JP2018093441A - インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器 - Google Patents

インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器 Download PDF

Info

Publication number
JP2018093441A
JP2018093441A JP2016237313A JP2016237313A JP2018093441A JP 2018093441 A JP2018093441 A JP 2018093441A JP 2016237313 A JP2016237313 A JP 2016237313A JP 2016237313 A JP2016237313 A JP 2016237313A JP 2018093441 A JP2018093441 A JP 2018093441A
Authority
JP
Japan
Prior art keywords
unit
signal
analog
sigma
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016237313A
Other languages
English (en)
Other versions
JP6792436B2 (ja
Inventor
貴登 片山
Takato Katayama
貴登 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2016237313A priority Critical patent/JP6792436B2/ja
Publication of JP2018093441A publication Critical patent/JP2018093441A/ja
Application granted granted Critical
Publication of JP6792436B2 publication Critical patent/JP6792436B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

【課題】広帯域かつ低消費電力のインクリメンタル型デルタシグマ変調器およびインクリメンタル型デルタシグマAD変換器を提供する。【解決手段】インクリメンタル型デルタシグマAD変調器20およびAD変換器は、複数のスイッチトキャパシタを有し、入力信号をサンプリングするサンプルホールド部と、入力信号に基づくアナログ信号を積分するアナログ積分部と、量子化部と、トラッキング周期において複数のスイッチトキャパシタに入力信号をそれぞれ充電させ、コンバージョン周期において複数のスイッチトキャパシタに充電した電荷をアナログ積分部に順次転送させる制御部と、を備える。制御部は、コンバージョン周期において、少なくとも1つのスイッチトキャパシタに対する入力信号の充電動作を、少なくとも1つのスイッチトキャパシタの転送動作が終了した後に開始させる。【選択図】図1

Description

本発明は、インクリメンタル型デルタシグマAD変調器およびインクリメンタル型デルタシグマAD変換器に関する。
従来、複数の積分回路を有し、アナログ信号をデジタル信号に変換するAD変換器において、予め定められた時間間隔で積分回路に蓄積された電荷をリセットするインクリメンタル型デルタシグマ変調器およびインクリメンタル型デルタシグマAD変換器が知られていた(例えば、特許文献1および2参照)。
特許文献1 国際公開第2013/136676号
特許文献2 特開2016−131366号公報
このようなインクリメンタル型デルタシグマ変調器およびインクリメンタル型デルタシグマAD変換器は、サンプルホールド回路を前段に設けて広帯域化せることが知られている。しかしながら、サンプルホールド回路に用いるスイッチトキャパシタ等は、インクリメンタル型デルタシグマ変調器またはインクリメンタル型デルタシグマAD変換器がデジタル信号を出力する周波数と比較して、より高い周波数で動作させるため、消費電力が増加していた。したがって、広帯域かつ低消費電力のインクリメンタル型デルタシグマ変調器およびインクリメンタル型デルタシグマAD変換器が望まれていた。
本発明の第1の態様においては、複数のスイッチトキャパシタを有し、入力信号をサンプリングするサンプルホールド部と、アナログ積分器を有し、サンプルホールド部がサンプリングした入力信号に基づくアナログ信号を積分するアナログ積分部と、アナログ積分部の出力信号を量子化する量子化部と、予め定められたトラッキング周期において複数のスイッチトキャパシタに入力信号をそれぞれ充電させ、予め定められたコンバージョン周期において複数のスイッチトキャパシタに充電した電荷をアナログ積分部に順次転送させる制御部と、を備え、制御部は、コンバージョン周期において、複数のスイッチトキャパシタのうち、少なくとも1つのスイッチトキャパシタに対する次のトラッキング周期のための入力信号の充電動作を、少なくとも1つのスイッチトキャパシタからアナログ積分部への転送動作が終了した後に開始させる、インクリメンタル型デルタシグマAD変調器およびインクリメンタル型デルタシグマAD変換器を提供する。
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係るインクリメンタル型デルタシグマAD変換器100のブロック図の一例を示す。 本実施形態に係るサンプルホールド部110およびDA変換部160の構成例を示す。 本実施形態に係るアナログ積分部130の構成例を示す。 本実施形態に係るフィードフォワード部140の構成例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100の各部における信号波形の一例を示す。 本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第1例を示す。 本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第2例を示す。 本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第3例を示す。 本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第4例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100のブロック図の一例を示す。インクリメンタル型デルタシグマAD変換器100は、内部回路を略一定の周期でリセットしつつ、入力するアナログ信号をデジタル信号に変換する。インクリメンタル型デルタシグマAD変換器100は、入力端子10と、インクリメンタル型デルタシグマAD変調器20と、デジタル演算部30と、出力端子40とを備える。
入力端子10は、入力信号Ainを入力する。入力信号Ainは、アナログ信号でよい。入力端子10は、シングルエンド入力でよく、これに代えて、差動入力であってもよい。入力端子10が差動入力の場合、当該入力端子10は、正側入力から正側信号AINPが、負側入力から負側信号AINNが入力する。入力端子10は、入力した入力信号Ainをインクリメンタル型デルタシグマAD変調器20に供給する。
インクリメンタル型デルタシグマAD変調器20は、アナログ入力信号を略一定の変換サイクルでデジタル値へ変換し、1変換サイクル毎にアナログ入力信号に対応するシリアルデジタルコードを出力する。インクリメンタル型デルタシグマAD変調器20は、例えば、クロック信号等に同期してアナログ入力信号を複数サンプルし、複数のサンプル毎にデジタル値に変換して出力する。ここで、1変換サイクルに対するサンプリング数をオーバーサンプリング比Nとする。即ち、シリアルデジタルコードに含まれるデジタルコードの数は、オーバーサンプリング比Nに等しくなる。
デジタル演算部30は、インクリメンタル型デルタシグマAD変調器20の出力をデジタル処理する。デジタル演算部30は、例えば、デジタル処理の一部として、インクリメンタル型デルタシグマAD変調器20の出力を積算してデジタル値を出力する。デジタル演算部30は、一例として、デジタル積分部を有し、当該デジタル積分部がデジタルコードを積算して対応するデジタル値を演算してよい。デジタル演算部30は、クロック信号と同期してデジタル値を演算してよい。
また、デジタル演算部30は、例えば、デジタル処理の一部として、インクリメンタル型デルタシグマAD変調器20の出力をフィルタリングする。デジタル演算部30は、一例として、ローパスフィルタを有し、インクリメンタル型デルタシグマAD変調器20で発生する量子化ノイズ等を低減させる。また、デジタル演算部30は、デシメーションフィルタを有し、サンプリング周波数を低減させてもよい。デジタル演算部30は、演算結果のデジタル値を当該インクリメンタル型デルタシグマAD変換器100の変換結果として出力端子40から出力する。
インクリメンタル型デルタシグマAD変調器20は、サンプルホールド部110と、加算部120と、アナログ積分部130と、フィードフォワード部140と、量子化部150と、DA変換部160と、リセット部170と、制御部180と、を備える。
サンプルホールド部110は、入力するアナログ信号の振幅値をサンプリングして、サンプリングした値を保持(ホールド)する。サンプルホールド部110は、クロック信号等に同期して、サンプリングおよびホールドを繰り返す。ここで、クロック信号の周波数は、入力信号の周波数と比較して数倍から数十倍程度以上の周波数であることが望ましく、この場合、サンプルホールド部110は、入力するアナログ信号をオーバーサンプリングすることになる。なお、このようなクロック信号は、当該インクリメンタル型デルタシグマAD変換器100の内部または外部に設けられたクロック信号発生部で発生し、当該インクリメンタル型デルタシグマAD変換器100の内部の各部に供給される。
図1は、サンプルホールド部110が入力するアナログ信号Ainをサンプリングし、ホールドした値を出力する例を示す。サンプルホールド部110は、ホールドした値を加算部120に出力する。サンプルホールド部110については、後述する。
加算部120は、サンプルホールド部110の出力に、インクリメンタル型デルタシグマAD変調器20のフィードバック信号を加算する。加算部120は、例えば、サンプルホールド部110から差動信号を受け取り、当該差動信号の正側の信号および負側の信号に、それぞれ符号の異なるフィードバック信号を加算する。加算部120は、加算結果を、サンプルホールド部がサンプリングした入力信号に基づくアナログ信号として、アナログ積分部130に供給する。
アナログ積分部130は、アナログ積分器を有し、加算部120から受け取ったアナログ信号を積分する。アナログ積分部130は、複数のアナログ積分器を有してよい。アナログ積分部130は、積分した結果をフィードフォワード部140に供給する。アナログ積分部130については、後述する。
フィードフォワード部140は、入力信号を量子化部150へと伝達する。また、フィードフォワード部140は、アナログ積分部130のアナログ積分器が出力する信号を、量子化部150へと伝達する。フィードフォワード部140については、後述する。
量子化部150は、アナログ積分部130の出力信号を量子化する。量子化部150は、例えば、フィードフォワード部140が伝達する信号を重畳したアナログ積分部130の出力信号Aerrを量子化する。量子化部150は、内部または外部から供給されるクロック信号等に応じて、アナログ積分部130の積分結果を量子化し、積分結果に応じたビットストリームを出力する。量子化部150は、1ビット量子化器またはマルチビット量子化器として機能してよい。
例えば、量子化部150として1ビット量子化器を用いた場合、ビットストリームは、予め定められた数の1ビットデータ(デジタルコード)の列(シリアルデジタルコード)となる。ここで、当該デジタルコードを積算した値は、入力信号Ainの振幅値に比例または略一致するデジタル値となる。量子化部150は、クロック信号毎に、出力信号Aerrおよび予め定められた閾値を比較し、当該閾値を超えたか否かに応じて、当該出力信号Aerrを1または0のデジタルコードに変換してよい。
また、例えば、量子化部150としてMビット量子化器を用いた場合、ビットストリームは、予め定められた数のMビットデータ(デジタルコード)の列(シリアルデジタルコード)となる。ここで、当該デジタルコードを積算した値が入力信号Ainの振幅値に比例または略一致するデジタル値となる。量子化部150は、クロック信号毎に、Mビット分の比較器により出力信号Aerrおよび予め定められたMビットの閾値を比較し、各比較器が当該閾値を超えたか否かに応じて、当該出力信号AerrをMビットのデジタルコードに変換してよい。
即ち、インクリメンタル型デルタシグマAD変調器20は、入力信号Ainを一定の変換サイクル毎にデジタル値へ変換するが、量子化部150は、1変換サイクルよりも速いクロック信号等に応じて、入力信号Ainに対応するシリアルデジタルコードを出力する。このように、クロック信号に同期した複数のサンプル毎に、入力信号Ainはデジタル値へ変換される。1変換サイクルに対するサンプリング数をオーバーサンプリング比Nとすると、シリアルデジタルコードに含まれるデジタルコードの数は、オーバーサンプリング比Nに等しくなる。
例えば、インクリメンタル型デルタシグマAD変調器20のオーバーサンプリング比Nが60の場合、量子化部150は、1変換サイクル毎に60個のデジタルコードを含むシリアルデジタルコードを出力する。量子化部150は、量子化したデジタル信号YをDA変換部160に供給する。また、量子化部150は、量子化したデジタル信号Yをインクリメンタル型デルタシグマAD変調器20の出力として、デジタル演算部30に供給する。
DA変換部160は、量子化部150の出力をDA変換してアナログ積分部130にフィードバックするフィードバック信号を出力する。DA変換部160は、量子化部150が出力するデジタル信号Yを、対応するアナログ信号にDA変換し、変換したアナログ信号をフィードバック信号として加算部120に供給する。DA変換部160は、クロック信号と同期して、デジタル信号Yをアナログ信号に変換してよい。
リセット部170は、予め定められた第1周期でアナログ積分部130が保持する積分値をリセットする。リセット部170は、デジタル演算部30のデジタルフィルタ等を更にリセットしてもよい。リセット部170は、当該インクリメンタル型デルタシグマAD変調器20が入力信号Ainをデジタル値に変換する毎に、アナログ積分部130およびデジタル演算部30をリセットしてよい。リセット部170は、一例として、デジタル値への1変換サイクル(第1周期)毎に、アナログ積分部130およびデジタル演算部30にリセット信号を供給してそれぞれリセットする。
制御部180は、サンプルホールド部110の動作を制御する。また、制御部180は、アナログ積分部130およびフィードフォワード部140の動作を制御してもよい。制御部180は、内部または外部から供給されるクロック信号等に応じて、インクリメンタル型デルタシグマAD変調器20の制御動作を実行してよい。制御部180の制御動作については後述する。
以上のように、本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、リセット部170によるアナログ積分部130およびデジタル演算部30のリセットと、入力信号Ainのデジタル出力への変換とを、クロック信号に同期して繰り返す。なお、インクリメンタル型デルタシグマAD変換器100は、リセット部170によるリセット動作が無ければ、デルタシグマAD変換器として動作してよい。
図2は、本実施形態に係るサンプルホールド部110およびDA変換部160の構成例を示す。図2に示すサンプルホールド部110およびDA変換部160は、図1に示したサンプルホールド部110のより詳細な構成例を示す。なお、図2は、サンプルホールド部110に差動信号が入力される例を示す。
サンプルホールド部110は、複数のスイッチトキャパシタを含み、インクリメンタル型デルタシグマAD変換器100に入力する入力信号AINPおよびAINNをサンプリングする。サンプルホールド部110は、オーバーサンプリング比Nと略同一の数のスイッチトキャパシタを含んでよい。複数のスイッチトキャパシタは、キャパシタCs1pjと、キャパシタCs1njと、各キャパシタの前段および後段に切換スイッチをそれぞれ有する。なお、jは、1からmまでの自然数とし、mは、オーバーサンプリング比Nと略同一の値とする。
キャパシタCs1pjの前段のスイッチは、キャパシタCs1pjの一方の端子を、アナログ信号AINPが入力する入力端子および基準電位のいずれかに切り換える。また、キャパシタCs1pjの後段のスイッチは、キャパシタCs1pjの他方の端子を、基準電位および加算部120のいずれかに切り換える。ここで、基準電位は、予め定められた電位でよく、一例として0Vである。
同様に、キャパシタCs1njの前段のスイッチは、キャパシタCs1njの一方の端子を、アナログ信号AINNが入力する入力端子および基準電位のいずれかに切り換える。また、キャパシタCs1njの後段のスイッチは、キャパシタCs1njの他方の端子を、基準電位および加算部120のいずれかに切り換える。
制御部180は、このようなサンプルホールド部110の複数のスイッチトキャパシタに信号φtをそれぞれ供給して制御する。制御部180は、例えば、第1タイミング(一例として、信号φtがハイ電位)において、キャパシタCs1pjの一方の端子を入力端子AINPに接続させ、他方の端子を基準電位に接続させて、正側のアナログ入力信号を充電する。この場合、制御部180は、第1タイミングにおいて、キャパシタCs1njの一方の端子を入力端子AINNに接続させ、他方の端子を基準電位に接続させて、負側のアナログ入力信号を充電する。
本実施形態において、このような第1タイミングを、トラッキング周期とする。即ち、制御部180は、予め定められたトラッキング周期において複数のスイッチトキャパシタに入力信号をそれぞれ充電させる。
また、制御部180は、j番目のキャパシタCs1njを、トラッキング周期からj番目にずれたタイミング(信号φijがハイ電位)において、一方の端子を基準電位に接続させ、他方の端子を加算部120に接続させ、充電した正側のアナログ入力信号をアナログ積分部130へと順次放電する。同様に、制御部180は、j番目のキャパシタCs1pjを、第1タイミングからj番目にずれたタイミングにおいて、一方の端子を基準電位に接続させ、他方の端子を加算部120に接続させ、充電した負側のアナログ入力信号をアナログ積分部130へと順次放電する。
本実施形態において、このように制御部180が複数のスイッチトキャパシタを放電させるタイミングを、コンバージョン周期とする。即ち、制御部180は、予め定められたコンバージョン周期において複数のスイッチトキャパシタに充電した電荷をアナログ積分部130に順次転送させる。ここで、1変換サイクル(第1周期)は、トラッキング周期およびコンバージョン周期の和である。また、複数のスイッチトキャパシタは、第1周期において、N回のサンプリングを実行し、N回のサンプリング結果を出力してよい。また、サンプルホールド部110は、第1周期に対するサンプリング数の比であるオーバーサンプリング比Nと、同数のスイッチトキャパシタを有してよい。この場合、N個のスイッチトキャパシタは、アナログ積分部130への電荷の転送動作を、コンバージョン周期内で完了させるように、順次実行してよい。
制御部180は、一例として、複数のスイッチトキャパシタを、第1クロックにおいてそれぞれアナログ入力信号を充電させ、第1クロック以降の対応するクロック信号に応じて、充電したアナログ入力信号をアナログ積分部130へと順次放電させる。これにより、サンプルホールド部110は、第1クロックにおいて複数のスイッチトキャパシタがサンプリングした略同一のアナログ値を、第1クロック以降においてアナログ積分部130へと順次供給することができる。即ち、サンプルホールド部110は、アナログ信号が高速に変化しても、一のタイミングの値を保持してデジタル値へと変換することができる。
DA変換部160は、第1基準電圧REFPと、第2基準電圧REFNと、キャパシタCfbpと、キャパシタCfbnと、第1スイッチ部162と、第2スイッチ部164と、第3スイッチ部166と、を有する。第1基準電圧REFPおよび第2基準電圧REFNは、絶対値が略同一の電圧値を有し、極性が互いに逆となる電圧をそれぞれ出力する。一例として、第1基準電圧REFPは、正極性の電圧を出力し、第2基準電圧REFNは、負極性の電圧を出力する。
第1スイッチ部162は、キャパシタCfbpの一方の端子を、第1基準電圧REFPおよび基準電位のいずれかに切り換える。また、第1スイッチ部162は、キャパシタCfbnの一方の端子を、第2基準電圧REFNおよび基準電位のいずれかに切り換える。例えば、制御部180が供給する信号φsがハイ電位のタイミングにおいて、キャパシタCfbpの一方の端子は第1基準電圧REFPに接続し、キャパシタCfbnの一方の端子は第2基準電圧REFNに接続する。この場合、制御部180が供給する信号φiがハイ電位のタイミングにおいて、キャパシタCfbpの一方の端子およびキャパシタCfbnの一方の端子は、基準電位に接続する。
第2スイッチ部164は、キャパシタCfbpおよびキャパシタCfbnの他方の端子を、基準電位に接続するか否かを切り換える。第2スイッチ部164は、例えば、信号φsがハイ電位のタイミングにおいて、キャパシタCfbpおよびキャパシタCfbnの他方の端子は基準電位に接続し、信号φiがハイ電位のタイミングにおいて、当該他方の端子および基準電位の電気的接続を切断する。制御部180は、第1スイッチ部162および第2スイッチ部164を制御して、信号φsがハイ電位のタイミングにおいて、キャパシタCfbpおよびキャパシタCfbnと対応する基準電圧とをそれぞれ接続し、基準電圧およびキャパシタの容量に応じた電荷を充電する。
第3スイッチ部166は、キャパシタCfbpおよびキャパシタCfbnの他方の端子を、加算部120に接続するか否かを切り換える。第3スイッチ部166は、例えば、信号φiがハイ電位のタイミングにおいて、キャパシタCfbpおよびキャパシタCfbnの他方の端子を加算部120に接続し、信号φsがハイ電位のタイミングにおいて、当該他方の端子および加算部120の電気的接続を切断する。制御部180は、第3スイッチ部166を制御して、第1基準電圧REFPおよび第2基準電圧REFNに応じてキャパシタCfbpおよびキャパシタCfbnにそれぞれ充電された電荷を加算部120にそれぞれ供給する。
また、第3スイッチ部166は、量子化部150から供給されるデジタル信号Yに応じて、キャパシタCfbpおよびキャパシタCfbnの他方の端子の接続先を切り換える。ここで、キャパシタCfbpおよびキャパシタCfbnの接続先である加算部120は、サンプルホールド部110から受け取る差動信号に対応して、当該差動信号の正側信号および負側信号にそれぞれフィードバック信号を伝送する経路を有する。
第3スイッチ部166は、例えば、デジタル信号Yのデジタルコードが「0」の場合、キャパシタCfbpに充電された第1基準電圧REFPに応じた電荷を、差動信号の正側信号に加算させるように接続を切り換える。この場合、第3スイッチ部166は、キャパシタCfbnに充電された第2基準電圧REFNに応じた電荷を、差動信号の負側信号に加算させるように接続を切り換える。一例として、「0」のデジタルコードに応じて信号φipがハイ電位となった場合、第3スイッチ部166は、当該タイミングにおいて、キャパシタCfbpの他方の端子を正側信号の伝送線路に接続し、キャパシタCfbnの他方の端子を負側信号の伝送線路に接続する。
また、第3スイッチ部166は、例えば、デジタル信号Yのデジタルコードが「1」の場合、キャパシタCfbpに充電された第1基準電圧REFPに応じた電荷を、差動信号の負側信号に加算させるように接続を切り換える。この場合、第3スイッチ部166は、キャパシタCfbnに充電された第2基準電圧REFNに応じた電荷を、差動信号の正側信号に加算させるように接続を切り換える。一例として、「1」のデジタルコードに応じて信号φinがハイ電位となった場合、第3スイッチ部166は、当該タイミングにおいて、キャパシタCfbpの他方の端子を負側信号の伝送線路に接続し、キャパシタCfbnの他方の端子を正側信号の伝送線路に接続する。
このように、DA変換部160は、量子化部150が出力するデジタル信号「0」に応じて、正の基準電圧に応じたアナログ信号をフィードバック信号として加算部120に出力し、当該フィードバック信号を差動信号に加算させる。また、DA変換部160は、量子化部150が出力するデジタル信号「1」に応じて、負の基準電圧に応じたアナログ信号をフィードバック信号として加算部120に出力し、当該フィードバック信号を差動信号に加算させる。
以上のように、制御部180は、サンプルホールド部110およびDA変換部160を制御することにより、基準電圧を加算または減算するフィードバック信号を入力するアナログ信号に重畳して、アナログ積分部130に供給する。図2は、加算部120からアナログ積分部130に供給する正側信号をSP、負側信号をSNとした。インクリメンタル型デルタシグマAD変調器20のアナログ積分部130の動作について、次に説明する。
図3は、本実施形態に係るアナログ積分部130の構成例を示す。図3は、加算部120から正側信号SPおよび負側信号SNによる差動信号がアナログ積分部130に入力する例を示す。アナログ積分部130は、複数のアナログ積分器と、複数のスイッチトキャパシタとを有する。図3に示すアナログ積分部130は、第1アナログ積分器210、第2アナログ積分器220、および第3アナログ積分器230の3つのアナログ積分器を有する例を示す。また、アナログ積分部130は、第1スイッチトキャパシタ240および第2スイッチトキャパシタ245の2つのスイッチトキャパシタを有する例を示す。
また、図3は、3つのアナログ積分器が、2つの入力端子と2つの出力端子をそれぞれ有し、差動信号を入力して差動信号を出力する例を示す。なお、アナログ積分器の2つの入力端子のうちの一方を第1入力端子とし、他方を第2入力端子とする。また、アナログ積分器の2つの出力端子のうちの一方を第1出力端子とし、他方を第2出力端子とする。
アナログ積分器は、アナログ増幅器、帰還キャパシタ、およびリセットスイッチをそれぞれ含む。図3は、第1アナログ積分器210が、第1アナログ増幅器212、正側帰還キャパシタCi1p、負側帰還キャパシタCi1n、正側リセットスイッチ214、および負側リセットスイッチ216を含む例を示す。また、第2アナログ積分器220が、第2アナログ増幅器222、正側帰還キャパシタCi2p、負側帰還キャパシタCi2n、正側リセットスイッチ224、および負側リセットスイッチ226を含み、また、第3アナログ積分器230が、第3アナログ増幅器232、正側帰還キャパシタCi3p、負側帰還キャパシタCi3n、正側リセットスイッチ234、および負側リセットスイッチ236を含む例を示す。
アナログ増幅器は、正側入力端子および負側入力端子に入力される信号を増幅してそれぞれ出力する。アナログ増幅器は、例えば、差動入力型の増幅回路である。また、アナログ増幅器は、シングルエンド出力でよく、これに代えて、差動出力もよい。アナログ増幅器は、一例として、OPアンプである。図3は、第1アナログ増幅器212、第2アナログ増幅器222、および第3アナログ増幅器232、の3つのアナログ積分器が、差動入力および差動出力のアナログ増幅器をそれぞれ含む例を示す。なお、図3において、アナログ増幅器の正側入力端子は、アナログ積分器の第1入力端子に、負側入力端子は、第2入力端子に接続されるものとする。
帰還キャパシタのそれぞれは、入力信号に応じた電荷を順次蓄積する。帰還キャパシタは、例えば、1サンプリング毎に、前段から後段へと電荷を順次蓄積する。一例として、正側信号SPに応じて、第1クロックにおいて正側帰還キャパシタCi1pに蓄積された電荷は、次の第2クロックにおいて正側帰還キャパシタCi2pで蓄積され、次の第3クロックにおいて正側帰還キャパシタCi3pで蓄積される。同様に、負側信号SNに応じて、第1クロックにおいて負側帰還キャパシタCi1nに蓄積された電荷は、次の第2クロックにおいて負側帰還キャパシタCi2nで蓄積され、次の第3クロックにおいて負側帰還キャパシタCi3nで蓄積される。
リセットスイッチは、リセット部170からの指示に応じて、帰還キャパシタに蓄積された電荷を放電させてアナログ積分器をそれぞれリセットする。リセットスイッチは、例えば、リセット部170から供給されるリセット信号に応じて、帰還キャパシタの端子間を接続し、蓄積された電荷を放電させる。図3の例は、リセット部170からの指示に応じて、正側リセットスイッチ214、負側リセットスイッチ216、正側リセットスイッチ224、負側リセットスイッチ226、正側リセットスイッチ234、および負側リセットスイッチ236がそれぞれオン状態に切り換わり、第1アナログ増幅器212、第2アナログ増幅器222、および第3アナログ増幅器232をリセットする。
スイッチトキャパシタは、アナログ積分器の間に設けられ、前段に接続されたアナログ積分器に蓄積された電荷を後段に接続されたアナログ積分器へとそれぞれ伝達する。スイッチトキャパシタは、充放電用のキャパシタと、当該キャパシタの前段および後段に設けられるスイッチを含む。前段のスイッチは、キャパシタの一方の端子の接続先を、スイッチトキャパシタの前段回路および基準電位のいずれかに切り換える。後段のスイッチは、キャパシタの他方の端子の接続先を、スイッチトキャパシタの後段回路および基準電位のいずれかに切り換える。ここで、基準電位は、予め定められた電位でよく、一例として0Vである。
スイッチトキャパシタは、例えば、一のクロックにおいて、キャパシタの一方の端子が前段のアナログ積分器に接続され、キャパシタの他方の端子が基準電位と接続されることで、前段に接続されるアナログ積分器の出力電荷を当該キャパシタが充電する。この場合、スイッチトキャパシタは、次のクロックにおいて、キャパシタの一方の端子が基準電位に接続され、キャパシタの他方の端子が後段のアナログ積分器と接続されることで、当該キャパシタが充電した電荷を後段のアナログ積分器へと放電する。
図3は、第1スイッチトキャパシタ240が、第1アナログ積分器210および第2アナログ積分器220の間に接続される例を示す。第1スイッチトキャパシタ240は、前段スイッチ242および後段スイッチ244を用いて、前段の正側帰還キャパシタCi1pに蓄積された電荷を、キャパシタCs2pが充電して、後段の正側帰還キャパシタCi2pへと放電して伝達する。この場合、同様に、第1スイッチトキャパシタ240は、前段の負側帰還キャパシタCi1nに蓄積された電荷を、キャパシタCs2nが充電して、後段の負側帰還キャパシタCi2nへと放電して伝達する。
また、図3は、第2スイッチトキャパシタ245が、第2アナログ積分器220および第3アナログ積分器230の間に接続される例を示す。第2スイッチトキャパシタ245は、前段スイッチ246および後段スイッチ248を用いて、前段の正側帰還キャパシタCi2pに蓄積された電荷を、キャパシタCs3pが充電して、後段の正側帰還キャパシタCi3pへと放電して伝達する。この場合、同様に、第2スイッチトキャパシタ245は、前段の負側帰還キャパシタCi2nに蓄積された電荷を、キャパシタCs3nが充電して、後段の負側帰還キャパシタCi3nへと放電して伝達する。
以上のように、アナログ積分部130は、複数のアナログ積分器が直列に接続され、正側信号SPおよび負側信号SNを、クロック毎に前段のアナログ積分器から後段のアナログ積分器へと電荷を順次蓄積して伝達する。アナログ積分部130は、最も後段のアナログ積分器の帰還キャパシタに蓄積された電荷を、量子化部150へと出力する。また、アナログ積分部130がフィードフォワード部140を有する場合、最も後段のアナログ積分器は、フィードフォワード部140を介して量子化部150へと出力する。
例えば、図3に示すアナログ積分部130は、3段のアナログ積分器を有するので、第1クロックで第1アナログ積分器210に蓄積された電荷は、第3クロックで第3アナログ積分器230に伝達されてフィードフォワード部140へと出力される。図1に示すように、アナログ積分部130がフィードフォワード部140を有する場合、第1アナログ積分器210の出力信号INT10PおよびINT10Nと、第2アナログ積分器220の出力信号INT20PおよびINT20Nも、第3アナログ積分器230の出力信号INT30PおよびINT30Nと同様に、フィードフォワード部140に出力される。
なお、図3は、アナログ積分部130が3つのアナログ積分器を有する例を説明したが、これに代えて、アナログ積分部130は、2つ、または4以上のアナログ積分器を有してもよい。この場合、スイッチトキャパシタは、アナログ積分器の数に応じて、アナログ積分部130に1または3以上設けられてよい。また、図1に示すアナログ積分部130は、フィードフォワード部140を有する例を示したが、これに代えて、フィードフォワード部140はなくてもよい。この場合、最終段の第3アナログ積分器230の出力信号INT30PおよびINT30Nが、量子化部150に供給される。
図4は、本実施形態に係るフィードフォワード部140の構成例を示す。フィードフォワード部140は、第1フィードフォワード部250、第2フィードフォワード部260、第3フィードフォワード部270、および第4フィードフォワード部280を有する。フィードフォワード部140は、制御部180によって制御されてよい。
第1フィードフォワード部250は、一または複数のスイッチトキャパシタを含み、インクリメンタル型デルタシグマAD変調器20に入力するアナログ信号AINPおよびAINNを、量子化部150へと伝達する。図4は、第1フィードフォワード部250が、複数のスイッチトキャパシタを含む例を示す。第1フィードフォワード部250は、オーバーサンプリング比Nと同一の数のスイッチトキャパシタを含んでよい。第1フィードフォワード部250が含む一のスイッチトキャパシタは、一例として、第1FFスイッチ252、キャパシタC0ffpj、およびキャパシタC0ffnjを含む。なお、jは、1からオーバーサンプリング比N(一例として、60)までの自然数とした。
第1FFスイッチ252は、例えば、制御部180の制御信号に応じて、キャパシタC0ffpjの一方の端子を、アナログ信号AINPが入力する入力端子および基準電位のいずれかに切り換える。また、キャパシタC0ffpjの他方の端子は、量子化部150に接続される。キャパシタC0ffpjは、一例として、第1タイミングにおいて、一方の端子が入力端子に接続され、アナログ入力信号を充電する。そして、キャパシタC0ffpjは、第1タイミングからj番目にずれたタイミングにおいて、一方の端子が基準電位に接続され、充電したアナログ入力信号を量子化部150へと放電する。
第1FFスイッチ252は、同様に、制御部180の制御信号に応じて、キャパシタC0ffnjの一方の端子を、アナログ信号AINNが入力する入力端子および基準電位のいずれかに切り換える。キャパシタC0ffnjは、第1タイミングにおいて、一方の端子が入力端子に接続され、アナログ入力信号を充電する。そして、キャパシタC0ffnjは、第1タイミングからj番目にずれたタイミングにおいて、一方の端子が基準電位に接続され、充電したアナログ入力信号を量子化部150へと放電する。即ち、複数のスイッチトキャパシタは、第1クロックにおいてそれぞれアナログ入力信号を充電し、第1クロック以降の対応するクロック信号に応じて、充電したアナログ入力信号を量子化部150へと順次放電する。
第2フィードフォワード部260は、スイッチトキャパシタを含み、第1アナログ積分器210が出力する信号(一例として、INT10PおよびINT10N)を、量子化部150へと伝達する。第2フィードフォワード部260は、スイッチトキャパシタを含んでよい。第2フィードフォワード部260は、一例として、第2FFスイッチ262、キャパシタC1ffp、およびキャパシタC1ffnを含む。
第2FFスイッチ262は、制御部180の制御信号に応じて、正側のキャパシタC1ffpの一方の端子を、第1アナログ積分器210が信号INT10Pを出力する第1出力端子および基準電位のいずれかに切り換える。また、キャパシタC1ffpの他方の端子は、量子化部150に接続される。例えば、キャパシタC1ffpは、第1クロックにおいて、一方の端子が出力端子に接続され、信号INT10Pを充電する。そして、キャパシタC1ffpは、第2クロックにおいて、一方の端子が基準電位に接続され、充電した信号を量子化部150へと放電する。
第2FFスイッチ262は、同様に、制御部180の制御信号に応じて、負側のキャパシタC1ffnの一方の端子を、第1アナログ積分器210が信号INT10Nを出力する第2出力端子および基準電位のいずれかに切り換える。また、キャパシタC1ffnの他方の端子は、量子化部150に接続される。例えば、キャパシタC1ffnは、第1クロックにおいて、一方の端子が出力端子に接続され、信号INT10Nを充電する。そして、キャパシタC1ffnは、第2クロックにおいて、一方の端子が基準電位に接続され、充電した信号を量子化部150へと放電する。
第3フィードフォワード部270は、スイッチトキャパシタを含み、第2アナログ積分器220が出力する信号(一例として、INT20PおよびINT20N)を、量子化部150へと伝達する。第3フィードフォワード部270は、スイッチトキャパシタを含んでよい。第3フィードフォワード部270は、一例として、第3FFスイッチ272、キャパシタC2ffp、およびキャパシタC2ffnを含む。
第3FFスイッチ272は、制御部180の制御信号に応じて、正側のキャパシタC2ffpの一方の端子を、第2アナログ積分器220が信号INT20Pを出力する第1出力端子および基準電位のいずれかに切り換える。また、キャパシタC2ffpの他方の端子は、量子化部150に接続される。例えば、キャパシタC2ffpは、第1クロックにおいて、一方の端子が出力端子に接続され、信号INT20Pを充電する。そして、キャパシタC2ffpは、第2クロックにおいて、一方の端子が基準電位に接続され、充電した信号を量子化部150へと放電する。
第3FFスイッチ272は、同様に、制御部180の制御信号に応じて、負側のキャパシタC2ffnの一方の端子を、第2アナログ積分器220が信号INT20Nを出力する第2出力端子および基準電位のいずれかに切り換える。また、キャパシタC2ffnの他方の端子は、量子化部150に接続される。例えば、キャパシタC2ffnは、第1クロックにおいて、一方の端子が出力端子に接続され、信号INT20Nを充電する。そして、キャパシタC2ffnは、第2クロックにおいて、一方の端子が基準電位に接続され、充電した信号を量子化部150へと放電する。
第4フィードフォワード部280は、スイッチトキャパシタを含み、第3アナログ積分器230が出力する信号(一例として、INT30PおよびINT30N)を、量子化部150へと伝達する。第4フィードフォワード部280は、スイッチトキャパシタを含んでよい。第4フィードフォワード部280は、一例として、第4FFスイッチ282、キャパシタC3ffp、およびキャパシタC3ffnを含む。
第4FFスイッチ282は、制御部180の制御信号に応じて、正側のキャパシタC3ffpの一方の端子を、第3アナログ積分器230が信号INT30Pを出力する第1出力端子および基準電位のいずれかに切り換える。また、キャパシタC3ffpの他方の端子は、量子化部150に接続される。例えば、キャパシタC3ffpは、第1クロックにおいて、一方の端子が出力端子に接続され、信号INT30Pを充電する。そして、キャパシタC3ffpは、第2クロックにおいて、一方の端子が基準電位に接続され、充電した信号を量子化部150へと放電する。
第4FFスイッチ282は、同様に、制御部180の制御信号に応じて、負側のキャパシタC3ffnの一方の端子を、第3アナログ積分器230が信号INT30Nを出力する第2出力端子および基準電位のいずれかに切り換える。また、キャパシタC3ffnの他方の端子は、量子化部150に接続される。例えば、キャパシタC3ffnは、第1クロックにおいて、一方の端子が出力端子に接続され、信号INT30Nを充電する。そして、キャパシタC3ffnは、第2クロックにおいて、一方の端子が基準電位に接続され、充電した信号を量子化部150へと放電する。
制御部180は、一例として、以上の第2フィードフォワード部260、第3フィードフォワード部270、および第4フィードフォワード部280に対して、信号φiがハイ電位のタイミングで充電動作を、信号φsがハイ電位のタイミングで放電動作を実行させる。以上のように、フィードフォワード部140は、インクリメンタル型デルタシグマAD変調器20に入力する信号と、アナログ積分部130が有するアナログ積分器がそれぞれ出力する信号とを、フィードフォワード信号として、量子化部150へと伝達する。このようなフィードフォワード信号により、量子化部150がクロック毎に出力するデジタルコードは、より高速にアナログ入力信号を反映させたものにすることができる。
なお、本実施形態に係るインクリメンタル型デルタシグマAD変調器20は、このようなフィードフォワード動作に限定されることはない。例えば、フィードフォワード部140は、第1フィードフォワード部250、第2フィードフォワード部260、第3フィードフォワード部270、および第4フィードフォワード部280のうち、少なくとも一つを有する構造であってもよい。
以上の本実施形態に係るインクリメンタル型デルタシグマAD変調器20は、入力するアナログ信号を積分し、積分結果の量子化結果に応じて、当該入力するアナログ信号に基準電圧を加算または減算するフィードバック制御を実行する。これにより、インクリメンタル型デルタシグマAD変調器20は、入力するアナログ信号に応じたシリアルデジタルコードを精度よく出力することができる。また、インクリメンタル型デルタシグマAD変換器100は、このようなシリアルデジタルコードをデジタル処理して、アナログ信号に応じたデジタル信号を精度よく出力することができる。このようなインクリメンタル型デルタシグマAD変換器100のクロック信号に応じた各部の動作について、次に説明する。
図5は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100の各部における信号波形の一例を示す。図5の横方向(横軸)は時間を示し、縦方向(縦軸)は波高値(一例として、電圧値)を示す。図5は、入力するアナログ信号をサンプリングして保持する時間領域をトラッキング周期(またはトラッキングフェーズ)として、「tracking」と示す。また、保持したアナログ信号をデジタル信号に変換する時間領域をコンバージョン周期(またはコンバージョンフェーズ)として、「conversion」と示す。なお、入力するアナログ信号の一例を、信号AIN(=AINP−AINN)として示す。
リセット部170は、トラッキング周期Ttにおいて、アナログ積分部130およびデジタル演算部30をリセットする。リセット部170が出力するリセット信号の一例を、図5の信号φrに示す。信号φrは、トラッキング周期Ttにおいて、ハイ電位となる。なお、リセット部170は、リセット信号を制御部180に供給してよい。この場合、制御部180は、リセット信号の受信タイミングに基づき、各部を制御する。これに代えて、制御部180は、リセット部170のリセット信号の出力タイミングを制御してもよい。
サンプルホールド部110は、トラッキング周期Ttにおいて、アナログ信号AINPおよびAINNをサンプリングする。例えば、サンプルホールド部110の複数のスイッチトキャパシタは、トラッキング周期Ttにおいて制御部180から供給される信号φtがハイ電位となることに応じて、アナログ入力信号を充電する。なお、第1フィードフォワード部250が含む複数のスイッチトキャパシタも、信号φtに応じて、アナログ入力信号を充電してよい。
また、サンプルホールド部110は、コンバージョン周期Tcにおいて、制御部180から供給される信号φij(jは1からmの自然数とし、mはオーバーサンプリング比Nと同一の数)に応じて、充電したアナログ入力信号をアナログ積分部130へと順次放電する。例えば、サンプルホールド部110に含まれるキャパシタCs1pjおよびキャパシタCs1njは、互いに異なるタイミングで順次ハイ電位となる信号φijがハイ電位となることに応じて、充電したアナログ入力信号を順次放電する。なお、第1フィードフォワード部250が含む複数のスイッチトキャパシタも、信号φtに応じて、アナログ入力信号を順次放電してよい。
これにより、アナログ積分部130は、サンプルホールド部110から順次放電されるアナログ入力信号を積分し、量子化部150は、積分結果を量子化してデジタル信号Yとして出力する。なお、図5は、量子化部150が出力するデジタル信号Yの一例を、信号Yとして示す。
また、図5は、第1スイッチ部162および第2スイッチ部164を制御する信号φsおよび信号φiの一例を示す。制御部180からDA変換部160に信号φsおよび信号φiが供給されることにより、第1スイッチ部162および第2スイッチ部164が切り換わり、キャパシタCfbpおよびキャパシタCfbnに、対応する基準電圧に応じた電荷が充電される。なお、図5は、第1基準電圧REFPおよび第2基準電圧REFNの一例を示す。第1基準電圧REFPは略一定のハイ電位でよく、この場合、第2基準電圧REFNは略一定のロー電位でよい。
また、図5は、信号Yに応じて、DA変換部160の第3スイッチ部166を制御する信号φipおよび信号φinの一例を示す。信号φipは、信号Yのビット値が0であることに応じて、ハイ電位となる信号であり、信号φinは、信号Yのビット値が1であることに応じて、ロー電位となる信号である。信号φipおよび信号φinによって第3スイッチ部166が制御されることにより、加算部120は、フィードバック信号を差動信号に加算できる。
コンバージョン周期Tcにおいて、サンプルホールド部110の全ての(即ち、m個の)スイッチトキャパシタが放電を完了し、量子化部150がm個のデジタルコードを順次出力した場合、インクリメンタル型デルタシグマAD変換器100は、1つの変換サイクルを終了させてよい。即ち、インクリメンタル型デルタシグマAD変換器100は、コンバージョン周期からトラッキング周期へと移行し、リセット部170は、アナログ積分部130およびデジタル演算部30をリセットする。なお、インクリメンタル型デルタシグマAD変換器100は、コンバージョン周期および次のトラッキング周期の間において、デジタル演算部30による演算を実行するデジタル演算周期を更に有してよい。本実施形態においては、デジタル演算周期を省略して記載するものとする。
このように、インクリメンタル型デルタシグマAD変換器100は、トラッキング周期およびコンバージョン周期を含む変換サイクルを繰り返して、アナログ入力信号をデジタル信号に変換する。インクリメンタル型デルタシグマAD変換器100は、デルタシグマAD変換器とは異なり、トラッキング周期においてアナログ積分部130に蓄積された電荷を放電してリセットする。これにより、一の変換サイクルにおいて変換されたデジタル値は、一の変換サイクルとは異なるサイクルで蓄積された電荷の影響を受けることなく、アナログ入力信号の値をより正確に変換した値にすることができる。
このようなインクリメンタル型デルタシグマAD変換器100は、サンプルホールド部110が1変換サイクルよりも高い周波数で入力信号をサンプリングするので、より広帯域な信号に対応することができる。しかしながら、サンプルホールド部110は、複数のスイッチトキャパシタが高周波クロックに応じてサンプリングするので、単位時間当たりの転送すべき電荷量が大きくなることがあり、消費電力が増大してしまうことがあった。
そこで、本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、制御部180がサンプルホールド部110の充放電動作を制御して、消費電力を低減させる。このようなインクリメンタル型デルタシグマAD変換器100のクロック信号に応じた各部の動作について、次に説明する。
図6は、本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第1例を示す。図6は、図5に示す信号波形と同様に、横方向は時間を示し、縦方向は波高値を示す。また、図6は、図5と同様に、トラッキング周期を「tracking」と示し、コンバージョン周期を「conversion」と示す。
図6において、制御部180は、サンプルホールド部110の動作を除き、図5で説明した動作と同様の動作を実行する例を示す。即ち、図6に示すアナログ信号AIN、リセット信号φr、第1スイッチ部162および第2スイッチ部164を制御する信号φs、信号φi、第1基準電圧REFP、および第2基準電圧REFNは、図5に示す信号波形のそれぞれと略同一の信号波形となる例を示す。また、図6に示す入力アナログ信号AINが、図5に示す信号波形と略同一であることから、インクリメンタル型デルタシグマAD変調器20が出力するデジタル信号Y、第3スイッチ部166を制御する信号φipおよび信号φinも、図5に示す信号波形のそれぞれと略同一の信号波形となる。
ここで、制御部180は、コンバージョン周期において、複数のスイッチトキャパシタのうち、少なくとも1つのスイッチトキャパシタに対する充電動作を、少なくとも1つのスイッチトキャパシタからアナログ積分部130への転送動作が終了した後に開始させる。なお、当該充電動作は、次のトラッキング周期のための入力信号の充電動作である。即ち、制御部180は、コンバージョン周期において、一部のスイッチトキャパシタのトラッキング周期の動作を開始させる。
図6は、制御部180が、コンバージョン周期において、複数のスイッチトキャパシタのそれぞれについて、次のトラッキング周期のための充電動作を、転送動作が終了した後に順次開始させた例を示す。ここで、制御部180は、m個のスイッチトキャパシタに対して異なる制御信号φt1、φt2、・・・、φtmを生成し、それぞれ供給する。制御部180は、例えば、トラッキング周期において、サンプルホールド部110の全てのキャパシタにアナログ入力信号を充電させる。即ち、制御部180は、トラッキング周期の期間においてハイ電位を継続する制御信号を、全てのキャパシタに供給する。
次に、制御部180は、第1番目のキャパシタCs1p1およびCs1n1に充電された電荷を、コンバージョン周期の第1番目のタイミング(コンバージョン周期に変わったタイミング)において、アナログ積分部130へと放電させる。そして、制御部180は、コンバージョン周期の第2番目のタイミングにおいて、第1番目のキャパシタCs1p1およびCs1n1の次のアナログ入力信号の充電動作を開始させる。
即ち、制御部180は、第1番目のキャパシタCs1p1およびCs1n1に対して、第1番目のタイミングでロー電位、第2番目のタイミングでハイ電位となる制御信号φt1を供給する。また、制御部180は、第1番目のキャパシタCs1p1およびCs1n1に対して、第1番目のタイミングでハイ電位、第2番目のタイミングでロー電位となる制御信号φi1を供給する。
また、制御部180は、第2番目のキャパシタCs1p2およびCs1n2に充電された電荷を、コンバージョン周期の第2番目のタイミング(信号φi2がハイ電位)において、アナログ積分部130へと放電させる。そして、制御部180は、コンバージョン周期の第3番目のタイミングにおいて、第2番目のキャパシタCs1p2およびCs1n2の次のアナログ入力信号の充電動作を開始させる。
即ち、制御部180は、第2番目のキャパシタCs1p2およびCs1n2に対して、第1番目のタイミングでロー電位、第3番目のタイミングでハイ電位となる制御信号φt2を供給する。また、制御部180は、第1番目のキャパシタCs1p1およびCs1n1に対して、第2番目のタイミングでハイ電位、第3番目のタイミングでロー電位となる制御信号φi2を供給する。
以上の例のように、制御部180は、複数のスイッチトキャパシタがトラッキング周期で充電した電荷を、コンバージョン周期で順次放電させつつ、放電が終了したスイッチトキャパシタから次のトラッキング周期の充電を開始させる。これにより、複数のスイッチトキャパシタのほとんどが、トラッキング周期を実質的に拡大することができる。例えば、第1番目のキャパシタCs1p1およびCs1n1のトラッキング周期Tt1は、コンバージョン周期の第2番目のタイミングから開始させることができる。
ここで、例えば、図5で説明した、トラッキング周期Ttと、それぞれのキャパシタの電荷を放電させる時間間隔Tdが略同一(Tt=Td)であるとする。なお、それぞれのキャパシタの電荷を放電させる時間間隔は、図5および図6における信号φijのそれぞれがハイ電位となる時間間隔である。そして、コンバージョン周期Tcが、m個のスイッチトキャパシタの放電が終了する時間間隔と略同一(Tc=m・Td)であるとする。この場合、図6に示す第1番目のキャパシタCs1p1およびCs1n1のトラッキング周期Tt1は、Td+(m−1)・Td=m・Td=m・Ttと算出され、図5に示すトラッキング周期Ttと比較してm倍に増加できることがわかる。
同様に、第2番目のキャパシタCs1p2およびCs1n2のトラッキング周期Tt2は、Td+(m−2)・Tdとすることができ、トラッキング周期を(m−1)倍に増加できることがわかる。このように、本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、キャパシタCs1pjおよびCs1njのトラッキング周期を(m−j+1)倍にすることができる。これにより、サンプルホールド部110は、アナログ入力信号をスイッチトキャパシタに取り込む駆動時間を長くして、単位時間当たりに転送する電荷量(即ち、電流)を小さくすることができる。
図7は、本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第2例を示す。図7は、図5に示す信号波形と同様に、横方向は時間を示し、縦方向は波高値を示す。また、図7は、図5と同様に、トラッキング周期を「tracking」と示し、コンバージョン周期を「conversion」と示す。
図7は、図6と同様に、制御部180が、サンプルホールド部110の動作を除き、図5で説明した動作と同様の動作を実行する例を示す。したがって、制御部180がm個のスイッチトキャパシタのそれぞれに供給する制御信号φt1、φt2、・・・、φtmの信号波形以外は、図5および図6の信号波形と略同一となるので、ここでは説明を省略する。
図7は、制御部180が、コンバージョン周期において、転送動作が終了した複数のスイッチトキャパシタのうち、2以上のスイッチトキャパシタの充電動作を同一のタイミングで開始させた例を示す。例えば、制御部180は、サンプルホールド部110の第j+1番目から第m番目のキャパシタに供給する制御信号φtj+1、φtj+2、・・・、φtmを、略同一の制御信号φtとする。ここで、制御信号φtは、図5で説明した制御信号φtと略同一の信号でよい。
また、図7は、制御部180が、コンバージョン周期において、転送動作が終了した複数のスイッチトキャパシタのうち、残りの一部の充電動作をそれぞれ異なるタイミングで開始させた例を示す。例えば、制御部180は、サンプルホールド部110の第1番目から第j番目のキャパシタに供給する制御信号φt1、φt2、・・・、φtjを、図6で説明した制御信号φt1、φt2、・・・、φtjと略同一の信号とする。
このように、第2例のインクリメンタル型デルタシグマAD変換器100は、例えば、第1番目から第j番目のスイッチトキャパシタのトラッキング周期を増加させ、第j+1番目以降の制御信号を略同一の信号φtにする。これにより、インクリメンタル型デルタシグマAD変換器100は、トラッキング周期を増加させることにより、消費電力を低下させつつ、回路の構成を簡略化させることができる。
ここで、コンバージョン周期の比較的初期段階でアナログ積分部130への電荷の転送を終了させるスイッチトキャパシタは、転送後の制御により、トラッキング周期を増加させる効果が大きい。したがって、制御部180は、初期段階で電荷の転送を終了させるスイッチトキャパシタに対して、より早くトラッキング周期を開始させるように制御することが望ましい。その一方で、コンバージョン周期の後半でアナログ積分部130への電荷の転送を終了させるスイッチトキャパシタは、トラッキング周期を増加させる効果が低減する。したがって、制御部180は、コンバージョン周期の後半で電荷の転送を終了させるスイッチトキャパシタに対して、コンバージョン周期Tcが終了してからトラッキング周期Ttを開始させて、制御動作を簡略化させてよい。
図8は、本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第3例を示す。図8は、図5に示す信号波形と同様に、横方向は時間を示し、縦方向は波高値を示す。また、図8は、図5と同様に、トラッキング周期を「tracking」と示し、コンバージョン周期を「conversion」と示す。
図8は、図6および図7と同様に、制御部180が、サンプルホールド部110の動作を除き、図5で説明した動作と同様の動作を実行する例を示す。したがって、制御部180がm個のスイッチトキャパシタのそれぞれに供給する制御信号φt1、φt2、・・・、φtmの信号波形以外は、図5、図6、および図7の信号波形と略同一となるので、ここでは説明を省略する。
図8は、制御部180が、コンバージョン周期において、転送動作が終了した複数のスイッチトキャパシタのうち、一部毎の充電動作を異なるタイミングで開始させた例を示す。例えば、制御部180は、サンプルホールド部110の第1番目から第j番目のキャパシタに供給する制御信号を、略同一の制御信号φt1とする(j<m)。これにより、第3例のインクリメンタル型デルタシグマAD変換器100は、第1番目から第j番目のキャパシタのトラッキング周期を(m−j+1)・Tdに増加させることができる。
また、制御部180は、サンプルホールド部110の第j+1番目から第m番目のキャパシタに供給する制御信号を、略同一の制御信号φt2とする。ここで、制御信号φt2は、図5で説明した制御信号φtと略同一の信号でよい。このように、第3例のインクリメンタル型デルタシグマAD変換器100は、2つの制御信号を用いることにより、消費電力を低下化させつつ、回路の構成を簡略化させることができる。
なお、図8に示す信号波形は、制御部180が、複数のスイッチトキャパシタを2つのグループに分け、グループ毎に充電を開始するタイミングを制御する例を示した。本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、これに限定されることはなく、より多くのグループに分けてもよい。即ち、制御部180は、複数のスイッチトキャパシタを3以上のグループに分け、グループ毎に充電を開始するタイミングを制御してもよい。
以上の本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、サンプルホールド部110が、オーバーサンプリング比Nと、同数のスイッチトキャパシタを有する例を説明した。これに代えて、サンプルホールド部110は、オーバーサンプリング比Nと比較して、小さい数のスイッチトキャパシタを有してもよい。この場合においても、制御部180が、コンバージョン周期において、少なくとも一部のスイッチトキャパシタのトラッキング周期の動作を開始させることで、消費電力を低下させることができる。この場合の信号波形の一例を、次に示す。
図9は、本実施形態に係る制御部180が、インクリメンタル型デルタシグマAD変換器100の消費電力を低減させる制御を実行した場合の信号波形の第4例を示す。図9は、図5に示す信号波形と同様に、横方向は時間を示し、縦方向は波高値を示す。また、図9は、図5と同様に、トラッキング周期を「tracking」と示し、コンバージョン周期を「conversion」と示す。
図9は、図6から図8と同様に、制御部180が、サンプルホールド部110の動作を除き、図5で説明した動作と同様の動作を実行する例を示す。したがって、制御部180がl個のスイッチトキャパシタのそれぞれに供給する制御信号φt1、φt2、・・・、φtl以外は、図5から図8の信号波形と略同一となるので、ここでは説明を省略する(m>l)。
第4例においても、制御部180は、スイッチトキャパシタの数に関係なく、複数のスイッチトキャパシタのうち、充電動作を開始させるスイッチトキャパシタに対して、転送動作を実行したクロックタイミングの次のクロックタイミングにおいて充電動作を開始させてよい。即ち、制御部180は、l個のスイッチトキャパシタに対して異なる制御信号φt1、φt2、・・・、φtlを生成し、それぞれ供給する。
制御部180は、例えば、第1番目のキャパシタCs1p1およびCs1n1に充電された電荷を、コンバージョン周期の第1番目のタイミングにおいて、アナログ積分部130へと放電させる。そして、制御部180は、コンバージョン周期の第2番目のタイミングにおいて、第1番目のキャパシタCs1p1およびCs1n1の次のアナログ入力信号の充電動作を開始させる。即ち、制御部180は、第1番目のキャパシタCs1p1およびCs1n1に対して、第1番目のタイミングでロー電位、第2番目のタイミングでハイ電位となる制御信号φt1を供給する。
また、制御部180は、第2番目のキャパシタCs1p2およびCs1n2に充電された電荷を、コンバージョン周期の第2番目のタイミングにおいて、アナログ積分部130へと放電させる。そして、制御部180は、コンバージョン周期の第3番目のタイミングにおいて、第2番目のキャパシタCs1p2およびCs1n2の次のアナログ入力信号の充電動作を開始させる。即ち、制御部180は、第2番目のキャパシタCs1p2およびCs1n2に対して、第1番目のタイミングでロー電位、第3番目のタイミングでハイ電位となる制御信号φt2を供給する。
このように、制御部180は、図6で説明したm個のスイッチトキャパシタに対する制御のうち、l個までのスイッチトキャパシタに対する制御信号と同様の動作を実行してよい。これにより、サンプルホールド部110における電力消費を低減させることができる。また、制御部180のl個のスイッチトキャパシタに対する制御動作は、図9で説明した動作に限定されることはない。制御部180は、図7および図8で説明したように、一部のスイッチトキャパシタに対する制御信号を共通にしてもよい。
なお、l個のスイッチトキャパシタの放電動作が終了した場合、全てのスイッチトキャパシタに対するトラッキング周期が開始されることになる。そこで、制御部180は、次のコンバージョン周期の開始時刻を早めてもよい。即ち、制御部180は、1変換サイクルをより短い時間にしてよい。以上の制御部180および/またはデジタル演算部30は、少なくとも一部が計算機等で構成されてよい。
以上の本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよい。フローチャートおよびブロック図におけるブロックは、(1)オペレーションが実行されるプロセスの段階または(2)オペレーションを実行する役割を持つ装置の「部」として表現されてよい。特定の段階および「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。
なお、専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、また、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、およびプログラマブルロジックアレイ(PLA)等のような、論理和、排他的論理和、否定論理積、否定論理和、および他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよい。これにより、当該有形なデバイスに格納される命令を有するコンピュータ可読記憶媒体は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。
コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ等を含んでよい。また、コンピュータ可読命令は、Smalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードを含んでよい。
コンピュータ可読命令は、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、もしくは他のプログラム可能なデータ処理装置のプロセッサ、またはプログラマブル回路に提供されてよい。これにより、汎用コンピュータ、特殊目的のコンピュータ、もしくは他のプログラム可能なデータ処理装置のプロセッサ、またはプログラマブル回路は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成するために、当該コンピュータ可読命令を実行できる。なお、プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 入力端子、20 インクリメンタル型デルタシグマAD変調器、30 デジタル演算部、40 出力端子、100 インクリメンタル型デルタシグマAD変換器、110 サンプルホールド部、120 加算部、130 アナログ積分部、140 フィードフォワード部、150 量子化部、160 DA変換部、162 第1スイッチ部、164 第2スイッチ部、166 第3スイッチ部、170 リセット部、180 制御部、210 第1アナログ積分器、212 第1アナログ増幅器、214 正側リセットスイッチ、216 負側リセットスイッチ、220 第2アナログ積分器、222 第2アナログ増幅器、224 正側リセットスイッチ、226 負側リセットスイッチ、230 第3アナログ積分器、232 第3アナログ増幅器、234 正側リセットスイッチ、236 負側リセットスイッチ、240 第1スイッチトキャパシタ、242 前段スイッチ、244 後段スイッチ、245 第2スイッチトキャパシタ、246 前段スイッチ、248 後段スイッチ、250 第1フィードフォワード部、252 第1FFスイッチ、260 第2フィードフォワード部、262 第2FFスイッチ、270 第3フィードフォワード部、272 第3FFスイッチ、280 第4フィードフォワード部、282 第4FFスイッチ

Claims (13)

  1. 複数のスイッチトキャパシタを有し、入力信号をサンプリングするサンプルホールド部と、
    アナログ積分器を有し、前記サンプルホールド部がサンプリングした前記入力信号に基づくアナログ信号を積分するアナログ積分部と、
    前記アナログ積分部の出力信号を量子化する量子化部と、
    予め定められたトラッキング周期において前記複数のスイッチトキャパシタに前記入力信号をそれぞれ充電させ、予め定められたコンバージョン周期において前記複数のスイッチトキャパシタに充電した電荷を前記アナログ積分部に順次転送させる制御部と、
    を備え、
    前記制御部は、前記コンバージョン周期において、前記複数のスイッチトキャパシタのうち、少なくとも1つのスイッチトキャパシタに対する次のトラッキング周期のための前記入力信号の充電動作を、前記少なくとも1つのスイッチトキャパシタから前記アナログ積分部への転送動作が終了した後に開始させる、インクリメンタル型デルタシグマAD変調器。
  2. 前記制御部は、前記コンバージョン周期において、前記複数のスイッチトキャパシタのそれぞれについて、次のトラッキング周期のための前記充電動作を、前記転送動作が終了した後に順次開始させる、請求項1に記載のインクリメンタル型デルタシグマAD変調器。
  3. 前記制御部は、前記コンバージョン周期において、前記転送動作が終了した前記複数のスイッチトキャパシタのうち、2以上のスイッチトキャパシタの前記充電動作を同一のタイミングで開始させ、残りの一部の前記充電動作をそれぞれ異なるタイミングで開始させる、請求項1に記載のインクリメンタル型デルタシグマAD変調器。
  4. 前記制御部は、前記コンバージョン周期において、前記転送動作が終了した前記複数のスイッチトキャパシタのうち、一部毎の前記充電動作を異なるタイミングで開始させる、請求項1に記載のインクリメンタル型デルタシグマAD変調器。
  5. 前記制御部は、前記複数のスイッチトキャパシタのうち、前記充電動作を開始させるスイッチトキャパシタに対して、前記転送動作を実行したクロックタイミングの次のクロックタイミングにおいて前記充電動作を開始させる、請求項2または3に記載のインクリメンタル型デルタシグマAD変調器。
  6. 予め定められた第1周期で前記アナログ積分部が保持する積分値をリセットするリセット部を更に備える、請求項1から5のいずれか一項に記載のインクリメンタル型デルタシグマAD変調器。
  7. 前記複数のスイッチトキャパシタは、前記第1周期においてN回のサンプリング結果を出力し、
    前記第1周期は、前記トラッキング周期および前記コンバージョン周期の和である、請求項6に記載のインクリメンタル型デルタシグマAD変調器。
  8. 前記サンプルホールド部は、前記第1周期に対するサンプリング数の比であるオーバーサンプリング比Nと、同数のスイッチトキャパシタを有する、請求項7に記載のインクリメンタル型デルタシグマAD変調器。
  9. 前記サンプルホールド部は、前記第1周期に対するサンプリング数の比であるオーバーサンプリング比Nと比較して、小さい数のスイッチトキャパシタを有する、請求項7に記載のインクリメンタル型デルタシグマAD変調器。
  10. 前記量子化部の出力をDA変換して前記アナログ積分部にフィードバックするフィードバック信号を出力するDA変換部と、
    前記サンプルホールド部の出力に前記フィードバック信号を加算して、前記アナログ信号として前記アナログ積分部に供給する加算部と、
    を備える
    請求項1から9のいずれか一項に記載のインクリメンタル型デルタシグマAD変調器。
  11. 前記アナログ積分部は、複数の前記アナログ積分器を有する、請求項1から10のいずれか一項に記載のインクリメンタル型デルタシグマAD変調器。
  12. 前記入力信号を前記量子化部へと伝達するフィードフォワード部を更に備える、請求項1から11のいずれか一項に記載のインクリメンタル型デルタシグマAD変調器。
  13. 請求項1から12のいずれか一項に記載のインクリメンタル型デルタシグマAD変調器と、
    前記量子化部の出力をフィルタリングするデジタル演算部と、
    を備える
    インクリメンタル型デルタシグマAD変換器。
JP2016237313A 2016-12-07 2016-12-07 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器 Active JP6792436B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237313A JP6792436B2 (ja) 2016-12-07 2016-12-07 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237313A JP6792436B2 (ja) 2016-12-07 2016-12-07 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器

Publications (2)

Publication Number Publication Date
JP2018093441A true JP2018093441A (ja) 2018-06-14
JP6792436B2 JP6792436B2 (ja) 2020-11-25

Family

ID=62563745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237313A Active JP6792436B2 (ja) 2016-12-07 2016-12-07 インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器

Country Status (1)

Country Link
JP (1) JP6792436B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028101A (ja) * 2005-07-14 2007-02-01 Sharp Corp Ad変換器
US20080074303A1 (en) * 2006-09-22 2008-03-27 Timothy Rueger Incremental delta-sigma data converters with improved stability over wide input voltage ranges
JP2011223532A (ja) * 2010-04-14 2011-11-04 Panasonic Corp マルチチャネルサンプルホールド回路及びそれを用いたad変換器
WO2013136676A1 (ja) * 2012-03-14 2013-09-19 パナソニック株式会社 アナログ-デジタル変換回路及びその駆動方法
JP2016131366A (ja) * 2015-01-07 2016-07-21 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器及びad変換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028101A (ja) * 2005-07-14 2007-02-01 Sharp Corp Ad変換器
US20080074303A1 (en) * 2006-09-22 2008-03-27 Timothy Rueger Incremental delta-sigma data converters with improved stability over wide input voltage ranges
JP2011223532A (ja) * 2010-04-14 2011-11-04 Panasonic Corp マルチチャネルサンプルホールド回路及びそれを用いたad変換器
WO2013136676A1 (ja) * 2012-03-14 2013-09-19 パナソニック株式会社 アナログ-デジタル変換回路及びその駆動方法
JP2016131366A (ja) * 2015-01-07 2016-07-21 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変調器及びad変換器

Also Published As

Publication number Publication date
JP6792436B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
US11184017B2 (en) Method and circuit for noise shaping SAR analog-to-digital converter
US9432049B2 (en) Incremental delta-sigma A/D modulator and A/D converter
CN107395206B (zh) 带反馈提前置位逐次逼近型数模转换器及相应的Delta-SigmaADC架构
JP6753330B2 (ja) Δς変調器、δσa/d変換器およびインクリメンタルδσa/d変換器
US20090195423A1 (en) Analog to digital converters
JP6571493B2 (ja) インクリメンタル型デルタシグマad変調器及びad変換器
US10992311B2 (en) Delta-sigma AD converter and delta-sigma AD converting method
US7821436B2 (en) System and method for reducing power dissipation in an analog to digital converter
US20120032826A9 (en) Analog to digital converters
JP7376017B2 (ja) 量子化器出力コードに基づくプリチャージを伴うデルタシグマコンバータ
JP6823478B2 (ja) インクリメンタル型デルタシグマad変換器および調整方法
JP2018133630A (ja) インクリメンタル型デルタシグマad変換器
JP6632425B2 (ja) インクリメンタル型デルタシグマ変調器、変調方法、およびインクリメンタル型デルタシグマad変換器
JP2008028855A (ja) 半導体集積回路装置
JP6792436B2 (ja) インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器
JP2018198407A (ja) インクリメンタル型デルタシグマad変換器およびad変換方法
JP6864487B2 (ja) インクリメンタル型デルタシグマad変換器およびad変換方法
JP6883415B2 (ja) インクリメンタル型デルタシグマad変調器およびインクリメンタル型デルタシグマad変換器
JP2018198408A (ja) インクリメンタル型デルタシグマad変換器およびad変換方法
CN111684724B (zh) 带有基于量化器输出代码的预充电的δς转换器
US20220368341A1 (en) Analog-to-digital converter
WO2017208635A1 (ja) A/d変換器
JP2019216411A (ja) デルタシグマad変換器、およびデルタシグマad変換方法
JP2018014664A (ja) インクリメンタルデルタシグマad変換器
JP6616485B2 (ja) デルタシグマ変調器およびデルタシグマ変換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6792436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150