JPWO2016079919A1 - 電解液 - Google Patents

電解液 Download PDF

Info

Publication number
JPWO2016079919A1
JPWO2016079919A1 JP2016559794A JP2016559794A JPWO2016079919A1 JP WO2016079919 A1 JPWO2016079919 A1 JP WO2016079919A1 JP 2016559794 A JP2016559794 A JP 2016559794A JP 2016559794 A JP2016559794 A JP 2016559794A JP WO2016079919 A1 JPWO2016079919 A1 JP WO2016079919A1
Authority
JP
Japan
Prior art keywords
substituted
substituent
group
electrolytic solution
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016559794A
Other languages
English (en)
Inventor
智之 河合
智之 河合
淳一 丹羽
淳一 丹羽
山田 淳夫
淳夫 山田
裕貴 山田
裕貴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Publication of JPWO2016079919A1 publication Critical patent/JPWO2016079919A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

下記一般式(1)で表される鎖状カーボネートを含むヘテロ元素含有有機溶媒が、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとし、下記一般式(2)で表される化学構造をアニオンとする金属塩に対し、モル比1.5以下で含まれること特徴とする電解液。R10OCOOR11一般式(1)(R21X21)(R22SO2)N 一般式(2)

Description

本発明は、二次電池等の蓄電装置に用いられる電解液に関する。
一般に、二次電池等の蓄電装置は、主な構成要素として、正極、負極及び電解液を備える。そして、電解液には、適切な電解質が適切な濃度範囲で添加されている。例えば、リチウムイオン二次電池の電解液には、LiClO、LiAsF、LiPF、LiBF、CFSOLi、(CFSONLi等のリチウム塩が電解質として添加されるのが一般的であり、ここで、電解液におけるリチウム塩の濃度は、概ね1mol/Lとされるのが一般的である。
また、電解液に用いられる有機溶媒には、電解質を好適に溶解させるために、エチレンカーボネートやプロピレンカーボネート等の比誘電率及び双極子モーメントの高い有機溶媒を約30体積%以上で混合して用いるのが一般的である。
実際に、特許文献1には、エチレンカーボネートを33体積%含む混合有機溶媒を用い、かつ、LiPFを1mol/Lの濃度で含む電解液を用いたリチウムイオン二次電池が開示されている。また、特許文献2には、エチレンカーボネート及びプロピレンカーボネートを66体積%含む混合有機溶媒を用い、かつ、(CFSONLiを1mol/Lの濃度で含む電解液を用いたリチウムイオン二次電池が開示されている。
また、二次電池の性能を向上させる目的で、リチウム塩を含む電解液に種々の添加剤を加える研究が盛んに行われている。
例えば、特許文献3には、エチレンカーボネートを30体積%含む混合有機溶媒を用い、かつ、LiPFを1mol/Lの濃度で含む電解液に対し、特定の添加剤を少量加えた電解液が記載されており、この電解液を用いたリチウムイオン二次電池が開示されている。また、特許文献4にも、エチレンカーボネートを30体積%含む混合有機溶媒を用い、かつ、LiPFを1mol/Lの濃度で含む溶液に対し、フェニルグリシジルエーテルを少量加えた電解液が記載されており、この電解液を用いたリチウムイオン二次電池が開示されている。
特開2013−149477号公報 特開2013−134922号公報 特開2013−145724号公報 特開2013−137873号公報
特許文献1〜4に記載のとおり、従来、リチウムイオン二次電池に用いられる電解液においては、エチレンカーボネートやプロピレンカーボネート等の比誘電率及び双極子モーメントの高い有機溶媒を約30体積%以上で含有する混合有機溶媒を用い、かつ、リチウム塩を概ね1mol/Lの濃度で含むことが技術常識となっていた。そして、特許文献3〜4に記載のとおり、電解液の改善検討においては、リチウム塩とは別個の添加剤に着目して行われるのが一般的であった。
従来の当業者の着目点とは異なり、本発明は、比誘電率及び双極子モーメントの低い鎖状カーボネートと、特定の電解質からなる金属塩とを組み合わせること、及び、それらのモル比に着目した電解液に関するものであり、新たに好適な電解液を提供することを目的とする。
本発明者は、従来の技術常識にとらわれることなく、数多くの試行錯誤を重ねながら鋭意検討を行った。その結果、本発明者は、特定の電解質からなる金属塩が比誘電率及び双極子モーメントの低い鎖状カーボネートに著しく高い濃度で溶解し得ることを知見した。さらに、本発明者は、鎖状カーボネートと特定の電解質からなる金属塩とのモル比が特定の範囲内の電解液であれば、二次電池等の蓄電装置に好適に使用できることを知見した。これらの知見に基づき、本発明者は、本発明を完成するに至った。
本発明の電解液は、
下記一般式(1)で表される鎖状カーボネートを含むヘテロ元素含有有機溶媒が、
アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとし、下記一般式(2)で表される化学構造をアニオンとする金属塩に対し、
モル比1.5以下で含まれることを特徴とする。
10OCOOR11 一般式(1)
(R10、R11は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。nは1以上の整数、mは3以上の整数、a、b、c、d、e、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
(R2121)(R22SO)N 一般式(2)
(R21は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
22は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R21とR22は、互いに結合して環を形成しても良い。
21は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、R21又はR22と結合して環を形成しても良い。)
本発明の新規な電解液は、二次電池等の蓄電装置の電解液として好適である。
評価例4で得られたラマンスペクトルのチャートである。 評価例Aのリニアスイープボルタンメトリーで得られた電位と応答電流のグラフである。 図2を拡大したグラフである。 評価例Iにおける各リチウムイオン二次電池の容量維持率を示すグラフである。 評価例Iにおける実施例IIのリチウムイオン二次電池の充放電曲線である。 評価例Iにおける比較例Iのリチウムイオン二次電池の充放電曲線である。
以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
本発明の電解液は、
下記一般式(1)で表される鎖状カーボネートを含むヘテロ元素含有有機溶媒が、
アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとし、下記一般式(2)で表される化学構造をアニオンとする金属塩に対し、
モル比1.5以下で含まれることを特徴とする。
10OCOOR11 一般式(1)
(R10、R11は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。nは1以上の整数、mは3以上の整数、a、b、c、d、e、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
(R2121)(R22SO)N 一般式(2)
(R21は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
22は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R21とR22は、互いに結合して環を形成しても良い。
21は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、R21又はR22と結合して環を形成しても良い。)
また、本発明の電解液の他の態様として、上記一般式(1)で表される鎖状カーボネートが、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとし上記一般式(2)で表される化学構造をアニオンとする金属塩に対し、モル比1.5以下で含まれることを特徴とする電解液を把握することができる。
上記一般式(1)で表される鎖状カーボネートのうち、下記一般式(1−1)で表されるものが好ましい。
13OCOOR14 一般式(1−1)
(R13、R14は、それぞれ独立に、鎖状アルキルであるC、又は、環状アルキルを化学構造に含むCのいずれかから選択される。nは1以上の整数、mは3以上の整数、a、b、f、gはそれぞれ独立に0以上の整数であり、2n+1=a+b、2m=f+gを満たす。)
上記一般式(1)又は一般式(1−1)で表される鎖状カーボネートにおいて、nは1〜6の整数が好ましく、1〜4の整数がより好ましく、1〜2の整数が特に好ましい。mは3〜8の整数が好ましく、4〜7の整数がより好ましく、5〜6の整数が特に好ましい。
上記一般式(1−1)で表される鎖状カーボネートのうち、ジメチルカーボネート(以下、「DMC」ということがある。)、ジエチルカーボネート(以下、「DEC」ということがある。)、エチルメチルカーボネート(以下、「EMC」ということがある。)や、これら鎖状カーボネートの耐酸化能を上げるために水素の一部もしくは全部をハロゲンに置換した材料が好ましく、これらの内、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロメチル)カーボネート、ビス(トリフルオロメチル)カーボネート、フルオロメチルジフルオロメチルカーボネート、フルオロメチルトリフルオロメチルカーボネート、ジフルオロメチルトリフルオロメチルカーボネート、2−フルオロエチルメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、ペンタフルオロエチルメチルカーボネート、エチルトリフルオロメチルカーボネート、フルオロエチルエチルカーボネート、トリフルオロエチルエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネートが特に好ましい。
以上で説明した鎖状カーボネートは単独で電解液に用いても良いし、複数を併用しても良い。
ヘテロ元素含有有機溶媒としては、ヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである有機溶媒が好ましく、ヘテロ元素が酸素である有機溶媒がより好ましい。また、ヘテロ元素含有有機溶媒としては、NH基、NH基、OH基、SH基などのプロトン供与基を有さない、非プロトン性溶媒が好ましい。
ヘテロ元素含有有機溶媒を具体的に例示すると、上記一般式(1)で表される鎖状カーボネートはもちろんであるが、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、2,2−ジメチル−1,3−ジオキソラン、2−メチルテトラヒドロピラン、2−メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類、イソプロピルイソシアネート、n−プロピルイソシアネート、クロロメチルイソシアネート等のイソシアネート類、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、蟻酸メチル、蟻酸エチル、酢酸ビニル、メチルアクリレート、メチルメタクリレート等のエステル類、グリシジルメチルエーテル、エポキシブタン、2−エチルオキシラン等のエポキシ類、オキサゾール、2−エチルオキサゾール、オキサゾリン、2−メチル−2−オキサゾリン等のオキサゾール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、無水酢酸、無水プロピオン酸等の酸無水物、ジメチルスルホン、スルホラン等のスルホン類、ジメチルスルホキシド等のスルホキシド類、1−ニトロプロパン、2−ニトロプロパン等のニトロ類、フラン、フルフラール等のフラン類、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等の環状エステル類、チオフェン、ピリジン等の芳香族複素環類、テトラヒドロ−4−ピロン、1−メチルピロリジン、N−メチルモルフォリン等の複素環類、リン酸トリメチル、リン酸トリエチル等のリン酸エステル類を挙げることができる。
本発明の電解液に含まれるヘテロ元素含有有機溶媒は、上記一般式(1)で表される鎖状カーボネートを80体積%以上で含むのが好ましく、90体積%以上で含むのがより好ましく、95体積%以上で含むのがさらに好ましい。また、本発明の電解液に含まれるヘテロ元素含有有機溶媒は、上記一般式(1)で表される鎖状カーボネートを80モル%以上で含むのが好ましく、90モル%以上で含むのがより好ましく、95モル%以上で含むのがさらに好ましい。
本発明の電解液における金属塩のカチオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、及びアルミニウムを挙げることができる。金属塩のカチオンは、電解液を使用する電池の電荷担体と同一の金属イオンであるのが好ましい。例えば、本発明の電解液をリチウムイオン二次電池用の電解液として使用するのであれば、金属塩のカチオンはリチウムが好ましい。
上記一般式(2)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、又は、特段の置換基を有さないアルキル基を意味する。
「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。
前記金属塩のアニオンの化学構造は、下記一般式(2−1)で表される化学構造が好ましい。
(R2322)(R24SO)N 一般式(2−1)
(R23、R24は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
また、R23とR24は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
22は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、R23又はR24と結合して環を形成しても良い。)
上記一般式(2−1)で表される化学構造における、「置換基で置換されていても良い」との文言の意味は、上記一般式(2)で説明したのと同義である。
上記一般式(2−1)で表される化学構造において、nは0〜6の整数が好ましく、0〜4の整数がより好ましく、0〜2の整数が特に好ましい。なお、上記一般式(2−1)で表される化学構造の、R23とR24が結合して環を形成している場合には、nは1〜8の整数が好ましく、1〜7の整数がより好ましく、1〜3の整数が特に好ましい。
前記金属塩のアニオンの化学構造は、下記一般式(2−2)で表されるものがさらに好ましい。
(R25SO)(R26SO)N 一般式(2−2)
(R25、R26は、それぞれ独立に、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R25とR26は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
上記一般式(2−2)で表される化学構造において、nは0〜6の整数が好ましく、0〜4の整数がより好ましく、0〜2の整数が特に好ましい。なお、上記一般式(2−2)で表される化学構造の、R25とR26が結合して環を形成している場合には、nは1〜8の整数が好ましく、1〜7の整数がより好ましく、1〜3の整数が特に好ましい。
また、上記一般式(2−2)で表される化学構造において、aが0のもの、cが0のもの、dが0のもの、eが0のものがそれぞれ好ましい。
金属塩は、(CFSONLi(以下、「LiTFSA」ということがある。)、(FSONLi(以下、「LiFSA」ということがある。)、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、(SOCFCFCFSO)NLi、FSO(CHSO)NLi、FSO(CSO)NLi、又はFSO(CSO)NLiが特に好ましい。
本発明の電解液の金属塩としては、以上で説明したカチオンとアニオンをそれぞれ適切な数で組み合わせたものを採用すれば良い。本発明の電解液における金属塩は1種類を採用しても良いし、複数種を併用しても良い。
本発明の電解液には、上記金属塩以外に、蓄電装置の電解液に使用可能である他の電解質が含まれていてもよい。本発明の電解液には、本発明の電解液に含まれる全電解質に対し、上記金属塩が50質量%以上で含まれるのが好ましく、70質量%以上で含まれるのがより好ましく、90質量%以上で含まれるのがさらに好ましい。
本発明の電解液は、ヘテロ元素含有有機溶媒が前記金属塩に対しモル比1.5以下で含まれる。本明細書でいう上記モル比とは、前者を後者で除した値、すなわち、(本発明の電解液に含まれるヘテロ元素含有有機溶媒のモル数)/(本発明の電解液に含まれる金属塩のモル数)の値を意味する。本発明の電解液における、ヘテロ元素含有有機溶媒と前記金属塩とのモル比は、0.8〜1.5の範囲内がより好ましく、1.0〜1.5の範囲内がさらに好ましい。なお、従来の電解液は、ヘテロ元素含有有機溶媒と電解質とのモル比が概ね10程度である。
また、本発明の電解液の他の態様における、一般式(1)で表される鎖状カーボネートと、上記金属塩とのモル比についても同様に、0.8〜1.5の範囲内がより好ましく、1.0〜1.5の範囲内がさらに好ましい。
本発明の電解液は、その振動分光スペクトルにおいて、電解液に含まれる上記一般式(1)で表される鎖状カーボネート由来のピーク強度につき、当該鎖状カーボネート本来のピークの強度をIoとし、鎖状カーボネート本来のピークがシフトしたピーク(以下、「シフトピーク」ということがある。)の強度をIsとした場合、Is>Ioとなる。すなわち、本発明の電解液を振動分光測定に供し得られる振動分光スペクトルチャートにおいて、上記2つのピーク強度の関係はIs>Ioとなる。
なお、従来の電解液においては、IsとIoとの関係がIs<Ioである。
ここで、「鎖状カーボネート本来のピーク」とは、鎖状カーボネートのみを振動分光測定した場合のピーク位置(波数)に、観察されるピークを意味する。鎖状カーボネート本来のピークの強度Ioの値と、シフトピークの強度Isの値は、振動分光スペクトルにおける各ピークのベースラインからの高さ又は面積である。
本発明の電解液の振動分光スペクトルにおいて、鎖状カーボネート本来のピークがシフトしたピークが複数存在する場合には、最もIsとIoの関係を判断しやすいピークに基づいて当該関係を判断すればよい。また、本発明の電解液に鎖状カーボネートを複数種用いた場合には、最もIsとIoの関係を判断しやすい鎖状カーボネートを選択し、そのピーク強度に基づいてIsとIoの関係を判断すればよい。また、ピークのシフト量が小さく、シフト前後のピークが重なってなだらかな山のように見える場合は、既知の手段を用いてピーク分離を行い、IsとIoの関係を判断してもよい。
本発明の電解液の振動分光スペクトルにおける上記2つのピーク強度の関係は、Is>2×Ioの条件を満たすことが好ましく、Is>3×Ioの条件を満たすことがより好ましく、Is>5×Ioの条件を満たすことがさらに好ましく、Is>7×Ioの条件を満たすことが特に好ましい。最も好ましいのは、本発明の電解液の振動分光スペクトルにおいて、鎖状カーボネート本来のピークの強度Ioが観察されず、シフトピークの強度Isが観察される電解液である。当該電解液においては、電解液に含まれる鎖状カーボネートの分子すべてが金属塩と完全に溶媒和していることを意味する。本発明の電解液は、電解液に含まれる鎖状カーボネートの分子すべてが金属塩と完全に溶媒和している状態(Io=0の状態)が最も好ましい。
本発明の電解液においては、前記金属塩と一般式(1)で表される鎖状カーボネートとが相互作用を及ぼしていると推定される。微視的には、本発明の電解液は、金属塩と上記鎖状カーボネートの酸素とが配位結合することで形成された、金属塩と鎖状カーボネートからなる安定なクラスターを含有していると推定される。
ここで、クラスターを形成している鎖状カーボネートと、クラスターの形成に関与していない鎖状カーボネートとは、それぞれの存在環境が異なる。そのため、振動分光測定において、クラスターを形成している鎖状カーボネート由来のピークは、クラスターの形成に関与していない鎖状カーボネート由来のピーク(すなわち鎖状カーボネート本来のピーク)の観察される波数から、高波数側又は低波数側にシフトして観察される。つまり、シフトピークはクラスターを形成している鎖状カーボネートのピークに相当する。
振動分光スペクトルとしては、IRスペクトル又はラマンスペクトルを挙げることができる。IRスペクトルの測定方法としては、ヌジョール法、液膜法などの透過測定方法、ATR法などの反射測定方法を挙げることができる。IRスペクトル又はラマンスペクトルのいずれを選択するかについては、本発明の電解液の振動分光スペクトルにおいて、IsとIoの関係を判断しやすいスペクトルの方を選択すれば良い。なお、振動分光測定は、大気中の水分の影響を軽減又は無視できる条件で行うのがよい。例えば、ドライルーム、グローブボックスなどの低湿度又は無湿度条件下でIR測定を行うこと、又は、電解液を密閉容器に入れたままの状態でラマン測定を行うのがよい。
鎖状カーボネートの波数とその帰属につき、公知のデータを参考としてもよい。参考文献として、日本分光学会測定法シリーズ17 ラマン分光法、濱口宏夫、平川暁子、学会出版センター、231〜249頁を挙げる。また、コンピュータを用いた計算でも、Io及びIsの算出に有用と考えられる鎖状カーボネートの波数と、鎖状カーボネートと金属塩が配位した場合の波数シフトを予測することができる。例えば、Gaussian09(登録商標、ガウシアン社)を用い、密度汎関数をB3LYP、基底関数を6−311G++(d,p)として計算すればよい。当業者は、公知のデータ、コンピュータでの計算結果を参考にして、鎖状カーボネートのピークを選定し、Io及びIsを算出することができる。
また、本発明の電解液を振動分光測定に供し得られる振動分光スペクトルチャートにおいて、上記一般式(2)で表される化学構造に由来するピークが低波数側又は高波数側にシフトするのが観察される場合がある。振動分光スペクトルとしては、IRスペクトル又はラマンスペクトルを挙げることができる。
本発明の電解液は高濃度で金属塩を含むため、金属塩を構成するカチオンとアニオンとが強く相互作用して、金属塩がCIP(Contact ion pairs)状態やAGG(aggregate)状態を主に形成していると推察される。そして、かかる状態の変化が振動分光スペクトルチャートにおける上記一般式(2)で表される化学構造に由来するピークのシフトとして観察される。
本発明の電解液は、従来の電解液と比較して、金属塩の存在割合が高いといえる。そうすると、本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なっているといえる。そのため、本発明の電解液を用いた二次電池等の蓄電装置においては、電解液中の金属イオン輸送速度の向上、電極と電解液の界面における反応速度の向上、二次電池のハイレート充放電時に起こる電解液の金属塩濃度の偏在の緩和、電極界面における電解液の保液性の向上、電極界面で電解液が不足するいわゆる液枯れ状態の抑制、電気二重層の容量増大などが期待できる。さらに、本発明の電解液においては、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。
本発明の電解液の密度d(g/cm)について述べる。なお、本明細書において、本発明の電解液について規定する密度とは30℃での密度を意味する。本発明の電解液の密度d(g/cm)は好ましくは1.45≦dであり、1.5≦dがより好ましい。
参考までに、代表的なヘテロ元素含有有機溶媒の密度(g/cm)を表1に列挙する。
Figure 2016079919
本発明の電解液の粘度η(mPa・s)について述べると、3<η<1000の範囲が好ましく、10<η<600の範囲がより好ましく、100<η<500の範囲がさらに好ましい。
また、電解液のイオン伝導度σ(mS/cm)は高ければ高いほど、電解液中でイオンが移動し易い。このため、このような電解液は優れた電池の電解液となり得る。本発明の電解液のイオン伝導度σ(mS/cm)について述べると、1≦σであるのが好ましい。本発明の電解液のイオン伝導度σ(mS/cm)につき、あえて、上限を含めた好適な範囲を示すと、1.0≦σ<100の範囲が好ましく、1.1≦σ<50の範囲がより好ましい。
ところで、本発明の電解液は金属塩のカチオンを高濃度で含有する。このため、本発明の電解液中において、隣り合うカチオン間の距離は極めて近い。そして、二次電池の充放電時にリチウムイオン等のカチオンが正極と負極との間を移動する際には、移動先の電極に直近のカチオンが先ず当該電極に供給される。そして、供給された当該カチオンがあった場所には、当該カチオンに隣り合う他のカチオンが移動する。つまり、本発明の電解液中においては、隣り合うカチオンが供給対象となる電極に向けて順番に一つずつ位置を変えるという、ドミノ倒し様の現象が生じていると予想される。このため、充放電時の電解液中カチオンの移動距離は短く、その分だけカチオンの移動速度が高いと考えられる。このことに起因して、本発明の電解液は高粘度であってもイオン伝導性を有すると考えられる。
また後述の通り、本発明の電解液を具備する二次電池は、電極/電解液界面に、低抵抗かつカチオン含有率の高いSEI皮膜を金属塩由来物で形成することで、電極/電解液界面において可逆的かつ高速な反応を可能にすると考えられる。
本発明の電解液には、上記一般式(1)で表される鎖状カーボネート以外の有機溶媒が含まれていてもよい。本発明の電解液には、本発明の電解液に含まれる全溶媒に対し、上記一般式(1)で表される鎖状カーボネートが80体積%以上で含まれるのが好ましく、90体積%以上で含まれるのがより好ましく、95体積%以上で含まれるのがさらに好ましい。また、本発明の電解液には、本発明の電解液に含まれる全溶媒に対し、上記一般式(1)で表される鎖状カーボネートが80モル%以上で含まれるのが好ましく、90モル%以上で含まれるのがより好ましく、95モル%以上で含まれるのがさらに好ましい。
なお、上記一般式(1)で表される鎖状カーボネート以外に他のヘテロ元素含有有機溶媒を含む本発明の電解液は、他のヘテロ元素含有有機溶媒を含まない本発明の電解液と比較して、粘度が上昇する場合や、イオン伝導度が低下する場合がある。さらに、上記一般式(1)で表される鎖状カーボネート以外に他のヘテロ元素含有有機溶媒を含む本発明の電解液を用いた二次電池は、その反応抵抗が増大する場合がある。
また、上記一般式(1)で表される鎖状カーボネート以外に炭化水素からなる有機溶媒を含む本発明の電解液は、その粘度が低くなるとの効果を期待できる。
上記炭化水素からなる有機溶媒としては、具体的にベンゼン、トルエン、エチルベンゼン、o−キシレン、m−キシレン、p−キシレン、1−メチルナフタレン、ヘキサン、ヘプタン、シクロヘキサンを例示することができる。
また、本発明の電解液には、難燃性の溶媒を加えることができる。難燃性の溶媒を本発明の電解液に加えることにより、本発明の電解液の安全度をさらに高めることができる。難燃性の溶媒としては、四塩化炭素、テトラクロロエタン、ハイドロフルオロエーテルなどのハロゲン系溶媒、リン酸トリメチル、リン酸トリエチルなどのリン酸誘導体を例示することができる。
本発明の電解液をポリマーや無機フィラーと混合し混合物とすると、当該混合物が電解液を封じ込め、擬似固体電解質となる。擬似固体電解質を電池の電解液として用いることで、電池における電解液の液漏れを抑制することができる。
上記ポリマーとしては、リチウムイオン二次電池などの電池に使用されるポリマーや一般的な化学架橋したポリマーを採用することができる。特に、ポリフッ化ビニリデンやポリヘキサフルオロプロピレンなど電解液を吸収しゲル化し得るポリマーや、ポリエチレンオキシドなどのポリマーにイオン導電性基を導入したものが好適である。
具体的なポリマーとしては、ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエチレングリコールジメタクリレート、ポリエチレングリコールアクリレート、ポリグリシドール、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリフマル酸、ポリクロトン酸、ポリアンゲリカ酸、カルボキシメチルセルロースなどのポリカルボン酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネート、無水マレイン酸とグリコール類を共重合した不飽和ポリエステル、置換基を有するポリエチレンオキシド誘導体、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を例示できる。また、上記ポリマーとして、上記具体的なポリマーを構成する二種類以上のモノマーを共重合させた共重合体を選択しても良い。
上記ポリマーとして、多糖類も好適である。具体的な多糖類として、グリコーゲン、セルロース、キチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、アミロペクチン、キシログルカン、アミロースを例示できる。また、これら多糖類を含む材料を上記ポリマーとして採用してもよく、当該材料として、アガロースなどの多糖類を含む寒天を例示することができる。
上記無機フィラーとしては、酸化物や窒化物などの無機セラミックスが好ましい。
無機セラミックスはその表面に親水性及び疎水性の官能基を有している。そのため、当該官能基が電解液を引き付けることにより、無機セラミックス内に伝導性通路が形成され得る。さらに、電解液に分散した無機セラミックスは前記官能基により無機セラミックス同士のネットワークを形成し、電解液を封じ込める役割を果たし得る。無機セラミックスのこのような機能により、電池における電解液の液漏れをさらに好適に抑制することができる。無機セラミックスの上記機能を好適に発揮するために、無機セラミックスは粒子形状のものが好ましく、特にその粒子径がナノ水準のものが好ましい。
無機セラミックスの種類としては、一般的なアルミナ、シリカ、チタニア、ジルコニア、リチウムリン酸塩などを挙げることができる。また、無機セラミックス自体にリチウム伝導性があるものでも良く、具体的には、LiN、LiI、LiI−LiN−LiOH、LiI−LiS−P、LiI−LiS−P、LiI−LiS−B、LiO−B、LiO−V−SiO、LiO−B−P、LiO−B−ZnO、LiO−Al−TiO−SiO−P、LiTi(PO、Li−βAl、LiTaOを例示することができる。
無機フィラーとしてガラスセラミックスを採用してもよい。ガラスセラミックスはイオン性液体を封じ込めることができるので、本発明の電解液に対しても同様の効果を期待できる。ガラスセラミックスとしては、xLiS−(1−x)P(ただし、0<x<1)で表される化合物、並びに、当該化合物のSの一部を他の元素で置換したもの、及び、当該化合物のPの一部をゲルマニウムに置換したものを例示できる。
また、本発明の電解液には、本発明の趣旨を逸脱しない範囲で、公知の添加剤を加えてもよい。公知の添加剤の一例として、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、メチルビニレンカーボネート(MVC)、エチルビニレンカーボネート(EVC)に代表される不飽和結合を有する環状カーボネート;フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネートに代表されるカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物に代表されるカルボン酸無水物;γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、δ−バレロラクトン、δ−カプロラクトン、ε−カプロラクトンに代表されるラクトン;1,4−ジオキサンに代表される環状エーテル;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィドに代表される含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシンイミドに代表される含窒素化合物;モノフルオロリン酸塩、ジフルオロリン酸塩に代表されるリン酸塩;ヘプタン、オクタン、シクロヘプタンに代表される飽和炭化水素化合物;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフランに代表される不飽和炭化水素化合物等が挙げられる。
以上説明した本発明の電解液は、電池やキャパシタなどの蓄電装置の電解液として好適に使用される。特に、二次電池の電解液として使用されるのが好ましく、中でもリチウムイオン二次電池の電解液として使用されるのが好ましい。
ところで、一般に、二次電池における負極及び正極の表面には、皮膜が生成することが知られている。当該皮膜はSEI(Solid Electrolyte Interphase)とも呼ばれ、電解液の還元・酸化分解物等で構成される。例えば、特開2007−19027号公報には、SEI皮膜について記載されている。
負極表面及び正極表面のSEI皮膜は、リチウムイオン等の電荷担体の通過を許容する。また、負極・正極表面のSEI皮膜は、負極・正極表面と電解液との間に存在し、電解液の更なる還元・酸化分解を抑制すると考えられている。特に黒鉛やSi系の負極活物質を用いた低電位負極や4.5V以上で作動する高電位正極には、SEI皮膜の存在が必須と考えられている。
SEI皮膜が存在することで電解液の継続的な分解が抑制されれば、充放電サイクル経過後の二次電池の充放電特性を向上させ得ると考えられる。しかし、その一方で、従来の二次電池において、負極表面及び正極表面のSEI皮膜は必ずしも電池特性の向上に寄与するとはいえなかった。
本発明の電解液において、上記金属塩の上記一般式(2)の化学構造には、SOが含まれている。そして、本発明の電解液が二次電池の電解液として用いられた際には、二次電池の充放電により上記金属塩の一部が分解して、二次電池の正極及び/又は負極の表面にS及びO含有皮膜を形成すると推定される。S及びO含有皮膜はS=O構造を有すると推定される。当該皮膜により電極が被覆されるため、電極及び電解液の劣化が抑制され、その結果、二次電池の耐久性が向上すると考えられる。
本発明の電解液においては、従来の電解液に比べて、カチオンとアニオンとが近くに存在し、アニオンはカチオンからの静電的な影響を強く受けることで従来の電解液に比べ負極上で還元分解され易くなると考えられる。また、従来に比べ溶媒の大部分が金属塩と配位状態を取ることで溶媒は酸化分解されにくく、正極上で相対的にアニオンが酸化分解され易くなると考えられる。さらに、従来の電解液を用いた従来の二次電池においては、電解液に含まれるエチレンカーボネート等の環状カーボネートが還元分解されて生成する分解生成物によって、SEI皮膜が構成されていた。しかし、上述したように、本発明の二次電池に含まれる本発明の電解液においては、それぞれ負極、正極上でアニオンが還元分解、酸化分解されやすく、また従来の電解液に比べ高濃度に金属塩を含有するために電解液中のアニオン濃度が高い。このため、本発明の二次電池におけるSEI皮膜、つまりS及びO含有皮膜には、従来の電解液を用いた従来の二次電池のSEI皮膜よりも、アニオンに由来するものが多く含まれると考えられる。また、本発明の二次電池においては、エチレンカーボネート等の環状カーボネートを用いることなく、SEI皮膜を形成することができる。
また、本発明の二次電池におけるS及びO含有皮膜は充放電に伴って状態変化する場合がある。例えば、充放電の状態に因り、S及びO含有皮膜の厚さや当該皮膜内の元素の割合が可逆的に変化する場合がある。このため、本発明の二次電池におけるS及びO含有皮膜には、上述したアニオンの分解物に由来し皮膜中に定着する部分と、充放電に伴って可逆的に増減する部分とが存在すると考えられる。
なお、S及びO含有皮膜は電解液の分解物に由来すると考えられるため、S及びO含有皮膜の大部分又は全ては二次電池の初回充放電以降に生成すると考えられる。つまり、本発明の二次電池は、使用時において、負極の表面及び/又は正極の表面にS及びO含有皮膜を有する。S及びO含有皮膜の構成成分は、電解液に含まれる成分や電極の組成等に応じて異なる場合があると考えられる。また、当該S及びO含有皮膜において、S及びOの含有割合は特に限定されない。さらに、S及びO含有皮膜に含まれるS及びO以外の成分及び量は特に限定されない。S及びO含有皮膜は、主に本発明の電解液に含まれる金属塩のアニオンに由来すると考えられるため、当該金属塩のアニオンに由来する成分をその他の成分よりも多く含むのが好ましい。
S及びO含有皮膜は負極表面にのみ形成されても良いし、正極表面にのみ形成されても良い。S及びO含有皮膜は負極表面及び正極表面の両方に形成されるのが好ましい。
本発明の二次電池は電極にS及びO含有皮膜を有し、当該S及びO含有皮膜はS=O構造を有するとともに多くのカチオンを含むと考えられる。そして、S及びO含有皮膜に含まれるカチオンは電極に優先的に供給されると考えられる。よって、本発明の二次電池においては、電極近傍に豊富なカチオン源を有するため、この点においても、カチオンの輸送速度が向上すると考えられる。したがって、本発明の二次電池においては、本発明の電解液と電極のS及びO含有皮膜との協働によって、優れた電池特性が発揮されると考えられる。
以下に、上記本発明の電解液を具備する本発明のリチウムイオン二次電池について説明する。
本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵及び放出し得る負極活物質を有する負極と、リチウムイオンを吸蔵及び放出し得る正極活物質を有する正極と、金属塩としてリチウム塩を採用した本発明の電解液を備える。
負極活物質としては、リチウムイオンを吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンを吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じる恐れがあるため、当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせたものを負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。
より具体的な負極活物質として、G/D比が3.5以上の黒鉛を例示できる。G/D比とは、ラマンスペクトルにおけるG−bandとD−bandのピークの比である。黒鉛のラマンスペクトルにおいては、G−bandが1590cm−1付近に、D−bandが1350cm−1付近にそれぞれピークとして観察される。G−bandはグラファイト構造に由来し、D−bandは欠陥に由来する。したがって、G−bandとD−bandの比であるG/D比が高いほど欠陥が少なく結晶性の高い黒鉛であることを意味する。以下、G/D比が3.5以上の黒鉛を高結晶性黒鉛、G/D比が3.5未満の黒鉛を低結晶性黒鉛と呼ぶことがある。
高結晶性黒鉛としては、天然黒鉛、人造黒鉛のいずれも採用できる。形状による分類法では、鱗片状黒鉛、球状黒鉛、塊状黒鉛、土状黒鉛などを採用できる。また黒鉛の表面を炭素材料などで被覆したコート付き黒鉛も採用できる。
具体的な負極活物質として、結晶子サイズが20nm以下、好ましくは5nm以下の炭素材料を例示できる。結晶子サイズが大きいほど、原子がある規則に従い周期的かつ正確に配列している炭素材料であることを意味する。一方、結晶子サイズが20nm以下の炭素材料は、原子の周期性、及び配列の正確性に乏しい状態にあるといえる。例えば炭素材料が黒鉛であれば、黒鉛結晶の大きさが20nm以下であるか、歪み、欠陥、不純物等の影響によって黒鉛を構成する原子の配列の規則性が乏しい状態となることで、結晶子サイズは20nm以下になる。
結晶子サイズが20nm以下の炭素材料としては、いわゆるハードカーボンである難黒鉛化性炭素や、いわゆるソフトカーボンである易黒鉛化性炭素が代表的である。
炭素材料の結晶子サイズを測定するには、CuKα線をX線源とするX線回折法を用いればよい。当該X線回折法により、回折角2θ=20度〜30度に検出される回折ピークの半値幅と回折角を基に、次のシェラーの式を用いて、結晶子サイズを算出できる。
L=0.94 λ /(βcosθ)
ここで、
L:結晶子の大きさ
λ:入射X線波長(1.54Å)
β:ピークの半値幅(ラジアン)
θ:回折角
具体的な負極活物質として、ケイ素を含む材料を例示できる。より具体的には、Si相とケイ素酸化物相との2相に不均化されたSiO(0.3≦x≦1.6)を例示できる。SiOにおけるSi相は、リチウムイオンを吸蔵及び放出でき、二次電池の充放電に伴って体積変化する。ケイ素酸化物相はSi相に比べて充放電に伴う体積変化が少ない。つまり、負極活物質としてのSiOは、Si相により高容量を実現するとともに、ケイ素酸化物相を有することにより負極活物質全体の体積変化を抑制する。なお、xが下限値未満であると、Siの比率が過大になるため、充放電時の体積変化が大きくなりすぎて二次電池のサイクル特性が低下する。一方、xが上限値を超えると、Si比率が過小になってエネルギー密度が低下する。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。
なお、上記したSiOにおいては、リチウムイオン二次電池の充放電時にリチウムとSi相のケイ素とによる合金化反応が生じると考えられている。そして、この合金化反応がリチウムイオン二次電池の充放電に寄与すると考えられている。後述するスズを含む負極活物質についても、同様に、スズとリチウムとの合金化反応によって充放電できると考えられている。
具体的な負極活物質として、スズを含む材料を例示できる。より具体的には、Sn単体、Cu−SnやCo−Snなどのスズ合金、アモルファススズ酸化物、スズケイ素酸化物を例示できる。アモルファススズ酸化物としてはSnB0.40.63.1を例示でき、スズケイ素酸化物としてはSnSiOを例示できる。
上記したケイ素を含む材料、及び、スズを含む材料は、炭素材料と複合化して負極活物質とすることが好ましい。複合化に因り、特にケイ素及び/又はスズの構造が安定し、負極の耐久性が向上する。上記複合化は、既知の方法で行なえば良い。複合化に用いられる炭素材料としては、黒鉛、ハードカーボン、ソフトカーボン等を採用すればよい。黒鉛は、天然黒鉛でもよく、人造黒鉛でもよい。
具体的な負極活物質として、Li4+xTi5+y12(−1≦x≦4、−1≦y≦1))などのスピネル構造のチタン酸リチウム、LiTiなどのラムスデライト構造のチタン酸リチウムが例示できる。
具体的な負極活物質として、長軸/短軸の値が1〜5、好ましくは1〜3である黒鉛を例示できる。ここで、長軸とは、黒鉛の粒子の最も長い箇所の長さを意味する。短軸とは、前記長軸に対する直交方向のうち最も長い箇所の長さを意味する。当該黒鉛には、球状黒鉛やメソカーボンマイクロビーズが該当する。球状黒鉛は、人造黒鉛、天然黒鉛、易黒鉛化性炭素、難黒鉛化性炭素などの炭素材料であって、形状が球状又はほぼ球状であるものをいう。
球状黒鉛は、黒鉛を比較的破砕力の小さい衝撃式粉砕機で粉砕して薄片とし、当該薄片を圧縮球状化して得られる。衝撃式粉砕機としては、例えばハンマーミルやピンミルを例示できる。上記ミルのハンマー又はピンの外周線速度を50〜200m/秒程度として、上記作業を行うことが好ましい。上記ミルに対する黒鉛の供給や排出は、空気等の気流に同伴させて行うことが好ましい。
黒鉛は、BET比表面積が0.5〜15m/gの範囲のものが好ましい。BET比表面積が大きすぎると黒鉛と電解液との副反応が加速する場合があり、BET比表面積が小さすぎると黒鉛の反応抵抗が大きくなる場合がある。
負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。
集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。
負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。
結着剤は活物質及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、スチレンブタジエンゴムなどの公知のものを採用すればよい。
また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。中でも、ポリアクリル酸、カルボキシメチルセルロース、ポリメタクリル酸などの分子中にカルボキシル基を含むポリマー、又は、ポリ(p−スチレンスルホン酸)などのスルホ基を含むポリマーが好ましい。
ポリアクリル酸、あるいはアクリル酸とビニルスルホン酸との共重合体など、カルボキシル基及び/又はスルホ基を多く含むポリマーは水溶性となる。親水基を有するポリマーは、水溶性ポリマーであることが好ましく、化学構造でいうと、一分子中に複数のカルボキシル基及び/又はスルホ基を含むポリマーが好ましい。
分子中にカルボキシル基を含むポリマーは、例えば、酸モノマーを重合する方法や、ポリマーにカルボキシル基を付与する方法などで製造することができる。酸モノマーとしては、アクリル酸、メタクリル酸、ビニル安息香酸、クロトン酸、ペンテン酸、アンジェリカ酸、チグリン酸など分子中に一つのカルボキシル基をもつ酸モノマー、イタコン酸、メサコン酸、シトラコン酸、フマル酸、マレイン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸、アセチレンジカルボン酸など分子内に二つ以上のカルボキシル基をもつ酸モノマーなどが例示される。
上記の酸モノマーから選ばれる二種以上の酸モノマーを重合してなる共重合ポリマーを結着剤として用いてもよい。
また、例えば特開2013−065493号公報に記載されたような、アクリル酸とイタコン酸との共重合体のカルボキシル基どうしが縮合して形成された酸無水物基を分子中に含んでいるポリマーを結着剤として用いることも好ましい。一分子中にカルボキシル基を二つ以上有する酸性度の高いモノマー由来の構造が結着剤にあることにより、充電時に電解液分解反応が起こる前にリチウムイオンなどを結着剤がトラップし易くなると考えられている。さらに、当該ポリマーは、ポリアクリル酸やポリメタクリル酸に比べてモノマーあたりのカルボキシル基が多いため、酸性度が高まるものの、所定量のカルボキシル基が酸無水物基に変化しているため、酸性度が高まりすぎることもない。そのため、当該ポリマーを結着剤として用いた負極をもつ二次電池は、初期効率が向上し、入出力特性が向上する。
負極活物質層中の結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.005〜1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、及び各種金属粒子などが例示される。これらの導電助剤を単独又は二種以上組み合わせて活物質層に添加することができる。負極活物質層中の導電助剤の配合割合は、質量比で、負極活物質:導電助剤=1:0.01〜1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると負極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
リチウムイオン二次電池に用いられる正極は、リチウムイオンを吸蔵及び放出し得る正極活物質を有する。正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。正極活物質層は正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。
正極の電位をリチウム基準で4V以上とする場合には、集電体としてアルミニウムを採用するのが好ましい。
具体的には、正極用集電体として、アルミニウム又はアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al−Cu系、Al−Mn系、Al−Fe系、Al−Si系、Al−Mg系、Al−Mg−Si系、Al−Zn−Mg系が挙げられる。
また、アルミニウム又はアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al−Mn系)、JIS A8079、A8021等のA8000系合金(Al−Fe系)が挙げられる。
集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。
正極の結着剤及び導電助剤は負極で説明したものを同様の配合割合で採用すればよい。
正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル構造の金属酸化物、及びスピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。
具体的な正極活物質として、層状岩塩構造をもつLiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn0.5、LiNi0.75Co0.1Mn0.15、LiMnO、LiNiO、及びLiCoOを例示できる。他の具体的な正極活物質として、LiMnO−LiCoOを例示できる。
具体的な正極活物質として、スピネル構造のLixyMn2-y4(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び遷移金属元素から選ばれる少なくとも1種の金属元素、0<x≦2.2、0≦y≦1)を例示できる。より具体的には、LiMn、LiNi0.5Mn1.5を例示できる。
具体的な正極活物質として、LiFePO、LiFeSiO、LiCoPO、LiCoPO、LiMnPO、LiMnSiO、LiCoPOFを例示できる。
これら正極活物質のうち、Li/Li電極基準で4.5V以上の反応電位を示すものが好ましい。ここで、「反応電位」とは、充放電により正極活物質が酸化還元反応を生じる電位をいう。この反応電位は、Li/Li電極を基準とする。反応電位には、多少幅がある場合があるが、本明細書において「反応電位」は幅がある反応電位の中の平均値をいう。反応電位が複数段ある場合には、複数段の反応電位の中の平均値をいう。反応電位がLi/Li電極基準で4.5V以上である正極活物質としては、例えば、LiNi0.5Mn1.5、LiCoPO、LiCoPOF、LiMnO−LiMO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)、LiMnSiOなどが挙げられる。
集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
リチウムイオン二次電池には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。
本発明の電解液、正極及び負極を具備する本発明のリチウムイオン二次電池の製造方法の一例を説明する。
正極及び負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体及び負極の集電体から、外部に通ずる正極端子及び負極端子までの間を、集電用リード等を用いて接続した後に、電極体に本発明の電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
上記の本発明のリチウムイオン二次電池の説明における、負極活物質若しくは正極活物質の一部若しくは全部、又は、負極活物質及び正極活物質の一部若しくは全部を、分極性電極材料として用いられる活性炭などに置き換えて、本発明の電解液を具備する本発明のキャパシタとしてもよい。本発明のキャパシタとしては、電気二重層キャパシタや、リチウムイオンキャパシタなどのハイブリッドキャパシタを例示できる。本発明のキャパシタの説明については、上記の本発明のリチウムイオン二次電池の説明における「リチウムイオン二次電池」を「キャパシタ」に適宜適切に読み替えれば良い。
以上、本発明の電解液の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
以下に、実施例及び比較例を示し、本発明を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
(実施例1−1)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が5.5mol/Lである実施例1−1の電解液を製造した。実施例1−1の電解液においては、有機溶媒が金属塩に対しモル比1.1で含まれる。
(実施例1−2)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が5.0mol/Lである実施例1−2の電解液を製造した。実施例1−2の電解液においては、有機溶媒が金属塩に対しモル比1.3で含まれる。
(実施例2−1)
エチルメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が5.5mol/Lである実施例2−1の電解液を製造した。実施例2−1の電解液においては、有機溶媒が金属塩に対しモル比1.1で含まれる。
(比較例1−1)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が4.5mol/Lである比較例1−1の電解液を製造した。比較例1−1の電解液においては、有機溶媒が金属塩に対しモル比1.6で含まれる。
(比較例1−2)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が3.9mol/Lである比較例1−2の電解液を製造した。比較例1−2の電解液においては、有機溶媒が金属塩に対しモル比2で含まれる。
(比較例1−3)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が3.0mol/Lである比較例1−3の電解液を製造した。比較例1−3の電解液においては、有機溶媒が金属塩に対しモル比3で含まれる。
(比較例1−4)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が2.0mol/Lである比較例1−4の電解液を製造した。比較例1−4の電解液においては、有機溶媒が金属塩に対しモル比5で含まれる。
(比較例1−5)
ジメチルカーボネートに、金属塩である(FSONLiを溶解させて、(FSONLiの濃度が1.0mol/Lである比較例1−5の電解液を製造した。比較例1−5の電解液においては、有機溶媒が金属塩に対しモル比11で含まれる。
(比較例2)
ジメチルカーボネート及びエチレンカーボネートを1:1の体積比で混合した混合溶媒に、電解質であるLiPFを溶解させて、LiPFの濃度が1.0mol/Lである比較例2の電解液を製造した。比較例2の電解液においては、有機溶媒が電解質に対し概ねモル比10で含まれる。
(比較例3)
フッ素置換したエチレンカーボネート3体積部並びに低粘度溶媒としてエチルメチルカーボネート及びフッ素化した鎖状化合物の混合液7体積部を混合した混合溶媒に、電解質であるLiPFを溶解させて、LiPFの濃度が1.0mol/Lである比較例3の電解液を製造した。比較例3の電解液においては、上記混合溶媒がLiPFに対し、概ねモル比10で含まれる。
表2に実施例及び比較例の電解液の一覧を示す。
Figure 2016079919
表2及び以下の表において、略号の意味は以下のとおりである。
LiFSA:(FSONLi
DMC:ジメチルカーボネート
EMC:エチルメチルカーボネート
EC:エチレンカーボネート
FEC:フッ素置換したエチレンカーボネート
F化合物:フッ素化した鎖状化合物
(評価例1:イオン伝導度)
実施例及び比較例の電解液のイオン伝導度を以下の条件で測定した。結果を表3に示す。
イオン伝導度測定条件
Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
Figure 2016079919
実施例の電解液は、いずれも1mS/cm以上のイオン伝導性を示した。よって、本発明の電解液は、いずれも各種の蓄電装置の電解液として機能し得ると理解できる。
(評価例2:密度)
実施例及び比較例の電解液の30℃における密度を測定した。結果を表4に示す。
Figure 2016079919
(評価例3:粘度)
実施例及び比較例の電解液の粘度を以下の条件で測定した。結果を表5に示す。
粘度測定条件
落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000 M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
Figure 2016079919
実施例の電解液の粘度は、比較例の電解液の粘度と比較して、著しく高いことがわかる。よって、本発明の電解液を用いた蓄電装置であれば、仮に蓄電装置が破損したとしても、電解液漏れが抑制される。
(評価例4:ラマンスペクトル測定)
実施例1−1、実施例1−2、比較例1−1〜1−5の電解液、並びに、DMCにつき、以下の条件でラマンスペクトル測定を行った。各電解液のDMCに由来する部分、及び、金属塩のアニオン部分、すなわち(FSONに由来するピークが観察されたラマンスペクトルを図1に示す。図1の横軸は波数(cm−1)であり、縦軸は散乱強度である。図1のFSAとは(FSONの略号である。
ラマンスペクトル測定条件
装置:レーザーラマン分光光度計(日本分光株式会社NRSシリーズ)
レーザー波長:532nm
レーザーパワー:50mW
露光時間:20〜40秒
積算回数:3回
不活性ガス雰囲気下で電解液を石英セルに密閉し、測定に供した。
図1に示される実施例1−1、実施例1−2、比較例1−1〜1−5の電解液のラマンスペクトルの700〜800cm−1には、LiFSAの(FSONに由来する特徴的なピークが観察された。図1から、DMC/LiFSAモル比の減少に伴い、すなわちLiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。ここで、電解液が高濃度化するに従い、塩のアニオンに該当する(FSONがLiと相互作用する状態になると推察される。換言すると、濃度が低い場合はLiとアニオンはSSIP(Solvent−separated ion pairs)状態を主に形成しており、高濃度化に伴いCIP(Contact ion pairs)状態やAGG(aggregate)状態を主に形成していると推察される。そして、かかる状態の変化がラマンスペクトルのピークシフトとして観察されたと考察できる。
また、図1に示される実施例1−1、実施例1−2、比較例1−1〜1−5の電解液、及び、DMCのラマンスペクトルの900〜950cm−1付近には、DMCに由来する特徴的なピークが観察された。図1の比較例1−2〜比較例1−5のラマンスペクトルから、DMCに由来するピークが、本来のピーク波数とシフトしたピーク波数とに分離して観察されることがわかる。しかも、本来のピークの強度Ioと、本来のピークがシフトしたピークの強度Isの関係は、DMC/LiFSA=11の比較例1−5の電解液ではIo>Isであり、DMC/LiFSA=5の比較例1−4の電解液でもIo>Isであるのに対し、DMC/LiFSA=3の比較例1−3の電解液ではIo<Isであり、DMC/LiFSA=2の比較例1−2の電解液でもIo<Isであるのがわかる。すなわち、DMC/LiFSAの値が減少するほど、Ioが小さくなり、Isが大きくなるといえる。そして、実施例1−1、実施例1−2、比較例1−1の電解液においては、Ioが確認できず、Isのみ観察された。
実施例1−1及び実施例1−2の電解液においては、電解液に含まれる鎖状カーボネートの分子のほぼすべてが金属塩と溶媒和していることが裏付けられた。
(実施例A)
実施例1−2の電解液を用いたハーフセルを以下のとおり製造した。
径13.82mm、面積1.5cm、厚み20μmのアルミニウム箔(JIS A1000番系)を作用極とし、対極は金属Liとした。セパレータは、厚み30μmのポリプロピレン製微多孔セパレータを用いた。
作用極、対極、セパレータ及び実施例1−2の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Aのハーフセルとした。
(比較例A)
比較例1−1の電解液を用いた以外は、実施例Aのハーフセルと同様にして、比較例Aのハーフセルを作製した。
(比較例B)
比較例1−2の電解液を用いた以外は、実施例Aのハーフセルと同様にして、比較例Bのハーフセルを作製した。
(比較例C)
比較例1−3の電解液を用いた以外は、実施例Aのハーフセルと同様にして、比較例Cのハーフセルを作製した。
(比較例D)
比較例1−4の電解液を用いた以外は、実施例Aのハーフセルと同様にして、比較例Dのハーフセルを作製した。
(比較例E)
比較例1−5の電解液を用いた以外は、実施例Aのハーフセルと同様にして、比較例Eのハーフセルを作製した。
(評価例A:作用極Alでのリニアスイープボルタンメトリー評価)
実施例A及び比較例A〜Eのハーフセルに対して、Liに対する電位3.0V〜6.0Vの範囲にわたり、1mV/sの条件で連続的に変化させるリニアスイープボルタンメトリーを行い、電位と応答電流との関係を観察した。電位と応答電流のグラフを図2及び図3に示す。図3のグラフは図2のグラフを拡大したものである。
図2及び図3から、比較例C、比較例D、比較例Eのハーフセルでは、4.3V付近から電流が流れ始め、しかも高電位になるに従い電流が増大していることがわかる。これらの電流は、作用極のアルミニウムが腐食したことによるAlの酸化電流と推定される。
図2及び図3から、実施例A、比較例A、比較例Bのハーフセルにおいては、3.0Vから5.5Vにかけてほとんど電流が流れていないことがわかる。図3から、電流が流れ始める電位は、実施例Aのハーフセルが最も高電位であることがわかる。つまり、実施例A及び比較例A〜Eのハーフセルのうち、実施例Aのハーフセルが最も電位耐久性に優れているといえる。
リニアスイープボルタンメトリー評価の結果から、4.5Vを超える高電位条件でも、実施例1−2の電解液のアルミニウムに対する腐食性や酸化分解性は低いといえる。すなわち、実施例1−2の電解液は、集電体などにアルミニウムを用いた蓄電装置に対し、好適な電解液といえる。
(実施例B)
実施例1−2の電解液を用いたハーフセルを以下のとおり製造した。
活物質であるスピネル構造のLiNi0.5Mn1.580質量部、及び、結着剤であるポリフッ化ビニリデン5質量部、及び導電助剤であるアセチレンブラック15質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布されたアルミニウム箔を乾燥してN−メチル−2−ピロリドンを除去し、その後、アルミニウム箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成されたアルミニウム箔を得た。これを作用極とした。
対極は金属Liとした。
作用極、対極、両者の間に挟装した厚み30μmのポリプロピレン製微多孔セパレータ及び実施例1−2の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Bのハーフセルとした。
(比較例F)
電解液として比較例1−1の電解液を用いた以外は、実施例Bと同様の方法で、比較例Fのハーフセルを製造した。
(比較例G)
電解液として比較例2の電解液を用いた以外は、実施例Bと同様の方法で、比較例Gのハーフセルを製造した。
(評価例B:ハーフセルの容量維持率)
実施例B、比較例F、比較例Gのハーフセルの容量維持率を以下の方法で試験した。
各ハーフセルにつき、室温、0.2Cにて、3.5V〜4.9V(vs.Li基準)の範囲の充放電サイクルを繰り返し、各サイクルの放電容量を測定した。各ハーフセルにつき、以下の式にて容量維持率(%)を算出した。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。結果を表6に示す。
容量維持率(%)=100×(30サイクル時の放電容量)/(1サイクル時の放電容量)
Figure 2016079919
表6に示した結果から、実施例Bのハーフセルは、著しく優れた容量維持率を示すことがわかる。本発明の電解液及び活物質としてスピネル構造のLiNi0.5Mn1.5を具備する二次電池は、優れた容量維持率を示すことが裏付けられた。
(実施例C)
実施例1−2の電解液を用いたハーフセルを以下のとおり製造した。
活物質であるスピネル構造のLiNi0.5Mn1.580質量部、及び、結着剤であるポリフッ化ビニリデン10質量部、及び導電助剤であるアセチレンブラック10質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布されたアルミニウム箔を乾燥してN−メチル−2−ピロリドンを除去し、その後、アルミニウム箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成されたアルミニウム箔を得た。これを作用極とした。
対極は金属Liとした。
作用極、対極、両者の間に挟装した厚み400μmのガラス繊維製セパレータ及び実施例1−2の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Cのハーフセルとした。
(比較例H)
電解液として比較例1−1の電解液を用いた以外は、実施例Cと同様の方法で、比較例Hのハーフセルを製造した。
(比較例I)
電解液として比較例2の電解液を用いた以外は、実施例Cと同様の方法で、比較例Iのハーフセルを製造した。
(評価例C:レート容量試験)
実施例C、比較例H、比較例Iのハーフセルのレート容量を以下の方法で試験した。
各ハーフセルに対し、室温、3.5Vから4.9Vまでの充電及び4.9Vから3.5Vまでの放電を、0.1C、0.2C、0.5C、1C、2C、5C、10C、15C、20C及び0.1Cレートの順序で、各レートにつき3回ずつ行う充放電サイクル試験を行った。初めの0.1Cレートでの2回目の放電容量に対する、5Cレートでの2回目の放電容量の比率を算出した結果を表7に示す。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。1Cとは一定電流において1時間で電池を完全充電又は放電させるために要する電流値を意味する。
Figure 2016079919
表7に示した結果から、実施例Cのハーフセルは、各比較例のハーフセルと比較して、5Cのレートにおける容量の低下が抑制されており、優れたレート特性を示した。本発明の電解液及び活物質としてスピネル構造のLiNi0.5Mn1.5を具備する二次電池は、優れたレート特性を示すことが裏付けられた。また、実施例Cのハーフセルにおいて、初めの0.1Cレートでの2回目の充電容量に対する、最後の0.1Cレートでの2回目の充電容量の比率は、100%であった。本発明の二次電池においては、急速充放電後の充放電であっても、容量が十分に保たれることが裏付けられた。
(実施例D)
実施例1−2の電解液を用いたハーフセルを以下のとおり製造した。
活物質である平均粒径10μmの黒鉛90質量部及び結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN−メチル−2−ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。なお、黒鉛は、SECカーボン株式会社のSNOグレードのものを使用した。
対極は金属Liとした。
作用極、対極、両者の間に挟装した厚み30μmのポリプロピレン製微多孔セパレータ及び実施例1−2の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Dのハーフセルとした。
(比較例J)
比較例1−1の電解液を用いた以外は、実施例Dのハーフセルと同様にして、比較例Jのハーフセルを作製した。
(比較例K)
比較例1−2の電解液を用いた以外は、実施例Dのハーフセルと同様にして、比較例Kのハーフセルを作製した。
(比較例L)
比較例1−3の電解液を用いた以外は、実施例Dのハーフセルと同様にして、比較例Lのハーフセルを作製した。
(比較例M)
比較例1−4の電解液を用いた以外は、実施例Dのハーフセルと同様にして、比較例Mのハーフセルを作製した。
(比較例N)
比較例1−5の電解液を用いた以外は、実施例Dのハーフセルと同様にして、比較例Nのハーフセルを作製した。
(比較例O)
比較例2の電解液を用いた以外は、実施例Dのハーフセルと同様にして、比較例Oのハーフセルを作製した。
(評価例D:不可逆容量の確認)
実施例D、比較例J〜Oのハーフセルにつき、25℃、0.1Cにて、2.5V〜0.1Vの範囲で充放電を行い、充電曲線及び放電曲線を観察した。また、各ハーフセルの初回充電容量、初回放電容量を測定し、さらに、初回クーロン効率(%)を下記の計算式で算出した。結果を表8に示す。
初回クーロン効率(%)=100×(初回放電容量)/(初回充電容量)
なお、ここでの記述は、対極を正極、作用極を負極とみなしている。
本発明の電解液を具備する実施例Dのハーフセルの充電曲線は、従来の電解液を具備する比較例Oのハーフセルの充電曲線と同様に、Li−黒鉛層間化合物のステージ構造に対応する0.25V以下の段階的な電位変化を示した。また、表8から、実施例Dのハーフセルのクーロン効率は、比較例J〜Oのハーフセルのクーロン効率よりも高く、初回不可逆容量が少ないことがわかる。そして、実施例Dのハーフセルは、好適な可逆的充放電が可能なこともわかる。
Figure 2016079919
さて、従来の黒鉛負極を有するリチウムイオン二次電池は、比較例2で示すようなEC含有電解液を具備することで、黒鉛負極上にSEI皮膜を形成し可逆的充放電を可能にすることが知られている。しかしながら、上記実施例Dのハーフセルは、EC不存在電解液であるにも関わらず、EC含有電解液と同様に好適な可逆的充放電が可能であることが示された。これは、本発明の電解液の特徴である、金属塩に対するヘテロ元素含有有機溶媒のモル比を著しく低くしていること、及び、特定の金属塩を選択していることの両者に起因して、黒鉛負極上に金属塩由来物を主体とする良好なSEI皮膜を形成しているためと考察される。
(実施例I)
実施例1−1の電解液を用いたリチウムイオン二次電池を以下のとおり製造した。
正極活物質であるスピネル構造のLiNi0.5Mn1.589質量部、導電助剤であるアセチレンブラック8質量部、及び結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN−メチル−2−ピロリドンを揮発により除去した。その後、このアルミニウム箔をプレスし接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、正極活物質層が形成されたアルミニウム箔を得た。これを正極とした。
負極活物質である黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
セパレータとして、厚さ20μmのセルロース製不織布を準備した。
正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに実施例1−1の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例Iのリチウムイオン二次電池とした。
(実施例II)
実施例2−1の電解液を用いた以外は、実施例Iのリチウムイオン二次電池と同様にして、実施例IIのリチウムイオン二次電池を作製した。
(比較例I)
比較例3の電解液を用いた以外は、実施例Iのリチウムイオン二次電池と同様にして、比較例Iのリチウムイオン二次電池を作製した。
(評価例I:リチウムイオン二次電池の容量維持率)
実施例I、II、比較例Iのリチウムイオン二次電池につき、以下の方法で、容量維持率を評価した。各リチウムイオン二次電池について、室温、0.1C、3.0V〜4.9V(vs.Li基準)の範囲で充放電を繰り返した。初回充放電時の放電容量、各サイクル時の放電容量を測定した。そして、初回放電時の各リチウムイオン二次電池の容量を100%として、特定のサイクル時の各リチウムイオン二次電池の容量維持率(%)を算出した。結果を表9及び図4に示す。また、実施例IIのリチウムイオン二次電池について、初回、10サイクル目、20サイクル目、45サイクル目の充放電曲線を図5に示し、比較例Iのリチウムイオン二次電池について、初回、10サイクル目、20サイクル目の充放電曲線を図6に示す。
Figure 2016079919
表9及び図4から、本発明の電解液を具備する二次電池は、4.9Vとの高電位での充放電サイクルにおいても、容量を好適に維持できることが裏付けられた。また、実施例Iと実施例IIの結果から、本発明の電解液において一般式(1)におけるR10及び/又はR11の炭素数の増加が、二次電池の容量維持率の好適化に寄与することが示唆された。
図5から、実施例IIのリチウムイオン二次電池の充放電曲線は、サイクルを重ねても、ほぼ初回充放電曲線に一致しており、電解液の分解に起因するような過剰の充電容量も観察されなかったのがわかる。この結果は、本発明の電解液が高い電位下でも安定であり、かつ、大きな分極も生じなかったことを示しているといえる。本発明の電解液は高電位で動作される電池に適した電解液であることが裏付けられた。他方、図6から、比較例Iのリチウムイオン二次電池の充放電曲線は、サイクルを重ねるにつれて、低容量側にシフトしているのがわかる。この結果から、有機溶媒がLiPFに対しモル比10程度で含まれる従来の電解液は、高電位で動作される電池の電解液としては、本発明の電解液と比較して、劣っているといえる。


Claims (13)

  1. 下記一般式(1)で表される鎖状カーボネートを含むヘテロ元素含有有機溶媒が、
    アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとし、下記一般式(2)で表される化学構造をアニオンとする金属塩に対し、
    モル比1.5以下で含まれること特徴とする電解液。
    10OCOOR11 一般式(1)
    (R10、R11は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。nは1以上の整数、mは3以上の整数、a、b、c、d、e、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
    (R2121)(R22SO)N 一般式(2)
    (R21は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
    22は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
    また、R21とR22は、互いに結合して環を形成しても良い。
    21は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
    、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
    また、R、Rは、R21又はR22と結合して環を形成しても良い。)
  2. 前記ヘテロ元素含有有機溶媒は前記鎖状カーボネートを80体積%以上又は80モル%以上で含む請求項1に記載の電解液。
  3. 請求項1に記載の一般式(1)で表される鎖状カーボネートが、
    アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとし、請求項1に記載の一般式(2)で表される化学構造をアニオンとする金属塩に対し、
    モル比1.5以下で含まれることを特徴とする電解液。
  4. 前記金属塩のアニオンの化学構造が下記一般式(2−1)で表される請求項1〜3のいずれかに記載の電解液。
    (R2322)(R24SO)N 一般式(2−1)
    (R23、R24は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
    n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
    また、R23とR24は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
    22は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
    、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
    また、R、Rは、R23又はR24と結合して環を形成しても良い。)
  5. 前記金属塩のアニオンの化学構造が下記一般式(2−2)で表される請求項1〜4のいずれかに記載の電解液。
    (R25SO)(R26SO)N 一般式(2−2)
    (R25、R26は、それぞれ独立に、CClBrである。
    n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
    また、R25とR26は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
  6. 前記金属塩が(CFSONLi、(FSONLi、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、又は(SOCFCFCFSO)NLiである請求項1〜5のいずれかに記載の電解液。
  7. 前記鎖状カーボネートが下記一般式(1−1)で表される請求項1〜6のいずれかに記載の電解液。
    13OCOOR14 一般式(1−1)
    (R13、R14は、それぞれ独立に、鎖状アルキルであるC、又は、環状アルキルを化学構造に含むCのいずれかから選択される。nは1以上の整数、mは3以上の整数、a、b、f、gはそれぞれ独立に0以上の整数であり、2n+1=a+b、2m=f+gを満たす。)
  8. 前記鎖状カーボネートがジメチルカーボネート、エチルメチルカーボネート又はジエチルカーボネートから選択される請求項1〜7のいずれかに記載の電解液。
  9. 前記モル比が1〜1.5の範囲内である請求項1〜8のいずれかに記載の電解液。
  10. 請求項1〜9のいずれかに記載の電解液を具備する二次電池。
  11. 反応電位がLi基準で4.5V以上である正極活物質を具備する請求項10に記載の二次電池。
  12. 正極活物質としてスピネル構造のリチウム金属複合酸化物を具備する請求項10又は11に記載の二次電池。
  13. アルミニウム製の正極集電体を具備する請求項10〜12のいずれかに記載の二次電池。
JP2016559794A 2014-11-18 2015-10-05 電解液 Pending JPWO2016079919A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014233460 2014-11-18
JP2014233460 2014-11-18
JP2015047052 2015-03-10
JP2015047052 2015-03-10
PCT/JP2015/005052 WO2016079919A1 (ja) 2014-11-18 2015-10-05 電解液

Publications (1)

Publication Number Publication Date
JPWO2016079919A1 true JPWO2016079919A1 (ja) 2017-06-22

Family

ID=56013499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016559794A Pending JPWO2016079919A1 (ja) 2014-11-18 2015-10-05 電解液

Country Status (4)

Country Link
US (1) US20170324114A1 (ja)
JP (1) JPWO2016079919A1 (ja)
DE (1) DE112015005200T5 (ja)
WO (1) WO2016079919A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992436B2 (ja) * 2017-11-22 2022-01-13 Tdk株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
WO2019113528A1 (en) * 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with carboxylic ether, carboxylic acid based salt, or acrylate electrolyte containing electrolyte additives
CN110176632A (zh) 2018-02-20 2019-08-27 三星Sdi株式会社 用于锂二次电池的非水电解质和具有其的锂二次电池
JP7131923B2 (ja) * 2018-02-20 2022-09-06 三星エスディアイ株式会社 非水電解質二次電池用電解液及び非水電解質二次電池
CN110323444B (zh) * 2019-05-31 2021-07-20 中国地质大学(武汉) 一类含吡啶基团的锂离子正极水系粘结剂及其制备方法、锂离子二次电池
CO2022003716A1 (es) * 2022-03-29 2022-04-19 Corporacion Univ Minuto De Dios Uniminuto Electrolito tipo gel libre de material tóxico no contaminante útil en celdas electroquímicas útil en celdas electroquímicas y su método de obtención
CN117393847A (zh) 2022-07-05 2024-01-12 通用汽车环球科技运作有限责任公司 具有环丁烯砜添加剂的凝胶聚合物电解质
CN115497748B (zh) * 2022-09-20 2023-12-08 上海汉禾生物新材料科技有限公司 一种酶解木质素基碳包覆硬碳材料、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882696A (zh) * 2009-05-05 2010-11-10 中国科学院物理研究所 一种含氟磺酰亚胺基锂盐的非水电解质材料及其应用
JP2013161706A (ja) * 2012-02-07 2013-08-19 Asahi Glass Co Ltd 二次電池用非水電解液およびリチウムイオン二次電池
WO2013146714A1 (ja) * 2012-03-26 2013-10-03 国立大学法人 東京大学 リチウム二次電池用電解液、及び当該電解液を含む二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124969A (ja) * 1987-11-10 1989-05-17 Hitachi Maxell Ltd リチウム二次電池
KR20070121034A (ko) * 2005-04-19 2007-12-26 마츠시타 덴끼 산교 가부시키가이샤 비수 전해액, 및 그것을 이용한 전기 화학 에너지 축적디바이스 및 비수 전해액 2차 전지
JP2012104268A (ja) * 2010-11-08 2012-05-31 Central Res Inst Of Electric Power Ind リチウムイオン二次電池
JP5817009B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882696A (zh) * 2009-05-05 2010-11-10 中国科学院物理研究所 一种含氟磺酰亚胺基锂盐的非水电解质材料及其应用
JP2013161706A (ja) * 2012-02-07 2013-08-19 Asahi Glass Co Ltd 二次電池用非水電解液およびリチウムイオン二次電池
WO2013146714A1 (ja) * 2012-03-26 2013-10-03 国立大学法人 東京大学 リチウム二次電池用電解液、及び当該電解液を含む二次電池

Also Published As

Publication number Publication date
WO2016079919A1 (ja) 2016-05-26
US20170324114A1 (en) 2017-11-09
DE112015005200T5 (de) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6450395B2 (ja) 電解液
JP6569883B2 (ja) 電解液及びリチウムイオン二次電池
JP6575027B2 (ja) リチウムイオン二次電池
WO2016079919A1 (ja) 電解液
JP6402957B2 (ja) 電極表面に被膜を具備する二次電池の製造方法
WO2017104145A1 (ja) リチウムイオン二次電池
JP6555467B2 (ja) 電解液
WO2017179411A1 (ja) リチウムイオン二次電池
JP6441453B2 (ja) 電解液
JP2017191744A (ja) リチウムイオン二次電池
WO2015045389A1 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
JP6575022B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP2018045794A (ja) 電解液
JP6957986B2 (ja) リチウムイオン二次電池
JP5816999B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法
JP2017199572A (ja) リチウムイオン二次電池
JP6663099B2 (ja) 電解液
JP2017062959A (ja) 蓄電装置用正極および蓄電装置
JP6661935B2 (ja) 蓄電装置用負極および蓄電装置
JP2018088362A (ja) 電解液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402