JP2018014664A - インクリメンタルデルタシグマad変換器 - Google Patents

インクリメンタルデルタシグマad変換器 Download PDF

Info

Publication number
JP2018014664A
JP2018014664A JP2016144111A JP2016144111A JP2018014664A JP 2018014664 A JP2018014664 A JP 2018014664A JP 2016144111 A JP2016144111 A JP 2016144111A JP 2016144111 A JP2016144111 A JP 2016144111A JP 2018014664 A JP2018014664 A JP 2018014664A
Authority
JP
Japan
Prior art keywords
analog
unit
digital
sigma
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016144111A
Other languages
English (en)
Inventor
貴登 片山
Takato Katayama
貴登 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2016144111A priority Critical patent/JP2018014664A/ja
Publication of JP2018014664A publication Critical patent/JP2018014664A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

【課題】量子化誤差を低減させつつ、ランダムに発生する雑音を低減させるAD変換器。
【解決手段】入力端子から入力する入力信号からアナログ信号を減算する減算部と、アナログ積分器を有し、減算部の出力を積分する積分部と、積分部の出力信号を量子化する量子化部と、量子化部の出力に基づいてアナログ信号を出力するDA変換部と、量子化部の出力をフィルタリングする第1デジタルフィルタと、入力端子および積分部の間に設けられた第1アナログ回路と、量子化部および第1デジタルフィルタの間に設けられ、第1アナログ回路の伝達関数に応じた伝達関数を有するデジタル回路とを備えるインクリメンタルデルタシグマAD変換器を提供する。
【選択図】図5

Description

本発明は、インクリメンタルデルタシグマAD変換器に関する。
従来、複数の積分回路を有し、アナログ信号をデジタル信号に変換するAD変換器において、予め定められた時間間隔で積分回路に蓄積された電荷をリセットするインクリメンタル型デルタシグマAD変換器が知られていた(例えば、特許文献1参照)。
特許文献1 国際公開第2013/136676号
このようなインクリメンタル型デルタシグマAD変換器は、後段に積分フィルタを設け、量子化誤差を低減させていた。しかしながら、このような積分フィルタの通過特性は、ランダムに発生するサーマルノイズおよびアンプのフッカーノイズ等の低減には不十分な場合があった。そこで、インクリメンタル型デルタシグマAD変換器において、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることが望まれていた。
本発明の第1の態様においては、入力端子から入力する入力信号からアナログ信号を減算する減算部と、アナログ積分器を有し、減算部の出力を積分する積分部と、積分部の出力信号を量子化する量子化部と、量子化部の出力に基づいてアナログ信号を出力するDA変換部と、量子化部の出力をフィルタリングする第1デジタルフィルタと、入力端子および積分部の間に設けられた第1アナログ回路と、量子化部および第1デジタルフィルタの間に設けられ、第1アナログ回路の伝達関数に応じた伝達関数を有するデジタル回路とを備えるインクリメンタルデルタシグマAD変換器を提供する。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係るインクリメンタル型デルタシグマAD変換器10のブロック図の一例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器10の積分部130の構成例を示す。 本実施形態に係る第1デジタルフィルタ160が有するフィルタ係数の一例を示す。 本実施形態に係る第1デジタルフィルタ160の周波数特性の一例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100のブロック図の一例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第1変形例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第2変形例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第3変形例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第4変形例を示す。 本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第5変形例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係るインクリメンタル型デルタシグマAD変換器10のブロック図の一例を示す。インクリメンタル型デルタシグマAD変換器10は、内部の回路をリセットしつつ、入力するアナログ信号Ainをデジタル信号Doutに変換して出力する。インクリメンタル型デルタシグマAD変換器10は、入力端子110と、減算部120と、積分部130と、量子化部140と、DA変換部150と、第1デジタルフィルタ160と、リセット部170と、出力端子180と、を備える。
入力端子110は、入力信号Ainを入力する。入力信号Ainは、アナログ信号でよい。入力端子110は、シングルエンド入力でよく、これに代えて、差動入力であってもよい。入力端子110が差動入力の場合、当該入力端子110は、正側入力から正側信号Ainpが、負側入力から負側信号Ainnが入力する。入力端子110は、入力した入力信号Ainを減算部120に供給する。
減算部120は、入力端子110から入力する入力信号Ainからアナログ信号を減算する。減算部120は、入力信号Ainからインクリメンタル型デルタシグマAD変換器10のフィードバック信号を減算する。減算部120は、入力端子110が差動入力の場合、当該差動信号の正側信号Ainpおよび負側信号Ainpに、それぞれ符号の異なるフィードバック信号を減算してよい。減算部120が減算するアナログ信号については後述する。減算部120は、減算結果を積分部130に供給する。
積分部130は、アナログ積分器を有し、減算部120の出力を積分する。積分部130は、複数のアナログ積分器を有してよい。積分部130は、積分した結果を出力信号Aerrとして量子化部140に供給する。
量子化部140は、積分部130の出力信号Aerrを量子化する。量子化部140は、外部から供給されるクロック信号等に応じて、積分部130の積分結果を量子化し、積分結果に応じたビットストリームを出力する。量子化部140は、1ビット量子化器またはマルチビット量子化器として機能してよい。
例えば、量子化部140として1ビット量子化器を用いた場合、ビットストリームは、予め定められた数の1ビットデータ(デジタルコード)の列(シリアルデジタルコード)であり、当該デジタルコードを積算した値が入力信号Ainの振幅値に比例または略一致するデジタル値となる。量子化部140は、クロック信号毎に、出力信号Aerrおよび予め定められた閾値を比較し、当該閾値を超えたか否かに応じて、当該出力信号Aerrを1または0のデジタルコードに変換してよい。
また、例えば、量子化部140としてMビット量子化器を用いた場合、ビットストリームは、予め定められた数のMビットデータ(デジタルコード)の列(シリアルデジタルコード)であり、当該デジタルコードを積算した値が入力信号Ainの振幅値に比例または略一致するデジタル値となる。量子化部140は、クロック信号毎に、Mビット分の比較器により出力信号Aerrおよび予め定められたMビットの閾値を比較し、各比較器が当該閾値を超えたか否かに応じて、当該出力信号AerrをMビットのデジタルコードに変換してよい。
即ち、インクリメンタル型デルタシグマAD変換器10は、入力信号Ainを一定の変換サイクル毎にデジタル値へ変換するが、量子化部140は、1変換サイクルよりも速い、外部から供給されるクロック信号等に応じて、入力信号Ainに対応するシリアルデジタルコードを出力する。このように、クロック信号に同期した複数のサンプル毎に、入力信号Ainはデジタル値へ変換され、1変換サイクルに対するサンプリング数をオーバーサンプリング比とする。即ち、シリアルデジタルコードに含まれるデジタルコードの数は、オーバーサンプリング比に等しくなる。
例えば、インクリメンタル型デルタシグマAD変換器10のオーバーサンプリング比が60の場合、量子化部140は、1変換サイクル毎に60個のデジタルコードを含むシリアルデジタルコードを出力する。量子化部140は、量子化したデジタル信号YをDA変換部150および第1デジタルフィルタ160に供給する。
DA変換部150は、量子化部140の出力に基づいてアナログ信号を出力する。DA変換部150は、量子化部140が出力するデジタル信号Yを、対応するアナログ信号にDA変換し、変換したアナログ信号をフィードバック信号として減算部120へと供給する。DA変換部150は、クロック信号と同期してデジタル信号Yをアナログ信号に変換してよい。
第1デジタルフィルタ160は、量子化部140の出力をフィルタリングする。第1デジタルフィルタ160は、量子化部140から受け取ったデジタル信号Yをフィルタリングして出力する。第1デジタルフィルタ160は、デジタル信号Yのビットストリームを積算してデジタル値を出力する積分フィルタでよい。この場合、第1デジタルフィルタ160は、積算した値に予め定められた係数を乗じてデジタル値を演算してもよい。第1デジタルフィルタ160は、クロック信号と同期してデジタル値を演算してよい。
第1デジタルフィルタ160は、一例として、ローパスフィルタを有し、量子化部140で発生する量子化ノイズを低減させる。また、第1デジタルフィルタ160は、デシメーションフィルタを有し、サンプリング周波数を低減させてもよい。第1デジタルフィルタ160は、演算結果のデジタル値を出力端子180に供給する。出力端子180は、受け取ったデジタル値を、当該インクリメンタル型デルタシグマAD変換器10のデジタル出力DOUTとして出力する。
リセット部170は、予め定められた周期毎に積分部130が保持する積分値をリセットする。リセット部170は、第1デジタルフィルタ160の積算量を更にリセットしてもよい。リセット部170は、当該インクリメンタル型デルタシグマAD変換器10がデジタル値へ変換する毎に、積分部130および第1デジタルフィルタ160をリセットしてよい。リセット部170は、一例として、デジタル値への1変換サイクル毎に、積分部130および第1デジタルフィルタ160にリセット信号を供給してそれぞれリセットする。
以上のように、本実施形態に係るインクリメンタル型デルタシグマAD変換器10は、リセット部170による積分部130および第1デジタルフィルタ160のリセットと、入力信号Ainのデジタル出力Doutへの変換とを、クロック信号に同期して繰り返す。なお、インクリメンタル型デルタシグマAD変換器10は、リセット部170によるリセット動作が無ければ、デルタシグマAD変換器として動作してよい。
図2は、本実施形態に係るインクリメンタル型デルタシグマAD変換器10の積分部130の構成例を示す。図2は、インクリメンタル型デルタシグマAD変換器10の入力信号Ainが、正側信号Ainpおよび負側信号Ainnによる差動信号で入力する例を示す。また、図2は、当該差動信号の入力に応じて、積分部130が出力信号Aerrを差動信号で出力する例を示す。
積分部130は、複数のアナログ積分器と、複数のスイッチトキャパシタとを有する。図2に示す積分部130は、第1アナログ積分器210、第2アナログ積分器220、および第3アナログ積分器230の3つのアナログ積分器を有する例を示す。また、積分部130は、第1スイッチトキャパシタ240および第2スイッチトキャパシタ245の2つのスイッチトキャパシタを有する例を示す。
また、図2は、3つのアナログ積分器が、2つの入力端子と2つの出力端子をそれぞれ有し、差動信号を入力して差動信号を出力する例を示す。なお、アナログ積分器の2つの入力端子のうちの一方を第1入力端子とし、他方を第2入力端子とする。また、アナログ積分器の2つの出力端子のうちの一方を第1出力端子とし、他方を第2出力端子とする。
アナログ積分器は、アナログ増幅器、帰還キャパシタ、およびリセットスイッチをそれぞれ含む。図2は、第1アナログ積分器210が、第1アナログ増幅器212、正側帰還キャパシタCi1p、負側帰還キャパシタCi1n、正側リセットスイッチ214、および負側リセットスイッチ216を含む例を示す。また、第2アナログ積分器220が、第2アナログ増幅器222、正側帰還キャパシタCi2p、負側帰還キャパシタCi2n、正側リセットスイッチ224、および負側リセットスイッチ226を含み、また、第3アナログ積分器230が、第3アナログ増幅器232、正側帰還キャパシタCi3p、負側帰還キャパシタCi3n、正側リセットスイッチ234、および負側リセットスイッチ236を含む例を示す。
アナログ増幅器は、正側入力端子および負側入力端子に入力される信号を増幅してそれぞれ出力する。アナログ増幅器は、例えば、差動入力型の増幅回路である。また、アナログ増幅器は、シングルエンド出力でよく、これに代えて、差動出力もよい。アナログ増幅器は、一例として、OPアンプである。図2は、第1アナログ増幅器212、第2アナログ増幅器222、および第3アナログ増幅器232、の3つのアナログ積分器が、差動入力および差動出力のアナログ増幅器をそれぞれ含む例を示す。なお、図2において、アナログ増幅器の正側入力端子は、アナログ積分器の第1入力端子に、負側入力端子は、第2入力端子に接続されるものとする。
帰還キャパシタのそれぞれは、入力信号Ainに応じた電荷を順次蓄積する。帰還キャパシタは、例えば、1サンプリング毎に、前段から後段へと電荷を順次蓄積する。一例として、正側信号Ainpに応じて、第1クロックにおいて正側帰還キャパシタCi1pに蓄積された電荷は、次の第2クロックにおいて正側帰還キャパシタCi2pで蓄積され、次の第3クロックにおいて正側帰還キャパシタCi3pで蓄積される。同様に、負側信号Ainnに応じて、第1クロックにおいて負側帰還キャパシタCi1nに蓄積された電荷は、次の第2クロックにおいて負側帰還キャパシタCi2nで蓄積され、次の第3クロックにおいて負側帰還キャパシタCi3nで蓄積される。
リセットスイッチは、リセット部170からの指示に応じて、帰還キャパシタに蓄積された電荷を放電させてアナログ積分器をそれぞれリセットする。リセットスイッチは、例えば、リセット部170から供給されるリセット信号に応じて、帰還キャパシタの端子間を接続し、蓄積された電荷を放電させる。図2の例は、リセット部170からの指示に応じて、正側リセットスイッチ214、負側リセットスイッチ216、正側リセットスイッチ224、負側リセットスイッチ226、正側リセットスイッチ234、および負側リセットスイッチ236がオン状態に切り換わり、第1アナログ増幅器212、第2アナログ増幅器222、および第3アナログ増幅器232をリセットする。
スイッチトキャパシタは、アナログ積分器の間に設けられ、前段に接続されたアナログ積分器に蓄積された電荷を後段に接続されたアナログ積分器へとそれぞれ伝達する。スイッチトキャパシタは、充放電用のキャパシタと、当該キャパシタの前段および後段に設けられるスイッチを含む。前段のスイッチは、キャパシタの一方の端子の接続先を、スイッチトキャパシタの前段回路および基準電位のいずれかに切り換える。後段のスイッチは、キャパシタの他方の端子の接続先を、スイッチトキャパシタの後段回路および基準電位のいずれかに切り換える。ここで、基準電位は、予め定められた電位でよく、一例として0Vである。
スイッチトキャパシタは、例えば、一のクロックにおいて、キャパシタの一方の端子が前段のアナログ積分器に接続され、キャパシタの他方の端子が基準電位と接続されることで、前段に接続されるアナログ積分器の出力電荷を当該キャパシタが充電する。この場合、スイッチトキャパシタは、次のクロックにおいて、キャパシタの一方の端子が基準電位に接続され、キャパシタの他方の端子が後段のアナログ積分器と接続されることで、当該キャパシタが充電した電荷を後段のアナログ積分器へと放電する。
図2は、第1スイッチトキャパシタ240が、第1アナログ積分器210および第2アナログ積分器220の間に接続される例を示す。第1スイッチトキャパシタ240は、前段スイッチ242および後段スイッチ244を用いて、前段の正側帰還キャパシタCi1pに蓄積された電荷を、キャパシタCs2pが充電して、後段の正側帰還キャパシタCi2pへと放電して伝達する。この場合、同様に、第1スイッチトキャパシタ240は、前段の負側帰還キャパシタCi1nに蓄積された電荷を、キャパシタCs2nが充電して、後段の負側帰還キャパシタCi2nへと放電して伝達する。
また、図2は、第2スイッチトキャパシタ245が、第2アナログ積分器220および第3アナログ積分器230の間に接続される例を示す。第2スイッチトキャパシタ245は、前段スイッチ246および後段スイッチ248を用いて、前段の正側帰還キャパシタCi2pに蓄積された電荷を、キャパシタCs3pが充電して、後段の正側帰還キャパシタCi3pへと放電して伝達する。この場合、同様に、第2スイッチトキャパシタ245は、前段の負側帰還キャパシタCi2nに蓄積された電荷を、キャパシタCs3nが充電して、後段の負側帰還キャパシタCi3nへと放電して伝達する。
以上のように、積分部130は、複数のアナログ積分器が直列に接続され、正側信号Ainpおよび負側信号Ainnを、クロック毎に前段のアナログ積分器から後段のアナログ積分器へと電荷を順次蓄積して伝達する。積分部130は、最も後段のアナログ積分器の帰還キャパシタに蓄積された電荷を、量子化部140へと出力する。例えば、図2に示す積分部130は、3段のアナログ積分器を有するので、第1クロックで第1アナログ積分器210に蓄積された電荷は、第3クロックで第3アナログ積分器230に伝達されて量子化部140へと出力される。
なお、図2は、積分部130が3つのアナログ積分器を有する例を説明したが、これに代えて、積分部130は、2つ、または4以上のアナログ積分器を有してもよい。この場合、スイッチトキャパシタは、アナログ積分器の数に応じて、積分部130に1または3以上設けられてよい。また、図2は、入力信号Ainが積分部130に直接入力する例を示すが、これに代えて、入力信号Ainは、サンプルホールド回路等を経て、積分部130に入力してよい。この場合、積分部130は、サンプルホールド回路がホールドした電荷を順次蓄積して伝達する。
このような積分部130の伝達関数を、Hanalogとする。例えば、積分部130は、入力信号をAinとした場合、出力信号Aerrを、Aerr=Hanalog・Ainのように演算する。また、インクリメンタル型デルタシグマAD変換器10の第1デジタルフィルタ160の伝達関数を、Hdigitalとする。例えば、第1デジタルフィルタ160は、量子化部140が量子化したデジタル信号Yに対して、デジタル出力Doutを、Dout=Hdigital・Yのように演算する。
ここで、リセット部170によるリセット信号の供給からi回目の入力をVin(i)、量子化部140の出力をY(i)、最終段の積分器の出力をV(i)とすると、次式が成立する。
Figure 2018014664
なお、(数1)式は、積分部130が積分器を3つ有する場合の一例であって、積分部130の積分器の個数をnとすると、積分に相当する「Σ」の個数はn個になる。また、入力端子110から減算部120までのゲインb、および、DA変換部150から減算部120までのゲインbを、それぞれ略1倍とした。また、係数Cは、積分部130内部の増幅器等による増幅度および損失等に応じて定められる係数である。
インクリメンタル型デルタシグマAD変換器10は、出力V(i)が予め定められた電圧範囲内となるように、出力V(i)に影響を与える係数(例えば、b、b、およびC)を調節して動作の安定性を確保する。ここで、予め定められた電圧範囲内を0[V]からV[V]とすると、次式が成立する。
Figure 2018014664
(数2)式を変形して整理することにより、次式が算出される。
Figure 2018014664
ここで、第1デジタルフィルタ160が量子化部140の出力を3重積分することで、次式が成立する。
Figure 2018014664
(数3)式および(数4)式より、入力Vin(i)に対するデジタル出力Doutを対応付ける次式を算出することができる。
Figure 2018014664
より一般的に、HanalogおよびHdigitalを用いると、図1に示すインクリメンタル型デルタシグマAD変換器10の場合、(数5)式は次式のように示すことができる。
Figure 2018014664
ここで、Hanalog=Hdigitalであれば、Dout=Hdigital・Yであるから、(数6)式は次式のように算出される。
Figure 2018014664
このように、インクリメンタル型デルタシグマAD変換器10は、第1デジタルフィルタ160の演算を、積分部130の演算と等価にすることで、効率よく量子化誤差を低減できることがわかる。しかしながら、第1デジタルフィルタ160を2次以上の積分フィルタにした場合、量子化誤差を低減できても、ランダムに発生する雑音成分まで低減することが困難になる場合がある。
図3は、本実施形態に係る第1デジタルフィルタ160が有するフィルタ係数の一例を示す。図3の横軸は、第1デジタルフィルタ160がリセット後からクロックに応じて出力する順番iを示し、縦軸は、第1デジタルフィルタ160のフィルタ係数を示す。なお、比較のため、1次の積分フィルタの係数についても同様に図3に示す。1次の積分フィルタは、入力信号を平均化するので、リセット後から数えて早い順番であっても遅い順番であっても、フィルタ係数は略同一の値となる。
これに対し、高次のフィルタ係数は、リセット後から数えてより早い順番の値の方が、より大きい値となる。図3において、斜線の柱状で示すグラフが2次の積分フィルタの例である。この場合、1番目のデータに対する重みは、16番目のデータと比較して10倍程度大きい値となる。したがって、入力するデータのタイミングによっては、重みが重くなる場合と、軽くなる場合が発生するので、ランダムに発生する雑音成分等を低減できない場合が生じてしまう。
図4は、本実施形態に係る第1デジタルフィルタ160の周波数特性の一例を示す。図3の横軸は、クロック周波数fclkに対する周波数fを示し、縦軸は減衰量(マイナスの利得)を示す。図4に示すように、2次の積分フィルタの通過特性は、20数dB程度の減衰量なので、ランダムに発生するサーマルノイズおよびアンプのフッカーノイズ等の低減には不十分な場合がある。そこで、本実施形態のインクリメンタル型デルタシグマAD変換器100は、量子化誤差を低減させる特性を保ちつつ、ランダムに発生する雑音を低減させるように、フィルタを更に備える。
図5は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100のブロック図の一例を示す。本実施形態に係るインクリメンタル型デルタシグマAD変換器100において、図1に示された本実施形態に係る実施形態に係るインクリメンタル型デルタシグマAD変換器10の動作と略同一のものには同一の符号を付け、説明を省略する。インクリメンタル型デルタシグマAD変換器100は、第1アナログ回路310と、デジタル回路410と、を更に備える。
第1アナログ回路310は、入力端子110および積分部130の間に設けられる。図5は、第1アナログ回路310が、入力端子110および減算部120の間に設けられる例を示す。第1アナログ回路310は、入力する信号をフィルタリングする第1アナログフィルタを有する。第1アナログフィルタは、高調波成分を低減させるローパスフィルタを有してよい。本実施形態において、第1アナログ回路310の伝達関数をHextraとする。
デジタル回路410は、量子化部140および第1デジタルフィルタ160の間に設けられ、第1アナログ回路310の伝達関数に応じた伝達関数を有する。図5は、デジタル回路410が、量子化部140およびDA変換部150の間に設けられる例を示す。即ち、デジタル回路410は、量子化部140の出力Yが入力され、信号Yに応じた出力信号Y'を、DA変換部150および第1デジタルフィルタ160に供給する。
デジタル回路410は、入力する信号をフィルタリングする第2デジタルフィルタを有してよい。デジタル回路410の伝達関数は、第1アナログ回路310の伝達関数Hextraと略同一の伝達関数を有してよい。即ち、デジタル回路410が有する第2デジタルフィルタは、第1アナログ回路310と略同一のローパスフィルタでよい。
図5に示すインクリメンタル型デルタシグマAD変換器100の場合、リセット部170は、積分部130をリセットするタイミングで、第1デジタルフィルタ160、第1アナログ回路310、およびデジタル回路410をリセットしてよい。即ち、リセット部170は、積分部130、第1デジタルフィルタ160、第1アナログ回路310、およびデジタル回路410に、略同一のタイミングでリセット信号を供給してよい。
以上のインクリメンタル型デルタシグマAD変換器100において、入力端子110から入力する入力信号Ainが積分部130から出力信号Aerrとして出力されるまでの伝達関数は、Hextra・Hanalog・Ainとなる。また、量子化部140の出力Yが出力端子180からデジタル出力Doutとして出力されるまでの伝達関数は、Hdigital・Y'=Hextra・Hdigital・Yとなる。即ち、図5において、(数6)式は、次式のように示される。
Figure 2018014664
したがって、Hanalog=Hdigitalであれば、Hextra・Hanalog=Hextra・Hdigitalとなるので、(数7)式と同様に、次式が成立する。
Figure 2018014664
即ち、インクリメンタル型デルタシグマAD変換器100は、第1デジタルフィルタ160および積分部130の演算を等価にし、また、第1アナログ回路310およびデジタル回路410の伝達関数を略同一とすることで、効率よく量子化誤差を低減できることがわかる。
また、インクリメンタル型デルタシグマAD変換器100は、量子化部140の出力Yを、デジタル回路410および第1デジタルフィルタ160を介して出力端子180からデジタル出力Doutを出力する。したがって、インクリメンタル型デルタシグマAD変換器100は、デジタルデータに変換した信号Yに伝達関数Hextra・Hdigitalを乗じることにより、高周波ノイズを低減することができる。
したがって、本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることができる。また、第1アナログ回路310およびデジタル回路410は、略同一のローパスフィルタの伝達関数を有していればよく、このようなアナログ回路およびデジタル回路を備えるインクリメンタル型デルタシグマAD変換器100は、容易に実現することができる。
図6は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第1変形例を示す。第1変形例のインクリメンタル型デルタシグマAD変換器100において、図5に示された本実施形態に係る実施形態に係るインクリメンタル型デルタシグマAD変換器100の動作と略同一のものには同一の符号を付け、説明を省略する。第1変形例のインクリメンタル型デルタシグマAD変換器100は、第1アナログ回路310と、第2アナログ回路320と、デジタル回路410と、を更に備える。
第1アナログ回路310は、入力端子110および減算部120の間に設けられる。第1アナログ回路310は、入力する信号をフィルタリングする第1アナログフィルタを有する。第1アナログフィルタは、高調波成分を低減させるローパスフィルタを有してよい。本実施形態において、第1アナログ回路310の伝達関数をHextraとする。
第2アナログ回路320は、DA変換部150および減算部120の間に設けられる。第2アナログ回路320は、入力する信号をフィルタリングする第2アナログフィルタを有してよい。第2アナログ回路320は、第1アナログ回路310の伝達関数Hextraに応じた伝達関数を有してよい。即ち、第2アナログ回路320が有する第2アナログフィルタは、第1アナログ回路310が有する第1アナログフィルタと略同一のローパスフィルタでよい。
デジタル回路410は、量子化部140および第1デジタルフィルタ160の間に設けられる。また、デジタル回路410およびDA変換部150は、量子化部にそれぞれ接続され、量子化されたビットストリームをそれぞれ受け取る。デジタル回路410は、入力する信号をフィルタリングする第2デジタルフィルタを有してよい。デジタル回路410の伝達関数は、第1アナログ回路310の伝達関数Hextraと略同一の伝達関数を有してよい。即ち、第1アナログ回路310、第2アナログ回路320、およびデジタル回路410の伝達関数は、略同一でよい。また、デジタル回路410が有する第2デジタルフィルタは、第1デジタルフィルタ160と略同一のローパスフィルタでよい。
第1変形例のインクリメンタル型デルタシグマAD変換器100の場合、リセット部170は、積分部130をリセットするタイミングで、第1デジタルフィルタ160、第1アナログ回路310、第2アナログ回路320、およびデジタル回路410をリセットしてよい。即ち、リセット部170は、積分部130、第1デジタルフィルタ160、第1アナログ回路310、第2アナログ回路320、およびデジタル回路410に、略同一のタイミングでリセット信号を供給してよい。
以上のインクリメンタル型デルタシグマAD変換器100において、入力端子110から入力する入力信号Ainが積分部130から出力信号Aerrとして出力されるまでの伝達関数は、Hextra・Hanalog・Ainとなる。また、量子化部140の出力Yが出力端子180からデジタル出力Doutとして出力されるまでの伝達関数は、Hextra・Hdigital・Yとなる。また、量子化部140の出力Yが減算部120を経てフィードバックされる成分はHextra・Hanalog・Yとなる。即ち、図6において、(数6)式は、次式のように示される。
Figure 2018014664
したがって、Hanalog=Hdigitalであれば、Hextra・Hanalog=Hextra・Hdigitalとなるので、(数9)式が成立する。即ち、第1変形例のインクリメンタル型デルタシグマAD変換器100は、第1デジタルフィルタ160および積分部130の演算を等価にし、また、第1アナログ回路310、第2アナログ回路320、およびデジタル回路410の伝達関数を略同一とすることで、効率よく量子化誤差を低減できることがわかる。
また、第1変形例のインクリメンタル型デルタシグマAD変換器100は、デジタルデータに変換した信号Yに伝達関数Hextra・Hdigitalを乗じることにより、高周波ノイズを低減することができる。したがって、第1変形例に係るインクリメンタル型デルタシグマAD変換器100は、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることができる。
図7は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第2変形例を示す。第2変形例のインクリメンタル型デルタシグマAD変換器100において、図5に示された本実施形態に係る実施形態に係るインクリメンタル型デルタシグマAD変換器100の動作と略同一のものには同一の符号を付け、説明を省略する。第2変形例のインクリメンタル型デルタシグマAD変換器100は、第1アナログ回路310と、デジタル回路410と、を更に備える。
第1アナログ回路310は、減算部120および積分部130の間に設けられる。第1アナログ回路310は、入力する信号をフィルタリングする第1アナログフィルタを有する。第1アナログフィルタは、高調波成分を低減させるローパスフィルタを有してよい。本実施形態において、第1アナログ回路310の伝達関数をHextraとする。
デジタル回路410は、量子化部140および第1デジタルフィルタ160の間に設けられる。また、デジタル回路410およびDA変換部150は、量子化部にそれぞれ接続され、量子化されたビットストリームをそれぞれ受け取る。デジタル回路410は、入力する信号をフィルタリングする第2デジタルフィルタを有してよい。デジタル回路410の伝達関数は、第1アナログ回路310の伝達関数Hextraと略同一の伝達関数を有してよい。即ち、第1アナログ回路310およびデジタル回路410の伝達関数は、略同一でよい。また、デジタル回路410が有する第2デジタルフィルタは、第1デジタルフィルタ160と略同一のローパスフィルタでよい。
第2変形例のインクリメンタル型デルタシグマAD変換器100の場合、リセット部170は、積分部130をリセットするタイミングで、第1デジタルフィルタ160、第1アナログ回路310、およびデジタル回路410をリセットしてよい。即ち、リセット部170は、積分部130、第1デジタルフィルタ160、第1アナログ回路310、およびデジタル回路410に、略同一のタイミングでリセット信号を供給してよい。
以上のインクリメンタル型デルタシグマAD変換器100において、入力端子110から入力する入力信号Ainが積分部130から出力信号Aerrとして出力されるまでの伝達関数は、Hextra・Hanalog・Ainとなる。また、量子化部140の出力Yが出力端子180からデジタル出力Doutとして出力されるまでの伝達関数は、Hextra・Hdigital・Yとなる。また、量子化部140の出力Yが減算部120を経てフィードバックされる成分はHextra・Hanalog・Yとなる。即ち、図7において、(数6)式は、(数10)式のように示される。
したがって、Hanalog=Hdigitalであれば、Hextra・Hanalog=Hextra・Hdigitalとなるので、(数9)式が成立する。即ち、第2変形例のインクリメンタル型デルタシグマAD変換器100は、第1デジタルフィルタ160および積分部130の演算を等価にし、また、第1アナログ回路310およびデジタル回路410の伝達関数を略同一とすることで、効率よく量子化誤差を低減できることがわかる。
また、第2変形例のインクリメンタル型デルタシグマAD変換器100は、デジタルデータに変換した信号Yに伝達関数Hextra・Hdigitalを乗じることにより、高周波ノイズを低減することができる。したがって、第2変形例に係るインクリメンタル型デルタシグマAD変換器100は、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることができる。
なお、第1変形例および第2変形例に係るインクリメンタル型デルタシグマAD変換器100は、いずれもフィードバックループ内にローパスフィルタの特性を有するアナログ回路を備え、ループの外にローパスフィルタの特性を有するデジタル回路を備える。これにより、インクリメンタル型デルタシグマAD変換器100は、デジタル回路に特有の遅延等を生じさせることなく、高速にフィードバックを実行できる。
図8は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第3変形例を示す。第3変形例のインクリメンタル型デルタシグマAD変換器100において、図5に示された本実施形態に係る実施形態に係るインクリメンタル型デルタシグマAD変換器100の動作と略同一のものには同一の符号を付け、説明を省略する。
第3変形例のインクリメンタル型デルタシグマAD変換器100は、入力信号が略一定の値となる場合に用いられる構成でよい。入力信号が略一定の値になる場合、追加するフィルタの特性は、移動平均を演算するフィルタでよい。この場合、移動平均値は、略一定の値となることから、入力側のアナログフィルタを省略することができる。第3変形例のインクリメンタル型デルタシグマAD変換器100は、デジタル回路410を更に備える。
デジタル回路410は、量子化部140および第1デジタルフィルタ160の間に設けられる。また、デジタル回路410は、量子化部140およびDA変換部150の間に設けられる。また、DA変換部150は、デジタル回路410および第1デジタルフィルタ160の間に接続され、デジタル回路410が出力するデジタル信号をアナログ信号に変換して、減算部120に供給する。即ち、DA変換部150のデジタル信号の入力部は、デジタル回路410および第1デジタルフィルタ160の間に接続され、DA変換部150のアナログ信号の出力部は、減算部120に接続される。また、第1デジタルフィルタ160は、デジタル回路410が出力するデジタル信号をフィルタリングする。
デジタル回路410は、入力信号の移動平均を出力する第2デジタルフィルタを有してよい。本実施形態において、デジタル回路410の伝達関数をHextraとする。デジタル回路410が移動平均であり、入力信号が略一定の値となる場合、第3変形例のインクリメンタル型デルタシグマAD変換器100は、対応する第1アナログ回路310を省略することができる。
第3変形例のインクリメンタル型デルタシグマAD変換器100の場合、リセット部170は、積分部130をリセットするタイミングで、第1デジタルフィルタ160およびデジタル回路410をリセットしてよい。即ち、リセット部170は、積分部130、第1デジタルフィルタ160、およびデジタル回路410に、略同一のタイミングでリセット信号を供給してよい。
以上のインクリメンタル型デルタシグマAD変換器100において、入力端子110から入力する入力信号Ainが積分部130から出力信号Aerrとして出力されるまでの伝達関数は、Hanalog・Ainとなる。ここで、入力信号Ainが略一定の値の場合には、Hextra=1となることから、入力端子110から入力する入力信号Ainが積分部130から出力信号Aerrとして出力されるまでの伝達関数は、Hextra・Hanalog・Ainと記述することが可能である。また、量子化部140の出力Yが出力端子180からデジタル出力Doutとして出力されるまでの伝達関数は、Hextra・Hdigital・Yとなる。また、量子化部140の出力Yが減算部120を経てフィードバックされる成分はHextra・Hanalog・Yとなる。即ち、図8において、(数6)式は、(数10)式のように示される。
したがって、Hanalog=Hdigitalであれば、Hextra・Hanalog=Hextra・Hdigitalとなるので、(数9)式が成立する。即ち、第3変形例のインクリメンタル型デルタシグマAD変換器100は、第1デジタルフィルタ160および積分部130の演算を等価にし、また、デジタル回路410が移動平均を出力することにより、効率よく量子化誤差を低減できることがわかる。
また、第3変形例のインクリメンタル型デルタシグマAD変換器100は、入力信号が略一定なので、移動平均を出力するデジタル回路410を用いることにより、高周波ノイズを低減することができる。したがって、第3変形例に係るインクリメンタル型デルタシグマAD変換器100は、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることができる。
図9は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第4変形例を示す。第4変形例のインクリメンタル型デルタシグマAD変換器100において、図8に示された第3変形例に係るインクリメンタル型デルタシグマAD変換器100の動作と略同一のものには同一の符号を付け、説明を省略する。
第4変形例のインクリメンタル型デルタシグマAD変換器100は、第3変形例のインクリメンタル型デルタシグマAD変換器100と同様に、入力信号が略一定の値となる場合に用いられる構成でよい。入力信号が略一定の値になる場合、追加するフィルタの特性は、移動平均を演算するフィルタでよい。この場合、移動平均値は、略一定の値となることから、入力側のアナログフィルタを省略することができる。第4変形例のインクリメンタル型デルタシグマAD変換器100は、第3変形例のインクリメンタル型デルタシグマAD変換器100と同様に、デジタル回路410を備える。
デジタル回路410は、量子化部140および第1デジタルフィルタ160の間に設けられる。また、デジタル回路410およびDA変換部150は、量子化部140にそれぞれ接続され、量子化されたビットストリームをそれぞれ受け取る。即ち、DA変換部150は、量子化部140およびデジタル回路410の間に接続され、デジタル回路410が出力するデジタル信号をアナログ信号に変換して、減算部120に供給する。デジタル回路410は、入力信号の移動平均を出力する第2デジタルフィルタを有してよい。本実施形態において、デジタル回路410の伝達関数をHextraとする。デジタル回路410が移動平均であり、入力信号が略一定の値となる場合、第4変形例のインクリメンタル型デルタシグマAD変換器100においても、対応する第1アナログ回路310を省略することができる。
デジタル回路410は、一例として、時系列に入力する入力信号z、z−1、z−2、・・・、z−iに対して、次式のような演算を施して移動平均を算出してよい。なお、は、k、k、・・・、kは係数である。
Figure 2018014664
デジタル回路410が(数11)式のように演算することに応じて、DA変換部150は、同様のフィルタ特性となるように演算して出力することができる。即ち、DA変換部150は、第2デジタルフィルタの伝達関数と同一の伝達関数を有してよい。この場合、DA変換部150は、一例として、リセット信号によってリセットされた後、第n番目の入力z−i+n−1に対して係数kiーn+1をそれぞれ乗じ、乗算結果の総和を出力する。このように、DA変換部150がデジタル回路410と等価な動作を実行することができるので、インクリメンタル型デルタシグマAD変換器100は、フィードバックループ内にデジタルフィルタの特性を有するデジタル回路を省くことができる。
したがって、第4変形例に係るインクリメンタル型デルタシグマAD変換器100も、(数6)式は、(数10)式のように示される。したがって、Hanalog=Hdigitalであれば、Hextra・Hanalog=Hextra・Hdigitalとなるので、(数9)式が成立する。即ち、第4変形例のインクリメンタル型デルタシグマAD変換器100は、第1デジタルフィルタ160および積分部130の演算を等価にし、また、デジタル回路410およびDA変換部150が移動平均を出力することにより、効率よく量子化誤差を低減できることがわかる。
また、第4変形例のインクリメンタル型デルタシグマAD変換器100は、入力信号が略一定なので、移動平均を出力するデジタル回路410を用いることにより、高周波ノイズを低減することができる。したがって、第3変形例に係るインクリメンタル型デルタシグマAD変換器100は、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることができる。
以上の本実施形態に係るインクリメンタル型デルタシグマAD変換器100は、図1に示すインクリメンタル型デルタシグマAD変換器10にデジタル回路410等を更に備える構成を例として説明した。なお、予め定められた時間間隔で積分回路に蓄積された電荷をリセットするインクリメンタル型デルタシグマAD変換器であれば、図1とは異なる構成であっても、デジタル回路410等を更に備えることにより、量子化誤差を低減させつつ、ランダムに発生する雑音を低減させることができる。例えば、インクリメンタル型デルタシグマAD変換器10にフィードフォワード回路等が追加された構成であってもよい。
図10は、本実施形態に係るインクリメンタル型デルタシグマAD変換器100の第5変形例を示す。第5変形例のインクリメンタル型デルタシグマAD変換器100は、図5に示すインクリメンタル型デルタシグマAD変換器100に、フィードフォワード部420が追加された構成例を示す。
フィードフォワード部420は、入力信号を量子化部140へと伝達する。また、フィードフォワード部420は、積分部130の内部の信号を量子化部140へと伝達してもよい。フィードフォワード部420は、例えば、第1アナログ積分器210および/または第2アナログ積分器220の出力信号を、量子化部140へと伝達してもよい。フィードフォワード部420は、加算部422を有してよい。
加算部422は、入力信号、第1アナログ積分器210の出力信号、および/または第2アナログ積分器220の出力信号を受け取り、積分部130の出力に加算して量子化部140に加算結果を供給する。この場合、加算部422は、クロック信号に応じて、積分器等の出力タイミングに同期してそれぞれの信号を受け取って、総和を量子化部140に伝達してよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 インクリメンタル型デルタシグマAD変換器、100 インクリメンタル型デルタシグマAD変換器、110 入力端子、120 減算部、130 積分部、140 量子化部、150 DA変換部、160 第1デジタルフィルタ、170 リセット部、180 出力端子、210 第1アナログ積分器、212 第1アナログ増幅器、214 正側リセットスイッチ、216 負側リセットスイッチ、220 第2アナログ積分器、222 第2アナログ増幅器、224 正側リセットスイッチ、226 負側リセットスイッチ、230 第3アナログ積分器、232 第3アナログ増幅器、234 正側リセットスイッチ、236 負側リセットスイッチ、240 第1スイッチトキャパシタ、242 前段スイッチ、244 後段スイッチ、245 第2スイッチトキャパシタ、246 前段スイッチ、248 後段スイッチ、310 第1アナログ回路、320 第2アナログ回路、410 デジタル回路、420 フィードフォワード部、422 加算部

Claims (13)

  1. 入力端子から入力する入力信号からアナログ信号を減算する減算部と、
    アナログ積分器を有し、前記減算部の出力を積分する積分部と、
    前記積分部の出力信号を量子化する量子化部と、
    前記量子化部の出力に基づいて前記アナログ信号を出力するDA変換部と、
    前記量子化部の出力をフィルタリングする第1デジタルフィルタと、
    前記入力端子および前記積分部の間に設けられた第1アナログ回路と、
    前記量子化部および前記第1デジタルフィルタの間に設けられ、前記第1アナログ回路の伝達関数に応じた伝達関数を有するデジタル回路と
    を備えるインクリメンタルデルタシグマAD変換器。
  2. 前記第1アナログ回路は、前記入力端子および前記減算部の間に設けられ、
    前記デジタル回路は、前記量子化部および前記DA変換部の間に設けられる、請求項1に記載のインクリメンタルデルタシグマAD変換器。
  3. 前記第1アナログ回路は、前記減算部および前記積分部の間に設けられ、
    前記デジタル回路および前記DA変換部は、前記量子化部にそれぞれ接続される、請求項1に記載のインクリメンタルデルタシグマAD変換器。
  4. 前記DA変換部および前記減算部の間に設けられ、前記第1アナログ回路の伝達関数に応じた伝達関数を有する第2アナログ回路を備え、
    前記第1アナログ回路は、前記入力端子および前記減算部の間に設けられ、
    前記デジタル回路および前記DA変換部は、前記量子化部にそれぞれ接続される、請求項1に記載のインクリメンタルデルタシグマAD変換器。
  5. 前記第2アナログ回路は、入力する信号をフィルタリングする第2アナログフィルタを有する、請求項4に記載のインクリメンタルデルタシグマAD変換器。
  6. 前記第1アナログ回路は、入力する信号をフィルタリングする第1アナログフィルタを有する、請求項1から5のいずれか一項に記載のインクリメンタルデルタシグマAD変換器。
  7. 前記デジタル回路は、入力する信号をフィルタリングする第2デジタルフィルタを有する、請求項1から6のいずれか一項に記載のインクリメンタルデルタシグマAD変換器。
  8. 入力端子から入力する入力信号からアナログ信号を減算する減算部と、
    アナログ積分器を有し、前記減算部の出力を積分する積分部と、
    前記積分部の出力信号を量子化する量子化部と、
    前記量子化部の出力に基づいて前記アナログ信号を出力するDA変換部と、
    前記量子化部の出力をフィルタリングする第1デジタルフィルタと、
    前記量子化部および前記第1デジタルフィルタの間に設けられ、入力信号の移動平均を出力する第2デジタルフィルタを有するデジタル回路と
    を備えるインクリメンタルデルタシグマAD変換器。
  9. 前記DA変換部は、前記デジタル回路および前記第1デジタルフィルタの間に接続され、前記デジタル回路が出力するデジタル信号をアナログ信号に変換して前記減算部に供給する、請求項8に記載のインクリメンタルデルタシグマAD変換器。
  10. 前記DA変換部は、前記量子化部および前記デジタル回路の間に接続され、前記量子化部が出力するデジタル信号をアナログ信号に変換して前記減算部に供給し、前記第2デジタルフィルタの伝達関数と同一の伝達関数を有する、請求項8に記載のインクリメンタルデルタシグマAD変換器。
  11. 予め定められた周期毎に前記積分部が保持する積分値をリセットするリセット部を備え、
    前記リセット部は、前記積分部をリセットするタイミングで、前記第1デジタルフィルタ、前記第1アナログ回路、および前記デジタル回路をリセットする、
    請求項1から7のいずれか一項に記載のインクリメンタルデルタシグマAD変換器。
  12. 予め定められた周期毎に前記積分部が保持する積分値をリセットするリセット部を備え、
    前記リセット部は、前記積分部をリセットするタイミングで、前記第1デジタルフィルタおよび前記デジタル回路をリセットする、請求項8から10のいずれか一項に記載のインクリメンタルデルタシグマAD変換器。
  13. 前記入力信号を前記量子化部へと伝達するフィードフォワード部を更に備える、請求項1から12のいずれか一項に記載のインクリメンタルデルタシグマAD変換器。
JP2016144111A 2016-07-22 2016-07-22 インクリメンタルデルタシグマad変換器 Pending JP2018014664A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016144111A JP2018014664A (ja) 2016-07-22 2016-07-22 インクリメンタルデルタシグマad変換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144111A JP2018014664A (ja) 2016-07-22 2016-07-22 インクリメンタルデルタシグマad変換器

Publications (1)

Publication Number Publication Date
JP2018014664A true JP2018014664A (ja) 2018-01-25

Family

ID=61019557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144111A Pending JP2018014664A (ja) 2016-07-22 2016-07-22 インクリメンタルデルタシグマad変換器

Country Status (1)

Country Link
JP (1) JP2018014664A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574480A (zh) * 2018-07-04 2018-09-25 中国电子技术标准化研究院 频率检测启动复位电路及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574480A (zh) * 2018-07-04 2018-09-25 中国电子技术标准化研究院 频率检测启动复位电路及方法
CN108574480B (zh) * 2018-07-04 2024-05-03 中国电子技术标准化研究院 频率检测启动复位电路及方法

Similar Documents

Publication Publication Date Title
US7936293B2 (en) Delta-sigma modulator
JP6228832B2 (ja) デルタシグマ変調器
US7948414B2 (en) Delta-sigma analog-to-digital conversion apparatus and method thereof
EP3182599A1 (en) Adaptive digital quantization noise cancellation filters for mash adcs
US7439889B2 (en) AD converter
JP3705098B2 (ja) マルチビットデルタシグマad変換器
US8228221B2 (en) Method and apparatus for calibrating sigma-delta modulator
US20160197619A1 (en) Incremental delta-sigma a/d modulator and a/d converter
US10536161B1 (en) Noise shaping pipeline analog to digital converters
US7084791B2 (en) Analog-to-digital converter with correction of offset errors
JP2010171484A (ja) 半導体集積回路装置
US10992311B2 (en) Delta-sigma AD converter and delta-sigma AD converting method
US20110267211A1 (en) Analog-digital converter and operating method thereof
KR102441025B1 (ko) 반도체 장치 및 그 동작 방법
CN111224669B (zh) 一种实现宽输入的σ-δ调制器的设计方法
US20190296763A1 (en) Delta-sigma modulator, electronic device, and method for controlling delta-sigma modulator
CN103875184B (zh) 具有减少的量化级的多级σ‑δ模数转换器
JP6823478B2 (ja) インクリメンタル型デルタシグマad変換器および調整方法
JP2018014664A (ja) インクリメンタルデルタシグマad変換器
KR102037610B1 (ko) Sar 양자화기를 사용하는 델타 시그마 adc
JP6632425B2 (ja) インクリメンタル型デルタシグマ変調器、変調方法、およびインクリメンタル型デルタシグマad変換器
JP2018133630A (ja) インクリメンタル型デルタシグマad変換器
KR101559456B1 (ko) 지연된 피드―포워드 경로를 갖는 저전력·저면적 3차 시그마―델타 변조기
JP6864487B2 (ja) インクリメンタル型デルタシグマad変換器およびad変換方法
JP2001156642A (ja) マルチビット−デルタシグマad変換器