WO2013137380A1 - 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 - Google Patents
非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 Download PDFInfo
- Publication number
- WO2013137380A1 WO2013137380A1 PCT/JP2013/057150 JP2013057150W WO2013137380A1 WO 2013137380 A1 WO2013137380 A1 WO 2013137380A1 JP 2013057150 W JP2013057150 W JP 2013057150W WO 2013137380 A1 WO2013137380 A1 WO 2013137380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite oxide
- compound
- lithium composite
- particle powder
- oxide particle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention provides a lithium composite oxide particle powder having low electrical resistance at high temperatures and excellent cycle characteristics and high temperature rate characteristics at high temperatures.
- lithium ion secondary batteries using LiCoO 2 are excellent in that they have a high charge / discharge voltage and charge / discharge capacity.
- Co is expensive, various positive electrode active materials replacing LiCoO 2 have been studied. ing.
- a lithium ion secondary battery using LiNiO 2 has attracted attention as a battery having a high charge / discharge capacity.
- this material is inferior in thermal stability during charging and charge / discharge cycle durability, further improvement in characteristics is required.
- LiNiO 2 by substituting part of Ni in LiNiO 2 with a different element, it is possible to impart the characteristics of the substituted element. For example, if you replace Co in LiNiO 2, even with a small amount of Co it can be expected to have a high charge-discharge voltage and charge-discharge capacity.
- LiMn 2 O 4 is a stable system with respect to LiNiO 2 or LiCoO 2 , but the amount that can be substituted is limited because the crystal structure is different.
- Co, in LiNiO 2 was replaced with Mn, to increase the crystal structure packing property to obtain a LiNiO 2 obtained by substituting a stable Co, Mn on the composition, physical properties and crystalline, nickel cobalt having a controlled particle size distribution -It is necessary to use a manganese-based precursor.
- the secondary battery is required to have excellent cycle characteristics and high temperature rate characteristics at high temperatures.
- Patent Documents 1 to 5 it is known to improve cycle characteristics and the like by adding a different metal to the lithium composite oxide particle powder.
- Lithium composite oxide particle powder that satisfies the above characteristics is currently most demanded, but has not yet been obtained.
- the present invention is a lithium composite oxide particle powder containing nickel, cobalt and manganese
- the Zr compound is present on the particle surface of the lithium composite oxide particle powder
- the chemical formula of the Zr compound Li x (Zr 1-y A y ) O z (x, y and z are 2.0 ⁇ x ⁇ 8.0, 0 ⁇ y ⁇ 1.0, 2.0 ⁇ z ⁇ 6.0
- A At least one selected from Mg, Al, Ca, Ti, Y, Sn, and Ce), and a Zr content is 0.05 to 1.0 wt% (Invention 1).
- the present invention is the lithium composite oxide particle powder according to the present invention 1, wherein the average particle size of the primary particles of the Zr compound existing on the particle surface is 2.0 ⁇ m or less (the present invention 2).
- the present invention also provides a method for producing a lithium composite oxide particle powder in which nickel, cobalt, manganese compound particle powder, a zirconium compound and a lithium compound are mixed and then fired. 4.
- the present invention is a method for producing a lithium composite oxide particle powder according to the present invention 4, wherein the behavior particles of the zirconium compound are zirconium oxide having an average particle size of 4.0 ⁇ m or less (invention 5).
- the present invention is a nonaqueous electrolyte secondary battery using the lithium composite oxide particle powder according to any one of the present inventions 1 to 3 as a positive electrode active material or a part thereof (Invention 6).
- the lithium composite oxide particle powder according to the present invention has a low electrical resistance at high temperature, and a nonaqueous electrolyte secondary battery excellent in cycle characteristics and high temperature rate characteristics at high temperature can be obtained. It is suitable as a positive electrode active material.
- FIG. 2 is an SEM image of the lithium composite oxide particle powder obtained in Example 1.
- 3 is a Zr-mapped diagram corresponding to the SEM image (FIG. 1) of the lithium composite oxide particle powder obtained in Example 1.
- FIG. 3 is a Zr-mapped diagram corresponding to the SEM image (FIG. 1) of the lithium composite oxide particle powder obtained in Example 1.
- lithium composite oxide particle powder according to the present invention will be described.
- a Zr compound is present on the particle surface of the lithium composite oxide particle powder containing a Li (Ni, Co, Mn) O 2 compound as a main component.
- the Zr compound present on the particle surface has a chemical formula of Li x (Zr 1-y A y ) O z (x, y and z are 2.0 ⁇ x ⁇ 8.0, 0 ⁇ y ⁇ 1.0, 2 .0 ⁇ z ⁇ 6.0).
- the Zr compound preferably has the chemical formula: Li 2 ZrO 3 (space group: C2 / c), Li 6 Zr 2 O 7 , Li 4 ZrO 4 , Li 8 ZrO 6 . More preferably, it is Li 2 ZrO 3 in which x is 2.
- the Zr compound present on the particle surface may contain at least one element selected from Mg, Al, Ca, Ti, Y, Sn, and Ce, which is an A element. By containing the element A, the cycle characteristics are further improved.
- the Zr content of the Zr compound is 0.05 to 1.0 wt% with respect to the entire particle.
- the Zr content is less than 0.05 wt%, the cycle characteristics are not improved.
- the Zr content exceeds 1.0 wt%, the initial discharge capacity decreases.
- a more preferable Zr content is 0.05 to 0.8 wt%.
- the average particle size of the primary particles of the Zr compound present on the particle surface is preferably 2.0 ⁇ m or less. When the average particle size of the primary particles of the Zr compound exceeds 2.0 ⁇ m, it is difficult to say that the surface modification effect is sufficient. A more preferable average particle diameter of primary particles is 0.1 to 1.5 ⁇ m.
- a is 5 to 65 mol% when the molar ratio (mol%) of Ni: Co: Mn is a: b: c
- a is 5 to 60 mol%, b is 5 to 55 mol%, and c is 5 to 35 mol%. Even more preferably, a is 5 to 55 mol%, b is 5 to 55 mol%, and c is 5 to 35 mol%.
- the molar ratio of Li to the total molar number of metal elements (Ni, Co, Mn, different elements) in the lithium composite oxide particle powder according to the present invention is preferably 1.00 to 1.20. If it is lower than 1.00, the battery capacity is reduced accordingly. If it exceeds 1.20, only excess Li that does not contribute to the battery capacity increases, and as a result, the battery capacity per weight and volume decreases.
- one or more elements selected from F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, and Ce May be contained in an amount of 0.05 to 5.0 mol% with respect to the total number of moles of metal elements (Ni, Co, Mn, and different elements) in the nickel / cobalt / manganese compound particle powder.
- the average particle diameter (D50) of the behavior particles of the lithium composite oxide particles according to the present invention is preferably 1.0 to 25.0 ⁇ m. When the average particle size is less than 1 ⁇ m, the packing density is lowered and the safety is lowered. When it exceeds 25.0 ⁇ m, it is difficult to produce industrially. More preferably, the average particle diameter (D50) of the behavior particles is 3.0 to 15.0 ⁇ m, and even more preferably 4.0 to 12.0 ⁇ m.
- the BET specific surface area of the lithium composite oxide particle powder according to the present invention is preferably 1.0 m 2 / g or less.
- the BET specific surface area exceeds 1.0 m 2 / g, the packing density is lowered and the reactivity with the electrolytic solution is increased.
- the electric resistivity ( ⁇ ⁇ cm) of the lithium composite oxide particle powder according to the present invention is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 7 ⁇ ⁇ cm. If the electric resistivity of the lithium composite oxide particle powder is higher than 1.0 ⁇ 10 7 ⁇ ⁇ cm, the electric resistance is too high as a positive electrode material of the battery, and thus the battery characteristics are greatly impaired, such as the voltage being lowered. An electrical resistivity lower than 1.0 ⁇ 10 4 ⁇ ⁇ cm is unlikely to be considered as an oxide.
- the electric resistivity of the lithium composite oxide particle powder is a volume resistivity ( ⁇ ⁇ cm) when 8.00 g of a sample is put in a mold having a diameter of 20 mm ⁇ and a pressure of 50 MPa is applied.
- nickel / cobalt / manganese compound particle powder is prepared in advance, and the nickel / cobalt / manganese compound particle powder, lithium compound and zirconium compound are mixed and fired.
- the chemical formula is Li x (Zr 1-y A y ) O z (x, y and z are 2.0 ⁇ x ⁇ 8.0, 0 ⁇ y ⁇ 1.0, 2.0 ⁇ z ⁇ 6.
- the method for producing the nickel-cobalt-manganese compound particle powder is not particularly limited.
- a solution containing a metal salt containing nickel, cobalt and manganese and an alkaline solution are simultaneously used.
- the reaction slurry containing nickel, cobalt, and manganese compound particles is obtained by dropping, neutralizing, and precipitating reaction, and the reaction slurry is filtered, washed with water, and dried if necessary to obtain nickel, cobalt, and manganese compound particles. Powders (hydroxides, oxyhydroxides, oxides or mixtures thereof) can be obtained.
- a small amount of different elements such as Mg, Al, Ti, Sn may be added, a method of mixing with nickel, cobalt, manganate in advance, a method of adding simultaneously with nickel, cobalt, manganate, Any method of adding to the reaction solution during the reaction may be used.
- the lithium composite oxide particle powder according to the present invention is obtained by mixing and firing the nickel / cobalt / manganese compound powder, zirconium compound and lithium compound, and the nickel / cobalt / manganese compound powder.
- Nickel / cobalt / manganese compound particles When the average particle size of the particles is less than 1 ⁇ m, not only the packing density decreases, but also readily reacts with the zirconium compound added later, and zirconium diffuses into the particles. The effect of adding zirconium cannot be exhibited, and is not preferable in terms of the original battery capacity. Nickel-cobalt-manganese compound particle powder having behavior particles exceeding 25.0 ⁇ m is difficult to produce industrially.
- the zirconium compound is preferably zirconium oxide having an average particle size of behavioral particles of 4.0 ⁇ m or less.
- the average particle diameter of the behavior particles of the zirconium compound exceeds 4.0 ⁇ m, the zirconium compound remains unreacted or a Zr compound is produced alone, and the surface modification effect of the lithium composite oxide becomes insufficient.
- a more preferable average particle diameter is 0.1 to 2.0 ⁇ m.
- the addition ratio of the zirconium compound is such that Zr is 0.3 to 1.5 mol% with respect to the total number of moles of metal elements (Ni, Co, Mn, and different elements) in the nickel / cobalt / manganese compound powder. Add to.
- Li x (Zr 1-y A y ) O z containing at least one element selected from Mg, Al, Ca, Ti, Y, Sn, and Ce is formed on the particle surface of the lithium composite oxide particle powder.
- the compound of the element A may be added and mixed together with the zirconium raw material.
- the mixing ratio of lithium is preferably 1.00 to 1.20 with respect to the total number of moles of metal elements (Ni, Co, Mn, different metals) in the nickel / cobalt / manganese compound powder.
- Calcination temperature is preferably 900 ° C. or higher.
- the atmosphere during firing is preferably an oxidizing gas atmosphere.
- the reaction time is preferably 5 to 30 hours.
- a conductive agent and a binder are added and mixed according to a conventional method.
- the conductive agent acetylene black, carbon black, graphite and the like are preferable
- the binder polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
- the secondary battery manufactured using the lithium composite oxide particle powder according to the present invention includes the positive electrode, the negative electrode, and the electrolyte.
- lithium metal lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used.
- an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
- At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
- the secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 150 to 170 mAh / g, and has a rate characteristic (high load capacity maintenance ratio) measured by an evaluation method described later of 95% or more. Excellent characteristics of cycle characteristics (cycle capacity retention rate) of 85% or more are exhibited.
- the lithium composite oxide particle powder is made to be a secondary battery by allowing a Zr compound composed of Li x (Zr 1-y A y ) O z to be present on the surface of the lithium composite oxide particle.
- a Zr compound composed of Li x (Zr 1-y A y ) O z is present on the surface of the lithium composite oxide particle.
- the lithium composite oxide particle powder according to the present invention has excellent characteristics as a positive electrode active material for a secondary battery is that the lithium composite oxide particle powder is present on the particle surface of the lithium composite oxide particle powder.
- the present inventor presumes that this is because the surface activity can be suppressed without impairing the electrochemical properties.
- a fluorine-containing compound is used as an additive for an electrolyte and a positive electrode.
- HF is generated in the electrolytic solution, which causes elution of Mn from the lithium composite oxide, or between the electrolytic solution and the electrode to the negative electrode. It is thought that the battery characteristics are deteriorated by promoting the deposition of the substance (SEI), but Zr compounds (Li 2 ZrO 3 etc.) may trap HF generated in the electrolyte by some action. thinking.
- a typical embodiment of the present invention is as follows.
- the average particle diameter (D50) of the behavior particles is a volume-based average particle diameter measured by a wet laser method using a laser-type particle size distribution measuring device Microtrac HRA [manufactured by JGC Corporation]. In addition, it measured after adding sodium hexametaphosphate to a sample and carrying out ultrasonic dispersion
- the average primary particle size was read from the SEM image.
- the presence state of the particles to be coated or present was observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].
- the sample was identified by powder X-ray diffraction (RIGAKU Cu-K ⁇ 40 kV 40 mA).
- the crystal phase of the Zr compound was identified in the same manner.
- the specific surface area was measured by BET method using Macsorb HM model-1208 (manufactured by Mountec Co., Ltd.).
- the electrical resistivity of the powder was measured by using a powder resistivity measurement system (Loresta) to measure the resistance value when 8.00 g of a sample was put in a 20 mm ⁇ diameter mold and a pressure of 50 MPa was applied. ( ⁇ ⁇ cm).
- the battery characteristics of the positive electrode active material were evaluated by preparing a coin-type battery cell by adjusting the positive electrode, the negative electrode, and the electrolytic solution by the following production method.
- the counter electrode was kneaded with 94% by weight of a graphite negative electrode active material, 2% by weight of acetylene black as a conductive material, 2% by weight of carboxymethyl cellulose as a thickener, and 2% by weight of styrene butadiene rubber as a binder in an aqueous solvent. And applied to a Cu metal foil and dried at 90 ° C. This sheet was punched out to 16 mm ⁇ , and then pressure-bonded at 3 t / cm 2 to obtain a negative electrode.
- a 2032 type coin cell was produced using a solution obtained by mixing EC and DMC in which 1 mol / L LiPF 6 was dissolved in a volume ratio of 1: 2 as an electrolytic solution.
- a coin cell used for charge / discharge characteristics other than cycle evaluation, rate characteristics, and DC resistance measurement was prepared by setting the size of the positive electrode to 16 mm ⁇ and the negative electrode by punching lithium foil to 18 mm ⁇ .
- the initial charge / discharge characteristics are as follows: at room temperature, charging is performed at a current density of 0.2 C up to 4.3 V, then low voltage charging is performed for 90 minutes, and discharging is performed at a current density of 0.2 C up to 3.0 V; The initial charge capacity, initial discharge capacity, and initial efficiency at that time were measured.
- the rate characteristics are as follows. At each temperature of 25 ° C. and 60 ° C., discharge capacity measurement (a) at 0.2 C is performed, then charge is performed again at 0.2 C, and then discharge capacity is measured at 5.0 C (b And determined as b / a ⁇ 100 (%).
- the charge / discharge of 301 cycles was performed with a cutoff between 2.5 V and 4.2 V, and the ratio of the discharge capacity at the 301st cycle to the initial charge / discharge was set.
- charge / discharge rate charge / discharge was accelerated and repeated at a rate of 1.0 C, except that charge / discharge at a rate of 0.1 C was performed once every 100 cycles.
- the corresponding coin cell was disassembled in an Ar-filled glove box and the negative electrode was taken out and washed with dimethyl carbonate to remove the electrolyte, and then vacuum degassed to remove dimethyl What removed the carbonate was analyzed by EDX.
- the reaction tank was always stirred with a blade-type stirrer, and at the same time, a 2 mol / l sodium hydroxide aqueous solution was automatically supplied so that the pH was 11.5 ⁇ 0.5.
- nickel / cobalt / manganese hydroxide particle powder, lithium carbonate and zirconium oxide were mixed so that the molar ratio of lithium / (nickel + cobalt + manganese) was 1.05, and zirconium / (nickel + cobalt + Predetermined amounts were sufficiently mixed so that the molar ratio of manganese + zirconium was 0.01, and this mixture was baked in the atmosphere at 950 ° C. for 10 hours and crushed.
- the chemical composition of the obtained fired product was 33.01: 33.71: 33.28 in terms of the molar ratio (mol%) of Ni: Co: Mn, and the total amount of nickel, cobalt and manganese.
- the molar ratio of Li to lithium was 1.04.
- the Zr composition was 8400 ppm.
- the average particle diameter D50 was 9.57 ⁇ m, and the BET specific surface area was 0.36 m 2 / g.
- FIG. 2 shows a photograph obtained by Zr mapping in the same field of view as FIG. In FIG. 2, the portion where the Zr element exists is white. In FIG. 1 and FIG. 2, the portion surrounded by a circle is the same portion.
- the compound existing on the particle surface in FIG. 1 was confirmed to be a compound containing Zr from FIG. 1 and 2, it was confirmed that the Zr compound was unevenly distributed on the particle surface.
- the Li 2 ZrO 3 peak was confirmed together with the diffraction peak of the Li (NiCoMn) O 2 compound.
- the coin-type battery produced using the positive electrode active material had an initial discharge capacity of 156.5 mAh / g.
- the rate characteristic was 74.2% and the cycle characteristic was 69.2%.
- Examples 2-5, Comparative Examples 1-2 Cathode active comprising a lithium composite oxide in the same manner as in Example 1 except that the average particle size and the Zr content of the behavior particles of nickel, cobalt, manganese hydroxide particles and zirconium oxide were variously changed. Obtained material.
- Table 1 and Table 2 show the manufacturing conditions at this time and various characteristics of the obtained positive electrode active material.
- the presence state and crystal structure of the Zr compound were confirmed in the same manner as in Example 1. As a result, it was confirmed that Li 2 ZrO 3 was present on the particle surface. It was confirmed.
- Cobalt / manganese hydroxide particles were obtained.
- the obtained zirconium-containing nickel / cobalt / manganese hydroxide particles powder and lithium carbonate are sufficiently mixed in a predetermined amount so that the molar ratio of lithium / (nickel + cobalt + manganese) is 1.05.
- the mixture was baked in the atmosphere at 950 ° C. for 10 hours and crushed.
- Tables 1 and 2 show the characteristics of the obtained positive electrode active material.
- the positive electrode active material obtained in Comparative Example 3 was confirmed by SEM observation and X-ray diffraction pattern that no Zr compound was present on the particle surface.
- Tables 1 and 2 show the characteristics of the obtained positive electrode active material.
- the lithium composite oxide particle powder according to the present invention can provide a non-aqueous electrolyte secondary battery excellent in high-temperature cycle characteristics and high-temperature rate characteristics.
- Examples 1 and 2 have excellent rate characteristics at 60 ° C. and cycle characteristics at 60 ° C. compared to Comparative Examples 1, 3 and 4, and F to the negative electrode after cycle characteristics evaluation, It can be seen that there is little precipitation of P and Mn. Similarly, it is clear that Examples 3 and 4 have superior characteristics to Comparative Example 2.
- the lithium composite oxide particle powder according to the present invention is excellent in load characteristics, cycle characteristics and thermal stability, it is suitable as a positive electrode active material for a secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
x、y、zが前記範囲外の場合には、表面改質効果が十分とは言い難い。Zr化合物は好ましくは化学式:Li2ZrO3(空間群:C2/c)、Li6Zr2O7、Li4ZrO4、Li8ZrO6である。より好ましくはxが2のLi2ZrO3である。
本発明において重要な点は、リチウム複合酸化物粒子の粒子表面にLix(Zr1-yAy)OzからなるZr化合物を存在させることによって、該リチウム複合酸化物粒子粉末を二次電池の正極活物質として用いた場合には、高温での電気抵抗が低く、高温でのサイクル特性及びレート特性に優れた二次電池が得られるという事実である。
尚、試料にはヘキサメタリン酸ソーダーを添加し、超音波分散した後に測定を行った。
サイクル評価に係るコインセルについては、N-メチルピロリドン溶媒中に、本発明による正極活物質粒子粉末であるリチウム複合酸化物粒子粉末を94重量%、導電材としてケッチェンブラックを0.5重量%、グラファイトを2.5重量%、ポリフッ化ビニリデン3重量%とを投入混練した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、3t/cm2で圧着し、正極とした。
対極は水溶媒中に、グラファイト負極活物質を94重量%、導電材としてアセチレンブラックを2重量%、増粘剤としてカルボキシメチルセルロースを2重量%、バインダーとしてスチレンブタジエンゴムを2重量%投入混練した後、Cu金属箔に塗布し90℃にて乾燥した。このシートを16mmΦに打ち抜いた後、3t/cm2で圧着し、負極とした。
電解液は1mol/LのLiPF6を溶解したECとDMCを体積比で1:2で混合した溶液を用いて2032型コインセルを作製した。
サイクル評価以外の充放電特性、レート特性および直流抵抗測定に用いるコインセルには、上記の正極電極の大きさを16mmΦとし、負極はリチウム箔を18mmΦに打ち抜いたものを用意した。
初期充放電特性は、室温で充電は4.3Vまで0.2Cの電流密度にて行った後、90分間低電圧充電を行い、放電を3.0Vまで0.2Cの電流密度にて行い、その時の初期充電容量、初期放電容量及び初期効率を測定した。
2mol/lの硫酸ニッケルと硫酸コバルトおよび硫酸マンガンをNi:Co:Mn=1:1:1になるように混合した水溶液と5.0mol/lアンモニア水溶液を、同時に反応槽内に供給した。反応槽は羽根型攪拌機で常に攪拌を行い、同時にpH=11.5±0.5となるように2mol/lの水酸化ナトリウム水溶液を自動供給した。生成したニッケル・コバルト・マンガン水酸化物はオーバーフローされ、オーバーフロー管に連結された濃縮槽で濃縮し、反応槽へ循環を行い、反応槽と沈降槽中のニッケル・コバルト・マンガン水酸化物濃度が4mol/lになるまで40時間反応を行った。
反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、乾燥を行い、Ni:Co:Mn=1:1:1の平均二次粒子径(D50)が10.3μmのニッケル・コバルト・マンガン水酸化物粒子を得た。
一方、得られたリチウム複合酸化物粒子粉末のX線回折パターンによれば、Li(NiCoMn)O2系化合物の回折ピークとともに、Li2ZrO3のピークが確認された。
ニッケル・コバルト・マンガン水酸化物粒子粉末と酸化ジルコニウムの挙動粒子の平均粒径及びZrの含有量を種々変化させた以外は、前記実施例1と同様にして、リチウム複合酸化物からなる正極活物質を得た。
実施例1の前駆体の合成において、2mol/lの硫酸ニッケルと硫酸コバルトおよび硫酸マンガンをモル比においてNi:Co:Mn=1:1:1になるように混合するところを、そこに硫酸ジルコニウムを加えて、Ni:Co:Mn:Zr=33:33:33:1となるように混合し、その水溶液と5.0mol/lアンモニア水溶液を、同時に反応槽内に供給した。続けて実施例1と同様に反応し、さらに乾燥処理して、Ni:Co:Mn:Zr=33:33:33:1の平均二次粒子径(D50)が10.3μmのジルコニウム含有ニッケル・コバルト・マンガン水酸化物粒子を得た。その後、得られたジルコニウム含有ニッケル・コバルト・マンガン水酸化物粒子粉末と炭酸リチウムを、リチウム/(ニッケル+コバルト+マンガン)のモル比が1.05となるように所定量を十分混合し、この混合物を大気中で、950℃にて10時間焼成し、解砕した。
実施例1のように合成・乾燥して、前駆体のニッケル・コバルト・マンガン水酸化物粒子粉末を得て、続いて得られたニッケル・コバルト・マンガン水酸化物粒子粉末と炭酸リチウムを、リチウム/(ニッケル+コバルト+マンガン)のモル比が1.05となるように所定量を十分混合し、この混合物を大気中で、950℃にて10時間焼成し、解砕した。得られたリチウム複合酸化物粒子粉末に、酸化ジルコニウム粉末をモル比においてNi:Co:Mn:Zr=33:33:33:1となるように所定量を十分混合し、この混合物を大気中で、500℃にて3時間焼成して解砕した。
Claims (6)
- ニッケル、コバルト及びマンガンを含有するリチウム複合酸化物粒子粉末であって、該リチウム複合酸化物粒子粉末の粒子表面にZr化合物が存在しており、且つ、前記Zr化合物の化学式がLix(Zr1-yAy)Oz(x、y及びzは、2.0≦x≦8.0、0≦y≦1.0、2.0≦z≦6.0、A:Mg、Al、Ca、Ti、Y、Sn、Ceから選ばれる少なくとも1種)で表され、Zr含有量が0.05~1.0wt%であることを特徴とするリチウム複合酸化物粒子粉末。
- 粒子表面に存在するZr化合物の一次粒子の平均粒径が2.0μm以下である請求項1記載のリチウム複合酸化物粒子粉末。
- 粒子表面に存在するZr化合物において、x=2である請求項1又は2記載のリチウム複合酸化物粒子粉末。
- ニッケル・コバルト・マンガン系化合物粒子粉末、ジルコニウム化合物及びリチウム化合物を混合し、次いで、焼成するリチウム複合酸化物粒子粉末の製造方法において、ニッケル・コバルト・マンガン系化合物粒子粉末の挙動粒子の平均粒径が1.0~25.0μmである請求項1~3のいずれかに記載のリチウム複合酸化物粒子粉末の製造方法。
- 前記ジルコニウム化合物の挙動粒子の平均粒径が4.0μm以下の酸化ジルコニウムである請求項4記載のリチウム複合酸化物粒子粉末の製造方法。
- 請求項1~3のいずれかに記載のリチウム複合酸化物粒子粉末を正極活物質またはその一部として用いた非水電解質二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/384,784 US20150024273A1 (en) | 2012-03-15 | 2013-03-14 | Lithium composite oxide particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery |
KR1020147024811A KR20140135180A (ko) | 2012-03-15 | 2013-03-14 | 비수전해질 이차 전지용 리튬 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 |
CN201380013604.3A CN104169222B (zh) | 2012-03-15 | 2013-03-14 | 非水电解质二次电池用锂复合氧化物颗粒粉末及其制造方法和非水电解质二次电池 |
EP13760854.3A EP2826750A4 (en) | 2012-03-15 | 2013-03-14 | LITHIUM COMPOUND OXIDE PARTICLE POWDER FOR A SECONDARY BATTERY WITH NON-ACID ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY |
US16/223,248 US20190157667A1 (en) | 2012-03-15 | 2018-12-18 | Lithium composite oxide particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-059327 | 2012-03-15 | ||
JP2012059327A JP5903956B2 (ja) | 2012-03-15 | 2012-03-15 | 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/384,784 A-371-Of-International US20150024273A1 (en) | 2012-03-15 | 2013-03-14 | Lithium composite oxide particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery |
US16/223,248 Division US20190157667A1 (en) | 2012-03-15 | 2018-12-18 | Lithium composite oxide particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137380A1 true WO2013137380A1 (ja) | 2013-09-19 |
Family
ID=49161283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057150 WO2013137380A1 (ja) | 2012-03-15 | 2013-03-14 | 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20150024273A1 (ja) |
EP (1) | EP2826750A4 (ja) |
JP (1) | JP5903956B2 (ja) |
KR (1) | KR20140135180A (ja) |
CN (1) | CN104169222B (ja) |
WO (1) | WO2013137380A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160380256A1 (en) * | 2014-02-28 | 2016-12-29 | Andreas Stein | Composite material having domains of lithium oxometallates in a matrix |
EP3151316A4 (en) * | 2014-05-29 | 2018-01-31 | Sumitomo Chemical Company Limited | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015118901A (ja) * | 2013-11-12 | 2015-06-25 | 信越化学工業株式会社 | リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池 |
CN104091918B (zh) * | 2014-07-24 | 2016-08-24 | 中信国安盟固利电源技术有限公司 | 锂离子电池正极材料及其制备方法 |
JP6744053B2 (ja) * | 2015-09-23 | 2020-08-19 | ユミコア | リチウムイオン電池用高リチウム濃度ニッケルマンガンコバルトカソード粉末 |
KR101892612B1 (ko) * | 2016-03-25 | 2018-08-28 | 주식회사 에코프로비엠 | 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질 |
US10249873B2 (en) * | 2016-08-03 | 2019-04-02 | Samsung Electronics Co. Ltd. | Composite positive active material, positive electrode including the same, and lithium battery including the positive electrode |
JP7067858B2 (ja) * | 2016-09-26 | 2022-05-16 | トヨタ自動車株式会社 | リチウムイオン二次電池および該リチウムイオン二次電池用の正極活物質 |
JP6819859B2 (ja) * | 2016-10-27 | 2021-01-27 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 |
KR102656223B1 (ko) | 2017-11-22 | 2024-04-11 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 양극활물질 및 그 제조방법 |
CN109461928B (zh) * | 2018-09-19 | 2020-11-13 | 北京当升材料科技股份有限公司 | 一种高能量密度多元正极材料及其制备方法 |
CN112136184B (zh) * | 2018-10-01 | 2022-08-12 | 松下知识产权经营株式会社 | 卤化物固体电解质材料和使用该材料的电池 |
WO2020148104A1 (en) | 2019-01-15 | 2020-07-23 | Basf Se | Process for making an electrode active material |
TWI770603B (zh) * | 2019-09-13 | 2022-07-11 | 德商贏創運營有限公司 | 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物 |
TWI755056B (zh) * | 2019-09-13 | 2022-02-11 | 德商贏創運營有限公司 | 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物 |
US11955597B2 (en) * | 2019-12-02 | 2024-04-09 | Samsung Electronics Co., Ltd. | Solid electrolyte, preparation method thereof, metal air battery including the same, and electrochemical device including the same |
US11901544B2 (en) * | 2019-12-02 | 2024-02-13 | Samsung Electronics Co., Ltd. | Ion conductor, and positive electrode, solid electrolyte, and lithium battery each including the ion conductor, and method of preparing the ion conductor |
JP7442878B2 (ja) * | 2020-10-09 | 2024-03-05 | 国立研究開発法人産業技術総合研究所 | 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池 |
CN114551857A (zh) * | 2020-11-25 | 2022-05-27 | 宁德新能源科技有限公司 | 正极材料及使用其的电化学装置和电子设备 |
CN113644272B (zh) * | 2021-08-12 | 2023-01-24 | 巴斯夫杉杉电池材料有限公司 | 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法 |
CN114220960B (zh) * | 2021-12-15 | 2024-01-30 | 中南大学 | 一种含有Li6Zr2O7相的层状锂离子电池正极材料及其制备方法 |
CN114613963B (zh) * | 2022-03-21 | 2023-07-04 | 惠州锂威新能源科技有限公司 | 一种负极材料及其制备方法、负极片和二次电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012616A (ja) | 2004-06-25 | 2006-01-12 | Kureha Corp | リチウム二次電池用正極材およびその製造方法 |
JP2006202702A (ja) * | 2005-01-24 | 2006-08-03 | Hitachi Maxell Ltd | 非水電解質二次電池 |
JP2006253140A (ja) | 2005-03-11 | 2006-09-21 | Cheil Industries Inc | 非水電解質リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池 |
WO2007052712A1 (ja) | 2005-11-02 | 2007-05-10 | Agc Seimi Chemical Co., Ltd. | リチウム含有複合酸化物及びその製造方法 |
WO2007102407A1 (ja) | 2006-03-02 | 2007-09-13 | Agc Seimi Chemical Co., Ltd. | 非水電解質二次電池用正極活物質及びその製造方法 |
JP2007273448A (ja) * | 2006-03-09 | 2007-10-18 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2010535699A (ja) | 2007-08-10 | 2010-11-25 | ユミコア ソシエテ アノニム | 硫黄を含むドープされたリチウム遷移金属酸化物 |
JP2011113885A (ja) * | 2009-11-27 | 2011-06-09 | Toda Kogyo Corp | 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100381365C (zh) * | 2003-04-17 | 2008-04-16 | 清美化学股份有限公司 | 含锂-镍-钴-锰复合氧化物及锂二次电池用正极活性物质用原料和它们的制造方法 |
JP5482977B2 (ja) * | 2007-06-15 | 2014-05-07 | 戸田工業株式会社 | 非水電解液二次電池用コバルト酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池 |
KR20090006753A (ko) * | 2007-07-11 | 2009-01-15 | 도다 고교 가부시끼가이샤 | 비수전해질 이차 전지용 복합 정극 활성 물질의 제조 방법 |
WO2009063613A1 (ja) * | 2007-11-12 | 2009-05-22 | Toda Kogyo Corporation | 非水電解液二次電池用Li-Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
EP2698351B1 (en) * | 2011-04-14 | 2017-12-27 | Toda Kogyo Corp. | Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY |
-
2012
- 2012-03-15 JP JP2012059327A patent/JP5903956B2/ja active Active
-
2013
- 2013-03-14 WO PCT/JP2013/057150 patent/WO2013137380A1/ja active Application Filing
- 2013-03-14 EP EP13760854.3A patent/EP2826750A4/en not_active Ceased
- 2013-03-14 US US14/384,784 patent/US20150024273A1/en not_active Abandoned
- 2013-03-14 KR KR1020147024811A patent/KR20140135180A/ko active Search and Examination
- 2013-03-14 CN CN201380013604.3A patent/CN104169222B/zh active Active
-
2018
- 2018-12-18 US US16/223,248 patent/US20190157667A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012616A (ja) | 2004-06-25 | 2006-01-12 | Kureha Corp | リチウム二次電池用正極材およびその製造方法 |
JP2006202702A (ja) * | 2005-01-24 | 2006-08-03 | Hitachi Maxell Ltd | 非水電解質二次電池 |
JP2006253140A (ja) | 2005-03-11 | 2006-09-21 | Cheil Industries Inc | 非水電解質リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池 |
WO2007052712A1 (ja) | 2005-11-02 | 2007-05-10 | Agc Seimi Chemical Co., Ltd. | リチウム含有複合酸化物及びその製造方法 |
WO2007102407A1 (ja) | 2006-03-02 | 2007-09-13 | Agc Seimi Chemical Co., Ltd. | 非水電解質二次電池用正極活物質及びその製造方法 |
JP2007273448A (ja) * | 2006-03-09 | 2007-10-18 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2010535699A (ja) | 2007-08-10 | 2010-11-25 | ユミコア ソシエテ アノニム | 硫黄を含むドープされたリチウム遷移金属酸化物 |
JP2011113885A (ja) * | 2009-11-27 | 2011-06-09 | Toda Kogyo Corp | 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2826750A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160380256A1 (en) * | 2014-02-28 | 2016-12-29 | Andreas Stein | Composite material having domains of lithium oxometallates in a matrix |
EP3151316A4 (en) * | 2014-05-29 | 2018-01-31 | Sumitomo Chemical Company Limited | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
US10938019B2 (en) | 2014-05-29 | 2021-03-02 | Sumitomo Chemical Company, Limited | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP2826750A1 (en) | 2015-01-21 |
JP5903956B2 (ja) | 2016-04-13 |
US20190157667A1 (en) | 2019-05-23 |
CN104169222B (zh) | 2018-03-16 |
EP2826750A4 (en) | 2015-10-28 |
CN104169222A (zh) | 2014-11-26 |
KR20140135180A (ko) | 2014-11-25 |
JP2013193888A (ja) | 2013-09-30 |
US20150024273A1 (en) | 2015-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5903956B2 (ja) | 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP6665060B2 (ja) | Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP6107832B2 (ja) | Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP5218782B2 (ja) | 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP5817143B2 (ja) | 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池 | |
JP6112118B2 (ja) | Li−Ni複合酸化物粒子粉末並びに非水電解質二次電池 | |
JP5382343B2 (ja) | 非水電解質二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP4839633B2 (ja) | 非水電解質二次電池および非水電解質二次電池用正極活物質の製造方法 | |
JP5879761B2 (ja) | リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
KR101456313B1 (ko) | 비수전해액 이차 전지용 망간산리튬 및 그의 제조 방법, 및 비수전해액 이차 전지 | |
JP5482977B2 (ja) | 非水電解液二次電池用コバルト酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池 | |
JP2015015244A (ja) | リチウム二次電池用正極活物質、その製造方法、そしてこれを含むリチウム二次電池用正極およびリチウム二次電池 | |
JP2006107845A (ja) | 非水系電解質二次電池用正極活物質およびこれを用いた非水系電解質二次電池およびその製造方法 | |
JP7292574B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池 | |
WO2015001957A1 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法 | |
WO2013125668A1 (ja) | 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池 | |
US10892483B2 (en) | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery | |
JP2015038830A (ja) | 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP5594500B2 (ja) | 非水電解液二次電池用マンガン酸リチウム、並びに非水電解液二次電池 | |
JP7308586B2 (ja) | 非水系電解質二次電池用正極活物質 | |
WO2013129423A1 (ja) | チタン酸リチウム粒子粉末、非水電解質二次電池用負極活物質粒子粉末並びに非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760854 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147024811 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14384784 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013760854 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |