WO2013129385A1 - アクリロニトリルの製造方法 - Google Patents

アクリロニトリルの製造方法 Download PDF

Info

Publication number
WO2013129385A1
WO2013129385A1 PCT/JP2013/054944 JP2013054944W WO2013129385A1 WO 2013129385 A1 WO2013129385 A1 WO 2013129385A1 JP 2013054944 W JP2013054944 W JP 2013054944W WO 2013129385 A1 WO2013129385 A1 WO 2013129385A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
bed catalyst
catalyst
reaction
acrylonitrile
Prior art date
Application number
PCT/JP2013/054944
Other languages
English (en)
French (fr)
Inventor
烏田 隆志
博一 渡辺
柳田 元男
西田 和史
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2014502243A priority Critical patent/JP6296302B2/ja
Priority to CN201380011387.4A priority patent/CN104203908B/zh
Priority to KR1020147023464A priority patent/KR101648283B1/ko
Priority to EP13754208.0A priority patent/EP2821390A4/en
Priority to US14/381,360 priority patent/US9328063B2/en
Publication of WO2013129385A1 publication Critical patent/WO2013129385A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/485Impregnating or reimpregnating with, or deposition of metal compounds or catalytically active elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for producing acrylonitrile by vapor phase catalytic ammoxidation of propylene with molecular oxygen and ammonia.
  • the present invention claims priority based on Japanese Patent Application No. 2012-042833 filed in Japan on February 29, 2012, the contents of which are incorporated herein by reference.
  • a method for producing acrylonitrile by gas phase catalytic ammoxidation reaction using propylene, ammonia and molecular oxygen (oxygen-containing gas) as raw materials in a fluidized bed reactor is widely known.
  • composite oxide catalysts containing iron and antimony are useful for ammoxidation reactions and are widely used industrially.
  • Patent Document 1 discloses a composite oxide catalyst with at least one element selected from the group consisting of iron, antimony, cobalt, and nickel.
  • Patent Documents 2 to 8 disclose composite oxide catalysts containing iron, antimony, tellurium, vanadium, molybdenum, tungsten and the like.
  • Patent Documents 9 to 11 disclose methods for producing these iron and antimony containing catalysts.
  • Patent Document 12 specifies that the selectivity of the target product and the catalytic activity are improved by enriching the catalyst whose performance is reduced by the use of the reaction with enrichment of tellurium and heating at a high temperature of 900 ° C. or less. ing. And it is disclosed that a high acrylonitrile yield is maintained by replacing the tellurium-enriched catalyst with a catalyst in the reactor.
  • Patent Document 13 during the ammoxidation reaction using the tellurium-containing oxide catalyst, the selectivity of the target product and the catalytic activity are obtained by adding a tellurium carrier, a tellurium compound, and a molybdenum compound to the reactor. It has been disclosed that the decrease in the aging is improved.
  • the catalyst disclosed in these conventional techniques, the method for producing the catalyst, and the method for producing acrylonitrile are effective to some extent in maintaining a high acrylonitrile yield, they are not always sufficient. Therefore, a method for producing acrylonitrile in a higher yield is desired.
  • This invention is made
  • One embodiment of the method for producing acrylonitrile of the present invention uses a fluidized bed catalyst composed of particles containing iron (Fe), antimony (Sb) and tellurium (Te) in a fluidized bed reactor, and propylene in the form of molecules.
  • the Te / Sb atomic ratio in the bulk composition of the fluidized bed catalyst during the gas phase catalytic ammoxidation reaction is A, and Te in the surface composition of the particles.
  • the gas phase catalytic ammoxidation reaction is performed while maintaining B / A in the range of 2.0 to 5.0.
  • the bulk composition of the fluidized bed catalyst is represented by the following general formula (1).
  • Fe, Sb, Te, O and SiO 2 represent iron, antimony, tellurium, oxygen and silica, respectively
  • A is at least one element selected from the group consisting of vanadium, molybdenum and tungsten
  • D is magnesium, Group consisting of calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, copper, silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic and bismuth
  • at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and a, b, c, d, e, x, and y are atomic ratios.
  • the manufacturing method of the acrylonitrile of this invention has the following side surfaces.
  • a method for producing acrylonitrile Including a gas phase catalytic ammoxidation step in which a raw material gas containing propylene, molecular oxygen, and ammonia is brought into contact with a fluidized bed catalyst to perform gas phase ammoxidation to obtain acrylonitrile.
  • the fluidized bed catalyst comprises particles containing Fe, Sb, and Te;
  • Te / Sb atomic ratio in the bulk composition of the fluidized bed catalyst is A and the Te / Sb atomic ratio in the surface composition of the fluidized bed catalyst particles is B in the gas phase catalytic ammoxidation step, B / A In the range of 2.0 to 5.0, characterized in that it is carried out while producing acrylonitrile;
  • a high acrylonitrile yield can be stably maintained over a long period of time.
  • One embodiment of the present invention uses a fluidized bed catalyst composed of particles containing iron (Fe), antimony (Sb) and tellurium (Te) in a fluidized bed reactor, and propylene is vaporized by molecular oxygen and ammonia.
  • the Te / Sb atomic ratio in the bulk composition of the fluidized bed catalyst during the gas phase catalytic ammoxidation reaction is A
  • the Te / Sb atomic ratio in the surface composition of the particles is A method for producing acrylonitrile, characterized in that a gas phase catalytic ammoxidation reaction is carried out while maintaining B / A in the range of 2.0 to 5.0 when B is designated.
  • gas phase catalytic ammoxidation in which raw material gas containing propylene, molecular oxygen, and ammonia is brought into contact with a fluidized bed catalyst to perform gas phase ammoxidation to obtain acrylonitrile.
  • the fluidized bed catalyst is composed of particles containing Fe, Sb, and Te, and the gas phase catalytic ammoxidation step is configured such that the Te / Sb atomic ratio in the bulk composition of the fluidized bed catalyst is A, the fluidized A process for producing acrylonitrile, characterized in that the B / A is maintained in the range of 2.0 to 5.0, where Te / Sb atomic ratio in the surface composition of the layer catalyst particles is B. is there.
  • the acrylonitrile yield may decrease over time.
  • the decrease in the acrylonitrile yield with time is due to the change in the surface composition of the fluidized bed catalyst particles over time.
  • B / A (hereinafter referred to as “B / A of fluidized bed catalyst”) is maintained in the range of 2.0 to 5.0, and the gas phase catalytic ammoxidation reaction is performed for a long period of time.
  • the lower limit value of B / A of the fluidized bed catalyst in the gas phase catalytic ammoxidation reaction step is preferably 2.4, and the upper limit value is preferably 4.6.
  • the B / A of the fluidized bed catalyst that has not been reacted is the B / A of the fluidized bed catalyst in the gas phase catalytic ammoxidation step.
  • A can be maintained in the range of 2.0 to 5.0.
  • the B / A of the unreacted fluidized bed catalyst is preferably 2.4 to 4.6.
  • the bulk composition of the fluidized bed catalyst refers to the composition of the aggregate of at least several tens of mg of the fluidized bed catalyst. Specifically, it refers to a composition in which the particle size of the bulk particles of the fluidized bed catalyst is 1 to 200 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the method for measuring the Te / Sb atomic ratio A in the bulk composition of the fluidized bed catalyst is not particularly limited. For example, ICP (inductively coupled radio frequency plasma) emission analysis, XRF (fluorescence X-ray) analysis, atomic absorption analysis It can confirm by performing well-known elemental analysis, such as.
  • a calibration curve method using a known amount of a standard sample by an XRF analysis method is employed from the viewpoint of simplicity. That is, in the present invention, the composition of the fluidized bed catalyst measured by such a measurement method is set as “Te / Sb atomic ratio A in the bulk composition of the fluidized bed catalyst”.
  • the surface composition of the particles of the fluidized bed catalyst refers to the ratio of the elements constituting the very surface layer of each particle of the fluidized bed catalyst.
  • the very surface layer is a layer from the particle surface to a depth of about several nm. Specifically, it means a layer from the outermost layer to a depth of 5 nm of each particle of the fluidized bed catalyst, more preferably a layer from the outermost layer to a depth of 3 nm.
  • the Te / Sb atomic ratio B in the above surface composition of the fluidized bed catalyst particles means a value obtained by measurement by XPS (X-ray photoelectron spectroscopy).
  • the B / A of the fluidized bed catalyst during the gas phase catalytic ammoxidation process is a part of the fluidized bed catalyst extracted from the fluidized bed reactor during the gas phase catalytic ammoxidation process, and Te / Sb atoms in the bulk composition of the fluidized bed catalyst.
  • the ratio A and the Te / Sb atomic ratio B in the surface composition of the particles of the fluidized bed catalyst are determined by the above-described methods.
  • the B / A of the fluidized bed catalyst in the gas phase catalytic ammoxidation reaction step is smaller than the above lower limit, that is, 2.0, the amount of by-products such as hydrocyanic acid is increased, and the acrylonitrile yield is increased. descend.
  • the B / A of the fluidized bed catalyst in the gas phase catalytic ammoxidation reaction step is larger than the above upper limit, that is, 5.0, the amount of by-products such as carbon dioxide increases, and acrylonitrile Yield decreases.
  • the reaction may be continued as long as the B / A of the fluidized bed catalyst is within the above range, but the B / A of the fluidized bed catalyst is increased within the range where the B / A of the fluidized bed catalyst does not deviate from the above range. It may be reduced or reduced.
  • the gas phase catalytic ammoxidation step is performed while maintaining the B / A of the fluidized bed catalyst in the range of 2.0 to 5.0.
  • the gas phase catalytic ammoxidation reaction step preferably includes a step of maintaining the B / A of the fluidized bed catalyst in the range of 2.0 to 5.0.
  • a compound containing tellurium element specifically, a method of adding tellurium powder, telluric acid or the like to the reactor
  • a method of adding a catalyst having a high B / A of a fluidized bed catalyst such as a catalyst produced by impregnating tellurium to the reactor is effective. Also effective is a method in which a part of the catalyst in the reactor is replaced with a fluidized bed catalyst having a high B / A.
  • a method for reducing the B / A of the fluidized bed catalyst in the gas phase catalytic ammoxidation reaction step a method in which a catalyst having a low B / A of the fluidized bed catalyst is added to the reactor, or the reaction in the reactor A technique for temporarily raising the temperature is also effective.
  • a method of replacing a part of the catalyst in the reactor with a catalyst having a low B / A of the fluidized bed catalyst is also effective.
  • tellurium has a tendency to volatilize during the reaction as compared with antimony.
  • the B / A of the fluidized bed catalyst during the reaction may be controlled by promoting (or reducing) the tellurium volatilization by temporarily raising (or lowering) the reaction temperature. .
  • the catalyst produced by impregnating tellurium, or the catalyst having a B / A of a fluidized bed catalyst different from the catalyst in the reactor the effect of the present invention
  • the B / A of the fluidized bed catalyst during the reaction tends to decrease. Therefore, the timing and amount of addition are preferred so that the B / A of the fluidized bed catalyst during the gas phase catalytic ammoxidation reaction falls within the above range.
  • the method of controlling B / A of the fluidized bed catalyst during reaction is not limited to the method mentioned above, It can implement by a well-known arbitrary method.
  • the gas phase catalytic ammoxidation step includes a fluidized bed reactor filled with a fluidized bed catalyst to form a catalyst layer, and the catalyst layer contains a raw material gas containing propylene, molecular oxygen, and ammonia. This is done by passing
  • the source gas is not particularly limited as long as it has the effect of the present invention, but a source gas having a propylene / ammonia / oxygen ratio in the range of 1 / 1.0 to 2.0 / 1.0 to 5.0 (molar ratio) is preferable. .
  • the amount of supply of molecular oxygen as an oxygen source is not particularly limited as long as it has the effect of the present invention, but air is preferably used.
  • the source gas may be diluted with an inert gas such as nitrogen or carbon dioxide, saturated hydrocarbon, or the like, or pure oxygen may be mixed to increase the oxygen concentration.
  • the reaction temperature of the gas phase catalytic ammoxidation reaction is preferably 350 to 500 ° C., and the reaction pressure is preferably within the range of normal pressure (100 kPa) to 500 kPa.
  • the contact time between the fluidized bed catalyst and the reaction gas is preferably 0.1 to 20 seconds.
  • the fluidized bed catalyst used in the present invention is not particularly limited as long as it satisfies the above requirements and is composed of particles containing iron, antimony and tellurium, as long as it has the effect of the present invention, but has a high acrylonitrile yield. It is preferable that it is a bulk composition represented by the following general formula (1). Fe 10 Sb a A b Te c D d E e O x ⁇ (SiO 2) y ⁇ (1)
  • Fe, Sb, Te, O, and SiO 2 represent iron, antimony, tellurium, oxygen, and silica, respectively
  • A represents at least one element selected from the group consisting of vanadium, molybdenum, and tungsten
  • D is magnesium, calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, copper, silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic
  • E represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium
  • the method for producing a fluidized bed catalyst used in the present invention is not particularly limited as long as it has the effects of the present invention.
  • the method for producing a catalyst described in Patent Documents 1 to 13 described above may be followed. Specifically, a method of preparing a solution or an aqueous slurry containing raw materials for each element constituting the fluidized bed catalyst, drying the obtained solution or aqueous slurry, and calcining the obtained dried product, etc. It is done. That is, in the method for producing a fluidized bed catalyst of the present invention, the respective elements constituting the fluidized bed catalyst are mixed to prepare a solution or an aqueous slurry, and the solution or aqueous solution obtained in the step (I).
  • the solution or aqueous slurry may contain all of the desired elements constituting the fluidized bed catalyst of the present invention in a desired atomic ratio. Further, a solution or an aqueous slurry containing a part of the elements constituting the fluidized bed catalyst may be prepared, and the remaining elements may be added to the catalyst composition after drying or calcination by a method such as impregnation.
  • the raw material of each element constituting the fluidized bed catalyst is determined according to its purpose, application, etc., and is an oxide, or nitrate, carbonate, organic acid salt, water that can be easily converted into an oxide when heated. It is preferable to use an oxide, an ammonium salt or the like, or a mixture thereof. These raw materials are solid or dissolved in water or dilute nitric acid to form a solution, and then mixed to obtain a solution or an aqueous slurry.
  • the fluidized bed catalyst of this invention contains a silica, it is preferable to use a silica sol as said silica.
  • the pH may be adjusted by adding nitric acid, aqueous ammonia, or the like, if necessary, or by concentration treatment or heat treatment.
  • Step (II) is a step of baking the obtained dried product after drying the solution or aqueous slurry obtained in the step (I).
  • step (II) it is preferable to obtain a spherical dried product (dry particles) as much as possible by drying the solution or slurry containing the elements constituting the fluidized bed catalyst. Drying is usually performed by spray drying.
  • the dryer a general one such as a rotary disk type or a nozzle type can be used.
  • the drying conditions can be appropriately adjusted.
  • the obtained dry particles exhibit activity as a catalyst by firing.
  • the firing temperature is preferably 300 to 1000 ° C.
  • the calcination temperature is lower than the above lower limit value, that is, 300 ° C.
  • the activity as a catalyst is hardly exhibited.
  • the firing temperature is higher than the above upper limit, that is, 1000 ° C.
  • the activity tends to be excessive or the acrylonitrile yield tends to decrease. That is, a calcination temperature of 300 to 1000 ° C. is preferable because the activity as a catalyst is easily developed and the acrylonitrile yield is hardly lowered. If the calcination time is too short, the activity as a catalyst is not sufficiently exhibited, so 0.5 hour or more is preferable.
  • the upper limit is not particularly limited, but even if the calcination time is extended more than necessary, the performance of the catalyst does not become a certain level, so it is usually within 20 hours. That is, the firing time is preferably 0.5 to 20 hours.
  • the furnace used for baking A box furnace, a rotary kiln, a fluidized-fired furnace, etc. can be used.
  • a rotary kiln or a fluidized firing furnace that fires particles while flowing is preferred, and a fluidized firing furnace is particularly preferred because uniform firing is possible.
  • Baking is preferably performed twice or more because physical properties such as acrylonitrile yield and particle strength are improved.
  • the amount of each catalyst raw material added in the preparation step (I) of the solution or aqueous slurry described above is just to select suitably the addition amount of the catalyst raw material added at each process after a preparation process to drying process (II).
  • the addition amount of the catalyst raw material added by impregnation or the like may be appropriately selected.
  • the bulk composition of the fluidized bed catalyst can be confirmed by performing elemental analysis by XRF (fluorescence X-ray) analysis as described above. In the case where an element having extremely high volatility is not used, it may be calculated from the amount of each raw material used at the time of catalyst production.
  • XRF fluorescence X-ray
  • the gas phase catalytic ammoxidation reaction step while maintaining the B / A of the fluidized bed catalyst during the reaction in the range of 2.0 to 5.0, the gas phase
  • a decrease in acrylonitrile yield over time can be suppressed, and a high acrylonitrile yield can be stably maintained over a long period of time. Therefore, the method for producing acrylonitrile of the present invention is an economically advantageous method.
  • the present invention is not limited to this example.
  • the manufacturing method of the fluidized bed catalyst used in each Example is shown below.
  • the activity test of the fluidized bed catalyst, the measurement method of the Te / Sb atomic ratio A in the surface composition of the fluid bed catalyst particles, and the Te / Sb atomic ratio A in the bulk composition of the fluidized bed catalyst and the bulk composition are shown below. .
  • solution B in which 37.7 g of ammonium paratungstate was dissolved in 700 g of pure water
  • solution C a solution in which 31.9 g of ammonium paramolybdate were dissolved in 100 g of pure water
  • 6508.0 g of 20 mass% colloidal silica, 1052.6 g of antimony trioxide powder, B liquid, and C liquid were sequentially added to the A liquid with stirring to obtain an aqueous slurry.
  • 15% by mass aqueous ammonia was added dropwise to adjust the pH to 2.0, and the resulting aqueous slurry was heat-treated at the boiling point for 3 hours under reflux.
  • the aqueous slurry after the heat treatment was cooled to 80 ° C., and 20.8 g of 85% by mass phosphoric acid and 40.2 g of boric acid were sequentially added.
  • the obtained aqueous slurry was spray-dried with a spray dryer at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet to obtain spherical dry particles.
  • the obtained dried particles were calcined at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluidized and calcined at 800 ° C. for 3 hours using a fluidized calciner to obtain a fluidized bed catalyst 1.
  • the bulk composition of the obtained fluidized bed catalyst 1 was as follows.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • the bulk composition of the fluidized bed catalyst 1 is also shown in Table 1, the description of oxygen and the number of atoms (x) is omitted in Table 1.
  • ⁇ Fluidized bed catalyst 2 To 150 g of pure water heated to 50 ° C., 51.0 g of ammonium paramolybdate, 253.4 g of tellurium powder, and 200 g of 35% hydrogen peroxide solution were sequentially added and dissolved, followed by stirring and holding for 3 hours. By adding pure water thereto, the liquid volume was adjusted to 720 mL to prepare a D liquid. The liquid D was added little by little to 3000 g of the fluidized bed catalyst 1 to obtain a mixture impregnated with the liquid D. This mixture was calcined at 500 ° C. for 3 hours in a rotary calcining furnace to obtain a fluidized bed catalyst 2. The bulk composition of the obtained fluidized bed catalyst 2 was as follows.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • the bulk composition of the fluidized bed catalyst 2 is also shown in Table 1, the description of oxygen and the number of atoms (x) is omitted in Table 1.
  • ⁇ Fluidized bed catalyst 3> After adding and dissolving 3.65 g of potassium nitrate in 150 g of pure water heated to 50 ° C., the mixture was stirred for 30 minutes. By adding pure water thereto, the liquid volume was adjusted to 720 mL to prepare E liquid. The liquid E was added little by little to 3000 g of the fluidized bed catalyst 1 to obtain a mixture impregnated with the liquid E. This mixture was calcined at 500 ° C. for 3 hours in a rotary calcining furnace to obtain a fluidized bed catalyst 3. The bulk composition of the obtained fluidized bed catalyst 3 was as follows.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • the bulk composition of the fluidized bed catalyst 3 is also shown in Table 1, the description of oxygen and the number of atoms (x) is omitted in Table 1.
  • solution G in which 10.0 g of ammonium paratungstate was dissolved in 270 g of pure water
  • solution H a solution in which 40.6 g of ammonium paramolybdate were dissolved in 30 g of pure water were prepared.
  • 5178.4 g of 20 mass% silica sol in liquid F and 1395.9 g of antimony trioxide powder were added dropwise with 15 mass% aqueous ammonia to adjust the pH to 1.8, and the resulting aqueous slurry was refluxed Then, heat treatment was performed for 3 hours.
  • the slurry after the heat treatment was cooled to 80 ° C., and 4.4 g of 85 mass% phosphoric acid, G solution, and H solution were sequentially added.
  • the obtained aqueous slurry was spray-dried with a spray dryer at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet to obtain spherical dry particles.
  • the obtained dried particles were calcined at 250 ° C. for 2 hours and 400 ° C. for 2 hours, and finally fluidized and calcined at 810 ° C. for 3 hours using a fluidized calcining furnace to obtain a fluidized bed catalyst 4.
  • the bulk composition of the obtained fluidized bed catalyst 4 was as follows.
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • the bulk composition of the fluidized bed catalyst 4 is also shown in Table 1, the description of oxygen and the number of atoms (x) is omitted in Table 1.
  • ⁇ Fluidized bed catalyst 5 In the production of the fluidized bed catalyst 4, the production is performed in the same manner as the fluidized bed catalyst 4 except that the amount of tellurium powder used at the preparation of the F liquid is changed from 88.0 g to 219.9 g. It was.
  • the bulk composition of the obtained fluidized bed catalyst 5 was as follows. Fe 10 Sb 25 Mo 0.6 W 0.1 Te 2.5 Cu 2 Ni 0.5 Mg 0.3 P 0.1 Li 0.05 O x (SiO 2 ) 45
  • x is the number of oxygen atoms necessary to satisfy the valence of each component excluding silica.
  • the bulk composition of the fluidized bed catalyst 5 is also shown in Table 1, the description of oxygen and the number of atoms (x) is omitted in Table 1.
  • the reaction pressure was 200 kPa, and the reaction temperature was 460 ° C.
  • the reaction product was quantified using gas chromatography and analyzed at a frequency of at least once every 100 hours. At that time, the amount of the catalyst was appropriately adjusted so that the conversion rate of propylene was 97.8 to 98.2%. Specifically, when the propylene conversion rate was smaller than this range, a new catalyst was added to adjust the catalyst amount.
  • Propylene conversion rate (%) ⁇ (carbon mass of supplied propylene ⁇ carbon mass of unreacted propylene) / carbon mass of supplied propylene ⁇ ⁇ 100
  • Acrylonitrile yield (%) ⁇ (carbon mass of produced acrylonitrile) / carbon mass of supplied propylene ⁇ ⁇ 100
  • Ammonia combustion rate (%) ⁇ (nitrogen mass of supplied ammonia ⁇ nitrogen mass of unreacted ammonia ⁇ nitrogen mass of collected nitrogen-containing organic compound) / (nitrogen mass of supplied ammonia) ⁇ ⁇ 100
  • Te / Sb atomic ratio B on particle surface of fluidized bed catalyst The Te / Sb atomic ratio B on the particle surface was measured using an X-ray photoelectron spectrometer (“ESCALAB 220iXL” manufactured by VG) and using Al—k ⁇ rays as an X-ray source. For the XPS spectrum obtained by the measurement, first, the peak area intensity of Te3d5 and the peak area intensity of Sb3d3 are calculated, then each peak area intensity is corrected by the relative sensitivity factor specific to the apparatus, and the ratio is calculated. The Te / Sb atomic ratio B in the particle surface composition of the fluidized bed catalyst was determined by the procedure of determining.
  • Example 1 An activity test and physical property analysis (XRF analysis method measurement and XPS method measurement) of the catalyst extracted from the reactor were performed as follows. Using the fluidized bed catalyst 1, an acrylonitrile synthesis reaction by a gas phase catalytic ammoxidation reaction was performed. In addition, when the XRF analysis method measurement and the XPS method measurement were performed on the unreacted catalyst, the B / A of the fluidized bed catalyst was 4.1. The reaction gas was analyzed 100 hours after the start of the reaction, and the propylene conversion rate, acrylonitrile yield, and ammonia combustion rate were determined. Further, immediately after the reaction gas analysis, about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed.
  • reaction was continued, and the reaction gas was analyzed 300 hours after the start of the reaction to determine the propylene conversion rate, the acrylonitrile yield, and the ammonia combustion rate. Further, immediately after the reaction gas analysis, about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed. After 325 hours from the start of the reaction, an amount of metal tellurium corresponding to 0.2% of the catalyst mass in the reactor was added, and the reaction was continued. The reaction gas was analyzed 500 hours after the start of the reaction, and the propylene conversion rate, the acrylonitrile yield, and the ammonia combustion rate were determined.
  • reaction gas analysis about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed. After 525 hours from the start of the reaction, an amount of the fluidized bed catalyst 2 corresponding to 2% of the catalyst mass in the reactor was added, and the reaction was continued. After 700 hours from the start of the reaction, the reaction gas was analyzed to determine propylene conversion rate, acrylonitrile yield, and ammonia combustion rate. Further, immediately after the reaction gas analysis, about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed.
  • Example 2 Using the same fluidized bed catalyst 1 as in Example 1, an acrylonitrile synthesis reaction by a gas phase catalytic ammoxidation reaction was performed as follows. The same operation as in Example 1 was performed from the start of the reaction to 525 hours. After 525 hours from the start of the reaction, an amount of the fluidized bed catalyst 2 corresponding to 4% of the catalyst mass in the reactor was added, and the reaction was continued. In addition, the same operation as in Example 1 was performed thereafter. The reaction gas was analyzed 100, 300, 500, 700, and 1000 hours after the start of the reaction to determine propylene conversion rate, acrylonitrile yield, and ammonia combustion rate. In addition, about 5 g of the catalyst was extracted from the reactor immediately after the analysis of each reaction gas, and the XRF analysis method measurement and the XPS method measurement were performed. These results are shown in Table 2.
  • Example 3 An acrylonitrile synthesis reaction by a gas phase catalytic ammoxidation reaction was performed using the fluidized bed catalyst 4.
  • the B / A of the fluidized bed catalyst was 3.0.
  • the reaction gas was analyzed 100 hours after the start of the reaction, and the propylene conversion rate, acrylonitrile yield, and ammonia combustion rate were determined. Further, immediately after the reaction gas analysis, about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed.
  • reaction gas was analyzed 300 hours after the start of the reaction to determine the propylene conversion rate, the acrylonitrile yield, and the ammonia combustion rate. Further, immediately after the reaction gas analysis, about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed. After 325 hours from the start of the reaction, an amount of catalyst corresponding to 10% of the catalyst mass in the reactor was withdrawn from the reactor, and an amount of fluidized bed catalyst 5 equivalent to the withdrawn catalyst was added to continue the reaction. The reaction gas was analyzed 500 hours after the start of the reaction, and the propylene conversion rate, the acrylonitrile yield, and the ammonia combustion rate were determined.
  • reaction gas analysis about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed. After 525 hours from the start of the reaction, an amount of ammonium molybdate corresponding to 8% of the catalyst mass in the reactor was added, and the reaction was continued. After 700 hours from the start of the reaction, the reaction gas was analyzed to determine propylene conversion rate, acrylonitrile yield, and ammonia combustion rate. Further, immediately after the reaction gas analysis, about 5 g of the catalyst was extracted from the reactor, and the XRF analysis method measurement and the XPS method measurement were performed.
  • Example 1 The same operation as in Example 3 was carried out except that the same fluidized bed catalyst 4 as in Example 3 was used and that the fluidized bed catalyst 5 and ammonium molybdate were not added during the reaction.
  • the reaction gas was analyzed 100, 300, 500, 700, and 1000 hours after the start of the reaction to determine propylene conversion rate, acrylonitrile yield, and ammonia combustion rate.
  • about 5 g of the catalyst was extracted from the reactor immediately after the analysis of each reaction gas, and the XRF analysis method measurement and the XPS method measurement were performed. These results are shown in Table 2.
  • the gas phase catalytic ammoxidation reaction was performed while maintaining the B / A of the fluidized bed catalyst in the range of 2.0 to 5.0 during the gas phase catalytic ammoxidation step.
  • acrylonitrile could be produced while maintaining a high acrylonitrile yield of 80% or more.
  • the gas phase catalytic ammoxidation reaction was performed while maintaining the B / A of the fluidized bed catalyst during the reaction in the range of 2.4 to 4.6, more than 80.5% Acrylonitrile could be produced while maintaining a high acrylonitrile yield.
  • the acrylonitrile yield when the B / A of the fluidized bed catalyst in the gas phase catalytic ammoxidation step is in the range of 2.0 to 5.0 is as follows. It was higher than the yield at that time. It was confirmed that the decrease in the yield of acrylonitrile can be effectively suppressed when the B / A of the fluidized bed catalyst and the yield of acrylonitrile, that is, the B / A of the fluidized bed catalyst is within the above range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、アクリロニトリルの製造方法であって、プロピレンと、分子状酸素と、アンモニアとを含む原料ガスを、流動層触媒に接触させて気相接触アンモ酸化を行い、アクリロニトリルを得る、気相接触アンモ酸化工程を含み、前記流動層触媒が、Fe、Sb、およびTeを含有する粒子からなり、前記気相接触アンモ酸化工程が、前記流動層触媒のバルク組成におけるTe/Sb原子比をA、前記流動層触媒の粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持しながら行われることを特徴とする、アクリロニトリルの製造方法に関する。本発明のアクリロニトリルの製造方法によれば、長期間に亘り、安定して高いアクリロニトリル収率を維持することができる。

Description

アクリロニトリルの製造方法
 本発明は、プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを製造する方法に関する。
 本発明は、2012年2月29日に日本国に出願された特願2012-042833号に基づき優先権を主張し、その内容をここに援用する。
 流動層反応器においてプロピレン、アンモニアおよび分子状酸素(酸素含有ガス)を原料として用い、気相接触アンモ酸化反応によりアクリロニトリルを製造する方法は広く知られている。特に、鉄およびアンチモンを含有する複合酸化物触媒はアンモ酸化反応に有用であり、工業的にも広く用いられている。
 従来、鉄およびアンチモンを含有する複合酸化物触媒に関しては多くの検討がなされ、これまでに種々の触媒が提案されている。
 例えば、特許文献1には鉄、アンチモン、およびコバルト、ニッケルよりなる群から選ばれた少なくとも一種の元素との複合酸化物触媒が開示されている。
 また、特許文献2~8には、鉄、アンチモン、テルル、さらにバナジウム、モリブデン、タングステン等を含有する複合酸化物触媒が開示されている。さらに、特許文献9~11にはこれら鉄、アンチモンを含有する触媒の製造方法が開示されている。
 また、触媒性能の経時変化を抑制し、長期間に亘ってアクリロニトリル収率を高く維持することができるアクリロニトリルの製造方法についてもいくつかの提案がなされている。
 例えば、特許文献12には、反応使用によって性能が低下した触媒にテルルを富化し、900℃以下の高温で加熱することにより、目的生成物の選択率および触媒活性が改善されることが明記されている。そして、このテルル富化触媒を反応器内の触媒と入れ替えることにより、高いアクリロニトリル収率を維持することが開示されている。
 また、特許文献13では、テルル含有酸化物触媒を用いたアンモ酸化反応中に、テルル担体、テルル化合物、及びモリブデン化合物を反応器中に添加することにより、目的生成物の選択率、および触媒活性の経時的な低下が改善されることが開示されている。
特公昭38-19111号公報 特公昭46-2804号公報 特公昭47-19765号公報 特公昭47-19766号公報 特公昭47-19767号公報 特開昭50-108219号公報 特開昭52-125124号公報 特開平4-118051号公報 特公昭47-18722号公報 特公昭47-18723号公報 特公昭59-139938号公報 特開昭58-139745号公報 特開昭58-140056号公報
 しかしながら、これらの従来技術に開示された触媒やその触媒の製造方法、およびアクリロニトリルの製造方法は、高いアクリロニトリル収率を維持する点においてはある程度の効果は見られるものの、必ずしも十分ではない。従って、アクリロニトリルをさらに高い収率で製造する方法が望まれている。
 本発明は、上記事情に鑑みてなされたものであり、長期間に亘り、安定して高いアクリロニトリル収率を維持することができるアクリロニトリルの製造方法を提供することを目的とする。
 本発明のアクリロニトリルの製造方法の1つの態様は、流動層反応器にて、鉄(Fe)、アンチモン(Sb)およびテルル(Te)を含有する粒子からなる流動層触媒を用い、プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを製造する方法において、前記気相接触アンモ酸化反応中における、前記流動層触媒のバルク組成におけるTe/Sb原子比をA、粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持しながら、気相接触アンモ酸化反応を行うことを特徴とする。
 また、前記流動層触媒のバルク組成が、下記一般式(1)で表されることが好ましい。
 Fe10SbTe・(SiO  ・・・(1)
 式中、Fe、Sb、Te、OおよびSiOはそれぞれ鉄、アンチモン、テルル、酸素およびシリカを表し、Aはバナジウム、モリブデンおよびタングステンからなる群より選ばれた少なくとも一種の元素、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素およびビスマスからなる群より選ばれた少なくとも一種の元素、Eはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムからなる群から選ばれた少なくとも一種の元素を表し、a、b、c、d、e、xおよびyは原子比を表し、a=3~100、b=0.1~5、c=0.1~10、d=0~50、e=0~5、y=10~200であり、xはシリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。
 また、本発明のアクリロニトリルの製造方法は、以下の側面を有する。
<1>アクリロニトリルの製造方法であって、
 プロピレンと、分子状酸素と、アンモニアとを含む原料ガスを、流動層触媒に接触させて気相接触アンモ酸化を行い、アクリロニトリルを得る、気相接触アンモ酸化工程を含み、
 前記流動層触媒が、Fe、Sb、およびTeを含有する粒子からなり、
 前記気相接触アンモ酸化工程が、前記流動層触媒のバルク組成におけるTe/Sb原子比をA、前記流動層触媒の粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持しながら行われることを特徴とする、アクリロニトリルの製造方法;
<2>前記流動層触媒のバルク組成が、下記一般式(1)で表されることを特徴とする、<1>に記載のアクリロニトリルの製造方法;
 Fe10SbTe・(SiO  ・・・(1)
 式中、Fe、Sb、Te、O、およびSiOはそれぞれ鉄、アンチモン、テルル、酸素およびシリカを表し、Aはバナジウム、モリブデン、およびタングステンからなる群より選ばれた少なくとも一種の元素を表し、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、およびビスマスからなる群より選ばれた少なくとも一種の元素を表し、Eはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群から選ばれた少なくとも一種の元素を表し、a、b、c、d、e、xおよびyは原子比を表し、a=3~100、b=0.1~5、c=0.1~10、d=0~50、e=0~5、y=10~200であり、xはシリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。ただし、A、D、およびEが、2種以上の元素を含む場合、b、d、およびeは、各元素の原子比の合計を表す。
 本発明のアクリロニトリルの製造方法によれば、長期間に亘り、安定して高いアクリロニトリル収率を維持することができる。
 以下、本発明について詳細に説明する。
 本発明の1つの態様は、流動層反応器にて、鉄(Fe)、アンチモン(Sb)およびテルル(Te)を含有する粒子からなる流動層触媒を用い、プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを製造する方法において、前記気相接触アンモ酸化反応中における、前記流動層触媒のバルク組成におけるTe/Sb原子比をA、粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持しながら、気相接触アンモ酸化反応を行うことを特徴とするアクリロニトリルの製造方法である。
 また、本発明のその他の態様は、プロピレンと、分子状酸素と、アンモニアとを含む原料ガスを、流動層触媒に接触させて気相接触アンモ酸化を行い、アクリロニトリルを得る、気相接触アンモ酸化工程を含み、前記流動層触媒が、Fe、Sb、およびTeを含有する粒子からなり、前記気相接触アンモ酸化工程が、前記流動層触媒のバルク組成におけるTe/Sb原子比をA、前記流動層触媒の粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持しながら行われることを特徴とする、アクリロニトリルの製造方法である。
 流動層反応器にて、鉄、およびアンチモンを含有する流動層触媒を用い、プロピレンの気相接触アンモ酸化反応によりアクリロニトリルを製造する方法においては、アクリロニトリル収率が経時的に低下することがある。本発明者らがこの原因について鋭意検討した結果、アクリロニトリル収率の経時的な低下は、前記流動層触媒粒子の表面組成が経時的に変化することによるものであることを見出した。その結果から、気相接触アンモ酸化反応中における、流動層触媒のバルク組成におけるTe/Sb原子比をA、流動層触媒の粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持することで、アクリロニトリル収率の経時的な低下を抑制できることを見出し、本発明を完成するに至った。
 すなわち、本発明では、気相接触アンモ酸化反応工程における、流動層触媒のバルク組成におけるTe/Sb原子比をA、流動層触媒の粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/A(以下、「流動層触媒のB/A」という。)を2.0~5.0の範囲に維持しながら気相接触アンモ酸化反応を行うことで、長期間に亘り、安定して高いアクリロニトリル収率を維持できる。
 気相接触アンモ酸化反応工程中の流動層触媒のB/Aの下限値は好ましくは2.4であり、上限値は好ましくは4.6である。
 本発明において、未反応(すなわち、流動層触媒が気相接触アンモ酸化反応に供される前)の流動層触媒のB/Aについては、気相接触アンモ酸化工程中の流動層触媒のB/Aを2.0~5.0の範囲に維持することができる限り特に制限はない。未反応の流動層触媒のB/Aは、好ましくは2.4~4.6である。流動層触媒のB/Aが上記の条件を満たすことにより、良好な触媒性能、すなわち、高いアクリロニトリル収率を維持することができる。
 ここで、流動層触媒のバルク組成とは、少なくとも数十mgの流動層触媒の集合体全体の組成のことを指す。具体的には、流動層触媒のバルク粒子の粒子径が、1~200μm、より好ましくは5~150μmの組成のことを指す。流動層触媒のバルク組成におけるTe/Sb原子比Aを測定する方法としては特に制限はないが、例えばICP(誘導結合高周波プラズマ)発光分析法、XRF(蛍光X線)分析法、原子吸光分析法等の公知の元素分析を行うことにより確認できる。本発明では、簡便性の面からXRF分析法による、既知量の標準サンプルを用いた検量線法を採用した。すなわち、本発明においては、このような測定方法で測定した流動層触媒の組成を、「流動層触媒のバルク組成におけるTe/Sb原子比A」とする。
 一方、流動層触媒の粒子の表面組成とは、流動層触媒の各粒子におけるごく表層を構成している元素の比率のことを指す。ここで、ごく表層とは、粒子表面から数nm程度の深さまでの層のことである。具体的には、流動層触媒の各粒子の最表層~5nmの深さまでの層、より好ましくは、最表層~3nmの深さまでの層のことを意味する。本発明において、流動層触媒の粒子の上述の表面組成におけるTe/Sb原子比Bは、XPS(X線光電子分光)法により測定して求めた値のことを意味する。
 気相接触アンモ酸化工程中の流動層触媒のB/Aは、気相接触アンモ酸化工程中の流動層反応器から流動層触媒を一部抜き出し、その流動層触媒のバルク組成におけるTe/Sb原子比A、および流動層触媒の粒子の表面組成におけるTe/Sb原子比Bを上述した方法で測定することで求められる。
 気相接触アンモ酸化反応工程中の流動層触媒のB/Aが上記下限値、すなわち、2.0よりも小さい場合には、青酸等の副生成物の生成量が増加し、アクリロニトリル収率が低下する。
 一方、気相接触アンモ酸化反応工程中の流動層触媒のB/Aが上記上限値、すなわち、5.0よりも大きい場合には、二酸化炭素等の副生成物の生成量が増加し、アクリロニトリル収率が低下する。
 なお、流動層触媒のB/Aが上記範囲内であればそのまま反応を継続すればよいが、流動層触媒のB/Aが上記範囲から外れない範囲で、流動層触媒のB/Aを増大させたり低減させたりしてもよい。
 本発明のアクリロニトリルの製造方法の1つの態様において、気相接触アンモ酸化工程は、前記流動層触媒のB/Aを2.0~5.0の範囲に維持しながら行われることを特徴とする。すなわち、本発明のアクリロニトリルの製造方法は、気相接触アンモ酸化反応工程が、流動層触媒のB/Aを2.0~5.0の範囲に維持する工程を含むことが好ましい。流動層触媒のB/Aを特定の範囲に維持するためには、流動層触媒のB/Aを増大させる方法、もしくは流動層触媒のB/Aを低減させる方法を用いることが好ましい。
 気相接触アンモ酸化反応工程中の流動層触媒のB/Aを増大させる方法としては、テルル元素を含む化合物、具体的には、テルル粉末、テルル酸等を反応器中に添加する方法や、テルルを含浸して製造した触媒など、流動層触媒のB/Aが高い触媒等を反応器中に添加する方法などが有効である。また、反応器中の触媒の一部を、流動層触媒のB/Aが高い触媒で置換する方法なども有効である。
 一方、気相接触アンモ酸化反応工程中の流動層触媒のB/Aを低減する方法としては、流動層触媒のB/Aが低い触媒を反応器中に添加する方法や、反応器内の反応温度を一時的に上げる手法なども有効である。
 また、反応器内の触媒の一部を前述の流動層触媒のB/Aが低い触媒で置換する方法なども有効である。
 また、テルルは、反応中、アンチモンと比較して揮散しやすい性質を有する。この性質を利用し、反応温度を一時的に上昇(または下降)させるなどしてテルルの揮散を促進(または低減)させることにより、反応中の流動層触媒のB/Aを制御してもよい。
 上述したテルル元素を含む化合物、テルルを含浸して製造した触媒、又は反応器内の触媒と異なる流動層触媒のB/Aを有する触媒を添加するタイミング、又は添加量については、本発明の効果を有する限り特に制限されないが、気相接触アンモ酸化反応が進行するに連れて反応中の流動層触媒のB/Aは低下する傾向にある。よって、気相接触アンモ酸化反応中における流動層触媒のB/Aが上記範囲となるような添加のタイミングや添加量が好ましい。
 なお、反応中の流動層触媒のB/Aを制御する方法は、上述した方法に限定されず、公知の任意の方法で実施することができる。
 本発明のアクリロニトリルの製造方法において、気相接触アンモ酸化工程は、流動層反応器に流動層触媒を充填して触媒層とし、前記触媒層にプロピレン、分子状酸素、およびアンモニアを含有する原料ガスを通過させることにより行われる。
 原料ガスとしては本発明の効果を有する限り特に限定されないが、プロピレン/アンモニア/酸素が1/1.0~2.0/1.0~5.0(モル比)の範囲の原料ガスが好ましい。
 酸素源である分子状酸素の供給減としては本発明の効果を有する限り特に限定されないが、空気を用いることが好ましい。
 原料ガスは窒素、二酸化炭素等の不活性ガスや飽和炭化水素等で希釈してもよく、また、純酸素を混合して酸素濃度を高めて用いてもよい。
 気相接触アンモ酸化反応の反応温度は350~500℃が好ましく、反応圧力は常圧(100kPa)から500kPaの範囲内が好ましい。流動層触媒と反応ガスの接触時間は、0.1~20秒間であることが好ましい。
 本発明に用いられる流動層触媒としては、上記の要件を満たし、かつ鉄、アンチモンおよびテルルを含有する粒子からなるものであれば、本発明の効果を有する限り特に限定されないが、高いアクリロニトリル収率が得られる点で、下記一般式(1)で表されるバルク組成であることが好ましい。
 Fe10SbTe・(SiO  ・・・(1)
 式中、Fe、Sb、Te、O、およびSiOはそれぞれ鉄、アンチモン、テルル、酸素およびシリカを表し、Aはバナジウム、モリブデン、およびタングステンからなる群より選ばれた少なくとも一種の元素を表し、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、およびビスマスからなる群より選ばれた少なくとも一種の元素を表し、Eはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群から選ばれた少なくとも一種の元素を表し、a、b、c、d、e、xおよびyは原子比を表し、a=3~100、b=0.1~5、c=0.1~10、d=0~50、e=0~5、y=10~200であり、xはシリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。ただし、A、D、E、およびGが、2種以上の元素を含む場合、c、d、e、およびfは、各元素の原子比の合計を表す。
 本発明に用いられる流動層触媒の製造方法については本発明の効果を有する限り特に限定はなく、例えば前述の特許文献1~13等に記載の触媒の製造方法に倣えばよい。具体的には、流動層触媒を構成する各元素の原料を含有する溶液または水性スラリーを調製し、得られた溶液または水性スラリーを乾燥した後、得られた乾燥物を焼成する方法などが挙げられる。すなわち、本発明の流動層触媒の製造方法は、流動層触媒を構成する各元素を混合して、溶液または水性スラリーを調製する工程(I)、前記工程(I)で得られた溶液または水性スラリーを乾燥した後、得られた乾燥物を焼成する工程(II)を含む製造方法等により製造される事が好ましい。
 工程(I)において、溶液または水性スラリーには、本発明の流動層触媒を構成する所望の元素の全てが、所望の原子比で含有されていてもよい。また、流動層触媒を構成する、一部の元素を含む溶液または水性スラリーを調製し、残りの元素を、乾燥後あるいは焼成後の触媒組成物に含浸等の方法により添加してもよい。
 流動層触媒を構成する各元素の原料については、その目的、用途等に応じて決められ、酸化物、あるいは強熱することにより容易に酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物、アンモニウム塩等、またはそれらの混合物を用いることが好ましい。
 これらの原料を固体のまま、あるいは水や希硝酸等に溶解して溶液とした後に混合し、溶液または水性スラリーを得る。また、本発明の流動層触媒はシリカを含むが、前記シリカとしては、シリカゾルを用いることが好ましい。
 溶液または水性スラリーのpH調製に際しては、必要に応じて硝酸やアンモニア水等を添加してpH調整を行ってもよく、また、濃縮処理や加熱処理により行ってもよい。
 工程(II)は、前記工程(I)で得られた溶液または水性スラリーを乾燥した後、得られた乾燥物を焼成する工程である。工程(II)において、流動層触媒を構成する元素を含有する溶液またはスラリーを乾燥してできるだけ球状の乾燥物(乾燥粒子)を得ることが好ましい。乾燥は、通常、噴霧乾燥により行われる。乾燥機としては回転円盤式、ノズル式等一般的なものを用いることができる。流動層触媒として好ましい粒径分布を有する触媒を得るため、乾燥の条件を適宜調節することができる。
 得られた乾燥粒子は焼成することにより触媒としての活性を発現する。焼成温度は300~1000℃が好ましい。焼成温度が上記下限値、すなわち、300℃より低い場合には、触媒としての活性が発現しにくくなる。逆に焼成温度が上記上限値、すなわち、1000℃より高い場合には活性が過小となったり、アクリロニトリル収率が低下したりしやすくなる。すなわち、焼成温度が300~1000℃であれば、触媒としての活性が発現しやすく、アクリロニトリル収率が低下しにくいため好ましい。
 焼成時間は、短すぎると触媒としての活性が十分に発現しにくいことから、0.5時間以上が好ましい。上限は特に限定されないが、必要以上に焼成時間を延長しても、触媒の性能は一定以上とはならないため、通常は20時間以内である。すなわち、焼成時間は、0.5~20時間であることが好ましい。
 焼成に用いられる炉については特に制限はなく、箱型炉、ロータリーキルン、流動焼成炉等を用いることができる。流動層触媒の製造には、粒子を流動させながら焼成するロータリーキルンや流動焼成炉が好ましく、特に均一な焼成が可能であるという点で流動焼成炉が好ましい。焼成は二回、あるいはそれ以上に分けて行うことでアクリロニトリル収率や粒子強度等の物性が向上ため好ましい。
 前記流動層触媒のバルク組成を上記一般式(1)の範囲内とするためには、例えば上述した溶液または水性スラリーの調製工程(I)における各触媒原料の添加量や、溶液または水性スラリーの調製工程後から乾燥工程(II)までの各工程で添加する触媒原料の添加量を適宜選択すればよい。また、工程(II)において、乾燥後の触媒に含浸する等の方法により触媒を製造する場合には、含浸等により添加される触媒原料の添加量を適宜選択すればよい。
 前記流動層触媒のバルク組成は、上述したようにXRF(蛍光X線)分析法により元素分析を行うことにより確認できる。著しく揮発性の高い元素を用いない場合は、触媒製造時に用いた各原料の仕込み量から算出しても差し支えない。
 以上説明した本発明のアクリロニトリルの製造方法によれば、気相接触アンモ酸化反応工程において、反応中の流動層触媒のB/Aを2.0~5.0の範囲に維持しながら、気相接触アンモ酸化反応を行うことで、アクリロニトリル収率の経時的な低下を抑制でき、長期間に亘り、安定して高いアクリロニトリル収率を維持することができる。従って、本発明のアクリロニトリルの製造方法は、経済的に有利な方法である。
 以下、実施例により、本発明の実施態様および効果を具体的に説明するが、本発明は本実施例に限定されるものではない。
 各実施例で用いた流動層触媒の製造方法を以下に示す。
 また、流動層触媒の活性試験、流動層触媒のバルク組成と前記バルク組成におけるTe/Sb原子比A、および流動層触媒の粒子の表面組成におけるTe/Sb原子比Bの測定方法を以下に示す。
[流動層触媒の製造]
<流動層触媒1>
 まず、63質量%の硝酸2400gに銅粉末68.8gを溶解した。この溶液に純水2300gを添加してから60℃に加熱し、電解鉄粉201.7g、テルル粉末64.5gを少量ずつ添加し、溶解した。溶解を確認した後、この溶液に硝酸ニッケル105.0g、硝酸クロム43.3g、硝酸マンガン10.4gを順次添加し、溶解した(A液)。
 別途、純水700gにパラタングステン酸アンモニウム37.7gを溶解した溶液(B液)、純水100gにパラモリブデン酸アンモニウム31.9gを溶解した溶液(C液)を各々調製した。
 次いで、攪拌しながらA液に20質量%コロイダルシリカ6508.0g、三酸化アンチモン粉末1052.6g、B液、C液を順次添加して水性スラリーを得た。
 この水性スラリーに15質量%アンモニア水を滴下してpHを2.0に調整し、得られた水性スラリーを還流下、沸点で3時間加熱処理した。
 加熱処理後の水性スラリーを80℃まで冷却し、85質量%リン酸20.8g、ホウ酸40.2gを順次添加した。
 得られた水性スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥し、球状の乾燥粒子を得た。次いで、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に流動焼成炉を用いて800℃で3時間流動焼成し、流動層触媒1を得た。
 得られた流動層触媒1のバルク組成は、以下の通りであった。
 Fe10Sb20Mo0.50.4Te1.4CuNi0.51.8Cr0.3Mn0.1(SiO60
 ここで、xは、シリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。なお、流動層触媒1のバルク組成を表1にも示すが、表1においては酸素とその原子数(x)の記載を省略する。
<流動層触媒2>
 50℃に加熱した純水150gに、パラモリブデン酸アンモニウム51.0g、テルル粉末253.4g、35%過酸化水素水200gを順次添加して溶解した後、3時間攪拌保持した。そこに純水を添加することにより、液量を720mLに調節し、D液を調製した。
 3000gの流動層触媒1に、D液を少しずつ添加し、D液を含浸した混合物を得た。
 この混合物を回転焼成炉内で、500℃で、3時間焼成を行うことにより、流動層触媒2を得た。
 得られた流動層触媒2のバルク組成は、以下の通りであった。
 Fe10Sb20Mo1.30.4Te6.9CuNi0.51.8Cr0.3Mn0.1(SiO60
 ここで、xは、シリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。なお、流動層触媒2のバルク組成を表1にも示すが、表1においては酸素とその原子数(x)の記載を省略する。
<流動層触媒3>
 50℃に加熱した純水150gに、硝酸カリウム3.65gを添加して溶解した後、30分間攪拌した。そこに純水を添加することにより、液量を720mLに調節し、E液を調製した。
 3000gの流動層触媒1に、E液を少しずつ添加し、E液を含浸した混合物を得た。
 この混合物を回転焼成炉内で、500℃で、3時間焼成を行うことにより、流動層触媒3を得た。
 得られた流動層触媒3のバルク組成は、以下の通りであった。
 Fe10Sb20Mo0.50.4Te1.4CuNi0.51.8Cr0.3Mn0.10.1(SiO60
 ここで、xは、シリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。なお、流動層触媒3のバルク組成を表1にも示すが、表1においては酸素とその原子数(x)の記載を省略する。
<流動層触媒4>
 63質量%硝酸2110gに銅粉末48.7gを溶解した。この溶液に純水2710gを添加してから60℃に加熱し、電解鉄粉213.9g、テルル粉末88.0gを少量ずつ添加し、溶解した。溶解を確認した後、硝酸マグネシウム29.5g、硝酸ニッケル55.7g、硝酸リチウム1.3gを順次添加し、溶解した(F液)。
 別途、純水270gにパラタングステン酸アンモニウム10.0gを溶解した液(G液)、純水30gにパラモリブデン酸アンモニウム40.6gを溶解した液(H液)を各々調製した。
 次いで、攪拌しながら、F液に20質量%シリカゾル5178.4g、三酸化アンチモン粉末1395.9gに15質量%アンモニア水を滴下してpHを1.8に調整し、得られた水性スラリーを還流下、3時間加熱処理した。
 加熱処理後のスラリーを80℃まで冷却し、85質量%リン酸4.4g、G液、H液を順次添加した。
 得られた水性スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥し、球状の乾燥粒子を得た。次いで、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に流動焼成炉を用いて810℃で3時間流動焼成し、流動層触媒4を得た。
 得られた流動層触媒4のバルク組成は、以下の通りであった。
 Fe10Sb25Mo0.60.1Te1.0CuNi0.5Mg0.30.1Li0.05(SiO45
 ここで、xは、シリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。なお、流動層触媒4のバルク組成を表1にも示すが、表1においては酸素とその原子数(x)の記載を省略する。
<流動層触媒5>
 流動層触媒4の製造において、F液調製時に使用するテルル粉末の量を88.0gから219.9gに変更した点以外は、流動層触媒4と同様に製造を行い、流動層触媒5を得た。
 得られた流動層触媒5のバルク組成は、以下の通りであった。
 Fe10Sb25Mo0.60.1Te2.5CuNi0.5Mg0.30.1Li0.05(SiO45
 ここで、xは、シリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。なお、流動層触媒5のバルク組成を表1にも示すが、表1においては酸素とその原子数(x)の記載を省略する。
Figure JPOXMLDOC01-appb-T000001
[流動層触媒の活性試験]
 得られた流動層触媒を用い、以下の要領でプロピレンの気相接触アンモ酸化反応によるアクリロニトリル合成反応を実施した。
 触媒流動部の内径が55mm、高さが2000mmの流動層反応器に、接触時間が3.2秒間となるように流動層触媒を充填した。流動層触媒と反応ガスの接触時間は下記式により求めた。
 接触時間(秒)=見掛け嵩密度基準の触媒容積(mL)/反応条件に換算した供給原料ガス量(mL/秒)
 酸素源として空気を用い、組成がプロピレン:アンモニア:酸素=1:1.1:2.3(モル比)である原料ガスを、ガス線速17cm/秒で触媒層に送入した。反応圧力は200kPa、反応温度は460℃とした。
 反応生成物の定量にはガスクロマトグラフィーを用い、100時間に1回以上の頻度で分析を行った。その際、プロピレンの転化率が97.8~98.2%となるように、触媒量を適宜調整した。具体的には、プロピレン転化率がこの範囲よりも小さい場合、新品触媒を添加し、触媒量を調整した。また、プロピレン転化率がこの範囲よりも大きい場合、反応器から触媒を抜き出し、プロピレンの転化率を調整した。
 プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率は下記式により求めた。
 プロピレン転化率(%)={(供給したプロピレンの炭素質量-未反応プロピレンの炭素質量)/供給したプロピレンの炭素質量}×100
 アクリロニトリル収率(%)={(生成したアクリロニトリルの炭素質量)/供給したプロピレンの炭素質量)}×100
 アンモニア燃焼率(%)={(供給したアンモニアの窒素質量-未反応アンモニアの窒素質量-捕集された窒素含有有機化合物の窒素質量)/(供給したアンモニアの窒素質量)}×100
[流動層触媒のバルク組成と該バルク組成におけるTe/Sb原子比Aの測定]
 流動層触媒のバルク組成と該バルク組成におけるTe/Sb原子比Aの測定は、蛍光X線分析装置(リガク社製、「ZSX-PrimusII」)を用いて行った。流動層触媒中のTeおよびSbの定量は、既知量の標準サンプルを用いた検量線法を用いて行った。
[流動層触媒の粒子表面におけるTe/Sb原子比Bの測定]
 粒子表面におけるTe/Sb原子比Bの測定は、X線光電子分光分析装置(VG社製、「ESCALAB220iXL」)を用い、X線源としてAl-kα線を使用して行った。
 測定により得られたXPSスペクトルについて、まず、Te3d5のピーク面積強度、およびSb3d3のピーク面積強度を算出し、次いで各々のピーク面積強度について装置固有の相対感度因子による補正を行ったうえでその比率を求めるという手順により、流動層触媒の粒子表面組成におけるTe/Sb原子比Bを求めた。
[実施例1]
 以下のようにして活性試験および反応器より抜出した触媒の物性分析(XRF分析法測定およびXPS法測定)を行った。
 流動層触媒1を用いて気相接触アンモ酸化反応によるアクリロニトリル合成反応を行った。なお、未反応の触媒についてXRF分析法測定およびXPS法測定を行ったところ、流動層触媒のB/Aは、4.1であった。
 反応開始から100時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 引き続き、反応を継続し、反応開始から300時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から325時間後に反応器中の触媒質量の0.2%に相当する量の金属テルルを添加して、反応を継続した。
 反応開始から500時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から525時間後に反応器中の触媒質量の2%に相当する量の流動層触媒2を添加して、反応を継続した。
 反応開始から700時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から725時間後に反応器中の触媒質量の5%に相当する量の流動層触媒3を添加して、反応を継続した。
 反応開始から1000時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 これらの結果を表2に示す。
[実施例2]
 実施例1と同じ流動層触媒1を用い、以下のように気相接触アンモ酸化反応によるアクリロニトリル合成反応を行った。
 反応開始から525時間まで実施例1と同様の運転を行い、反応開始から525時間後に反応器中の触媒質量の4%に相当する量の流動層触媒2を添加して、反応を継続した。また、これ以降も実施例1と同様の運転を行った。
 反応開始から100、300、500、700、1000時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、それぞれ反応ガスの分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 これらの結果を表2に示す。
[実施例3]
 流動層触媒4を用いて気相接触アンモ酸化反応によるアクリロニトリル合成反応を行った。なお、未反応の触媒についてXRF分析法測定およびXPS法測定を行ったところ、流動層触媒のB/Aは、3.0であった。
 反応開始から100時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 引き続き、反応を継続し、反応開始から300時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から325時間後に反応器中の触媒質量の10%に相当する量の触媒を反応器から抜き出し、抜き出した触媒と等量の流動層触媒5を添加して、反応を継続した。
 反応開始から500時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から525時間後に反応器中の触媒質量の8%に相当する量のモリブデン酸アンモニウムを添加して、反応を継続した。
 反応開始から700時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から725時間後に反応器中の触媒質量の2%に相当する量の流動層触媒4を添加して、反応を継続した。
 反応開始から1000時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 これらの結果を表2に示す。
[比較例1]
 実施例3と同じ流動層触媒4を用い、かつ、反応途中で流動層触媒5およびモリブデン酸アンモニウムの添加を行わない以外は、実施例3と同様の運転を行った。
 反応開始から100、300、500、700、1000時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、それぞれ反応ガスの分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 これらの結果を表2に示す。
[比較例2]
 実施例1と同じ流動層触媒1を用い、以下のように気相接触アンモ酸化反応によるアクリロニトリル合成反応を行った。
 反応開始から100時間後に反応ガスを分析し、プロピレン転化率、アクリロニトリル収率、アンモニア燃焼率を求めた。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。反応開始から125時間後に反応器中の触媒質量の10%に相当する量の触媒を反応器から抜き出し、抜き出した触媒と等量の流動層触媒2を添加して、反応を継続した。
 反応開始から300時間後に反応ガスを分析した。また、反応ガス分析直後に反応器から触媒約5gを抜き出し、XRF分析法測定およびXPS法測定を行った。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、気相接触アンモ酸化工程中の流動層触媒のB/Aを2.0~5.0の範囲に維持しながら、気相接触アンモ酸化反応を行った実施例1~3の場合は、80%以上の高いアクリロニトリル収率を維持しながらアクリロニトリルを製造することができた。特に、反応中の流動層触媒のB/Aを2.4~4.6の範囲に維持しながら、気相接触アンモ酸化反応を行った実施例1の場合は、80.5%以上のより高いアクリロニトリル収率を維持しながらアクリロニトリルを製造することができた。
 一方、比較例1の場合、気相接触アンモ酸化反応の途中で、反応中の流動層触媒のB/Aが2.0未満になると、アクリロニトリルの収率が低下した。
 また、比較例2の場合、気相接触アンモ酸化反応の途中で、反応中の流動層触媒のB/Aが5.0を超えると、アクリロニトリルの収率が低下した。
 これらの結果より、気相接触アンモ酸化工程中の流動層触媒のB/Aが2.0~5.0の範囲内のときのアクリロニトリル収率は、流動層触媒のB/Aが上記範囲外のときの収率よりも高かった。流動層触媒のB/Aとアクリロニトリルの収率の関係、すなわち、流動層触媒のB/Aが上記範囲内であればアクリロニトリルの収率の低下を効果的に抑制できることを確認できた。
 従って、本発明であれば、気相接触アンモ酸化工程中の流動層触媒のB/Aを2.0~5.0の範囲に維持しながら気相接触アンモ酸化反応を行うことで、経時的なアクリロニトリル収率の低下を抑制でき、長期間に亘り、安定して高いアクリロニトリル収率を維持することができる。

Claims (2)

  1.  アクリロニトリルの製造方法であって、
     プロピレンと、分子状酸素と、アンモニアとを含む原料ガスを、流動層触媒に接触させて気相接触アンモ酸化を行い、アクリロニトリルを得る、気相接触アンモ酸化工程を含み、
     前記流動層触媒が、Fe、Sb、およびTeを含有する粒子からなり、
     前記気相接触アンモ酸化工程が、前記流動層触媒のバルク組成におけるTe/Sb原子比をA、前記流動層触媒の粒子の表面組成におけるTe/Sb原子比をBとしたときに、B/Aを2.0~5.0の範囲に維持しながら行われることを特徴とする、アクリロニトリルの製造方法。
  2.  前記流動層触媒のバルク組成が、下記一般式(1)で表されることを特徴とする請求項1に記載のアクリロニトリルの製造方法。
     Fe10SbTe・(SiO  ・・・(1)
    (式中、Fe、Sb、Te、O、およびSiOはそれぞれ鉄、アンチモン、テルル、酸素およびシリカを表し、Aはバナジウム、モリブデン、およびタングステンからなる群より選ばれた少なくとも一種の元素を表し、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、およびビスマスからなる群より選ばれた少なくとも一種の元素を表し、Eはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群から選ばれた少なくとも一種の元素を表し、a、b、c、d、e、xおよびyは原子比を表し、a=3~100、b=0.1~5、c=0.1~10、d=0~50、e=0~5、y=10~200であり、xはシリカを除く前記各成分の原子価を満足するのに必要な酸素の原子数である。ただし、A、D、およびEが、2種以上の元素を含む場合、b、d、およびeは、各元素の原子比の合計を表す。)
PCT/JP2013/054944 2012-02-29 2013-02-26 アクリロニトリルの製造方法 WO2013129385A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014502243A JP6296302B2 (ja) 2012-02-29 2013-02-26 アクリロニトリルの製造方法
CN201380011387.4A CN104203908B (zh) 2012-02-29 2013-02-26 丙烯腈的制造方法
KR1020147023464A KR101648283B1 (ko) 2012-02-29 2013-02-26 아크릴로니트릴의 제조 방법
EP13754208.0A EP2821390A4 (en) 2012-02-29 2013-02-26 PROCESS FOR THE PREPARATION OF ACRYLNITRILE
US14/381,360 US9328063B2 (en) 2012-02-29 2013-02-26 Method for producing acrylonitrile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-042833 2012-02-29
JP2012042833 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129385A1 true WO2013129385A1 (ja) 2013-09-06

Family

ID=49082582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054944 WO2013129385A1 (ja) 2012-02-29 2013-02-26 アクリロニトリルの製造方法

Country Status (6)

Country Link
US (1) US9328063B2 (ja)
EP (1) EP2821390A4 (ja)
JP (2) JP6296302B2 (ja)
KR (1) KR101648283B1 (ja)
CN (1) CN104203908B (ja)
WO (1) WO2013129385A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10567259B2 (en) * 2016-10-19 2020-02-18 Extreme Networks, Inc. Smart filter generator
KR20220114659A (ko) * 2020-02-26 2022-08-17 미쯔비시 케미컬 주식회사 촉매

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108219A (ja) 1974-02-09 1975-08-26
JPS52125124A (en) 1976-04-10 1977-10-20 Nitto Chem Ind Co Ltd Manufacture of acrylonitrile
JPS57167736A (en) * 1981-01-27 1982-10-15 Stamicarbon Method of reactivating catalyst
JPS57187039A (en) * 1981-05-15 1982-11-17 Nitto Chem Ind Co Ltd Activity improving method for metallic oxide catalyst containing tellurium
JPS58140056A (ja) 1982-02-16 1983-08-19 Nitto Chem Ind Co Ltd アンモ酸化方法
JPS58139745A (ja) 1982-02-15 1983-08-19 Nitto Chem Ind Co Ltd テルル含有金属酸化物触媒の活性向上方法
JPS59139938A (ja) 1983-01-31 1984-08-11 Nitto Chem Ind Co Ltd リンを含有する金属酸化物流動床触媒の製造法
JPH02256A (ja) * 1987-10-05 1990-01-05 Nitto Chem Ind Co Ltd プロピレンのアンモ酸化におけるアクリロニトリルとシアン化水素の収量を高位に維持する方法
JPH02152A (ja) * 1987-08-07 1990-01-05 Basf Chem Ltd アクリルニトリルの製法
JPH04118051A (ja) 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
JP2004331533A (ja) * 2003-05-02 2004-11-25 Daiyanitorikkusu Kk アクリロニトリルの製造方法
JP2005254058A (ja) * 2004-03-09 2005-09-22 Daiyanitorikkusu Kk 鉄・アンチモン・テルル含有金属酸化物触媒の製造方法
JP2009220008A (ja) * 2008-03-14 2009-10-01 Daiyanitorikkusu Kk アクリロニトリル合成用触媒およびアクリロニトリルの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH390829A (de) * 1962-02-19 1965-04-15 Grob Willy Einrichtung für den automatischen Spulenwechsel an Webstühlen
DE3217700A1 (de) * 1981-05-15 1982-12-02 Nitto Chemical Industry Co., Ltd., Tokyo Verfahren zur verbesserung der aktivitaet von tellur enthaltenden metalloxidkatalysatoren
DE3274975D1 (en) 1981-10-07 1987-02-12 Nitto Chemical Industry Co Ltd Process for ammoxidation of organic compounds
US4769355A (en) * 1987-04-20 1988-09-06 The Standard Oil Company Catalyst system for ammoxidation of paraffins
JP2744865B2 (ja) 1991-04-30 1998-04-28 インターナショナル・ビジネス・マシーンズ・コーポレイション シリアルチャネルアダプタ
DE69208565T2 (de) * 1991-08-08 1996-09-26 Mitsubishi Chem Corp Katalysator und Verfahren zur Herstellung von Nitrilen
JPH062804A (ja) 1992-06-17 1994-01-11 Babcock Hitachi Kk ボイラ振れ止め装置
US5400603A (en) 1993-06-14 1995-03-28 International Business Machines Corporation Heat exchanger
JPH0814468B2 (ja) 1993-06-28 1996-02-14 日本電気株式会社 アンモニアヒートパイプのリーク検査方法
JPH0718722A (ja) 1993-06-30 1995-01-20 Sekisui Chem Co Ltd 配管接続構造
JPH0718723A (ja) 1993-06-30 1995-01-20 Teruo Hatori 自在勾配道路側溝
JPH0719766A (ja) 1993-07-02 1995-01-20 Mitsubishi Heavy Ind Ltd 積層板型熱交換器
US6136998A (en) * 1996-10-15 2000-10-24 Mitsubishi Rayon Co., Ltd. Retention of activity of molybdenum-containing metallic oxide catalyst
ID20720A (id) * 1997-08-05 1999-02-18 Asahi Chemical Ind Larutan berair yang mengandung niobium untuk digunakan dalam pembuatan katalis oksida yang mengandung niobium
JP4242197B2 (ja) * 2003-04-18 2009-03-18 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
JP4454009B2 (ja) 2003-12-05 2010-04-21 旭化成ケミカルズ株式会社 アンモ酸化反応の選択性改善方法およびこれを用いる不飽和ニトリルの製造方法
JP5011167B2 (ja) * 2008-03-03 2012-08-29 ダイヤニトリックス株式会社 アクリロニトリル製造用触媒およびアクリロニトリルの製造方法
JP5163273B2 (ja) * 2008-05-16 2013-03-13 住友化学株式会社 不飽和アルデヒド及び/又は不飽和カルボン酸製造用触媒の製造方法、並びに不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP5387297B2 (ja) * 2009-09-30 2014-01-15 住友化学株式会社 複合酸化物触媒の製造方法
US8153546B2 (en) * 2010-03-23 2012-04-10 Ineos Usa Llc Mixed metal oxide ammoxidation catalysts
JP6264282B2 (ja) * 2012-02-29 2018-01-24 三菱ケミカル株式会社 アクリロニトリルの製造方法
US9181178B2 (en) * 2012-02-29 2015-11-10 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile
US8835666B2 (en) * 2012-11-26 2014-09-16 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108219A (ja) 1974-02-09 1975-08-26
JPS52125124A (en) 1976-04-10 1977-10-20 Nitto Chem Ind Co Ltd Manufacture of acrylonitrile
JPS57167736A (en) * 1981-01-27 1982-10-15 Stamicarbon Method of reactivating catalyst
JPS57187039A (en) * 1981-05-15 1982-11-17 Nitto Chem Ind Co Ltd Activity improving method for metallic oxide catalyst containing tellurium
JPS58139745A (ja) 1982-02-15 1983-08-19 Nitto Chem Ind Co Ltd テルル含有金属酸化物触媒の活性向上方法
JPS58140056A (ja) 1982-02-16 1983-08-19 Nitto Chem Ind Co Ltd アンモ酸化方法
JPS59139938A (ja) 1983-01-31 1984-08-11 Nitto Chem Ind Co Ltd リンを含有する金属酸化物流動床触媒の製造法
JPH02152A (ja) * 1987-08-07 1990-01-05 Basf Chem Ltd アクリルニトリルの製法
JPH02256A (ja) * 1987-10-05 1990-01-05 Nitto Chem Ind Co Ltd プロピレンのアンモ酸化におけるアクリロニトリルとシアン化水素の収量を高位に維持する方法
JPH04118051A (ja) 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
JP2004331533A (ja) * 2003-05-02 2004-11-25 Daiyanitorikkusu Kk アクリロニトリルの製造方法
JP2005254058A (ja) * 2004-03-09 2005-09-22 Daiyanitorikkusu Kk 鉄・アンチモン・テルル含有金属酸化物触媒の製造方法
JP2009220008A (ja) * 2008-03-14 2009-10-01 Daiyanitorikkusu Kk アクリロニトリル合成用触媒およびアクリロニトリルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821390A4

Also Published As

Publication number Publication date
JPWO2013129385A1 (ja) 2015-07-30
CN104203908B (zh) 2016-12-07
KR101648283B1 (ko) 2016-08-12
KR20140117598A (ko) 2014-10-07
JP6296302B2 (ja) 2018-03-20
EP2821390A1 (en) 2015-01-07
JP6439819B2 (ja) 2018-12-19
JP2017149736A (ja) 2017-08-31
US9328063B2 (en) 2016-05-03
CN104203908A (zh) 2014-12-10
US20150031907A1 (en) 2015-01-29
EP2821390A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5011176B2 (ja) アクリロニトリル合成用触媒およびアクリロニトリルの製造方法
JP5919870B2 (ja) アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
JP6264282B2 (ja) アクリロニトリルの製造方法
JP4954750B2 (ja) モリブデン、ビスマス、鉄、シリカ含有複合酸化物触媒の製造方法
JP5560642B2 (ja) 複合酸化物触媒の製造方法
JP6439819B2 (ja) アクリロニトリルの製造方法
JP5707841B2 (ja) 流動層触媒の製造方法、およびアクリロニトリルの製造方法
JP2017149737A (ja) アクリロニトリルの製造方法
JP5378041B2 (ja) アクリロニトリル合成用複合酸化物触媒の製造方法
JP4503315B2 (ja) 鉄・アンチモン・テルル含有金属酸化物触媒の製造方法
JP5609285B2 (ja) 複合酸化物触媒の製造方法
JP6237497B2 (ja) 流動層触媒の製造方法およびニトリル化合物の製造方法
JP5609254B2 (ja) 複合酸化物触媒の製造方法
KR20230099704A (ko) 기상 접촉 암모산화 반응용 촉매 및 기상 접촉 암모산화 반응용 촉매의 제조 방법
JPWO2014129566A1 (ja) アクリロニトリル製造用触媒の製造方法およびアクリロニトリルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502243

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147023464

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381360

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013754208

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE