WO2013132592A1 - 硫化物固体電池システム及び硫化物固体電池の制御方法 - Google Patents

硫化物固体電池システム及び硫化物固体電池の制御方法 Download PDF

Info

Publication number
WO2013132592A1
WO2013132592A1 PCT/JP2012/055658 JP2012055658W WO2013132592A1 WO 2013132592 A1 WO2013132592 A1 WO 2013132592A1 JP 2012055658 W JP2012055658 W JP 2012055658W WO 2013132592 A1 WO2013132592 A1 WO 2013132592A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
positive electrode
battery
solid
solid state
Prior art date
Application number
PCT/JP2012/055658
Other languages
English (en)
French (fr)
Inventor
元 長谷川
敬介 大森
靖 土田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/378,026 priority Critical patent/US20150002101A1/en
Priority to PCT/JP2012/055658 priority patent/WO2013132592A1/ja
Publication of WO2013132592A1 publication Critical patent/WO2013132592A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sulfide solid state battery system and a sulfide solid state battery control method.
  • a lithium ion secondary battery has a higher energy density than a conventional secondary battery and can be operated at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery has a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between them.
  • the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte that is flame retardant
  • a lithium ion secondary battery (hereinafter referred to as a “solid battery”) having a layer containing a solid electrolyte (hereinafter referred to as “solid electrolyte layer”) is referred to as a stacked positive electrode layer, solid electrolyte.
  • the three layers of the negative electrode layer and the negative electrode layer may be collectively referred to as an “electrode body”).
  • Patent Document 1 discloses that one or more secondary batteries having a lithium ion conductive solid electrolyte and charging and / or discharging of the secondary battery are controlled. Control means, and the control means charges a secondary battery in which an abnormality is detected in the voltage and / or current during charging with a pulse wave and / or a low charging voltage. A discharge device is disclosed. Further, in Patent Document 1, a secondary battery is charged, an abnormality occurring in the secondary battery is detected, and a pulse and / or a pulse is applied to the secondary battery in which an abnormality in voltage and / or current is detected. Alternatively, a secondary battery charge / discharge control method in which charging is performed at a low voltage is also disclosed.
  • Patent Document 1 cannot determine the deterioration of the secondary battery until an abnormality is detected. Therefore, the charge / discharge cycle characteristics of the secondary battery (hereinafter referred to as “cycle characteristics”) may be deteriorated.
  • the sulfide solid state battery was found to have different durability (cycle characteristics) depending on the operating voltage.
  • the charging upper limit voltage of the sulfide solid battery using LiNi x Co y Mn z O 2 as the positive electrode active material 4.3 V or less based on the potential of graphite is absorbing and releasing lithium ions (charging upper limit
  • the expression of “based on the potential at which graphite absorbs and releases lithium ions may be omitted” can improve cycle characteristics. did.
  • the present inventors have conducted intensive result of examination, the discharge lower limit voltage of the sulfide solid battery using LiNi x Co y Mn z O 2 as the positive electrode active material, based on the potential of graphite is absorbing and releasing lithium ions
  • the cycle characteristics are improved by setting the voltage to 3.4 V or higher (in the following description of the discharge lower limit voltage, the expression “graphite is based on the potential at which lithium ions are occluded and released” may be omitted). I found out that it would be possible.
  • the present inventors have conducted intensive result of examination, the discharge lower limit voltage of the sulfide solid battery using LiNi x Co y Mn z O 2 as the positive electrode active material, based on the potential of graphite is absorbing and releasing lithium ions
  • the charging upper limit voltage is 4.4 V based on the potential at which graphite absorbs and releases lithium ions, and it is possible to obtain good cycle characteristics.
  • the present invention has been completed based on these findings.
  • a first aspect of the present invention is a solid battery having a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and a control means capable of controlling the charge stop voltage of the solid battery.
  • LiNi x Co y Mn z O 2 is used for the positive electrode layer
  • a sulfide solid electrolyte is used for at least the solid electrolyte layer, and the potential at which the graphite occludes and releases lithium ions during charging of the solid battery is obtained.
  • This is a sulfide solid state battery system in which the charge stop voltage of the solid state battery is controlled by the control means so that the charge is stopped at 4.3 V or less with reference.
  • a sulfide solid state battery system capable of improving the cycle characteristics can be provided.
  • a solid battery having a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and control means capable of controlling a discharge stop voltage of the solid battery.
  • LiNi x Co y Mn z O 2 is used for the positive electrode layer
  • a sulfide solid electrolyte is used for at least the solid electrolyte layer, and the potential at which graphite absorbs and releases lithium ions during discharge of the solid battery is obtained.
  • This is a sulfide solid state battery system in which the discharge stop voltage of the solid state battery is controlled by the control means so that the discharge is stopped at 3.4 V or more on the basis.
  • the sulfide solid state battery system which can improve cycling characteristics can be provided.
  • a third aspect of the present invention controls a solid state battery having a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and a charge stop voltage and a discharge stop voltage of the solid battery.
  • Possible control means LiNi x Co y Mn z O 2 is used for the positive electrode layer, and a sulfide solid electrolyte is used for at least the solid electrolyte layer, and graphite absorbs lithium ions during discharge of the solid battery.
  • the discharge stop voltage of the solid battery is controlled by the control means so that the discharge is stopped at 3.4 V or higher with reference to the discharge potential, and the potential at which graphite absorbs and releases lithium ions when the solid battery is charged.
  • This is a sulfide solid state battery system in which the charging stop voltage of the solid state battery is controlled by the control means so that the charging is stopped at 4.4 V or less with reference to the above.
  • the sulfide solid state battery system which can improve cycling characteristics can be provided.
  • a fourth aspect of the present invention is a method for controlling a solid state battery having a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, wherein the positive electrode layer has a LiNi x Co y Mn z O 2 is used, and at least the solid electrolyte layer is a sulfide solid electrolyte.
  • the control method of the sulfide solid state battery controls the charge stop voltage of the solid state battery.
  • a fifth aspect of the present invention the positive electrode layer and negative electrode layer, and a method for controlling a solid state battery having a solid electrolyte layer disposed between the positive electrode layer and negative electrode layer, LiNi x Co y in the positive electrode layer Mn z O 2 is used, and at least the solid electrolyte layer is a sulfide solid electrolyte.
  • the discharge stops at 3.4 V or higher with respect to the potential at which graphite absorbs and releases lithium ions.
  • this is a control method for a sulfide solid state battery in which the discharge stop voltage of the solid state battery is controlled.
  • a sixth aspect of the present invention is a method for controlling a solid state battery having a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, wherein the positive electrode layer has LiNi x Co y Mn z O 2 is used, and at least the solid electrolyte layer is a sulfide solid electrolyte.
  • the discharge stops at 3.4 V or higher with respect to the potential at which graphite absorbs and releases lithium ions.
  • the above-described LiNi x Co y Mn z O 2 includes those added with a trace amount of an element (for example, Al, Mg, W, Zr, etc.) different from the element of the positive electrode.
  • the “positive electrode element” includes an element constituting the positive electrode active material and an element constituting the solid electrolyte.
  • FIG. 1 is a diagram illustrating a sulfide solid state battery system 10.
  • FIG. It is a figure explaining the sulfide solid battery system 20.
  • FIG. It is a figure which shows the relationship between a charge upper limit voltage and a capacity
  • FIG. It is a figure which shows the relationship between a charge upper limit voltage and an internal resistance increase rate.
  • FIG. shows the relationship between a discharge minimum voltage and a capacity
  • FIG. 1 is a diagram for explaining a control method for a sulfide solid state battery system 10 and a sulfide solid state battery 1 according to a first embodiment of the present invention.
  • the sulfide solid state battery 1 and the control means 2 are shown in a simplified manner.
  • a sulfide solid state battery system 10 shown in FIG. 1 includes a sulfide solid state battery 1 and a control unit 2 capable of controlling a charge stop voltage of the sulfide solid state battery 1.
  • the sulfide solid battery 1 is connected to a positive electrode layer 1x and a negative electrode layer 1z, a solid electrolyte layer 1y disposed therebetween, a positive electrode current collector 1p connected to the positive electrode layer 1x, and a negative electrode layer 1z.
  • Negative electrode current collector 1m The positive electrode layer 1x includes at least a positive electrode active material and a solid electrolyte, LiNi x Co y Mn z O 2 is used as the positive electrode active material, and a sulfide solid electrolyte is used as the solid electrolyte.
  • the solid electrolyte layer 1y includes a sulfide solid electrolyte.
  • the negative electrode layer 1z includes a negative electrode active material and a solid electrolyte.
  • Graphite is used as the negative electrode active material, and a sulfide solid electrolyte is used as the solid electrolyte.
  • the control means 2 incorporates a control program capable of controlling the charging of the sulfide solid state battery 1 so that the charge stop voltage of the sulfide solid state battery 1 is 4.3V or less.
  • a signal is sent from the control means 2 to a charger (not shown) so as to stop charging when the voltage of the sulfide solid battery 1 reaches 4.3 V, and the sulfide solid battery 1 is sulfided.
  • the solid-state battery 1 is controlled so that the charge stop voltage is 4.3 V or less.
  • the sulfide solid state battery 1 using LiNi x Co y Mn z O 2 as the positive electrode active material improves the cycle characteristics by setting the upper limit voltage to 4.3 V or less (capacity maintenance ratio after repeated charge and discharge). And suppressing an increase in the rate of increase in internal resistance after repeated charging and discharging (the same applies hereinafter). Therefore, according to the sulfide solid battery system 10, cycle characteristics can be improved.
  • a control method for a sulfide solid state battery capable of improving cycle characteristics by controlling the charge stop voltage of the sulfide solid state battery 1 so that the charge stop voltage is 4.3 V or less is provided. can do.
  • the shape of the positive electrode active material (LiNi x Co y Mn z O 2 ) included in the positive electrode layer 1x can be, for example, a particulate form.
  • the average particle size (D50) of the positive electrode active material is, for example, preferably from 1 nm to 100 ⁇ m, and more preferably from 10 nm to 30 ⁇ m.
  • the content of the positive electrode active material in the positive electrode layer 1x is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
  • Examples of the sulfide solid electrolyte that can be used for the positive electrode layer 1x include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 SP—S 2 S 5 , and LiI—Li 2 S. -P 2 O 5 , LiI-Li 2 S-P 2 S 5 -LiO 2 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 and the like can be exemplified.
  • the positive electrode active material is ion-conductive from the viewpoint of making it easy to prevent an increase in battery resistance by making it difficult to form a high resistance layer at the interface between the positive electrode active material and the sulfide solid electrolyte. It is preferable to coat with a functional oxide.
  • the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W). And x and y are positive numbers).
  • Examples include O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , LiTaO 3 , Li 2 WO 4 and the like.
  • the lithium ion conductive oxide may be a complex oxide.
  • any combination of the above lithium ion conductive oxides can be employed.
  • the ion conductive oxide when the surface of the positive electrode active material is coated with an ion conductive oxide, the ion conductive oxide only needs to cover at least a part of the positive electrode active material, and covers the entire surface of the positive electrode active material. Also good.
  • the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).
  • the positive electrode layer 1x can be produced using a known binder or thickener that can be contained in the positive electrode layer of the lithium ion secondary battery.
  • a binder include acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), and the like, and carboxymethyl cellulose (CMC) as a thickener. ) And the like.
  • the positive electrode layer 1x may contain a conductive material that improves conductivity.
  • conductive materials that can be contained in the positive electrode layer 1x include carbon materials such as vapor-grown carbon fiber, acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), and carbon nanofiber (CNF).
  • AB acetylene black
  • KB ketjen black
  • CNT carbon nanotube
  • CNF carbon nanofiber
  • a metal material that can withstand the environment when the sulfide solid state battery 1 is used can be exemplified.
  • the positive electrode layer 1x can be produced by a known method. For example, when the positive electrode layer 1x is produced using a slurry-like positive electrode composition prepared by dispersing the positive electrode active material, solid electrolyte, and binder in a liquid, heptane or the like is exemplified as a usable liquid. A nonpolar solvent can be preferably used. Further, the thickness of the positive electrode layer 1x is, for example, preferably 0.1 ⁇ m or more and 1 mm or less, and more preferably 1 ⁇ m or more and 100 ⁇ m or less. Moreover, in order to make it easy to improve the performance of the sulfide solid state battery 1, the positive electrode layer 1x is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing the positive electrode layer 1x can be about 500 MPa.
  • the solid electrolyte layer 1y can contain a known sulfide solid electrolyte. Examples of such a sulfide solid electrolyte include the sulfide solid electrolyte that can be contained in the positive electrode layer 1x.
  • the solid electrolyte layer 1y may contain a binder that binds the solid electrolytes from the viewpoint of developing plasticity. As such a binder, the said binder etc. which can be contained in the positive electrode layer 1x can be illustrated. However, in order to facilitate high output, the solid electrolyte layer 1y having the sulfide solid electrolyte uniformly dispersed can be formed by preventing excessive aggregation of the sulfide solid electrolyte and the like.
  • the binder contained in the electrolyte layer 1y is preferably 5% by mass or less.
  • the solid electrolyte layer 1y can be produced by a known method. For example, when the solid electrolyte layer 1y is manufactured through a process in which a slurry-like solid electrolyte composition prepared by dispersing the sulfide solid electrolyte or the like in a liquid is applied to the positive electrode layer 1x, the negative electrode layer 1z, or the like, Examples of the liquid for dispersing the electrolyte and the like include heptane and the like, and a nonpolar solvent can be preferably used.
  • the content of the solid electrolyte material in the solid electrolyte layer 1y is mass%, for example, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the solid electrolyte layer 1y varies greatly depending on the configuration of the battery. For example, the thickness is preferably 0.1 ⁇ m or more and 1 mm or less, and more preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the well-known negative electrode active material which can occlude / release lithium ion can be used suitably.
  • a negative electrode active material include graphite such as highly oriented graphite (HOPG), and other carbon active materials, oxide active materials, metal active materials, and the like may be used together with graphite.
  • the other carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), hard carbon, and soft carbon.
  • the oxide active material include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO.
  • the metal active material include In, Al, Si, and Sn.
  • a lithium-containing metal active material may be used as the negative electrode active material.
  • the lithium-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy. Examples of the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn.
  • the shape of the negative electrode active material can be, for example, particulate or thin film.
  • the average particle diameter (D50) of the negative electrode active material is, for example, preferably from 1 nm to 100 ⁇ m, and more preferably from 10 nm to 30 ⁇ m.
  • the content of the negative electrode active material in the negative electrode layer 1z is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
  • the negative electrode layer 1z may contain a solid electrolyte, a binder that binds the negative electrode active material and the solid electrolyte, a conductive material that improves conductivity, and a thickener.
  • a solid electrolyte, binder, conductive material, and thickener that can be contained in the negative electrode layer 1z
  • the solid electrolyte, binder, conductive material, and thickener that can be contained in the positive electrode layer 1x. Etc. can be illustrated.
  • the negative electrode layer 1z can be produced by a known method.
  • the negative electrode layer 1z is produced using a slurry-like negative electrode composition prepared by dispersing the negative electrode active material or the like in a liquid, heptane or the like may be exemplified as the liquid in which the negative electrode active material or the like is dispersed.
  • a nonpolar solvent can be preferably used.
  • the thickness of the negative electrode layer 1z is, for example, preferably 0.1 ⁇ m or more and 1 mm or less, and more preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode layer 1z is preferably manufactured through a pressing process.
  • the pressure when pressing the negative electrode layer 1z is preferably 400 MPa or more, more preferably about 600 MPa.
  • the well-known electroconductive material which can be used as the collector of a solid battery can be used for the positive electrode collector 1p.
  • a conductive material include a conductive material containing one or more elements selected from the group consisting of Ni, Cr, Au, Pt, Al, Fe, Ti, Zn, and C (stainless steel ( SUS)).
  • the negative electrode current collector 1m can be made of a known conductive material that can be used as a current collector of a solid battery.
  • a conductive material including stainless steel (SUS) including one or more elements selected from the group consisting of Cu, Ni, Fe, Ti, Co, Zn, and C is included. ).
  • the sulfide solid state battery 1 can be used in a state of being housed in a known exterior body.
  • a known laminate film that can be used in a solid battery can be used, and as such a laminate film, a resin laminate film, a film obtained by vapor-depositing a metal on a resin laminate film, or the like Can be illustrated.
  • control means 2 can use suitably the well-known apparatus which can be used when controlling the charge stop voltage of a battery.
  • the configuration for controlling the charging of the sulfide solid state battery 1 so that the charge stop voltage of the sulfide solid state battery 1 is 4.3 V or less is a configuration unique to the present invention.
  • Known devices can be used as appropriate as the devices themselves used when performing proper charge control.
  • FIG. 2 is a diagram for explaining a control method for the sulfide solid state battery system 20 and the sulfide solid state battery 1 according to the second embodiment of the present invention.
  • the sulfide solid state battery 1 and the control means 3 are shown in a simplified manner.
  • the same reference numerals as those used in FIG. 1 are attached to the same configurations as those of the sulfide solid state battery system 10, and description thereof will be omitted as appropriate.
  • the sulfide solid state battery system 20 shown in FIG. 2 has a sulfide solid state battery 1 and a control means 3 capable of controlling the charge stop voltage and the discharge stop voltage of the sulfide solid state battery 1.
  • the control means 3 can control the discharge of the sulfide solid state battery 1 so that the discharge stop voltage of the sulfide solid state battery 1 is 3.4 V or more, and the sulfide solid state battery A control program capable of controlling the charging of the sulfide solid state battery 1 is incorporated so that the charging stop voltage of the battery 1 is 4.4 V or less.
  • the sulfide solid battery system 20 for example, when the voltage of the sulfide solid battery 1 reaches 3.4 V, the sulfide solid battery 1 and a device (not shown) (electric power from the sulfide solid battery 1 are stopped) so that the discharge is stopped. Is disconnected according to an instruction from the control means 3, so that the discharge stop voltage of the sulfide solid state battery 1 is controlled to be 3.4 V or higher. Further, at the time of charging the sulfide solid state battery 1, a signal is sent from the control means 3 to a charger (not shown) so as to stop the charge when the voltage of the sulfide solid state battery 1 reaches 4.4V. The charging stop voltage of the solid battery 1 is controlled to be 4.4V or less.
  • the sulfide solid state battery system 10 including the control means 2 capable of controlling the charging of the sulfide solid state battery 1 so that the charge stop voltage is 4.3 V or less, the control method thereof, and the discharge Sulfide solid state battery system 20 provided with control means 3 capable of controlling charging / discharging of sulfide solid state battery 1 so that the stop voltage becomes 3.4 V or more and the charge stop voltage becomes 4.4 V or less, and the control thereof.
  • the present invention is not limited to these forms.
  • the present invention provides a sulfide solid state battery system having a control means capable of controlling the discharge of the sulfide solid state battery 1 so that the discharge stop voltage becomes 3.4 V or higher, instead of the control means 2 and the control means 3. And it is also possible to set it as the control method of the sulfide solid-state battery which controls discharge of the sulfide solid-state battery 1 so that a discharge stop voltage may be 3.4V or more. Even in this form, the cycle characteristics of the sulfide solid state battery 1 can be improved.
  • LiNbO 3 is coated on a positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) having an average particle size of 4 ⁇ m in an atmospheric environment by using a rolling fluid coating apparatus (manufactured by POWREC Co., Ltd.)
  • a positive electrode active material coated with an ion conductive oxide hereinafter, this positive electrode active material may be referred to as a “first positive electrode active material” was produced.
  • positive electrode active material coat-2 A positive electrode active material coated with an ion conductive oxide in the same manner as described above except that LiNbO 3 was coated and baked in a dry environment having a dew point of ⁇ 30 ° C. or lower (hereinafter this positive electrode active material) Is sometimes referred to as a “second positive electrode active material”.
  • a heptane solution containing 5% by mass of a butadiene rubber-based binder solution, a positive electrode active material (first positive electrode active material or second positive electrode active material), a sulfide solid electrolyte (Li 2 S containing LiI) having an average particle size of 2.5 ⁇ m -P 2 S 5 glass ceramic) and a conductive additive (vapor-grown carbon fiber) were placed in a polypropylene container.
  • the negative electrode layer formed on the surface of the negative electrode current collector is disposed on the opposite side (the side where the positive electrode layer is not disposed) so that the negative electrode layer and the solid electrolyte layer are in contact with each other, and 4 tf / cm 2 ( A sulfide solid state battery was fabricated by pressing at ⁇ 392 MPa.
  • Example 1 A sulfide solid state battery produced using a positive electrode layer containing the first positive electrode active material was used. (1) After constant current charging to 4.1V at 0.5 hour rate (2C rate), (2) pause for 10 minutes, then (3) at 0.5 hour rate (2C rate) The steps (1) to (4) of (4) resting for 10 minutes after discharging at a constant current to 2.5 V were repeated over 1000 cycles in a 60 ° C. environment. In addition, the capacity
  • the vertical axis represents the capacity maintenance rate [%]
  • the horizontal axis represents the charging upper limit voltage [V].
  • shaft of FIG.4 and FIG.8 is internal resistance increase rate [%]
  • a horizontal axis is charge upper limit voltage [V]. 3 and 7 show better performance on the upper side of the paper, and FIGS. 4 and 8 show better performance on the lower side of the paper.
  • Example 2 Charging / discharging was performed over 1000 cycles under the same conditions as in Example 1 except that a sulfide solid state battery prepared using a positive electrode layer containing the first positive electrode active material was used and the charge stop voltage was set to 4.3 V. Carried out. And the capacity
  • FIG. Table 1, FIG. 3, FIG. 4, FIG. 7, FIG. 7, and FIG. 8 show the conditions of the charge / discharge cycle, the results of the capacity retention rate, and the results of the internal resistance increase rate in Example 2.
  • Example 3 The same conditions as in Example 1 were used except that a sulfide solid state battery produced using a positive electrode layer containing the second positive electrode active material was used, the charge stop voltage was set to 4.4 V, and the discharge stop voltage was set to 3.4 V. The charging / discharging was performed over 1000 cycles. And the capacity
  • FIG. Table 1, FIG. 5, and FIG. 6 show the conditions of the charge / discharge cycle, the result of the capacity retention rate, and the result of the internal resistance increase rate in Example 3. The vertical axis in FIG. 5 is the capacity retention rate [%], and the horizontal axis is the discharge lower limit voltage [V].
  • FIG. 5 shows better performance on the upper side of the paper
  • FIG. 6 shows better performance on the lower side of the paper.
  • Example 4 The same conditions as in Example 1 were used except that a sulfide solid state battery produced using a positive electrode layer containing the second positive electrode active material was used, the charge stop voltage was set to 4.4 V, and the discharge stop voltage was set to 3.5 V. The charging / discharging was performed over 1000 cycles. And the capacity
  • FIG. Table 1, FIG. 5, and FIG. 6 show the charge / discharge cycle conditions, the capacity retention rate result, and the internal resistance increase rate result in Example 4.
  • Example 5 The same conditions as in Example 1 were used except that a sulfide solid state battery produced using a positive electrode layer containing the second positive electrode active material was used, the charge stop voltage was 4.4 V, and the discharge stop voltage was 3.6 V. The charging / discharging was performed over 1000 cycles. And the capacity
  • FIG. Table 1, FIG. 5, and FIG. 6 show the charge / discharge cycle conditions, capacity retention rate results, and internal resistance increase rate results in Example 5.
  • Example 6> The same conditions as in Example 1 were used except that a sulfide solid state battery produced using a positive electrode layer containing the first positive electrode active material was used, the charge stop voltage was set to 4.4 V, and the discharge stop voltage was set to 3.4 V. The charging / discharging was performed over 1000 cycles. And the capacity
  • FIG. Table 1, FIG. 7 and FIG. 8 show the conditions of the charge / discharge cycle, the result of the capacity retention rate, and the result of the internal resistance increase rate in Example 6.
  • Example 1 Charging / discharging was performed over 1000 cycles under the same conditions as in Example 1 except that a sulfide solid state battery prepared using a positive electrode layer containing the first positive electrode active material was used and the charge stop voltage was set to 4.4 V. Carried out. And the capacity
  • FIG. Table 1, FIG. 3, FIG. 4, FIG. 7, FIG. 7 and FIG. 8 show the charge / discharge cycle conditions, capacity retention rate results, and internal resistance increase rate results in Comparative Example 1.
  • FIG. Table 1, FIG. 3, FIG. 4, FIG. 7, FIG. 7 and FIG. 8 show the charge / discharge cycle conditions, capacity retention rate results, and internal resistance increase rate results in Comparative Example 2.
  • Example 3 The same conditions as in Example 1 were used except that a sulfide solid state battery prepared using a positive electrode layer containing the second positive electrode active material was used, the charge stop voltage was set to 4.4 V, and the discharge stop voltage was set to 3.0 V. The charging / discharging was performed over 1000 cycles. And the capacity
  • FIG. Table 1, FIG. 5, and FIG. 6 show the charge / discharge cycle conditions, the capacity retention rate result, and the internal resistance increase rate result in Comparative Example 3.
  • the discharge lower limit voltage of the sulfide solid state battery is set to 3.
  • the discharge lower limit voltage is lower than 3.4 V, the amount of change in the expansion and contraction of the positive electrode active material becomes large, and it becomes difficult to maintain the contact between the positive electrode active material and the sulfide solid electrolyte. As a result, the performance maintenance ratio is low. It is thought that it became. In the sulfide solid state battery using the first positive electrode active material and the sulfide solid state battery using the second positive electrode active material, the former showed better properties.
  • Example 6 in which the charging upper limit voltage was 4.4V and the discharging lower limit voltage was 3.4V, and the charging upper limit voltage was 4.4V.
  • the discharge lower limit voltage of the sulfide solid state battery was set to 3.4 V or higher, so that the performance after the charge / discharge cycle was charged even to 4.4 V. It was confirmed that the maintenance rate could be increased.
  • the performance maintenance ratio after the charge / discharge cycle can be increased even when charged to 4.4 V.
  • the discharge lower limit voltage is 3.4 V. This is considered to be because the amount of change in expansion / contraction of the positive electrode active material is reduced, and deterioration due to expansion / contraction during charging can be suppressed by the amount of change in the expansion / contraction change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、サイクル特性を向上させることが可能な硫化物固体電池システム及び硫化物固体電池の制御方法を提供することを主目的とする。 本発明は、正極層及び負極層並びに正極層及び負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の充電停止電圧を制御可能な制御手段とを備え、正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下で充電が停止されるように、制御手段によって固体電池の充電停止電圧が制御される硫化物固体電池システムとし、上記固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下で充電が停止されるように、固体電池の充電停止電圧を制御する、硫化物固体電池の制御方法とする。

Description

硫化物固体電池システム及び硫化物固体電池の制御方法
 本発明は、硫化物固体電池システム及び硫化物固体電池の制御方法に関する。
 リチウムイオン二次電池は、従来の二次電池よりもエネルギー密度が高く、高電圧で作動させることができる。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池は、正極層及び負極層と、これらの間に配置された電解質層とを有し、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質等が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」といい、積層された正極層、固体電解質層、及び、負極層の3層をまとめて「電極体」ということがある。)の開発が進められている。
 このようなリチウムイオン二次電池に関する技術として、例えば特許文献1には、リチウムイオン伝導性固体電解質を有する一又は二以上の二次電池と、該二次電池の充電及び/又は放電を制御する制御手段とを備え、該制御手段は、充電時の電圧及び/又は電流に異常が検出された二次電池に対し、パルス波及び/又は低電圧の充電電圧で充電を行う、二次電池充放電装置が開示されている。また、特許文献1には、二次電池に対して充電を行い、二次電池で発生した異常を検出し、電圧及び/又は電流の異常が検出された二次電池に対し、パルスは及び/又は低電圧の充電電圧で充電を行う、二次電池充放電制御方法も開示されている。
特開2010-40198号公報
 特許文献1に開示されている技術では、異常が検出されるまで二次電池の劣化を判断できない。そのため、二次電池の充放電サイクル特性(以下において、「サイクル特性」という。)が低下する虞があった。
 そこで本発明は、サイクル特性を向上させることが可能な、硫化物固体電池システム及び硫化物固体電池の制御方法を提供することを課題とする。
 本発明者らは、鋭意検討の結果、正極活物質にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34。以下において同じ。)を用いた硫化物固体電池は、使用電圧によって耐久性(サイクル特性)が異なることを知見した。具体的には、正極活物質にLiNiCoMnを用いた硫化物固体電池の充電上限電圧を、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下(充電上限電圧に関する以下の説明において、「黒鉛がリチウムイオンを吸蔵放出する電位を基準にして」という表現を省略することがある。)とすることにより、サイクル特性を向上させることが可能になることを知見した。また、本発明者らは、鋭意検討の結果、正極活物質にLiNiCoMnを用いた硫化物固体電池の放電下限電圧を、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上(放電下限電圧に関する以下の説明において、「黒鉛がリチウムイオンを吸蔵放出する電位を基準にして」という表現を省略することがある。)とすることにより、サイクル特性を向上させることが可能になることを知見した。また、本発明者らは、鋭意検討の結果、正極活物質にLiNiCoMnを用いた硫化物固体電池の放電下限電圧を、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上とすることにより、充電上限電圧を黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.4Vにしても、良好なサイクル特性を得ることが可能になることを知見した。本発明は、これらの知見に基づいて完成させた。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の充電停止電圧を制御可能な制御手段とを備え、正極層にLiNiCoMnが用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下で充電が停止されるように、制御手段によって固体電池の充電停止電圧が制御される、硫化物固体電池システムである。
 正極活物質にLiNiCoMnを用いた硫化物固体電池において、充電停止電圧を4.3V以下とすることにより、1000サイクルの繰り返し充放電後の容量維持率を高めることが可能になる。したがって、本発明の第1の態様によれば、サイクル特性を向上させることが可能な、硫化物固体電池システムを提供することができる。
 本発明の第2の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の放電停止電圧を制御可能な制御手段とを備え、正極層にLiNiCoMnが用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、制御手段によって固体電池の放電停止電圧が制御される、硫化物固体電池システムである。
 正極活物質にLiNiCoMnを用いた硫化物固体電池において、放電停止電圧を3.4V以上とすることにより、1000サイクルの繰り返し充放電後の容量維持率を高めることが可能になる。したがって、本発明の第2の態様によれば、サイクル特性を向上させることが可能な、硫化物固体電池システムを提供することができる。
 本発明の第3の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の充電停止電圧及び放電停止電圧を制御可能な制御手段とを備え、正極層にLiNiCoMnが用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、制御手段によって固体電池の放電停止電圧が制御され、且つ、固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.4V以下で充電が停止されるように、制御手段によって固体電池の充電停止電圧が制御される、硫化物固体電池システムである。
 正極活物質にLiNiCoMnを用いた硫化物固体電池において、放電停止電圧を3.4V以上とすることにより、充電上限電圧を4.4Vにしても、良好なサイクル特性を得ることが可能になる。したがって、本発明の第3の態様によれば、サイクル特性を向上させることが可能な、硫化物固体電池システムを提供することができる。
 本発明の第4の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配置された固体電解質層を有する固体電池を制御する方法であって、正極層にLiNiCoMnが用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下で充電が停止されるように、固体電池の充電停止電圧を制御する、硫化物固体電池の制御方法である。
 正極活物質にLiNiCoMnを用いた硫化物固体電池において、充電停止電圧を4.3V以下とすることにより、1000サイクルの繰り返し充放電後の容量維持率を高めることが可能になる。したがって、本発明の第4の態様によれば、サイクル特性を向上させることが可能な、硫化物固体電池の制御方法を提供することができる。
 本発明の第5の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配置された固体電解質層を有する固体電池を制御する方法であって、正極層にLiNiCoMnが用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、固体電池の放電停止電圧を制御する、硫化物固体電池の制御方法である。
 正極活物質にLiNiCoMnを用いた硫化物固体電池において、放電停止電圧を3.4V以上とすることにより、1000サイクルの繰り返し充放電後の容量維持率を高めることが可能になる。したがって、本発明の第5の態様によれば、サイクル特性を向上させることが可能な、硫化物固体電池の制御方法を提供することができる。
 本発明の第6の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配置された固体電解質層を有する固体電池を制御する方法であって、正極層にLiNiCoMnが用いられ、且つ、少なくとも固体電解質層に硫化物固体電解質が用いられ、固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、固体電池の放電停止電圧を制御し、且つ、固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.4V以下で充電が停止されるように、固体電池の充電停止電圧を制御する、硫化物固体電池の制御方法である。
 正極活物質にLiNiCoMnを用いた硫化物固体電池において、放電停止電圧を3.4V以上とすることにより、充電上限電圧を4.4Vにしても、良好なサイクル特性を得ることが可能になる。したがって、本発明の第6の態様によれば、サイクル特性を向上させることが可能な、硫化物固体電池の制御方法を提供することができる。
 本発明において、上述のLiNiCoMnには、正極の元素と異なる元素(例えばAl、Mg、W、Zr等)を微量に添加したものも含まれる。なお、正極層に、正極活物質及び固体電解質が含まれる場合、「正極の元素」には、正極活物質を構成する元素及び固体電解質を構成する元素が含まれる。
 本発明によれば、サイクル特性を向上させることが可能な、硫化物固体電池システム及び硫化物固体電池の制御方法を提供することができる。
硫化物固体電池システム10を説明する図である。 硫化物固体電池システム20を説明する図である。 充電上限電圧と容量維持率との関係を示す図である。 充電上限電圧と内部抵抗増加率との関係を示す図である。 放電下限電圧と容量維持率との関係を示す図である。 放電下限電圧と内部抵抗増加率との関係を示す図である。 充電上限電圧と容量維持率との関係を説明する図である。 充電上限電圧と内部抵抗増加率との関係を説明する図である。
 以下、図面を参照しつつ、本発明について説明する。以下に示す図面では、固体電池の外装体等の記載を省略している。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。
 1.第1実施形態
  図1は、第1実施形態にかかる本発明の硫化物固体電池システム10、及び、硫化物固体電池1の制御方法を説明する図である。図1では、硫化物固体電池1及び制御手段2を簡略化して示している。図1に示した硫化物固体電池システム10は、硫化物固体電池1と、該硫化物固体電池1の充電停止電圧を制御可能な制御手段2と、を有している。硫化物固体電池1は、正極層1x及び負極層1zと、これらの間に配置された固体電解質層1yと、正極層1xに接続された正極集電体1pと、負極層1zに接続された負極集電体1mと、を有している。正極層1xには、少なくとも正極活物質及び固体電解質が含まれており、正極活物質としてはLiNiCoMnが用いられ、固体電解質としては硫化物固体電解質が用いられている。また、固体電解質層1yには、硫化物固体電解質が含まれている。また、負極層1zには、負極活物質及び固体電解質が含まれており、負極活物質としては黒鉛が用いられ、固体電解質としては硫化物固体電解質が用いられている。硫化物固体電池システム10において、制御手段2には、硫化物固体電池1の充電停止電圧が4.3V以下となるように硫化物固体電池1の充電を制御可能な制御プログラムが内蔵されている。そして、硫化物固体電池システム10では、例えば、硫化物固体電池1の電圧が4.3Vになると充電を停止するように、制御手段2から不図示の充電器へ向けて信号が送られ、硫化物固体電池1の充電停止電圧が4.3V以下になるように制御される。
 正極活物質にLiNiCoMnを用いた硫化物固体電池1は、充電上限電圧を4.3V以下とすることにより、サイクル特性を向上させること(繰り返し充放電後の容量維持率を高めること及び繰り返し充放電後の内部抵抗増加率の増加を抑制すること。以下において同じ。)が可能になる。したがって、硫化物固体電池システム10によれば、サイクル特性を向上させることができる。また、充電停止電圧が4.3V以下となるように硫化物固体電池1の充電停止電圧を制御する形態とすることにより、サイクル特性を向上させることが可能な硫化物固体電池の制御方法を提供することができる。
 本発明において、正極層1xに含まれる正極活物質(LiNiCoMn)の形状は、例えば粒子状等にすることができる。正極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、正極層1xにおける正極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。
 また、正極層1xに用いることが可能な硫化物固体電解質としては、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiS-P-LiO、LiI-LiPO-P、LiS-P等を例示することができる。
 また、本発明では、正極活物質と硫化物固体電解質との界面に高抵抗層が形成され難くすることにより、電池抵抗の増加を防止しやすい形態にする観点から、正極活物質は、イオン伝導性酸化物で被覆されていることが好ましい。正極活物質を被覆するリチウムイオン伝導性酸化物としては、例えば、一般式LiAO(Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta又はWであり、x及びyは正の数である。)で表される酸化物を挙げることができる。具体的には、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiNbO、LiMoO、LiTaO、LiWO等を例示することができる。また、リチウムイオン伝導性酸化物は、複合酸化物であっても良い。正極活物質を被覆する複合酸化物としては、上記リチウムイオン伝導性酸化物の任意の組み合わせを採用することができ、例えば、LiSiO-LiBO、LiSiO-LiPO等を挙げることができる。また、正極活物質の表面をイオン伝導性酸化物で被覆する場合、イオン伝導性酸化物は、正極活物質の少なくとも一部を被覆してれば良く、正極活物質の全面を被覆していても良い。また、正極活物質を被覆するイオン伝導性酸化物の厚さは、例えば、0.1nm以上100nm以下であることが好ましく、1nm以上20nm以下であることがより好ましい。なお、イオン伝導性酸化物の厚さは、例えば、透過型電子顕微鏡(TEM)等を用いて測定することができる。
 また、正極層1xは、リチウムイオン二次電池の正極層に含有させることが可能な公知のバインダーや増粘剤を用いて作製することができる。そのようなバインダーとしては、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)等を例示することができ、増粘剤としてはカルボキシメチルセルロース(CMC)等を例示することができる。
 さらに、正極層1xには、導電性を向上させる導電材が含有されていてもよい。正極層1xに含有させることが可能な導電材としては、気相成長炭素繊維、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料のほか、硫化物固体電池1の使用時の環境に耐えることが可能な金属材料を例示することができる。
 正極層1xは、公知の方法によって作製することができる。例えば、上記正極活物質、固体電解質、及び、バインダー等を液体に分散して調整したスラリー状の正極組成物を用いて正極層1xを作製する場合、使用可能な液体としてはヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、正極層1xの厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、硫化物固体電池1の性能を高めやすくするために、正極層1xはプレスする過程を経て作製されることが好ましい。本発明において、正極層1xをプレスする際の圧力は500MPa程度とすることができる。
 また、固体電解質層1yには、公知の硫化物固体電解質を含有させることができる。そのような硫化物固体電解質としては、正極層1xに含有させることが可能な上記硫化物固体電解質等を例示することができる。このほか、固体電解質層1yには、可塑性を発現させる等の観点から、固体電解質同士を結着させるバインダーを含有させることができる。そのようなバインダーとしては、正極層1xに含有させることが可能な上記バインダー等を例示することができる。ただし、高出力化を図りやすくするために、硫化物固体電解質の過度の凝集を防止し且つ均一に分散された硫化物固体電解質を有する固体電解質層1yを形成可能にする等の観点から、固体電解質層1yに含有させるバインダーは5質量%以下とすることが好ましい。
 固体電解質層1yは、公知の方法によって作製することができる。例えば、液体に上記硫化物固体電解質等を分散して調整したスラリー状の固体電解質組成物を正極層1xや負極層1z等に塗布する過程を経て固体電解質層1yを作製する場合、硫化物固体電解質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。固体電解質層1yにおける固体電解質材料の含有量は、質量%で、例えば60%以上、中でも70%以上、特に80%以上であることが好ましい。固体電解質層1yの厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
 また、負極層1zに含有させる負極活物質としては、リチウムイオンを吸蔵放出可能な公知の負極活物質を適宜用いることができる。そのような負極活物質としては高配向性グラファイト(HOPG)等の黒鉛を例示することができ、黒鉛と共に、他のカーボン活物質、酸化物活物質、及び、金属活物質等を用いても良い。他のカーボン活物質は、炭素を含有していれば特に限定されず、例えばメソカーボンマイクロビーズ(MCMB)、ハードカーボン、ソフトカーボン等を挙げることができる。酸化物活物質としては、例えばNb、LiTi12、SiO等を挙げることができる。金属活物質としては、例えばIn、Al、Si、及び、Sn等を挙げることができる。また、負極活物質として、リチウム含有金属活物質を用いても良い。リチウム含有金属活物質としては、少なくともLiを含有する活物質であれば特に限定されず、Li金属であっても良く、Li合金であっても良い。Li合金としては、例えば、Liと、In、Al、Si、及び、Snの少なくとも一種とを含有する合金を挙げることができる。負極活物質の形状は、例えば粒子状、薄膜状等にすることができる。負極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、負極層1zにおける負極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。
 さらに、負極層1zには、固体電解質、負極活物質や固体電解質を結着させるバインダー、導電性を向上させる導電材、及び、増粘剤が含有されていても良い。負極層1zに含有させることが可能な固体電解質、バインダー、導電材、及び、増粘剤としては、正極層1xに含有させることが可能な上記固体電解質、バインダー、導電材、及び、増粘剤等を例示することができる。
 負極層1zは、公知の方法によって作製することができる。例えば、液体に上記負極活物質等を分散して調整したスラリー状の負極組成物を用いて負極層1zを作製する場合、負極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、負極層1zの厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、硫化物固体電池1の性能を高めやすくするために、負極層1zはプレスする過程を経て作製されることが好ましい。本発明において、負極層1zをプレスする際の圧力は400MPa以上とすることが好ましく、600MPa程度とすることより好ましい。
 また、正極集電体1pは、固体電池の集電体として使用可能な公知の導電性材料を用いることができる。そのような導電性材料としては、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn、及び、Cからなる群から選択される一又は二以上の元素を含む導電性材料(ステンレス鋼(SUS)を含む)を例示することができる。
 また、負極集電体1mは、固体電池の集電体として使用可能な公知の導電性材料を用いることができる。そのような導電性材料としては、Cu、Ni、Fe、Ti、Co、Zn、及び、Cからなる群から選択される一又は二以上の元素を含む導電性材料(ステンレス鋼(SUS)を含む)を例示することができる。
 硫化物固体電池1は、公知の外装体に収容された状態で使用することができる。外装体としては、固体電池で使用可能な公知のラミネートフィルム等を用いることができ、そのようなラミネートフィルムとしては、樹脂製のラミネートフィルムや、樹脂製のラミネートフィルムに金属を蒸着させたフィルム等を例示することができる。
 また、制御手段2は、電池の充電停止電圧を制御する際に使用可能な公知の機器を適宜用いることができる。硫化物固体電池システム10は、硫化物固体電池1の充電停止電圧が4.3V以下となるように硫化物固体電池1の充電を制御する構成が、本発明に特有の構成であり、このような充電制御を行う際に使用する機器自体は、公知の機器を適宜用いることができる。
 2.第2実施形態
  図2は、第2実施形態にかかる本発明の硫化物固体電池システム20、及び、硫化物固体電池1の制御方法を説明する図である。図2では、硫化物固体電池1及び制御手段3を簡略化して示している。図2において、硫化物固体電池システム10と同様の構成には、図1で使用した符号と同一の符号を付し、その説明を適宜省略する。
 図2に示した硫化物固体電池システム20は、硫化物固体電池1と、該硫化物固体電池1の充電停止電圧及び放電停止電圧を制御可能な制御手段3と、を有している。硫化物固体電池システム20において、制御手段3には、硫化物固体電池1の放電停止電圧が3.4V以上となるように硫化物固体電池1の放電を制御可能であり、且つ、硫化物固体電池1の充電停止電圧が4.4V以下となるように硫化物固体電池1の充電を制御可能な制御プログラムが内蔵されている。そして、硫化物固体電池システム20では、例えば、硫化物固体電池1の電圧が3.4Vになると放電を停止するように、硫化物固体電池1と不図示の機器(硫化物固体電池1から電力を供給されることによって作動する機器)との接続を、制御手段3からの指示に従って遮断することにより、硫化物固体電池1の放電停止電圧が3.4V以上になるように制御される。さらに、硫化物固体電池1の充電時には、硫化物固体電池1の電圧が4.4Vになると充電を停止するように、制御手段3から不図示の充電器へ向けて信号が送られ、硫化物固体電池1の充電停止電圧が4.4V以下になるように制御される。
 正極活物質にLiNiCoMnを用いた硫化物固体電池1は、放電停止電圧を3.4V以上とした場合には4.4Vまで充電しても良好なサイクル特性を得ること(繰り返し充放電後に高い容量維持率を得ること及び繰り返し充放電後の内部抵抗増加率の増加を抑制すること)が可能である。したがって、硫化物固体電池システム20によれば、サイクル特性を向上させることができる。また、放電停止電圧が3.4V以上となるように硫化物固体電池1の放電停止電圧を制御し、且つ、充電停止電圧が4.4V以下となるように硫化物固体電池1の充電停止電圧を制御する形態とすることにより、サイクル特性を向上させることが可能な硫化物固体電池の制御方法を提供することができる。
 本発明に関する上記説明では、充電停止電圧が4.3V以下となるように硫化物固体電池1の充電を制御可能な制御手段2を備えた硫化物固体電池システム10及びその制御方法、並びに、放電停止電圧が3.4V以上となり、且つ、充電停止電圧が4.4V以下となるように硫化物固体電池1の充放電を制御可能な制御手段3を備えた硫化物固体電池システム20及びその制御方法を説明したが、本発明はこれらの形態に限定されない。本発明は、制御手段2や制御手段3に代えて、放電停止電圧が3.4V以上となるように硫化物固体電池1の放電を制御可能な制御手段を備える形態の硫化物固体電池システム、及び、放電停止電圧が3.4V以上となるように硫化物固体電池1の放電を制御する硫化物固体電池の制御方法とすることも可能である。かかる形態であっても、硫化物固体電池1のサイクル特性を向上させることが可能になる。
 1.硫化物固体電池の作製
  [正極活物質コートの作製-1]
  転動流動式コーティング装置(株式会社パウレック製)を用いて、大気環境において平均粒径4μmの正極活物質(LiNi1/3Co1/3Mn1/3)にLiNbOをコーティングし、大気環境において焼成を行うことにより、イオン伝導性酸化物で被覆された正極活物質(以下において、この正極活物質を「第1正極活物質」ということがある。)を作製した。
 [正極活物質コートの作製-2]
  露点が-30℃以下であるドライ環境でLiNbOのコーティング及び焼成を行ったほかは、上記と同様の方法で、イオン伝導性酸化物で被覆された正極活物質(以下において、この正極活物質を「第2正極活物質」ということがある。)を作製した。
 [正極層の作製]
  5質量%のブタジエンゴム系バインダー溶液を含むヘプタン溶液と、正極活物質(第1正極活物質又は第2正極活物質)、平均粒径2.5μmの硫化物固体電解質(LiIを含むLiS-P系ガラスセラミックス)、及び、導電助剤(気相成長炭素繊維)と、をポリプロピレン製容器に入れた。そして、これを超音波分散装置(株式会社エスエムテー製、UH-50。以下において同じ。)で30秒間に亘って撹拌した後、振とう器(柴田科学株式会社製、TTM-1。以下において同じ。)で3分間に亘って振とうさせ、さらに超音波分散装置で30秒間に亘って撹拌した。このようにして、撹拌-振とう-撹拌を行った組成物を、アプリケーターを使用してブレード法にて、正極集電体(カーボン塗工Al箔(昭和電工株式会社製、SDX。「SDX」は昭和電工パッケージング株式会社の登録商標。))上に塗工した。その後、組成物が塗工された正極集電体を100℃のホットプレート上で30分間に亘って乾燥させることにより、正極層を作製した。
 [負極層の作製]
  5質量%のブタジエンゴム系バインダー溶液を含むヘプタン溶液と、負極活物質(平均粒径10μmの天然黒鉛系カーボン(三菱化学株式会社製))、及び、平均粒径2.5μmの硫化物固体電解質(LiIを含むLiS-P系ガラスセラミックス)と、をポリプロピレン製容器に入れた。そして、これを超音波分散装置で30秒間に亘って撹拌した後、振とう器で30分間に亘って振とうさせた。このようにして、撹拌及び振とうを行った組成物を、アプリケーターを使用してブレード法にて、負極集電体(Cu箔)上に塗工した。その後、組成物が塗工された負極集電体を100℃のホットプレート上で30分間に亘って乾燥させることにより、負極層を作製した。
 [固体電解質層の作製]
  5質量%のブタジエンゴム系バインダー溶液を含むヘプタン溶液と、平均粒径2.5μmの硫化物固体電解質(LiIを含むLiS-P系ガラスセラミックス)と、をポリプロピレン製容器に入れた。そして、これを超音波分散装置で30秒間に亘って撹拌した後、振とう器で30分間に亘って振とうさせた。このようにして、撹拌及び振とうを行った組成物を、アプリケーターを使用してブレード法にて、Al箔上に塗工した。その後、組成物が塗工されたAl箔を100℃のホットプレート上で30分間に亘って乾燥し、乾燥した塗工物をAl箔から剥離することにより、固体電解質層を得た。
 [硫化物固体電池の作製]
  上記の方法で作製した固体電解質層を1cmの金型に入れて1tf/cm(≒98MPa)でプレスした後、その片側に、第1正極活物質を含有する正極層又は第2正極活物質を含有する正極層と固体電解質層とが接触するように、正極集電体の表面に形成した正極層を配置し、1tf/cm(≒98MPa)でプレスした。その後、反対側(正極層が配置されていない側)に、負極層と固体電解質層とが接触するように、負極集電体の表面に形成した負極層を配置して、4tf/cm(≒392MPa)でプレスすることにより、硫化物固体電池を作製した。
 2.充放電サイクル特性試験
  <実施例1>
  第1正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用した。(1)0.5時間率(2Cレート)で4.1Vまで定電流充電をした後、(2)10分間に亘って休止し、その後、(3)0.5時間率(2Cレート)で2.5Vまで定電流放電をした後、(4)10分間に亘って休止する、という(1)~(4)の工程を、60℃環境で1000サイクルに亘って繰り返した。なお、1000サイクルまでの途中で、後述する容量確認及び抵抗測定を数回実施した。
  1000サイクル実施後の硫化物固体電池に対し、3時間率(1/3Cレート)で4.55Vまで定電流-定電圧充電をした後、10分間に亘って休止した。その後、3時間率(1/3Cレート)で3.0Vまで定電流放電を行った時の放電容量を求めた。そして、同様にして求めた、1サイクル実施後の放電容量と比較し、その比(=1000サイクル後の放電容量/1サイクル後の放電容量×100)を容量維持率[%]とした。
  また、1000サイクル実施後の硫化物固体電池に対し、終止電流1/100Cレート相当で3.6Vまで定電流-定電圧充電をした後、10分間に亘って休止した。その後、0.33時間率(3Cレート)で定電流放電を5秒間に亘って実施し、このときの電圧降下分及び電流値から電池の内部抵抗(R=ΔV/ΔI)を求めた。そして、同様にして求めた、1サイクル実施後の電池の内部抵抗と比較し、その比(=1000サイクル後の内部抵抗/1サイクル後の内部抵抗×100)を内部抵抗増加率[%]とした。
  実施例1における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図3、図4、図7、及び、図8に示す。図3及び図7の縦軸は容量維持率[%]であり、横軸は充電上限電圧[V]である。また、図4及び図8の縦軸は内部抵抗増加率[%]であり、横軸は充電上限電圧[V]である。図3及び図7は紙面上側ほど性能が良く、図4及び図8は紙面下側ほど性能が良い。
 <実施例2>
  第1正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.3Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。実施例2における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図3、図4、図7、及び、図8に示す。
 <実施例3>
  第2正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.4Vとし放電停止電圧を3.4Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。実施例3における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図5、及び、図6に示す。図5の縦軸は容量維持率[%]であり、横軸は放電下限電圧[V]である。また、図6の縦軸は内部抵抗増加率[%]であり、横軸は放電下限電圧[V]である。図5は紙面上側ほど性能が良く、図6は紙面下側ほど性能が良い。
 <実施例4>
  第2正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.4Vとし放電停止電圧を3.5Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。実施例4における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図5、及び、図6に示す。
 <実施例5>
  第2正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.4Vとし放電停止電圧を3.6Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。実施例5における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図5、及び、図6に示す。
 <実施例6>
  第1正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.4Vとし放電停止電圧を3.4Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。実施例6における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図7、及び、図8に示す。
 <比較例1>
  第1正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.4Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。比較例1における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図3、図4、図7、及び、図8に示す。
 <比較例2>
  第1正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.55Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。比較例2における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図3、図4、図7、及び、図8に示す。
 <比較例3>
  第2正極活物質を含有する正極層を用いて作製した硫化物固体電池を使用し、充電停止電圧を4.4Vとし放電停止電圧を3.0Vとしたほかは実施例1と同様の条件で、充放電を1000サイクルに亘って実施した。そして、実施例1と同様の条件で容量維持率及び内部抵抗増加率を求めた。比較例3における充放電サイクルの条件、容量維持率の結果、及び、内部抵抗増加率の結果を、表1、図5、及び、図6に示す。
Figure JPOXMLDOC01-appb-T000001
 3.結果
  表1、図3、及び、図4に示したように、実施例1、実施例2、比較例1、及び、比較例2の結果から、硫化物固体電池の充電上限電圧を4.3V以下とすることにより、容量維持率が増加し内部抵抗増加率が低下した。すなわち、硫化物固体電池の充電上限電圧を4.3V以下とすることにより、充放電サイクル後の性能維持率を高めることができた。実施例1及び実施例2の条件では、正極活物質の膨張収縮変化量が小さく、正極活物質と硫化物固体電解質との接触を維持しやすかったため、性能維持率が高くなったと考えられる。なお、電解液が用いられる電池(液系電池)とは異なり、固体電池では膨張収縮により活物質と電解質とが接触し難くなると、電池性能が低下する。液系電池では、電解液が活物質の間に染み込むため、活物質の膨張収縮による性能低下は固体電池よりも小さい。
 また、表1、図5、及び、図6に示したように、実施例3、実施例4、実施例5、及び、比較例3の結果から、硫化物固体電池の放電下限電圧を3.4V以上とすることにより、容量維持率が増加し内部抵抗増加率が低下した。すなわち、硫化物固体電池の放電下限電圧を3.4V以上とすることにより、充放電サイクル後の性能維持率を高めることができた。放電下限電圧を3.4Vよりも低くすると、正極活物質の膨張収縮変化量が大きくなるため、正極活物質と硫化物固体電解質との接触を維持し難くなり、その結果、性能維持率が低くなったと考えられる。なお、第1正極活物質を用いた硫化物固体電池と第2正極活物質を用いた硫化物固体電池とでは、前者の方が良好な性質を示した。
 また、表1、図7、及び、図8に示したように、特に、充電上限電圧を4.4Vとし放電下限電圧を3.4Vとした実施例6、及び、充電上限電圧を4.4Vとし放電下限電圧を2.5Vとした比較例1の結果から、硫化物固体電池の放電下限電圧を3.4V以上とすることで、4.4Vまで充電しても、充放電サイクル後の性能維持率を高めることが可能になることが確認された。硫化物固体電池の放電下限電圧を3.4V以上にすると、4.4Vまで充電しても充放電サイクル後の性能維持率を高めることが可能になるのは、放電下限電圧を3.4Vとすることで正極活物質の膨張収縮変化量が小さくなり、膨張収縮変化量が小さくなった分だけ充電時の膨張収縮による劣化を抑制できるようになるためと考えられる。
 1…硫化物固体電池
 1m…負極集電体
 1p…正極集電体
 1x…正極層
 1y…固体電解質層
 1z…負極層
 2、3…制御手段
 10、20…硫化物固体電池システム

Claims (6)

  1. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の充電停止電圧を制御可能な制御手段とを備え、
     前記正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも前記固体電解質層に硫化物固体電解質が用いられ、
     前記固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下で充電が停止されるように、前記制御手段によって前記固体電池の充電停止電圧が制御される、硫化物固体電池システム。
  2. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の放電停止電圧を制御可能な制御手段とを備え、
     前記正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも前記固体電解質層に硫化物固体電解質が用いられ、
     前記固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、前記制御手段によって前記固体電池の放電停止電圧が制御される、硫化物固体電池システム。
  3. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配置された固体電解質層を有する固体電池と、該固体電池の充電停止電圧及び放電停止電圧を制御可能な制御手段とを備え、
     前記正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも前記固体電解質層に硫化物固体電解質が用いられ、
     前記固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、前記制御手段によって前記固体電池の放電停止電圧が制御され、且つ、
     前記固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.4V以下で充電が停止されるように、前記制御手段によって前記固体電池の充電停止電圧が制御される、硫化物固体電池システム。
  4. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配置された固体電解質層を有する固体電池を制御する方法であって、
     前記正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも前記固体電解質層に硫化物固体電解質が用いられ、
     前記固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.3V以下で充電が停止されるように、前記固体電池の充電停止電圧を制御する、硫化物固体電池の制御方法。
  5. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配置された固体電解質層を有する固体電池を制御する方法であって、
     前記正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも前記固体電解質層に硫化物固体電解質が用いられ、
     前記固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、前記固体電池の放電停止電圧を制御する、硫化物固体電池の制御方法。
  6. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配置された固体電解質層を有する固体電池を制御する方法であって、
     前記正極層にLiNiCoMn(x+y+z=1且つ0.32<x、y、z<0.34)が用いられ、且つ、少なくとも前記固体電解質層に硫化物固体電解質が用いられ、
     前記固体電池の放電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして3.4V以上で放電が停止されるように、前記固体電池の放電停止電圧を制御し、且つ、
     前記固体電池の充電時に、黒鉛がリチウムイオンを吸蔵放出する電位を基準にして4.4V以下で充電が停止されるように、前記固体電池の充電停止電圧を制御する、硫化物固体電池の制御方法。
PCT/JP2012/055658 2012-03-06 2012-03-06 硫化物固体電池システム及び硫化物固体電池の制御方法 WO2013132592A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/378,026 US20150002101A1 (en) 2012-03-06 2012-03-06 Sulfide solid battery system and method for controlling sulfide solid battery
PCT/JP2012/055658 WO2013132592A1 (ja) 2012-03-06 2012-03-06 硫化物固体電池システム及び硫化物固体電池の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055658 WO2013132592A1 (ja) 2012-03-06 2012-03-06 硫化物固体電池システム及び硫化物固体電池の制御方法

Publications (1)

Publication Number Publication Date
WO2013132592A1 true WO2013132592A1 (ja) 2013-09-12

Family

ID=49116108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055658 WO2013132592A1 (ja) 2012-03-06 2012-03-06 硫化物固体電池システム及び硫化物固体電池の制御方法

Country Status (2)

Country Link
US (1) US20150002101A1 (ja)
WO (1) WO2013132592A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715416A (zh) * 2013-12-30 2014-04-09 华南师范大学 用于高容量锂离子电池正极材料Li[Li0.201Ni0.133Co0.133Mn0.533]O2的制备方法
JP2018510487A (ja) * 2015-02-02 2018-04-12 サクティスリー・インコ—ポレイテッド 固体エネルギー貯蔵デバイス
JP2021034328A (ja) * 2019-08-29 2021-03-01 マクセルホールディングス株式会社 全固体電池および全固体電池のシステム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154593A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法
CN107925052A (zh) 2015-06-22 2018-04-17 阿卜杜拉国王科技大学 锂电池、阳极以及阳极的制造方法
JP6593381B2 (ja) * 2017-04-18 2019-10-23 トヨタ自動車株式会社 全固体リチウムイオン二次電池用の負極合材、当該負極合材を含む負極、及び当該負極を備える全固体リチウムイオン二次電池
JP6784235B2 (ja) 2017-07-06 2020-11-11 トヨタ自動車株式会社 全固体リチウムイオン二次電池
EP3667342B1 (en) * 2017-09-21 2024-05-01 Furukawa Electric Co., Ltd. Rechargeable battery short circuit prediction device and rechargeable battery short circuit prediction method
JP7482454B2 (ja) * 2018-12-28 2024-05-14 パナソニックIpマネジメント株式会社 電池および電池の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187800A (ja) * 2001-12-21 2003-07-04 Japan Storage Battery Co Ltd 正極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2004179158A (ja) * 2002-11-12 2004-06-24 Matsushita Electric Ind Co Ltd リチウムイオン伝導体および全固体リチウムイオン二次電池
JP2011233246A (ja) * 2010-04-23 2011-11-17 Toyota Motor Corp 複合正極活物質、全固体電池、および、それらの製造方法
WO2012017544A1 (ja) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 硫化物固体電解質ガラス、リチウム固体電池および硫化物固体電解質ガラスの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263396B (zh) * 2005-07-14 2011-04-27 波士顿电力公司 用于锂离子电池的控制电子元件
US8119276B2 (en) * 2008-03-25 2012-02-21 Electrochem Solutions, Inc. In parallel hybrid power source comprising a lithium/oxyhalide electrochemical cell coupled with a lithium ion cell
JP2012085487A (ja) * 2010-10-14 2012-04-26 Sony Corp 二次電池の充電制御方法および電池パック
JP5556797B2 (ja) * 2010-12-17 2014-07-23 トヨタ自動車株式会社 二次電池
KR101344939B1 (ko) * 2011-12-13 2013-12-27 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187800A (ja) * 2001-12-21 2003-07-04 Japan Storage Battery Co Ltd 正極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2004179158A (ja) * 2002-11-12 2004-06-24 Matsushita Electric Ind Co Ltd リチウムイオン伝導体および全固体リチウムイオン二次電池
JP2011233246A (ja) * 2010-04-23 2011-11-17 Toyota Motor Corp 複合正極活物質、全固体電池、および、それらの製造方法
WO2012017544A1 (ja) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 硫化物固体電解質ガラス、リチウム固体電池および硫化物固体電解質ガラスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715416A (zh) * 2013-12-30 2014-04-09 华南师范大学 用于高容量锂离子电池正极材料Li[Li0.201Ni0.133Co0.133Mn0.533]O2的制备方法
CN103715416B (zh) * 2013-12-30 2015-11-18 华南师范大学 用于高容量锂离子电池正极材料Li[Li0.201Ni0.133Co0.133Mn0.533]O2的制备方法
JP2018510487A (ja) * 2015-02-02 2018-04-12 サクティスリー・インコ—ポレイテッド 固体エネルギー貯蔵デバイス
JP2021034328A (ja) * 2019-08-29 2021-03-01 マクセルホールディングス株式会社 全固体電池および全固体電池のシステム
JP7227878B2 (ja) 2019-08-29 2023-02-22 マクセル株式会社 全固体電池および全固体電池のシステム

Also Published As

Publication number Publication date
US20150002101A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP6409794B2 (ja) 正極合剤の製造方法、正極の製造方法、及び全固体リチウムイオン二次電池の製造方法
WO2013132592A1 (ja) 硫化物固体電池システム及び硫化物固体電池の制御方法
JP6642471B2 (ja) 複合活物質粒子、正極、全固体リチウムイオン電池及びこれらの製造方法
US9985314B2 (en) All-solid battery and method for manufacturing the same
TWI555257B (zh) 全固態電池及彼之製法
JP6724571B2 (ja) 固体電池
JP7096197B2 (ja) 被覆正極活物質及び全固体電池
JP5806335B2 (ja) 電極体及びその製造方法
JP2018106984A (ja) 全固体リチウムイオン電池
JP2015005421A (ja) 電極体及び全固体電池
JP2015153647A (ja) 固体電池の製造方法
JP5682793B2 (ja) リチウム二次電池およびその製造方法
JP6295966B2 (ja) 全固体電池
JP7156263B2 (ja) 全固体電池および全固体電池の製造方法
JP2022088977A (ja) 全固体電池
JP2018181750A (ja) 全固体電池
JP5725372B2 (ja) 非水電解質二次電池
JP7248043B2 (ja) 全固体電池
JP7256150B2 (ja) 全固体電池
JP2017041392A (ja) 全固体電池
JP2017098181A (ja) 全固体電池
JPWO2013132592A1 (ja) 硫化物固体電池システム及び硫化物固体電池の制御方法
JP7188224B2 (ja) 全固体電池
JP2023031157A (ja) リチウムイオン電池
JP2022088978A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503320

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14378026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870532

Country of ref document: EP

Kind code of ref document: A1