WO2013146714A1 - リチウム二次電池用電解液、及び当該電解液を含む二次電池 - Google Patents
リチウム二次電池用電解液、及び当該電解液を含む二次電池 Download PDFInfo
- Publication number
- WO2013146714A1 WO2013146714A1 PCT/JP2013/058646 JP2013058646W WO2013146714A1 WO 2013146714 A1 WO2013146714 A1 WO 2013146714A1 JP 2013058646 W JP2013058646 W JP 2013058646W WO 2013146714 A1 WO2013146714 A1 WO 2013146714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- negative electrode
- electrolyte
- secondary battery
- lithium salt
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an electrolytic solution for a lithium secondary battery, and a secondary battery including the electrolytic solution, and more particularly to a lithium ion-operated air battery using a carbon material as a negative electrode active material.
- lithium ion secondary batteries have been used as main power storage devices in the fields of mobile phones, notebook personal computers, electric vehicles, and the like, but in recent years, smaller and lighter secondary batteries have been demanded. Therefore, research on next-generation secondary batteries having higher energy density than lithium ion secondary batteries has been actively conducted and various attempts have been made.
- a lithium-air battery that uses oxygen in the air as the positive electrode active material and lithium metal as the negative electrode active material does not need to contain oxygen as the positive electrode active material in the battery. It is expected to be used as a post-lithium ion secondary battery in next-generation electric vehicles and power storage systems in solar and wind power generation facilities because of its capacity, but at present, it performs reversible and stable charge and discharge. It is difficult to put it to practical use.
- Non-Patent Documents 2, 3, and 4 As a solvent capable of such a reversible positive electrode reaction, 1,2-dimethoxyethane, acetonitrile, ionic liquid, and the like have been studied (Non-Patent Documents 2, 3, and 4). However, even if the problem of reversibility on the positive electrode side is solved by the use of these solvents, the problem on the negative electrode side, that is, when lithium metal is used as the negative electrode, metallic lithium is dendritic during charging (dendrites).
- the problem of dendrite precipitation at the negative electrode is solved by using a carbon material such as graphite as the negative electrode active material.
- a carbon material such as graphite
- reversible insertion / extraction of lithium ions into / from the negative electrode carbon material in the electrolyte solution necessary for the reversible reaction in the positive electrode using oxygen as the positive electrode active material such as 1,2-dimethoxyethane, acetonitrile, or ionic liquid In general, it was considered that the negative electrode of carbon material was not the subject of research in air batteries.
- the insertion / release reaction of lithium ions in the negative electrode of a carbon material can be achieved only in the presence of a carbonate-based solvent, as a property of the solvent, acetonitrile can be reduced. It is weak and cannot withstand the potential of lithium ion insertion; 1,2-dimethoxyethane inserts into the negative electrode together with lithium ions; similarly, in ionic liquids, the undesirable phenomenon of cation species being inserted into the negative electrode The reason is that it was thought to bring about.
- An object of the present invention is to provide a new electrolyte system for a lithium secondary battery.
- a carbon material which is a negative electrode material used in a lithium ion battery in order to solve the problem of dendrite precipitation in the negative electrode while maintaining the configuration of the positive electrode in the lithium-air battery.
- a new idea for adopting the battery is tried, and it is an object to provide a battery having such a configuration and an electrolyte system for realizing the battery.
- the present inventors have brought about a specific electrochemical property in an electrolytic solution containing a high concentration of lithium salt. It was found that a reversible reaction in the positive electrode and the negative electrode can be realized. More specifically, the inclusion of a high concentration of lithium salt enables a reversible insertion / desorption reaction of lithium ions into the negative electrode carbon material in the electrolyte solution of the nonaqueous solvent, and It has been found that the oxidation resistance is improved.
- the present invention is an electrolyte for a lithium secondary battery containing a non-aqueous solvent and a lithium salt, wherein the amount of the non-aqueous solvent with respect to 1 mol of the lithium salt is mixed at a ratio of 3 mol or less. It relates to an electrolyte solution.
- the amount of the non-aqueous solvent with respect to 1 mol of the lithium salt is preferably a ratio of 1 mol to 3 mol, and more preferably a ratio of 1.5 mol to 2.5 mol.
- the lithium salt is preferably lithium bis (trifluoromethanesulfonyl) amide (Li [N (CF 3 SO 2 ) 2 ]), lithium bis (perfluoroethylsulfonyl) amide (Li [N (C 2 F 5 SO 2). 2 ), or lithium bis (fluorosulfonyl) amide (LiN (SO 2 F) 2 ). More preferably, the lithium salt is lithium bis (trifluoromethanesulfonyl) amide (Li [N (CF 3 SO 2 ) 2 ]).
- the non-aqueous solvent is preferably an aprotic solvent, and more preferably 1,2-dimethoxyethane, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, ⁇ -butyrolactone, or sulfolane.
- the present invention relates to a secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and the electrolyte.
- the positive electrode active material is oxygen.
- the negative electrode active material is a carbon material, and more preferably, the carbon material is graphite. In another preferred embodiment, the negative electrode active material is metallic lithium or a lithium alloy.
- a carbon material is employed as the negative electrode in order to solve the problem of dendrite precipitation in the lithium metal negative electrode, which has been difficult with conventional solvent systems.
- a positive electrode configuration so-called lithium ion-air battery
- oxygen in the air oxygen in the air as a positive electrode active material.
- acetonitrile which has been considered to be difficult to use in air batteries having a negative electrode made of lithium metal due to its high reactivity with lithium metal, can be obtained by including a high concentration of lithium salt. Since dissolution can be suppressed, a lithium-air battery using an acetonitrile electrolyte can be realized.
- Relatively inexpensive 1,2-dimethoxyethane, acetonitrile, etc. can be used as an electrolyte solvent, which is not only significant in terms of cost compared to ionic liquids, etc., but these solvents have a low melting point. Therefore, it is superior to ethylene carbonate, which is currently used mainly in lithium ion batteries.
- the oxidation resistance of the electrolytic solution has been improved by containing a high concentration of lithium salt, the decomposition reaction of the solvent in the positive electrode is suppressed.
- a high salt concentration also has the effect of reducing the volatility of the electrolyte and improving the thermal stability.
- the former is particularly suitable for an open air battery because it can suppress the volatilization of the electrolyte, and the latter is also advantageous in terms of safety.
- FIG. 1 is a graph showing the measurement results of cyclic voltammetry when a lithium salt / DME electrolyte solution is used.
- FIG. 2 is a graph showing the measurement results of cyclic voltammetry when a lithium salt / THF electrolyte solution is used.
- FIG. 3 is a graph showing the measurement results of cyclic voltammetry when a lithium salt / GBL electrolyte solution is used.
- FIG. 4 is a graph showing the measurement result of cyclic voltammetry when a lithium salt / DMSO electrolyte is used.
- FIG. 5 is a diagram showing an X-ray diffraction pattern of graphite in a lithium salt / DME electrolytic solution.
- FIG. 6a and 6b are charging / discharging curves in a graphite electrode when a lithium salt / DME electrolytic solution is used
- FIG. 6c is a graph showing cycle characteristics.
- 7a and 7b are graphs showing charge / discharge curves in a graphite electrode when a lithium salt / AN electrolyte is used.
- FIG. 8 is a graph showing a charge / discharge curve in a graphite electrode when a lithium salt / THF electrolyte is used.
- FIG. 9 is a graph showing a charge / discharge curve in a graphite electrode when a lithium salt / DMSO electrolyte is used.
- FIG. 10 is a graph showing a charge / discharge curve of a graphite electrode when a lithium salt / SL electrolyte is used, and a comparison of cycle characteristics with an EC: DEC electrolyte system.
- FIG. 11 is a graph showing a charge / discharge curve in an air cathode when a lithium salt / DME electrolyte is used.
- FIG. 12 is a graph showing a charge / discharge curve in the air positive electrode and an X-ray diffraction pattern in the positive electrode after discharge when a lithium salt / AN electrolyte is used.
- FIG. 13 is a graph showing a charge / discharge curve in an air cathode when a lithium salt / DMSO electrolyte is used.
- FIG. 14 is a graph showing a linear sweep voltammetry curve when a lithium salt / DME electrolyte solution is used.
- FIG. 15 is a graph showing a linear sweep voltammetry curve when a lithium salt / GBL electrolyte is used.
- FIG. 16 is a graph showing charge / discharge curves in a graphite-O 2 air battery full cell using a lithium salt / AN electrolyte and a lithium salt / DMSO electrolyte.
- 17a and 17b are cyclic voltammetry graphs showing the lithium precipitation dissolution reaction in LiTFSA / acetonitrile electrolyte.
- FIG. 18a to 18d are cyclic voltammetry graphs showing the lithium precipitation dissolution reaction in LiTFSA / acetonitrile electrolytes at salt concentrations different from those in FIG.
- FIG. 19 is a cyclic voltammetry graph showing a lithium precipitation dissolution reaction in a LiBETI / acetonitrile electrolyte.
- the solvent used in the electrolyte of the present invention can be a non-aqueous solvent, for example, ethers such as ethyl methyl ether and dipropyl ether; nitriles of methoxypropionitrile; methyl acetate Esters such as triethylamine; alcohols such as methanol; ketones such as acetone; and fluorine-containing alkanes.
- ethers such as ethyl methyl ether and dipropyl ether
- nitriles of methoxypropionitrile such as triethylamine
- alcohols such as methanol
- ketones such as acetone
- fluorine-containing alkanes one type may be used alone, or two or more types may be used in combination. However, it is not limited to these.
- the non-aqueous solvent is preferably an aprotic organic solvent, and examples thereof include 1,2-dimethoxyethane, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, ⁇ -butyrolactone, and sulfolane.
- a solvent system mainly composed of 1,2-dimethoxyethane (DME) or acetonitrile (AN) is suitable, but in addition to this, a mixed solvent containing other nonaqueous solvents can also be used. . .
- Lithium salt used as the supporting electrolyte in the electrolytic solution of the present invention dissociates in the electrolytic solution and supplies lithium ions.
- the lithium salt is not particularly limited.
- LiN (CF 3 SO 2 ) 2 hereinafter, also referred to as “LiTFSA” or “LiTFSI”), LiN (C 2 F 5 SO 2 ).
- LiBETI LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ), LiN (CF 3 SO 2 ) (C 3 F 7 SO 2 ), LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (SO 2 F) 2 (hereinafter referred to as “LiFSA”). And) selected from LiPF 6 , LiBF 4 , LiClO 4 , and any combination thereof. LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiN (SO 2 F) 2 are preferred, and LiN (CF 3 SO 2 ) 2 is more preferred.
- the concentration range of the lithium salt in the electrolyte solution can be a high concentration that allows reversible insertion / extraction reaction of lithium ions to / from the negative electrode carbon material as long as the lithium salt does not precipitate.
- the amount of the non-aqueous solvent is preferably 3 mol or less with respect to 1 mol of the lithium salt. More preferably, the amount of the nonaqueous solvent relative to 1 mol of the lithium salt is a ratio of 1 mol or more and 3 mol or less, and further preferably a ratio of 1.5 mol or more and 2.5 mol or less.
- the electrolytic solution of the present invention can also contain other components as necessary for the purpose of improving the function thereof.
- the other components include conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintenance characteristics after high-temperature storage, and property improvement aids for improving cycle characteristics.
- overcharge inhibitor examples include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroaniol Compounds.
- An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
- the content of the overcharge inhibitor in the electrolytic solution is preferably 0.01 to 5% by mass.
- the overcharge inhibitor in the electrolytic solution it becomes easier to suppress the rupture / ignition of the secondary battery due to overcharge, and the secondary battery can be used more stably.
- the dehydrating agent examples include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like.
- a solvent obtained by performing rectification after dehydrating with the above dehydrating agent may be used.
- Examples of the characteristic improvement aid for improving capacity maintenance characteristics and cycle characteristics after high-temperature storage include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, dihydrate Carboxylic anhydrides such as glycolic acid, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methanesulfonic acid Methyl, busulfan, sulfolane, sulfolene, dimethylsulfone, diphenylsulfone, methylphenylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-di
- Nitrogen compounds such as heptane, octane and cycloheptane; and fluorine-containing aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride.
- These characteristic improvement aids may be used alone or in combination of two or more.
- the electrolytic solution contains a characteristic improving aid, the content of the characteristic improving auxiliary in the electrolytic solution is preferably 0.01 to 5% by mass.
- Secondary battery The secondary battery of the present invention comprises a positive electrode and a negative electrode, and an electrolytic solution of the present invention.
- Negative electrode The negative electrode in the secondary battery of the present invention includes an electrode containing a negative electrode active material that can electrochemically occlude and release lithium ions.
- a negative electrode active material known negative electrode active materials for lithium ion secondary batteries can be used.
- Still other examples include metal compounds such as lithium metal or alloys containing lithium elements, metal oxides (eg, lithium titanates such as Li 4 Ti 6 O 12 ), metal sulfides, and metal nitrides.
- examples of the alloy having a lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
- the metal oxide having a lithium element can be, for example, lithium titanium oxide (Li 4 Ti 6 O 12, etc.) and the like.
- examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
- carbonaceous materials such as a graphite
- graphite and a carbonaceous material in which the surface of graphite is coated with amorphous carbon as compared with the graphite are particularly preferable.
- the negative electrode may contain only a negative electrode active material.
- the negative electrode contains at least one of a conductive material and a binder, and a negative electrode current collector as a negative electrode mixture. It may be in the form of being attached to.
- a negative electrode active material has a foil shape
- a negative electrode containing only the negative electrode active material can be obtained.
- the negative electrode active material is in a powder form, a negative electrode having a negative electrode active material and a binder (binder) can be obtained.
- a doctor blade method, a molding method using a pressure press, or the like can be used as a method for forming a negative electrode using a powdered negative electrode active material.
- Examples of the conductive material that can be used include carbon materials, conductive fibers such as metal fibers, metal powders such as copper, silver, nickel, and aluminum, and organic conductive materials such as polyphenylene derivatives.
- carbon materials graphite, soft carbon, hard carbon, carbon black, ketjen black, acetylene black, graphite, activated carbon, carbon nanotube, carbon fiber and the like can be used.
- mesoporous carbon obtained by firing a synthetic resin containing an aromatic ring, petroleum pitch, or the like can also be used.
- fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylenetetrafluoroethylene (ETFE), polyethylene, polypropylene, or the like can be preferably used.
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- ETFE ethylenetetrafluoroethylene
- polyethylene polypropylene, or the like
- a rod-like body, a plate-like body, a foil-like body, a net-like body or the like mainly composed of copper, nickel, aluminum, stainless steel, or the like can be used.
- the positive electrode can be one that is normally used as a positive electrode of an air battery, includes a conductive material having a gap through which oxygen and lithium ions can move, and may contain a binder. Moreover, you may contain the catalyst which accelerates
- the same materials as the negative electrode can be used.
- MnO 2 , Fe 2 O 3 , NiO, CuO, Pt, Co, or the like can be used as a catalyst for performing oxygen reduction / oxidation reaction at a high rate.
- the binder the same binder as that of the negative electrode can be used.
- a porous body such as a mesh (grid) metal, a sponge (foamed) metal, a punched metal, or an expanded metal is used in order to increase the diffusion of oxygen.
- the metal include copper, nickel, aluminum, and stainless steel.
- the separator used in the secondary battery of the present invention is not particularly limited as long as it has a function of electrically separating the positive electrode layer and the negative electrode layer.
- PE polyethylene
- Examples thereof include a porous sheet made of a resin such as polypropylene (PP), polyester, cellulose, and polyamide, and a porous insulating material such as a nonwoven fabric such as a nonwoven fabric and a glass fiber nonwoven fabric.
- the shape of the secondary battery of the present invention is not particularly limited as long as it can accommodate a positive electrode, a negative electrode, and an electrolyte solution.
- a cylindrical shape for example, a coin shape, a flat plate shape, a laminate shape Etc.
- the case for storing the battery may be an open-air battery case or a sealed battery case.
- the battery case In the case of a battery case that is open to the atmosphere, the battery case has a vent hole through which the atmosphere can enter and exit, and the atmosphere can contact the air electrode.
- the battery case is a sealed battery case, it is preferable to provide a gas (air) supply pipe and a discharge pipe in the sealed battery case.
- the gas to be supplied / exhausted is preferably a dry gas, in particular, preferably has a high oxygen concentration, and more preferably pure oxygen (99.99%).
- electrolyte solution and secondary battery of this invention are suitable for the use as a secondary battery, using as a primary battery is not excluded.
- FIG. 5 shows a diffraction pattern of graphite held at 0.03 V and 1.0 V (vs. Li / Li + ) in a DME electrolytic solution containing 1.0 M and 3.2 M LiTFSA.
- AN acetonitrile
- Examples 1 to 4 show that reversible reactions can be achieved for both the positive electrode and the negative electrode in the “lithium ion-air battery” configuration by using the electrolytic solution of the present invention.
- the oxidation potential of DME at each lithium salt concentration was measured.
- the measurement of the oxidation potential was performed by a linear sweep voltammetry method using a triode cell having platinum as a working electrode, a counter electrode and metal lithium as a reference electrode. During the measurement, the potential of the working electrode was swept from the immersion potential to the high potential side. The sweep speed was 1 mV / second.
- the result (LSV curve) is shown in FIG.
- the dependence of the oxidation potential on the lithium salt concentration was also measured in a system using GBL as a solvent. As shown in FIG. 15, when the salt concentration was 1.0M, the potential increased from around 4.0V, whereas when the salt concentration was 3.0M, the potential was increased. It is observed that almost no current flows even in the vicinity of 4.0 V, and the oxidation potential of GBL shifts in a noble direction. Like in the case of DME, oxidation resistance can be achieved by adding a high concentration of lithium salt. Improvement was seen.
- Examples 7 and 8 show that, in acetonitrile containing a high concentration of lithium salt, the lithium salt is stably present and precipitation dissolution reaction occurs in potential sweep. It demonstrates that the problem in the lithium metal negative electrode of electrolyte solution can be solved, and it can function as a suitable electrolyte solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
- Inert Electrodes (AREA)
Abstract
Description
(1)溶媒
本発明の電解液において用いられる溶媒は、非水溶媒を用いることができ、例えば、エチルメチルエーテル、ジプロピルエーテル等のエーテル類;メトキシプロピオニトリルのニトリル類;酢酸メチル等のエステル類;トリエチルアミン等のアミン類;メタノール等のアルコール類;アセトン等のケトン類;含フッ素アルカン等が挙げられる。これらのうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、これらに限定されるものではない。
本発明の電解液において支持電解質として用いられるリチウム塩は、電解液中で解離してリチウムイオンを供給するものである。当該リチウム塩としては、特に限定されるものではないが、例えば、LiN(CF3SO2)2(以下、「LiTFSA」「LiTFSI」と呼ぶこともある。)、LiN(C2F5SO2)2(以下、「LiBETI」と呼ぶこともある。)、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiN(CF3SO2)(C2F5SO2)、LiN(CF3SO2)(C3F7SO2)、LiN(CF3SO2)(C4F9SO2)、LiN(SO2F)2(以下、「LiFSA」と呼ぶこともある。)、LiPF6、LiBF4、LiClO4、及びこれらの任意の組み合わせから選択されるものが挙げられる。好ましくは、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(SO2F)2であり、より好ましくは、LiN(CF3SO2)2である。
また、本発明の電解液は、その機能の向上等の目的で、必要に応じて他の成分を含むこともできる。他の成分としては、例えば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。
本発明の二次電池は、正極及び負極と、本発明の電解液を備えるものである。
本発明の二次電池における負極としては、電気化学的にリチウムイオンを吸蔵・放出できる負極活物質を含む電極が挙げられる。このような負極活物質としては、公知のリチウムイオン二次電池用負極活物質を用いることができ、例えば、天然グラファイト(黒鉛)、高配向性グラファイト(Highly Oriented Pyrolytic Graphite;HOPG)、非晶質炭素等の炭素質材料が挙げられる。さらに他の例として、リチウム金属、又はリチウム元素を含む合金、金属酸化物(例えばLi4Ti6O12等のチタン酸リチウム)、金属硫化物、金属窒化物のような金属化合物が挙げられる。例えば、リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を有する金属酸化物としては、例えばリチウムチタン酸化物(Li4Ti6O12等)等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明の二次電池の正極では、正極活物質として酸素が使用されることが好ましい。当該正極は、空気電池の正極として通常用いられるものであることができ、酸素及びリチウムイオンが移動できる空隙を有する導電性材料を含み、結着剤を含有してもよい。また、酸素の酸化還元反応を促進する触媒を含有してもよい。
本発明の二次電池において用いられるセパレータとしては、正極層と負極層とを電気的に分離する機能を有するものであれば特に限定されるものではないが、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シートや、不織布、ガラス繊維不織布等の不織布等の多孔質絶縁材料等を挙げることができる。
本発明の二次電池の形状は、正極、負極、及び電解液を収納することができれば特に限定されるものではないが、例えば、円筒型、コイン型、平板型、ラミネート型等を挙げることができる。
本発明の電解液の炭素材料負極への適用性を実証するため、電解質としてリチウム塩を含む1,2-ジメトキシエタン(DME)を用いてサイクリックボルタンメトリーを行い電流変化を調べた。測定は、作用極に天然黒鉛(平均粒径10μm)、対極及び参照電極に金属リチウムを備えた3極式電気化学セルを用いて行った。電位領域は0~3.0V(vs Li/Li+)、掃引速度0.1mV/秒とした。得られた結果を図1に示す。
本発明の電解液の用いた際の負極における溶媒共挿入挙動を検証するため、負極の黒鉛の粉末X線回折(XRD)測定を行った。測定に用いた装置は、Bruker AXS社製、D8 ADVANCEである。1.0M及び3.2MのLiTFSAを含むDME電解液中で0.03V及び1.0V(vs.Li/Li+)で保持した黒鉛の回折パターンを図5に示す。
次に、1.0M及び3.2MのLiTFSAを含む電解液を用いて、黒鉛電極における単極電位を測定し充放電挙動の比較を行った。測定は、充放電測定装置を用いた。(BioLogic社製、VMP-3)電極の条件は実施例1と同様である。得られた結果を図6a及び6bに示す。
本発明の電解液の空気正極への適用性を確認するため、本発明の電解液を用いて空気正極における充放電試験を行った。測定は、正極にカーボンブラック(Vulcan XC-72):PTFE(ポリテトラフルオロエチレン)=90:10(重量%)、負極に金属リチウムを用いた開放型コインセルを用いて行った。電解液は、3.2MのLiTFSAを含むDME溶液(モル比LiTFSA:DME=1:1.6)、電流値は、10mA/gである。得られた結果を図11に示す。
O2+2Li++2e- → Li2O2
の反応が起こっているものと認められる。
本発明の電解液における溶媒の電気化学的安定性を評価するため、各リチウム塩濃度におけるDMEの酸化電位を測定した。酸化電位の測定は、作用極に白金、対極及び参照極に金属リチウムを備えた3極式セルを用いて、リニアスイープボルタンメトリー法により行った。測定の際、作用極の電位を浸漬電位から高電位側に掃引した。掃引速度は、1mV/秒とした。その結果(LSV曲線)を図14に示す。
正極として、カーボンブラック(Vulcan XC-72):PTFE(ポリテトラフルオロエチレン)=90:10(重量%)、負極としてリチウムドープの黒鉛(LiC6)を用いた開放型コインセルを作成し、充放電試験を行った。電解液は、4.2MのLiTFSAを含むAN溶液、及び3.2MのLiTFSAを含むDMSO溶液を用いた。得られた結果を図16に示す。いずれの溶媒系においても、可逆的な充放電が確認された。
1.0~5.0mol/LのLiTFSA(LiN(CF3SO2)2)を含むアセトニトリル溶液を調製し、各溶液中にリチウム金属片を浸漬し、当該リチウム金属の反応を観測した。それらの結果を表1に示す。
本発明の電解液のリチウム金属負極への適用性を実証するため、電解質としてリチウム塩を含むアセトニトリル電解液を用いてサイクリックボルタンメトリーを行い電流の変化を調べた。測定は、作用極にニッケル電極、対極及び参照電極に金属リチウムを備えた3極式電気化学セルを用いて行った。電位領域は-0.5~2.0v(vs Li/Li+)、掃引速度は1mV/秒又は10mV/秒とした。得られた結果を図17に示す。
Claims (11)
- 非水溶媒とリチウム塩を含むリチウム二次電池用電解液であって、前記リチウム塩1molに対する前記非水溶媒の量が3mol以下の割合で混合されていることを特徴とする、電解液。
- 前記リチウム塩1molに対する前記非水溶媒の量が1mol以上3mol以下の割合で混合されている、請求項1に記載の電解液。
- 前記リチウム塩1molに対する前記非水溶媒の量が1.5mol以上2.5mol以下の割合で混合されている、請求項2に記載の電解液。
- 前記リチウム塩が、リチウムビス(トリフルオロメタンスルホニル)アミド(Li[N(CF3SO2)2])、リチウムビス(パーフルオロエチルスルホニル)アミド(Li[N(C2F5SO2)2)、又はリチウムビス(フルオロスルホニル)アミド(LiN(SO2F)2)である、請求項1~3のいずれか1項に記載の電解液。
- 前記非水溶媒が、非プロトン性溶媒である、請求項1~4のいずれか1項に記載の電解液。
- 前記非水溶媒が、1,2-ジメトキシエタン、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、γ-ブチロラクトン、又はスルホランである、請求項1~4のいずれか1項に記載の電解液。
- 正極活物質を含む正極と、リチウムイオンを吸蔵及び放出可能な負極活物質を含む負極と、請求項1~6のいずれか1項に記載のリチウム二次電池用電解液を有する二次電池。
- 前記正極活物質が酸素である、請求項7に記載の二次電池。
- 前記負極活物質が炭素材料である、請求項7又は8に記載の二次電池。
- 前記炭素材料がグラファイトである、請求項9に記載の二次電池。
- 前記負極活物質が金属リチウム又はリチウム合金である、請求項7又は8に記載の二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014507882A JP5883120B2 (ja) | 2012-03-26 | 2013-03-25 | リチウム二次電池用電解液、及び当該電解液を含む二次電池 |
US14/388,174 US9614252B2 (en) | 2012-03-26 | 2013-03-25 | Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution |
US15/335,840 US20170098861A1 (en) | 2012-03-26 | 2016-10-27 | Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-069738 | 2012-03-26 | ||
JP2012-069739 | 2012-03-26 | ||
JP2012069738 | 2012-03-26 | ||
JP2012069739 | 2012-03-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/388,174 A-371-Of-International US9614252B2 (en) | 2012-03-26 | 2013-03-25 | Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution |
US15/335,840 Division US20170098861A1 (en) | 2012-03-26 | 2016-10-27 | Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146714A1 true WO2013146714A1 (ja) | 2013-10-03 |
Family
ID=49259966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/058646 WO2013146714A1 (ja) | 2012-03-26 | 2013-03-25 | リチウム二次電池用電解液、及び当該電解液を含む二次電池 |
Country Status (3)
Country | Link |
---|---|
US (2) | US9614252B2 (ja) |
JP (2) | JP5883120B2 (ja) |
WO (1) | WO2013146714A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011146283A (ja) * | 2010-01-15 | 2011-07-28 | Toyota Motor Corp | リチウム空気電池 |
WO2014200012A1 (ja) * | 2013-06-11 | 2014-12-18 | 国立大学法人 東京大学 | 高濃度金属塩を含むアセトニトリル電解液、及び当該電解液を含む二次電池 |
WO2016063468A1 (ja) * | 2014-10-23 | 2016-04-28 | 国立大学法人東京大学 | 電解液 |
WO2016079919A1 (ja) * | 2014-11-18 | 2016-05-26 | 国立大学法人東京大学 | 電解液 |
JP2016195012A (ja) * | 2015-03-31 | 2016-11-17 | 旭化成株式会社 | リチウム空気電池 |
KR20170104596A (ko) | 2015-03-31 | 2017-09-15 | 아사히 가세이 가부시키가이샤 | 비수계 전해액 및 비수계 이차 전지 |
CN108140894A (zh) * | 2015-10-05 | 2018-06-08 | 国立大学法人东京大学 | 在电极表面具备覆膜的二次电池的制造方法 |
WO2018135627A1 (ja) * | 2017-01-23 | 2018-07-26 | 学校法人東京理科大学 | カリウムイオン電池用電解液、カリウムイオン電池、カリウムイオンキャパシタ用電解液、及び、カリウムイオンキャパシタ |
JP2018170110A (ja) * | 2017-03-29 | 2018-11-01 | Tdk株式会社 | リチウムイオン二次電池用電解液およびリチウムイオン二次電池 |
US10693189B2 (en) | 2015-03-31 | 2020-06-23 | Asahi Kasei Kabushiki Kaisha | Nonaqueous electrolyte and nonaqueous secondary battery |
WO2020262670A1 (ja) | 2019-06-28 | 2020-12-30 | 旭化成株式会社 | 非水系電解液、及び非水系二次電池 |
KR20230150837A (ko) | 2021-03-26 | 2023-10-31 | 아사히 가세이 가부시키가이샤 | 비수계 전해액 및 비수계 이차 전지 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105580184B (zh) | 2013-09-25 | 2019-03-12 | 国立大学法人东京大学 | 非水电解质二次电池 |
US20160240858A1 (en) * | 2013-09-25 | 2016-08-18 | The University Of Tokyo | Nonaqueous electrolyte secondary battery |
JP5965445B2 (ja) | 2013-09-25 | 2016-08-03 | 国立大学法人 東京大学 | 非水電解質二次電池 |
WO2016137859A1 (en) | 2015-02-25 | 2016-09-01 | SolidEnergy Systems | Electrolte system for high voltage lithium ion battery |
WO2017172919A1 (en) * | 2016-03-30 | 2017-10-05 | Wildcat Discovery Technologies, Inc. | Liquid electrolyte formulations with high salt content |
JP6863055B2 (ja) * | 2017-04-28 | 2021-04-21 | トヨタ自動車株式会社 | 非水電解液二次電池の製造方法 |
US10734636B2 (en) | 2017-12-29 | 2020-08-04 | The Florida International University Board Of Trustees | Battery cathodes for improved stability |
US11038160B2 (en) * | 2017-12-29 | 2021-06-15 | The Florida International University Board Of Trustees | Battery cathodes for improved stability |
KR102079798B1 (ko) | 2018-04-13 | 2020-02-20 | 주식회사 삼양사 | 리튬 2차 전지용 전해질 조성물 및 이를 포함하는 리튬 2차 전지 |
US20210344046A1 (en) * | 2018-09-14 | 2021-11-04 | Asahi Kasei Kabushiki Kaisha | Nonaqueous Electrolytic Solution and Nonaqueous Secondary Battery |
JP7454796B2 (ja) * | 2019-01-31 | 2024-03-25 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池およびこれに用いる電解液 |
WO2020175555A1 (ja) * | 2019-02-27 | 2020-09-03 | 国立大学法人 横浜国立大学 | リチウム硫黄電池、および、リチウム硫黄電池の製造方法 |
JP7556371B2 (ja) | 2022-03-18 | 2024-09-26 | トヨタ自動車株式会社 | リチウムイオン伝導材料及びリチウムイオン二次電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01107468A (ja) * | 1987-10-20 | 1989-04-25 | Hitachi Maxell Ltd | リチウム二次電池 |
JP2003031219A (ja) * | 2001-07-13 | 2003-01-31 | Yuasa Corp | 正極活物質およびこれを用いた非水電解質二次電池 |
WO2009022664A1 (ja) * | 2007-08-10 | 2009-02-19 | Showa Denko K.K. | リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途 |
JP2010140821A (ja) * | 2008-12-12 | 2010-06-24 | Toyota Central R&D Labs Inc | 空気電池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0636802A (ja) * | 1992-07-15 | 1994-02-10 | Nippon Steel Corp | リチウム二次電池 |
US6514640B1 (en) * | 1996-04-23 | 2003-02-04 | Board Of Regents, The University Of Texas System | Cathode materials for secondary (rechargeable) lithium batteries |
KR100308690B1 (ko) * | 1998-12-22 | 2001-11-30 | 이 병 길 | 흡수제를포함한미세다공성고분자전해질및그의제조방법 |
US6541140B1 (en) * | 2000-08-07 | 2003-04-01 | Wilson Greatbatch Technologies, Inc. | Electrochemical lithium ion secondary cell having multiplate electrodes with differing discharge rate regions |
JP4765186B2 (ja) * | 2001-03-29 | 2011-09-07 | パナソニック株式会社 | 有機電解液電池 |
US7709157B2 (en) * | 2002-10-23 | 2010-05-04 | Panasonic Corporation | Non-aqueous electrolyte secondary battery and electrolyte for the same |
EP1906481A4 (en) * | 2005-07-19 | 2010-02-17 | Panasonic Corp | NON-ACID ELECTROLYTE SOLUTION AND THIS USING ELECTROCHEMICAL ENERGY STORAGE DEVICE |
US20090053594A1 (en) * | 2007-08-23 | 2009-02-26 | Johnson Lonnie G | Rechargeable air battery and manufacturing method |
JP5314885B2 (ja) * | 2007-12-13 | 2013-10-16 | 株式会社ブリヂストン | 非水電解液及びそれを備えた非水電解液二次電源 |
WO2010084614A1 (ja) * | 2009-01-26 | 2010-07-29 | トヨタ自動車株式会社 | 空気電池 |
US20110250506A1 (en) * | 2010-04-09 | 2011-10-13 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
US8935766B2 (en) * | 2011-01-19 | 2015-01-13 | Qualcomm Incorporated | Record creation for resolution of application identifier to connectivity identifier |
JP2013146714A (ja) * | 2012-01-23 | 2013-08-01 | Idec Corp | 微細気泡生成装置 |
-
2013
- 2013-03-25 US US14/388,174 patent/US9614252B2/en active Active
- 2013-03-25 WO PCT/JP2013/058646 patent/WO2013146714A1/ja active Application Filing
- 2013-03-25 JP JP2014507882A patent/JP5883120B2/ja not_active Expired - Fee Related
-
2016
- 2016-02-04 JP JP2016019774A patent/JP2016122657A/ja active Pending
- 2016-10-27 US US15/335,840 patent/US20170098861A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01107468A (ja) * | 1987-10-20 | 1989-04-25 | Hitachi Maxell Ltd | リチウム二次電池 |
JP2003031219A (ja) * | 2001-07-13 | 2003-01-31 | Yuasa Corp | 正極活物質およびこれを用いた非水電解質二次電池 |
WO2009022664A1 (ja) * | 2007-08-10 | 2009-02-19 | Showa Denko K.K. | リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途 |
JP2010140821A (ja) * | 2008-12-12 | 2010-06-24 | Toyota Central R&D Labs Inc | 空気電池 |
Non-Patent Citations (1)
Title |
---|
"Kagaku Benran Kisohen", KAGAKU JIKKEN-YO ZAIRYO - TOKUSEI TO JIKKEN DATA, 2004, pages 1 - 774, 776 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011146283A (ja) * | 2010-01-15 | 2011-07-28 | Toyota Motor Corp | リチウム空気電池 |
WO2014200012A1 (ja) * | 2013-06-11 | 2014-12-18 | 国立大学法人 東京大学 | 高濃度金属塩を含むアセトニトリル電解液、及び当該電解液を含む二次電池 |
KR101978130B1 (ko) * | 2014-10-23 | 2019-05-14 | 가부시키가이샤 도요다 지도숏키 | 전해액 |
WO2016063468A1 (ja) * | 2014-10-23 | 2016-04-28 | 国立大学法人東京大学 | 電解液 |
KR20170061692A (ko) * | 2014-10-23 | 2017-06-05 | 고쿠리츠다이가쿠호우진 도쿄다이가쿠 | 전해액 |
CN107078354A (zh) * | 2014-10-23 | 2017-08-18 | 国立大学法人东京大学 | 电解液 |
JPWO2016063468A1 (ja) * | 2014-10-23 | 2017-09-07 | 国立大学法人 東京大学 | 電解液 |
CN107078354B (zh) * | 2014-10-23 | 2020-01-21 | 国立大学法人东京大学 | 电解液 |
US10497980B2 (en) | 2014-10-23 | 2019-12-03 | University Of Tokyo | Electrolytic solution |
WO2016079919A1 (ja) * | 2014-11-18 | 2016-05-26 | 国立大学法人東京大学 | 電解液 |
JPWO2016079919A1 (ja) * | 2014-11-18 | 2017-06-22 | 国立大学法人 東京大学 | 電解液 |
US10693189B2 (en) | 2015-03-31 | 2020-06-23 | Asahi Kasei Kabushiki Kaisha | Nonaqueous electrolyte and nonaqueous secondary battery |
JP2016195012A (ja) * | 2015-03-31 | 2016-11-17 | 旭化成株式会社 | リチウム空気電池 |
EP3467930A1 (en) | 2015-03-31 | 2019-04-10 | Asahi Kasei Kabushiki Kaisha | Nonaqueous electrolyte and nonaqueous secondary battery |
US10756394B2 (en) | 2015-03-31 | 2020-08-25 | Asahi Kasei Kabushiki Kaisha | Nonaqueous electrolyte and nonaqueous secondary battery |
KR20170104596A (ko) | 2015-03-31 | 2017-09-15 | 아사히 가세이 가부시키가이샤 | 비수계 전해액 및 비수계 이차 전지 |
CN108140894B (zh) * | 2015-10-05 | 2021-06-22 | 株式会社丰田自动织机 | 在电极表面具备覆膜的二次电池的制造方法 |
CN108140894A (zh) * | 2015-10-05 | 2018-06-08 | 国立大学法人东京大学 | 在电极表面具备覆膜的二次电池的制造方法 |
JPWO2018135627A1 (ja) * | 2017-01-23 | 2019-11-21 | 学校法人東京理科大学 | カリウムイオン電池用電解液、カリウムイオン電池、カリウムイオンキャパシタ用電解液、及び、カリウムイオンキャパシタ |
WO2018135627A1 (ja) * | 2017-01-23 | 2018-07-26 | 学校法人東京理科大学 | カリウムイオン電池用電解液、カリウムイオン電池、カリウムイオンキャパシタ用電解液、及び、カリウムイオンキャパシタ |
US11227726B2 (en) | 2017-01-23 | 2022-01-18 | Tokyo University Of Science Foundation | Electrolyte solution for potassium ion battery, potassium ion battery, electrolyte solution for potassium ion capacitor, and potassium ion capacitor |
JP2018170110A (ja) * | 2017-03-29 | 2018-11-01 | Tdk株式会社 | リチウムイオン二次電池用電解液およびリチウムイオン二次電池 |
WO2020262670A1 (ja) | 2019-06-28 | 2020-12-30 | 旭化成株式会社 | 非水系電解液、及び非水系二次電池 |
KR20210011441A (ko) | 2019-06-28 | 2021-02-01 | 아사히 가세이 가부시키가이샤 | 비수계 전해액 및 비수계 이차 전지 |
KR20230150837A (ko) | 2021-03-26 | 2023-10-31 | 아사히 가세이 가부시키가이샤 | 비수계 전해액 및 비수계 이차 전지 |
Also Published As
Publication number | Publication date |
---|---|
JP2016122657A (ja) | 2016-07-07 |
JP5883120B2 (ja) | 2016-03-09 |
US20170098861A1 (en) | 2017-04-06 |
US9614252B2 (en) | 2017-04-04 |
JPWO2013146714A1 (ja) | 2015-12-14 |
US20150050563A1 (en) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5883120B2 (ja) | リチウム二次電池用電解液、及び当該電解液を含む二次電池 | |
US10629958B2 (en) | Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution | |
JP7232356B2 (ja) | 再充電可能なバッテリーセル | |
US10658706B2 (en) | Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution | |
JP6238582B2 (ja) | 高濃度金属塩を含むアセトニトリル電解液、及び当該電解液を含む二次電池 | |
JP5073161B2 (ja) | リチウム二次電池用の非水電解液およびリチウム二次電池および二次電池システム | |
EP3346540B1 (en) | Flame-resistant electrolyte for secondary cell, and secondary cell including said electrolyte | |
EP2765645A1 (en) | Electrolytic solution for lithium air cell | |
JP4963780B2 (ja) | 非水系電解液およびリチウム二次電池 | |
US20130040210A1 (en) | Nonaqueous electrolyte and metal air battery | |
JP2008091326A (ja) | 非水電解質電池 | |
JP2014013704A (ja) | リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池 | |
KR20230145581A (ko) | 설폰아미드계 전해질을 갖춘 초고전압 충전식 배터리 | |
JP5375816B2 (ja) | 非水系電解液およびリチウム二次電池 | |
JP2013229341A (ja) | 非水電解質電池 | |
JP2016103468A (ja) | 非水電解質二次電池 | |
JP7288775B2 (ja) | 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス | |
WO2015022858A1 (ja) | リチウム-空気電池用電解液 | |
EP3742530A1 (en) | Negative electrode, half secondary battery and secondary battery | |
Venkateswarlu | Electrolyte development based on ionic liquids for Eco-friendly Sodium ion battery | |
CN113614867A (zh) | 蓄电设备用水系电解液和包含该水系电解液的蓄电设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13768132 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507882 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14388174 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13768132 Country of ref document: EP Kind code of ref document: A1 |