WO2013136676A1 - アナログ-デジタル変換回路及びその駆動方法 - Google Patents

アナログ-デジタル変換回路及びその駆動方法 Download PDF

Info

Publication number
WO2013136676A1
WO2013136676A1 PCT/JP2013/000978 JP2013000978W WO2013136676A1 WO 2013136676 A1 WO2013136676 A1 WO 2013136676A1 JP 2013000978 W JP2013000978 W JP 2013000978W WO 2013136676 A1 WO2013136676 A1 WO 2013136676A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
period
digital
converter
signal
Prior art date
Application number
PCT/JP2013/000978
Other languages
English (en)
French (fr)
Inventor
徳永 祐介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013547437A priority Critical patent/JP5945832B2/ja
Priority to US14/116,294 priority patent/US8912941B2/en
Priority to CN201380001301.XA priority patent/CN103518328A/zh
Publication of WO2013136676A1 publication Critical patent/WO2013136676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/32Delta-sigma modulation with special provisions or arrangements for power saving, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains, by selectively turning on stages when needed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation

Definitions

  • the present invention relates to an analog-digital conversion circuit and a control method thereof, and more particularly to an analog-digital conversion circuit including an incremental type analog-digital converter.
  • AD analog-to-digital
  • typical ones include flash type, successive approximation type, pipeline type, cyclic type, and ⁇ modulator type.
  • the cyclic type and the ⁇ modulator type can improve conversion accuracy by increasing the number of conversion cycles, and thus can be regarded as integral type (incremental) AD converters.
  • Non-Patent Document 1 discloses that the ⁇ modulator type circuit configuration is particularly suitable for an incremental AD converter. Furthermore, it is also disclosed in Non-Patent Document 1 that accuracy can be significantly improved by a combination of a second-order or higher ⁇ modulator type AD converter and a decimation filter that calculates the output pulse train.
  • AD converters are required to improve accuracy while suppressing an increase in power consumption.
  • an object of the present invention is to provide an AD conversion circuit capable of improving accuracy while suppressing an increase in power consumption.
  • an AD conversion circuit is an analog-digital conversion circuit that converts an analog input signal into a digital output signal, and is one of a high period and a low period. , Including a first initial period that is a first period after reset release and a plurality of normal periods that are located after the first initial period and that are shorter than the first initial period and that are high periods or low periods A clock generation circuit for generating a clock signal; and an incremental type analog-to-digital converter that operates using the clock signal, wherein the analog-to-digital converter has an integrated value corresponding to a voltage value of the analog input signal. An integrator for generating the digital output signal by comparing the integration value with a predetermined reference voltage; and Generating an analog signal corresponding to the digital output signal, and outputs the generated the analog signal to said integrator digital - and a analog converter.
  • the present invention can provide an AD conversion circuit capable of improving accuracy while suppressing an increase in power consumption.
  • FIG. 1 is a circuit diagram illustrating an example of an AD converter according to the embodiment.
  • FIG. 2 is a timing chart showing an example of an internal waveform of the AD converter, illustrating the problem of the embodiment.
  • FIG. 3 is a block diagram illustrating the AD conversion circuit according to the first embodiment.
  • FIG. 4 is a circuit diagram showing an example of the ⁇ AD converter according to the first embodiment.
  • FIG. 5 is a timing chart showing the operation of the ⁇ AD converter according to the first embodiment.
  • FIG. 6 is a timing chart illustrating an example of an internal waveform of the AD conversion circuit according to the first embodiment.
  • FIG. 7 is a timing chart illustrating an example of an internal waveform of the AD conversion circuit according to the first embodiment.
  • FIG. 8 is a timing chart illustrating an example of a clock signal and a reset signal according to the first embodiment.
  • FIG. 9 is a block diagram illustrating a modification of the AD conversion circuit according to the first embodiment.
  • FIG. 10 is a block diagram illustrating the AD conversion circuit according to the first embodiment.
  • FIG. 11 is a timing chart illustrating an example of a clock signal and a reset signal according to the first embodiment.
  • FIG. 12 is a circuit diagram illustrating a reference example of the AD converter according to the second embodiment.
  • FIG. 13 is a circuit diagram illustrating an example of an AD converter according to the second embodiment.
  • FIG. 14 is a circuit diagram showing a modification of the AD converter according to the second embodiment.
  • FIG. 15 is a circuit diagram showing an example of a buffer circuit according to the second embodiment.
  • FIG. 16 is a diagram illustrating the problem of the second embodiment, and is a timing chart illustrating an example of an internal waveform of the buffer circuit.
  • FIG. 17 is a timing chart showing an internal waveform of the AD converter according to the second embodiment.
  • FIG. 18 is a timing chart showing internal waveforms of the AD converter according to the second embodiment.
  • FIG. 19 is a diagram illustrating an image sensor according to the third embodiment.
  • FIG. 20 shows a portable information terminal according to Embodiment 3.
  • FIG. 21 is a diagram illustrating a battery monitor system according to the third embodiment.
  • FIG. 22 is a diagram illustrating a medical image diagnostic system according to the third embodiment.
  • ⁇ AD converter In a conventional ⁇ modulator type AD converter (hereinafter referred to as “ ⁇ AD converter”), when the current consumption of the amplifier is reduced in order to reduce the power consumption of the entire system, the driving ability of the amplifier is lowered. As a result, an error (hereinafter referred to as initial transition error) between the actual waveform and the expected waveform (expected value) during the period from the initial reset state to the steady state exhibiting the expected behavior (hereinafter referred to as initial transition period). Occurs.
  • initial transition error an error between the actual waveform and the expected waveform (expected value) during the period from the initial reset state to the steady state exhibiting the expected behavior
  • FIG. 1 is a circuit diagram showing a configuration of a typical secondary ⁇ AD converter 100.
  • 2 is a diagram showing the actual waveform of the output voltage V 1 of the amplifier 101 in this ⁇ AD converter 100, an expected waveform of the output voltages V 1.
  • the operation period T1 corresponds to the first high period of the clock signal 201 in FIG.
  • Non-Patent Document 1 in the case of a second-order or higher-order ⁇ AD converter, the accuracy can be amplified by applying decimation with weighting to the digital pulse after AD conversion. it can.
  • the first first cycle digital code has the highest weight. Therefore, if an error occurs in the digital code in the first cycle, the error after the decimation process also increases. That is, the above problem becomes more remarkable in the second-order or higher-order ⁇ AD converter.
  • a method of increasing the driving capability of the amplifier 101 can be considered.
  • increasing the driving capability of the amplifier 101 directly leads to an increase in power consumption of the AD converter.
  • an increase in power consumption of the AD converter greatly affects an increase in power consumption of the entire device.
  • this increase in power consumption becomes a problem.
  • an AD conversion circuit that can improve accuracy by suppressing an increase in power consumption and reducing an error between an expected waveform after reset release and an actual waveform will be described.
  • an analog-digital conversion circuit is an analog-digital conversion circuit that converts an analog input signal into a digital output signal, and is one of a high period and a low period.
  • a first initial period that is a first period after reset release, and a plurality of normal periods that are located after the first initial period and that are shorter than the first initial period and that are a high period or a low period,
  • an incremental type analog-digital converter that operates using the clock signal, the analog-digital converter corresponding to the voltage value of the analog input signal
  • An integrator that generates an integrated value, and a converter that generates the digital output signal by comparing the integrated value with a predetermined reference voltage. Regulator and the digital to generate an analog signal corresponding to the output signal, and outputs the generated the analog signal to said integrator digital - and a analog converter.
  • the analog-digital conversion circuit improves accuracy by reducing an error between an expected waveform and a real waveform after reset release while suppressing an increase in power consumption. it can.
  • the length of the first initial period may be an integer multiple of 2 or more of the length of the normal period.
  • the first initial period can be easily made longer than the normal period in terms of circuit configuration by using a counter or the like.
  • the analog-digital converter may be a ⁇ modulator type AD converter.
  • the plurality of normal periods may include a second period after the reset release in the clock signal and a period thereafter.
  • the clock signal may be a second period after the reset is released and may include a second initial period longer than the normal period.
  • the analog-digital converter may further include a buffer circuit arranged between the output terminal of the integrator and the input terminal of the comparator.
  • the analog-digital conversion circuit can reliably transfer a signal to the comparator.
  • the analog-digital converter further includes a capacity adder that generates an addition value of the analog input signal and the integral value, and the comparator compares the addition value with the reference voltage.
  • the digital output signal may be generated.
  • the analog-digital conversion circuit according to one embodiment of the present invention can widen the dynamic range of the AD converter.
  • the analog-digital converter may further include a capacitive element that is connected to the output terminal of the capacitive adder and holds the added value.
  • the analog-digital conversion circuit can reliably transfer a signal from the capacitance adder to the comparator.
  • a battery monitor system includes the analog-digital conversion circuit.
  • the medical diagnostic imaging system includes the imaging device.
  • An analog-digital converter driving method is an analog-digital converter driving method for converting an analog input signal into a digital output signal, and the analog-digital converter includes a clock.
  • An incremental type analog-to-digital converter that operates using a signal, and compares the integration value and a predetermined reference voltage with an integrator that generates an integration value corresponding to the voltage value of the analog input signal
  • a comparator that generates the digital output signal
  • a digital-analog converter that generates an analog signal corresponding to the digital output signal and outputs the generated analog signal to the integrator.
  • the length of the first initial period is an integer multiple of 2 or more of the length of the normal period.
  • Embodiment 1 The AD converter circuit according to Embodiment 1 of the present invention lengthens the first operation period (high period or low period) after reset release. Thereby, the AD converter circuit can reduce an error between the expected waveform and the actual waveform after the reset is released while suppressing an increase in power consumption.
  • FIG. 3 is a diagram showing a configuration of the AD conversion circuit 10 according to Embodiment 1 of the present invention.
  • the AD conversion circuit 10 shown in FIG. 3 converts the analog input signal Ain into a digital output signal Dout.
  • the AD conversion circuit 10 includes an AD converter 100 and a clock generation circuit 150.
  • the AD converter 100 is, for example, the second-order ⁇ AD converter shown in FIG. 1, and uses the clock signal 211 ( ⁇ 1 ) and the clock signal 212 ( ⁇ 2 ) in synchronization with the clock signals 211 and 212. Operate.
  • the AD converter 100 shown in FIG. 1 includes integrators 130 and 131, a comparator 103, a 1-bit DA converter 104, capacitors 105 and 107, and switches 111 to 114 and 121 to 124.
  • the analog input terminal to which the analog input signal Ain is input is connected to the input terminal of the integrator 130 via the switch 111, the capacitor 105, and the switch 122.
  • a node between the capacitor 105 and the switch 122 is connected to a ground potential line (GND) through the switch 112.
  • the output terminal of the integrator 130 is connected to the input terminal of the integrator 131 via the switch 123, the capacitor 107 and the switch 114.
  • a node between the capacitor 107 and the switch 123 is connected to the ground potential line through the switch 113.
  • a node between the capacitor 107 and the switch 114 is connected to the ground potential line via the switch 124.
  • the parasitic capacitance 109 is connected between the output terminal of the integrator 131 and the ground potential line.
  • the integrator 130 includes an amplifier 101 and a capacitor 106.
  • the integrator 131 includes an amplifier 102 and a capacitor 108.
  • the comparator 103 is connected to the output terminal of the integrator 131.
  • the comparator 103 compares the output signal of the integrator 131 with a predetermined reference voltage Vref, and outputs a digital output signal Dout corresponding to the magnitude relationship between the output signal of the integrator 131 and the reference voltage Vref.
  • the DA converter 104 outputs an analog signal corresponding to the logical value of the digital output signal Dout.
  • the switch 121 is connected between a node between the switch 111 and the capacitor 105 and the output terminal of the DA converter 104.
  • Switches 111-114 are switched on and off in response to the clock signal phi 1.
  • Switches 121-124 are switched on and off in response to the clock signal phi 2. For example, these switches are turned on when the supplied clock signal is at a high level and turned off when the clock signal is at a low level. Note that these switches may be turned on when the supplied clock signal is at a low level. In this case, the logic of the clock signal ⁇ 1 ⁇ 2 exemplified in this embodiment may be inverted.
  • the AD converter 100 is not limited to a secondary ⁇ AD converter, and may be a primary or tertiary ⁇ AD converter.
  • the AD converter 100 may be an incremental AD converter other than the ⁇ AD converter.
  • the AD converter 100 compares one or more integrators that generate an integral value according to the voltage value of the analog input signal Ain with the above-described integral value and a predetermined reference voltage to compare the digital value.
  • Incremental AD conversion including at least a comparator that generates an output signal Dout and a digital-analog converter that generates an analog signal corresponding to the digital output signal Dout and outputs (feeds back) the generated analog signal to the integrator. If it is a vessel.
  • the AD converter 100 may be a cyclic AD converter.
  • FIG. 4 is a circuit diagram of the primary ⁇ AD converter 100A.
  • FIG. 5 is a timing chart of the AD converter 100A. 5 shows an analog input signal Ain is the output voltage V 1 and the digital output signal Dout when the first value by the solid line, when the analog input signal Ain is the first value is greater than the second value output voltage V 1 and the digital output signal Dout are indicated by dotted lines.
  • the clock signal phi 1 is by a high level, the electric charge corresponding to the voltage value of the analog input signal Ain is charged in the capacitor 105.
  • the output voltages V 1 by the charge held in the capacitor 105 is integrated by the integrator 130 is increased by ⁇ Va per cycle (one cycle of the clock signal).
  • the comparator 103 outputs a low level as a digital output signal Dout.
  • the DA converter 104 outputs, for example, 0 V (GND level).
  • the output voltage V 1 is the larger than the reference voltage Vref, the logic of the digital output signal Dout is inverted. Thereby, the DA converter 104 outputs a predetermined analog voltage value (for example, VDD). As a result, the output voltage V 1 of the integrator 130 is reset. Thereafter, the above operation is repeated.
  • the digital output signal Dout becomes high level in a cycle corresponding to the analog voltage value of the analog input signal Ain. Therefore, based on this cycle, a digital value corresponding to the analog input signal Ain can be determined.
  • the ⁇ AD converter 100 can improve the conversion accuracy by increasing the number of conversion cycles.
  • the clock generation circuit 150 generates a clock signal 211 ( ⁇ 1 ) and a clock signal 212 ( ⁇ 2 ) that are non-overlapping clock signals whose active periods (high periods in this example) do not overlap each other.
  • FIG. 6 is a diagram illustrating an example of the clock signals 211 and 212.
  • the initial period T2 here, the high period of the clock signal 211
  • the normal period T3 located after the initial period T2. This can reduce the error between the expected waveform and the actual waveform of the output voltage V 1.
  • both ends of each of the capacitors 105 to 108 included in the AD converter 100 are short-circuited by a plurality of switches (not shown), and the digital output signal Dout is set to a predetermined logic (for example, low level). Level).
  • the length of the initial period T2 be sufficiently long according to a period determined by the driving capabilities of the amplifiers 101 and 102.
  • the length of the initial period T2 is set sufficiently long with respect to the time constant of the AD converter 100.
  • the time constant is a product of the capacitance value C of the capacitor 106 and the output impedance of the amplifier 101 included in the integrator 130.
  • the ⁇ AD converter 100 shown in FIG. 1 performs a comparison operation at the rising timing of the clock signal 212. That is, the error between the expected waveform and the actual waveform at this timing is preferably zero.
  • the initial period T2 is preferably set to be twice or more the normal period T3.
  • the first period after reset cancellation of the high period and low period included in the AD conversion period after reset cancellation is from the normal period T3 which is the second and subsequent periods. Also long.
  • the plurality of normal periods T3 include a second period after the reset release in the clock signals 211 and 212 and a period thereafter.
  • the clock generation circuit 150 may generate the clock signals 221 and 222 shown in FIG. 7 instead of the clock signals 211 and 212.
  • the clock signals 221 and 222 are clock signals whose cycle period is extended by the first cycle. That is, in the clock signals 221 and 222, the cycle period T4 of the first cycle is longer than the cycle period T5 of the subsequent cycle. In other words, the clock signals 221 and 222 are clock signals whose frequency is lowered by one cycle.
  • the cycle period T4 is preferably set to be twice or more the cycle period T5.
  • the initial period T6 that is the first period after the reset cancellation and the initial period T7 that is the second period among the high period and the low period included in the AD conversion period after the reset cancellation Only longer than the normal period T3, which is the third and subsequent periods.
  • the clock signals 221 and 222 are the first period after reset release, the initial period T6 longer than the normal period T3, the second period after reset release, and the initial period T7 longer than the normal period T3. including.
  • the clock signals 211 and 212 shown in FIG. 6 and the clock signals 221 and 222 shown in FIG. 7 is preferable depends on functions of peripheral circuits and the like. Specifically, for example, when the peripheral circuit has a function of changing the frequency of the clock signal, by using this function, the frequency change shown in FIG. Can be realized. On the other hand, the expected waveform and the actual waveform of the output voltages V 1 until the rising timing of the clock signal phi 2 is required to be consistent, as described above. Therefore, extending only the initial initial period as shown in FIG. 6 can satisfy the request while suppressing an increase in the overall processing time.
  • the AD conversion circuit 10 can perform AD conversion without reducing accuracy even if the power consumption of the components of the AD converter 100 is reduced.
  • the power consumption of each AD converter 100 can be reduced, a high-definition image sensor having more pixels than the conventional one can be realized.
  • the clock generation circuit 150 generates the clock signals 211 and 212 (or the clock signals 221 and 222) using the clock signal 231 that is a non-non-overlapping clock signal, for example.
  • FIG. 8 is a diagram illustrating an example of the clock signal 231 and the reset signal 232.
  • the clock signal 231 has an initial period T8 that is at least the first cycle operation period (high period in this example) after the reset signal 232 becomes inactive. It is set longer than the period.
  • the length of the initial period T8 is set sufficiently long with respect to the time constant of the AD converter 100. Thereby, an initial transition error can be reduced.
  • the clock generation circuit 150 may generate the clock signals 211 and 212 (or the clock signals 221 and 222) using a normal clock signal having a constant frequency.
  • the clock signals 211 and 212 (or the clock signals 221 and 222) can be generated from a normal clock signal by using a delay circuit or a frequency divider.
  • the clock generation circuit 150 may have a function of generating a normal clock signal or a clock signal 231.
  • clock generation circuit 150 is not necessarily provided for each AD converter 100, and may be shared by a plurality of AD converters 100.
  • clock signals 211 and 212 generated by one clock generation circuit 150 may be supplied to a plurality of AD converters 100.
  • the AD conversion circuit 10 lengthens the initial period, which is the first operation period (high period or low period) after reset release. Thereby, the AD converter circuit 10 can reduce an error between the expected waveform and the actual waveform after reset release while suppressing an increase in power consumption.
  • the length of the initial period T2 is an integer multiple of 2 or more of the length of the normal period T3.
  • the length of the initial period T2 is an integer multiple of 2 or more of the length of the normal period T3.
  • the AD conversion circuit 10 shown in FIG. 10 includes a counter 160 and an OR circuit 170 in addition to the configuration of the AD conversion circuit 10 shown in FIG.
  • the counter 160 is driven by a reference clock signal 230 having a constant period and duty ratio (ratio between the length of the high period and the length of the low period) and the reset signal 232. Further, the counter 160 generates the control signal 233 shown in FIG. 11 using the reference clock signal 230 and the reset signal 232.
  • the OR circuit 170 generates a clock signal 231 that is a logical sum of the control signal 233 and the reference clock signal 230, and outputs the generated clock signal 231 to the clock generation circuit 150. With such a configuration, the clock signal 231 can be easily generated.
  • FIG. 11 shows an example when the length of the initial period T2 is seven times the length of the normal period T3.
  • the overall configuration of the AD converter circuit according to the present embodiment is the same as the configuration shown in FIG. 3, and is a configuration in which the AD converter 100 shown in FIG. 3 is replaced with a feedforward type second-order ⁇ AD converter 300.
  • FIG. 12 is a circuit diagram of a feedforward type secondary ⁇ AD converter 300.
  • the AD converter 300 further includes a capacity adder 330 in addition to the AD converter 100 shown in FIG.
  • the capacity adder 330 generates an addition value of the analog input signal Ain, the integration value generated by the integrator 130, and the integration value generated by the integrator 131.
  • the comparator 103 generates a digital output signal Dout by comparing the added value generated by the capacity adder 330 with the reference voltage Vref.
  • the capacity adder 330 includes capacitors 301, 302, and 303 and switches 311, 312, 313, 321, 322, and 323.
  • the capacitor 301 is inserted in a bypass path from the analog input terminal to which the analog input signal Ain is input to the input terminal of the comparator 103.
  • the capacitor 302 is inserted in a bypass path from the output terminal of the integrator 130 to the input terminal of the comparator 103.
  • the configuration shown in FIG. 12 causes a problem in the actual design.
  • a problem occurs in the transfer of a signal from the capacity adder 330 to the comparator 103.
  • the correct capacity addition result is because the clock signal phi 1 is held only at the high level, the moment the clock signal phi 1 goes low, the capacity for holding the signal is only a parasitic capacitance 109.
  • the parasitic capacitance 109 is usually only a few fF at most, the signal held by the parasitic capacitance 109 is very sensitive to noise. Therefore, it is difficult to maintain this signal.
  • the capacitor 401 having a sufficient capacitance value is replaced (or added) with the parasitic capacitor 109, so that the transfer from the capacitor adder 330 to the comparator 103 can be reliably performed.
  • the capacitance 401 is a capacitance element for holding the added value generated by the capacitance adder 330, and has a capacitance value that is 100 times or more (several hundreds fF or more) of the parasitic capacitance 109, for example.
  • a signal transmission circuit including a buffer circuit 501 and a switch 502 may be inserted after the capacitance adder 330 and before the comparator 103 as in the AD converter 500 shown in FIG.
  • the capacitor adder 330 and the capacitor 401 (or the combined capacitor of the capacitor 401 and the parasitic capacitor 109) can be separated.
  • the parasitic capacitance as a result of the capacitance addition becomes small enough to be ignored.
  • FIG. 15 is a circuit diagram of the signal transmission circuit and the comparator 103.
  • the buffer circuit 501 is realized by a source follower circuit in FIG. Note that the buffer circuit 501 may be realized by a device other than the source follower circuit.
  • the buffer circuit 501 receives the transistor 511 functioning as a current source, the output voltage V cal of the capacitor adder 330, the transistor 512 constituting the drain ground circuit, and the power consumption at the time of resetting A transistor 513 that realizes a pull-up function for performing the pull-up function, and a transistor 514 that realizes a pull-down function for minimizing power consumption during reset.
  • the AD converter 100 shown may further include a buffer circuit 501 (signal transmission circuit). That is, the buffer circuit 501 (signal transmission circuit) may be disposed between the output terminal of the integrator 131 and the input terminal of the comparator 103.
  • FIG. 16 is a diagram illustrating the problem of the present embodiment, and is a diagram illustrating an expected waveform and an actual waveform of the input voltage V sig of the comparator 103 when clock signals 201 and 202 having a normal constant period are supplied. It is. As shown in FIG. 16, the same problem as the output voltage V 1 in the first embodiment described above occurs even in the input voltage V sig of the comparator 103.
  • FIG. 17 is a diagram illustrating an expected waveform and an actual waveform of V sig in the present embodiment.
  • the initial period T2 that is the first period after reset release included in the clock signals 211 and 212 is set to be greater than the time constant of the source follower circuit of the buffer circuit 501.
  • the initial transition error of the input voltage V sig of the comparator 103 can be made zero in addition to the initial transition error of the output voltage V 1 of the amplifier 101.
  • clock signal phi 1 and phi 2 it may be used clock signal 221 and clock signal 222 extended cycle period T4 of the first cycle.
  • FIG. 19 is a block diagram of an image sensor 600 according to this embodiment.
  • the imaging device 600 includes AD converter arrays 601 and 602, a light receiving element array 603 in which a plurality of light receiving elements are arranged in a matrix, a controller 604, and a peripheral circuit 605.
  • AD converter arrays 601 and 602 are arranged above and below the light receiving element array 603.
  • Each AD converter array 601 and 602 has AD converters arranged on the order of thousands. As a result, the total power consumption of these AD converters is large, and it is difficult to increase the number of pixels due to problems of heat and battery life.
  • the AD conversion circuit 10 described above, the current consumption of the incremental AD converter can be reduced to the minimum necessary level. As a result, it is possible to increase the number of pixels, reduce heat generation, and extend battery life.
  • the AD conversion circuit 10 according to the above embodiment is extremely suitable for an apparatus using a plurality of AD converters, for example, an image sensor.
  • the image sensor 600 may be used in a digital camera such as a digital still camera or a digital video camera.
  • AD conversion circuit 10 may be used for other devices.
  • a portable information terminal typified by a smartphone and a tablet terminal has a CMOS image sensor mounted on the camera portion. Therefore, as shown in FIG. 20, the image sensor 600 may be applied to a portable information terminal 610. Thereby, the power consumption of the CMOS image sensor can be reduced, so that the battery life can be extended.
  • the AD conversion circuit 10 may be applied to a battery monitor system 620 as shown in FIG. Specifically, the AD conversion circuit 10 is used in a battery monitor 622 that monitors the battery 621. As described above, since the AD conversion circuit 10 can realize low power consumption, it can simultaneously satisfy very small standby power and a very wide dynamic range. Thus, the AD conversion circuit 10 is suitable for an in-vehicle battery monitor system.
  • the AD conversion circuit 10 may be applied to a medical image diagnostic system 630 as shown in FIG.
  • a medical image diagnostic system 630 As shown in FIG.
  • the imaging time can be extended by incorporating the imaging element 600 into the capsule endoscope 632.
  • the AD conversion circuit 10 can also be applied to a medical image diagnostic apparatus 633.
  • the AD conversion circuit and the device using the AD conversion circuit according to the embodiment have been described.
  • the present invention is not limited to this embodiment.
  • each processing unit included in the AD conversion circuit and the imaging device according to the above-described embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • MOS transistors In the above description, an example using MOS transistors is shown, but other types of transistors may be used.
  • the circuit configuration shown in the circuit diagram is an example, and the present invention is not limited to the circuit configuration. That is, like the above circuit configuration, a circuit that can realize a characteristic function of the present invention is also included in the present invention.
  • the present invention includes a device in which a device such as a switching device (transistor), a resistor, or a capacitor is connected in series or in parallel to a certain device within a range in which a function similar to the above circuit configuration can be realized. It is.
  • the term “connected” in the above embodiment is not limited to the case where two terminals (nodes) are directly connected, and the two terminals ( Node) is connected through an element.
  • AD converter circuit which concerns on the one or some aspect of this invention, and the apparatus using the same were demonstrated based on embodiment, this invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, one or more of the present invention may be applied to various modifications that can be conceived by those skilled in the art, or forms constructed by combining components in different embodiments. It may be included within the scope of the embodiments.
  • the present invention can be applied to an incremental AD converter.
  • the present invention is suitable for an image sensor using an AD converter.
  • the present invention is useful for a digital still camera and a digital video camera using an image sensor, a mobile phone, a smartphone, a tablet terminal, and the like equipped with these functions.
  • the present invention is also useful for an in-vehicle battery monitor system equipped with a voltage measuring AD converter that requires a very wide dynamic range, and a medical image diagnostic system.
  • AD converter circuit 100 100A, 300, 400, 500 AD converter 101, 102 Amplifier 103 Comparator 104 DA converter 105, 106, 107, 108, 301, 302, 303, 401 Capacitance 109 Parasitic capacitance 111, 112, 113 , 114, 121, 122, 123, 124, 311, 312, 313, 321, 322, 502 switch 130, 131 integrator 150 clock generation circuit 160 counter 170 OR circuit 201, 202, 211, 212, 221, 222, 231 Clock signal 230 Reference clock signal 232 Reset signal 233 Control signal 330 Capacity adder 501 Buffer circuit 511, 512, 513, 514 Transistor 600 Image sensor 601 and 602 AD converter array 603 Light reception Element array 604 Controller 605 Peripheral circuit 610 Portable information terminal 620 Battery monitor system 621 Battery 622 Battery monitor 630 Medical image diagnostic system 631 Fiber type endoscope 632 Capsule type endoscope 633 Medical image

Abstract

 AD変換回路(10)は、ハイ期間及びロー期間の一方の期間であり、リセット解除後の1番目の期間である第1初期期間(T2)と、当該第1初期期間(T2)より後に位置し、かつ、当該第1初期期間(T2)より短いハイ期間又はロー期間である複数の通常期間(T3)とを含むクロック信号(211及び212)を生成するクロック生成回路(150)と、クロック信号(211及び212)を用いて動作するインクリメンタル型のAD変換器(100)とを備える。

Description

アナログ-デジタル変換回路及びその駆動方法
 本発明は、アナログ-デジタル変換回路及びその制御方法に関し、特に、インクリメンタル型のアナログ-デジタル変換器を備えるアナログ-デジタル変換回路に関する。
 AD(アナログ-デジタル)変換器には様々なタイプがあり、その代表的なものには、フラッシュ型、逐次比較型、パイプライン型、サイクリック型、及びΔΣモジュレータ型等がある。特にサイクリック型及びΔΣモジュレータ型は、変換サイクル数を増やすことで変換精度を向上させることができるため、積分型(インクリメンタル型)AD変換器と見なすことができる。
 実際の設計では、サイクリック型の回路構成の場合、その構成要素であるアナログ素子(特にアンプ)の精度でシステム全体の精度が制限されるため、精度の向上には限りがある。一方、ΔΣモジュレータ型の回路構成では、用いられるアナログ素子の精度を向上させることなく、単純に変換サイクル数のみを増やすことで変換精度をいくらでも向上させることができる。このように、ΔΣモジュレータ型の回路構成が、特にインクリメンタル型AD変換器に適することが、非特許文献1にて開示されている。さらには、2次以上のΔΣモジュレータ型AD変換器と、その出力パルス列を演算するデシメーションフィルタとの組み合わせにより、大幅に精度を改善できることも、非特許文献1にて開示されている。
J.Markus,J.Silva,G.C.Temes,"Theory and Applications of Incremental ΔΣ Converters," IEEE TCAS-I,Vol.51,No.4,pp.678-690,Apr.2004. J.Silva,J.Steensgaard,G.C.Temes,"Wideband low-distortion delta-sigma ADC topology," IEEE Electronics Letters,Vol.37,No.12,pp.737-738,Jun.2001.
 しかしながら、このようなAD変換器では、消費電力の増加を抑制しつつ、精度を向上することが求められている。
 そこで、本発明は、消費電力の増加を抑制しつつ、精度を向上できるAD変換回路を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係るAD変換回路は、アナログ入力信号をデジタル出力信号に変換するアナログ-デジタル変換回路であって、ハイ期間及びロー期間の一方の期間であり、リセット解除後の1番目の期間である第1初期期間と、当該第1初期期間より後に位置し、かつ、当該第1初期期間より短いハイ期間又はロー期間である複数の通常期間とを含むクロック信号を生成するクロック生成回路と、前記クロック信号を用いて動作するインクリメンタル型のアナログ-デジタル変換器とを備え、前記アナログ-デジタル変換器は、前記アナログ入力信号の電圧値に応じた積分値を生成する積分器と、前記積分値と予め定められた基準電圧とを比較することで前記デジタル出力信号を生成するコンパレータと、前記デジタル出力信号に応じたアナログ信号を生成し、生成した前記アナログ信号を前記積分器に出力するデジタル-アナログ変換器とを含む。
 なお、これらの全般的又は具体的な態様は、システム、方法、又は集積回路で実現されてもよく、システム、方法、及び集積回路の任意な組み合わせで実現されてもよい。
 以上により、本発明は、消費電力の増加を抑制しつつ、精度を向上できるAD変換回路を提供できる。
図1は、実施の形態に係るAD変換器の一例を示す回路図である。 図2は、実施の形態の課題を示す図であり、AD変換器の内部波形の一例を示すタイミングチャートである。 図3は、実施の形態1に係るAD変換回路を示すブロック図である。 図4は、実施の形態1に係るΔΣAD変換器の一例を示す回路図である。 図5は、実施の形態1に係るΔΣAD変換器の動作を示すタイミングチャートである。 図6は、実施の形態1に係るAD変換回路の内部波形の一例を示すタイミングチャートである。 図7は、実施の形態1に係るAD変換回路の内部波形の一例を示すタイミングチャートである。 図8は、実施の形態1に係るクロック信号及びリセット信号の一例を示すタイミングチャートである。 図9は、実施の形態1に係るAD変換回路の変形例を示すブロック図である。 図10は、実施の形態1に係るAD変換回路を示すブロック図である。 図11は、実施の形態1に係るクロック信号及びリセット信号の一例を示すタイミングチャートである。 図12は、実施の形態2に係るAD変換器の参考例を示す回路図である。 図13は、実施の形態2に係るAD変換器の一例を示す回路図である。 図14は、実施の形態2に係るAD変換器の変形例を示す回路図である。 図15は、実施の形態2に係るバッファ回路の一例を示す回路図である。 図16は、実施の形態2の課題を示す図であり、バッファ回路の内部波形の一例を示すタイミングチャートである。 図17は、実施の形態2に係るAD変換器の内部波形を示すタイミングチャートである。 図18は、実施の形態2に係るAD変換器の内部波形を示すタイミングチャートである。 図19は、実施の形態3に係る撮像素子を示す図である。 図20は、実施の形態3に係る携帯情報端末を示す図である。 図21は、実施の形態3に係るバッテリモニタシステムを示す図である。 図22は、実施の形態3に係る医療用画像診断システムを示す図である。
 (発明の基礎となった知見)
 本発明者は、以下の課題を見出した。
 従来のΔΣモジュレータ型AD変換器(以下、ΔΣAD変換器)では、システム全体の低消費電力化を狙ってアンプを低消費電流化すると、アンプの駆動能力が低下する。これにより、初期リセット状態から期待される振る舞いを示す定常状態に至るまでの期間(以下、初期遷移期間)に、実波形と期待波形(期待値)との間に誤差(以下、初期遷移誤差)が生じる。
 図1は、典型的な2次のΔΣAD変換器100の構成を示す回路図である。また、図2は、このΔΣAD変換器100におけるアンプ101の出力電圧Vの実波形と、当該出力電圧Vの期待波形を示す図である。
 図2に示すように、出力電圧Vの初期遷移期間T0において、当該出力電圧Vの実波形と期待波形との間に誤差が生じる。これは、定常動作時のアンプの振幅に比べて初期遷移期間に必要な電圧変動が大きいためである。また、定常動作時に最も効率よく動作するように省電力設計されたアンプでは、リセット解除後の最初の動作期間T1でアンプ101の出力ノードを充分に駆動しきれないためである。この例では、動作期間T1は、図2におけるクロック信号201の最初のハイ期間に相当する。
 なお、アンプ102の出力電圧に対しても同様の問題が発生する。
 また、非特許文献1に示されているように、2次以上の高次のΔΣAD変換器の場合、AD変換後のデジタルパルスに対して重み付けをもつデシメーションを掛けることで精度を増幅することができる。しかしながら、2次以上のΔΣAD変換器では、最初の1サイクル目のデジタルコードは最も重み付けが大きい。よって、1サイクル目のデジタルコードに誤差が生じると、デシメーション処理後の誤差も大きくなってしまう。つまり、2次以上のΔΣAD変換器では、上記問題がより顕著となる。
 また、この問題を解決する単純な方法としてアンプ101の駆動能力を増加させる方法が考えられる。しかしながら、アンプ101の駆動能力を増加させることは、AD変換器の消費電力の増加に直結する。特に、非常に多くのAD変換器を備える撮像素子等では、AD変換器の消費電力の増加は、素子全体の消費電力の増加に大きな影響を与える。さらに、このような撮像素子が、省電力が要求されるバッテリ駆動の機器等に搭載される場合には、特に、この消費電力の増加が問題となる。
 そこで、本実施の形態では、消費電力の増加を抑制しつつ、リセット解除後の期待波形と実波形との誤差を低減することで、精度を向上できるAD変換回路について説明する。
 この問題を解決するために、本発明の一態様に係るアナログ-デジタル変換回路は、アナログ入力信号をデジタル出力信号に変換するアナログ-デジタル変換回路であって、ハイ期間及びロー期間の一方の期間であり、リセット解除後の1番目の期間である第1初期期間と、当該第1初期期間より後に位置し、かつ、当該第1初期期間より短いハイ期間又はロー期間である複数の通常期間とを含むクロック信号を生成するクロック生成回路と、前記クロック信号を用いて動作するインクリメンタル型のアナログ-デジタル変換器とを備え、前記アナログ-デジタル変換器は、前記アナログ入力信号の電圧値に応じた積分値を生成する積分器と、前記積分値と予め定められた基準電圧とを比較することで前記デジタル出力信号を生成するコンパレータと、前記デジタル出力信号に応じたアナログ信号を生成し、生成した前記アナログ信号を前記積分器に出力するデジタル-アナログ変換器とを含む。
 この構成によれば、本発明の一態様に係るアナログ-デジタル変換回路は、消費電力の増加を抑制しつつ、リセット解除後の期待波形と実波形との誤差を低減することで、精度を向上できる。
 例えば、前記第1初期期間の長さは、前記通常期間の長さの2以上の整数倍であってもよい。
 この構成によれば、カウンタ等を用いることにより、回路構成上容易に第1初期期間を通常期間より長くすることができる。
 例えば、前記アナログ-デジタル変換器は、ΔΣモジュレータ型AD変換器であってもよい。
 例えば、前記複数の通常期間は、前記クロック信号における前記リセット解除後の2番目の期間及びそれ以降の期間を含んでもよい。
 例えば、前記クロック信号は、さらに、前記リセット解除後の2番目の期間であり、前記通常期間より長い第2初期期間を含んでもよい。
 例えば、前記アナログ-デジタル変換器は、さらに、前記積分器の出力端子と前記コンパレータの入力端子との間に配置されたバッファ回路を備えてもよい。
 この構成によれば、本発明の一態様に係るアナログ-デジタル変換回路は、コンパレータへの信号の受け渡しを確実に行える。
 例えば、前記アナログ-デジタル変換器は、さらに、前記アナログ入力信号と前記積分値との加算値を生成する容量加算器を備え、前記コンパレータは、前記加算値と前記基準電圧とを比較することで前記デジタル出力信号を生成してもよい。
 この構成によれば、本発明の一態様に係るアナログ-デジタル変換回路は、AD変換器のダイナミックレンジを広げることができる。
 例えば、前記アナログ-デジタル変換器は、さらに、前記容量加算器の出力端子に接続され、前記加算値を保持するための容量素子を備えてもよい。
 この構成によれば、本発明の一態様に係るアナログ-デジタル変換回路は、容量加算器からコンパレータへ信号の受け渡しを確実に行える。
 また、本発明の一態様に係るバッテリモニタシステムは、前記アナログ-デジタル変換回路を備える。
 また、本発明の一態様に係る医療用画像診断システムは、前記撮像素子を備える。
 また、本発明の一態様に係るアナログ-デジタル変換器の駆動方法は、アナログ入力信号をデジタル出力信号に変換するアナログ-デジタル変換器の駆動方法であって、前記アナログ-デジタル変換器は、クロック信号を用いて動作するインクリメンタル型のアナログ-デジタル変換器であり、前記アナログ入力信号の電圧値に応じた積分値を生成する積分器と、前記積分値と予め定められた基準電圧とを比較することで前記デジタル出力信号を生成するコンパレータと、前記デジタル出力信号に応じたアナログ信号を生成し、生成した前記アナログ信号を前記積分器に出力するデジタル-アナログ変換器とを含み、前記駆動方法は、ハイ期間及びロー期間の一方の期間であり、リセット解除後の1番目の期間である第1初期期間と、当該第1初期期間より後に位置し、かつ、当該第1初期期間より短いハイ期間又はロー期間である複数の通常期間とを含むクロック信号を前記アナログ-デジタル変換器に供給する。
 例えば、前記第1初期期間の長さは、前記通常期間の長さの2以上の整数倍である。
 なお、これらの全般的又は具体的な態様は、システム、方法、又は集積回路で実現されてもよく、システム、方法、及び集積回路の任意な組み合わせで実現されてもよい。
 以下、本発明の実施の形態を、図面を参照して詳しく説明する。なお、図中の同一又は相当部分には同一の符号を付し、その説明を繰り返さない場合もある。
 なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 本発明の実施の形態1に係るAD変換回路は、リセット解除後の最初の動作期間(ハイ期間又はロー期間)を長くする。これにより、当該AD変換回路は、消費電力の増加を抑制しつつ、リセット解除後の期待波形と実波形との誤差を低減できる。
 図3は、本発明の実施の形態1に係るAD変換回路10の構成を示す図である。図3に示すAD変換回路10は、アナログ入力信号Ainをデジタル出力信号Doutに変換する。このAD変換回路10は、AD変換器100と、クロック生成回路150とを備える。
 AD変換器100は、例えば、図1に示す2次のΔΣAD変換器であり、クロック信号211(φ)及びクロック信号212(φ)を用いて、当該クロック信号211及び212に同期して動作する。
 図1に示すAD変換器100は、積分器130及び131と、コンパレータ103と、1ビットのDA変換器104と、容量105及び107と、スイッチ111~114及び121~124とを備える。
 アナログ入力信号Ainが入力されるアナログ入力端子は、スイッチ111、容量105及びスイッチ122を介して、積分器130の入力端子に接続されている。また、容量105とスイッチ122との間のノードは、スイッチ112を介して、接地電位線(GND)に接続されている。
 積分器130の出力端子は、スイッチ123、容量107及びスイッチ114を介して積分器131の入力端子に接続されている。また、容量107とスイッチ123との間のノードは、スイッチ113を介して、接地電位線に接続されている。容量107とスイッチ114との間のノードは、スイッチ124を介して、接地電位線に接続されている。寄生容量109は、積分器131の出力端子と接地電位線との間に接続されている。
 積分器130は、アンプ101と、容量106とを含む。積分器131は、アンプ102と、容量108とを含む。
 コンパレータ103は、積分器131の出力端子に接続されている。このコンパレータ103は、積分器131の出力信号と、予め定められた基準電圧Vrefとを比較し、積分器131の出力信号と基準電圧Vrefとの大小関係に応じたデジタル出力信号Doutを出力する。
 DA変換器104は、デジタル出力信号Doutの論理値に応じたアナログ信号を出力する。スイッチ121は、スイッチ111と容量105との間のノードと、DA変換器104の出力端子との間に接続されている。
 スイッチ111~114はクロック信号φに応じてオンとオフとが切り替えられる。スイッチ121~124はクロック信号φに応じてオンとオフとが切り替えられる。例えば、これらのスイッチは、供給されるクロック信号がハイレベルの場合にオンし、ローレベルの場合にオフする。なお、これらのスイッチは、供給されるクロック信号がローレベルの場合にオンしてもよい。この場合、本実施の形態で例示するクロック信号φφの論理を反転させればよい。
 なお、AD変換器100は、2次のΔΣAD変換器に限定されず、1次又は3次以上のΔΣAD変換器であってもよい。また、AD変換器100は、ΔΣAD変換器以外のインクリメンタル型のAD変換器であってもよい。具体的には、AD変換器100は、アナログ入力信号Ainの電圧値に応じた積分値を生成する1以上の積分器と、上記積分値と予め定められた基準電圧とを比較することでデジタル出力信号Doutを生成するコンパレータと、デジタル出力信号Doutに応じたアナログ信号を生成し、生成したアナログ信号を上記積分器に出力(フィードバック)するデジタル-アナログ変換器とを少なくとも含むインクリメンタル型のAD変換器であればよい。例えば、AD変換器100は、サイクリック型AD変換器であってもよい。
 まず、ΔΣAD変換器の動作の概略を説明する。なお、ここでは簡単化のため、1次のΔΣAD変換器の動作を説明する。図4は、1次のΔΣAD変換器100Aの回路図である。
 図5は、当該AD変換器100Aのタイミングチャートである。図5において、アナログ入力信号Ainが第1の値の場合の出力電圧V及びデジタル出力信号Doutを実線で示し、アナログ入力信号Ainが第1の値より大きい第2の値の場合の出力電圧V及びデジタル出力信号Doutを点線で示す。
 図5に示すように、クロック信号φがハイレベルになることにより、アナログ入力信号Ainの電圧値に応じた電荷が容量105に充電される。そして、この容量105に保持された電荷が積分器130により積分されることで出力電圧Vが、1サイクル(クロック信号の1周期)ごとにΔVaだけ増加する。また、出力電圧Vが基準電圧Vrefより小さい場合、コンパレータ103は、デジタル出力信号Doutとしてローレベルを出力する。これにより、DA変換器104は、例えば、0V(GNDレベル)を出力する。
 そして、出力電圧Vが基準電圧Vrefより大きくなると、デジタル出力信号Doutの論理が反転する。これにより、DA変換器104は、予め定められたアナログ電圧値(例えば、VDD)を出力する。この結果、積分器130の出力電圧Vがリセットされる。その後、以上の動作が繰り返し行われる。
 以上の動作により、図5に示すように、アナログ入力信号Ainのアナログ電圧値に応じた周期で、デジタル出力信号Doutは、ハイレベルとなる。よって、この周期に基づき、アナログ入力信号Ainに対応するデジタル値を決定できる。
 具体的には、図5に点線で示すように、アナログ入力信号Ainのアナログ電圧値が大きい場合には、サイクル毎の出力電圧Vの増加量ΔVbが大きくなる。これにより、デジタル出力信号Doutの周期が短くなる。
 このように、ΔΣAD変換器100は、変換サイクル数を増やすことで変換精度を向上させることができる。
 再度、図3を参照して説明する。
 クロック生成回路150は、互いにアクティブ期間(この例ではハイ期間)が重複しないノンオーバーラップクロック信号であるクロック信号211(φ)及びクロック信号212(φ)を生成する。図6は、クロック信号211及び212の一例を示す図である。図6に示すように、クロック信号211及びクロック信号212の、リセット解除後の、ハイ期間及びロー期間のうちの最初の期間である初期期間T2(ここでは、クロック信号211のハイ期間)は、この初期期間T2より後に位置する通常期間T3に比べて長い。これにより、出力電圧Vの期待波形と実波形との誤差を低減できる。
 また、リセット期間において、例えば、図示していない複数のスイッチにより、AD変換器100が備える容量105~108の各々の両端が短絡されるとともに、デジタル出力信号Doutが予め定められた論理(例えばローレベル)に固定される。
 また、初期期間T2の長さは、アンプ101及び102の駆動能力で定まる期間に応じて充分長くすることが好ましい。言い換えると、初期期間T2の長さは、AD変換器100のもつ時定数に対して充分に長く設定される。ここで、時定数とは、積分器130に含まれる、容量106の容量値Cと、アンプ101の出力インピーダンスとの積である。これにより、上述した初期遷移誤差を低減することができる。具体的には、図1に示すΔΣAD変換器100はクロック信号212の立ち上がりのタイミングで比較動作をする。つまり、このタイミングでの期待波形と実波形との誤差がゼロになることが好ましい。言い換えると、初期期間T2において出力電圧Vの期待波形と実波形とが一致するように、当該初期期間T2の長さを決定することが好ましい。例えば、初期期間T2を通常期間T3の2倍以上にすることが好ましい。
 また、図6に示す例では、リセット解除後のAD変換期間に含まれるハイ期間及びロー期間のうちリセット解除後の1番目の期間のみが、2番目及びそれ以降の期間である通常期間T3よりも長い。言い換えると、複数の通常期間T3は、クロック信号211及び212におけるリセット解除後の2番目の期間及びそれ以降の期間を含む。
 なお、図7に示すように、クロック生成回路150は、上記クロック信号211及び212の代わりに、図7に示すクロック信号221及び222を生成してもよい。クロック信号221及び222は、1サイクル目だけサイクル期間を延ばしたクロック信号である。つまり、クロック信号221及び222において、1サイクル目のサイクル期間T4は、その後のサイクルのサイクル期間T5に比べて長い。言い換えると、当該クロック信号221及び222は、1サイクルだけ周波数を下げたクロック信号である。例えば、サイクル期間T4をサイクル期間T5の2倍以上にすることが好ましい。
 言い換えると、図7に示す例では、リセット解除後のAD変換期間に含まれるハイ期間及びロー期間のうちリセット解除後の1番目の期間である初期期間T6と2番目の期間である初期期間T7のみが、3番目及びそれ以降の期間である通常期間T3よりも長い。つまり、クロック信号221及び222は、リセット解除後の1番の期間であり、通常期間T3より長い初期期間T6と、リセット解除後の2番目の期間であり、通常期間T3より長い初期期間T7とを含む。
 ここで、図6に示すクロック信号211及び212と、図7に示すクロック信号221及び222とのいずれが好ましいかは、周辺回路等の機能に依存する。具体的には、例えば、周辺回路がクロック信号の周波数を変更する機能を有している場合には、この機能を流用することで、図7に示す周波数の変更を、回路の追加を抑制しつつ実現できる。一方で、上述したようにクロック信号φの立ち上がりタイミングまでに出力電圧Vの期待波形と実波形とが一致することが要求される。よって、図6に示すように最初の初期期間のみを延ばすほうが、全体の処理時間の増加を抑制しつつ、その要求を満たすことができる。
 以上のように、本実施の形態に係るAD変換回路10は、AD変換器100の構成部品を低消費電力化しても、精度を落とすことなくAD変換できる。また、個々のAD変換器100を低消費電力化できるため、従来よりも多くの画素を搭載する高精細な撮像素子を実現できるようになる。
 また、クロック生成回路150は、例えば、非ノンオーバーラップクロック信号であるクロック信号231を用いて、クロック信号211及び212(又はクロック信号221及び222)を生成する。
 図8は、クロック信号231及びリセット信号232の一例を示す図である。図8に示すように、クロック信号231は、リセット信号232が非アクティブになった後の少なくとも、1サイクル目の動作期間(この例ではハイ期間)である初期期間T8が、その後のハイ及びロー期間に比べて長く設定されている。この初期期間T8の長さは、AD変換器100のもつ時定数に対して充分に長く設定される。これにより、初期遷移誤差を低減にできる。
 なお、クロック生成回路150は、周波数が一定の通常のクロック信号を用いて、クロック信号211及び212(又はクロック信号221及び222)を生成してもよい。例えば、遅延回路又は分周器等を用いて、通常のクロック信号からクロック信号211及び212(又はクロック信号221及び222)を生成することができる。
 さらに、クロック生成回路150は、通常のクロック信号又はクロック信号231を生成する機能を有してもよい。
 また、クロック生成回路150は、AD変換器100ごとに設けられる必要はなく、複数のAD変換器100で共用されてもよい。例えば、図9に示すように、1つのクロック生成回路150で生成されたクロック信号211及び212が、複数のAD変換器100に供給されてもよい。
 以上のように、本発明の実施の形態1に係るAD変換回路10は、リセット解除後の最初の動作期間(ハイ期間又はロー期間)である初期期間を長くする。これにより、当該AD変換回路10は、消費電力の増加を抑制しつつ、リセット解除後の期待波形と実波形との誤差を低減できる。
 なお、設計容易化の観点からは、初期期間T2の長さは通常期間T3の長さの2以上の整数倍であることが、より好ましい。以下、図10及び図11を参照して説明する。
 図10に示すAD変換回路10は、図3に示すAD変換回路10の構成に加え、さらに、カウンタ160と、OR回路170とを備える。カウンタ160は、周期及びデューティ比(ハイ期間の長さとロー期間の長さの比)が一定の基準クロック信号230と、リセット信号232とにより駆動される。また、カウンタ160は、この基準クロック信号230及びリセット信号232を用いて、図11に示す制御信号233を生成する。OR回路170は、制御信号233と基準クロック信号230との論理和であるクロック信号231を生成し、生成したクロック信号231をクロック生成回路150へ出力する。このような構成により、クロック信号231を容易に生成することができる。なお、図11は、初期期間T2の長さが通常期間T3の長さの7倍のときの例を示す。
 (実施の形態2)
 本実施の形態では、本発明の一態様であるフィードフォワード型の2次ΔΣAD変換器について説明する。なお、以下では、実施の形態1との相違点を主に説明し、重複する説明は省略する。
 本実施の形態に係るAD変換回路の全体構成は、図3に示す構成と同様であり、図3に示すAD変換器100をフィードフォワード型の2次ΔΣAD変換器300に置き換えた構成である。
 図12は、フィードフォワード型の2次ΔΣAD変換器300の回路図である。このAD変換器300は、図1に示すAD変換器100に対して、さらに、容量加算器330を備える。
 容量加算器330は、アナログ入力信号Ainと積分器130で生成された積分値と、積分器131で生成された積分値との加算値を生成する。また、コンパレータ103は、容量加算器330で生成された加算値と基準電圧Vrefとを比較することでデジタル出力信号Doutを生成する。
 この容量加算器330は、容量301、302及び303と、スイッチ311、312、313、321、322及び323とを備える。
 容量301は、アナログ入力信号Ainが入力されるアナログ入力端子からコンパレータ103の入力端子に至るバイパス経路に挿入されている。容量302は、積分器130の出力端子からコンパレータ103の入力端子に至るバイパス経路に挿入されている。これらのバイパス経路により、積分器130及び131を通る本来の信号パスに流れる電力を迂回させることで、本来の信号パスの電圧振幅を抑制できる。結果的にAD変換器全体のダイナミックレンジを広げる効果がある。
 なお、このフィードフォワード型の2次ΔΣAD変換器300は、非特許文献2に開示されている。
 しかしながら、図12に示す構成では、実際の設計において不具合が生じる。回路構成上、コンパレータ103として、クロック信号φの立ち上がりエッジのタイミングで動作するラッチトコンパレータを用いるのが現実的である。しかし、その場合、容量加算器330からコンパレータ103への信号の受け渡しで課題が生じる。具体的には、正しい容量加算結果はクロック信号φがハイレベルの時のみ保持されるため、クロック信号φがローレベルになった瞬間、信号を保持する容量は寄生容量109のみとなる。しかしながら、寄生容量109は通常、高々数fF程度しかないため、寄生容量109が保持する信号はノイズに対して非常に敏感である。したがって、この信号を維持することが困難である。
 そこで、図13に示すAD変換器400のように、充分な容量値をもつ容量401を寄生容量109と置き換える(又は追加する)ことで、容量加算器330からコンパレータ103への受け渡しが確実に行われるようにできる。ここで、容量401は、容量加算器330で生成された加算値を保持するための容量素子であり、例えば、寄生容量109の100倍以上(数100fF以上)の容量値を有する。
 さらには、図14に示すAD変換器500のように、容量加算器330の後段、かつコンパレータ103の前段にバッファ回路501及びスイッチ502を含む信号伝達回路を挿入してもよい。これにより、容量加算器330と容量401(又は容量401と寄生容量109との合成容量)とを分離することができる。ここで、バッファ回路501の入力容量は充分に小さいため、容量加算結果の寄生容量は無視できるほど小さくなる。
 図15は、この信号伝達回路とコンパレータ103との回路図である。本実施の形態が適用されるアプリケーションによっては、AD変換結果のオフセットに不感なアプリケーションもあることから、同図ではバッファ回路501をソースフォロワ回路で実現している。なお、バッファ回路501をソースフォロワ回路以外で実現してもよい。
 具体的には、バッファ回路501は、電流源として機能するトランジスタ511と、容量加算器330の出力電圧Vcalが入力され、ドレイン接地回路を構成するトランジスタ512と、リセット時の消費電力を最小化するためのプルアップ機能を実現するトランジスタ513と、リセット時の消費電力を最小化するためのプルダウン機能を実現するトランジスタ514とを備える。
 また、ここでは、容量加算器330を備えるAD変換器が、さらに、バッファ回路501(信号伝達回路)を備える例を説明したが、容量加算器330を備えないAD変換器(例えば、図1に示すAD変換器100)が、さらに、バッファ回路501(信号伝達回路)を備えてもよい。つまり、バッファ回路501(信号伝達回路)は、積分器131の出力端子とコンパレータ103の入力端子との間に配置されてもよい。
 ここで、低消費電力化の観点からは、バッファ回路501の動作消費電力を、定常動作時の信号帯域をギリギリ満たす程度に抑えることが望ましい。しかしながら、その場合、バッファ回路501においても初期遷移誤差が生じてしまう。図16は、本実施の形態の課題を示す図であり、通常の一定周期のクロック信号201及び202が供給される場合の、コンパレータ103の入力電圧Vsigの期待波形と実波形とを示す図である。図16に示すように、コンパレータ103の入力電圧Vsigでも、上述した実施の形態1における出力電圧Vと同様の課題が発生する。
 図17は、本実施の形態におけるVsigの期待波形と実波形とを示す図である。図17に示すように、上記実施の形態1と同様に、クロック信号211及び212に含まれる、リセット解除後の最初の期間である初期期間T2をバッファ回路501のソースフォロワ回路の時定数よりも充分長く設定することで、アンプ101の出力電圧Vの初期遷移誤差に加え、コンパレータ103の入力電圧Vsigの初期遷移誤差をゼロにできる。
 また、図18に示すように、クロック信号φ及びφとして、1サイクル目のサイクル期間T4を延ばしたクロック信号221及びクロック信号222を用いてもよい。
 (実施の形態3)
 本実施の形態では、上記実施の形態1又は2で説明したAD変換回路10を用いた機器について説明する。
 まず、上記AD変換回路10を用いた撮像素子600について説明する。図19は、本実施の形態に係る撮像素子600のブロック図である。この撮像素子600は、AD変換器アレイ601及び602と、複数の受光素子が行列状に配置された受光素子アレイ603と、コントローラ604と、周辺回路605とを備える。
 一般にCMOSイメージセンサに搭載される撮像素子の画素数は受光素子の感度で決まるが、AD変換器の消費電力も重要な要素である。一般的なカラム並列型のAD変換器の場合、受光素子アレイ603の上下にAD変換器アレイ601及び602が配置される。また、各AD変換器アレイ601及び602には、数千個のオーダで、AD変換器が配置されている。これにより、こられのAD変換器での合計消費電力は大きく、熱及びバッテリ寿命の問題で画素数の拡大が難しい。
 これに対して、上述したAD変換回路10を用いることで、インクリメンタル型AD変換器の消費電流を必要最小限度まで絞ることができる。これにより、画素数の拡大、発熱の低減及びバッテリ寿命の延長を実現できる。このように、上記実施の形態に係るAD変換回路10は、複数のAD変換器が用いられる機器、例えば、撮像素子に極めて好適である。
 また、上記撮像素子600を、デジタルスチルカメラ又はデジタルビデオカメラ等のデジタルカメラに用いてもよい。
 さらに、上記実施の形態に係るAD変換回路10を、その他の機器に用いてもよい。
 例えば、スマートフォン及びタブレット端末に代表される携帯情報端末にはカメラ部分にCMOSイメージセンサが搭載されている。よって、図20に示すように、上記撮像素子600を携帯情報端末610に適用してもよい。これにより、CMOSイメージセンサの消費電力を低減できるので、バッテリ寿命の延長を実現できる。
 また、上記AD変換回路10を、図21に示すようにバッテリモニタシステム620に適用してもよい。具体的には、上記AD変換回路10は、バッテリ621をモニタするバッテリモニタ622で用いられる。上述したようにAD変換回路10は、低消費電力を実現できるため、非常に小さな待機電力かつ非常に広いダイナミックレンジを同時に満たすことができる。このように、上記AD変換回路10は、車載バッテリモニタシステムに好適である。
 また、上記AD変換回路10を、図22に示すように医療用画像診断システム630に適用してもよい。例えば、上記撮像素子600を、ファイバ型内視鏡631等に組み込むことで、発熱が少なくかつ高精細かつ広ダイナミックレンジの医療用画像診断システム630を実現できる。また、上記撮像素子600を、カプセル型内視鏡632に組み込むことで、撮影時間を延ばすことができる。また、上記AD変換回路10は、医療用画像診断装置633に適用することもできる。
 以上、実施の形態に係るAD変換回路及びそれを用いた機器について説明したが、本発明は、この実施の形態に限定されるものではない。
 また、上記実施の形態に係るAD変換回路及び撮像素子に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記各実施の形態に係る、AD変換回路、AD変換器、及びそれらの変形例の機能又は構成のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本発明を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。また、トランジスタ等のn型及びp型等は、本発明を具体的に説明するために例示するものであり、これらを反転させることで、同等の結果を得ることも可能である。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、上記説明では、MOSトランジスタを用いた例を示したが、他の種類のトランジスタを用いてもよい。
 また、上記回路図に示す回路構成は、一例であり、本発明は上記回路構成に限定されない。つまり、上記回路構成と同様に、本発明の特徴的な機能を実現できる回路も本発明に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、又は容量素子等の素子を接続したものも本発明に含まれる。言い換えると、上記実施の形態における「接続される」とは、2つの端子(ノード)が直接接続される場合に限定されるものではなく、同様の機能が実現できる範囲において、当該2つの端子(ノード)が、素子を介して接続される場合も含む。
 以上、本発明の一つ又は複数の態様に係るAD変換回路及びそれを用いた機器について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
 本発明は、インクリメンタル型AD変換器に適用できる。また、本発明は、AD変換器を用いる撮像素子に好適である。さらに、本発明は、撮像素子を用いる、デジタルスチルカメラ、及びデジタルビデオカメラ、並びにそれらの機能を搭載した携帯電話、スマートフォン、及びタブレット端末等に有用である。また、本発明は、極めて広ダイナミックレンジの要求される電圧測定用AD変換器の搭載された車載用バッテリモニタシステム、及び医療用画像診断システムにも有用である。
 10 AD変換回路
 100、100A、300、400、500 AD変換器
 101、102 アンプ
 103 コンパレータ
 104 DA変換器
 105、106、107、108、301、302、303、401 容量
 109 寄生容量
 111、112、113、114、121、122、123、124、311、312、313、321、322、502 スイッチ
 130、131 積分器
 150 クロック生成回路
 160 カウンタ
 170 OR回路
 201、202、211、212、221、222、231 クロック信号
 230 基準クロック信号
 232 リセット信号
 233 制御信号
 330 容量加算器
 501 バッファ回路
 511、512、513、514 トランジスタ
 600 撮像素子
 601、602 AD変換器アレイ
 603 受光素子アレイ
 604 コントローラ
 605 周辺回路
 610 携帯情報端末
 620 バッテリモニタシステム
 621 バッテリ
 622 バッテリモニタ
 630 医療用画像診断システム
 631 ファイバ型内視鏡
 632 カプセル型内視鏡
 633 医療用画像診断装置
 Ain アナログ入力信号
 Dout デジタル出力信号

Claims (15)

  1.  アナログ入力信号をデジタル出力信号に変換するアナログ-デジタル変換回路であって、
     ハイ期間及びロー期間の一方の期間であり、リセット解除後の1番目の期間である第1初期期間と、当該第1初期期間より後に位置し、かつ、当該第1初期期間より短いハイ期間又はロー期間である複数の通常期間とを含むクロック信号を生成するクロック生成回路と、
     前記クロック信号を用いて動作するインクリメンタル型のアナログ-デジタル変換器とを備え、
     前記アナログ-デジタル変換器は、
     前記アナログ入力信号の電圧値に応じた積分値を生成する積分器と、
     前記積分値と予め定められた基準電圧とを比較することで前記デジタル出力信号を生成するコンパレータと、
     前記デジタル出力信号に応じたアナログ信号を生成し、生成した前記アナログ信号を前記積分器に出力するデジタル-アナログ変換器とを含む
     アナログ-デジタル変換回路。
  2.  前記第1初期期間の長さは、前記通常期間の長さの2以上の整数倍である
     請求項1記載のアナログ-デジタル変換回路。
  3.  前記アナログ-デジタル変換器は、ΔΣモジュレータ型AD変換器である
     請求項1又は2記載のアナログ-デジタル変換回路。
  4.  前記複数の通常期間は、前記クロック信号における前記リセット解除後の2番目の期間及びそれ以降の期間を含む
     請求項1~3のいずれか1項に記載のアナログ-デジタル変換回路。
  5.  前記クロック信号は、さらに、前記リセット解除後の2番目の期間であり、前記通常期間より長い第2初期期間を含む
     請求項1~3のいずれか1項に記載のアナログ-デジタル変換回路。
  6.  前記アナログ-デジタル変換器は、さらに、
     前記積分器の出力端子と前記コンパレータの入力端子との間に配置されたバッファ回路を備える
     請求項1~5のいずれか1項に記載のアナログ-デジタル変換回路。
  7.  前記アナログ-デジタル変換器は、さらに、
     前記アナログ入力信号と前記積分値との加算値を生成する容量加算器を備え、
     前記コンパレータは、前記加算値と前記基準電圧とを比較することで前記デジタル出力信号を生成する
     請求項1~6のいずれか1項に記載のアナログ-デジタル変換回路。
  8.  前記アナログ-デジタル変換器は、さらに、
     前記容量加算器の出力端子に接続され、前記加算値を保持するための容量素子を備える
     請求項7記載のアナログ-デジタル変換回路。
  9.  請求項1~8のいずれか1項に記載のアナログ-デジタル変換回路を備える
     撮像素子。
  10.  請求項9記載の撮像素子を備える
     デジタルカメラ。
  11.  請求項9記載の撮像素子を備える
     携帯情報端末。
  12.  請求項1~8のいずれか1項に記載のアナログ-デジタル変換回路を備える
     バッテリモニタシステム。
  13.  請求項9記載の撮像素子を備える
     医療用画像診断システム。
  14.  アナログ入力信号をデジタル出力信号に変換するアナログ-デジタル変換器の駆動方法であって、
     前記アナログ-デジタル変換器は、
     クロック信号を用いて動作するインクリメンタル型のアナログ-デジタル変換器であり、
     前記アナログ入力信号の電圧値に応じた積分値を生成する積分器と、
     前記積分値と予め定められた基準電圧とを比較することで前記デジタル出力信号を生成するコンパレータと、
     前記デジタル出力信号に応じたアナログ信号を生成し、生成した前記アナログ信号を前記積分器に出力するデジタル-アナログ変換器とを含み、
     前記駆動方法は、
     ハイ期間及びロー期間の一方の期間であり、リセット解除後の1番目の期間である第1初期期間と、当該第1初期期間より後に位置し、かつ、当該第1初期期間より短いハイ期間又はロー期間である複数の通常期間とを含むクロック信号を前記アナログ-デジタル変換器に供給する
     アナログ-デジタル変換器の駆動方法。
  15.  前記第1初期期間の長さは、前記通常期間の長さの2以上の整数倍である
     請求項14記載のアナログ-デジタル変換器の駆動方法。
PCT/JP2013/000978 2012-03-14 2013-02-21 アナログ-デジタル変換回路及びその駆動方法 WO2013136676A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013547437A JP5945832B2 (ja) 2012-03-14 2013-02-21 アナログ−デジタル変換回路及びその駆動方法
US14/116,294 US8912941B2 (en) 2012-03-14 2013-02-21 Analog-digital conversion circuit and method for driving the same
CN201380001301.XA CN103518328A (zh) 2012-03-14 2013-02-21 模拟数字转换电路及其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012057903 2012-03-14
JP2012-057903 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013136676A1 true WO2013136676A1 (ja) 2013-09-19

Family

ID=49160628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000978 WO2013136676A1 (ja) 2012-03-14 2013-02-21 アナログ-デジタル変換回路及びその駆動方法

Country Status (4)

Country Link
US (1) US8912941B2 (ja)
JP (1) JP5945832B2 (ja)
CN (1) CN103518328A (ja)
WO (1) WO2013136676A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087476A1 (ja) * 2013-12-12 2015-06-18 パナソニックIpマネジメント株式会社 アナログデジタル変換装置、その駆動方法、撮像素子、撮像装置およびバッテリモニタシステム
JP2016131366A (ja) * 2015-01-07 2016-07-21 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器及びad変換器
US9432049B2 (en) 2015-01-07 2016-08-30 Asahi Kasei Microdevices Corporation Incremental delta-sigma A/D modulator and A/D converter
JP2018093441A (ja) * 2016-12-07 2018-06-14 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器
JP2018098679A (ja) * 2016-12-14 2018-06-21 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器
JP2021044732A (ja) * 2019-09-12 2021-03-18 株式会社東芝 半導体集積回路、ad変換器、デルタシグマ型ad変換器、インクリメンタルデルタシグマ型ad変換器及びスイッチトキャパシタ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619605B (zh) * 2011-06-27 2015-11-25 惠普发展公司,有限责任合伙企业 墨水液面传感器和相关方法
US9197238B1 (en) * 2014-09-05 2015-11-24 Texas Instruments Incorporated Adaptive clocking for analog-to-digital conversion
JP7059647B2 (ja) * 2018-01-24 2022-04-26 株式会社ソシオネクスト ピーク・ボトム検出回路、a/dコンバータ及び集積回路
AU2020246226B2 (en) * 2019-03-27 2022-09-15 Nitto Denko Corporation Data acquisition apparatus and biological sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570035U (ja) * 1992-02-28 1993-09-21 横河電機株式会社 2重積分型a/d変換装置
JPH10322214A (ja) * 1997-05-15 1998-12-04 Nippon Baa Braun Kk オフセット除去機能付のアナログ−デジタル変換器
JP2000236259A (ja) * 1999-02-12 2000-08-29 Sony Corp D/aコンバータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371850A (en) * 1980-12-12 1983-02-01 Honeywell Inc. High accuracy delta modulator
US5266952A (en) * 1992-03-30 1993-11-30 Hughes Aircraft Company Feed forward predictive analog-to-digital converter
US6232905B1 (en) * 1999-03-08 2001-05-15 Agere Systems Guardian Corp. Clocking technique for reducing sampling noise in an analog-to-digital converter
US6339390B1 (en) * 2000-10-04 2002-01-15 Scott R. Velazquez Adaptive parallel processing analog and digital converter
DE60307226D1 (de) * 2003-02-18 2006-09-14 St Microelectronics Srl Analog-Digital-Wandler mit Korrektur von Verschiebungsfehlern
JP3960267B2 (ja) * 2003-05-29 2007-08-15 株式会社デンソー A/d変換方法及び装置
JP4442508B2 (ja) * 2005-04-28 2010-03-31 株式会社デンソー A/d変換装置
US7446686B2 (en) 2006-09-22 2008-11-04 Cirrus Logic, Inc. Incremental delta-sigma data converters with improved stability over wide input voltage ranges
US8176225B2 (en) * 2008-11-04 2012-05-08 Renesas Electronics America Inc. Microcontroller peripheral event distribution bus
KR101531877B1 (ko) 2009-01-13 2015-06-26 삼성전자주식회사 리셋 시 플로팅 노드를 제거할 수 있는 스위치드-커패시터 적분기, 상기 스위치드-커패시터 적분기를 포함하는 장치들
JP5101678B2 (ja) * 2010-09-16 2012-12-19 株式会社東芝 A/d変換回路および受信機
JP5472243B2 (ja) * 2011-09-20 2014-04-16 株式会社デンソー Ad変換装置
US8730073B1 (en) * 2012-12-18 2014-05-20 Broadcom Corporation Pipelined analog-to-digital converter with dedicated clock cycle for quantization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570035U (ja) * 1992-02-28 1993-09-21 横河電機株式会社 2重積分型a/d変換装置
JPH10322214A (ja) * 1997-05-15 1998-12-04 Nippon Baa Braun Kk オフセット除去機能付のアナログ−デジタル変換器
JP2000236259A (ja) * 1999-02-12 2000-08-29 Sony Corp D/aコンバータ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087476A1 (ja) * 2013-12-12 2015-06-18 パナソニックIpマネジメント株式会社 アナログデジタル変換装置、その駆動方法、撮像素子、撮像装置およびバッテリモニタシステム
JP6021090B2 (ja) * 2013-12-12 2016-11-02 パナソニックIpマネジメント株式会社 アナログデジタル変換装置、その駆動方法、撮像素子、撮像装置およびバッテリモニタシステム
JPWO2015087476A1 (ja) * 2013-12-12 2017-03-16 パナソニックIpマネジメント株式会社 アナログデジタル変換装置、その駆動方法、撮像素子、撮像装置およびバッテリモニタシステム
JP2016131366A (ja) * 2015-01-07 2016-07-21 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器及びad変換器
US9432049B2 (en) 2015-01-07 2016-08-30 Asahi Kasei Microdevices Corporation Incremental delta-sigma A/D modulator and A/D converter
JP2018093441A (ja) * 2016-12-07 2018-06-14 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器
JP2018098679A (ja) * 2016-12-14 2018-06-21 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器
JP2021044732A (ja) * 2019-09-12 2021-03-18 株式会社東芝 半導体集積回路、ad変換器、デルタシグマ型ad変換器、インクリメンタルデルタシグマ型ad変換器及びスイッチトキャパシタ
JP7395294B2 (ja) 2019-09-12 2023-12-11 株式会社東芝 半導体集積回路、ad変換器、デルタシグマ型ad変換器、インクリメンタルデルタシグマ型ad変換器及びスイッチトキャパシタ

Also Published As

Publication number Publication date
JPWO2013136676A1 (ja) 2015-08-03
US8912941B2 (en) 2014-12-16
CN103518328A (zh) 2014-01-15
JP5945832B2 (ja) 2016-07-05
US20140077985A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5945832B2 (ja) アナログ−デジタル変換回路及びその駆動方法
US20200412373A1 (en) Method and circuit for noise shaping sar analog-to-digital converter
Harpe et al. 11.1 An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR
Chen et al. A micro-power two-step incremental analog-to-digital converter
JP6043679B2 (ja) 静電容量検出回路及び入力デバイス
US7446686B2 (en) Incremental delta-sigma data converters with improved stability over wide input voltage ranges
US20080238743A1 (en) Dither circuit and analog digital converter having dither circuit
Chen et al. A 11μW 250 Hz BW two-step incremental ADC with 100 dB DR and 91 dB SNDR for integrated sensor interfaces
TWI526001B (zh) 類比數位轉換器
JP6571493B2 (ja) インクリメンタル型デルタシグマad変調器及びad変換器
JP6168064B2 (ja) Ad変換器、イメージセンサ、およびデジタルカメラ
US20100156686A1 (en) Pulse generator and continuous-time sigma-delta modulator
US20150256194A1 (en) Analog-to-digital conversion apparatus and analog-to-digital conversion method
KR102661956B1 (ko) 아날로그 디지털 변환기
JP6021090B2 (ja) アナログデジタル変換装置、その駆動方法、撮像素子、撮像装置およびバッテリモニタシステム
KR101645571B1 (ko) 비동기 레퍼런스 생성회로를 사용하는 슬로프 아날로그 디지털 변환기를 이용한 시그마-델타 줌 아날로그 디지털 변환 장치
JP2013042488A (ja) 構成変更可能な連続時間シグマデルタアナログ−デジタル変換器
Chen et al. History, present state-of-art and future of incremental ADCs
US9425816B1 (en) Generating comparator thresholds using a rotating ring of resistors
JP2012095074A (ja) 半導体集積回路およびその動作方法
US10897232B2 (en) Multi-level capacitive digital-to-analog converter for use in a sigma-delta modulator
TW201921843A (zh) 使用靴帶式開關之五位階切換電容式數位轉類比轉換器(dac)
US20140368367A1 (en) Continuous-time sigma-delta modulator and continuous-time sigma-delta modulating method
US20200328759A1 (en) Da conversion device
JP5129298B2 (ja) DWA(Data−Weighted−Averaging)回路、それを用いたデルタシグマ変調器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547437

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14116294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761118

Country of ref document: EP

Kind code of ref document: A1