WO2013140536A1 - 電動車両、電力設備および電力供給システム - Google Patents

電動車両、電力設備および電力供給システム Download PDF

Info

Publication number
WO2013140536A1
WO2013140536A1 PCT/JP2012/057133 JP2012057133W WO2013140536A1 WO 2013140536 A1 WO2013140536 A1 WO 2013140536A1 JP 2012057133 W JP2012057133 W JP 2012057133W WO 2013140536 A1 WO2013140536 A1 WO 2013140536A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
period
discharge
power storage
Prior art date
Application number
PCT/JP2012/057133
Other languages
English (en)
French (fr)
Inventor
茂樹 木野村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280071594.4A priority Critical patent/CN104205553B/zh
Priority to US14/384,229 priority patent/US9627911B2/en
Priority to PCT/JP2012/057133 priority patent/WO2013140536A1/ja
Priority to EP12871664.4A priority patent/EP2830185B1/en
Priority to IN7684DEN2014 priority patent/IN2014DN07684A/en
Publication of WO2013140536A1 publication Critical patent/WO2013140536A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/58Departure time prediction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to an electric vehicle, an electric power facility, and an electric power supply system including these, and more particularly to a technique for supplying electric power discharged from an in-vehicle power storage device to the outside of the electric vehicle.
  • a power storage device that accumulates electric power for driving the electric motor is mounted.
  • a so-called plug-in type has been developed in which such an on-vehicle power storage device is charged by a power source external to the vehicle such as a commercial power source (hereinafter also simply referred to as “external power source”).
  • Patent Document 1 describes control of the storage amount of a storage battery after completion of charging of the storage battery for an electric vehicle that can be charged by an external power source. Specifically, it is described that, when the temperature of the storage battery is in a high temperature state exceeding a predetermined value, the performance deterioration in the high temperature state of the storage battery is alleviated by discharging predetermined power from the storage battery to a predetermined power facility. ing.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-268602 is inputted by a user in charge / discharge control when “charge” or “discharge” is selected from the displayed charge / discharge control menu (FIG. 5). It is described that a charging / discharging schedule of a storage battery is created in accordance with the charging / discharging constraint conditions. Specifically, the storage battery is charged / discharged based on the charge / discharge schedule created based on the charge information of power sale and purchase, the charging / discharging constraint condition input by the user, and the storage battery information. It is described.
  • the SOC State of Charge
  • Patent Document 2 shows that for each of the discharge control and the discharge control, an optimal charge / discharge schedule considering cost merit is determined. However, Patent Document 2 does not give any teaching or suggestion as to how charging and discharging should be controlled after the external charging of the in-vehicle power storage device is completed, taking charge and discharge of the power storage device together.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide an in-vehicle power storage system for an outside of a vehicle in an electric vehicle configured to be able to exchange power with the outside of the vehicle. It is to appropriately control charging / discharging of the apparatus.
  • an electric vehicle charges the power storage device via the power node between the power storage device mounted on the vehicle, a power node for transferring power between the vehicle exterior and the vehicle exterior.
  • a control device for controlling charging / discharging of the power storage device with the outside of the vehicle in a dischargeable state.
  • the control device provides a first period for limiting discharge from the power storage device to the outside of the vehicle after the power storage device is externally charged by a power supply external to the vehicle, and at least after the end of the first period, The discharge from the power storage device is controlled so as to provide a second period in which the discharge restriction is released.
  • the control device sets the first period from the end of external charging of the power storage device to the elapse of a predetermined period, and sets the second period after the elapse of the predetermined period.
  • the control device controls the external charging according to the charging end time designated by the user, sets the first period between the charging end time and the predetermined period, The second period is set after the elapse of the period.
  • the control device executes a discharge from the power storage device to the outside of the vehicle in response to a discharge request from a load outside the vehicle. More preferably, when there is a discharge request in the second period, the control device confirms with the user whether or not discharge from the power storage device is possible.
  • control device confirms with the user whether or not the external charging of the power storage device is necessary after the end of the discharge from the power storage device in the second period.
  • the control device permits the discharging of the power storage device until the SOC of the power storage device decreases to the first value in the first period, while the SOC is the second in the second period.
  • the power storage device is allowed to discharge until the value decreases to the first value, and the first value is higher than the second value.
  • the second value is set based on a history of information indicating the amount of power used by the power storage device during a certain operation period of the electric vehicle.
  • control device prohibits the discharge of the power storage device in the first period.
  • a power facility configured to be able to exchange power with an electric vehicle equipped with a power storage device, the power facility for transmitting / receiving electric power to / from the electric vehicle.
  • the control device provides a first period for limiting discharge from the power storage device to the power facility after the power storage device is externally charged, and discharge limitation in the first period at least after the end of the first period.
  • the discharge from the power storage device to the power equipment is controlled so as to provide the second period in which the is released.
  • the control device sets the first period from the end of external charging of the power storage device to the elapse of a predetermined period, and sets the second period after the elapse of the predetermined period.
  • the control device controls the external charging according to the charging end time designated by the user, sets the first period from the charging end time until the predetermined period elapses, The second period is set after the elapse of the period.
  • the control device when the control device requests the power storage device to discharge in the second period, the control device confirms whether or not the power storage device can be discharged. More preferably, the control device confirms with the user whether or not it is necessary to recharge the power storage device again after the end of the discharge from the power storage device in the second period.
  • the control device permits the discharging of the power storage device until the SOC of the power storage device decreases to the first value in the first period, while the SOC is the first in the second period.
  • the power storage device is allowed to discharge until the value decreases to a value of 2, and the first value is higher than the second value.
  • the second value is set based on a history of information indicating the amount of power used by the power storage device during a certain operation period of the electric vehicle.
  • the control device prohibits the discharging of the power storage device in the first period.
  • an electric power supply system includes an electric vehicle equipped with an electric storage device, electric power equipment configured to be able to exchange electric power between the electric vehicle, and charging / discharging of the electric storage device, And a control device for controlling charging / discharging of the power storage device in a state in which power can be exchanged between the facility and the electric vehicle.
  • the control device provides a first period for limiting the discharge from the power storage device to the power facility after the power storage device is externally charged by the power from the power facility, and at least after the end of the first period, The discharge from the power storage device to the power equipment is controlled so as to provide a second period in which the discharge restriction in the period is released.
  • the control device sets the first period from the end of external charging of the power storage device to the elapse of a predetermined period, and sets the second period after the elapse of the predetermined period.
  • the control device controls the external charging according to the charging end time designated by the user, sets the first period from the charging end time until a predetermined period elapses, The second period is set after the predetermined period has elapsed.
  • the control device in the power supply system, is provided in the power facility.
  • the control device confirms with the user whether discharge from the power storage device is possible, and requests the electric vehicle to discharge from the power storage device when the user permits it. More preferably, the control device confirms with the user whether or not it is necessary to recharge the power storage device again after the end of the discharge from the power storage device in the second period.
  • the control device permits discharging of the power storage device until the SOC of the power storage device decreases to the first value in the first period, while in the second period, the SOC is The discharge of the power storage device is permitted until the value drops to the second value, and the first value is higher than the second value.
  • the second value is set based on a history of information indicating the amount of power used by the power storage device during a certain operation period of the electric vehicle.
  • control device prohibits the discharging of the power storage device in the first period.
  • the vehicle and the power facility are electrically connected by a cable.
  • charging / discharging of the in-vehicle power storage device with respect to the outside of the vehicle can be appropriately controlled.
  • FIG. 1 is a schematic block diagram for illustrating a configuration example of a power supply system according to an embodiment of the present invention.
  • the power supply system includes a vehicle 100 and a power facility 900.
  • vehicle 100 is configured to be electrically connected to power equipment 900 outside the vehicle by attaching cable 400.
  • Vehicle 100 is an “electric vehicle” that can be driven by electric power from the in-vehicle power storage device.
  • Vehicle 100 includes, for example, a hybrid vehicle, an electric vehicle, a fuel cell vehicle, and the like.
  • examples of the vehicle 100 include a high-rid vehicle, particularly a so-called plug-in type hybrid vehicle that can charge the power storage device 110 with an external power source.
  • the external power supply is typically constituted by a commercial system power supply 800.
  • Vehicle 100 includes a power output device 105, an on-board power storage device 110, an ECU (Electronic Control Unit) 300 that is a control device, and a communication unit 310.
  • ECU Electronic Control Unit
  • the power storage device 110 is a power storage element configured to be rechargeable.
  • the power storage device 110 includes, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery, or a power storage element such as an electric double layer capacitor.
  • the power output device 105 generates a driving force of the vehicle 100 based on a driving command from the ECU 300.
  • the driving force generated by the power output device 105 is transmitted to the driving wheels of the vehicle 100.
  • the drive command is a control command generated based on the requested vehicle driving force or vehicle braking force while the vehicle 100 is traveling.
  • the power output device 105 includes an engine 106 and a motor generator 107.
  • power output device 105 is configured to output one or both of the outputs of engine 106 and motor generator 107 to the drive wheels.
  • Power output device 105 has a power converter (not shown) that converts the output power of power storage device 110 into the power for controlling the output torque of motor generator 107.
  • power output device 105 is generally configured to have a generator and a power converter (inverter) (not shown) for generating charging power for power storage device 110 by the output of engine 106. Is. When vehicle 100 is an electric vehicle, the arrangement of engine 106 is omitted, and power output device 105 generates the driving force of vehicle 100 by the output of motor generator 107.
  • inverter inverter
  • ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer.
  • the ECU 300 inputs a signal from each sensor and outputs a control signal to each device. Take control.
  • These controls are not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
  • ECU 300 is configured to control the in-vehicle devices in an integrated manner in each operation mode of vehicle 100. For example, in the travel mode in which the vehicle 100 travels, the ECU 300 is necessary for the entire vehicle 100 in accordance with the vehicle state of the vehicle 100 and driver operations (accelerator pedal depression amount, shift lever position, brake pedal depression amount, etc.). Vehicle driving force and vehicle braking force are calculated. Then, ECU 300 generates a drive command for power output device 105 so as to realize the requested vehicle driving force or vehicle braking force. ECU 300 is configured to calculate the state of charge of power storage device 110 based on the detected values of voltage and current from power storage device 110.
  • Vehicle 100 has an operation mode in which power storage device 110 is charged by an external power source (hereinafter referred to as “charging mode”) as an operation mode in which power is exchanged with the outside of the vehicle, and a discharge power of power storage device 110 as AC power. It has a “power supply mode” that converts the signal into the vehicle and outputs it to the outside of the vehicle. Thereby, not only the vehicle 100 is externally charged by the external power source, but also the electric power from the power storage device 110 can be supplied to the load outside the vehicle. That is, as seen in a smart grid or the like, it is possible to configure a power supply system using the vehicle 100 as a power supply source.
  • charging mode an external power source
  • power supply mode that converts the signal into the vehicle and outputs it to the outside of the vehicle.
  • the vehicle 100 is connected to a power facility 900 outside the vehicle by a cable 400.
  • the cable 400 is normally connected to the vehicle 100 and the power equipment 900, power can be exchanged between the vehicle 100 and the power equipment 900.
  • the cable 400 includes a power line 440 that connects the connector 410 and the plug 420 in addition to the connector 410 and the plug 420.
  • the connector 410 is provided with an operation unit 415 and a changeover switch 417.
  • the operation unit 415 is operated by the user when the connector 410 is removed from the inlet 220. Specifically, when the user presses operation portion 415, the fitting state between the fitting portion (not shown) of connector 410 and inlet 220 is released.
  • the changeover switch 417 is a switch for forcibly selecting a power supply mode or a charge mode.
  • the user can select one of the power supply mode and the charge mode by operating the changeover switch 417 and can avoid the other mode being automatically executed.
  • the changeover switch 417 is not operated, the power supply mode and the charging mode can be automatically selected. That is, as long as power can be exchanged between the vehicle 100 and the power equipment 900 by connecting the cable 400, the charge mode and the discharge mode are set according to a request from the vehicle side (ECU 300) or the HEMS side (controller 990). It is possible to start automatically.
  • the present embodiment is basically directed to charge / discharge control of the in-vehicle power storage device when the changeover switch 417 is not operated.
  • Vehicle 100 includes a power conversion device 200, an inlet 220, and a power line ACL1 as configurations for a charging mode and a power feeding mode.
  • Inlet 220 corresponds to a “power node” for transferring power to and from the outside of the vehicle.
  • Power conversion device 200 is configured to perform bidirectional power conversion between the DC voltage of power storage device 110 and the AC voltage of power line ACL1.
  • the communication unit 310 is configured to be able to transmit and receive information to / from the power equipment 900 at least outside the vehicle 100.
  • the communication unit 310 may be configured to perform communication wirelessly or may be configured to perform power line communication via the cable 400.
  • power conversion device 200 operates to convert an AC voltage supplied to power line ACL1 via cable 400 and inlet 220 into a DC voltage for charging power storage device 110. Accordingly, the on-board power storage device 110 can be charged with power from the external power source.
  • power conversion device 200 operates to convert a DC voltage generated by discharging power storage device 110 into an AC voltage and output it to power line ACL1.
  • the AC voltage is supplied to a load (electric power equipment 900) outside the vehicle via the inlet 220 and the cable 400.
  • a voltage sensor 302 and a current sensor 304 are arranged on the power line ACL1.
  • Voltage sensor 302 detects an effective value of AC voltage Vac input / output by power conversion device 200.
  • current sensor 304 detects the effective value of AC current Iac input / output by power conversion device 200.
  • the power conversion device 200 is shared between the charging mode and the power feeding mode.
  • a configuration in which a power conversion device for charging mode and a power conversion device for power supply mode are separately provided is also possible.
  • the power conversion device 200 for power supply mode performs power conversion from DC power to AC power.
  • a separate power conversion device (not shown) for performing power conversion from AC power to DC power is provided between power storage device 110 and inlet 220 in parallel with power conversion device 200.
  • the power equipment 900 is typically configured by an energy management system such as a HEMS (Home Energy Management System). Therefore, hereinafter, the power equipment 900 is also referred to as HEMS 900.
  • HEMS Home Energy Management System
  • the HEMS 900 includes a charge / discharge connector 910, a display unit 915, a communication unit 920, an AC / DC converter 930, a power storage device 940, a bidirectional PCS (Power Conditioning Subsystem) 945, a distribution board 950, and a controller. 990.
  • Power is supplied from the distribution board 950 to an outlet (not shown), and the load 1000 can operate by receiving AC power from the distribution board 950 by being connected to the outlet.
  • the load 1000 corresponds to an electric device used at home.
  • the charge / discharge connector 910 is electrically connected to the inlet 220 of the vehicle 100 by being connected to the plug 420 of the cable 400. Charging / discharging connector 910 and AC / DC converter 930 are connected by power line ACL2.
  • AC / DC converter 930 performs bi-directional AC / DC conversion between power line ACL2 to which an AC voltage is transmitted and power line PL1 to which a DC voltage is transmitted.
  • Power storage device 940 is connected to power line PL1.
  • Bidirectional PCS 945 is connected between power line PL1 and power line ACL3 to which AC power is transmitted.
  • Bi-directional PCS 945 converts the DC power of power line PL1 into AC power linked to commercial power supply 800 and outputs it to power line ACL3, and charges power storage device 940 with AC power on power line ACL3. It is possible to perform bidirectional conversion of power converted into DC power and output to the power line PL1.
  • Bidirectional PCS 945 and distribution board 950 are electrically connected via power line ACL3.
  • Distribution board 950 is further connected to commercial power supply 800 via power line ACL4.
  • a solar cell 970 and a PCS 975 may be further connected to the distribution board 950 via the power line ACL5.
  • the PCS 975 converts the DC power generated by the solar cell 970 into AC power linked with AC power from the commercial power supply 800 and outputs the AC power to the power line ACL5.
  • a fuel cell or the like may be provided as a power source.
  • the power source different from the vehicle 100 it is possible to arrange an arbitrary power source including the commercial power source 800.
  • the controller 990 controls various devices in the HEMS 900 in an integrated manner.
  • the communication unit 920 is configured to be able to transmit and receive information with at least the communication unit 310 of the vehicle 100.
  • the communication unit 920 may be configured to perform communication wirelessly or may be configured to perform power line communication via the cable 400. Therefore, data or a control command can be transmitted from the vehicle 100 to the HEMS 900. Conversely, data or control commands can be transmitted from the HEMS 900 to the vehicle 100.
  • the display unit 915 is provided in the charging / discharging connector 910 and can visually display information related to charging / discharging of the HEMS 900 in accordance with an instruction from the controller 990. In addition, by configuring the display unit 915 with a touch panel, it is possible to accept an instruction input from the user.
  • an AC voltage from the vehicle 100 is input to the charge / discharge connector 910 via the cable 400.
  • AC / DC converter 930 converts the AC voltage transmitted to power line ACL2 via charge / discharge connector 910 into a DC voltage for charging power storage device 940, and outputs it to power line PL1.
  • bidirectional PCS 945 converts the DC power of power line PL1 into AC power linked with commercial system power supply 800 and outputs it to power line ACL3.
  • the AC voltage input to the charge / discharge connector 910 is once converted into a DC voltage for charging the power storage device 940. Further, this DC power is supplied from the distribution board 950 to the load 1000 through power conversion by the bidirectional PCS 945.
  • the power supply mode of the vehicle 100 it is possible to supply power from a power source different from that of the vehicle 100 from the distribution board 950 to the load 1000.
  • the power supply mode at least part of the power consumption of the load 1000 can be covered by the discharge power of the power storage device 110 of the vehicle 100.
  • the controller 990 determines the energy efficiency and cost of the entire HEMS 900 based on the power consumed by the load 1000, the power generated by the solar battery 970, the amount of power purchased from the commercial power supply 800, the charge for each time zone, and the like.
  • the power distribution among the power sources is controlled comprehensively.
  • the controller 990 requests the vehicle 100 to supply power from the power storage device 110.
  • HEMS900 controller 990
  • HEMS300 discharge request to vehicle 100 (ECU300).
  • a voltage sensor 904 and a current sensor 906 are provided on the power line ACL2.
  • Voltage sensor 904 measures an effective value (hereinafter also simply referred to as input voltage VL) of AC voltage VL input from vehicle 100 to charge / discharge connector 910.
  • current sensor 906 detects an effective value (hereinafter also simply referred to as input current IL) of alternating current IL input from vehicle 100 to charge / discharge connector 910.
  • the HEMS 900 performs AC conversion in a direction opposite to that in the power feeding mode, thereby generating an AC voltage using power from another power source represented by the commercial power supply 800 as a source. Can be output to the charge / discharge connector 910. Thereby, in the charging mode, an AC voltage can be supplied to the inlet 220 of the vehicle 100 via the cable 400.
  • a power path (not shown) can be selectively formed between the commercial power supply 800 and the charge / discharge connector 910. Even in this case, the charging mode of the vehicle 100 can be supported by connecting the plug 420 of the cable 400 to the charging / discharging connector 910 of the HEMS 900.
  • the communication units 310 and 920 are configured to be able to exchange information bidirectionally even between the vehicle 100 and the HEMS 900, for example, with a mobile information terminal 1100 such as a smartphone. Therefore, in the power supply system according to the present embodiment, an instruction from the user can be input not only by input elements such as a touch panel provided in vehicle 100 and / or HEMS 900 but also by portable information terminal 1100.
  • the vehicle 100 and the power equipment 900 are in a state where power can be exchanged by charging and discharging the power storage device 110 by connecting the cable 400.
  • the charging mode is selected in this state, external charging of the power storage device 110 is executed by a manual operation (switch-on operation) by the user or automatic processing according to a charging instruction input by the user.
  • information can be exchanged between the vehicle 100 and the HEMS 900 by the communication units 310 and 920, so instructions regarding charging and discharging of the power storage device 110 can be given to either the vehicle 100 or the HEMS 900. It is good also as an aspect which inputs.
  • an instruction from the user can be input to an input element provided in the connector 410.
  • the power storage device 110 When the start of external charging is instructed by the user, the power storage device 110 is charged up to a predetermined SOC (for example, a full charge level or an SOC level according to a charge amount specified by the user), whereby the charge mode is ended. Is done.
  • a predetermined SOC for example, a full charge level or an SOC level according to a charge amount specified by the user
  • timer charging As an aspect of external charging by automatic processing, it is also possible to execute so-called timer charging in which the user designates the charging end time. For example, when the user designates the charging end time corresponding to the time at which driving of vehicle 100 is started, power storage device 110 is charged according to the charging schedule calculated backward from the required charge amount. Thereby, the charging of power storage device 110 can be completed at the designated charging end time.
  • the charge schedule may reflect a power charge for each time period.
  • the power storage device 110 Even after the end of the charging mode of the vehicle 100, if the state in which power can be transferred between the vehicle 100 and the power equipment 900 is maintained by charging / discharging of the power storage device 110 due to the connection of the cable 400, the power storage device 110.
  • the discharge mode for supplying power to the power equipment 900 can be executed using the power stored in the power supply 900.
  • the discharge mode is allowed unconditionally after the end of the charge mode, the SOC at the start of operation of the vehicle 100 may decrease, and it may not be possible to secure a travel distance by electric power.
  • the execution of the discharge mode is completely prohibited, the degree of utilization of power in the power supply system is reduced, and deterioration may occur due to being left for a long time in a high SOC state.
  • FIG. 2 is a flowchart for explaining a first example of discharge control of the in-vehicle power storage device in the power supply system according to the embodiment of the present invention.
  • FIG. 2 shows an example in which the discharge is controlled by ECU 300 of vehicle 100. The control process shown in FIG. 2 is executed at a predetermined cycle when the discharge mode is not started when the vehicle is not traveling.
  • ECU 300 determines whether or not cable 400 is connected in step S ⁇ b> 100, that is, whether or not electric power can be transferred between vehicle 100 and power facility 900 by charging / discharging power storage device 110. Determine if.
  • the determination in step S100 can be executed based on an electrical signal transmitted from connector 410. In this case, when the fitting portion of the connector 410 and the inlet 220 are normally fitted, the electric signal is output to the vehicle 100 from the circuit built in the connector 410. can do.
  • step S100 can be executed based on the output of the link mechanism.
  • ECU 300 proceeds to step S200 and does not start discharging from power storage device 110 when connection of cable 400 is not normal (NO in S100).
  • step S110 determines whether power storage device 110 has been charged.
  • step S110 a NO determination is made regardless of the SOC of power storage device 110 during execution of the charging mode.
  • step S110 is executed according to the SOC of the power storage device 110. For example, if power storage device 110 is charged to a predetermined level (for example, full charge level) in the charging mode by comparing the current SOC with the determination threshold, step S110 is determined as YES.
  • the SOC determination threshold is set such that step S110 is determined to be YES in a high SOC region that causes deterioration of power storage device 110 even when the SOC is lower than the full charge level. Therefore, according to the temperature characteristics of power storage device 110, the determination condition in step S ⁇ b> 110 may be variable so that the SOC determination threshold is lowered in a high temperature state.
  • ECU 300 proceeds to step S200 when the power storage device is not charged (NO in S110), and does not start discharging power storage device 110.
  • ECU 300 when the power storage device is charged (YES in S110), proceeds to step S120 and confirms whether there is a discharge request from HEMS 900.
  • HEMS 900 does not generate a discharge request (when NO is determined in S120)
  • ECU 300 advances the process to step S200 and does not start discharging power storage device 110.
  • ECU 300 when HEMS 900 is generating a discharge request (when YES is determined in S120), proceeds to step S130 to determine whether the current time is within the discharge restriction period.
  • ECU 300 is not within the discharge restriction period (NO in S130)
  • ECU 300 advances the process to step S210 and permits discharging of power storage device 110. Thereby, normal discharge control is started.
  • the ECU 300 controls the power storage device 110 within the power range according to the state (SOC, temperature, etc.) of the power storage device 110 and / or the capability of the power conversion device 200, and the power storage device 110 outputs power. To do.
  • step S220 to restrict the discharge from power storage device 110.
  • the discharge restriction period typically, by stopping the power conversion device 200, the discharge from the power storage device 110 is prohibited to restrict the discharge. Or you may restrict
  • discharge limitation in the present embodiment is a concept including both prohibition of discharge and reduction of discharge power.
  • the discharge limitation as in step S220 is not executed. That is, it is understood that the discharge restriction is released.
  • the reduction of the discharge power directly controls the output power (current) of the power conversion device 200, and as a result, the discharge power of the power storage device 110 is reduced more than usual (when non-discharge is limited) by the power distribution control in the HEMS 900. It is also possible to do so.
  • the controller 990 causes the ratio of the power supplied from a power source different from the vehicle 100 in the power supplied from the distribution board 950 to the load 1000 to be higher than normal (when no discharge is limited). Then, power distribution control is executed.
  • step S210 normal discharge permission
  • S220 discharge permission with reduced discharge power
  • charging of power storage device 110 ends at time t1.
  • time ta to tb is set as the discharge restriction period in correspondence with the period during which the user may use vehicle 100.
  • the discharge limit period can be set by the user inputting the start time ta and the end time tb.
  • the ECU 300 or the controller 990 predicts a period during which the user may use the vehicle 100 based on a history of use of the vehicle 100 by the user, for example, a past history of the operation start time of the vehicle 100.
  • the times ta and tb may be set automatically.
  • the discharge restriction period instead of setting the start time and end time of the discharge restriction period, it is possible to set the discharge restriction period from the end of charging until the predetermined period T ⁇ elapses.
  • the length (T ⁇ ) of the discharge restriction period is set based on the user input or the vehicle use history so far.
  • the discharge of power storage device 110 is limited by step S220 (FIG. 2) from time t1 to time t2 when T ⁇ elapses, starting from the end of charging (time t1).
  • the charging end time t1 designated by the user is determined according to the time when the user starts driving the vehicle 100. Therefore, as shown in FIG. 4, by setting the period until the predetermined period from the charging end time as the discharge restriction period, the degree of correspondence between the period during which the user may use the vehicle 100 and the discharge restriction period Can be increased.
  • the discharge restriction in step S220 is canceled in the period after time tb (FIG. 3) and after time t2 (FIG. 4) when the discharge restriction period ends. That is, discharging of power storage device 110 is permitted in step S210 (FIG. 2).
  • the vehicle 100 can be fully utilized as a power supply source.
  • power storage device 110 can be prevented from being left in a high SOC state for a long period of time.
  • the “discharge limit period” corresponds to the “first period”
  • the period in which the discharge limit is released after the end of the discharge limit period corresponds to the “second period”.
  • FIG. 3 and 4 show an example in which the discharge restriction period starts from the charge end time t1, but as shown in FIG. 5, the period in which the discharge restriction is released after the charging of the power storage device 110 is completed.
  • a discharge restriction period may be provided so that there is.
  • the recharging of the power storage device 110 can be performed at regular time intervals or in consideration of the power charge for each time zone. By recharging, it is possible to improve the SOC securing property when the user starts driving the vehicle 100. Furthermore, after the end of recharging, by allowing discharge of power storage device 110, it is possible to prevent deterioration of power storage device 110 due to the continued high SOC state and to ensure the degree of utilization of the stored power of power storage device 110. In addition, even after the end of recharging, if a discharge restriction period is provided in the same manner as in FIGS. 3 to 5, the SOC securing capability at the start of operation of vehicle 100 can be further enhanced. Note that whether or not the power storage device 110 needs to be recharged may be confirmed by the user, and the discharge of the power storage device may be controlled so that recharging is executed only when the user requests.
  • control process for controlling the discharge of the in-vehicle power storage device 110 by the vehicle 100 side (ECU 330) is shown, but an equivalent control process can also be performed by controlling the generation of a discharge request by the HEMS 900 side (controller 990). Can be realized.
  • FIG. 6 is a flowchart for explaining a second example of the discharge control of the in-vehicle power storage device in the power supply system according to the embodiment of the present invention.
  • FIG. 6 shows an example in which the discharge is controlled by the controller 990 of the HEMS 900.
  • the control process shown in FIG. 6 is executed at a predetermined cycle when the discharge mode is not started when the vehicle is not running, as in FIG.
  • controller 990 determines whether or not cable 400 is connected in step S100 # similar to step S100 in FIG. Thereby, it is determined whether or not electric power can be exchanged between vehicle 100 and power equipment 900 by charging / discharging power storage device 110.
  • controller 990 determines in step S110 # whether power storage device 110 of vehicle 100 has been charged.
  • the determination in step S110 # can be executed in the same manner as in step S110 in FIG. 2 based on information exchanged between controller 990 and ECU 300 via communication units 310 and 920.
  • controller 990 advances the process to step S200 # and does not generate a discharge request to in-vehicle power storage device 110.
  • controller 990 advances the process to step S120 # when both steps S100 # and 110 # are YES.
  • step S120 # controller 990 determines whether or not discharge from in-vehicle power storage device 110 is required according to the power distribution control in HEMS 900 described above. When discharge from in-vehicle power storage device 110 is not required (when NO is determined in S120 #), controller 990 does not generate a discharge request to in-vehicle power storage device 110 in step S200 #.
  • controller 990 determines whether or not the current time is within the discharge restriction period by step S130 similar to FIG. .
  • the discharge restriction period is set in the same manner as described with reference to FIGS.
  • controller 990 advances the process to step S220 # and restricts the discharge request to power storage device 110.
  • step S220 # a discharge request is generated so as to inhibit discharge from power storage device 110 or reduce discharge power as compared with the discharge request in step S210 #. In the case where the discharge from power storage device 110 is prohibited, a discharge request to vehicle-mounted power storage device 110 should not be generated as in step S200 #.
  • controller 990 advances the process to step S210 # and permits generation of a discharge request to power storage device 110.
  • this discharge request is transmitted to vehicle 100, the discharge from power storage device 110 to HEMS 900 is controlled in accordance with the normal discharge control similar to step S210 in FIG. That is, in the discharge request at step S210 #, the restriction on the discharge request at step S220 # is released.
  • the discharge from the in-vehicle power storage device 110 in the power supply system can also be controlled by the control process by the controller 990 as in the case of FIG. 2.
  • a certain discharge restriction period is set corresponding to a period during which the user may use vehicle 100.
  • discharge from the power storage device 110 for which the discharge restriction has been released can be permitted.
  • a discharge limitation period corresponding to a period in which the user may use the vehicle 100 is easily determined. Can do.
  • the high SOC state of the power storage device 110 continues for a long period of time by not restricting the discharge excessively, and the in-vehicle power storage device 110 It is possible to prevent the degree of utilization of the stored power from decreasing.
  • the improvement in the utilization of the vehicle 100 as a power supply source, and the securing of the SOC at the start of operation of the vehicle 100 Charging / discharging of the in-vehicle power storage device 110 with respect to the outside of the vehicle (HEMS 900) can be appropriately controlled.
  • the energy efficiency or energy cost of the entire power supply system can be improved.
  • the SOC securing performance at the start of vehicle operation can be improved by recharging the power storage device 110 with the external power supply (HEMS 900). .
  • discharge power 0
  • the discharge limitation by limiting the amount of electric power that can be discharged will be described.
  • FIG. 7 is a conceptual diagram illustrating an example of discharge restriction according to the first modification of the present embodiment.
  • SOC of power storage device 110 Sm.
  • the SOC allowable lower limit value in the discharge mode is set to S2. That is, discharging of power storage device 110 is permitted until the SOC decreases from Sm to S2.
  • the SOC allowable lower limit value in the discharge mode is set to S1 (S1> S2). That is, discharging of power storage device 110 is permitted until the SOC decreases from Sm to S1.
  • the amount of electric power corresponding to (Sm ⁇ S2) can be discharged from the power storage device 110 when discharging is permitted, while the amount of electric power that can be discharged is reduced when discharging is limited. That is, in the first modification, the SOC when the user starts driving the vehicle 100 can be secured to S1 or more within the discharge restriction period. Further, since the amount of power corresponding to (Sm ⁇ S1) can be supplied to the HEMS 900, the degree of utilization of the stored power of the power storage device can be ensured to some extent.
  • S1 can be appropriately set according to the driving history of the vehicle 100 by the user. During a certain operation period of the vehicle 100 (i.e., when the ignition switch is turned on or off, or when external charging is performed to the next execution), the travel distance using power is short, and the power consumption of the power storage device 110 is small. Sometimes S1 can be set relatively low. On the other hand, when the amount of power used by power storage device 110 during a certain operation period is large, S1 is preferably set higher.
  • the SOC allowable lower limit in the discharge restriction period is set such that the higher the power usage amount, the higher the S1 in accordance with the parameter indicating the information on the power usage amount of the power storage device 110 in the fixed operation period.
  • the value S1 can be set.
  • the parameter may indicate a power usage amount (SOC change amount) of the power storage device 110 or may indicate a travel distance by power.
  • Modification 1 of the present embodiment even when the SOC of power storage device 110 is reduced to some extent due to discharge after external charging, such as when the capacity of power storage device 110 is large, operation of vehicle 100 is started. In this case, it is possible to realize a discharge restriction corresponding to a case where a sufficient amount of power can be secured.
  • the discharge power of power storage device 110 during the discharge restriction period is equivalent to the discharge power during normal discharge control (steps S210 and S210 #). It may be set.
  • Modification 2 In the second modification of the present embodiment, a control process for confirming with the user whether or not the in-vehicle power storage device 110 can discharge within the discharge restriction period will be described.
  • FIG. 9 is a flowchart for explaining a first example of the discharge control of the in-vehicle power storage device according to the second modification of the present embodiment.
  • FIG. 9 shows an example in which the discharge is controlled by ECU 300 of vehicle 100, as in FIG.
  • the control process shown in FIG. 9 is executed at a predetermined cycle when the discharge mode is not started when the vehicle is not running, as in FIG.
  • FIG. 9 is compared with FIG. 2, and in the control process of the ECU 300 according to the second modification, steps S100 to S130 similar to those in FIG. 2 are executed. Since the processing in steps S100 to S130 is the same as that in FIG. 2, detailed description will not be repeated. That is, when YES is determined in step S130 (within the discharge restriction period), discharging of power storage device 110 is restricted by step S220 similar to FIG.
  • ECU 300 executes the processes of steps S140 and S150 when the determination in step S130 is NO (outside the discharge restriction period).
  • step S140 ECU 300 confirms whether or not to allow the user to discharge from power storage device 110. Specifically, a confirmation message is displayed on the display unit of vehicle 100, HEMS 900, or portable information terminal 1100, and the user is requested to input a confirmation result.
  • step S150 ECU 300 controls the discharge of power storage device 110 according to the confirmation result input by the user in step S140.
  • ECU 300 proceeds to step S220 to limit the discharge of power storage device 110.
  • step S140 a control process for requesting the user to specify the contents of restriction (discharge inhibition, discharge power reduction, or usable SOC range reduction) may be used.
  • ECU 300 proceeds to step S210 similar to that in FIG. Allow discharge.
  • the control process for automatically restricting the discharge from the power storage device 110 and allowing the discharge from the power storage device 110 after confirming the user's intention even outside the discharge restriction period is realized.
  • FIG. 10 is a flowchart for explaining a second example of the control operation in the discharge mode of the in-vehicle power storage device according to the second modification of the present embodiment.
  • FIG. 10 shows an example in which the discharge is controlled by the controller 990 of the HEMS 900, as in FIG.
  • the control process shown in FIG. 10 is executed at a predetermined cycle when the discharge mode is not started at both non-running times.
  • controller 990 performs the NO determination (discharge) after steps S100 # to S120 #, S130 similar to FIG. outside the limit period, the same processes of steps S140 and S150 as in FIG. 9 are executed. Since the processes in steps S100 # to S120 # and S130 are the same as those in FIG. 6, detailed description will not be repeated.
  • step S140 the controller 990 confirms with the user whether or not discharge from the power storage device 110 is permitted.
  • step S150 the controller 990 discharges the power storage device 110 in accordance with the user confirmation result in step S140. To control.
  • ECU 300 When the user permits discharge outside the discharge restriction period (when YES is determined in S150), ECU 300 performs a discharge request to power storage device 110 for which the discharge restriction has been released in step S210 # similar to FIG. Allow the occurrence of
  • ECU 300 performs a discharge request to power storage device 110 through step S220 # similar to FIG. Limit.
  • the discharge from the in-vehicle power storage device 110 in the power supply system can also be controlled by the control process by the controller 990 as in the case of FIG.
  • the second modification of the present embodiment it is possible to prevent discharge of the power storage device 110 from being permitted against the user's intention.
  • the discharge restriction according to the second modification when the discharge from the power storage device 110 is permitted in step S140, the user is also asked to confirm whether or not the power storage device 110 needs to be recharged after the discharge. It is preferable. If it does in this way, also about recharging of the electrical storage apparatus 110, it will become possible to perform according to a user's intention.
  • FIG. 9 and FIG. 10 show the control process in which the user confirmation of whether discharge is possible in steps S140 and S150 is executed outside the discharge restriction period (NO determination in S130).
  • S150 may be executed within the discharge restriction period (when YES is determined in S130).
  • the electric power of power storage device 110 can be actively utilized based on user confirmation when vehicle 100 is not scheduled to be used.
  • the plug-in type hybrid vehicle is exemplified as the vehicle to which the present invention is applied.
  • the configuration of the vehicle transfers power to and from the outside of the vehicle by charging and discharging of the in-vehicle power storage device.
  • the power supply mode control according to the present embodiment can also be applied to series hybrid vehicles, electric vehicles, fuel cell vehicles, and the like.
  • the power equipment 900 that exchanges power with the vehicle is not limited to the examples in the embodiment, and any power equipment can be applied.
  • power supply control according to the present embodiment can be applied to charge / discharge between vehicles with respect to an in-vehicle power storage device of another vehicle.
  • the configuration in which the vehicle 100 and the power equipment (HEMS) 900 are electrically connected by the cable 400 is illustrated.
  • the vehicle 100 and the power equipment 900 are electromagnetic without contact.
  • a configuration in which power is input and output by magnetic coupling between the coils or a resonance phenomenon can be used instead of the cable 400.
  • the coils provided in the vehicle 100 and the power equipment 900 correspond to “power nodes”.
  • the present invention relates to an electric vehicle having a configuration for transferring electric power to and from the outside of the vehicle by charging and discharging an in-vehicle power storage device, an electric power facility for transferring electric power to and from the electric vehicle, and the electric vehicle and electric power.
  • the present invention can be applied to a power supply system having equipment.
  • HEMS power equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 蓄電装置(110)およびインレット(220)を有する車両(100)は、ケーブル(400)によって電力設備(900)と接続されることによって、蓄電装置(100)の充放電によって電力設備(900)との間で電力を授受可能な状態となる。制御装置(300,990)は、蓄電装置(110)が電力設備(900)からの電力によって充電された後、車両(100)および電力設備(900)がケーブル(400)によって接続されている場合には、蓄電装置(100)から電力設備(900)への放電を制限する放電制限期間を設けるとともに、少なくとも放電制限期間の終了後に、放電制限期間による放電制限が解除された放電許可期間を設けるように、蓄電装置(100)の放電を制御する。

Description

電動車両、電力設備および電力供給システム
 この発明は、電動車両、電力設備およびこれらを備える電力供給システムに関し、より特定的には、車載蓄電装置から放電された電力を電動車両の外部へ供給するための技術に関する。
 電動機によって車両駆動力を発生するように構成された、電気自動車、ハイブリッド自動車および燃料電池自動車等の電動車両では、当該電動機を駆動するための電力を蓄積する蓄電装置が搭載されている。電動車両において、このような車載蓄電装置を商用系統電源などの車両外部の電源(以下、単に「外部電源」とも称する)によって充電される、いわゆるプラグインタイプのものが開発されている。
 特開2010-148283号公報(特許文献1)には、外部電源によって充電可能な電気自動車用蓄電池の充電終了後における蓄電池の蓄電量の制御が記載される。具体的には、蓄電池の温度が所定値を超える高温状態になるときには、蓄電池から所定の電力を所定の電力施設に放電することによって、蓄電池の高温状態での性能劣化を緩和することが記載されている。
 また、特開2010-268602号公報(特許文献2)には、表示した充放電制御メニュー(図5)から「充電」または「放電」が選択された場合の充放電制御において、ユーザによって入力された充放電の制約条件に従って、蓄電池の充放電スケジュールを作成することが記載されている。具体的には、売電および買電の料金情報と、ユーザによって入力された充放電の制約条件と、蓄電池の情報とに基づいて作成された充放電のスケジュールに基づいて、蓄電池を充放電することが記載されている。
特開2010-148283号公報 特開2010-268602号公報
 車両外部との間で電力を授受可能な電動車両については、スマートグリッドなどに見られるように、車両を電力供給源として考えて、車載蓄電装置の放電によって車両外部に給電するシステムの検討が進んでいる。たとえば、負荷電力消費のピーク時間に、電動車両から車両外部に電力を供給することによって商用系統電源のピークを抑えると、省エネルギ効果を高められる。
 しかしながら、車載蓄電装置の外部充電終了後に、このような車両外部への給電を無制限に許可すると、ユーザが電動車両の運転を開始する際に、蓄電装置のSOC(State of Charge)が低下することにより、蓄電装置の蓄積電力による走行距離を十分に確保できなくなる虞がある。
 その一方で、車載蓄電装置から車両外部への放電を過度に禁止すると、電力供給源としての車両活用度が低下することによって、ユーザの利便性が低下する虞がある。あるいは、特許文献1に記載されるように、高SOC状態の継続によって、蓄電装置の劣化が進行する虞がある。
 特許文献2には、放電制御および放電制御の各々について、コストメリット等を考慮した最適な充放電スケジュールを決定することが示される。しかしながら、蓄電装置の充電および放電を一体的に捉えて、車載蓄電装置の外部充電終了後に充放電がどのように制御されるべきかについて、特許文献2は、教示ないし示唆を与えるものではない。
 この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、車両外部との間で電力を授受可能に構成された電動車両において、車両外部に対する車載蓄電装置の充放電を適切に制御することである。
 この発明のある局面では、電動車両は、車載された蓄電装置と、車両外部との間で電力を授受するための電力ノードと、車両外部との間で電力ノードを経由して蓄電装置を充放電可能な状態において、車両外部との間の蓄電装置の充放電を制御するための制御装置とを含む。制御装置は、蓄電装置を車両外部の電源によって外部充電した後、蓄電装置から車両外部への放電を制限する第1の期間を設けるとともに、少なくとも第1の期間の終了後に、第1の期間における放電制限が解除された第2の期間を設けるように、蓄電装置からの放電を制御する。
 好ましくは、電動車両において、制御装置は、蓄電装置の外部充電の終了から所定期間が経過するまでの間を第1の期間に設定し、所定期間の経過後を第2の期間に設定する。
 また好ましくは、電動車両において、制御装置は、ユーザから指定された充電終了時刻に従って外部充電を制御するとともに、充電終了時刻から所定期間が経過するまでの間を第1の期間に設定し、所定期間の経過後を第2の期間に設定する。
 あるいは好ましくは、電動車両において、制御装置は、車両外部の負荷からの放電要求に応じて、蓄電装置から車両外部への放電を実行する。さらに好ましくは、制御装置は、第2の期間において放電要求があった場合には、蓄電装置からの放電の可否をユーザに確認する。
 また好ましくは、電動車両において、制御装置は、第2の期間における蓄電装置からの放電の終了後における、蓄電装置の再度の外部充電の要否をユーザに対して確認する。
 好ましくは、電動車両において、制御装置は、第1の期間において、蓄電装置のSOCが第1の値に低下するまで蓄電装置の放電を許可する一方で、第2の期間では、SOCが第2の値に低下するまで蓄電装置の放電を許可し、第1の値は、第2の値よりも高い。さらに好ましくは、第2の値は、電動車両の一定の運転期間における蓄電装置の電力使用量を示す情報の履歴に基づいて設定される。
 また好ましくは、電動車両において、制御装置は、第1の期間において、蓄電装置の放電を禁止する。
 この発明の他のある局面では、蓄電装置を搭載した電動車両との間で電力を授受可能に構成された電力設備であって、電力設備は、電動車両との間で電力を授受するための電力ノードと、蓄電装置の充放電によって、電力設備および電動車両との間で電力ノードを経由した電力の授受が可能な状態において、電力設備に対する蓄電装置の充放電を制御するための制御装置とを含む。制御装置は、蓄電装置が外部充電された後、蓄電装置から電力設備への放電を制限する第1の期間を設けるとともに、少なくとも前記第1の期間の終了後に、前記第1の期間における放電制限が解除された第2の期間を設けるように蓄電装置から電力設備への放電を制御する。
 好ましくは、電力設備において、制御装置は、蓄電装置の外部充電の終了から所定期間が経過するまでの間を第1の期間に設定し、所定期間の経過後を第2の期間に設定する。
 また好ましくは、電力設備において、制御装置は、ユーザから指定された充電終了時刻に従って外部充電を制御するとともに、充電終了時刻から所定期間が経過するまでの間を第1の期間に設定し、所定期間の経過後を第2の期間に設定する。
 あるいは好ましくは、電力設備において、制御装置は、第2の期間において蓄電装置に対して放電を要求する場合には、蓄電装置からの放電の可否をユーザに確認する。さらに好ましくは、制御装置は、第2の期間における蓄電装置からの放電の終了後における、蓄電装置の再度の外部充電の要否をユーザに対して確認する。
 また好ましくは、電力設備において、制御装置は、第1の期間において、蓄電装置のSOCが第1の値に低下するまで蓄電装置の放電を許可する一方で、第2の期間では、SOCが第2の値に低下するまで蓄電装置の放電を許可し、第1の値は、第2の値よりも高い。さらに好ましくは、第2の値は、電動車両の一定の運転期間における蓄電装置の電力使用量を示す情報の履歴に基づいて設定される。
 好ましくは、電力設備において、制御装置は、第1の期間において、蓄電装置の放電を禁止する。
 この発明のさらに他のある局面では、電力供給システムは、蓄電装置を搭載した電動車両と、電動車両との間で電力を授受可能に構成された電力設備と、蓄電装置の充放電によって、電力設備および電動車両との間で電力の授受が可能な状態において、蓄電装置の充放電を制御するための制御装置とを含む。制御装置は、蓄電装置が電力設備からの電力によって外部充電された後、蓄電装置から電力設備への放電を制限する第1の期間を設けるとともに、少なくとも第1の期間の終了後に、第1の期間における放電制限が解除された第2の期間を設けるように蓄電装置から電力設備への放電を制御する。
 好ましくは、電力供給システムにおいて、制御装置は、蓄電装置の外部充電の終了から所定期間が経過するまでの間を第1の期間に設定し、所定期間の経過後を第2の期間に設定する。
 また好ましくは、電力供給システムにおいて、制御装置は、ユーザから指定された充電終了時刻に従って外部充電を制御するとともに、充電終了時刻から所定期間が経過するまでの間を第1の期間に設定し、所定期間の経過後を第2の期間に設定する。
 あるいは好ましくは、電力供給システムにおいて、制御装置は、電力設備に設けられる。制御装置は、第2の期間では、蓄電装置からの放電の可否をユーザに確認するとともに、ユーザが許可したときに蓄電装置からの放電を電動車両に要求する。さらに好ましくは、制御装置は、第2の期間における蓄電装置からの放電の終了後における、蓄電装置の再度の外部充電の要否をユーザに対して確認する。
 また好ましくは、電力供給システムにおいて、制御装置は、第1の期間において、蓄電装置のSOCが第1の値に低下するまで蓄電装置の放電を許可する一方で、第2の期間では、SOCが第2の値に低下するまで蓄電装置の放電を許可し、第1の値は、第2の値よりも高い。さらに好ましくは、第2の値は、電動車両の一定の運転期間における蓄電装置の電力使用量を示す情報の履歴に基づいて設定される。
 あるいは好ましくは、電力供給システムにおいて、制御装置は、第1の期間において、蓄電装置の放電を禁止する。
 好ましくは、電力供給システムにおいて、車両および電力設備の間は、ケーブルによって電気的に接続される。
 この発明によれば、車両外部との間で電力を授受可能に構成された電動車両において、車両外部に対する車載蓄電装置の充放電を適切に制御することができる。
本発明の実施の形態に係る電力供給システムの構成例を示すための概略ブロック図である。 本発明の実施の形態に係る電力供給システムにおける車載蓄電装置の放電制御の第1の例を説明するための第1のフローチャートである。 放電制限期間の第1の設定例を説明する概念図である。 放電制限期間の第2の設定例を説明する概念図である。 放電制限期間の第3の設定例を説明する概念図である。 本発明の実施の形態に係る電力供給システムにおける車載蓄電装置の放電制御の第2の例を説明するためのフローチャートである。 本実施の形態の変形例1による放電制限の例を説明する概念図である。 放電制限期間におけるSOC許容下限値の設定を説明する概念図である。 本実施の形態の変形例2による車載蓄電装置の放電制御の第1の例を説明するためのフローチャートである。 本実施の形態の変形例2による車載蓄電装置の放電制御の第2の例を説明するためのフローチャートである。
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では、図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
 (実施の形態1)
 図1は、本発明の実施の形態に係る電力供給システムの構成例を示すための概略ブロック図である。
 図1を参照して、本実施の形態に係る電力供給システムは、車両100と、電力設備900とを含む。図1では、車両100は、ケーブル400の装着によって車両外部の電力設備900と電気的に接続されるように構成される。
 車両100は、車載蓄電装置からの電力によって走行可能な「電動車両」である。車両100には、たとえばハイブリッド自動車、電気自動車および燃料電池自動車などが含まれる。以下では、車両100として、ハイリッド自動車、特に、外部電源によって蓄電装置110を充電可能な、いわゆる、プラグインタイプのハイブリッド自動車を例示する。外部電源は、代表的には、商用系統電源800によって構成される。
 車両100は、動力出力装置105と、車載された蓄電装置110と、制御装置であるECU(Electronic Control Unit)300と、通信ユニット310とを含む。
 蓄電装置110は、再充電可能に構成された電力貯蔵要素である。蓄電装置110は、たとえば、リチウムイオン電池、ニッケル水素電池などの二次電池、あるいは電気二重層キャパシタなどの蓄電素子を含んで構成される。
 動力出力装置105は、ECU300からの駆動指令に基づいて車両100の駆動力を発生する。動力出力装置105が発生した駆動力は、車両100の駆動輪へ伝達される。なお、駆動指令は、車両100の走行中において、要求された車両駆動力あるいは車両制動力に基づいて生成される制御指令である。
 ハイブリッド自動車では、動力出力装置105は、エンジン106およびモータジェネレータ107を含む。たとえば、動力出力装置105は、エンジン106およびモータジェネレータ107の出力の一方または両方を駆動輪に対して出力するように構成される。動力出力装置105は、蓄電装置110の出力電力をモータジェネレータ107の出力トルクを制御するための電力に変換する電力変換器(図示せず)を有する。
 さらに、ハイブリッド自動車では、動力出力装置105は、エンジン106の出力によって蓄電装置110の充電電力を発生するための、図示しない発電機および電力変換器(インバータ)を有するように構成されることが一般的である。また、車両100が電気自動車である場合には、エンジン106の配置が省略されて、動力出力装置105は、モータジェネレータ107の出力によって、車両100の駆動力を発生する。
 ECU300は、CPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、蓄電装置110および車両100の各機器の制御を行なう。これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 ECU300は、車両100の各動作モードにおいて、車載機器を統合的に制御するように構成される。たとえば、車両100が走行する走行モードにおいて、ECU300は、車両100の車両状態やドライバ操作(アクセルペダルの踏込み量、シフトレバーのポジション、ブレーキペダルの踏込み量など)に応じて、車両100全体で必要な車両駆動力および車両制動力を算出する。そして、ECU300は、要求された車両駆動力または車両制動力を実現するように、動力出力装置105の駆動指令を生成する。また、ECU300は、蓄電装置110からの電圧および電流の検出値に基づいて、蓄電装置110の充電状態を演算するように構成される。
 次に、車両100と車両外部(代表的には、電力設備900)との間で電力を授受するための構成について説明する。
 車両100は、車両外部との間で電力を授受する動作モードとして、外部電源によって蓄電装置110を充電する動作モード(以下、「充電モード」と称する)および、蓄電装置110の放電電力を交流電力に変換して車両外部へ出力する「給電モード」を有する。これにより、車両100を外部電源によって外部充電するだけでなく、蓄電装置110からの電力を、車両外部の負荷に対して供給することができる。すなわち、スマートグリッドなどに見られるように、車両100を電力供給源とした電力供給システムを構成することが可能となる。
 図1に示した構成例では、車両100は、ケーブル400によって、車両外部の電力設備900と接続される。ケーブル400が車両100および電力設備900と正常に接続されることによって、車両100および電力設備900の間で電力の授受が可能な状態となる。
 ケーブル400は、コネクタ410およびプラグ420に加えて、コネクタ410およびプラグ420を接続する電力線440を含む。
 コネクタ410には、操作部415および切換スイッチ417が設けられる。操作部415は、コネクタ410をインレット220から取り外す際にユーザによって操作される。具体的には、ユーザが操作部415を押下することによって、コネクタ410の嵌合部(図示せず)とインレット220との嵌合状態が解除される。
 切換スイッチ417は、給電モードまたは充電モードを強制的に選択するためのスイッチである。ユーザは、切換スイッチ417の操作により、給電モードおよび充電モードの一方のモードを選択するととともに、他方のモードが自動的に実行されるのを回避することができる。一方で、切換スイッチ417が非操作の場合には、給電モードおよび充電モードが自動的に選択され得る。すなわち、ケーブル400の接続によって車両100および電力設備900の間で電力の授受が可能な状態であれば、車両側(ECU300)またはHEMS側(コントローラ990)からの要求によって、充電モードおよび放電モードを自動的に開始することが可能である。以下の説明で明らかになるように、本実施の形態は、基本的には、切換スイッチ417が非操作の場合における車載蓄電装置の充放電制御に向けられている。
 車両100は、充電モードおよび給電モードのための構成として、電力変換装置200、インレット220、および電力線ACL1を含む。インレット220は、車両外部との間で電力を授受するための「電力ノード」に対応する。電力変換装置200は、蓄電装置110の直流電圧および電力線ACL1の交流電圧の間で、双方向の電力変換を実行するように構成される。
 通信ユニット310は、車両100の外部、少なくとも電力設備900との間で、情報を送受信可能に構成されている。通信ユニット310は、無線によって通信を行なうように構成されてもよく、ケーブル400を介した電力線通信を行なうように構成されてもよい。
 車両100の充電モードでは、電力変換装置200は、ケーブル400およびインレット220を経由して電力線ACL1へ供給された交流電圧を、蓄電装置110を充電するための直流電圧に変換するように動作する。これにより、外部電源からの電力によって、車載された蓄電装置110を充電することができる。
 一方で、車両100の給電モードでは、電力変換装置200は、蓄電装置110の放電による直流電圧を、交流電圧に変換して電力線ACL1に出力するように動作する。この交流電圧は、インレット220およびケーブル400を経由して、車両外部の負荷(電力設備900)へ供給される。
 電力線ACL1には、電圧センサ302および電流センサ304が配置される。電圧センサ302は、電力変換装置200が入出力する交流電圧Vacの実効値を検出する。同様に、電流センサ304は、電力変換装置200が入出力する交流電流Iacの実効値を検出する。
 このように、図1の構成例では、充電モードおよび給電モードの間で、電力変換装置200が共用される。あるいは、図1の構成例とは異なり、充電モード用の電力変換装置と給電モード用の電力変換装置とを別個に設ける構成も可能である。この場合には、給電モード用の電力変換装置200は、直流電力から交流電力への電力変換を実行する。さらに、電力変換装置200と並列に、交流電力から直流電力への電力変換を実行するための別個の電力変換装置(図示せず)が、蓄電装置110およびインレット220の間に設けられる。
 次に、電力設備900の構成を説明する。
 電力設備900は、代表的には、HEMS(Home Energy Management System)等のエネルギ管理システムによって構成される。したがって、以下では、電力設備900を、HEMS900とも称する。
 HEMS900は、充放電コネクタ910と、表示部915と、通信ユニット920と、AC/DC変換器930と、蓄電装置940と、双方向PCS(Power Conditioning Subsystem)945と、分電盤950と、コントローラ990とを有する。
 分電盤950からは図示しないコンセントに対して電力が供給されており、当該コンセントに接続されることによって、負荷1000は、分電盤950から交流電力を受けて動作することができる。代表的には、負荷1000は、家庭で使用される電気機器に相当する。
 充放電コネクタ910は、ケーブル400のプラグ420と接続されることによって、車両100のインレット220と電気的に接続される。充放電コネクタ910およびAC/DC変換器930は、電力線ACL2によって接続される。
 AC/DC変換器930は、交流電圧が伝達される電力線ACL2と、直流電圧が伝達される電力線PL1との間で、双方向のAC/DC変換を実行する。電力線PL1には蓄電装置940が接続される。
 双方向PCS945は、電力線PL1と、交流電力が伝達される電力線ACL3との間に接続される。双方向PCS945は、電力線PL1の直流電力を、商用系統電源800と連携した交流電力に変換して電力線ACL3に出力する電力変換と、電力線ACL3上の交流電力を、蓄電装置940を充電するための直流電力に変換して電力線PL1に出力する電力変換とを双方向に実行することが可能である。双方向PCS945および分電盤950は、電力線ACL3を介して電気的に接続される。
 分電盤950は、さらに、電力線ACL4を経由して商用系統電源800と接続される。図1の構成例では、分電盤950に対して、太陽電池970およびPCS975が、電力線ACL5を介してさらに接続されてもよい。PCS975は、太陽電池970が発電した直流電力を、商用系統電源800による交流電力と連携した交流電力に変換して電力線ACL5へ出力する。
 あるいは、太陽電池970に代えて、または太陽電池970に加えて、燃料電池等を電力源として設けてもよい。このように、車両100とは異なる電力源については、商用系統電源800を始め、任意の電力源を配置することが可能である。
 コントローラ990は、HEMS900内の各種機器を統合的に制御する。通信ユニット920は、少なくとも車両100の通信ユニット310との間で、情報を送受信可能に構成されている。通信ユニット920は、無線によって通信を行なうように構成されてもよく、ケーブル400を介した電力線通信を行なうように構成されてもよい。したがって、車両100からHEMS900に対してデータあるいは制御指令等を伝送することができる。反対に、HEMS900から車両100に対しても、データあるいは制御指令等を伝送することができる。
 表示部915は、充放電コネクタ910に設けられ、コントローラ990からの指示に従って、HEMS900の充放電に係る情報を視覚的に表示することができる。また、表示部915をタッチパネルで構成することによって、ユーザからの指示入力を受け付けることも可能である。
 車両100の給電モードでは、ケーブル400を介して充放電コネクタ910に、車両100からの交流電圧が入力される。AC/DC変換器930は、充放電コネクタ910を経由して電力線ACL2に伝達された交流電圧を、蓄電装置940を充電するための直流電圧に変換して電力線PL1へ出力する。双方向PCS945は、車両100の給電モードでは、電力線PL1の直流電力を、商用系統電源800と連携した交流電力に変換して電力線ACL3に出力する。
 このように、車両100の給電モードにおいて、充放電コネクタ910へ入力された交流電圧は、蓄電装置940を充電するための直流電圧に一旦変換される。さらに、この直流電力は、双方向PCS945による電力変換を経て、分電盤950から負荷1000へ供給される。
 さらに、車両100の給電モードでは、車両100とは異なる電力源からの電力を、分電盤950から負荷1000へ供給することも可能である。給電モードでは、負荷1000の消費電力の少なくとも一部を、車両100の蓄電装置110の放電電力によって賄うことができる。
 したがって、コントローラ990は、負荷1000による消費電力、太陽電池970の発電電力、および、商用系統電源800からの買電電力量あるいは時間帯毎の料金等に基づいて、HEMS900全体でのエネルギ効率やコストを総合的に考慮して、各電源間での電力配分を制御する。コントローラ990は、この電力配分制御の一環として、車両100に対して、蓄電装置110の電力による給電を要求する。これにより、HEMS900(コントローラ990)は、車両100(ECU300)に対して、放電要求を発生する。
 電力線ACL2には、電圧センサ904および電流センサ906が設けられている。電圧センサ904は、車両100から充放電コネクタ910へ入力された交流電圧VLの実効値(以下、単に、入力電圧VLとも称する)を測定する。同様に、電流センサ906は、車両100から充放電コネクタ910へ入力された交流電流ILの実効値(以下、単に、入力電流ILとも称する)を検出する。
 一方で、HEMS900は、車両100の充電モードでは、給電モードとは逆方向の電力変換を実行することによって、商用系統電源800に代表される他の電力源からの電力を源とする交流電圧を、充放電コネクタ910へ出力することができる。これにより、充電モードにおいて、交流電圧をケーブル400を経由して、車両100のインレット220へ供給することができる。
 あるいは、図示は省略するが、商用系統電源800および充放電コネクタ910の間に電力経路(図示せず)を選択的に形成できるように構成することも可能である。このようにしても、ケーブル400のプラグ420をHEMS900の充放電コネクタ910に接続することによって、車両100の充電モードに対応することが可能となる。
 通信ユニット310および920は、車両100およびHEMS900の外部、たとえばスマートフォンなどの携帯情報端末1100との間でも双方向に情報を授受可能に構成されている。したがって、本実施の形態に係る電力供給システムでは、車両100および/またはHEMS900に設けられたタッチパネルなどの入力要素のほか、携帯情報端末1100によってもユーザからの指示を入力することができる。
 図1に示した電力供給システムにおいて、ケーブル400の接続によって、車両100と電力設備900は、蓄電装置110の充放電によって電力を授受可能な状態となる。この状態で、充電モードが選択されると、ユーザによる手動操作(スイッチのオン操作)や、ユーザによる充電指示入力に応じた自動処理によって、蓄電装置110の外部充電が実行される。
 なお、図1の構成例では、通信ユニット310,920により、車両100およびHEMS900の間で情報の授受が可能であるため、蓄電装置110の充電および放電に関する指示は、車両100およびHEMS900のいずれに入力する態様としてもよい。ケーブル400が接続された状態では、コネクタ410に設けられた入力要素に対してユーザからの指示を入力することもできる。
 ユーザによって外部充電の開始が指示されると、蓄電装置110が所定SOC(たとえば、満充電レベル、あるいは、ユーザが指定した充電量に応じたSOCレベル)まで充電されることによって、充電モードが終了される。
 自動処理による外部充電の一態様として、ユーザが充電終了時刻を指定する、いわゆるタイマー充電を実行することも可能である。たとえば、ユーザが車両100の運転を開始する時刻に対応させて充電終了時刻を指定すると、必要な充電量から逆算された充電スケジュールに従って、蓄電装置110が充電される。これにより、指定された充電終了時刻に、蓄電装置110の充電を完了させることができる。充電スケジュールには、時間帯毎の電力料金が反映されてもよい。あるいは、蓄電装置110の劣化を防止するために、高SOC状態(特に、高温下の高SOC状態)が連続しないように考慮して充電スケジュールを算定することも可能である。
 車両100の充電モード終了後も、ケーブル400の接続によって、蓄電装置110の充放電によって車両100と電力設備900との間で電力を授受可能な状態が維持されている場合には、蓄電装置110に蓄積された電力を用いて、電力設備900へ電力を供給するための放電モードを実行することができる。
 しかしながら、充電モードの終了後に放電モードを無条件に許可すると、車両100の運転開始時におけるSOCが低下することにより、電力による走行距離を確保できなくなる虞がある。一方で、放電モードの実行を完全に禁止すると、電力供給システムでの電力の活用度が低下する他、高SOC状態で長期間放置されることによる劣化進行を招く可能性がある。
 このように、図1に示した電力供給システムでは、充電モードによる蓄電装置110の充電終了後に、蓄電装置110からの放電をどのように制御するかが重要である。
 図2は、本発明の実施の形態に係る電力供給システムにおける車載蓄電装置の放電制御の第1の例を説明するためのフローチャートである。図2には、車両100のECU300によって放電が制御される例が示される。図2に示す制御処理は、車両非走行時において放電モードが開始されていない場合に、所定周期で実行される。
 図2を参照して、ECU300は、ステップS100により、ケーブル400が接続されているかどうか、すなわち、蓄電装置110の充放電によって車両100および電力設備900の間で電力を授受可能な状態であるかどうかを判定する。たとえば、コネクタ410から伝達される電気信号に基づいてステップS100の判定を実行することができる。この場合には、コネクタ410の嵌合部およびインレット220が正常に嵌合しているときに、コネクタ410に内蔵された回路から、車両100に対して当該電気信号が出力されるような構成とすることができる。
 あるいは、コネクタ410の嵌合部がインレット220に正常に嵌合しているときに作動するように構成されたリンク機構をインレット220に設けることも可能である。この場合には、当該リンク機構の出力に基づいて、ステップS100の判定を実行することができる。
 ECU300は、ケーブル400の接続が正常でない場合(S100のNO判定時)には、ステップS200に処理を進めて、蓄電装置110からの放電を開始しない。
 ECU300は、ケーブル400の接続が正常であるとき(S100のYES判定時)には、ステップS110に処理を進めて、蓄電装置110が充電済みであるかどうかを判定する。ステップS110は、充電モードの実行中には、蓄電装置110のSOCに関わらずNO判定とされる。
 非充電モード時には、蓄電装置110のSOCに応じて、ステップS110の判定が実行される。たとえば、現在のSOCと判定閾値との高低の比較により、充電モードによって蓄電装置110が所定レベル(たとえば、満充電レベル)まで充電されていると、ステップS110はYES判定とされる。あるいは、満充電レベルよりも低いSOCであっても、蓄電装置110の劣化進行を招くような高SOC領域において、ステップS110がYES判定されるように、SOCの判定閾値が設定される。したがって、蓄電装置110の温度特性に応じて、高温状態ではSOCの判定閾値を低下するように、ステップS110の判定条件を可変としてもよい。
 ECU300は、蓄電装置が充電されていないとき(S110のNO判定時)には、ステップS200に処理を進めて、蓄電装置110の放電を開始しない。
 ECU300は、蓄電装置が充電されているとき(S110のYES判定時)には、ステップS120に処理を進めて、HEMS900からの放電要求の有無を確認する。ECU300は、HEMS900が放電要求を発生していないとき(S120のNO判定時)には、ステップS200に処理を進めて、蓄電装置110の放電を開始しない。
 ECU300は、HEMS900が放電要求を発生しているとき(S120のYES判定時)には、ステップS130に処理を進めて、現在が放電制限期間内であるかどうかを判定する。ECU300は、放電制限期間内でないとき(S130のNO判定時)には、ステップS210に処理を進めて、蓄電装置110の放電を許可する。これにより、通常の放電制御が開始される。放電制御が開始されると、ECU300は、蓄電装置110の状態(SOC,温度等)、および、あるいは電力変換装置200の能力に応じた電力範囲内に制御して、蓄電装置110は電力を出力する。
 これに対して、ECU300は、放電制限期間内であるとき(S130のYES判定時)には、ステップS220に処理を進めて、蓄電装置110からの放電を制限する。放電制限期間において、代表的には、電力変換装置200を停止させることにより、蓄電装置110からの放電を禁止することで放電が制限される。あるいは、電力変換装置200の出力電力を、ステップS210による通常の放電制御時よりも低下することによって、放電を制限してもよい。このように、本実施の形態での「放電制限」は、放電の禁止および放電電力の低減の双方を含む概念である。一方で、ステップS210による放電許可時には、ステップS220のような放電制限は実行されない。すなわち、放電制限が解除されることが理解される。
 放電電力の低減は、電力変換装置200の出力電力(電流)を直接制御する他、HEMS900における電力配分制御によって、結果的に蓄電装置110の放電電力が、通常(非放電制限時)よりも低減するようにすることも可能である。この場合には、コントローラ990は、分電盤950から負荷1000へ供給される電力に占める、車両100とは異なる電力源からの供給電力の割合が通常(非放電制限時)よりも高められるように、電力配分制御を実行する。
 ステップS210(通常の放電許可)またはS220(放電電力を低減した放電許可)によって蓄電装置110の放電が開始されると、HEMS900から放電が要求されなくなるまで、あるいは、蓄電装置110が放電不能な状態となるまで、蓄電装置110からの放電が継続される。放電継続中には、図2に示した制御処理は実行されず、放電が終了されると、再び、図2に示した制御処理が再び所定周期で実行される。
 次に、放電制限期間の設定について図3~図5を用いて説明する。
 図3を参照して、時刻t1に蓄電装置110の充電が終了する。充電終了後(時刻t1以降)に、ユーザが車両100を使用する可能性がある期間に対応させて、時刻ta~tbが放電制限期間に設定される。代表的には、開始時刻taおよび終了時刻tbをユーザが入力することによって、放電制限期間を設定することができる。あるいは、ユーザによる車両100の使用履歴、たとえば、車両100の運転開始時刻のこれまでの履歴に基づいて、ユーザが車両100を使用する可能性がある期間を予測することによって、ECU300またはコントローラ990が、時刻ta,tbを自動的に設定してもよい。
 あるいは、図4に示すように、放電制限期間の開始時刻および終了時刻を設定するのではなく、充電終了時から所定期間Tλが経過するまでを放電制限期間とすることも可能である。この場合には、放電制限期間の長さ(Tλ)は、ユーザ入力、あるいは、これまでの車両使用履歴に基づいて設定される。図4の例では、充電終了時(時刻t1)を起点として、時刻t1からTλが経過する時刻t2までの間、ステップS220(図2)によって、蓄電装置110の放電が制限される。
 特に、タイマー充電によって外部充電が実行された場合には、ユーザによって指定された充電終了時刻t1は、ユーザが車両100の運転を開始する時刻に対応して決められた可能性が高い。したがって、図4に示すように、充電終了時刻から所定期間が経過するまでを放電制限期間に設定することによって、ユーザが車両100を使用する可能性がある期間と、放電制限期間との対応度を高めることができる。
 図3および図4において、放電制限期間が終了した時刻tb以降(図3)および時刻t2以降(図4)の期間では、ステップS220による放電制限は解除される。すなわち、ステップS210(図2)によって、蓄電装置110の放電が許可される。放電制限を解除した蓄電装置110からの放電によるHEMS900への給電によって、車両100を電力供給源として十分に活用することができる。また、蓄電装置110の電力を使用することにより、蓄電装置110が高SOC状態で長期間放置されることを防止できる。このように、「放電制限期間」は「第1の期間」に対応し、放電制限期間終了後の放電制限が解除された期間は「第2の期間」に対応する。
 なお、図3および図4では、充電終了時刻t1から放電制限期間期間が開始される例を示したが、図5に示すように、蓄電装置110の充電終了後に、放電制限が解除される期間が存在するように、放電制限期間を設けてもよい。
 図5を参照して、充電終了時刻t1から一定期間放電が許可された後に、放電制限期間の開始時刻taが設けられる態様によって、時刻ta~tbを放電制限期間に設定することも可能である。この場合にも、放電制限期間の終了後の期間は、時刻t1~taの期間と同様に、ステップS210(図2)によって、放電制限を解除した蓄電装置110からの放電が許可される。
 なお、図3~図5に示した放電制限期間の終了後に蓄電装置110の放電を許可すると、HEMS900への給電によって、蓄電装置110のSOCが低下する。したがって、蓄電装置110の放電実行後(たとえば、図3の時刻t3)には、再び、車両100に充電モードを適用して、蓄電装置110を再充電することが好ましい。
 より詳細には、蓄電装置110の再充電は、一定時間毎に、あるいは、時間帯毎の電力料金等を考慮して蓄電装置110の再充電を実行することができる。再充電により、ユーザが車両100の運転を開始する際におけるSOCの確保性を高めることができる。さらに、再充電の終了後には、蓄電装置110の放電を許可することにより、高SOC状態の継続による蓄電装置110の劣化進行を防止するとともに、蓄電装置110の蓄積電力の活用度を確保できる。また、再充電の終了後にも、図3~図5と同様に放電制限期間を設けるようにすれば、車両100の運転開始の際のSOC確保性をさらに高めることができる。なお、蓄電装置110の再充電の要否については、ユーザに確認を求めるとともに、ユーザが要求したときに限って再充電を実行するように、蓄電装置の放電を制御してもよい。
 図2では、車両100側(ECU330)によって、車載蓄電装置110の放電を制御する制御処理を示したが、HEMS900側(コントローラ990)による放電要求の発生を制御することによっても、同等の制御処理を実現することができる。
 図6は、本発明の実施の形態に係る電力供給システムにおける車載蓄電装置の放電制御の第2の例を説明するためのフローチャートである。図6には、HEMS900のコントローラ990によって放電が制御される例が示される。図6に示す制御処理は、図2と同様に、車両非走行時において放電モードが開始されていない場合に、所定周期で実行される。
 図8を参照して、コントローラ990は、図2のステップS100と同様のステップS100♯により、ケーブル400が接続されているかどうかを判定する。これにより、蓄電装置110の充放電によって車両100および電力設備900の間で電力を授受可能な状態であるかどうかが判定される。
 さらに、コントローラ990は、ステップS110♯により、車両100の蓄電装置110が充電済みであるかどうかを判定する。ステップS110♯による判定は、通信ユニット310,920を介してコントローラ990およびECU300との間で授受された情報に基づいて、図2のステップS110と同様に実行することができる。
 コントローラ990は、ステップS100♯および110♯の少なくとも一方がNO判定のときには、ステップS200♯に処理を進めて、車載蓄電装置110への放電要求を発生しない。
 一方で、コントローラ990は、ステップS100♯および110♯の両方がYES判定のときには、ステップS120♯に処理を進める。コントローラ990は、ステップS120♯では、上述したHEMS900での電力配分制御に従って、車載蓄電装置110からの放電が必要であるか否かを判定する。コントローラ990は、車載蓄電装置110からの放電が不要のときには(S120♯のNO判定時)、ステップS200♯により、車載蓄電装置110への放電要求を発生しない。
 コントローラ990は、車載蓄電装置110からの放電が必要であると判定したときには(S120♯のYES判定時)、図2と同様のステップS130により、現在が放電制限期間内であるかどうかを判定する。放電制限期間は、図3~図5で説明したのと同様に設定される。
 コントローラ990は、現在が放電制限期間内のとき(S130のYES判定時)には、ステップS220♯に処理を進めて、蓄電装置110への放電要求を制限する。ステップS220♯では、ステップS210♯による放電要求と比較して、蓄電装置110からの放電を禁止、あるいは、放電電力を減少させるように、放電要求が発生される。なお、蓄電装置110からの放電を禁止する場合には、ステップS200♯と同様に、車載蓄電装置110への放電要求を発生しないようにすればよい。
 一方、コントローラ990は、現在が放電制限期間内でないとき(S130のNO判定時)には、ステップS210♯に処理を進めて、蓄電装置110への放電要求の発生を許可する。この放電要求が車両100へ送信されることにより、図2のステップS210と同様の通常の放電制御に従って、蓄電装置110からHEMS900への放電が制御される。すなわち、ステップS210♯による放電要求では、ステップS220♯による放電要求の制限は解除されている。
 図6のフローチャートに示すように、コントローラ990による制御処理によっても、電力供給システムにおける車載蓄電装置110からの放電を、図2の場合と同様に制御することが可能となる。
 このように、本実施の形態による電力供給システムによれば、車両100の蓄電装置110を外部充電した後に、ユーザが車両100を使用する可能性がある期間に対応させて一定の放電制限期間を設けるとともに、放電制限期間の終了後は、放電制限が解除された蓄電装置110からの放電を許可することができる。代表的には、充電終了からの所定期間における放電を制限することによって(特に、タイマー充電時)、ユーザが車両100を使用する可能性がある期間に対応させた放電制限期間を簡易に定めることができる。
 これにより、ユーザが車両100の運転を開始する際におけるSOCの確保を図るとともに、放電を過度に制限しないことにより、蓄電装置110の高SOC状態が長期間継続すること、および、車載蓄電装置110の蓄積電力の活用度が低下することを防止できる。
 この結果、高SOC状態が長期間継続することによる蓄電装置110の劣化進行の防止、電力供給源としての車両100の活用度向上、および車両100の運転開始時におけるSOC確保を満足するように、車両外部(HEMS900)に対する車載蓄電装置110の充放電を適切に制御することができる。特に、車両を電力供給源として活用することによって、電力供給システム全体でのエネルギ効率ないしエネルギコストを改善することができる。
 さらに、放電制限期間の終了後に蓄電装置110のSOCが低下した場合には、蓄電装置110を外部電源(HEMS900)によって再充電することによって、車両運転開始の際のSOC確保性を高めることができる。
 (変形例1)
 次に、図7および図8を用いて、ステップS220,S220♯による放電制限の他の例について説明する。
 図2のステップS220および図6のステップS220♯では、放電禁止(放電電力=0)を含む放電電力の制限によって、蓄電装置110の放電を制限した。変形例1では、放電可能な電力量の制限による放電制限を説明する。
 図7は、本実施の形態の変形例1による放電制限の例を説明する概念図である。
 図7を参照して、充電終了時(図3~図5の時刻t1)において、蓄電装置110のSOC=Smである。ステップS210,S210♯による放電許可時、すなわち、放電制御の解除時には、放電モードにおけるSOC許容下限値がS2に設定される。すなわち、SOCがSmからS2へ低下するまで、蓄電装置110の放電が許可される。
 これに対して、ステップS220,S220♯による放電制限時には、放電モードにおけるSOC許容下限値がS1(S1>S2)に設定される。すなわち、SOCがSmからS1へ低下するまで、蓄電装置110の放電が許可される。
 したがって、放電許可時には(Sm-S2)に相当する電力量を蓄電装置110から放電可能である一方で、放電制限時には、放電可能な電力量が低下する。すなわち、変形例1では、放電制限期間内に、ユーザが車両100の運転を開始した際におけるSOCをS1以上に確保できる。また、(Sm-S1)に相当する電力量については、HEMS900へ給電することが可能であるので、蓄電装置の蓄積電力の活用度についてもある程度確保することができる。
 変形例1では、放電制限期間におけるSOC許容下限値S1を、車両運転開始時に確保されるべきSOCに対応させて設定することが好ましい。たとえば、S1は、ユーザによる車両100の運転履歴に応じて適切に設定することができる。車両100の一定の運転期間(イグニッションニッションスイッチのオン~オフ期間、あるいは、外部充電の実行時~次回実行時)における、電力を使用した走行距離が短く、蓄電装置110の電力使用量が小さいときには、S1を相対的に低く設定することができる。一方で、一定の運転期間における蓄電装置110の電力使用量が大きいときには、S1は高めに設定することが好ましい。
 したがって、図8に示すように、一定の運転期間における蓄電装置110の電力使用量に関する情報を示すパラメータに応じて、電力使用量が多いほどS1が高くなるように、放電制限期間におけるSOC許容下限値S1を設定することができる。当該パラメータは、蓄電装置110の電力使用量(SOC変化量)を示すものであってもよく、電力による走行距離を示すものであってもよい。これらのパラメータは、ECU300によって、車両100の運転履歴に基づいて、逐次学習することができる。
 このように、本実施の形態の変形例1によれば、蓄電装置110の容量が大きい場合など、外部充電後の放電によって蓄電装置110のSOCがある程度低下しても、車両100の運転開始の際に十分な電力量が確保できる場合に対応した放電制限を実現することができる。
 なお、変形例1による放電制限の適用時には、放電制限期間(ステップS220,S220♯)における蓄電装置110の放電電力については、通常の放電制御時(ステップS210、S210♯)における放電電力と同等に設定してもよい。
 (変形例2)
 本実施の形態の変形例2では、放電制限期間内において、車載蓄電装置110からの放電可否をユーザに確認する制御処理について説明する。
 図9は、本実施の形態の変形例2に係る車載蓄電装置の放電制御の第1の例を説明するためのフローチャートである。図9には、図2と同様に、車両100のECU300によって放電が制御される例が示される。図9に示す制御処理は、図2と同様に、車両非走行時において放電モードが開始されていない場合に、所定周期で実行される。
 図9を図2と比較して、変形例2に従うECU300の制御処理では、図2と同様のステップS100~S130を実行する。ステップS100~S130による処理は、図2と同様であるので、詳細な説明は繰り返さない。すなわち、ステップS130のYES判定時(放電制限期間内)には、図2と同様のステップS220により蓄電装置110の放電が制限される。
 一方、ECU300は、ステップS130のNO判定時(放電制限期間外)には、ステップS140およびS150の処理を実行する。ECU300は、ステップS140では、ユーザに対して、蓄電装置110からの放電を許可するか否かを確認する。具体的には、確認メッセージが、車両100、HEMS900あるいは携帯情報端末1100の表示部に表示されて、確認結果の入力がユーザに求められる。
 ECU300は、ステップS150では、ステップS140においてユーザから入力された確認結果に応じて、蓄電装置110の放電を制御する。ECU300は、ユーザが放電を許可しないときに(S150のNO判定時)には、ステップS220に処理を進めて、蓄電装置110の放電を制限する。この際には、ステップS140において、制限の内容(放電禁止、放電電力低減、あるいは、使用可能なSOC範囲縮小)について、ユーザに指定を求める制御処理としてもよい。
 一方で、ECU300は、ユーザが放電を許可したときに(S150のYES判定時)には、図2と同様のステップS210に処理を進めて、ステップS220による放電制限が解除された蓄電装置110の放電を許可する。
 これにより、放電制限期間内では、自動的に蓄電装置110からの放電を制限するとともに、放電制限期間外においても、ユーザの意思を確認した上で蓄電装置110からの放電を許可する制御処理が実現される。
 図10は、本実施の形態の変形例2に係る車載蓄電装置の放電モードでの制御動作の第2の例を説明するためのフローチャートである。図10には、図6と同様に、HEMS900のコントローラ990によって放電が制御される例が示される。図10に示す制御処理は、図6と同様に、両非走行時において放電モードが開始されていない場合に、所定周期で実行される。
 図10を図6と比較して、実施の形態2による蓄電装置の放電制御では、コントローラ990は、図6と同様のステップS100♯~S120♯,S130の後、ステップS130のNO判定時(放電制限期間外)には、図9と同様のステップS140およびS150の処理を実行する。ステップS100♯~S120♯,S130による処理は、図6と同様であるので、詳細な説明は繰り返さない。
 コントローラ990は、ステップS140では、蓄電装置110からの放電を許可するか否かをユーザに対して確認するとともに、ステップS150では、ステップS140でのユーザの確認結果に応じて、蓄電装置110の放電を制御する。
 ECU300は、放電制限期間外において、ユーザが放電を許可したときに(S150のYES判定時)には、図6と同様のステップS210♯により、放電制限が解除された蓄電装置110への放電要求の発生を許可する。
 一方で、ECU300は、放電制限期間外であっても、ユーザが放電を許可しないときに(S150のNO判定時)には、図6と同様のステップS220♯により、蓄電装置110への放電要求を制限する。このように、コントローラ990による制御処理によっても、電力供給システムにおける車載蓄電装置110からの放電を、図9の場合と同様に制御することができる。
 本実施の形態の変形例2によれば、ユーザの意思に反して、蓄電装置110の放電が許可されることを防止できる。なお、変形例2による放電制限の適用時には、ステップS140において、蓄電装置110からの放電が許可された際には、放電後における蓄電装置110の再充電の要否についても、ユーザに確認を求めることが好ましい。このようにすると、蓄電装置110の再充電についても、ユーザの意向に沿って実行することが可能となる。
 なお、図9および図10では、ステップS140およびS150による放電可否のユーザ確認を、放電制限期間外(S130のNO判定時)に実行する制御処理を示したが、これに代えて、ステップS140およびS150を、放電制限期間内(S130のYES判定時)に実行するようにしてもよい。この場合には、ユーザ確認に基づいて、車両100の使用予定がない場合に、蓄電装置110の電力を積極的に活用することができる。
 以上、本実施の形態では、本発明が適用される車両として、プラグインタイプのハイブリッド自動車を例示したが、車両の構成は、車載蓄電装置の充放電によって車両外部との間で電力を授受することが可能であれば、特に限定されることはない。すなわち、シリーズ式のハイブリッド自動車、電気自動車や燃料電池自動車などに対しても、本実施の形態に係る給電モードの制御を適用することができる。
 また、車両との間で電力を授受する電力設備900についても、実施の形態での例示に限定されるものではなく、任意の電力設備を適用することができる。たとえば、他の車両の車載蓄電装置に対する車両間の充放電についても、本実施の形態に係る給電制御を適用することができる。
 また、本実施の形態では、車両100および電力設備(HEMS)900の間をケーブル400によって電気的に接続する構成を例示したが、車両100および電力設備900の間は、非接触のまま電磁的に結合して電力を授受する構成とすることも可能である。たとえば、電力設備900側および車両100側のそれぞれにコイルを設けることにより、コイル間の磁気結合あるいは共鳴現象によって電力を入出力する構成を、ケーブル400に代えて用いることも可能である。このような構成では、車両100および電力設備900に設けられたコイルが「電力ノード」に対応する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 この発明は、車載蓄電装置の充放電によって車両外部との間で電力を授受するための構成を有する電動車両、当該電動車両との間で電力を授受する電力設備、ならびに、当該電動車両および電力設備を有する電力供給システムに適用することが可能である。
 100 車両、105 動力出力装置、106 エンジン、107 モータジェネレータ、110 蓄電装置(車載蓄電装置)、200 電力変換装置、220 インレット、302,904 電圧センサ、304,906 電流センサ、310,920 通信ユニット、400 ケーブル、410 コネクタ、415 操作部、417 切換スイッチ、420 プラグ、440,ACL1~ACL5,PL1 電力線、800 商用系統電源、900 電力設備(HEMS)、910 充放電コネクタ、915 表示部、930 変換器、945 双方向PCS、950 分電盤、970 太陽電池、975 PCS、990 コントローラ、1000 負荷、1100 携帯情報端末、S1,S2 SOC許容下限値、t1 充電終了時刻、ta 放電制限期間開始時刻、tb,t2 放電制限期間開始時刻。

Claims (26)

  1.  車載された蓄電装置(110)と、
     車両外部との間で電力を授受するための電力ノード(220)と、
     車両外部との間で前記電力ノードを経由して前記蓄電装置を充放電可能な状態において、前記車両外部との間の前記蓄電装置の充放電を制御するための制御装置(300)とを備え、
     前記制御装置は、前記蓄電装置を車両外部の電源によって外部充電した後、前記蓄電装置から車両外部への放電を制限する第1の期間を設けるとともに、少なくとも前記第1の期間の終了後に、前記第1の期間における放電制限が解除された第2の期間を設けるように、前記蓄電装置からの放電を制御する、電動車両。
  2.  前記制御装置(300)は、前記蓄電装置(110)の外部充電の終了から所定期間(Tλ)が経過するまでの間を前記第1の期間に設定し、前記所定期間の経過後を前記第2の期間に設定する、請求項1記載の電動車両。
  3.  前記制御装置(300)は、ユーザから指定された充電終了時刻に従って前記外部充電を制御するとともに、前記充電終了時刻から所定期間(Tλ)が経過するまでの間を前記第1の期間に設定し、前記所定期間の経過後を前記第2の期間に設定する、請求項1記載の電動車両。
  4.  前記制御装置(300)は、車両外部の負荷からの放電要求に応じて、前記蓄電装置(110)から前記車両外部への放電を実行する、請求項1記載の電動車両。
  5.  前記制御装置(300)は、前記第2の期間において前記放電要求があった場合には、前記蓄電装置(110)からの放電の可否をユーザに確認する、請求項4記載の電動車両。
  6.  前記制御装置(300)は、前記第2の期間における蓄電装置(110)からの放電の終了後における、前記蓄電装置の再度の前記外部充電の要否をユーザに対して確認する、請求項1記載の電動車両。
  7.  前記制御装置(300)は、前記第1の期間において、前記蓄電装置(110)のSOCが第1の値(S1)に低下するまで前記蓄電装置の放電を許可する一方で、前記第2の期間では、前記SOCが第2の値(S2)に低下するまで前記蓄電装置の放電を許可し、
     前記第1の値は、前記第2の値よりも高い、請求項1~6のいずれか1項に記載の電動車両。
  8.  前記制御装置(300)は、前記電動車両の一定の運転期間における前記蓄電装置(110)の電力使用量を示す情報の履歴に基づいて、前記第2の値(S2)を設定する、請求項7記載の電動車両。
  9.  前記制御装置(300)は、前記第1の期間において、前記蓄電装置(110)の放電を禁止する、請求項1~6のいずれか1項に記載の電動車両。
  10.  蓄電装置(110)を搭載した電動車両との間で電力を授受可能に構成された電力設備であって、
     前記電動車両との間で電力を授受するための電力ノード(910)と、
     前記蓄電装置の充放電によって、前記電力設備および前記電動車両との間で前記電力ノードを経由した電力の授受が可能な状態において、前記電力設備に対する前記蓄電装置の充放電を制御するための制御装置(990)とを備え、
     前記制御装置は、前記蓄電装置が外部充電された後、前記蓄電装置から前記電力設備への放電を制限する第1の期間を設けるとともに、少なくとも前記第1の期間の終了後に、前記第1の期間における放電制限が解除された第2の期間を設けるように前記蓄電装置から前記電力設備への放電を制御する、電力設備。
  11.  前記制御装置(990)は、前記蓄電装置(110)の外部充電の終了から所定期間(Tλ)が経過するまでの間を前記第1の期間に設定し、前記所定期間の経過後を前記第2の期間に設定する、請求項10記載の電力設備。
  12.  前記制御装置(990)は、ユーザから指定された充電終了時刻に従って前記外部充電を制御するとともに、前記充電終了時刻から所定期間(Tλ)が経過するまでの間を前記第1の期間に設定し、前記所定期間の経過後を前記第2の期間に設定する、請求項10記載の電力設備。
  13.  前記制御装置(990)は、前記第2の期間において前記蓄電装置に対して放電を要求する場合には、前記蓄電装置(110)からの放電の可否をユーザに確認する、請求項10記載の電力設備。
  14.  前記制御装置(990)は、前記第2の期間における蓄電装置(110)からの放電の終了後における、前記蓄電装置の再度の前記外部充電の要否をユーザに対して確認する、請求項10記載の電力設備。
  15.  前記制御装置(990)は、前記第1の期間において、前記蓄電装置(110)のSOCが第1の値(S1)に低下するまで前記蓄電装置の放電を許可する一方で、前記第2の期間では、前記SOCが第2の値(S2)に低下するまで前記蓄電装置の放電を許可し、
     前記第1の値は、前記第2の値よりも高い、請求項10~14のいずれか1項に記載の電力設備。
  16.  前記制御装置(990)は、前記電動車両の一定の運転期間における前記蓄電装置(110)の電力使用量を示す情報の履歴に基づいて、前記第2の値(S2)を設定する、請求項15記載の電力設備。
  17.  前記制御装置(990)は、前記第1の期間において、前記蓄電装置(110)の放電を禁止する、請求項10~14のいずれか1項に記載の電力設備。
  18.  蓄電装置(110)を搭載した電動車両(100)と
     前記電動車両との間で電力を授受可能に構成された電力設備(900)と、
     前記蓄電装置の充放電によって、前記電力設備および前記電動車両との間で電力の授受が可能な状態において、前記蓄電装置の充放電を制御するための制御装置(300,990)とを備え、
     前記制御装置は、前記蓄電装置が前記電力設備からの電力によって外部充電された後、前記蓄電装置から前記電力設備への放電を制限する第1の期間を設けるとともに、少なくとも前記第1の期間の終了後に、前記第1の期間における放電制限が解除された第2の期間を設けるように前記蓄電装置から前記電力設備への放電を制御する、電力供給システム。
  19.  前記制御装置(300,990)は、前記蓄電装置(110)の外部充電の終了から所定期間(Tλ)が経過するまでの間を前記第1の期間に設定し、前記所定期間の経過後を前記第2の期間に設定する、請求項18記載の電力供給システム。
  20.  前記制御装置(300,990)は、ユーザから指定された充電終了時刻に従って前記外部充電を制御するとともに、前記充電終了時刻から所定期間(Tλ)が経過するまでの間を前記第1の期間に設定し、前記所定期間の経過後を前記第2の期間に設定する、請求項18記載の電力供給システム。
  21.  前記制御装置(990)は、前記電力設備(900)に設けられ、
     前記制御装置は、前記第2の期間では、前記蓄電装置からの放電の可否をユーザに確認するとともに、前記ユーザが許可したときに前記蓄電装置からの放電を前記電動車両に要求する、請求項18記載の電力供給システム。
  22.  前記制御装置(300,900)は、前記第2の期間における蓄電装置(110)からの放電の終了後における、前記蓄電装置の再度の前記外部充電の要否をユーザに対して確認する、請求項18記載の電力供給システム。
  23.  前記制御装置(300,900)は、前記第1の期間において、前記蓄電装置(110)のSOCが第1の値(S1)に低下するまで前記蓄電装置の放電を許可する一方で、前記第2の期間では、前記SOCが第2の値(S2)に低下するまで前記蓄電装置の放電を許可し、
     前記第1の値は、前記第2の値よりも高い、請求項18~22のいずれか1項に記載の電力供給システム。
  24.  前記制御装置(300,900)は、前記電動車両の一定の運転期間における前記蓄電装置(110)の電力使用量を示す情報の履歴に基づいて、前記第2の値(S2)を設定する、請求項23記載の電力供給システム。
  25.  前記制御装置(300,990)は、前記第1の期間において、前記蓄電装置(110)の放電を禁止する、請求項18~22のいずれか1項に記載の電力供給システム。
  26.  前記電動車両(100)および前記電力設備(900)の間は、ケーブル(400)によって電気的に接続される、請求項18~22のいずれか1項に記載の電力供給システム。
PCT/JP2012/057133 2012-03-21 2012-03-21 電動車両、電力設備および電力供給システム WO2013140536A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280071594.4A CN104205553B (zh) 2012-03-21 2012-03-21 电动车辆、电力设备及电力供给系统
US14/384,229 US9627911B2 (en) 2012-03-21 2012-03-21 Electric-motor vehicle, power equipment, and power supply system including limiting discharging after the power storage device is externally charged
PCT/JP2012/057133 WO2013140536A1 (ja) 2012-03-21 2012-03-21 電動車両、電力設備および電力供給システム
EP12871664.4A EP2830185B1 (en) 2012-03-21 2012-03-21 Electric vehicle, electric power facilities and electric power supply system
IN7684DEN2014 IN2014DN07684A (ja) 2012-03-21 2012-03-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057133 WO2013140536A1 (ja) 2012-03-21 2012-03-21 電動車両、電力設備および電力供給システム

Publications (1)

Publication Number Publication Date
WO2013140536A1 true WO2013140536A1 (ja) 2013-09-26

Family

ID=49222030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057133 WO2013140536A1 (ja) 2012-03-21 2012-03-21 電動車両、電力設備および電力供給システム

Country Status (5)

Country Link
US (1) US9627911B2 (ja)
EP (1) EP2830185B1 (ja)
CN (1) CN104205553B (ja)
IN (1) IN2014DN07684A (ja)
WO (1) WO2013140536A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171311A (ja) * 2013-03-04 2014-09-18 Denso Corp 電力供給システムおよび電力供給制御装置
JP2015155779A (ja) * 2014-02-20 2015-08-27 トヨタホーム株式会社 換気システム
CN104900928A (zh) * 2014-03-03 2015-09-09 吴明修 充电方法、充电装置及电子装置
JP2016201895A (ja) * 2015-04-09 2016-12-01 トヨタ自動車株式会社 電力システム、車両および、電力設備
JP2018082536A (ja) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 給電システムおよび車両
CN110239382A (zh) * 2019-06-27 2019-09-17 上海电机学院 一种电动汽车充放电系统
CN111357168A (zh) * 2018-10-23 2020-06-30 三菱电机株式会社 充放电装置和充放电系统
JP2021057942A (ja) * 2019-09-27 2021-04-08 本田技研工業株式会社 車両システム、車両システムの制御方法、およびプログラム
JP2021177697A (ja) * 2017-11-24 2021-11-11 トヨタ自動車株式会社 車両の制御装置及び電力制御システム

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954144B2 (ja) * 2012-11-30 2016-07-20 ソニー株式会社 制御装置、制御方法、制御システムおよび電動車両
KR102211363B1 (ko) * 2014-02-11 2021-02-03 삼성에스디아이 주식회사 에너지 저장 시스템과 그의 구동방법
CN106132303B (zh) * 2014-04-07 2019-05-28 株式会社日立制作所 移动型x射线装置、移动型x射线装置的充电方法
US9315108B2 (en) * 2014-07-08 2016-04-19 Toyota Jidosha Kabushiki Kaisha Vehicle function determination
JP2016220450A (ja) * 2015-05-22 2016-12-22 三菱重工業株式会社 電源制御装置、電源システム、電源制御方法およびプログラム
US10279694B2 (en) * 2016-02-12 2019-05-07 Radio Flyer Inc. Speed controlled switching system for a ride-on vehicle
CN105751911A (zh) * 2016-03-01 2016-07-13 上海航盛实业有限公司 一种混合式汽车供电管理系统
JP6577981B2 (ja) * 2017-08-03 2019-09-18 本田技研工業株式会社 電源システム
JP2019092279A (ja) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 車両および電力設備
JP6958287B2 (ja) * 2017-11-24 2021-11-02 トヨタ自動車株式会社 電力制御システムおよび車両
CN108394297B (zh) * 2018-03-07 2021-08-24 深圳市品一电气有限公司 直流充电桩残压泄放电阻的保护及控制方法
JP6745316B2 (ja) * 2018-09-28 2020-08-26 本田技研工業株式会社 車両用情報表示装置
JP7070333B2 (ja) * 2018-10-29 2022-05-18 トヨタ自動車株式会社 電力変換ユニット
CN109353242B (zh) * 2018-11-13 2021-11-09 国网电动汽车(山西)服务有限公司 一种智能充电桩系统实现双向有序充放电的充电算法
JP6918032B2 (ja) * 2019-01-17 2021-08-11 本田技研工業株式会社 送受電管理装置及びプログラム
JP6773207B1 (ja) * 2019-05-14 2020-10-21 株式会社椿本チエイン 充放電装置、充放電制御方法、及びコンピュータプログラム
DE102019207002A1 (de) * 2019-05-14 2020-11-19 Audi Ag Verfahren zum elektrischen Laden eines Energiespeichers eines Kraftfahrzeugs, Steuereinrichtung und Kraftfahrzeug
JP7136745B2 (ja) * 2019-05-28 2022-09-13 本田技研工業株式会社 管理装置、管理方法、およびプログラム
DE102020101360A1 (de) * 2020-01-21 2021-07-22 innogy eMobility Solutions GmbH Verfahren und System zum Steuern eines Ladevorgangs eines Elektrofahrzeugs
KR20230062534A (ko) * 2020-06-12 2023-05-09 졸트 차지 피티와이 엘티디. 전기 충전 구조물
EP4175120A4 (en) * 2020-06-24 2023-12-20 Panasonic Intellectual Property Corporation of America METHOD, DEVICE AND CONTROL PROGRAM
JPWO2022172046A1 (ja) * 2021-02-10 2022-08-18
SE2150476A1 (en) * 2021-04-16 2022-10-17 Volvo Truck Corp External energy transfer tactics for heavy-duty vehicles
US11488423B1 (en) * 2021-06-04 2022-11-01 Geotab Inc. Methods for operating battery devices for use with telematics
US11496877B1 (en) 2021-06-04 2022-11-08 Geotab Inc. Emergency user interfaces in telematic systems
US20230033955A1 (en) * 2021-07-30 2023-02-02 FreeWire Technologies, Inc. High-Availability Low-Impact Vehicle Charger
DE102021213593A1 (de) * 2021-12-01 2023-06-01 Robert Bosch Gesellschaft mit beschränkter Haftung Steuervorrichtung für ein Elektrofahrzeug, Elektrofahrzeug und Verfahren zur Steuerung der Energieabgabe von einem Elektrofahrzeug
US20240025362A1 (en) * 2022-07-20 2024-01-25 Allison Transmission, Inc. High voltage distribution module for electric vehicle
DE102022120573A1 (de) * 2022-08-16 2024-02-22 Bayerische Motoren Werke Aktiengesellschaft Laden einer Batterie eines Elektrofahrzeugs
US11749991B1 (en) 2022-12-15 2023-09-05 FreeWire Technologies, Inc. Energy management for connected charging stations with bidirectionality
US11772509B1 (en) * 2022-12-15 2023-10-03 FreeWire Technologies, Inc. Energy management for multiple charging stations
US11807123B1 (en) 2022-12-20 2023-11-07 FreeWire Technologies, Inc. Resilient charging station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182851A (ja) * 2007-01-25 2008-08-07 Chugoku Electric Power Co Inc:The 電力貯蔵装置及びシステム
JP2010148283A (ja) 2008-12-19 2010-07-01 Mazda Motor Corp 電気自動車用蓄電池制御装置
JP2010268602A (ja) 2009-05-14 2010-11-25 Ntt Facilities Inc 蓄電池充放電装置及び蓄電池充放電方法
JP2011244682A (ja) * 2010-05-13 2011-12-01 Ls Industrial Systems Co Ltd 電気自動車の充放電システム、充放電方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178234A (ja) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd 電気自動車を用いた家庭用電力供給システム
JP4164996B2 (ja) 2000-01-05 2008-10-15 日産自動車株式会社 電力マネジメントシステム
DE10331084A1 (de) * 2003-07-09 2005-03-24 Aloys Wobben Kraftfahrzeug
JP4678243B2 (ja) * 2005-06-08 2011-04-27 トヨタ自動車株式会社 電力供給システム
JP5063036B2 (ja) 2006-06-09 2012-10-31 中国電力株式会社 電力供給システム
US20090040029A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
MX2009006236A (es) * 2006-12-11 2010-02-11 V2Green Inc Manejo de transaccion en un sistema de agregacion de potencia para recursos electricos distribuidos.
EP2114714B1 (en) * 2007-02-09 2013-10-23 A123 Systems, Inc. Control system and hybrid vehicles with reconfigurable multi-function power converter
JP5223232B2 (ja) 2007-04-26 2013-06-26 株式会社エクォス・リサーチ 電動車両充電制御システム及び電動車両充電制御方法
US20080312782A1 (en) * 2007-06-15 2008-12-18 Gene Berdichevsky Electric vehicle communication interface
US8266075B2 (en) * 2008-06-16 2012-09-11 International Business Machines Corporation Electric vehicle charging transaction interface for managing electric vehicle charging transactions
US8694409B2 (en) * 2008-09-29 2014-04-08 Battelle Memorial Institute Using bi-directional communications in a market-based resource allocation system
JP4932810B2 (ja) 2008-10-20 2012-05-16 マツダ株式会社 電動車両用バッテリの充電方法およびその装置
JP5418301B2 (ja) * 2010-02-26 2014-02-19 株式会社デンソー 車載充電制御装置
WO2011135891A1 (ja) * 2010-04-26 2011-11-03 日本電気株式会社 電力制御システム及び方法
CN102280903B (zh) * 2010-06-10 2014-07-30 上海市电力公司 一种v2g智能充放电系统
JP2012005227A (ja) 2010-06-16 2012-01-05 Tokai Rika Co Ltd 充電管理システム
CN101901945B (zh) * 2010-07-12 2012-07-25 河海大学 一种插电式混合动力车的集中智能调度充电方法
US20120016546A1 (en) * 2010-07-14 2012-01-19 Nilssen Ole K System and Method for Supplying Back-Up Electric Power to a House from a Hybrid Vehicle
JP2012039725A (ja) 2010-08-05 2012-02-23 Toyota Motor Corp 充電方法、充電システム
JP2012186950A (ja) * 2011-03-07 2012-09-27 Denso Corp 電力供給システム
EP2783899B1 (en) 2011-11-21 2019-05-15 Toyota Jidosha Kabushiki Kaisha Charging system and charging reservation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182851A (ja) * 2007-01-25 2008-08-07 Chugoku Electric Power Co Inc:The 電力貯蔵装置及びシステム
JP2010148283A (ja) 2008-12-19 2010-07-01 Mazda Motor Corp 電気自動車用蓄電池制御装置
JP2010268602A (ja) 2009-05-14 2010-11-25 Ntt Facilities Inc 蓄電池充放電装置及び蓄電池充放電方法
JP2011244682A (ja) * 2010-05-13 2011-12-01 Ls Industrial Systems Co Ltd 電気自動車の充放電システム、充放電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2830185A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171311A (ja) * 2013-03-04 2014-09-18 Denso Corp 電力供給システムおよび電力供給制御装置
JP2015155779A (ja) * 2014-02-20 2015-08-27 トヨタホーム株式会社 換気システム
CN104900928A (zh) * 2014-03-03 2015-09-09 吴明修 充电方法、充电装置及电子装置
US9755450B2 (en) 2014-03-03 2017-09-05 Ming-Hsiu Wu Charging method, charging device, and electronic device for the same
JP2016201895A (ja) * 2015-04-09 2016-12-01 トヨタ自動車株式会社 電力システム、車両および、電力設備
CN108075553B (zh) * 2016-11-15 2020-10-13 丰田自动车株式会社 供电系统以及车辆
JP2018082536A (ja) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 給電システムおよび車両
CN108075553A (zh) * 2016-11-15 2018-05-25 丰田自动车株式会社 供电系统以及车辆
JP2021177697A (ja) * 2017-11-24 2021-11-11 トヨタ自動車株式会社 車両の制御装置及び電力制御システム
JP7207464B2 (ja) 2017-11-24 2023-01-18 トヨタ自動車株式会社 電力制御システム
CN111357168A (zh) * 2018-10-23 2020-06-30 三菱电机株式会社 充放电装置和充放电系统
CN111357168B (zh) * 2018-10-23 2021-02-23 三菱电机株式会社 充放电装置和充放电系统
CN110239382A (zh) * 2019-06-27 2019-09-17 上海电机学院 一种电动汽车充放电系统
CN110239382B (zh) * 2019-06-27 2022-12-16 上海电机学院 一种电动汽车充放电系统
JP2021057942A (ja) * 2019-09-27 2021-04-08 本田技研工業株式会社 車両システム、車両システムの制御方法、およびプログラム
JP7155088B2 (ja) 2019-09-27 2022-10-18 本田技研工業株式会社 車両システム、車両システムの制御方法、およびプログラム

Also Published As

Publication number Publication date
EP2830185A4 (en) 2016-03-16
EP2830185A1 (en) 2015-01-28
IN2014DN07684A (ja) 2015-05-15
US20150054466A1 (en) 2015-02-26
US9627911B2 (en) 2017-04-18
CN104205553B (zh) 2017-11-10
EP2830185B1 (en) 2019-10-09
CN104205553A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013140536A1 (ja) 電動車両、電力設備および電力供給システム
EP2558329B1 (en) Power supply system and vehicle equipped with power supply system
EP2255990B1 (en) Electric vehicle
JP5710775B2 (ja) 車両の充電システムおよび車両の充電方法
JP5293841B2 (ja) 電動車両の電源システムおよびその制御方法
JP5363931B2 (ja) 制御装置及び制御方法
JP5880394B2 (ja) 車両の電源装置
JP5817837B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
CA2922836C (en) Control device of electrical apparatus and energy management system
JP2013081324A (ja) 車両の充電システムおよび車両の充電方法
EP2558326A2 (en) Power supply system and vehicle equipped with power supply system
WO2017009977A1 (ja) 充放電装置及び充放電制御方法
JP5786754B2 (ja) 電動車両および給電システム
JP6011080B2 (ja) 車両用充電システム
US20130264867A1 (en) Vehicle and method for controlling vehicle
JP5821691B2 (ja) 電動車両、受電設備および電力供給システム
JPWO2012153399A1 (ja) 充電制御装置およびそれを備える車両ならびに充電制御方法
JP5710440B2 (ja) 車両の充電システムおよび車両の充電方法
JP5625715B2 (ja) 車両の制御装置および制御方法
JP7249164B2 (ja) 車両
JP5293160B2 (ja) 車両の制御装置
KR20140031500A (ko) 전기자동차 충전 제어 시스템 및 그 방법
JPWO2013140536A1 (ja) 電動車両、電力設備および電力供給システム
CN113195298A (zh) 电动机动车辆的电池的充电
KR20190126483A (ko) IoT 기반 멀티스위칭 전기자동차 충전시스템 및 그 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505867

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012871664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14384229

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE