに、γ-BLを58.23g加え、50℃で24時間攪拌して溶解させ、完全に溶解しているのを確認した。その後、γ-BLを15.28g、BCを19.73加え、50℃で24分攪拌することで、ポリイミドが6.0質量%、γ-BLが74質量%、BCが20質量%のポリイミド溶液(SPI-1)得た。得られたポリイミド溶液は、液晶配向処理剤(AL-1)とした。この塗布液を用いてラビング耐性、白化、及び電圧保持率(VHR)の評価を行った。
 実施例1の塗布液を用いて得られたラビング耐性、白化、及びVHRの各評価結果は、ポリマー溶液の組成比(重量比)とあわせて表1に示す。
(実施例2)
 TDA/p-PDA(90)APC18
 テトラカルボン酸二無水物成分として、TDAを7.51g(0.025mol)、ジアミン成分として、p-PDAを2.43g(0.023mol)、C18DABを0.94g(0.0025mol)を用い、NMP61.66g中、50℃で24時間反応させポリアミック酸溶液(PAA-2)を得た。
 ポリアミック酸溶液(PAA-2)20.00gに、NMPを30.67g、無水酢酸を7.18g、ピリジンを3.33g加え、室温で30分攪拌した後、40℃で3時間攪拌し反応させた。反応終了後、214gのメタノール中にゆっくり注ぎ、ポリマーを析出させた後、30分攪拌し、濾過により固体を回収した。得られた個体をメタノールで十分洗浄した後、100℃で真空乾燥させることにより、ポリイミド粉末(SPI-2)を得た。このポリイミドの数平均分子量は12,400、重量平均分子量は27,400、イミド化率は86%であった。
 ポリイミド粉末(SPI-2)2.60gにγ-BLを29.90g加え、50℃で24時間攪拌して溶解させ、完全に溶解しているのを確認した。その後、γ-BLを2.16g、BCを8.67g加え、50℃で24分攪拌することで、ポリイミドが6.0質量%、γ-BLが94質量%、BCが20質量%のポリイミド溶液(SPI-2)得た。得られたポリイミド溶液は、液晶配向処理剤(AL-2)とした。この塗布液を用いて、実施例1と同様の評価を行った。
(実施例3)
 CBDE(50)PMDE/DDM
 ジカルボン酸ジエステル成分として、CBDEを11.97g(0.046mol)、PMDEを14.12g(0.050mol)、ジアミン成分として、DDMを19.83g(0.10mol)、塩基として、トリエチルアミンを5.10g(0.050mol)、縮合剤として、DMT-MMを83.20g(0.30mol)を用い、NMP719.18g中、室温で3時間反応させポリアミック酸エステル溶液(PAE-1)を得た。
 このポリアミック酸エステル溶液をメタノール4692g中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリアミック酸エステル(PAE-1)の白色粉末を得た。このポリアミック酸エステルの数平均分子量は12,900、重量平均分子量は28,800であった。
 得られたポリアミック酸エステル(PAE-1)2.15gに、NMP15.77gを加え、室温で4時間攪拌した。攪拌終了時点でポリアミック酸エステルは完全に溶解していた。さらにこの溶液にNMP5.47g、及びBC9.20gを加え、室温で2時間攪拌し、ポリアミック酸エステルが6質量%、NMPが74質量%、BCが20質量%の溶液を調製した。調製して得られたポリアミック酸エステル溶液は、液晶配向処理剤(AL-3)とした。この塗布液を用いて、実施例1と同様の評価を行った。
(実施例4)
 CBDE/Me-DADPA(50)DADPA(30)DDM
 ジカルボン酸ジエステル成分として、CBDEを8.57g(0.033mol)、ジアミン成分として、Me-DADPAを3.73g(0.018mol)、DADPAを2.10g(0.011mol)、DDMを1.39g(0.0070mol)、塩基として、トリエチルアミンを1.81g(0.018mol)、縮合剤として、DMT-MMを25.19g(0.091mol)を用い、NMP247.11g中、室温で4時間反応させポリアミック酸エステル溶液(PAE-2)を得た。
 このポリアミック酸エステル溶液をメタノール1594g中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリアミック酸エステル(PAE-2)の白色粉末を得た。このポリアミック酸エステルの数平均分子量は12,300、重量平均分子量は33,500であった。
 得られたポリアミック酸エステル(PAE-2)2.18gに、NMP19.62gを加え、室温で5時間攪拌した。攪拌終了時点でポリアミック酸エステルは完全に溶解していた。さらにこの溶液にγ-BL1.01g、及びBC6.54gを加え、室温で1時間攪拌し、ポリアミック酸エステルが6質量%、γ-BLが57質量%、NMPが17質量%、BCが20質量%の溶液を調製した。調製して得られたポリアミック酸エステル溶液は、液晶配向処理剤(AL-4)とした。この塗布液を用いて、実施例1と同様の評価を行った。
(実施例5)
 CBDA(50)PMDA/DDM
 テトラカルボン酸二無水物成分として、CBDAを9.81g(0.050mol)、PMDAを10.25g(0.047mol)、ジアミン成分として、DDMを19.83g(0.0060mol)を用い、γ-BL113.00g及びNMP113.00g中、室温で3時間反応させポリアミック酸溶液(PAA-1)を得た。
 ポリアミック酸溶液(PAA-1)198.97gを、γ-BL204.23g、NMP14.63g、及びBC73.74gを用いて希釈し、固形分(ポリアミック酸)が6質量%、γ-BL59質量%、NMPが20質量%、BCが15質量%の溶液を調製した。 このポリアミック酸は、数平均分子量が20,900、重量平均分子量が57,900であった。
(実施例6)
(実施例1)/(実施例3)=3/7
 実施例1にて調製したポリイミド溶液(SPI-1)と、実施例3にて調製したポリアミックエステル酸溶液(PAE-1)の重量比が30:70になるように混合して、室温で1時間撹拌させ、液晶配向処理剤(AL-5)を得た。この塗布液を用いて、実施例1と同様の評価を行った。
(実施例7)
(実施例2)/(実施例3)=3/7
 実施例1にて調製したポリイミド溶液(SPI-2)と、実施例3にて調製したポリアミックエステル酸溶液(PAE-1)の重量比が30:70になるように混合して、室温で1時間撹拌させ、液晶配向処理剤(AL-6)を得た。この塗布液を用いて、実施例1と同様の評価を行った。
(実施例8)
(実施例1)/(実施例4)=3/7
 実施例1にて調製したポリイミド溶液(SPI-1)と、実施例4にて調製したポリアミックエステル酸溶液(PAE-2)の重量比が30:70になるように混合して、室温で1時間撹拌させ、液晶配向処理剤(AL-7)を得た。この塗布液を用いて、実施例1と同様の評価を行った。
(実施例9)
(実施例2)/(実施例4)=3/7
 実施例2にて調製したポリイミド溶液(SPI-2)と、実施例4にて調製したポリアミックエステル酸溶液(PAE-2)の重量比が30:70になるように混合して、室温で1時間撹拌させ、液晶配向処理剤(AL-8)を得た。この塗布液を用いて、実施例1と同様の評価を行った。
(比較例1)
(実施例2)/(実施例5)=3/7
 実施例2にて調製したポリイミド溶液(SPI-2)と、実施例5にて調製したポリアミック酸溶液(PAA-1)の重量比が30:70になるように混合して、室温で1時間撹拌させ、液晶配向処理剤を得た(AL-9)。この塗布液を用いて、実施例1と同様の評価を行った。
<分子量の測定>
 重合反応により得られたポリイミドの分子量は、該ポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量と重量平均分子量を算出した。
 GPC装置:Shodex社製 (GPC-101)
 カラム:Shodex社製 (KD803とKD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、及び30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、及び1,000)。
<液晶セルの作製>
 実施例1~4及び6~10で調製した液晶配向処理剤について、以下のようにして液晶セルを作製した。
 液晶配向処理剤を透明電極付きガラス基板にスピンコートし、70℃のホットプレート上で70秒間乾燥させた後、210℃のホットプレート上で10分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmの条件でラビングし、液晶配向膜付き基板を得た。
 次いで、液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い、ラビング方向が直行するようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して、ツイストネマティック液晶セルを得た。
 作製した各液晶セルの物性の測定、及び特性の評価の方法を以下に記述した。
 なお、実施例2~4、実施例6~9、及び比較例1における各液晶配向処理剤の組成、各液晶配向膜についての物性の測定及び特性の評価等の結果は、表1にまとめて示した。
<電圧保持率(VHR)の測定>
 作製したツイストネマティック液晶セルの電圧保持率の測定は、90℃の温度下で、4Vの電圧を60μs間印加し、166.7ms後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として計算した。
 なお、電圧保持率の測定には、東陽テクニカ社製の電圧保持率測定装置(VHR-1)を使用した。
<蓄積電荷(RDC)の見積もり>
 作製したツイストネマティック液晶セルに、23℃の温度下で直流電圧を、0Vから0.1V間隔で1.0Vまで印加し、各電圧でのフリッカー振幅レベルを測定して、検量線を作成した。5分間アース(接地)した後、交流電圧3.0V、及び直流電圧5.0Vを印加し、1時間後のフリッカー振幅レベルを測定し、予め作製した検量線と照らし合わせる事によりRDCを見積もった(このRDCの見積もり方法は、フリッカー参照法という。)。
ここで、RDC(OFF後)は、交流電圧3.0V、及び直流電圧5.0Vを1時間印加した直後の値を示し、RDC(5分後)は、交流電圧をOFF直後、及びOFF後30分の蓄積電荷の値を示す。
Figure JPOXMLDOC01-appb-T000034
 本発明の液晶配向処理剤によれば、可溶性ポリイミドのイミド化率が高くても塗膜形成時において白化現象を起こさず印刷性が良好であり、かつ塗膜の耐ラビング性が良好である液晶配向膜が得られるとともに、得られた液晶配向膜の有する電圧保持率(VHR)及び蓄積電荷(RDC)などの電気的特性も優れ、該液晶配向膜を有する液晶表示素子は、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。
 なお、2012年3月30日に出願された日本特許出願2012-082729号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下記式(1)で表される可溶性ポリイミドと、下記式(2)で表されるポリアミック酸エステルを含有することを特徴とする液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは4価の有機基であり、Yは2価の有機基である。式(2)中、Xは4価の有機基であり、Yは2価の有機基であり、Rは、炭素数1~5のアルキル基である。A及びAは、それぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)
  2.  式(2)中のRがメチル基である請求項1に記載の液晶配向処理剤。
  3.  式(1)、式(2)におけるX及びXが、それぞれ独立して、下記式で表される構造から選ばれる少なくとも1種である請求項1又は2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000002
  4.  式(2)において、Xが芳香族環を有する以下の構造である請求項1~3のいずれかに記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
  5.  式(1)において、Xが脂肪族構造又は脂環式構造を有する請求項1~3のいずれかに記載の液晶配向処理剤。
  6.  前記ポリアミック酸エステルの重量平均分子量が、5,000~200,000ある請求項1~5のいずれかに記載の液晶配向処理剤。
  7.  前記可溶性ポリイミドが、イミド化率50%以上を有し、かつ重量平均分子量が5,000~200,000である請求項1~6のいずれかに記載の液晶配向処理剤。
  8.  前記可溶性ポリイミドの含有量と前記ポリアミック酸エステルの含有量との比(可溶性ポリイミドの含有量/ポリアミック酸エステルの含有量)が、質量比率で1/9~9/1である請求項1~7のいずれかに記載の液晶配向処理剤。
  9.  前記可溶性ポリイミドと前記ポリアミック酸エステルとを溶解する有機溶媒を含み、可溶性ポリイミドの含有量とポリアミック酸エステルとの合計量が、0.5~15質量%である請求項1~8のいずれかに記載の液晶配向処理剤。
  10.  前記有機溶媒が、N-メチル-ピロリドン、N-エチル-ピロリドン、及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種を含有する請求項9に記載の液晶配向処理剤。
  11.  さらに、溶媒を含む請求項1~10のいずれかに記載の液晶配向処理剤。
  12.  前記溶媒が、ブチルセロソルブである請求項11に記載の液晶配向処理剤。
  13.  請求項1~12のいずれかに記載の液晶配向処理剤を塗布し、焼成して得られる液晶配向膜。
  14.  前記液晶配向処理剤を塗布し、焼成して得られた塗膜の厚さが、5~300nmである請求項13に記載の液晶配向膜。
  15.  請求項13又は14に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2013/059380 2012-03-30 2013-03-28 ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子 WO2013147083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380016101.1A CN104204925A (zh) 2012-03-30 2013-03-28 聚酰亚胺类的液晶取向处理剂、液晶取向膜及液晶显示元件
JP2014508059A JP6064997B2 (ja) 2012-03-30 2013-03-28 ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子
KR1020147027347A KR102058764B1 (ko) 2012-03-30 2013-03-28 폴리이미드계의 액정 배향 처리제, 액정 배향막, 및 액정 표시 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082729 2012-03-30
JP2012-082729 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147083A1 true WO2013147083A1 (ja) 2013-10-03

Family

ID=49260326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059380 WO2013147083A1 (ja) 2012-03-30 2013-03-28 ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6064997B2 (ja)
KR (1) KR102058764B1 (ja)
CN (1) CN104204925A (ja)
TW (1) TWI585155B (ja)
WO (1) WO2013147083A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135393A (ja) * 2014-01-17 2015-07-27 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
WO2015152174A1 (ja) * 2014-04-03 2015-10-08 日産化学工業株式会社 ポリアミック酸エステル-ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
KR20160005644A (ko) 2014-07-07 2016-01-15 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
KR101856725B1 (ko) 2016-05-13 2018-05-10 주식회사 엘지화학 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
KR101879834B1 (ko) * 2015-11-11 2018-07-18 주식회사 엘지화학 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
WO2018135432A1 (ja) * 2017-01-20 2018-07-26 住友化学株式会社 フィルム、樹脂組成物及びポリアミドイミド樹脂の製造方法
JPWO2017094898A1 (ja) * 2015-12-03 2018-09-20 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102257195B1 (ko) 2018-11-08 2021-05-26 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102461121B1 (ko) 2019-02-21 2022-10-28 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
CN115716914B (zh) * 2022-11-24 2024-06-04 天津科技大学 一种聚酰胺酸的亚胺化方法及聚酰亚胺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053583A1 (ja) * 2002-12-11 2004-06-24 Nissan Chemical Industries, Ltd. 液晶配向剤及びそれを用いた液晶表示素子
WO2011115076A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 末端を修飾したポリアミック酸エステルを含有する液晶配向剤、及び液晶配向膜
WO2011115077A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 末端を修飾したポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026918A (ja) * 2001-07-13 2003-01-29 Hitachi Ltd 液晶配向膜用材料、液晶表示素子、その製造方法及び液晶表示装置
KR100952965B1 (ko) * 2007-08-30 2010-04-16 제일모직주식회사 액정배향제, 및 이를 이용하여 제조된 액정배향막
WO2009084665A1 (ja) * 2007-12-28 2009-07-09 Nissan Chemical Industries, Ltd. 液晶配向処理剤、及びそれを用いた液晶表示素子
CN101910931B (zh) * 2008-01-11 2012-05-30 日产化学工业株式会社 液晶取向处理剂及使用了该处理剂的液晶显示元件
JP5839200B2 (ja) * 2010-08-31 2016-01-06 日産化学工業株式会社 ジアミン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053583A1 (ja) * 2002-12-11 2004-06-24 Nissan Chemical Industries, Ltd. 液晶配向剤及びそれを用いた液晶表示素子
WO2011115076A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 末端を修飾したポリアミック酸エステルを含有する液晶配向剤、及び液晶配向膜
WO2011115077A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 末端を修飾したポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135393A (ja) * 2014-01-17 2015-07-27 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
CN106415380B (zh) * 2014-04-03 2019-08-02 日产化学工业株式会社 含有聚酰胺酸酯-聚酰胺酸共聚物的液晶取向剂、以及使用了其的液晶取向膜
WO2015152174A1 (ja) * 2014-04-03 2015-10-08 日産化学工業株式会社 ポリアミック酸エステル-ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
KR20160140825A (ko) * 2014-04-03 2016-12-07 닛산 가가쿠 고교 가부시키 가이샤 폴리아믹산에스테르-폴리아믹산 공중합체를 함유하는 액정 배향제, 및 그것을 사용한 액정 배향막
CN106415380A (zh) * 2014-04-03 2017-02-15 日产化学工业株式会社 含有聚酰胺酸酯‑聚酰胺酸共聚物的液晶取向剂、以及使用了其的液晶取向膜
JPWO2015152174A1 (ja) * 2014-04-03 2017-05-18 日産化学工業株式会社 ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
KR102346494B1 (ko) 2014-04-03 2021-12-31 닛산 가가쿠 가부시키가이샤 폴리아믹산에스테르-폴리아믹산 공중합체를 함유하는 액정 배향제, 및 그것을 사용한 액정 배향막
KR20160005644A (ko) 2014-07-07 2016-01-15 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
US10696901B2 (en) 2015-11-11 2020-06-30 Lg Chem, Ltd. Method of manufacturing liquid crystal alignment layer, liquid crystal alignment layer manufactured by using the same, and liquid crystal display device
KR101879834B1 (ko) * 2015-11-11 2018-07-18 주식회사 엘지화학 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
JPWO2017094898A1 (ja) * 2015-12-03 2018-09-20 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP2018538563A (ja) * 2016-05-13 2018-12-27 エルジー・ケム・リミテッド 液晶配向剤組成物、液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子
KR101856725B1 (ko) 2016-05-13 2018-05-10 주식회사 엘지화학 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
US11347110B2 (en) 2016-05-13 2022-05-31 Lg Chem, Ltd Composition for liquid crystal alignment agent, manufacturing method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device
JP2019104939A (ja) * 2017-01-20 2019-06-27 住友化学株式会社 フィルム、樹脂組成物およびポリアミドイミド樹脂の製造方法
WO2018135432A1 (ja) * 2017-01-20 2018-07-26 住友化学株式会社 フィルム、樹脂組成物及びポリアミドイミド樹脂の製造方法

Also Published As

Publication number Publication date
KR102058764B1 (ko) 2019-12-23
TW201400549A (zh) 2014-01-01
JPWO2013147083A1 (ja) 2015-12-14
CN104204925A (zh) 2014-12-10
TWI585155B (zh) 2017-06-01
KR20140141620A (ko) 2014-12-10
JP6064997B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6064997B2 (ja) ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子
JP6048143B2 (ja) ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤及び液晶配向膜
JP6519583B2 (ja) ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
JP5831712B2 (ja) ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子
WO2011115118A1 (ja) ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
KR20080016816A (ko) 액정 배향 처리제 및 그것을 이용한 액정 표시 소자
WO2011115077A1 (ja) 末端を修飾したポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
WO2010104082A1 (ja) ポリイミド前駆体、ポリイミド及び液晶配向剤
WO2015050135A1 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP5434821B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
JP5333453B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
WO2012133829A1 (ja) 液晶配向剤及びそれを用いた液晶配向膜
WO2013054858A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6597645B2 (ja) 液晶配向剤
JP5904119B2 (ja) 末端を修飾したポリアミック酸エステルを含有する液晶配向剤、及び液晶配向膜
JP5672762B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013015407A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6460342B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
KR102222790B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
TWI751995B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508059

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027347

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769657

Country of ref document: EP

Kind code of ref document: A1