JP6168064B2 - Ad変換器、イメージセンサ、およびデジタルカメラ - Google Patents

Ad変換器、イメージセンサ、およびデジタルカメラ Download PDF

Info

Publication number
JP6168064B2
JP6168064B2 JP2014550890A JP2014550890A JP6168064B2 JP 6168064 B2 JP6168064 B2 JP 6168064B2 JP 2014550890 A JP2014550890 A JP 2014550890A JP 2014550890 A JP2014550890 A JP 2014550890A JP 6168064 B2 JP6168064 B2 JP 6168064B2
Authority
JP
Japan
Prior art keywords
current
converter
signal
clock signal
input voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014550890A
Other languages
English (en)
Other versions
JPWO2014087561A1 (ja
Inventor
徳永 祐介
祐介 徳永
康弘 立脇
康弘 立脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014087561A1 publication Critical patent/JPWO2014087561A1/ja
Application granted granted Critical
Publication of JP6168064B2 publication Critical patent/JP6168064B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/324Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
    • H03M3/35Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement using redundancy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/368Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/625Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of smear
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/627Detection or reduction of inverted contrast or eclipsing effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/438Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
    • H03M3/452Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with weighted feedforward summation, i.e. with feedforward paths from more than one filter stage to the quantiser input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Description

本発明は、AD変換器に関し、特にイメージセンサに搭載されるAD変換器に関する。
近年、イメージセンサの分野において、様々な回路形式のアナログ−デジタル変換回路(以下、AD変換器またはADCと記載する)が提案されている。特に、非特許文献1には、ΔΣAD変換器をイメージセンサに用いることで、高精度かつ低消費電力なイメージセンサが実現できることが開示されている。
ところで、イメージセンサの性能に依存して、イメージセンサを用いて撮影した画像にストリーキングと呼ばれる現象が生じることがある。ストリーキングは、例えば、暗闇の中で明るい点光源等を撮影した場合、撮影した画像上において点光源の左右に白い直線が浮き上がる現象である。また、ストリーキングは、例えば、日中、太陽等の強力な光源を撮影した場合、撮影した画像上において、太陽の左右に帯状の色味が変わった領域が生じたり、太陽の左右の領域が黒く沈み込むような現象である。
Y. Chae, et al., "A 2.1M Pixels, 120Frames/s CMOS Image Sensor With Column−Parallel ΔΣADC Architecture," IEEE J. Solid−State Circuits, vol.46, no.1, pp.236−247, Jan. 2011. J. Markus, et al., "Theory and Applications of Incremental ΔΣ Convertors," IEEE TCAS−I, vol.51, no.4, pp.678−690, Apr. 2004.
そこで、本発明は、上記のようなストリーキングの発生を抑制することが可能なAD変換器を提供することを目的とする。
本発明の一態様に係るAD変換器は、入力電圧に対する依存性をもつ消費電流である第1電流を生じるAD変換回路と、前記入力電圧に応じて前記AD変換回路から出力される出力デジタル値によって制御され、前記第1電流の前記入力電圧に対する依存性を低減する消費電流である第2電流を生成する打ち消し電流生成回路とを備える。
本発明のAD変換器によれば、ストリーキングの発生を抑制することが可能である。
図1は、イメージセンサの外観の一例を示す模式図である。 図2は、図1のイメージセンサの機能構成を表すブロック図である。 図3は、画素部とADCとの基準電圧を示す模式図である。 図4は、ADCにおける消費電流の入力電圧依存性を説明するための模式図である。 図5は、カラムADCの構成を示す模式図である。 図6は、ストリーキングが発生した画像を示す模式図である。 図7は、スイッチトキャパシタ型積分器の回路図である。 図8は、本実施の形態に係るAD変換器の基本構成を示すブロック図である。 図9は、実施の形態1に係るAD変換器の回路図である。 図10は、実施の形態1に係るAD変換器の回路構成を示すブロック図である。 図11は、実施の形態1に係るAD変換回路における消費電流を説明するための図である。 図12は、図11に示される各ブロックにおける入力電圧と消費電流との関係を示す図である。 図13は、入力電圧と出力デジタル値の波形との関係を示す図である。 図14は、出力デジタル値がハイレベルのときの1bitDA変換器による消費電流を説明するための図である。 図15は、出力デジタル値がローレベルのときの1bitDA変換器による消費電流を説明するための図である。 図16は、入力電圧と出力デジタル値がハイレベルである確率との関係を示す図である。 図17は、入力電圧と1bitDA変換器による消費電流との関係を示す図である。 図18は、打ち消し電流生成回路の打ち消し電流を説明するための図である。 図19は、入力電圧と、出力デジタル値がローレベルである確率との関係を示す図である。 図20は、入力電圧と、打ち消し電流との関係を示す図である。 図21は、実施の形態1に係るAD変換器の消費電流の入力電圧依存性のシミュレーション結果を示す図である。 図22は、実施の形態2に係るAD変換器の回路図である。 図23は、実施の形態2に係るAD変換器の回路構成を示すブロック図である。 図24は、実施の形態2に係るAD変換回路における消費電流を説明するための図である。 図25は、実施の形態2に係るAD変換器の消費電流の入力電圧依存性のシミュレーション結果を示す図である。 図26は、実施の形態3に係るAD変換器の回路図である。 図27は、AD変換回路における消費電流を説明するための図である。 図28は、実施の形態3に係るAD変換回路における1bitDA変換器による消費電流を説明するための図である。 図29は、入力電圧と、出力デジタル値がローレベルである確率との関係を示す図である。 図30は、ΔQc’とΔQd’とを説明するための図である。 図31は、実施の形態3に係る打ち消し電流生成回路の打ち消し電流を説明するための図である。 図32は、補正コード生成回路が出力する補正コードを説明するための図である。 図33は、補正コード生成回路の回路図の一例である。 図34は、補正コード生成回路の各構成要素の出力波形を示す図である。 図35は、実施の形態3に係るAD変換器の消費電流の入力電圧依存性のシミュレーション結果を示す図である。 図36は、実施の形態1および2に係る打ち消し電流生成回路の別の例を示す図である。 図37は、実施の形態3に係る打ち消し電流生成回路の別の例を示す図である。 図38は、デジタルカメラの外観図である。 図39は、携帯情報端末の外観図である。
(本発明の基礎となった知見)
上述のように、イメージセンサを用いて撮影した画像にストリーキングと呼ばれる現象が生じることがある。
まず、イメージセンサの構成と動作について具体例をあげて説明する。
図1は、イメージセンサの外観の一例を示す模式図である。
図2は、図1のイメージセンサの機能構成を表すブロック図である。
図1および図2に示されるイメージセンサ101は、画素部102と、行セレクタ103と、カラムADC104と、パラレル・シリアル変換部105とを備える。なお、図1では、周辺回路106内にパラレル・シリアル変換部105があるものとする。
以下、図1および図2に示されるイメージセンサの動作を簡略化して説明する。
まず、光が画素部102の光電変換素子(例えばフォトダイオード)に入力され、対応する電圧が行セレクタ103に出力される。
次に、行セレクタ103から、画素部102の画素1行分に相当する出力電圧がカラムADC104に出力される。カラムADC104は、複数のADCから構成され、上記出力電圧をアナログ−デジタル変換し、デジタルデータを出力する。出力されたデジタルデータは、パラレル・シリアル変換部105によって変換され、イメージセンサ101の外部に出力される。
図3は、画素部102とADC107との基準電圧を示す模式図である。なお、図3では、行セレクタ103は、省略されている。
図3に示されるように、画素部102およびADC107は、各々独立したインピーダンスR1およびR2を共通GNDまでの経路に有する。つまり、画素部102は、GND1を基準とした電圧を出力し、ADC107は、GND2を基準とした電圧(入力電圧Vin)を受け取る。したがって、ADC107の消費電流(図3のR2に流れる電流)に、入力電圧Vinに対する依存性がある場合、入力電圧Vinに応じてADCの出力に誤差が生じる。なお、本明細書中において、消費電流の入力電圧Vinへの依存性とは、入力電圧の大きさと、消費電流の大きさとの間に何らかの相関関係があることを意味する。
図4は、ADCにおける消費電流の入力電圧依存性を説明するための模式図である。
図4の(a)は、共通GNDへ流れ込む消費電流の入力電圧Vinに対する依存性を示している。このとき、インピーダンスR2によって、GND2の電位は、図4の(b)に示されるような特性をもつ。つまり、図4の(c)に示されるように、Vin(実際の特性)は、共通GNDを基準とした理想的なVin(理想特性)よりも低下する。
ここで、一般的に、光電変換素子から出力される電圧は、当該光電変換素子に入力される光の明度と反比例の関係をもつ。このため、画素部102に入力される光と、ADC107から出力されるデジタル値とは、図4の(c)に示されるような特性となる。すなわち、画素部102に入力される光の明度が低い(暗い)ほど、実際の特性と理想特性との差は大きくなる。
次に、ストリーキングについて説明する。
図5は、カラムADCの構成を示す模式図である。
図6は、ストリーキングが発生した画像を示す模式図である。
図5に示されるように、カラムADC104は、多数のADC107が並列に接続された構成であり、カラムADC104を構成する複数のADC107は、共通のインピーダンスR2を共通GNDまでの経路に有する。
イメージセンサ101を用いて、全体的に明度が均一だが特定の領域だけが黒い対象物を撮影した場合、上記特定の領域に対応する画素のADC107からR2に流れ込む消費電流は増える。このため、GND2の電位が上がる。その結果、並列に接続された他のADC107の入力電圧Vinは、GND2の電位が上がった分だけ減少し、これらの他のADC107からは、実際よりも明るい方向にオフセットしたデジタル値が出力される。すなわち、一部の低輝度画素のために、同一行の他の画素のデジタル値が変化してしまう。
よって、図6の(a)に示されるような、白い帯状のストリーキングが発生した画像110が得られる。
あるいは、イメージセンサ101を用いて、全体的に明度が均一だが特定の領域だけが白い対象物を撮影した場合、上記特定の領域に対する画素のADC107からR2に流れ込む消費電流は減少する。このため、GND2の電位が下がる。その結果、並列に接続された他のADC107の入力電圧Vinは、GND2の電位が上がった分だけ増加し、これらの他のADC107からは、実際よりも暗い方向にオフセットしたデジタル値が出力される。すなわち、一部の高輝度画素のために、同一行の他の画素のデジタル値が変化してしまう。
よって、図6の(b)に示されるような、黒い帯状のストリーキングが発生した画像111が得られる。
これらのようなストリーキングを低減するためには、ADC107の消費電流の入力電圧Vinへの依存性をいかに低減するか(または平準化するか)が課題となる。
ADC107における消費電流の入力電圧Vinへの依存性は、ADC107において一般的に用いられるスイッチトキャパシタ技術に起因するものである。
ADCには、サイクリック型ADC、SAR型ADC、ΔΣ変調型ADCなどの様々な種類があるが、その基本要素回路はスイッチトキャパシタ回路である。
図7は、スイッチトキャパシタ型回路の一例である、スイッチトキャパシタ型積分器の回路図である。
以下、図7に示される回路において、サンプリング容量121において充放電を行う場合について説明する。
サンプリング容量121は、一方の端子が演算増幅器123によって仮想接地されている。このため、サンプリング容量121における充放電量は、当該サンプリング容量121の他方の端子の電位、すなわち入力端子129に入力される電圧で決まる。
いま、サンプリング容量121の静電容量をCs[F]とし、入力端子129にVin[V]の電圧が印加されているとする。ここで、スイッチ124が短絡され、スイッチ125が開放されているとすると、サンプリング容量121の他方の端子は、Vin[V]の電圧にセットされる。このため、サンプリング容量121には、CsVin[C]の電荷が充電される。
次に、スイッチ124が開放されるとともにスイッチ125が短絡されると、サンプリング容量121の他方の端子は、GNDにセットされる。このため、サンプリング容量121に充電されたCs・Vin[C]の電荷がGND経由で放電される。
以上のように、スイッチトキャパシタ回路を基本要素回路としているAD変換器において、その消費電流が入力依存性をもつことは本質的な課題である。
このような課題を解決するために、本発明の一態様に係るAD変換器は、入力電圧に対する依存性をもつ消費電流である第1電流を生じるAD変換回路と、前記入力電圧に応じて前記AD変換回路から出力される出力デジタル値によって制御され、前記第1電流の前記入力電圧に対する依存性を低減する消費電流である第2電流を生成する打ち消し電流生成回路とを備える。
このように、打ち消し電流生成回路が第2電流を生成することによって、AD変換回路の消費電流の入力電圧への依存性を低減することができる。よって、このようなAD変換器をイメージセンサに用いることで、ストリーキングの発生を抑制することができる。
また、例えば、前記打ち消し電流生成回路は、前記第1電流と前記第2電流とを加算した電流が前記入力電圧の大きさの変化に対して略一定となるような前記第2電流を生成してもよい。
また、例えば、前記第1電流が、前記入力電圧が大きいほど大きくなる場合、前記打ち消し電流生成回路は、前記入力電圧が大きいほど小さくなる前記第2電流を生成してもよい。
また、例えば、前記AD変換回路は、ΔΣAD変換回路であってもよい。
また、例えば、前記AD変換回路は、前記入力電圧から基準電圧を減算し、第1信号を出力する減算器と、前記第1信号を積分し、第2信号を出力する第1の積分器と、前記第2信号を積分し、第3信号を出力する第2の積分器と、前記入力電圧と、前記第2信号と、前記第3信号とを加算し、第4信号を出力する加算器と、前記第4信号と、所定の閾値とを比較して前記出力デジタル値を出力する比較器と、前記出力デジタル値に応じて前記基準電圧を出力する1bitDA変換器とを備えてもよい。
すなわち、打ち消し電流生成回路は、図10に示されるような構成のAD変換回路に適用可能である。
また、例えば、前記AD変換回路は、前記入力電圧から第1の基準電圧を減算し、第1信号を出力する第1の減算器と、前記第1信号を積分し、第2信号を出力する第1の積分器と、前記第2信号から第2の基準電圧を減算し、第3信号を出力する第2の減算器と、前記第3信号を積分し、第4信号を出力する第2の積分器と、前記第4信号と、所定の閾値とを比較して前記出力デジタル値を出力する比較器と、前記出力デジタル値に応じて前記第1の基準電圧を出力する第1の1bitDA変換器と、前記出力デジタル値に応じて前記第2の基準電圧を出力する第2の1bitDA変換器とを備えてもよい。
すなわち、打ち消し電流生成回路は、図23に示されるような構成のAD変換回路に適用可能である。
また、例えば、前記第1電流は、第1の電源に流れ込む消費電流であり、前記打ち消し電流生成回路は、前記出力デジタル値を入力として当該出力デジタル値を反転させて出力する反転回路と、一端が第2の電源に接続された容量素子と、前記反転回路の出力と前記容量素子の他端との電気的接続を第1のクロック信号に応じて制御する第1のスイッチと、前記容量素子の前記他端と前記第1の電源との電気的接続を第2のクロック信号に応じて制御する第2のスイッチとを備え、前記第1のクロック信号がハイレベルのとき、前記第2のクロック信号は、ローレベルであり、前記第1のクロック信号がローレベルのとき、前記第2のクロック信号は、ハイレベルであり、前記第1のクロック信号がハイレベルのときに前記第1のスイッチが前記反転回路の出力と前記容量素子の前記他端とを電気的に接続する場合、前記第2のスイッチは、前記第2のクロック信号がハイレベルのときに、前記容量素子の前記他端と前記第1の電源とを電気的に接続してもよい。
すなわち、打ち消し電流生成回路は、例えば、図36に示されるような構成であってもよい。
また、例えば、前記第1電流は、第1の電源に流れ込む消費電流であり、前記打ち消し電流生成回路は、前記出力デジタル値を入力として補正コードを出力する補正コード生成回路と、一端が第2の電源に接続された容量素子と、前記補正コード生成回路の出力と前記容量素子の他端との電気的接続を第1のクロック信号に応じて制御する第1のスイッチと、前記容量素子の前記他端と前記第1の電源との電気的接続を第2のクロック信号に応じて制御する第2のスイッチとを備え、前記第1のクロック信号がハイレベルのとき、前記第2のクロック信号は、ローレベルであり、前記第1のクロック信号がローレベルのとき、前記第2のクロック信号は、ハイレベルであり、前記第1のクロック信号がハイレベルのときに前記第1のスイッチが前記補正コード生成回路の出力と前記容量素子の前記他端とを電気的に接続する場合、前記第2のスイッチは、前記第2のクロック信号がハイレベルのときに、前記容量素子の前記他端と前記第1の電源とを電気的に接続し、前記出力デジタル値が、前記第1のクロック信号または前記第2のクロック信号のクロック周期に応じて変化しない期間において、前記補正コードは、前記クロック周期に応じて変化してもよい。
すなわち、打ち消し電流生成回路は、例えば、図37に示されるような構成であってもよい。
また、本発明の一態様に係るイメージセンサは、上記いずれかの態様のAD変換器を備えることを特徴とする。
このようなイメージセンサでは、ストリーキングの発生が抑制される。
また、本発明の一態様に係るデジタルカメラは、上記イメージセンサを備えることを特徴とする。
このようなデジタルカメラでは、ストリーキングの発生が抑制される。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
図8は、本実施の形態に係るAD変換器の基本構成を示すブロック図である。
図8において、AD変換器200は、AD変換回路201と、打ち消し電流生成回路202とを備える。
AD変換回路201は、第1の電源205と、第3の電源203とに接続され、入力電圧Vinをデジタル値に変換して出力する。AD変換回路201は、入力電圧に対する依存性をもち第1の電源205に流れ込む消費電流Idis(第1電流)を生じる。
打ち消し電流生成回路(補正電流生成回路)202は、第1の電源205と、第4の電源204とに接続される。打ち消し電流生成回路202は、AD変換回路201の出力デジタル値によって制御され、第1の電源205に流れ込む消費電流(補正信号)Icnt(第2電流)を生成する。
消費電流Idisと消費電流Icntとは、入力電圧Vinに対して互いに逆の依存性をもつ。具体的には、消費電流Idisが、入力電圧Vinが大きいほど大きくなるのに対し、消費電流Icntは、入力電圧Vinが大きいほど小さくなる。
AD変換器200において、消費電流Idisと消費電流Icntとを足し合わせた消費電流は、入力電圧Vinに対して非依存(略一定)となる特徴をもつ。
実施の形態1では、AD変換回路として、フィーフォフォワード(FF)型2次ΔΣAD変換回路を用いたAD変換器300について説明する。
図9は、AD変換器300の回路図である。
図10は、AD変換器300の回路構成を示すブロック図である。
AD変換器300は、AD変換回路301と、打ち消し電流生成回路302とを備える。AD変換回路301は、クロック信号φ1およびクロック信号φ2に同期して動作する、FF型2次ΔΣAD変換回路である。
なお、クロック信号φ1と、クロック信号φ2とは、相補的な関係にある。具体的には、クロック信号φ1がハイレベルである期間において、クロック信号φ2は、ローレベルとなる。クロック信号φ1がローレベルである期間において、クロック信号φ2は、ハイレベルとなる。
ここで、まず、AD変換回路301と、当該回路において生じる消費電流について説明する。
図9および図10に示されるように、AD変換回路301は、第1の積分器306と、第2の積分器307と、比較器308と、1bitDA変換器309と、減算器310と、加算器311と、第1の電源305と、入力端子303と、出力端子304とで構成される。言い換えれば、AD変換回路301は、反転アンプN1〜N3と、スイッチS11〜S17と、スイッチS21〜S27と、容量C1〜C9とを備える。
減算器310は、入力電圧Vinから基準電圧を減算した信号を出力する。
第1の積分器306は、減算器310が出力した信号を積分する。
第2の積分器307は、第1の積分器306が出力する信号を積分する。
加算器311は、入力電圧Vinと、第1の積分器306が出力する信号と、第2の積分器307が出力する信号とを加算する。
比較器308は、加算器311が加算した信号と、所定の閾値電圧とを比較して、出力デジタル値Doutを出力する。比較器308は、例えば、加算器311が加算した信号が、所定の閾値電圧以上である場合にハイレベルの出力デジタル値Doutを出力し、加算器311が加算した信号が、所定の閾値電圧未満である場合にローレベルの出力デジタル値Doutを出力する。
1bitDA変換器309は、出力デジタル値Doutに応じて基準電圧を出力する。具体的には、1bitDA変換器309は、出力デジタル値Doutがハイレベルのとき、電源電圧Vddを出力し、出力デジタル値Doutがローレベルのとき、第1の電源305の電圧を出力する。
スイッチS11〜S17は、クロック信号φ1に応じてオンとオフとが切り替えられる。スイッチS21〜S27は、クロック信号φ2に応じてオンとオフとが切り替えられる。例えば、これらのスイッチは、供給されるクロック信号がハイレベルの場合にオンし、ローレベルの場合にオフする。
なお、これらのスイッチは、供給されるクロック信号がローレベルの場合にオンしてもよい。この場合、クロック信号φ1とφ2との論理を反転させればよい。
なお、図10では、第2の電源313が合わせて図示されているが、第2の電源313と、第1の電源305とが等価である場合、第2の電源313は、省略可能である。すなわち、減算器310は、入力電圧Vinと1bitDA変換器309の出力デジタル値とを減算してもよい。
なお、AD変換回路301の詳細な回路動作については、非特許文献2において開示されているため、ここでは説明を省略する。
図11は、AD変換回路301における消費電流を説明するための図である。
以下、AD変換回路301における消費電流が第1の電源305(GND)へ流れる経路について、図11に示される5つのブロックごとに説明する。5つのブロックは、具体的には、図11に示されるブロック351、ブロック352、ブロック353、ブロック354、およびブロック355である。
図12は、図11に示される各ブロックにおける入力電圧Vinと、消費電流との関係を示す図である。
ブロック351においては、容量C2の一端は、スイッチS22を介して第1の電源305に接続され、容量C2の他端は、スイッチS25を介して第1の電源305に接続される。このため、クロック信号φ2がハイレベルになるごとに容量C2の一端および他端は、第1の電源305に接続される。
また、容量C2の一端は、スイッチS12を介して入力端子303に接続されていることから、クロック信号φ1がハイレベルになるごとに入力電圧Vinに比例する電荷が充電される。
ここで、上述のようにクロック信号φ1およびφ2は、相補的な関係にあることから、容量C2の他端は、周期的に第1の電源305に接続されるため、仮想接地されていることと同等である。言い換えれば、容量C2の他端は、平均的に見た場合、DCバイアス点とみなすことができる。
すなわち、容量C2から第1の電源305に流れ込む消費電流は、図12の(a)に示されるように入力電圧Vinに正比例する。
ブロック352においては、消費電流は、反転アンプN1およびN2を介して第1の電源305に流れ込む。ここで、ブロック352における2つの積分器に用いられる容量は、周期的に充放電を繰り返すが、このときの充電量と放電量とは、釣り合っている。このため、ブロック352における消費電流は、図12の(b)に示されるように入力電圧Vinに非依存となる。ゆえに、ブロック352における消費電流は、打ち消し電流生成回路302において考慮しなくてよい。
ブロック353における回路は、クロック同期型の比較器308と、これに付随するデジタル素子とで構成される。これらの回路は、C級動作を行うため、出力デジタル値Doutがハイレベルからローレベル、またはローレベルからハイレベルに遷移する時のみ電流を消費する。
図13は、入力電圧Vinと出力デジタル値Doutの波形との関係を示す模式図である。
図13に示されるように、出力デジタル値Doutは、入力電圧Vinが最大のときは、ハイレベルとなり、入力電圧Vinがローレベルとなり、入力電圧Vinが最大値と最大値と最小値との中間値となるとき、ハイレベルとローレベルとの割合が等しくなる。すなわち、入力電圧Vinが上記中間値であるとき、ハイレベルからローレベル、またはローレベルからハイレベルに遷移する頻度が高く、消費電流が高くなる。
このため、ブロック353における消費電流は、図12の(c)に示されるような、上に凸の特性となる。しかしながら、ブロック353におけるこれらの回路は、デジタル素子で構成される回路であることから、GNDを他の回路のGND(第1の電源)から分離可能である。GNDを分離してしまえば、ブロック353における消費電流は、打ち消し電流生成回路302において考慮される必要はない。
ブロック354において、1bitDA変換器309による消費電流は、出力デジタル値Doutの値により、振る舞いが異なる。
まず、出力デジタル値Doutがハイレベルのときについて説明する。なお、以下の説明では、AD変換回路301の電源電圧をVddとする。
図14は、出力デジタル値Doutがハイレベルのときの1bitDA変換器309による消費電流を説明するための図である。なお、図14では、1bitDA変換器309は、反転アンプ320と、PMOSトランジスタ321と、NMOSトランジスタ322とで構成される等価回路によって説明される。
クロック信号φ1がローレベルのとき(クロック信号φ2がハイレベルのとき)は、図14の(a)に示されるような接続関係となる。具体的には、スイッチS16はオフ状態であり、スイッチS26はオン状態であり、PMOSトランジスタ321は、オン状態であり、NMOSトランジスタ322は、オフ状態である。
ここで、容量C6の一端は、スイッチS26により電源電圧Vddに接続され、容量C6の他端は、反転アンプN1(図示されず)により仮想接地されている。したがって、容量C6は、電源電圧Vddにより充電される。
続いて、クロック信号φ1がハイレベルになったとき(クロック信号φ2がローレベルになったとき)は、図14の(b)に示されるような接続関係となる。具体的には、スイッチS16はオン状態であり、スイッチS26はオフ状態であり、PMOSトランジスタ321は、オン状態であり、NMOSトランジスタ322は、オフ状態である。
このとき、クロック信号φ1がローレベルのときに容量C6に充電された電荷が消費電流としてスイッチS16を介して第1の電源305に流れ込む。
次に、出力デジタル値Doutがローレベルのときについて説明する。
図15は、出力デジタル値Doutがローレベルのときの1bitDA変換器309による消費電流を説明するための図である。なお、図14と同様に、図15においても、1bitDA変換器309は、等価回路によって説明される。
クロック信号φ1がローレベルのとき(クロック信号φ2がハイレベルのとき)は、図15の(a)に示されるような接続関係となる。具体的には、スイッチS16はオフ状態であり、スイッチS26はオン状態であり、PMOSトランジスタ321は、オフ状態であり、NMOSトランジスタ322は、オン状態である。このとき、容量C6に充電された電荷は、NMOSトランジスタ322を介して第1の電源305に流れ込む。
また、クロック信号φ1がハイレベルのとき(クロック信号φ2がローレベルのとき)は、図15の(b)に示されるような接続関係となる。具体的には、スイッチS16はオン状態であり、スイッチS26はオフ状態であり、PMOSトランジスタ321は、オフ状態であり、NMOSトランジスタ322は、オン状態である。このとき、容量C6に充電された電荷がスイッチS16を介して第1の電源305に流れ込む。
ここで、出力デジタル値Doutがローレベルのときは、容量C6の一端は、常に第1の電源305に接続されていることになる。すなわち、出力デジタル値Doutがローレベルのときは、容量C6に電荷が充電されないため、第1の電源305に電流が流れ込むことはない。
以上、説明したように、1bitDA変換器309による消費電流は、出力デジタル値Doutがハイレベルのときに生じる。このときの、消費電流についてさらに詳しく説明する。
図16は、入力電圧Vinと、出力デジタル値Doutがハイレベルである確率Pとの関係を示す図である。
まず、出力デジタル値Doutと入力電圧Vinとの関係は、図13に示されるように、入力電圧Vinが大きくなるほど、出力デジタル値Doutのハイレベルの期間が長くなる関係である。したがって、図16に示されるように、出力デジタル値Doutがハイレベルである確率Pは、入力電圧Vinの大きさに比例して高くなる。具体的には、電源電圧Vddを用いて、P=Vin/Vddである。
ここで、容量C6の容量値をCとすると、出力デジタル値Doutがハイレベルのときに第1の電源305に流れ込む電荷は、CVdd[C]である。したがって、このときの消費電流IAVSSは、CVdd・P・fで表される。ただし、fは、クロック信号の周波数である。
上述のように、P=Vin/Vddであるから、整理すると、IAVSS=CVin・f[A]となる。
図17は、入力電圧Vinと消費電流IAVSSとの関係を示す図である。
図17に示されるように、1bitDA変換器309による消費電流IAVSSは、ブロック351における消費電流と同様に、入力電圧Vinに正比例する。
最後に、ブロック355における消費電流について説明する。容量C1の一端は、スイッチS11により入力端子303に接続され、容量C1の他端は、反転アンプN1により仮想接地されている。したがって、ブロック351で説明したように、容量C1には、クロック信号φ1がハイレベルになるごとに入力電圧Vinに比例する電荷が充電され、容量C1から第1の電源305に流れ込む消費電流は、図12の(a)に示されるように入力電圧Vinに正比例する。
AD変換器300の打ち消し電流生成回路302は、上述のような入力電圧Vinに依存性を持つ消費電流(第1電流)の、当該依存性を打ち消すための打ち消し電流(第2電流)を生成する。
図18は、打ち消し電流生成回路302の打ち消し電流を説明するための図である。
上述のブロック351、352、354、および355の消費電流を全て加算すると、入力電圧Vinと、AD変換回路301全体の入力電圧Vinに依存する消費電流とは、図18の(a)に示されるような単純な線形の特性となる。
打ち消し電流生成回路302の打ち消し電流は、図18の(b)に示されるように、図18の(a)とは、入力電圧Vinに対して逆の特性とすればよい。すなわち、入力電圧Vinが大きいほど、AD変換回路301全体の入力電圧Vinに依存する消費電流が大きくなる場合、打ち消し電流生成回路302は、入力電圧が大きいほど小さくなる打ち消し電流を生成すればよい。
これにより、図18の(c)に示されるように、AD変換器300の消費電流の入力電圧Vinへの依存性は低減され、AD変換器300の消費電流は、入力電圧Vinによらず略一定となる。
打ち消し電流生成回路302の回路構成は、図9に示されるように、1bitDA変換器309と基本的には同様の回路構成であるが、異なる点は、打ち消し電流生成回路302が備える1bitDA変換器312には、反転アンプN3により出力デジタル値の反転信号が入力されることである。よって、1bitDA変換器312による打ち消し電流は、1bitDA変換器309による消費電流とは反対に、出力デジタル値Doutがローレベルのときに生じる。
また、打ち消し電流生成回路302が備える容量C7の容量値は、容量C1、C2、およびC6の容量値の合計にほぼ等しい。
図19は、入力電圧Vinと、出力デジタル値Doutがローレベルである確率P’との関係を示す図である。
出力デジタル値Doutと入力電圧Vinとの関係は、図13に示されるように、入力電圧Vinが大きくなるほど、出力デジタル値Doutのローレベルの期間が短くなる関係である。したがって、図19に示されるように、出力デジタル値Doutがローレベルである確率P’は、入力電圧Vinの大きさに比例して低くなる。具体的には、図19に示されるように、電源電圧Vddを用いて、P’=1−Vin/Vddである。
図20は、入力電圧Vinと打ち消し電流との関係を示す図である。
容量C1、C2、およびC6の容量値を各々Cとすると、打ち消し電流生成回路302が備える容量C7の容量値は、3Cである。出力デジタル値Doutがローレベルのときに第1の電源305に流れ込む打ち消し電流は、3CVdd・P1・fである。ここで、P1=1−Vin/Vddであるから、打ち消し電流は、−3CVin・f+3CVdd・f[A]となり、図20に示されるような線形特性となる。
したがって、打ち消し電流生成回路302によれば、図18の(b)に示されるような特性の打ち消し電流を生成することができ、図18の(a)に示されるブロック351、352、354、および355の消費電流の入力電圧Vinへの依存性を低減することができる。このとき、図18の(c)に示されるように、AD変換器300の消費電流は、理論的には、入力電圧Vinに対して不変な特性となる。
なお、スイッチS17はクロック信号φ1に応じてオンとオフとが切り替えられ、スイッチS27はクロック信号φ2に応じてオンとオフとが切り替えられると説明したが、スイッチS17がクロック信号φ2に応じてオンとオフとが切り替えられ、スイッチS27がクロック信号φ1に応じてオンとオフとが切り替えられてもよい。
図21は、AD変換器300の消費電流の入力電圧依存性のシミュレーション結果を示す図である。
図21に示される各グラフは、入力電圧が1.0[V]のときの消費電流を基準とした、相対電流を示している。
グラフ361は、ブロック351における消費電流を示し、グラフ364は、ブロック354における消費電流を示し、グラフ365は、ブロック355における消費電流を示す。
グラフ371は、ブロック351、354、および355の消費電流の合計を示し、グラフ372は、打ち消し電流生成回路302が生成する打ち消し電流を示す。
グラフ370は、AD変換器300の消費電流、すなわち、ブロック351、354、および355における消費電流と打ち消し電流とを合計した消費電流を示す。
打ち消し電流生成回路302がない場合、グラフ371に示されるように、相対誤差の絶対値は、入力電圧が0.2[V]のとき最大5.26[μA]である。これに対し、打ち消し電流生成回路302によりグラフ372のような特性の打ち消し電流が生成された結果、相対誤差の絶対値は、グラフ370に示されるように、入力電圧が0.5[V]のとき最大0.11[μA]である。すなわち、相対誤差は、1/47以下に大幅に改善されている。
なお、実施の形態1においては容量C7の容量値を3Cとして説明したが、本発明はこれに限られるものではない。例えば、容量C7が、容量C1、C2、およびC6の容量値と同一のCである場合など、3C以下の容量値であるとしても、ある程度の打ち消し効果が奏される。また、容量C7の容量値は、3C以上であってもよい。
(実施の形態2)
実施の形態1では、AD変換回路として、フィーフォフォワード(FF)型2次ΔΣAD変換回路を用いたAD変換器300について説明したが、本発明を適用できるAD変換回路は、FF型2次ΔΣAD変換回路に限定されない。以下、別の例としてフィードバック(FB)型2次ΔΣAD変換回路を用いたAD変換器400について説明する。
図22は、AD変換器400の回路図である。
図23は、AD変換器400の回路構成を示すブロック図である。
AD変換器400は、AD変換回路401と、打ち消し電流生成回路402とを備える。AD変換回路401は、クロック信号φ1およびクロック信号φ2に同期して動作する、FB型2次ΔΣAD変換回路である。なお、実施の形態1と同様に、クロック信号φ1と、クロック信号φ2とは、相補的な関係にある。
AD変換回路401は、第1の積分器406と、第2の積分器407と、比較器408と、1bitDA変換器409および415と、減算器410および417と、第1の電源405と、入力端子403と、出力端子404とで構成される。言い換えれば、AD変換回路401は、反転アンプN4〜N6と、スイッチS31〜S37と、スイッチS41、およびS43〜S47と、容量C1〜C8とを備える。
減算器410は、入力電圧Vinから、1bitDA変換器415の出力する信号を減算した信号を出力する。
第1の積分器406は、減算器410が出力する信号を積分した信号を出力する。
減算器414は、第1の積分器406が出力する信号から、1bitDA変換器409が出力する信号を減算した信号を出力する。
第2の積分器407は、減算器414が出力する信号を積分した信号を出力する。
比較器408は、第2の積分器407が積分した信号と、所定の閾値電圧とを比較して、出力デジタル値Doutを出力する。
1bitDA変換器409および410は、出力デジタル値Doutに応じて基準電圧を出力する。
スイッチS31〜S37は、クロック信号φ1に応じてオンとオフとが切り替えられる。スイッチS41、およびS43〜S47は、クロック信号φ2に応じてオンとオフとが切り替えられる。例えば、これらのスイッチは、供給されるクロック信号がハイレベルの場合にオンし、ローレベルの場合にオフするが、ローレベルの場合にオンし、ハイレベルの場合にオフしてもよい。
なお、図23では、第2の電源413が合わせて図示されているが、第2の電源413と、第1の電源405とが等価である場合、第2の電源413は、省略可能である。すなわち、減算器410は、入力電圧Vinと1bitDA変換器415の出力とを減算してもよい。
なお、AD変換回路401の詳細な回路動作については、ここでは説明を省略する。
図24は、AD変換回路401における消費電流を説明するための図である。
以下、AD変換回路401における消費電流が第1の電源405(GND)へ流れる経路について、図24に示されるように5つのブロックごとに説明する。5つのブロックは、具体的には、図24に示されるブロック451、ブロック452、ブロック453、ブロック454、およびブロック455である。
ブロック452における消費電流は、実施の形態1のブロック352における消費電流と同様に、図12の(b)に示されるように入力電圧Vinに非依存となる。
ブロック453における消費電流は、実施の形態1のブロック353における消費電流と同様に、図12の(c)に示されるような上に凸の特性となる。しかしながら、ブロック453における回路は、デジタル素子で構成される回路であることから、GNDを他の回路のGND(第1の電源)から分離してしまえば、ブロック453における消費電流は、打ち消し電流生成回路402において考慮される必要はない。
ブロック451およびブロック454における消費電流は、実施の形態1のブロック354における消費電流と同様、図12の(a)に示されるように入力電圧Vinに正比例する。
ブロック455における消費電流は、実施の形態1のブロック355における消費電流と同様、図12の(a)に示されるように入力電圧Vinに正比例する。
上述のブロック451、452、454、および455の消費電流を全て加算すると、入力電圧Vinと、AD変換回路401全体の入力電圧Vinに依存する消費電流とは、図18の(a)に示されるような単純な線形の特性となる。
打ち消し電流生成回路402の回路構成は、図22に示されるように、実施の形態1で説明した打ち消し電流生成回路302と同様である。打ち消し電流生成回路402は、容量C17の容量値が、容量C11、C15、およびC16の容量値の合計である点において、打ち消し電流生成回路302と異なる。ここで、容量C11の容量値がC、C15の容量値が2C、およびC16の容量値がCのとき、容量C17の容量値は、4Cである。
この結果、打ち消し電流生成回路402によれば、AD変換回路401の消費電流の入力電圧Vinへの依存性を低減することができる。このとき、AD変換器400の消費電流は、理論的には、図18の(c)に示されるように入力電圧Vinに対して不変な特性となる。
図25は、AD変換器400の消費電流の入力電圧依存性のシミュレーション結果を示す図である。
図25に示される各グラフは、入力電圧が1.0[V]のときの消費電流を基準とした、相対電流を示している。
グラフ461は、ブロック451における消費電流を示し、グラフ464は、ブロック454における消費電流を示し、グラフ465は、ブロック455における消費電流を示す。
グラフ471は、ブロック451、454、および455の消費電流の合計を示し、グラフ472は、打ち消し電流生成回路402が生成する打ち消し電流を示す。
グラフ470は、AD変換器300の消費電流、すなわち、ブロック451、454、および455における消費電流と打ち消し電流とを合計した消費電流を示す。
打ち消し電流生成回路402がない場合、グラフ471に示されるように、相対誤差の絶対値は、入力電圧が0.2[V]のとき最大5.39[μA]である。これに対し、打ち消し電流生成回路402によりグラフ472のような特性の打ち消し電流が生成された結果、相対誤差の絶対値は、グラフ470に示されるように、入力電圧が0.6[V]のとき最大0.35[μA]である。すなわち、相対誤差は、1/15以下に改善されている。
なお、実施の形態2では容量C17の容量値を4Cとして説明したが、これに限られるものではない。例えば、容量C17が、容量C11および容量C16の容量値と同一のCの場合、または、C15の容量値と同一の2Cの場合など、4C以下の容量値であっても、ある程度の打ち消し効果が奏される。また、容量C17の容量値は、4C以上であってもよい。
(実施の形態3)
実施の形態3では、AD変換回路として、実施の形態1とは異なるFF型2次ΔΣAD変換回路を用いたAD変換器500について説明する。
図26は、AD変換器500の回路図である。
AD変換器500は、AD変換回路501と、打ち消し電流生成回路502とを備える。
図26に示されるAD変換回路501と、図9に示されるAD変換回路301との違いは、AD変換回路501では、容量C1が、第1の積分器306の入力容量であるとともに1bitDA変換器309の出力をサンプリングする容量である点である。つまり、容量C1が上記2つの用途で共用化されている点である。また、入力電圧Vinから第2の電源313の電圧を差し引くためのオフセット回路503が追加されている点も異なる。なお、図26に示される容量C1、C2およびC6の容量値は、C[F]とする。
図27は、AD変換回路501における消費電流を説明するための図である。
以下、AD変換回路501における消費電流を図27に示されるブロックごとに説明する。
ブロック351、ブロック352、およびブロック353における消費電流は、実施の形態1で説明した消費電流と同様である。したがって、説明を省略する。
ブロック555において、オフセット回路503による消費電流は、入力電圧Vinには依存しない。なぜなら、オフセット回路503においては、第2の電源313によって容量C6に充電された電荷がスイッチS18を介して第1の電源305に流入するからである。
以下、ブロック554における消費電流について詳細に説明する。
図28は、AD変換回路501における1bitDA変換器309による消費電流を説明するための図である。
図28の(a)に示されるように、出力デジタル値Doutがハイレベルのときは、第1の電源305への唯一の電流パスであるNMOSトランジスタ322がオフとなるため、第1の電源305へ電流は流れない。
一方、図28の(b)に示されるように、出力デジタル値DoutがローレベルのときはNMOSトランジスタ322がオンとなるため、第1の電源305への電流パスが生じる。すなわち、ブロック554においては、消費電流として、スイッチS29がオフからオンへ切り替わるときに第1の電源305へ流れ込む電流を考慮すればよい。
ここで、容量C1の一端は、第1の積分器306の反転アンプN1により仮想接地されている。容量C1の他端は、スイッチS11を介して入力端子303に接続されている。したがって、クロック信号φ1がハイレベルのときに入力電圧Vinによって容量C1に充電されたC・Vin[C]の電荷が、クロック信号φ1がローレベルになったときに第1の電源305へ流れ込む。
図29は、AD変換回路501における1bitDA変換器309の出力デジタル値がローレベルである確率を示す図である。なお、図29の横軸は、入力電圧Vin−電源電圧Vddである。
出力デジタル値がローレベルである確率P2は、入力電圧Vinからオフセット回路503による第2の電源313の電源電圧Vddが引かれた電圧が積分器によって積分されることから、図29に示されるように、P2=−((Vin−Vdd)/Vin)+1である。したがって、1bitDA変換器309による消費電流は、IAVSS=f・C(−Vin/Vdd+2Vin)[A]となる。ただし、fは、クロック信号の周波数である。
ここで、IAVSSを電荷ΔQ・P2として考えた場合、ΔQ・P2を表す式は、次のように変形することができる。
Figure 0006168064
すなわち、IAVSSは、2種類の電荷ΔQc’とΔQd’とで表される。
図30は、ΔQc’とΔQd’とを説明するための図である。なお、図30の(a)の横軸は、入力電圧Vin−電源電圧Vddである。
ΔQc’は、ΔQc’=−C・(Vin−Vdd)+C・Vddであることから、図30の(a)の実線に示されるような特性となる。一方、ここで、ブロック351における消費電流(電荷)をΔQcとした場合、ΔQc=C・Vinである。よって、ΔQcは、図30の(a)の破線に示されるような、ΔQc’とは傾きがちょうど逆となる特性を示し、ΔQcの入力電圧依存性は、ΔQc’で打ち消される。
ΔQd’は、ΔQd’=−C・(Vin−Vdd)(Vin−2Vdd)/Vddであることから、図30の(b)に示されるような2次曲線で表され、その頂点は、C・Vdd/4[C]である。ここで、ΔQd’が図30の(b)に示される2次曲線の頂点の値をとるとき、すなわち、Vin−Vdd=Vdd/2のときの生起確率P2は、図29より、P2=0.5であるため、ΔQd’の等価容量は、C/2となる。
以上より、ブロック351における消費電流およびブロック554における消費電流を足し合わせると、入力電圧Vinに依存する消費電流の特性は、図31の(a)に示されるような特性となる。
図31は、打ち消し電流生成回路502の打ち消し電流を説明するための図である。
打ち消し電流生成回路502は、図31の(b)に示されるような打ち消し電流を生成し、図31の(c)に示されるように、AD変換器500の消費電流の入力電圧Vinへの依存性を低減する。
図26に示されるように、実施の形態3では、打ち消し電流生成回路502は、補正コード生成回路504と、1bitDA変換器312と、容量C10を備える。
上述のように、ΔQd’の等価容量は、C/2であることから、容量C10の容量値は、C/2である。また、ΔQd’は、1bitDA変換器309に入力される出力デジタル値Doutに依存して上述のような特性となる。したがって、補正コード生成回路504は、補正コードを生成し、1bitDA変換器312に出力することで、図31の(b)に示されるような特性の打ち消し電流を生成する。
図32は、補正コード生成回路504が出力する補正コードを説明するための図である。
出力デジタル値Doutが図32の(a)に示されるような値をとる場合、補正コード生成回路504は、図32の(b)に示されるような補正コードを生成し、1bitDA変換器312に出力すればよい。すなわち、補正コード生成回路504は、出力デジタル値Doutが変化しない期間においてのみ変化する補正コードを生成すればよい。
なぜなら、出力デジタル値Doutと補正コードとを合成したとすると、合成した信号は、図32の(c)に示されるように、出力デジタル値Doutに依存しない信号となるからである。
図33は、補正コード生成回路504の回路図の一例である。
補正コード生成回路504は、2つのDFF回路505および506と、XNOR回路507と、AND回路508とを備える。
図34は、補正コード生成回路504の各構成要素の出力波形を示す図である。
図34に示されるように、補正コード生成回路504は、出力デジタル値Doutが変化しない期間においてのみ変化する補正コードを生成することができる。なお、図34に示されるように、補正コードは、出力デジタル値Doutに対してクロック信号の半周期分ずれたタイミングで出力されるが、このずれは問題とはならない。
図35は、AD変換器500の消費電流の入力電圧依存性のシミュレーション結果を示す図である。
図35に示される各グラフは、電源電圧Vddを1.2[V]とし、入力電圧Vinが2.2[V]のときの消費電力を基準とした、相対電流を示している。
グラフ561は、ブロック351における消費電流を示し、グラフ564は、ブロック554における消費電流を示す。
グラフ571は、ブロック351、352、353、554、および555における消費電流の合計を示し、グラフ572は、打ち消し電流生成回路502が生成する打ち消し電流を示す。
グラフ570は、AD変換器500の消費電流、すなわち、ブロック351、352、353、554、および555における消費電流と打ち消し電流とを合計した消費電流を示す。
打ち消し電流生成回路502がない場合、グラフ571に示されるように、相対誤差の絶対値は、入力電圧が1.7[V]のとき最大0.49[μA]である。これに対し、打ち消し電流生成回路502によりグラフ572のような特性の打ち消し電流が生成された結果、相対誤差の絶対値は、グラフ570に示されるように、入力電圧が1.8[V]のとき最大0.15[μA]である。
なお、実施の形態3で説明した打ち消し電流生成回路502は、FF型ΔΣ型AD変換回路に適用されるものであるが、同様のコンセプトによって構成された回路を、FB型ΔΣ型AD変換回路など、他のAD変換回路にも適用できる。
(変形例)
以上、実施の形態に係るAD変換器について、説明したが、本発明は、これら実施の形態に限定されるものではない。以下のような場合も本発明に含まれる。
例えば、実施の形態1および2において説明した打ち消し電流生成回路302および402は、図36に示されるような構成であってもよい。
具体的には、一端が第5の電源509に接続された容量C7と、反転アンプN7の出力と容量C7の他端との電気的接続をクロック信号φ2(φ1)に応じて制御するスイッチS61と、容量C7の他端と第1の電源305との電気的接続をクロック信号φ1(φ2)に応じて制御するスイッチS51とを備える構成であってもよい。
このとき、容量C7の容量値は、AD変換回路の消費電流を打ち消すような値に適宜設定される。
また、実施の形態3において説明した打ち消し電流生成回路502は、図37に示されるような構成であってもよい。
具体的には、一端が第5の電源509に接続された容量C10と、補正コード生成回路504の出力と容量C10の他端との電気的接続をクロック信号φ2(φ1)に応じて制御するスイッチS62と、容量C10の他端と第1の電源305との電気的接続をクロック信号φ1(φ2)に応じて制御するスイッチS52とを備える構成であってもよい。
このとき、容量C10の容量値は、AD変換回路の消費電流を打ち消すような値に適宜設定される。
本実施の形態で説明したAD変換器は、具体的には、図1に示されるようなイメージセンサに適用される。本実施の形態に係るAD変換器を用いることで、ストリーキング現象の少ない高品質なイメージセンサを実現することができる。
また、本実施の形態のAD変換器を適用したイメージセンサは、図38に示されるようなデジタルカメラに適用可能である。これにより、ストリーキング現象の少ない高品質なデジタルカメラを実現することができる。例えば、上記デジタルカメラはプロセッサを具備し、さらに上記プロセッサにより制御される、レンズユニット、CMOSイメージセンサ、本実施の形態で説明したAD変換器、メモリ、およびディスプレイから構成できる。
さらに、本実施の形態に係るAD変換器を、その他の機器に用いてもよい。
例えば、図39に示されるようにスマートフォンおよびタブレット端末に代表される携帯情報端末610には、カメラ600部分にCMOSイメージセンサが搭載されている。よって、本実施の形態に係るAD変換器を適用したイメージセンサは、携帯情報端末610に適用されてもよい。
なお、本実施の形態では、2次のΔΣAD変換回路をAD変換回路の一例として説明したが、AD変換回路は、1次または3次以上のΔΣAD変換回路であってもよい。また、AD変換回路は、ΔΣAD変換回路以外の他の回路形式のAD変換回路であってもよい。例えば、AD変換回路は、サイクリック型のAD変換回路であってもよい。
なお、本発明は、これらの実施の形態またはその変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態またはその変形例に施したもの、あるいは異なる実施の形態またはその変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
本発明のAD変換器は、消費電流の入力電圧に対する依存性が低いため、イメージセンサに適用されることでストリーキング現象を抑えた高品質なイメージセンサが実現される。また、このイメージセンサがデジタルカメラに適用されることで、デジタルカメラの画質の高品質化が実現される。
101 イメージセンサ
102 画素部
103 行セレクタ
104 カラムADC
105 パラレル・シリアル変換部
106 周辺回路
107 ADC
110、111 画像
121 サンプリング容量
122 容量
123 演算増幅器
124、125、126、127 スイッチ
128 負端子
129、303、403 入力端子
130、304、404 出力端子
200、300、400、500 AD変換器
201、301、401、501 AD変換回路
202、302、402、502 打ち消し電流生成回路
203 第3の電源
204 第4の電源
205、305、405 第1の電源
306、406 第1の積分器
307、407 第2の積分器
308、408 比較器
309、312、409、412、415 1bitDA変換器
310、410、414 減算器
311 加算器
313、413 第2の電源
320 反転アンプ
321 PMOSトランジスタ
322 NMOSトランジスタ
351〜355、451〜455 ブロック
361、364、365、370〜372、461、464、465、470〜472、561、564、570〜572 グラフ
503 オフセット回路
504 補正コード生成回路
505、506 DFF回路
507 XNOR回路
508 AND回路
509 第5の電源
600 カメラ
610 携帯情報端末

Claims (10)

  1. 入力電圧に対する依存性をもつ消費電流である第1電流を生じるAD変換回路と、
    前記入力電圧に応じて前記AD変換回路から出力される出力デジタル値によって制御され、前記第1電流の前記入力電圧に対する依存性を低減する消費電流である第2電流を生成する打ち消し電流生成回路とを備える
    AD変換器。
  2. 前記打ち消し電流生成回路は、前記第1電流と前記第2電流とを加算した電流が前記入力電圧の大きさの変化に対して略一定となるような前記第2電流を生成する
    請求項1に記載のAD変換器。
  3. 前記第1電流が、前記入力電圧が大きいほど大きくなる場合、前記打ち消し電流生成回路は、前記入力電圧が大きいほど小さくなる前記第2電流を生成する
    請求項1に記載のAD変換器。
  4. 前記AD変換回路は、ΔΣAD変換回路である
    請求項1〜3のいずれか1項に記載のAD変換器。
  5. 前記AD変換回路は、
    前記入力電圧から基準電圧を減算し、第1信号を出力する減算器と、
    前記第1信号を積分し、第2信号を出力する第1の積分器と、
    前記第2信号を積分し、第3信号を出力する第2の積分器と、
    前記入力電圧と、前記第2信号と、前記第3信号とを加算し、第4信号を出力する加算器と、
    前記第4信号と、所定の閾値とを比較して前記出力デジタル値を出力する比較器と、
    前記出力デジタル値に応じて前記基準電圧を出力する1bitDA変換器とを備える
    請求項4に記載のAD変換器。
  6. 前記AD変換回路は、
    前記入力電圧から第1の基準電圧を減算し、第1信号を出力する第1の減算器と、
    前記第1信号を積分し、第2信号を出力する第1の積分器と、
    前記第2信号から第2の基準電圧を減算し、第3信号を出力する第2の減算器と、
    前記第3信号を積分し、第4信号を出力する第2の積分器と、
    前記第4信号と、所定の閾値とを比較して前記出力デジタル値を出力する比較器と、
    前記出力デジタル値に応じて前記第1の基準電圧を出力する第1の1bitDA変換器と、
    前記出力デジタル値に応じて前記第2の基準電圧を出力する第2の1bitDA変換器とを備える
    請求項4に記載のAD変換器。
  7. 前記第1電流は、第1の電源に流れ込む消費電流であり、
    前記打ち消し電流生成回路は、
    前記出力デジタル値を入力として当該出力デジタル値を反転させて出力する反転回路と、
    一端が第2の電源に接続された容量素子と、
    前記反転回路の出力と前記容量素子の他端との電気的接続を第1のクロック信号に応じて制御する第1のスイッチと、
    前記容量素子の前記他端と前記第1の電源との電気的接続を第2のクロック信号に応じて制御する第2のスイッチとを備え、
    前記第1のクロック信号がハイレベルのとき、前記第2のクロック信号は、ローレベルであり、前記第1のクロック信号がローレベルのとき、前記第2のクロック信号は、ハイレベルであり、
    前記第1のクロック信号がハイレベルのときに前記第1のスイッチが前記反転回路の出力と前記容量素子の前記他端とを電気的に接続する場合、前記第2のスイッチは、前記第2のクロック信号がハイレベルのときに、前記容量素子の前記他端と前記第1の電源とを電気的に接続する
    請求項1〜6のいずれか1項に記載のAD変換器。
  8. 前記第1電流は、第1の電源に流れ込む消費電流であり、
    前記打ち消し電流生成回路は、
    前記出力デジタル値を入力として補正コードを出力する補正コード生成回路と、
    一端が第2の電源に接続された容量素子と、
    前記補正コード生成回路の出力と前記容量素子の他端との電気的接続を第1のクロック信号に応じて制御する第1のスイッチと、
    前記容量素子の前記他端と前記第1の電源との電気的接続を第2のクロック信号に応じて制御する第2のスイッチとを備え、
    前記第1のクロック信号がハイレベルのとき、前記第2のクロック信号は、ローレベルであり、前記第1のクロック信号がローレベルのとき、前記第2のクロック信号は、ハイレベルであり、
    前記第1のクロック信号がハイレベルのときに前記第1のスイッチが前記補正コード生成回路の出力と前記容量素子の前記他端とを電気的に接続する場合、前記第2のスイッチは、前記第2のクロック信号がハイレベルのときに、前記容量素子の前記他端と前記第1の電源とを電気的に接続し、
    前記出力デジタル値が、前記第1のクロック信号または前記第2のクロック信号のクロック周期に応じて変化しない期間において、前記補正コードは、前記クロック周期に応じて変化する
    請求項1〜6のいずれか1項に記載のAD変換器。
  9. 請求項1〜8のいずれか1項に記載のAD変換器を備える
    イメージセンサ。
  10. 請求項9に記載のイメージセンサを備える
    デジタルカメラ。
JP2014550890A 2012-12-06 2013-09-17 Ad変換器、イメージセンサ、およびデジタルカメラ Expired - Fee Related JP6168064B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012267368 2012-12-06
JP2012267368 2012-12-06
PCT/JP2013/005472 WO2014087561A1 (ja) 2012-12-06 2013-09-17 Ad変換器、イメージセンサ、およびデジタルカメラ

Publications (2)

Publication Number Publication Date
JPWO2014087561A1 JPWO2014087561A1 (ja) 2017-01-05
JP6168064B2 true JP6168064B2 (ja) 2017-07-26

Family

ID=50883003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014550890A Expired - Fee Related JP6168064B2 (ja) 2012-12-06 2013-09-17 Ad変換器、イメージセンサ、およびデジタルカメラ

Country Status (3)

Country Link
US (1) US9258503B2 (ja)
JP (1) JP6168064B2 (ja)
WO (1) WO2014087561A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380208B1 (en) * 2015-04-13 2016-06-28 Omnivision Technologies, Inc. Image sensor power supply rejection ratio noise reduction through ramp generator
US9712774B1 (en) * 2016-01-14 2017-07-18 Omnivision Technologies, Inc. Method and system for implementing dynamic ground sharing in an image sensor with pipeline architecture
US10917107B2 (en) * 2017-01-17 2021-02-09 Sony Corporation Analog-digital converter, solid-state image sensing device, and electronic system
WO2018163679A1 (ja) * 2017-03-08 2018-09-13 ソニーセミコンダクタソリューションズ株式会社 アナログ-デジタル変換器、固体撮像素子、及び、電子機器
JP6880905B2 (ja) * 2017-03-28 2021-06-02 セイコーエプソン株式会社 回路装置、物理量測定装置、電子機器及び移動体
CN108600579B (zh) * 2018-05-16 2020-03-20 上海集成电路研发中心有限公司 一种应用于cis的运动检测电路及运动检测方法
TWI696350B (zh) * 2019-07-04 2020-06-11 創意電子股份有限公司 數位類比轉換裝置以及補償電路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900767A (en) * 1995-06-24 1999-05-04 U.S. Philips Corporation Electronic devices comprising an array
JP3847889B2 (ja) * 1997-04-08 2006-11-22 キヤノン株式会社 光電変換装置
FR2762162A1 (fr) * 1997-04-15 1998-10-16 Philips Electronics Nv Dispositif d'alignement numerique
US6580454B1 (en) * 1998-11-18 2003-06-17 Agilent Technologies, Inc. CMOS active pixel sensor having in-pixel local exposure control
EP1380113B1 (en) * 2000-09-27 2007-05-09 Koninklijke Philips Electronics N.V. Means for compensating a data-dependent supply current in an electronic circuit
JP4770281B2 (ja) 2005-06-17 2011-09-14 ソニー株式会社 基準電圧供給回路および電子機器
KR100794310B1 (ko) 2006-11-21 2008-01-11 삼성전자주식회사 스위치드 커패시터 회로 및 그것의 증폭 방법
JP4926761B2 (ja) * 2007-03-01 2012-05-09 ローム株式会社 デジタルアナログ変換回路
US7564385B2 (en) 2007-12-18 2009-07-21 Atmel Corporation Current compensation for digital-to-analog converter
CN102016813A (zh) * 2008-07-27 2011-04-13 拉姆伯斯公司 用于平衡接收端电源负载的方法和系统
JP5418073B2 (ja) * 2009-08-28 2014-02-19 ソニー株式会社 Da変換器及び固体撮像装置
JP2011193104A (ja) * 2010-03-12 2011-09-29 Fujitsu Semiconductor Ltd 半導体装置
JP2012074764A (ja) 2010-09-27 2012-04-12 Olympus Corp A/d変換回路および撮像装置
JP5722015B2 (ja) * 2010-12-06 2015-05-20 ラピスセミコンダクタ株式会社 基準電流出力装置及び基準電流出力方法
US8823283B2 (en) * 2012-03-13 2014-09-02 Dialog Semiconductor Inc. Power dissipation monitor for current sink function of power switching transistor

Also Published As

Publication number Publication date
US20150249801A1 (en) 2015-09-03
US9258503B2 (en) 2016-02-09
JPWO2014087561A1 (ja) 2017-01-05
WO2014087561A1 (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
JP6168064B2 (ja) Ad変換器、イメージセンサ、およびデジタルカメラ
JP4340296B2 (ja) A/d変換器
JP5067011B2 (ja) 固体撮像装置、撮像装置、電子機器
US8760213B2 (en) Ramp signal output circuit, analog-to-digital conversion circuit, imaging device, method for driving ramp signal output circuit, method for driving analog-to-digital conversion circuit, and method for driving imaging device
JP5375277B2 (ja) 固体撮像装置、撮像装置、電子機器、ad変換装置、ad変換方法
TWI495341B (zh) Solid state camera device
KR101850086B1 (ko) 듀얼 모드 비교기 및 이를 포함하는 아날로그 투 디지털 컨버터
US9954026B2 (en) Imaging apparatus and imaging system
US10136083B1 (en) Electronic circuit having dynamic resistance element
US20060232676A1 (en) Column-parallel sigma-delta analog-to-digital conversion for imagers
US9236879B2 (en) A/D converter, image sensor device, and method of generating digital signal from analog signal
US20130242151A1 (en) Solid-state imaging apparatus and method for driving the same
JP2005269611A (ja) 比較器、ad変換回路、半導体装置、および撮像装置
WO2014171230A1 (ja) Ad変換回路および撮像装置
JP2008054256A (ja) アナログデジタル変換器およびそれを用いた撮像回路
JP2009260605A (ja) Δς変調器及びδς型ad変換器
US8519879B1 (en) Precision charge-dump circuit
US7864229B2 (en) Analog to digital converting device and image pickup device for canceling noise, and signal processing method thereof
JP7214622B2 (ja) 固体撮像装置、およびそれを用いるカメラシステム
US9160948B2 (en) Replica noise generator using pixel modeling and ramp signal generator including the same
WO2016147238A1 (ja) Ad変換器、イメージセンサ、および撮像装置
JP2014175930A (ja) アナログデジタル変換器
CN110383694B (zh) 模拟数字转换器、固态成像元件和电子设备
KR20170049052A (ko) 인버터(inverter) 및 적어도 하나의 스위치드 커패시터(Switched Capacitor)를 이용한 적분기 회로
Ay Boosted CMOS APS pixel readout for ultra low-voltage and low-power operation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6168064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees