WO2013133039A1 - 樹脂金属複合シール容器及びその製造方法 - Google Patents
樹脂金属複合シール容器及びその製造方法 Download PDFInfo
- Publication number
- WO2013133039A1 WO2013133039A1 PCT/JP2013/054368 JP2013054368W WO2013133039A1 WO 2013133039 A1 WO2013133039 A1 WO 2013133039A1 JP 2013054368 W JP2013054368 W JP 2013054368W WO 2013133039 A1 WO2013133039 A1 WO 2013133039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- metal foil
- resin
- heat
- foil
- Prior art date
Links
- 239000002905 metal composite material Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 316
- 239000002184 metal Substances 0.000 claims abstract description 316
- 239000011888 foil Substances 0.000 claims abstract description 228
- 229920005989 resin Polymers 0.000 claims abstract description 166
- 239000011347 resin Substances 0.000 claims abstract description 165
- 238000003466 welding Methods 0.000 claims abstract description 117
- 238000007789 sealing Methods 0.000 claims abstract description 87
- 239000011324 bead Substances 0.000 claims abstract description 45
- 238000002844 melting Methods 0.000 claims abstract description 31
- 230000008018 melting Effects 0.000 claims abstract description 31
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 22
- 230000005484 gravity Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 35
- -1 polypropylene Polymers 0.000 claims description 32
- 239000004743 Polypropylene Substances 0.000 claims description 23
- 229920001155 polypropylene Polymers 0.000 claims description 23
- 239000010935 stainless steel Substances 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000805 composite resin Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 48
- 239000007789 gas Substances 0.000 description 36
- 230000004888 barrier function Effects 0.000 description 29
- 210000004027 cell Anatomy 0.000 description 27
- 238000012360 testing method Methods 0.000 description 21
- 238000003860 storage Methods 0.000 description 20
- 229910052782 aluminium Inorganic materials 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 230000007547 defect Effects 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000004880 explosion Methods 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- 230000035515 penetration Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 150000001336 alkenes Chemical group 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 229920000098 polyolefin Polymers 0.000 description 6
- 210000000352 storage cell Anatomy 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000005029 tin-free steel Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VTPNYMSKBPZSTF-UHFFFAOYSA-N 1-ethenyl-2-ethylbenzene Chemical compound CCC1=CC=CC=C1C=C VTPNYMSKBPZSTF-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- XHUZSRRCICJJCN-UHFFFAOYSA-N 1-ethenyl-3-ethylbenzene Chemical compound CCC1=CC=CC(C=C)=C1 XHUZSRRCICJJCN-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920003355 Novatec® Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/80—Gaskets; Sealings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
- H01G13/003—Apparatus or processes for encapsulating capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/10—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
- H01G9/10—Sealing, e.g. of lead-in wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/1243—Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/133—Thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/4911—Electric battery cell making including sealing
Definitions
- the present invention relates to a resin-metal composite sealed container having a seal portion that is welded with a laser after welding a part of the heat-sealed portion with a laser and is metal-sealed with a weld bead outside the heat seal portion, and a method for manufacturing the same. And this container is used especially for an electrical storage cell use.
- Cases of power storage elements such as storage batteries and capacitors are mainly made of metal plate materials, which can be formed into cylindrical or cuboid cans by pressing, brazing, laser welding, etc., and metal foil as a gas barrier. It is roughly classified into two types: a pouch type that forms a case (in this case, it is soft and is also referred to as a bag) by heat sealing using a resin film as a layer.
- a pouch-type battery is used in a state in which a power storage element part and the outside world are blocked by packaging with a metal foil (laminated metal foil) laminated with a heat sealing resin and heat sealing the heat sealing resin. This is because leakage of the battery electrolyte to the outside or mixing of water vapor from the environment is fatal to the battery life.
- the heat sealing part becomes a leakage path for electrolyte inside the battery or an intrusion path where water vapor enters from the outside environment to the inside.
- the path length of the seal portion contributes to determining the life of the battery cell. Therefore, to increase the battery cell life, it is effective to increase the path length of the heat seal part.
- the path length of the heat seal part is increased, useless space increases and the cell capacity per space is increased. Becomes smaller. Therefore, there is a trade-off relationship between the cell capacity per unit space and the battery life in the battery cells of the laminate pack that are joined by heat sealing.
- laminated aluminum foil has been used as the laminated metal foil used in the pouch-type battery case.
- the pouch-type case has been developed from a resin pouch bag body for food packaging, together with the feature of aluminum that it is easy to obtain a thin metal foil. That is, in the food packaging pouch bag, aluminum has been vapor-deposited as a barrier layer in order to provide gas barrier properties for extending the life of the food.
- a gas barrier property that is much stricter than food is required. It is necessary to improve the reliability. For this reason, as a result of increasing the thickness of the aluminum of the gas barrier layer, the aluminum vapor deposition film has led to the application of aluminum foil.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-086744 discloses an “external body for hermetically storing an electrochemical cell main body such as a lithium ion battery main body, a capacitor, an electric double layer capacitor, etc.”
- a packaging material for an electrochemical cell comprising a material layer, a metal foil layer whose surface is subjected to chemical conversion treatment, an acid-modified polyolefin layer, and a heat-adhesive resin layer, is sequentially disclosed.
- the “base material layer” is a resin film to the last, and this expression alone shows that the metal foil layer has an accompanying role.
- the metal foil layer 12 is a layer for preventing water vapor from entering the lithium ion battery from the outside”.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2000-340187 describes, as a polymer battery packaging material, “polymer battery packaging material composed of outermost layer / barrier layer / intermediate layer / innermost layer ...”, Furthermore, it is clearly shown that the metal foil layer (aluminum foil layer) is a barrier layer.
- Patent Document 3 Japanese Patent Application Laid-Open No. 2000-153577 describes that a stainless steel foil can be used in addition to the aluminum foil disclosed as an example of the metal foil of the heat seal laminate.
- the joint part heat-sealed with the laminated resin, the heat-seal part is not composed of metal, but the joint part is composed only of resin, other parts having a metal layer as a barrier layer, welding It does not have the gas barrier property of the joint part made of metal, such as a metal can, and the penetration of moisture has a fatal effect on the life, so it is sufficient for batteries that require high gas barrier property. There is a problem that the gas barrier property cannot be exhibited.
- Patent Document 4 Japanese Laid-Open Patent Publication No. 2000-223090
- Patent Document 5 Japanese Laid-Open Patent Publication No. 2008-021634
- a laminated metal foil is welded, and sealing with resin and sealing with metal are performed.
- a method of applying is disclosed.
- Patent Document 4 is a method of enhancing gas barrier properties by welding two sides in a laminate cell that is folded in half and sealed around the periphery.
- Patent Document 4 in paragraph [0007] of [Means for Solving the Problems], the outer surface of the metal foil is removed by removing the heat-sealable resin film layer, and the metal foils are overlapped. The process of removing the resin of the part to be welded in advance like the W part in FIG. 4C of Patent Document 4 is inevitable.
- a new method for superimposing the welded portions while suppressing them is necessary.
- Patent Document 5 as shown in FIGS. 2 and 3, a process of providing a taper on the end face or removing the resin inside the part to be welded in advance is required.
- a normal welding method is generally a welding method in which a weld metal is formed between contacted metal foils as shown in FIG. 4E of Patent Document 4, but in this method, There is also a problem that it is difficult to detect when a welding defect occurs, and it is difficult to guarantee the soundness of the welded portion in order to guarantee the barrier property.
- the joint part heat-sealed with the laminated resin, the heat-seal part is not made of metal, but the joint part is composed only of resin, other parts having a metal layer as a barrier layer, and welded metal cans It does not have the same gas barrier properties as the joints made of metal, etc., and invasion of moisture has a fatal effect on the lifetime, so it is sufficient for batteries that require high gas barrier properties. There is a problem that can not be demonstrated. On the other hand, when trying to weld a metal layer, it is necessary to remove the resin around the welded part, or the welded part is between the metal layers, making it difficult to evaluate and detect weld defects. was there.
- An object of the present invention is to provide a resin-metal composite sealed container having a seal part by a metal weld part and a heat seal part, which can constitute a joint part that realizes a high gas barrier property, and a manufacturing method thereof at low cost and efficiently. It is to provide in an easy method and form.
- a high gas barrier property can be realized by further using laser bonding together with a heat seal portion constituted by a laminated resin.
- materials coated with a material whose boiling point or thermal decomposition temperature of the coating substance (zinc or resin) is lower than the melting point of the base material (steel plate or metal plate), such as galvanized steel plate or resin-coated metal plate, are laser welded.
- such a coating material is gasified and blows away the weld metal in the molten state, so that it is very difficult to stably form a sound weld joint.
- the metal thickness is thin and the thickness of the heat seal resin and the thickness of the metal foil are often the same, the proportion of the metal that is melted during welding is small, The condition is that the distance between the metals to be joined by welding is relatively large, and further welding is difficult.
- the inventors conducted extensive research and development, and the melting point of the metal constituting the metal foil is sufficiently higher than the thermal decomposition temperature of the laminate resin used for heat sealing, and If the specific gravity of the metal constituting the metal foil is sufficiently greater than the specific gravity of the laminate resin used for heat sealing, the heat sealed joint can be laser welded without removing the resin in the vicinity of the weld before welding. I found out.
- the present invention has been made based on the above findings, and the gist thereof is as follows.
- a resin-metal composite sealed container having a metal sealing part by a weld bead on an outer end face of the heat seal part of the first metal foil and the second metal foil.
- the melting point of the metal constituting the metal foil is 300 ° C. higher than the thermal decomposition temperature of the heat sealing resin,
- the specific gravity of the metal which comprises the said metal foil is 5 or more,
- the said weld bead is formed by laser welding,
- the weld bead is a weld bead having a substantially circular cross-sectional shape, and the thickness of the metal foil of the weld bead contacts the weld bead of the first metal foil and the second metal foil.
- the resin-metal composite sealed container according to any one of (1) to (3), which is 1.1 to 5.0 times the dimension in the thickness direction of the portion.
- the first metal foil and the second metal foil are bridged by the weld bead, and the thickness direction dimension of the first metal foil and the second metal foil in the vicinity of the weld bead
- the resin-metal composite seal according to any one of (1) to (4), wherein is equivalent to a dimension in a thickness direction of the heat seal portion of the first metal foil and the second metal foil container.
- the metal sealing portion is formed on the entire periphery of the end portions of the first metal foil and the second metal foil, excluding the electrode tab portion.
- (1) to (6) The resin metal composite sealed container according to any one of the above.
- At least one side of the metal foil laminated with a heat sealing resin is sealed by heat sealing to form a container, Heat welding without removing the resin in the vicinity of the welded part before welding from the end face side of the metal foil to the outside of the heat seal part of the container, and a metal sealing part by a weld bead on the end face of the metal foil
- the melting point of the metal constituting the metal foil is 300 ° C. higher than the thermal decomposition temperature of the heat sealing resin,
- the specific gravity of the metal constituting the metal foil is 5 or more,
- the method according to (11), wherein the weld bead is formed by laser welding.
- a laser welded part can be used together with a heat seal part constituted by a laminated resin, and the barrier property against a gas typified by an electrolyte and water vapor is made of metal.
- the structure that has the remarkable effect that it can be greatly enhanced by the configured seal part, and if it can weld most of the circumference of the heat seal part, the life can be greatly extended.
- it is not necessary to peel off the resin at the welded portion, and it is possible to realize a form in which it is easy to detect a welded portion defect after welding.
- FIG. 3A is a schematic external view of the electricity storage cell of the present invention.
- FIG. 3B is a top view of the electricity storage cell of the present invention.
- 3B is a cross-sectional photograph of the vicinity of the welded portion in FIGS. 3A and 3B.
- FIG. 3B is a cross-sectional view taken along the line AA ′ of FIG. 3B, showing the relationship between the heat seal portion and the laser irradiation direction of laser welding. It is BB 'sectional drawing of FIG. 3B.
- 1st Embodiment is a container formed by sealing the edge part of the metal foil which laminated the resin for heat sealing on the single side
- FIG. 1 shows an example of the structure of the resin / metal composite sealed container of the present invention.
- the metal foil 6 is metal-bonded at the metal sealing portion 7 laser-welded from the end face side, and further heat sealed with the heat seal resin 3 inside the metal sealing portion 7 ′. It has a resin-metal composite seal structure that is joined.
- the container of the present invention is characterized in that the melting point of the metal constituting the metal foil is 300 ° C. or more higher than the thermal decomposition temperature of the heat sealing resin, and the specific gravity of the metal constituting the metal foil is 5 or more.
- the laminated metal foil for laser welding it can be manufactured by laser welding from the end face side of the metal foil after heat sealing.
- the container of the present invention can be realized by using a metal foil as a stainless steel foil and the heat sealing resin as a resin mainly composed of polypropylene.
- Laser welding part The problem in performing laser welding is to form a battery cell by forming a battery cell by heat sealing and then welding the metal outside it without destroying the container structure made of resin formed by heat sealing. It is.
- Explosion is generally applied to materials coated with a material whose boiling point or thermal decomposition temperature of the coating material (zinc or resin) is lower than the melting point of the base material (steel plate or metal plate), such as a galvanized steel sheet or a resin-coated metal plate.
- a material whose boiling point or thermal decomposition temperature of the coating material (zinc or resin) is lower than the melting point of the base material (steel plate or metal plate)
- the gasified coating material blows away the weld metal in a molten state and is generated.
- the most effective method for avoiding explosions is to provide a certain clearance between the steel sheets to be welded together to provide a gas escape place.
- this method cannot be applied to a laminated metal foil joining portion that is adhered by heat sealing.
- the inventors have avoided the explosion of laminated metal foil by utilizing the fact that the nature of the causative substance to be blown off differs between the plated steel sheet and the laminated metal foil.
- the present invention has been achieved.
- the melting point of the metal constituting the metal foil is 300 ° C. higher than the decomposition temperature of the heat sealing resin, and the metal foil is constituted. It has been found that if the specific gravity of the metal is 5 or more, explosions are unlikely to occur.
- the welding method is the normal welding method of the overlapping portion, such as energization welding or ultrasonic welding in FIG. 8A, or the direction penetrating each layer from the direction perpendicular to the overlapping layers as in FIG. 8B.
- the “welding welding” in which the laser is irradiated from the direction parallel to the stacked layers toward the end face of the overlapped portion shown in FIG. 8C and FIG. 5 is used. It was confirmed that it was possible to form a sound weld.
- the diameter of the weld metal is more preferably 110% or more of the distance between the two metal layers. If there is enough space, there is no problem even if it is increased to about 500%, but if it is larger than that, the burden on the foil in the vicinity of the weld becomes large, and conversely, the reliability may be lowered.
- the distance between the two metal layers may be substantially replaced with the total thickness of the two metal foils and the total thickness of the heat sealing resin.
- the welding beam may be formed by a method of heating and welding from the end face side of the metal foil. Also known as “welcome welding”.
- a welding method in which a laser is irradiated from a direction parallel to the stacked metal foils is preferable, but is not limited to a completely parallel direction. Any welding method may be used as long as it can be heated from the end face side of the metal foil to form a welding beam.
- the weld bead has a substantially circular cross section as shown in FIGS.
- a shaped weld bead can be formed.
- the end face side is substantially circular, but the inside of the container is integrated with the metal foil as seen in the photograph of FIG.
- the welded metal foils can form a structure in which the weld beads are bridged while being substantially parallel with the thickness interval of the laminated heat seal resin layers.
- the dimension in the thickness direction (perpendicular to the metal foil) in the vicinity of the weld bead of the metal foil can be equivalent to the dimension in the thickness direction of the heat seal portion of the metal foil.
- equivalent means a difference of 20% or less, particularly 10% or less.
- the present invention is not limited to this aspect (an aspect in which both dimensions are equivalent).
- the pretreatment for removing the heat seal resin between the metal foils before the welding is unnecessary, but the heat seal resin in the vicinity of the weld bead is vaporized and disappeared during the welding. it can.
- the dimension in the thickness direction of the metal foil of the weld bead is preferably 1.1 to 5.0 times larger than the dimension in the thickness direction of the portion of the metal foil in contact with the weld bead. It is more preferably 1.2 times or more, further 1.3 times or more and 3 times or less.
- the metal foil when the metal foil is a stainless steel foil and the heat sealing resin is a resin mainly made of polypropylene, it is found that this condition is satisfied, and the industrial availability is high. It was.
- the resin for heat sealing that also serves as the inner surface resin used for the storage cell application is usually a polyolefin resin, and the polyolefin resin is a resin mainly composed of a resin having a repeating unit of the following (formula 1). is there.
- the main component is that the resin having the repeating unit of (Formula 1) constitutes 50% by mass or more.
- the polyolefin resin may be a homopolymer of the above-described structural units or two or more types of copolymers. It is preferable that five or more repeating units are chemically bonded. If it is less than 5, the polymer effect (for example, flexibility, extensibility, etc.) is hardly exhibited.
- the above repeating unit is exemplified by the addition polymerization of terminal olefins such as propene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene.
- terminal olefins such as propene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene.
- aliphatic units such as repeating units and repeating units when isobutene is added, and styrene monomer, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, o -Styrene monomer addition polymer units such as alkyl styrene such as ethyl styrene, ot-butyl styrene, mt-butyl styrene, pt-butyl styrene, halogenated styrene such as monochlorostyrene, and terminal methylstyrene Aromatic olefins and the like.
- Examples of such a repeating unit homopolymer include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, cross-linked polyethylene, polypropylene, polybutene, polypentene, which are homopolymers of terminal olefins. Examples include polyhexene, polyoctenylene, polyisoprene, polybutadiene and the like. Examples of the copolymer of the above repeating units are ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-propylene-hexadiene copolymer, ethylene-propylene-5-ethylidene-2-norbornene copolymer.
- Examples thereof include aliphatic polyolefins such as olefins, and aromatic polyolefins such as styrene-based copolymers, but are not limited to these, as long as the above repeating units are satisfied. Moreover, a block copolymer or a random copolymer may be sufficient. These resins may be used alone or in combination of two or more.
- the polyolefin used in the present invention is only required to have the above-mentioned olefin unit as a main component, and a vinyl monomer, a polar vinyl monomer, and a diene monomer, which are substitution products of the above unit, are copolymerized in a monomer unit or a resin unit. May be.
- the copolymer composition is 50% by mass or less, preferably 30% by mass or less, based on the olefin unit. If it exceeds 50% by mass, properties as an olefin resin such as a barrier property against a corrosion-causing substance are deteriorated.
- polar vinyl monomer examples include acrylic acid derivatives such as acrylic acid, methyl acrylate, and ethyl acrylate, methacrylic acid derivatives such as methacrylic acid, methyl methacrylate, and ethyl methacrylate, acrylonitrile, maleic anhydride, and maleic anhydride.
- acrylic acid derivatives such as acrylic acid, methyl acrylate, and ethyl acrylate
- methacrylic acid derivatives such as methacrylic acid, methyl methacrylate, and ethyl methacrylate
- acrylonitrile maleic anhydride
- maleic anhydride and maleic anhydride
- Imide derivatives vinyl chloride and the like.
- low density polyethylene medium density polyethylene, high density polyethylene, linear low density polyethylene, cross-linked polyethylene, polypropylene, or a mixture of two or more of these.
- these polyolefin-based resins are generally suitable, but industrially, those mainly composed of polypropylene are further used in view of cost, distribution, easiness of heat lamination, and the like. Is preferred.
- the resin mainly composed of polypropylene refers to a resin containing 50% by mass or more of polypropylene, and in addition to the polypropylene pure resin, various polyethylenes such as low density polyethylene and high density polyethylene in a proportion of less than 50% by mass, Examples thereof include resins obtained by polymerizing polyolefins such as polybutene and polypentene. Moreover, in order to improve adhesiveness with metal foil, what was made into acid-modified polyolefin may be used. Even if it is a block copolymer, a random copolymer, or the olefin other than the polypropylene to be polymerized is one kind or two kinds or more, the main polypropylene may be 50% by mass or more.
- the polypropylene is from 70% by mass or more and 90% by mass or more to the polypropylene itself.
- what is polymerized is preferably one that lowers the decomposition temperature than when polypropylene alone is used, and a polyethylene resin is particularly suitable.
- the specific gravity of aluminum is about 2.7 and the melting point is 660 ° C., which is relatively light and low melting among general-purpose metals.
- the laminated metal foil is an aluminum laminated foil, the aluminum laminated foil could not form a sound welded part by laser welding unless the heat seal resin near the welded part was removed before welding.
- Laminated aluminum foil has the advantage that it can be easily joined by heat sealing without depending on welding, etc. Since the original was the deposition of metal as a gas barrier layer on a resin film, Thus, it is considered that neither the need nor the method of applying welding has been studied.
- metals suitable for the metal foil for welding of the present invention include stainless steel, pure iron, carbon steel, low alloy steel, copper, nickel, zirconium, vanadium, aluminum iron alloy, zinc copper alloy, and the like. .
- Plating-coated metal coated with a refractory metal is also within the scope of the present invention. Specifically, as a plated steel, tin-free steel having a chromium oxide layer and a metal chromium layer, a nickel layer, or a nickel layer and nickel-iron Nickel-plated steel such as having an alloy layer is included.
- Thermal decomposition temperature of heat sealing resin The reason why the melting point of the metal constituting the metal foil needs to be 300 ° C. higher than the thermal decomposition temperature of the heat sealing resin is that the difference between the thermal decomposition temperature of the heat sealing resin and the melting point of the metal constituting the metal foil This is because if the temperature is less than 300 ° C., the frequency of explosions increases.
- the principle needs to be further analyzed, but as the melting point of the metal and the decomposition temperature of the resin are more distant, the resin decomposes and gas flows when the temperature rises in the vicinity of the weld during the welding process.
- the inventors presume that the time lag from the occurrence of the metal to the melting of the metal can sufficiently dissipate the decomposition gas of the resin causing the explosion before the metal melts. Yes. Therefore, it is desirable that the difference between the melting point of the metal and the decomposition temperature of the resin is far away to some extent, and more desirably, the melting point of the metal constituting the metal foil is 400 than the thermal decomposition temperature of the heat sealing resin. More preferably, the melting point of the metal constituting the metal foil is 500 ° C. or more higher than the thermal decomposition temperature of the heat sealing resin, which is suitable for forming a sound weld.
- the melting point of the metal constituting the metal foil is higher than 2000 ° C. with respect to the thermal decomposition temperature of the heat sealing resin, the amount of heat for melting the metal becomes enormous. Since the heat seal resin may be excessively decomposed by the amount of heat and the structure of the battery case made of the resin may be damaged, the difference between the heat decomposition temperature of the heat seal resin and the melting point of the metal constituting the metal foil is 2000 It is desirable that the temperature is not higher than ° C. Excessive heat history, even if the resin remains, damages the resin. From the viewpoint of damage to the remaining resin, more preferably, it constitutes the thermal decomposition temperature of the heat sealing resin and the metal foil.
- the difference in melting point of the metal is desirably 1200 ° C. or less.
- a resin that can be suitably used as a heat seal resin that raises the melting point of the metal by 300 ° C. or higher than the thermal decomposition temperature of the heat seal resin The selection may be made in consideration of the thermal decomposition temperature in relation to the melting point of the foil, and examples thereof include resins such as polypropylene, polyethylene, and copolymers thereof, and resins mainly composed of these.
- Polypropylene has a thermal decomposition temperature of 430 ° C.
- polyethylene has a thermal decomposition temperature of 450 ° C.
- these copolymers show intermediate values.
- the decomposition temperature refers to a temperature at which a mass change of 10% occurs.
- the reason why the specific gravity of the metal constituting the metal foil needs to be 5 or more is that if the specific gravity of the metal constituting the metal foil is less than 5, there is a problem that the frequency of explosions increases.
- the principle needs to be further analyzed to be precise, but even if the gas causing the explosion is generated when the metal is molten, if the specific gravity of the metal is large, it can be blown away without losing the gas pressure. It is qualitatively estimated that there is a higher probability of staying without being affected and it is less susceptible to gas.
- the specific gravity of the metal constituting the metal foil is 6 or more, and more desirably, the specific gravity of the metal constituting the metal foil is 7 or more.
- the specific gravity of the metal is preferably 20 or less from the viewpoint of a practical metal, and more preferably 10 or less when weight reduction is important.
- the thickness of the metal foil is preferably 15 to 150 ⁇ m, more preferably 40 to 120 ⁇ m. If the metal foil is thin, the amount of metal for forming the weld metal is insufficient, weld defects are likely to occur, metal deformation is likely to occur, and welding control becomes difficult. On the other hand, if it is too thick, the weight as a container increases in the first place, and therefore the advantage of using a laminated metal foil is reduced.
- the thickness of the heat sealing laminate resin is preferably 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m. If the laminate resin is thin, the resin that melts at the time of heat sealing becomes too small, and a sealing defect in which no resin exists between the metal foils starts to occur.
- the thicker the metal foil the greater the resistance to the decomposition gas of the heat sealing resin, and the thinner the heat sealing resin, the less the generation of decomposition gas.
- the ratio is preferably 0.7 or more, and more preferably 1.2 or more.
- the width (path width) of the heat seal portion is not uniform depending on the structure and purpose, but is generally 1 to 50 mm, preferably 2 to 20 mm, more preferably 3 to 7 mm.
- the weld bead since the weld bead is formed, it can be made narrower than in the case of only the conventional heat seal, but if the width of the heat seal part is made too narrow, the sealability of the heat seal part becomes insufficient.
- a weld bead in order to form a weld bead without impairing the heat seal, it is preferable to form the weld bead on the outer side from the end face side of the metal foil at an interval with respect to the heat seal portion.
- a weld bead may be formed continuously from a part of the heat seal portion from the end surface side of the metal foil or from the upper and lower surface side of the metal foil. May be present.
- the laminated metal foil may be folded in half, and one side may be bent and the other side may be heat sealed and welded.
- a metal foil having a relatively high melting point since a metal foil having a relatively high melting point is used, a metal foil having a relatively high strength tends to be used, and a small radius of curvature that can sufficiently withstand welding is obtained at the bent portion. May be difficult. Even if the foil is strong, the bare metal foil can reduce the radius of curvature if it is suppressed with a strong load.
- the laminated metal foil can be processed with a load that does not damage the laminated resin, so the strength of the metal foil If it is high, it may be difficult to reduce the radius of curvature.
- the bent portion is a singular point in which the amount of metal with respect to the unit weld line length and the amount of metal responsible for heat conduction are greatly different from those of other overlapped portions, so that welding defects are likely to occur and gas barrier properties are impaired. There is a fear. Therefore, although not necessarily limited, in the present invention, a structure in which two laminated metal foils are overlapped is more preferable.
- the heat sealing part is a leakage path for electrolyte inside the battery or an intrusion path where water vapor enters from the outside environment to the inside.
- the path length of the heat seal part contributes to determining the life of the battery cell.
- the cross-sectional area of the moisture intrusion path increases in proportion to the circumference, so the longer the circumference of the heat seal, the greater the flow rate of intrusion moisture and the shorter the life. The influence of moisture intrusion increases as the path length of the heat seal portion is shorter and as the heat sealed circumference is longer.
- the laminated metal foil used in the container of the present invention has a surface that is not coated with a heat seal resin, that is, the surface that is normally the outer surface of the container, and the surface of the metal foil is left as it is.
- various resin laminates may be applied.
- a coating thinner than the heat seal resin is applied, there is no effect on welding, and a laminated metal foil coated on the outer surface side to provide functions such as insulation and heat dissipation also falls within the scope of the present invention. It is.
- covering the outer surface with a PET film having a thickness of 20 ⁇ m or less to provide insulation is also economical and suitable from the viewpoint of workability during embossing.
- the heat seal resin on the inner surface side does not need to be a single layer, and an acid-modified polypropylene layer is laminated on the side in contact with the metal layer in order to improve adhesion to the metal, thereby improving heat sealability. It is also possible to apply a multilayer resin laminate such as laminating a polypropylene layer on the outer layer.
- the inner surface side can be surface treated on the metal surface in order to improve the electrolytic solution resistance when used for a power storage case, and various chromate treatments such as electrolytic chromate and resin chromate, Chromate-free chemical conversion treatment may be performed.
- various chromate treatments such as electrolytic chromate and resin chromate, Chromate-free chemical conversion treatment may be performed.
- Tin-free steel, which has already been subjected to chromium-containing surface treatment as a product, has the same resistance to electrolytic solution as a metal surface subjected to various chromate treatments.
- FIG. 2 shows a structure of a conventional externally-stored power storage element.
- the power storage element 4 such as a battery or a capacitor is covered by embossing the laminated metal foil 1, and the periphery 6 of the power storage element 4 is heat-sealed 6 ′. Yes.
- the laminated metal foil 1 is formed by laminating a metal foil 2 and a heat seal resin 3.
- the path length of the heat seal portion is represented by 22 and is equal to the total path length of the seal portion.
- FIG. 3A is a perspective view of a power storage device packaged according to the present invention, but the external appearance of a conventional power storage device is substantially the same, and has an embossed portion 5 and a heat seal portion 6, and the power storage device from one end.
- the electrode tab 10 connected to is pulled out.
- FIG. 3B is a top view of the packaged electricity storage device of FIG. 3A, in which an embossed portion 5, a heat seal portion 6, and an electrode tab 10 can be seen.
- FIG. 1 is a cross-sectional view taken along the line A-A ′ not passing through the electrode tab 10 shown in FIG. However, in order to schematically show the structure, FIG. 1 shows the thickness of the laminated metal foil and the size of the welded portion 7 in an enlarged manner with respect to the power storage element 4 than actually.
- the laminated metal foil 1 is embossed to cover the power storage element 4 as in FIG. 2, and the periphery 6 of the power storage element 4 is heat-sealed 6 ′.
- the side surface end portion of the exterior laminated metal foil 1 around the electricity storage device 4 is laser-welded from the end surface side (laser welding), and the laser weld portion 7 is formed. It differs from the conventional electricity storage element with the exterior.
- the path length of the heat seal portion is represented by 23.
- the total path length of the seal portion is a length represented by 22 to the end of the weld portion.
- FIG. 4 shows cross-sectional photographs of the heat seal portion 6 and the laser weld portion 7 of the external energy storage device actually heat sealed and laser welded.
- Upper and lower two metal foils 2 (which appear white because they reflect light) 2 are welded 7 at the side edges. Resin 6 'heat sealed can be seen inside the laser weld 7.
- the resin 9 outside the metal foil 2 is an outer surface resin film.
- Reference numeral 24 denotes an embedded resin for photographing.
- this laser welded portion 7 it is preferable to irradiate the end surface of the side surface of the laminated metal foil 2 with the laser beam 8 from the outside after heat sealing 6 'as shown in FIG.
- the method of forming the weld bead is not limited to laser welding, and the laser irradiation method is not limited to the embodiment shown in FIG. 5 even in the case of laser welding.
- the laser welding method may be a known method.
- a carbon dioxide laser or a semiconductor laser can be used as a radiation source, and laser light reflected by a reflecting mirror is used, whether it is laser light that has passed through a fiber or laser light that has converged with a lens. You may do it.
- FIG. 6 shows a cross section along the B-B ′ cross section line passing through the electrode tab of FIG. 3B.
- An electrode tab seal material 11 is formed on the surface of the electrode tab 10, and a heat sealing resin 6 ′′ of a laminated metal foil is heat sealed to the electrode tab seal material 11. Since the metal foil cannot be laser-welded, the laser weld 7 does not exist and the structure is only a heat seal 6 ′′. In the present invention, it is preferable that all parts other than the electrode tab are welded (laser welding).
- both electrode tabs are formed so as to be pulled out from one end side, but may be pulled out from different ends, such as pulling out the electrode tab separately from the opposite end.
- Example 1 In order to investigate the influence of specific gravity and melting point of metal foil on laser weldability after heat sealing, various metal foils shown in Table 1 were prepared, laminated on one or both sides, and weld bead formation by laser welding was investigated. did.
- the heat seal resin used is as follows. PET12 and PET25 are biaxially stretched PET (polyethylene terephthalate) films having a thickness of 12 ⁇ m and 25 ⁇ m, respectively, and Emblicated PET manufactured by Unitika Ltd. was used.
- Ny15 is a stretched nylon film having a thickness of 15 ⁇ m, and an emblem ON manufactured by Unitika Ltd. was used.
- the outer surface resin was coated with urethane adhesive (Aronmite PU7000D manufactured by Toa Gosei Co., Ltd.) on the surface of the metal foil, and the outer surface side resin was stacked and pressure-bonded under curing conditions of 0.1 MPa, 25 ° C. and 90 minutes.
- urethane adhesive Aronmite PU7000D manufactured by Toa Gosei Co., Ltd.
- a film prepared by non-stretching a raw material resin into a film shape (width 300 mm) at an extrusion temperature of 250 ° C. using an extruder equipped with a T die was used. .
- the inner surface film (3) is obtained by making Admer QE060 manufactured by Mitsui Chemicals, Inc. Toro Cello Co., Ltd. into a 50 ⁇ m-thick film, and the inner surface films (1) and (2) are overlapped to form the inner surface film (2).
- the inner surface resin A, and the inner surface film (3) alone is the inner surface resin B. Both the inner surface resin A and the inner surface resin B have a thermal decomposition temperature of 430 ° C.
- the metal foil is mainly rolled foil, but some metal species that are difficult to manufacture by rolling are manufactured into a foil shape as a foil ribbon by a single roll method after vacuum melting of a predetermined composition alloy, and crystallized by heat treatment And used.
- the rolled foil used a 100 ⁇ 100 mm size
- the single roll foil used a 100 ⁇ 30 mm size. The thickness was unified to 100 ⁇ m.
- Tin Free Steel Foil is made by Nippon Super Steel Co., Ltd. Can Super, tempering grade T4CR, steel grade MR, surface finish: normal finish, plate thickness: 0.18mm product steel, grinding one side to total thickness The thickness was reduced to a predetermined thickness and used. The surface where plating remained was defined as the inner surface.
- the metal species is indicated by the abbreviation TFS.
- the nickel-plated foil is made of Nippon Steel Corporation super nickel, tempered grade T2, plating layer thickness 3 ⁇ m minimum guarantee, surface finish: B, plate thickness: 0.25mm The thickness was reduced to a predetermined thickness and used. The surface where plating remained was defined as the inner surface.
- the metal species is indicated by the abbreviation SN.
- the predetermined resin film for inner surface shown in Table 1 was overlaid on each metal foil, and hot-pressed under the conditions of 200 ° C., 1 MPa, and 1 minute to produce a laminated metal foil.
- Each resin was affixed in a size larger than the metal foil and the resin protruded from the metal foil, and after pasting, it was cut into a metal foil shape with a cutter to adjust the shape of the sample.
- the end faces of two identical laminated metal foils were heat sealed with a width of 5 mm to produce end face heat seal samples.
- the heat seal was air-cooled using a heat seal tester having an aluminum heat seal bar and held at a set temperature of 190 ° C. and a pressure of 0.5 MPa for 5 seconds.
- heat sealing and welding are performed with a side of 100 mm length as an end face, and for evaluation of resin soundness after welding, a 15 mm ⁇ 50 mm laminated metal foil sample is separately manufactured, and 15 mm long Heat sealing and welding were performed with the sides as end faces.
- the heat-sealed end face was irradiated with a laser from the opposite direction, and the end face was then welded.
- the laser used was ISL-1000F manufactured by Nippon Steel Technoresearch Corporation as a light source, pure Ar gas was used as a sealing gas, and irradiation was performed at an output of 180 W and a scanning speed of 2 m / min.
- the laser beam was condensed so as to have a diameter of 0.5 mm at the weld.
- the sound weld length is measured, and as a score of weldability, the ratio of the sound weld length to the weld length is less than 20%, with a score of 1, 20% to less than 50%, with a score of 2, 50. % Or more and less than 90% was assigned a rating of 3, 90% or more and less than 99% was assigned a rating of 4, and 99% or more was assigned a rating of 5. A score of 3 or higher was accepted.
- the post-weld resin soundness evaluation sample is a 15mm wide end face heat seal / weld sample that is opened on the opposite side of the welded portion and subjected to a T peel test to check the adhesion of the heat seal resin before the welded portion, and welded.
- the heat seal strength of 90% or more was evaluated as resin soundness A, 70% or more and less than 90% as B, and less than 70% as C.
- the laminate metal foil of the present invention using a metal foil having a specific gravity of 5 or more and a melting point of 300 ° C. or more higher than the decomposition temperature of the heat seal resin had good weldability and the resin was sound.
- Example 2 In the cell case having the structure according to the present invention, a test was conducted to confirm that the amount of water vapor entering from the outside environment can be suppressed as compared with the conventional cell case. Between two laminated metal foils, an electrolyte for a lithium battery was put together with a polypropylene small block for securing a space for holding the liquid, and a simulated cell serving as a comparative test body having four sides heat-sealed was produced. Furthermore, a simulated cell having the same structure as the test body of the structure of the present invention was fabricated, in which the four sides at the outer end of the heat seal were metal-sealed by laser welding. A constant temperature and humidity test was performed in which these were held in a high temperature and high humidity environment, and after a certain period of time, the amount of internal moisture was measured to investigate the moisture (water vapor) penetration behavior.
- pure aluminum foil (model number: AL-013265, thickness 50 ⁇ mt) manufactured by Niraco and SUS304 stainless steel foil 100 ⁇ mt manufactured by Nippon Steel Materials were used as the metal foil.
- Uniteka Corporation's Emblet PET # 12 (biaxially stretched PET (polyethylene terephthalate) film with a thickness of 12 ⁇ m) is used as the outer film, and a urethane adhesive (Aronmite PU7000D, manufactured by Toagosei Co., Ltd.) is applied to the surface of the metal foil.
- the outer surface films were stacked and pressure-bonded under curing conditions of 0.1 MPa, 25 ° C. and 90 minutes.
- the inner surface resin A used in Example 1 was used as the resin for heat sealing, and was adhered to the metal foil in the same manner to produce a laminated metal foil.
- test specimens were made of two pieces of the same type obtained by cutting a laminated metal foil into a square of 150 mm ⁇ 150 mm. First, the three sides were heat-sealed with a width of 5 mm or 10 mm to form a bag. A polypropylene piece having a size of 30 mm ⁇ 30 mm and a thickness of 1 mm was inserted between two laminated metal foils from one unsealed side of a bag-like test body. This polypropylene piece is for holding in the vicinity of the center of the surface of 150 mm ⁇ 150 mm, and for securing an air gap between the foils in the vicinity thereof to put the electrolytic solution.
- test body simulating the structure of the present invention was prepared by laser welding the above simulated cell on four sides. Since a specimen using an aluminum foil as a metal foil could not be welded, a specimen having a structure of the present invention uses a stainless steel foil as a metal foil. Table 2 shows the levels of the test specimens.
- the electrolyte did not contain a lithium salt, and a solvent in which an equal volume of ethylene carbonate and ethyl methyl carbonate was mixed was used.
- Welding was performed by irradiating a laser from the opposite direction to the heat-sealed end face and welding.
- the laser used was ISL-1000F manufactured by Nippon Steel Technoresearch Corporation as a light source, pure Ar gas was used as a sealing gas, and irradiation was performed at an output of 180 W and a scanning speed of 2 m / min.
- the laser beam was condensed so as to have a diameter of 0.5 mm at the weld.
- FIG. 7 shows the test results in a graph with the constant temperature and humidity test elapsed time on the horizontal axis and the water content in the electrolyte on the vertical axis.
- the moisture content increases with the elapsed time in the unwelded levels B, C, and D, whereas in the level A that is the structure of the present invention that has been welded, the time elapses.
- the amount of water hardly increased, and a remarkable water penetration barrier property was exhibited.
- Example 3 In order to investigate the influence of the thickness of the metal foil, various thicknesses of metal foil were used, and at the levels shown in Table 3, the same weldability test as in Example 1 and the same moisture penetration barrier property as in Example 2 were used. The test was conducted. However, in the moisture penetration barrier property test, the penetration water amount after 1400 hours of the constant temperature and humidity test elapsed time is 30 ppm or less with a score of 6 and more than 30 ppm and 50 ppm or less with a rating of 5 or 50 ppm.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Laminated Bodies (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
しかしながら、ラミネートされた樹脂によりヒートシールした接合部は、ヒートシール部は金属により構成されたものではなく樹脂のみで接合部が構成されており、金属層をバリア層として持つ他の部分や、溶接金属缶などの、金属により構成された接合部程のガスバリア性を有しておらず、特に水分の侵入が寿命に致命的な影響を与えるため、高いガスバリア性が要求される電池においては十分なガスバリア性を発揮できないという問題がある。
これに対し、特許文献4(特開2000-223090号広報)、特許文献5(特開2008-021634号公報)のように、ラミネート金属箔を溶接して、樹脂による封止と金属による封止を適用する方法が開示されている。
特許文献4は、二つ折りにして周囲を封止するラミネートセルにおいて、2辺を溶接して、ガスバリア性を高める方法である。
しかし、ラミネート金属を、金属を溶融して溶接する場合、超音波や通電加熱による溶接では、金属同士が直接接する必要があり、またレーザーや放電アークを用いた熱源による溶接では、樹脂の蒸発により、溶融金属が吹き飛ばされ、健全な溶接ビードが形成され難いという困難がある。
そのため、特許文献4においては、[課題を解決するための手段]の段落[0007]に「外側には熱融着性樹脂フィルム層を除去して金属箔表面を露出させ、金属箔同士を重ね合わせて溶接」とあり、特許文献4の図4の(c)におけるW部のように、溶接される部分の樹脂を事前に除去する工程が不可避である。また、そのようにして熱融着性樹脂フィルムを除去するため、溶接される部分を抑えつけて重ね合わせるための方法が新たに必要となる。
特許文献5においても、その図2、図3のように、端面にテーパーを設けたり、溶接される部分の内側の樹脂を事前に除去する工程が必要となっている。
また、通常の溶接方法は、特許文献4の図4の(e)のように、接触した金属箔の間に溶接金属が形成されるような溶接方法が一般的であるが、この方法では、溶接欠陥が生じた時の検出が困難であり、バリア性を保証するべく、溶接部の健全性を保証することが困難と言う問題もある。
しかし一般に、亜鉛めっき鋼板や、樹脂被覆金属板など、被覆物質(亜鉛や樹脂)の沸点や熱分解温度が、基材(鋼板や金属板)の融点より低い物質を被覆した材料は、レーザー溶接時に、そのような被覆物質がガス化して、溶融状態にある溶接金属を吹き飛ばすため、健全な溶接接合部を安定的に形成させることが非常に困難である。
(1)端部を有する第1の金属箔と、
端部を有する第2の金属箔と、
前記第1の金属箔の前記端部と前記第2の金属箔の前記端部の間にヒートシール用樹脂を用いたヒートシール部と、
前記第1の金属箔および前記第2の金属箔の前記ヒートシール部の外側の端面に溶接ビードによる金属封止部を有することを特徴とする樹脂金属複合シール容器。
前記金属箔を構成する金属の比重が5以上であり、前記溶接ビードがレーザー溶接により形成されることを特徴とする(1)に記載の樹脂金属複合シール容器。
前記容器のヒートシール部の外側にさらに金属箔の端面側から、溶接前に溶接部近傍の樹脂を除去することなく、加熱溶接して、前記金属箔の端面に溶接ビードによる金属封止部を形成する
ことを特徴とする樹脂金属複合シール容器の製造方法。
前記金属箔を構成する金属の比重が5以上であり、
前記溶接ビードがレーザー溶接により形成される、(11)に記載の方法。
第1の実施形態は、少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端部をヒートシールにより封止してなる容器であって、ヒートシール部の外側の金属箔端面にさらに、溶接ビードにより金属封止したシール部を持つことを特徴とする樹脂金属複合シール容器である。
レーザー溶接を行う上での課題は、ヒートシールにより電池セルを形成した後、ヒートシールにより構成された樹脂による容器構造を破壊せずに、その外部で金属を溶接して電池セルを構成することである。
爆飛の形態としては、激しいブローホールが口を開けた穴だらけのビードを形成したり、ステッチ状の不連続ビードを形成したり、ひどい場合には、溶接するつもりが、溶融金属がほとんど吹き飛ばされ、切断している状態になってしまったりすることさえある。
亜鉛めっき鋼板のレーザー溶接の場合の最も有効な爆飛回避方法は、合わせ溶接される鋼板の間に、一定の隙間を設けて、ガスの逃げ場を設けてやることである。しかし、この方法は、ヒートシールにより密着したラミネート金属箔の合わせ部には適用できない。
樹脂の熱分解によるガスを起因とする爆飛が発生しない条件を検討したところ、金属箔を構成する金属の融点が、ヒートシール用樹脂の分解温度より300℃以上高いこと、金属箔を構成する金属の比重が5以上であれば、爆飛が生じにくいことを見出した。その原理は、正確にはさらなる解析が必要であるが、金属の融点と樹脂の分解温度が離れている程、樹脂が分解してガスが発生してから、金属が溶融するまでのタイムラグが大きいこと、金属が溶融している時にガスが発生しても、金属の比重が大きければ、ガスの影響を受けにくいことが、定性的には推定される。
-CR1H-CR2R3- (式1)
(式1中、R1、R2は各々独立に炭素数1~12のアルキル基または水素を示し、R3は炭素数1~12のアルキル基、アリール基又は水素を示す)
ポリオレフィン系樹脂は、前述のこれらの構成単位の単独重合体でも、2種類以上の共重合体であってもよい。繰り返し単位は,5個以上化学的に結合していることが好ましい。5個未満では高分子効果(例えば,柔軟性,伸張性など)が発揮し難い。
一方、アルミニウムラミネート箔の場合には、アルミニウムの比重が2.7程度、融点は660℃と、汎用金属の中では比較的軽量、低融点であることを確認した。つまり、ラミネート金属箔がアルミラミネート箔の場合、溶接前に溶接部近傍のヒートシール樹脂を除去しないと、アルミラミネート箔はレーザー溶接により健全な溶接部を形成することが出来なかったが、そもそも、ラミネートアルミ箔は、溶接などに依らず、ヒートシールにより簡便に接合できることが利点であり、また、元々が樹脂フィルムに金属をガスバリア層として蒸着していたものが出発点であったため、金属材料のように、溶接を適用する、ニーズも、方法も検討されなかったことが考えられる。
本発明の溶接用金属箔に適した金属の例としては、ステンレス鋼のほか、純鉄、炭素鋼、低合金鋼、銅、ニッケル、ジルコニウム、バナジウム、アルミ鉄合金、亜鉛銅合金、などがある。高融点金属を被覆しためっき被覆金属も本発明の範疇であり、具体的には、めっき鋼として、酸化クロム層と金属クロム層を有するティンフリースティールや、ニッケル層、あるいはニッケル層とニッケル-鉄合金層を有する様なニッケルめっき鋼が含まれる。
金属箔を構成する金属の融点をヒートシール用樹脂の熱分解温度より300℃以上高くする必要がある理由は、ヒートシール用樹脂の熱分解温度と、金属箔を構成する金属の融点との差が300℃未満であると、爆飛の頻度が高くなるという問題が生じるからである。その原理は、正確にはさらなる解析が必要であるが、金属の融点と樹脂の分解温度が離れている程、溶接の過程で溶接部近傍で温度が上昇する時に、樹脂が分解してガスが発生してから、金属が溶融するまでのタイムラグが大きいことにより、爆飛の原因となる樹脂の分解ガスを金属が溶融する前に十分に放散できるからではないかと、発明者らは推定している。そのため、金属の融点と樹脂の分解温度の差は、ある程度までは離れている方が望ましく、より望ましくは、ヒートシール用樹脂の熱分解温度より、金属箔を構成する金属の融点の方が400℃以上、さらに望ましくは、ヒートシール用樹脂の熱分解温度よりも金属箔を構成する金属の融点の方が500℃以上高い方が、健全な溶接部の形成に好適である。
金属箔を構成する金属の比重を5以上とする必要がある理由は、金属箔を構成する金属の比重が5未満であると爆飛の頻度が高くなるという問題が生じるからである。その原理は、正確にはさらなる解析が必要であるが、金属が溶融している時に爆飛の原因となるガスが発生しても、金属の比重が大きければ、ガスの圧力に負けずに吹き飛ばないでとどまる確率が高くなり、ガスの影響を受けにくいことが、定性的には推定される。望ましくは、金属箔を構成する金属の比重が6以上、さらに望ましくは金属箔を構成する金属の比重が7以上であることが好適である。金属の比重は、実用される金属という意味から、20以下が好ましく、軽量化を重視する場合、さらに10以下がより好ましい。
金属箔の厚さは15~150μmが好ましく、さらに40~120μmがより好ましい。金属箔が薄いと溶接金属を形成するための金属量が不足し、溶接欠陥が発生しやすくなり、また金属の変形も生じやすく、溶接の制御が困難になる。一方、厚すぎると、そもそも容器としての重量が増すため、ラミネート金属箔を用いる利点が少なくなる。また、ヒートシール用のラミネート樹脂の厚さは10~200μmが好ましく、15~100μmがより好ましい。ラミネート樹脂が薄いとヒートシール時に溶融する樹脂が少なくなり過ぎ、金属箔間に樹脂の存在しないシールの欠陥が発生し始める。一方、厚すぎると、溶接時に溶融金属を吹き飛ばして溶接欠陥を生じさせる原因となる分解ガスを多く発生するようになり、良好な溶接部を形成するための溶接条件範囲が極端に狭くなる上に、溶接されるべき金属箔と金属箔の間の距離が広くなり過ぎて、溶融金属が分離し、溶接が成り立たなくなる。
ヒートシール部の幅(経路幅)は、構造や目的により一概ではないが、一般的に1~50mm、好ましくは2~20mm、より好ましくは3~7mmである。本発明では溶接ビードを形成するので、従来のヒートシールだけの場合よりも狭くすることが可能であるが、ヒートシール部の幅をあまり狭くすると、ヒートシール部のシール性が不十分になる。
背景技術で述べたように、ラミネート金属箔をヒートシールのみで接合した電池セルの場合、ヒートシール部分は電池内部の電解液の漏洩パス、あるいは外環境から内部へ水蒸気などが混入する侵入パスになり、ヒートシール部の経路長さが電池セルの寿命を決める一因となる。特に外環境から内部への水蒸気=水分の侵入は、電池セルの寿命を短縮する非常に大きな要因である。周囲をヒートシールした構造では周長に比例して水分侵入経路の断面積が増えるため、ヒートシールの周長が長い程侵入水分の流量が増え、寿命が短くなる。水分の侵入の影響は、ヒートシール部の経路長さが短い程、ヒートシールした周長の長い程、大きくなる。
図2に、従来の外装された蓄電素子の構造を示すが、電池やキャパシタなどの蓄電素子4をラミネート金属箔1をエンボス加工して覆い、蓄電素子4の周囲6はヒートシール6’されている。ラミネート金属箔1は、金属箔2とヒートシール樹脂3がラミネートされて成っている。図2の従来の外装の場合、ヒートシール部の経路長さは22で表わされ、シール部の総経路長さと等しい。
金属箔の比重と融点の、ヒートシール後レーザー溶接性に与える影響を調べるために、表1に示す種々の金属箔を準備し、片面あるいは両面にラミネートを施し、レーザー溶接による溶接ビード形成を調査した。
PET12、PET25は、それぞれ厚み12μm、25μmの2軸延伸PET(ポリエチレンテレフタレート)フィルムで、ユニチカ株式会社製エンブレットPETを用いた。
ニッケルめっき箔は、新日本製鐵株式会社製スーパーニッケルの、調質度T2、めっき層厚み3μmミニマム保証、表面仕上げ:B、板厚:0.25mmの製品鋼板を、片面を研削して総厚みを所定の厚みまで減厚し、使用した。めっきの残存する面を内面とした。金属種としてはSNという略号で示した。
ヒートシールした端面に対して、対向する方向からレーザーを照射して端面を拝み溶接した。レーザーは、光源として日鉄テクノリサーチ社のISL-1000Fを使用し、純Arガスをシールガスに用い、180Wの出力で走査速度2m/分で照射した。レーザー光は溶接部で0.5mm径となるように集光した。
本発明による構造のセルケースにおいて、従来型のセルケースよりも、外環境から侵入する水蒸気量が抑制できることを確認する試験を実施した。2枚のラミネート金属箔の間に、液保持用の空間確保のためのポリプロピレン製小ブロックと共にリチウム電池用電解液を入れて、4辺をヒートシールした比較試験体となる模擬セルを作製した。さらに同じ構造の模擬セルを、ヒートシールの外部端で4辺をレーザー溶接により金属シールした、本発明構造の試験体となる模擬セルを作製した。これらを高温高湿度の環境で保持する恒温恒湿試験を実施し、一定期間後に内部水分量を測定して、水分(水蒸気)侵入挙動を調査した。
ヒートシール用樹脂である内面側の樹脂は、実施例1で用いた内面樹脂Aを使用し、同じ方法で金属箔に密着させてラミネート金属箔を作製した。
露点-80℃以下の乾燥アルゴンガスで置換したグローブボックス内で、各試験体それぞれに3.5gの電解液を空隙に注入し、残りの1辺を他の三辺と同じ幅でヒートシールして、全周の連続したヒートシールにより、密封した模擬セル試験体とした。
金属箔の厚みの影響を調査するために、種々の厚みの金属箔を使用し、表3に示す水準で、実施例1と同じ溶接性の試験、及び実施例2と同じ水分侵入バリア性の試験を実施した。ただし、水分侵入バリア性の試験においては、恒温恒湿試験経過時間1400時間後の侵入水分量で、30ppm以下のものを評点6、30ppmを超えて50ppm以下のものを評点5、50ppmを超えて100ppm以下のものを評点4、100ppmを超えて150ppm以下のものを評点3、150ppmを超えて200ppm以下のものを評点2、200ppmを超えるものを評点1とし、評点3以上を合格とした。
金属箔の厚みによって、若干の溶接性や樹脂健全性のばらつきは生じたが、いずれも良好に溶接出来た。溶接性や樹脂健全性のばらつきに応じて、侵入水分量は若干ばらついたが、いずれも設定した評点以上の水分侵入バリア性を示した。
B-B’ 電極タブのある電池セル断面のための切断線位置を示す線(破線)
1 レーザー溶接用ラミネート金属箔
2 金属箔
3 ヒートシール樹脂
4 蓄電セル部分(蓄電素子)
5 電池セルを収納するエンボス加工部
6’ 電池セルを外界と遮蔽するためのヒートシール部
6” 電極タブシール材
7 レーザー溶接部(金属封止部)
7‘ 溶接部
8 溶接用レーザー光
9 外面樹脂フィルム
10 金属箔(電極タブ)
22 シール部の総経路長さ
23 ヒートシール部の経路長さ
24 埋込みレジン
27 溶接欠陥
27‘ 溶接欠陥の位置(外部からは見えない)
28 溶接治具
Claims (11)
- 端部を有する第1の金属箔と、
端部を有する第2の金属箔と、
前記第1の金属箔の前記端部と前記第2の金属箔の前記端部の間にヒートシール用樹脂を用いたヒートシール部と、
前記第1の金属箔および前記第2の金属箔の前記ヒートシール部の外側の端面に溶接ビードによる金属封止部を有することを特徴とする樹脂金属複合シール容器。 - 前記金属箔を構成する金属の融点が、前記ヒートシール用樹脂の熱分解温度より300℃以上高く、
前記金属箔を構成する金属の比重が5以上であり、
前記溶接ビードがレーザー溶接により形成される、請求項1に記載の樹脂金属複合シール容器。 - 前記第1の金属箔および前記第2の金属箔の前記金属封止部が、前記第1の金属箔および前記第2の金属箔の前記端面側からの加熱により形成された溶接ビードである、請求項1又は2に記載の樹脂金属複合シール容器。
- 前記溶接ビードが略円形の断面形状の溶接ビードであり、溶接ビードの金属箔の厚さ方向の寸法が、前記第1の金属箔および前記第2の金属箔の前記溶接ビードに接する部分の厚さ方向の寸法の1.1倍以上5.0倍以下である、請求項1~3のいずれか1項に記載の樹脂金属複合シール容器。
- 前記第1の金属箔と前記第2の金属箔が前記溶接ビードによりブリッジされており、前記第1の金属箔と前記第2の金属箔の前記溶接ビード近傍の厚さ方向の寸法が、前記第1の金属箔と前記第2の金属箔の前記ヒートシール部の厚さ方向の寸法と同等である、請求項1~4のいずれか1項に記載の樹脂金属複合シール容器。
- 前記第1の金属箔の少なくとも内面と前記第2の金属箔の少なくとも内面にヒートシール用樹脂層がラミネートされている、請求項1~5のいずれか1項に記載の樹脂金属複合シール容器。
- 前記金属封止部が、前記第1の金属箔と前記第2の金属箔の端部の全周に、電極タブの部分を除いて形成されている、請求項1~6のいずれか1項に記載の樹脂金属複合シール容器。
- 前記金属箔がステンレス箔であり、前記ヒートシール用樹脂がポリプロピレンを主とする樹脂である、請求項1~8のいずれか1項に記載の樹脂金属複合シール容器。
- 前記金属箔が15~150μmの厚さであり、前記ヒートシール用樹脂が10~200μmの厚さである、請求項1~8のいずれか1項に記載の樹脂金属複合シール容器。
- 少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端部をヒートシールにより封止して容器を形成し、
前記容器のヒートシール部の外側にさらに金属箔の端面側から、溶接前に溶接部近傍の樹脂を除去することなく、加熱溶接して、前記金属箔の端面に溶接ビードによる金属封止部を形成する
ことを特徴とする樹脂金属複合シール容器の製造方法。 - 前記金属箔を構成する金属の融点が、前記ヒートシール用樹脂の熱分解温度より300℃以上高く、
前記金属箔を構成する金属の比重が5以上であり、
前記溶接ビードがレーザー溶接により形成される、請求項11に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13757877.9A EP2824728B1 (en) | 2012-03-05 | 2013-02-21 | Resin-metal composite sealed container and method for producing same |
US14/382,897 US9905817B2 (en) | 2012-03-05 | 2013-02-21 | Resin-metal composite seal container and method for producing same |
CN201380012516.1A CN104145351B (zh) | 2012-03-05 | 2013-02-21 | 树脂金属复合密封容器及其制造方法 |
KR1020147025287A KR101677680B1 (ko) | 2012-03-05 | 2013-02-21 | 수지 금속 복합 실 용기 및 그의 제조 방법 |
JP2014503759A JP6238887B2 (ja) | 2012-03-05 | 2013-02-21 | 樹脂金属複合シール容器及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012048432 | 2012-03-05 | ||
JP2012-048432 | 2012-03-05 | ||
PCT/JP2012/070386 WO2013132673A1 (ja) | 2012-03-05 | 2012-08-09 | 樹脂金属複合シール容器及びその製造方法 |
JPPCT/JP2012/070386 | 2012-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133039A1 true WO2013133039A1 (ja) | 2013-09-12 |
Family
ID=49116181
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070386 WO2013132673A1 (ja) | 2012-03-05 | 2012-08-09 | 樹脂金属複合シール容器及びその製造方法 |
PCT/JP2013/054368 WO2013133039A1 (ja) | 2012-03-05 | 2013-02-21 | 樹脂金属複合シール容器及びその製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070386 WO2013132673A1 (ja) | 2012-03-05 | 2012-08-09 | 樹脂金属複合シール容器及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9905817B2 (ja) |
EP (1) | EP2824728B1 (ja) |
JP (1) | JP6238887B2 (ja) |
KR (1) | KR101677680B1 (ja) |
CN (1) | CN104145351B (ja) |
TW (1) | TWI580622B (ja) |
WO (2) | WO2013132673A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015116706A (ja) * | 2013-12-17 | 2015-06-25 | 新日鉄住金マテリアルズ株式会社 | シールケース及びその製造方法 |
US20150207114A1 (en) * | 2014-01-20 | 2015-07-23 | Maxwell Technologies, Inc. | Pouch cell housing |
US9620300B2 (en) | 2013-10-16 | 2017-04-11 | Tdk Corporation | Electrochemical device |
JP2019110016A (ja) * | 2017-12-18 | 2019-07-04 | パナソニックIpマネジメント株式会社 | 薄型電池 |
JP2021061100A (ja) * | 2019-10-03 | 2021-04-15 | 日本製鉄株式会社 | 電池セルケース |
JP6893575B1 (ja) * | 2020-10-12 | 2021-06-23 | エナックス株式会社 | シート状二次電池及びシート状二次電池の製造方法 |
CN113950769A (zh) * | 2019-06-10 | 2022-01-18 | 日本制铁株式会社 | 电池用壳体及其制造方法 |
US20240021927A1 (en) * | 2022-07-15 | 2024-01-18 | Lg Energy Solution, Ltd. | Pouch Type Battery Cell and Method for Manufacturing the Same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4220798A1 (en) * | 2015-11-02 | 2023-08-02 | Rutgers, The State University of New Jersey | Method for making electrochemical cell having thin metal foil packaging |
JP6730425B2 (ja) * | 2016-04-15 | 2020-07-29 | ヤマハ株式会社 | 熱電変換モジュールパッケージ |
CN106129276B (zh) * | 2016-08-09 | 2019-08-23 | 东莞市卓越新材料科技有限公司 | 一种钢塑膜的生产工艺 |
CN107863255A (zh) * | 2016-09-22 | 2018-03-30 | 宁波碧彩实业有限公司 | 一种用于交流电动机的电容器卷绕方法 |
KR102353921B1 (ko) * | 2018-01-12 | 2022-01-20 | 주식회사 엘지에너지솔루션 | 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차 |
US11307114B2 (en) | 2018-12-17 | 2022-04-19 | National Oilwell Varco, L.P. | Pressure-based flaw detection |
CN209550932U (zh) * | 2019-01-30 | 2019-10-29 | 宁德时代新能源科技股份有限公司 | 焊接组件及电池模组 |
JP6853322B2 (ja) * | 2019-09-25 | 2021-03-31 | 積水化学工業株式会社 | 積層型電池および積層型電池の搬送方法 |
CN114365329B (zh) * | 2019-10-03 | 2024-03-22 | 日本制铁株式会社 | 电池单元壳体和使用该壳体的电池的制造方法 |
FR3109026B1 (fr) * | 2020-04-07 | 2024-04-26 | Accumulateurs Fixes | Elément électrochimique pour batterie et batterie correspondante |
US20220263082A1 (en) * | 2021-02-18 | 2022-08-18 | Ionobell, Inc. | Silicon anode battery |
CN113066986A (zh) * | 2021-03-16 | 2021-07-02 | 珠海冠宇电池股份有限公司 | 集流体及其制备方法以及极片 |
US11591478B2 (en) | 2021-05-25 | 2023-02-28 | Ionobell, Inc. | Silicon material and method of manufacture |
WO2023064395A1 (en) | 2021-10-12 | 2023-04-20 | Ionobell, Inc | Silicon battery and method for assembly |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000153577A (ja) | 1998-11-20 | 2000-06-06 | Toppan Printing Co Ltd | 多層体とその製造方法 |
JP2000223090A (ja) | 1999-02-02 | 2000-08-11 | Matsushita Electric Ind Co Ltd | 電 池 |
JP2000340187A (ja) | 1999-05-26 | 2000-12-08 | Dainippon Printing Co Ltd | ポリマー電池用包装材料 |
JP2004055154A (ja) * | 2002-07-16 | 2004-02-19 | Nissan Motor Co Ltd | 積層型電池の密封構造および密封処理方法 |
JP2004095217A (ja) * | 2002-08-29 | 2004-03-25 | Nissan Motor Co Ltd | 電池外装用ラミネート材、電池およびその製造方法、ならびに組電池、組電池モジュール |
JP2004296323A (ja) * | 2003-03-27 | 2004-10-21 | Osaka Gas Co Ltd | 非水系二次電池 |
JP2008021634A (ja) | 2006-07-10 | 2008-01-31 | Lg Chem Ltd | シーリング部の安全性が向上した二次電池 |
JP2010086744A (ja) | 2008-09-30 | 2010-04-15 | Dainippon Printing Co Ltd | 電池外装用包装材 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5502292A (en) * | 1994-08-04 | 1996-03-26 | Midwest Research Institute | Method for laser welding ultra-thin metal foils |
DE60036354T2 (de) | 1999-04-08 | 2008-05-29 | Dai Nippon Printing Co., Ltd. | Laminierte Mehrschichtstruktur für eine Lithiumbatterieverpackung |
EP1096589A1 (en) * | 1999-05-14 | 2001-05-02 | Mitsubishi Denki Kabushiki Kaisha | Flat battery and electronic device |
JP4148458B2 (ja) * | 2002-04-17 | 2008-09-10 | 日立マクセル株式会社 | 電池 |
JP2004087239A (ja) * | 2002-08-26 | 2004-03-18 | Nissan Motor Co Ltd | 電池およびその製造方法、ならびに組電池、組電池モジュール |
KR20040048295A (ko) * | 2002-12-02 | 2004-06-07 | 히다치 막셀 가부시키가이샤 | 전지 |
JP4929606B2 (ja) | 2005-03-16 | 2012-05-09 | トヨタ自動車株式会社 | 密閉型蓄電装置及びその製造方法 |
JP2009146645A (ja) | 2007-12-12 | 2009-07-02 | Toyota Motor Corp | 溶接構造体の製造方法及び電池の製造方法 |
-
2012
- 2012-08-09 WO PCT/JP2012/070386 patent/WO2013132673A1/ja active Application Filing
-
2013
- 2013-02-21 EP EP13757877.9A patent/EP2824728B1/en active Active
- 2013-02-21 US US14/382,897 patent/US9905817B2/en active Active
- 2013-02-21 KR KR1020147025287A patent/KR101677680B1/ko active IP Right Grant
- 2013-02-21 TW TW102105996A patent/TWI580622B/zh active
- 2013-02-21 WO PCT/JP2013/054368 patent/WO2013133039A1/ja active Application Filing
- 2013-02-21 JP JP2014503759A patent/JP6238887B2/ja active Active
- 2013-02-21 CN CN201380012516.1A patent/CN104145351B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000153577A (ja) | 1998-11-20 | 2000-06-06 | Toppan Printing Co Ltd | 多層体とその製造方法 |
JP2000223090A (ja) | 1999-02-02 | 2000-08-11 | Matsushita Electric Ind Co Ltd | 電 池 |
JP2000340187A (ja) | 1999-05-26 | 2000-12-08 | Dainippon Printing Co Ltd | ポリマー電池用包装材料 |
JP2004055154A (ja) * | 2002-07-16 | 2004-02-19 | Nissan Motor Co Ltd | 積層型電池の密封構造および密封処理方法 |
JP2004095217A (ja) * | 2002-08-29 | 2004-03-25 | Nissan Motor Co Ltd | 電池外装用ラミネート材、電池およびその製造方法、ならびに組電池、組電池モジュール |
JP2004296323A (ja) * | 2003-03-27 | 2004-10-21 | Osaka Gas Co Ltd | 非水系二次電池 |
JP2008021634A (ja) | 2006-07-10 | 2008-01-31 | Lg Chem Ltd | シーリング部の安全性が向上した二次電池 |
JP2010086744A (ja) | 2008-09-30 | 2010-04-15 | Dainippon Printing Co Ltd | 電池外装用包装材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2824728A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9620300B2 (en) | 2013-10-16 | 2017-04-11 | Tdk Corporation | Electrochemical device |
JP2015116706A (ja) * | 2013-12-17 | 2015-06-25 | 新日鉄住金マテリアルズ株式会社 | シールケース及びその製造方法 |
US20150207114A1 (en) * | 2014-01-20 | 2015-07-23 | Maxwell Technologies, Inc. | Pouch cell housing |
WO2015109287A1 (en) * | 2014-01-20 | 2015-07-23 | Maxwell Technologies, Inc. | Pouch cell housing |
JP2019110016A (ja) * | 2017-12-18 | 2019-07-04 | パナソニックIpマネジメント株式会社 | 薄型電池 |
JP7022912B2 (ja) | 2017-12-18 | 2022-02-21 | パナソニックIpマネジメント株式会社 | 薄型電池 |
CN113950769A (zh) * | 2019-06-10 | 2022-01-18 | 日本制铁株式会社 | 电池用壳体及其制造方法 |
CN113950769B (zh) * | 2019-06-10 | 2024-03-29 | 日本制铁株式会社 | 电池用壳体及其制造方法 |
JP7364881B2 (ja) | 2019-10-03 | 2023-10-19 | 日本製鉄株式会社 | 電池セルケース |
JP2021061100A (ja) * | 2019-10-03 | 2021-04-15 | 日本製鉄株式会社 | 電池セルケース |
JP6893575B1 (ja) * | 2020-10-12 | 2021-06-23 | エナックス株式会社 | シート状二次電池及びシート状二次電池の製造方法 |
JP2022063629A (ja) * | 2020-10-12 | 2022-04-22 | エナックス株式会社 | シート状二次電池及びシート状二次電池の製造方法 |
US20240021927A1 (en) * | 2022-07-15 | 2024-01-18 | Lg Energy Solution, Ltd. | Pouch Type Battery Cell and Method for Manufacturing the Same |
US12009530B2 (en) * | 2022-07-15 | 2024-06-11 | Lg Energy Solution, Ltd. | Pouch type battery cell and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6238887B2 (ja) | 2017-11-29 |
US9905817B2 (en) | 2018-02-27 |
EP2824728A4 (en) | 2016-05-11 |
KR101677680B1 (ko) | 2016-11-18 |
US20150030912A1 (en) | 2015-01-29 |
EP2824728B1 (en) | 2018-04-25 |
CN104145351B (zh) | 2016-10-12 |
TW201341277A (zh) | 2013-10-16 |
WO2013132673A1 (ja) | 2013-09-12 |
EP2824728A1 (en) | 2015-01-14 |
TWI580622B (zh) | 2017-05-01 |
KR20140133569A (ko) | 2014-11-19 |
JPWO2013133039A1 (ja) | 2015-07-30 |
CN104145351A (zh) | 2014-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6238887B2 (ja) | 樹脂金属複合シール容器及びその製造方法 | |
TWI658630B (zh) | 包裝材、電池用外裝外殼及電池 | |
JP6629514B2 (ja) | ラミネート外装材の製造方法 | |
JP7381528B2 (ja) | 蓄電デバイス用外装材及び蓄電デバイス | |
JP6109058B2 (ja) | シールケース及びその製造方法 | |
JP2009544492A (ja) | プラスチックラミネートフィルム | |
JP2016129091A (ja) | 蓄電デバイス用外装体 | |
JP2024026062A (ja) | 全固体電池用外包材 | |
JP6738171B2 (ja) | 蓄電デバイス用外装材及び蓄電デバイス | |
JP4580499B2 (ja) | リチウムイオン電池タブ部のシール方法 | |
JP2016207592A (ja) | 蓄電デバイス | |
JP5889045B2 (ja) | レーザー溶接用ラミネート金属箔 | |
US20230173792A1 (en) | Multilayer structure for a battery encasement | |
JP3237526U (ja) | 電池用ケース | |
JP7215573B2 (ja) | 電池用ケースおよびその製造方法 | |
JP3225016U (ja) | 電池用ケース | |
IBARAGI et al. | Mechanical and Forming Properties of LAMINELITE™, Laminated Stainless Steel Foil for Battery Packaging | |
WO2024167012A1 (ja) | 蓄電デバイス、蓄電デバイス用ケースおよび蓄電デバイス用外装材 | |
WO2024214636A1 (ja) | 半固体電池用内袋フィルム及び半固体電池 | |
WO2023017683A1 (ja) | 全固体電池用外装材および全固体電池 | |
WO2022085412A1 (ja) | 電池用ケース | |
WO2024167013A1 (ja) | 蓄電デバイス、蓄電デバイス用ケースおよび蓄電デバイス用開口部付外装材 | |
JP2023026915A (ja) | 全固体電池用外装材および全固体電池 | |
JP2011065866A (ja) | 電池等用容器、並びにその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757877 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014503759 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14382897 Country of ref document: US Ref document number: 2013757877 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147025287 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |