WO2013129135A1 - 仮撚用ポリアミド混繊複合糸 - Google Patents

仮撚用ポリアミド混繊複合糸 Download PDF

Info

Publication number
WO2013129135A1
WO2013129135A1 PCT/JP2013/053657 JP2013053657W WO2013129135A1 WO 2013129135 A1 WO2013129135 A1 WO 2013129135A1 JP 2013053657 W JP2013053657 W JP 2013053657W WO 2013129135 A1 WO2013129135 A1 WO 2013129135A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
yarn
filament
sectional shape
section
Prior art date
Application number
PCT/JP2013/053657
Other languages
English (en)
French (fr)
Inventor
小林靖希
藤井一
花岡純
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013513874A priority Critical patent/JP5786938B2/ja
Priority to CN201380004443.1A priority patent/CN104024499A/zh
Publication of WO2013129135A1 publication Critical patent/WO2013129135A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes

Definitions

  • the present invention relates to a false twisted polyamide mixed composite yarn in which filaments having at least two kinds of different cross-sectional shapes having a single yarn fineness of 1.3 dtex or less are dispersed. Furthermore, the present invention relates to a false twisted polyamide blend composite yarn suitable for obtaining a high-quality woven or knitted fabric having softness, water absorption, quick drying, and excellent mild glossiness by applying false twisting. .
  • Polyamide multifilament one of the synthetic fibers, has excellent characteristics such as high strength, abrasion resistance, softness, and clearness of dyeing. Therefore, legwear such as pantyhose and tights, innerwear such as lingerie and foundation. It has been used favorably for apparel applications such as clothing, sportswear and casual wear.
  • Patent Document 1 a mixed fiber in which at least two kinds of synthetic fiber multifilaments are dispersed.
  • Patent Document 2 a mixed fiber in which at least two types of single filaments having different cross-sectional shapes are dispersed.
  • Patent Document 3 the same number of six-leaf / round cross-section polyamide multifilaments having a single-filament fineness of 0.99 dtex is known as a single-filament fineness deformed cross-section polyamide multifilament.
  • the mixed yarn in which at least two types of single filaments having different cross-sectional shapes are dispersed is a polyester multifilament, which is inferior in softness, strength, and wear resistance as compared with a polyamide multifilament. Therefore, in order to pursue further softness, which is a consumer need in recent years, it is necessary to make the single yarn finer and multifilament, but the strength and wear resistance are low, leg wear, inner wear, sports wear There was a problem that it was not suitable for clothing such as casual wear.
  • Patent Document 3 Although the same number of six-leaf / round cross-section polyamide multifilaments having a single yarn fineness of 0.99 dtex, it is a drawn yarn as a yarn form, and water absorption and quick drying properties can be obtained. There was a problem that it was not possible to obtain a further soft feeling that is a consumer need.
  • the present invention solves the above-mentioned problems of the prior art and provides a high-quality woven or knitted fabric having a soft feeling and excellent in water absorption, quick-drying and mild gloss by applying false twisting. It is an object of the present invention to provide a suitable false twisted polyamide mixed composite yarn.
  • a polyamide mixed fiber comprising at least two types of filaments having different cross-sectional shapes dispersed and mixed, wherein the cross-sectional shape perpendicular to the longitudinal direction of at least one type of filaments has a recess.
  • the cross-sectional shape perpendicular to the longitudinal direction of the other filaments is a shape having a recess, and the average fineness of the filament for each type is in a range of 1.3 dtex or less.
  • the polyamide mixed composite yarn for false twisting of the present invention is a polyamide mixed composite yarn for false twist in which single yarn fineness is thin and at least two kinds of single filaments having different cross-sectional shapes are dispersed. Therefore, it is possible to obtain a high-quality woven or knitted fabric having a soft feeling and excellent in water absorption, quick drying, and mild gloss.
  • the polyamide twisted composite yarn for false twisting of the present invention is mainly composed of polyamide.
  • the term “mainly” as used herein refers to a polyamide having 80 mol% or more of amide units among repeating units, and preferably 90 mol% or more of amide units among repeating units.
  • the polyamide used in the present invention is a resin composed of a high molecular weight substance in which a so-called hydrocarbon is connected to the main chain through an amide bond.
  • a copolymer is mentioned.
  • the polyamide is preferably a polyamide mainly composed of polycapramide or polyhexamethylene adipamide because of its economical aspect, relatively easy yarn production, excellent dyeability, and excellent mechanical properties.
  • the term “mainly” as used herein means that the ⁇ -caprolactam unit constituting polycaproamide is 80 mol% or more as the hexamethylene diammonium adipate unit constituting polyhexamethylene adipamide, and more preferably It is 90 mol% or more.
  • the polyamide mixed fiber composite yarn for false twisting according to the present invention preferably has a relative viscosity of 25 to 98% sulfuric acid in the range of 2.2 to 3.7, and more preferably in the range of 2.4 to 3.3. More preferably, it is in the range of 2.4 to 2.7.
  • the polyamide mixed composite yarn for false twisting of the present invention may contain various additives within a range not impairing the effects of the present invention.
  • this additive include stabilizers such as manganese compounds, colorants such as titanium oxide, flame retardants, conductivity-imparting agents, and fibrous reinforcing agents.
  • the average value of at least two kinds of single filaments having different cross-sectional shapes is 1.3 dtex or less, and is 0.1 to 1.3 dtex. It is preferably 0.3 to 1.1 dtex, more preferably 0.4 to less than 1.0 dtex.
  • the average value of the single yarn fineness of at least two filaments having different cross-sectional shapes is greater than 1.3 dtex, softness and water absorption are obtained when the fabric is made of false knitted fabric after false twisting. It will be lacking in nature.
  • the mixed fiber composite yarn of the present invention is a multifilament yarn formed by combining filament yarns having different cross-sectional shapes.
  • the irregular cross-sectional shape of the filament having the irregular cross-section has at least one recess.
  • a more preferable irregular cross-sectional shape is an irregular cross-sectional shape having the same number of convex portions as two to eight concave portions, and the convex portions projecting radially at equal angular intervals.
  • the shape in which the cross-sectional shape perpendicular to the longitudinal direction of the filament does not have a concave portion means a single yarn having a shape that does not literally have a concave portion such as a perfect circle, an ellipse, a lens, a square / rectangular shape, and a polygon.
  • a more preferable shape is a perfect circle.
  • the true circular shape does not need to be strictly a perfect circle, and may be a so-called round cross section such as a shape represented by a fiber cross section obtained by spinning from a normal round hole discharge hole. That's fine.
  • cross-sectional shape having no recess are the circles shown in FIG. 3, the ellipse shown in FIG. 4, the rice ball type shown in FIG. 5, and the polygon more than the triangle shown in FIG. 6.
  • a tangent line (L1) is drawn, a plurality of contact points do not exist and only one contact point (S1) exists.
  • a composite state of a filament having a cross-sectional shape having a concave portion and a filament having a cross-sectional shape not having a concave portion is formed by dispersing and mixing the filaments having different cross-sectional shapes.
  • Each single filament is preferably dispersed and mixed in a random state without distinction in cross-sectional shape.
  • a preferable mixed fiber state is as shown in FIG. 2, and the single filaments of the respective cross-sectional shapes are not in a state of forming a group of blocks, but are appropriately dispersed without distinction in the cross-sectional shape.
  • FIG. 2 is an example which shows the dispersion
  • the said dispersion type is preferable.
  • the cross-sections of the filaments It is preferable to include a filament having a cross-sectional shape capable of forming a void.
  • a void formed in the arrangement of the cross-sectional shape filaments and the cross-sectional shape filaments having the recesses provides a woven or knitted fabric to which effective water absorption is provided by capillary action.
  • the filament yarn having a cross-sectional shape having a concave portion is in a mixed state, it is possible to obtain a woven fabric having a smooth texture even in the water retaining state of the absorbed water, and further having the above specific relationship
  • By mixing the cross-sectional shape having the recesses and the cross-sectional shape not having the recesses it is possible to provide a woven or knitted fabric that exhibits excellent water absorption even in the false twisted state.
  • the mixed fiber composite yarn of the present invention has a concave portion formed between the two convex portions with respect to a tangent line that touches two adjacent convex portions across the concave portion of the cross section of the filament having a concave portion. It is preferable that the length of the perpendicular dropped to the bottom point b is smaller than the yarn radius of the filament having a cross-sectional shape having no recess.
  • each filament is easy to move freely in the composite yarn when false twisted, and the bulkiness is maintained, with a smooth texture.
  • the interfiber gap is maintained without being clogged, and the water absorption is excellent.
  • a deformed cross-section filament is selected by the method (1) among the calculation methods (1) to (3) of the later-described lobar degree LB, and the method (2) is used.
  • the length b of the perpendicular is measured and the average value is calculated.
  • the measurement of the yarn radius is performed by the method described later.
  • the relationship between the single yarn fineness D1 of the filament having a cross-sectional shape without a concave portion and the single yarn fineness D2 of the filament having a cross-sectional shape having a concave portion is 0.5 ⁇ D2 / D1 ⁇ 2.0 from the viewpoint of dry feeling and water absorption effect.
  • the single yarn fineness D1 having a cross-sectional shape having no concave portion and the single yarn fineness D2 of a filament having a cross-sectional shape having a concave portion are average fineness.
  • the single yarn fineness is calculated by the method described later.
  • the degree of global LB will be described with reference to FIG.
  • FIG. 1 is an example of a modified cross-section fiber in the present invention.
  • the degree of globalization LB is relative to the length a of the tangent line between the contact points S 1 and S 2 at the two convex portions adjacent to each other across the concave portion in the deformed section single yarn cross section of the false twisting polyamide fiber.
  • the percentage (%) of the ratio of the length b of the perpendicular line extending from the low point of the concave portion formed between the two convex portions to the tangent line. That is, LB (%) 100 ⁇ b / a.
  • the average value of the global level LB is calculated by the following method.
  • the cross-sectional shape having the concave portion is a cross-sectional shape having a value of 5 or more and 60 or less in terms of the degree of globalization LB defined below from the viewpoint of texture and water absorption when the woven or knitted fabric is formed.
  • LB degree of globalization LB
  • the polyamide mixed fiber composite yarn for false twisting of the present invention can suppress the generation of streaks after dyeing to the utmost by using a mixed fiber with a filament having no recess, and the porosity between the filaments can be reduced. Capillary phenomenon works, and when it is made into a fabric, higher water absorption can be imparted.
  • the blend ratio of the filament yarn having a cross-sectional shape having at least a concave portion and the single filament yarn having a cross-sectional shape not having a concave portion of the polyamide mixed fiber composite yarn for false twist of the present invention is the texture and water absorption characteristics when used as a woven fabric or a knitted fabric. In view of the above, it is preferably 20:80 to 80:20, and more preferably 30:70 to 70:30. More preferably, it is 40:60 to 60:40. In addition, the said mixed fiber ratio shall be based on the method mentioned later.
  • FIG. 7 is a schematic view showing an example of a production process of a false twisted polyamide mixed composite yarn according to the present invention.
  • FIG. 8 is discharged from the base 1 for the purpose of suppressing the cooling unevenness between the single yarns and reducing the fineness unevenness in the longitudinal direction of the yarn.
  • a cooling device 11 that blows cooling air from the inside to the outside cools the fiber filament 9 to room temperature
  • a molten thermoplastic polymer as shown in FIG. 9 is discharged from the die 1.
  • a method of cooling the fiber filament 9 to room temperature with a cooling device 12 that blows cooling air from the outside to the inside may be used.
  • FIG. 8 is a schematic view showing an example of a manufacturing process when a cooling device that blows cooling air from the inside to the outside is used.
  • FIG. 9 shows a manufacturing process when a cooling device that blows cooling air from the outside to the inside is used. It is the schematic which shows an example.
  • the melt spinning temperature is not limited as long as the false twisted polyamide mixed composite yarn of the present invention can be obtained, and is usually used, for example, 240 to 260 ° C. in the case of polycaproamide, polyhexamethylene adipamide. 275 to 295 ° C. is preferably used in this case, but when the same die is used, the viscosity at the time of melt spinning is high (for example, when the melt spinning temperature is low or the viscosity of polyamide is high) and the degree of globalization LB Increases, and the viscosity tends to decrease when the viscosity is low (for example, when the melt spinning temperature is high or when the viscosity of the polyamide is low).
  • the production method of the false-twisted polyamide mixed composite yarn of the present invention is not particularly limited, but the polyamide is melted, discharged from the die, cooled by blowing cooling air, and converged (that is, an oil agent). From the viewpoint of cost, a one-step method in which an interlace nozzle is applied and wound on a package is preferable.
  • the elongation of the false twist polyamide fiber of the present invention is preferably 45 to 70%. If the elongation is too low, the tensile resistance of the filament is increased, and the actual number of twists that are twisted in the false twisting process is reduced, so that it is difficult to impart sufficient crimp to the obtained processed yarn. In yarn, yarn breakage and fluff are likely to occur, and high-order passability tends to be inferior. On the other hand, if the elongation is too high, the actual number of twists to be twisted becomes excessive, fluffing occurs in the obtained processed yarn, the strength tends to decrease, and the drawn yarn has a high residual elongation. There is a tendency that streaks are likely to appear in the woven or knitted fabric, and the quality tends to be inferior. The measurement of the said elongation shall be based on the below-mentioned method.
  • the stress when the obtained false twisting polyamide fiber is stretched by 15% is preferably 1.0 to 2.0 cN / dtex, more preferably 1.2 to 1.8 cN / dtex. If the stress at 15% elongation is too low, the tension during false twisting will be too low, the processed yarn will be broken or the working tension will be changed easily, the quality of the processed yarn will be lowered, and the yield will be deteriorated. On the other hand, if the stress at 15% elongation is too high, a large tension is concentrated on the interlace part when false twisting is performed, causing breakage of the single yarn, which tends to deteriorate the process passability and the quality of the woven or knitted fabric. The measurement of the stress when the 15% elongation is performed is based on the method described later.
  • the polyamide mixed composite yarn for false twisting of the present invention is wound once, and then transported to the false twisting step, which is the next step, and is subjected to crimping to make a false twisted yarn into a knitted or woven fabric.
  • the method for false twisting of the polyamide mixed fiber composite yarn for false twisting of the present invention is not particularly limited, but after the yarn is fed from the polyamide mixed fiber composite yarn package for false twist and heated by a heater or the like, the false twisted disk or the like After applying false twisting, a finishing agent is applied to form a false twisted yarn package.
  • a preferred example of false twisting is given. That is, a fiber is pulled out from a polyamide mixed fiber composite yarn package for false twisting at 300 to 800 m / min and heated as a first false twisting heater (1HT) for 0.05 to 0.50 seconds with a heater at 150 to 240 ° C. , Simultaneous stretching and false twisting are performed while stretching about 1.1 to 1.5 times. At this time, the stretching simultaneous false twisting is performed using a friction false twisting tool or the like. Furthermore, the crimpability may be lowered by using a second heater (2HT). In this case, 2HT may be a contact type or a non-contact type, but the second heater temperature is suitably 120 to 220 ° C., preferably 140 to 190 ° C. Thereafter, an oil agent of about 1.0 to 3.0% with respect to the weight of the false twisted yarn is applied. Moreover, you may provide an interlace in order to improve the convergence of a process yarn before and after oil agent provision.
  • 1HT first false twisting heater
  • the polyamide fiber for false twisting of the present invention can obtain tights that are excellent in appearance and tactile sensation because it can be falsely twisted uniformly, but is not limited thereto.
  • the expansion / contraction recovery rate (CR2) of the obtained false twisted yarn is preferably 5 to 20%, more preferably 8 to 12%.
  • the expansion / contraction recovery rate (CR2) is too low, when a fabric such as a woven or knitted fabric is used, it is difficult to maintain the crimped form of the false twisted yarn, and the soft feeling and water absorption tend to be inferior.
  • the expansion / contraction recovery rate (CR2) is too high, the false twisted yarn tends to be bulky when it is made into a fabric such as a woven or knitted fabric, and the eyes of the woven or knitted fabric tend to become clogged and become coarse.
  • the expansion / contraction restoration rate (CR2) is measured by the method described later.
  • Titanium oxide content 5 g of a sample was precisely weighed and placed in a magnetic crucible, and ashed at 1000 ° C. using an electric furnace, and the ignition residue was expressed as wt% as titanium oxide.
  • the area ratio of the total area of the filament cross-sections in each cross-sectional shape is calculated by the following formula, and the total fineness is multiplied by the area ratio. The value was divided by the total number of filaments of the same shape. Moreover, the area ratio of the total area of the filament cross section in each cross-sectional shape was made into the mixed fiber ratio.
  • Area ratio of section A area of section A / (area of section A + area of section B)
  • Area ratio of section B area of section B / (area of section A + area of section B)
  • Single yarn fineness (dtex) of cross section A in the mixed filaments (total fineness (dtex) ⁇ area ratio of cross section A) / number of filaments of cross section A
  • Single yarn fineness (dtex) of cross section B in the mixed filaments ( Total fineness (dtex) ⁇ area ratio of section B) / number of filaments in section B
  • Depression global LB (average value), b A CCD manufactured by Tokyo Denshi Co., Ltd. is prepared by dissolving a packing agent composed of paraffin, stearic acid, and ethyl cellulose, solidifying the yarn by allowing it to stand at room temperature and then cutting the yarn in the packing material in the cross-sectional direction.
  • the cross section of the fiber is photographed with a camera (CS5270), a filament is selected at random, and there are two or more concave portions selected at random (all when the number of filaments is 10 or less).
  • the deformed single yarn was subjected to image processing using a monitoring device (EMM-3100) manufactured by Micro-MEASURE, and a cross-sectional photograph printed at 3000 times using a color video processor (SCT-CP710) manufactured by Mitsubishi Electric was used.
  • the measurement of the length b of the perpendicular and the degree of globalization LB and the calculation of the average value were performed as follows.
  • Ten irregularly shaped filaments having at least one concave portion and the same type of shape are randomly selected (when the number of filaments is 10 or less, all irregularly shaped filaments are measured).
  • the tangent length a and the perpendicular length b of all the recesses in the filament are measured to calculate the globality LB, and the average value x is calculated for each filament.
  • the average value x of the calculated average values x for each filament is calculated.
  • Elongation The elongation is measured using a TENSIRON RPC-1210A manufactured by ORIENTEC, gripped at a gripping interval of 50 cm, stretched at a pulling speed of 50 cm / min, and the tensile length when the yarn breaks is measured three times. The average value was divided by 50 cm and multiplied by 100.
  • the test piece is left for 2 minutes in a state where only the initial load is excluded, and the length of the casket is measured to obtain L1.
  • L and L1 were measured at three points by changing the sample, and after obtaining the expansion / contraction recovery rate (CR2) by the following formula, an average value was taken.
  • Expansion / contraction recovery rate (CR2) (%) ⁇ (L ⁇ L1) / L ⁇ ⁇ 100.
  • Example 1 A molten polymer is discharged at a spinning temperature of 253 ° C. from a spinneret in which polycaproamide containing 1.9% by weight of titanium oxide at 25 ° C. and 98% sulfuric acid relative viscosity of 2.6 is circularly arranged.
  • a steam jet zone in which steam at 285 ° C. is jetted at a pressure of 0.25 kPa toward the head, and a single cylinder provided downstream of the steam jet zone and having a cooling start position of 30 mm and a vertical length of 300 mm
  • the mold cooling device is allowed to pass through a cooling zone that is cooled by cooling air of 20 ° C.
  • the results are shown in Table 1.
  • Example 2 A polycaproamide multifilament having a six leaf / round cross section is spun in the same manner as in Example 1 except that a 44 dtex / 46 filament mixed yarn having a six leaf / round cross section as shown in FIG. 2 is used. Of mixed yarn was obtained. Using the obtained blended yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.2 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 3 Spinning was carried out in the same manner as in Example 1 except that a blended yarn consisting of 44 dtex / 34 filaments of six-leaf / round cross section was obtained, and a polycaproamide multifilament blended yarn consisting of six-leaf / round section was obtained. It was. Using the obtained mixed yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.4 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 4 Polycapro having a six-leaf / round cross section was spun in the same manner as in Example 1 except that the globality LB (average value) of the blended yarn having a six-leaf / round section of 44 dtex / 46 filament was changed. An amide multifilament mixed yarn was obtained. Using the obtained blended yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.2 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 5 Polycapro having a six-leaf / round cross section was spun in the same manner as in Example 1 except that the globality LB (average value) of the blended yarn having a six-leaf / round section of 44 dtex / 46 filament was changed. An amide multifilament mixed yarn was obtained. Using the obtained blended yarn, stretch false twisting was performed at a processing speed of 500 m / min, a processing magnification of 1.3 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 6 Spinning was performed in the same manner as in Example 1 except that the blending ratio of the blended yarn consisting of 44 dtex / 46 filaments of six-leaf / round section was changed, and polycaproamide multifilaments consisting of six-leaf / round section A blended yarn was obtained. Using the obtained mixed yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.4 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 7 Spinning was performed in the same manner as in Example 1 except that the blending ratio of the blended yarn consisting of 44 dtex / 46 filaments of six-leaf / round section was changed, and polycaproamide multifilaments consisting of six-leaf / round section A blended yarn was obtained. Using the obtained mixed yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.4 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 8 A polycaproamide multifilament having a six leaf / round cross section is spun in the same manner as in Example 1 except that a 44 dtex / 46 filament mixed yarn having a six leaf / round cross section as shown in FIG. 2 is used. Of mixed yarn was obtained. Using the obtained blended yarn, stretch false twisting was performed at a processing speed of 500 m / min, a processing magnification of 1.2 times, a 1HT temperature of 200 ° C., and a 2HT temperature of 190 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Example 9 A polycaproamide multifilament having a six leaf / round cross section is spun in the same manner as in Example 1 except that a 44 dtex / 46 filament mixed yarn having a six leaf / round cross section as shown in FIG. 2 is used. Of mixed yarn was obtained. Using the obtained blended yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.2 times, and an 1HT temperature of 180 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Comparative Example 1 Spinning was carried out in the same manner as in Example 1 except that a mixed yarn consisting of a 44 dtex / 30 filament trilobal / round cross section was obtained to obtain a polycaproamide multifilament blending yarn consisting of a trilobal / round cross section. It was. Using the obtained blended yarn, stretch false twisting was performed at a processing speed of 500 m / min, a processing magnification of 1.5 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the results are shown in Table 1.
  • Comparative Example 2 Spinning was performed in the same manner as in Example 1 except that 44dtex / 46 filament six-leaf / trilobal cross-section was used, and polycaproamide multifilament multi-filament blend yarn consisting of six-leaf / trilobal cross-section. Got. Using the obtained blended yarn, drawing false twist was performed at a processing speed of 500 m / min, a processing magnification of 1.1 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • Comparative Example 3 The polymer constituting the multifilament is made of polyethylene terephthalate, and the molten polymer is discharged from the die at a spinning temperature of 290 ° C. to obtain a blended yarn consisting of a 6-leaf / round section of 44 dtex / 46 filament. Spinning was performed in the same manner as in Example 1 to obtain a mixed yarn of polyethylene terephthalate having a six-leaf / round cross section. Using the obtained blended yarn, stretch false twisting was performed at a processing speed of 500 m / min, a processing magnification of 1.5 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the single yarn fineness of the polyethylene terephthalate, the number of recesses in the cross-sectional shape, the globality LB (average value), the blend ratio, the yarn radius / vertical length b, the elongation, 15% stress, the expansion / contraction rate (CR2), Texture evaluation (soft feeling), water absorption (Bilec method), yarn-making property, workability and comprehensive evaluation were performed. The results are shown in Table 1.
  • Comparative Example 4 A polycaproamide multifilament fiber having a round cross section was obtained by spinning in the same manner as in Example 1 except that a fiber having a round cross section of 44 dtex / 46 filament was used. Using the obtained blended yarn, stretch false twisting was performed at a processing speed of 500 m / min, a processing magnification of 1.5 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn. The polycaproamide multifilament was subjected to a single yarn fineness, elongation, 15% stress, stretching / restoring rate (CR2), texture evaluation (soft feeling), water absorption (Bilec method), yarn forming property, workability and comprehensive evaluation. The results are shown in Table 1.
  • Comparative Example 5 Spinning was carried out in the same manner as in Example 1 except that a mixed yarn consisting of a 44 dtex / 22 filament trilobal / round cross section was obtained to obtain a polycaproamide multifilament blending yarn consisting of a trilobal / round cross section. It was. Using the obtained blended yarn, drawing false twisting was performed at a processing speed of 500 m / min, a processing magnification of 1.7 times, a 1HT temperature of 180 ° C., and a 2HT temperature of 170 ° C. to obtain a false twisted yarn.
  • the fineness ratio, texture evaluation (soft feeling), water absorption (Bilec method), yarn-making property and comprehensive evaluation were performed. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)

Abstract

 仮撚加工を施すことにより、ソフト性を持ち、かつ、吸水・速乾性、マイルドな光沢性に優れた高品位の織編物を得るのに好適な仮撚用ポリアミド混繊複合糸を提供する。 少なくとも2種類以上の異なる断面形状のフィラメントが分散し混繊して構成されるポリアミド混繊複合糸であって、少なくとも1種類のフィラメントの長手方向に対し垂直方向の断面形状が凹部を有しない形状であり、それ以外のフィラメントの長手方向に対し垂直方向の断面形状が凹部を有する形状であり、前記種類毎のフィラメントの平均繊度が1.3dtex以下の範囲であることを特徴とする仮撚用ポリアミド混繊複合糸である。

Description

仮撚用ポリアミド混繊複合糸
 本発明は、単糸繊度が1.3dtex以下の少なくとも2種類以上の異なる断面形状のフィラメントが分散した仮撚用ポリアミド混繊複合糸に関する。更には、仮撚加工を施すことにより、ソフト性を持ち、かつ、吸水・速乾性、マイルドな光沢性に優れた高品位の織編物を得るのに好適な仮撚用ポリアミド混繊複合糸に関する。
 合成繊維の一つであるポリアミドマルチフィラメントは高強度、耐摩耗性、ソフト性、染色鮮明性などの優れた特徴を持っているため、パンティストッキング、タイツなどのレッグウェア、ランジェリー、ファンデーションなどのインナーウェア、スポーツウェア、カジュアルウェアなどの衣料用途に好まれて用いられてきている。
 しかるに、近年の消費者ニーズは、更なるソフト感やヌメリ感、マイルドな光沢といった風合い、および吸水・速乾性などの高い機能性を求めてきており、それに対応して単糸細繊度化、多フィラメント化、および横断面に複数の凹部を設ける等したいわゆるマルチローバルによる異形化が求められてきている。
 従来の異形断面合成繊維マルチフィラメントとして、例えば、少なくとも2種類以上の合成繊維マルチフィラメントが分散した混繊糸が知られている(特許文献1)。
また、従来の混繊複合糸として、例えば、少なくとも2種類以上の異なる断面形状の単フィラメントが分散した混繊糸が知られている(特許文献2)。
一方、単糸細繊度異形断面ポリアミドマルチフィラメントとして、例えば、単糸繊度が0.99dtexの同数の六葉/丸断面ポリアミドマルチフィラメントが知られている(特許文献3)。
特開平10-266036号公報 特開平7-34341号公報 特開2009-84749号公報
 しかしながら、特許文献1記載の発明は、少なくとも2種類以上の合成繊維マルチフィラメントの単糸繊度が3デニール以上異なるため、合成繊維マルチフィラメントの曲げ剛性が高く、単糸繊度差による染色差が発生し、レッグウェア、インナーウェア、スポーツウェア、カジュアルウェアなどの衣料用途に適さないという課題があった。
 また、特許文献2記載の発明では、少なくとも2種類以上の異なる断面形状の単フィラメントが分散した混繊糸はポリエステルマルチフィラメントであり、ポリアミドマルチフィラメントに比べ、ソフト性、強度、耐摩耗性に劣るため、近年の消費者ニーズである更なるソフト感を追求するには、単糸細繊度化、多フィラメント化が必要になるが、強度、耐摩耗性が低く、レッグウェア、インナーウェア、スポーツウェア、カジュアルウェアなどの衣料用途に適さないという課題があった。
 さらに特許文献3記載の発明では、単糸繊度が0.99dtexの同数の六葉/丸断面ポリアミドマルチフィラメントであるが、糸の形態として延伸糸であり、吸水・速乾性を得られるが、近年の消費者ニーズである更なるソフト感が得られないという課題があった。
 本発明は、前記した従来技術の問題を解決し、仮撚加工を施すことにより、ソフト感を持ち、かつ、吸水・速乾性、マイルドな光沢性に優れた高品位の織編物を得るのに好適な仮撚用ポリアミド混繊複合糸を提供することを課題とする。
 (1)少なくとも2種類以上の異なる断面形状のフィラメントが分散し混繊して構成されるポリアミド混繊複合糸であって、少なくとも1種類のフィラメントの長手方向に対し垂直方向の断面形状が凹部を有しない形状であり、それ以外のフィラメントの長手方向に対し垂直方向の断面形状が凹部を有する形状であり、前記種類毎のフィラメントの平均繊度が1.3dtex以下の範囲であることを特徴とする仮撚用ポリアミド混繊複合糸。
 (2)凹部を有する断面形状のフィラメントの断面の凹部を挟んで隣り合う2つの凸部に接する接線から、該2つの凸部の間に形成される凹部の底点に降ろした垂線の長さbが、凹部を有しない断面形状のフィラメントの糸半径より小さい断面形状である前記(2)に記載の仮撚用ポリアミド混繊複合糸。
 (3)凹部を有するフィラメント断面形状のローバル度LBが5以上60以下である前記(1)または(2)に記載の仮撚用ポリアミド混繊複合糸。
 (4)凹部を有する断面形状の単フィラメントと、それ以外の単フィラメントの断面比率が30~70%である前記(1)~(3)のいずれかに記載の仮撚用ポリアミド混繊複合糸。
 (5)前記(1)~(4)のいずれかに記載の仮撚用ポリアミド混繊複合糸を仮撚してなる仮撚加工糸。
 (6)伸縮復元率(CR2)が5~20%である前記(5)に記載の仮撚加工糸。
 本発明の仮撚用ポリアミド混繊複合糸は、単糸繊度が細く、少なくとも2種類以上の異なる断面形状の単フィラメントが分散した仮撚用ポリアミド混繊複合糸であり、仮撚加工を施すことにより、ソフト感を持ち、かつ、吸水・速乾性、マイルドな光沢性に優れた高品位の織編物とすることができる。
本発明における異形断面フィラメントの長手方向に対し垂直方向の断面形状の一例である。 本発明の仮撚用ポリアミド混繊複合糸における好ましいフィラメントの分散状態を示す一例である。 本発明における凹部を有しない繊維断面形状を説明する概略図である。 本発明における凹部を有しない繊維断面形状を説明する概略図である。 本発明における凹部を有しない繊維断面形状を説明する概略図である。 本発明における凹部を有しない繊維断面形状を説明する概略図である。 本発明に係る仮撚用ポリアミド混繊複合糸の製造工程の一例を示す概略図である。 内側から冷却風を外側に吹き出す冷却装置を用いた場合の製造工程の一例を示す概略図である。 外側から冷却風を内側に吹き出す冷却装置を用いた場合の製造工程の一例を示す概略図である。
 以下、本発明をさらに詳細に説明する。
 本発明の仮撚用ポリアミド混繊複合糸は、主としてポリアミドからなることが重要である。ここでいう「主として」とは、繰り返し単位のうちアミド単位が80モル%以上であるポリアミドであることをいい、好ましくは繰り返し単位のうち、アミド単位が90モル%以上あるものが好ましい。
 本発明に用いられるポリアミドは、いわゆる炭化水素が主鎖にアミド結合を介して連結された高分子量体からなる樹脂であり、具体的には、ポリカプロアミド、ポリウンデカンアミド、ポリドデカンアミド、ポリテトラメチレンアジパミド、ポリペンタメチレンアジパミド、ポリペンタメチレンセバカミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカンアミド、ポリヘキサメチレントリデカンアミド等やこれらの共重合体が挙げられる。
 経済的な面、製糸が比較的容易な点や染色性、機械特性に優れている点等から、かかるポリアミドとしては、主としてポリカプラミド、ポリヘキサメチレンアジパミドからなるポリアミドであることが好ましい。ここでいう「主として」とは、ポリカプロアミドを構成するε-カプロラクタム単位として、ポリヘキサメチレンアジパミドを構成するヘキサメチレンジアンモニウムアジペート単位として80モル%以上であることをいい、さらに好ましくは90モル%以上である。
 本発明の仮撚用ポリアミド混繊複合糸の25℃、98%硫酸相対粘度は、2.2~3.7の範囲であることが好ましく、さらには2.4~3.3の範囲であることが好ましく、より好ましくは2.4~2.7の範囲である。
 本発明の仮撚用ポリアミド混繊複合糸には、本発明の効果を損なわない範囲において種々の添加剤を含んでいても良い。この添加剤を例示すると、マンガン化合物等の安定剤、酸化チタン等の着色剤、難燃剤、導電性付与剤、繊維状強化剤等が挙げられる。
 本発明の仮撚用ポリアミド混繊複合糸の単糸繊度は、少なくとも2種類以上の異なる断面形状の単フィラメントのそれぞれの平均値が1.3dtex以下であり、0.1~1.3dtexであることが好ましく、より好ましくは0.3~1.1dtexであり、さらに好ましくは0.4~1.0dtex未満の範囲である。少なくとも2つ以上の異なる断面形状のフィラメントの単糸繊度のそれぞれ平均値が1.3dtexよりも大きい場合には、仮撚加工を施した後、織編物などの布帛にした際、ソフト感や吸水性に欠けるものとなる。
 本発明の混繊複合糸は、断面形状を異にするフィラメント糸が複合されてなるマルチフィラメント糸である。フィラメント長手方向に対し垂直方向の断面形状の種類は2種類以上であり、そのうち少なくとも1種類のフィラメントが凹部を有しない断面形状のフィラメント糸からなり、それ以外のフィラメントが少なくとも1個の凹部を有するフィラメント断面形状(以下異形断面と称することもある)である重要である。
 上記異形断面を有するフィラメントの異形断面形状は、少なくとも1個の凹部を有することが重要である。凹部がない場合は、マルチフィラメントの単糸間に十分な空隙を形成することができないため、布帛にした際の吸水性等の機能面で劣ることとなる。より好ましい異形断面形状としては2~8つの凹部と同数の凸部を有し、凸部がそれぞれ等角度間隔の放射線状に突起した異形断面形状である。これにより、織編物などの布帛にした際に吸水性に併せてマイルドな光沢感が得られる。さらには3~6つの凹部と同数の凸部を有し、凸部それぞれ等角度間隔の放射状に突起した異形断面形状であることが望ましい。
 本発明において「フィラメントの長手方向に対し垂直方向の断面形状が凹部を有しない形状」とは、真円、楕円、レンズ、正方・直方形、多角形等の文字通り凹部を有しない形状の単糸をいうが、より好ましい形状としては真円型である。ここで、真円型とは厳密に真円である必要はなく、例えば通常の丸孔の吐出孔から紡出して得られるような繊維断面に代表されるような形状等のいわゆる丸断面であればよい。
 上記の凹部を有しない断面形状の具体例を挙げると、図3に示す円形、図4に示す楕円形、図5に示すおにぎり型円形や図6に示す3角形以上の多角形であって比較的角に丸味を持ったものが挙げられる。これらには、図3に示すように、接線(L1 )を引いた時に複数の接点は存在せず、1つの接点(S1 )のみ存在する。
 次に、凹部を有する断面形状のフィラメントと凹部を有しない断面形状のフィラメントとの複合状態は、これら異なる断面形状のフィラメントが分散し混繊して構成される。それぞれの単フィラメントが断面形状に区別なくランダムな状態で分散し混繊されていることが好ましい。
好ましい混繊状態は図2に見られるごときものであって、それぞれの断面形状の単フィラメントがブロック状の群をなした状態でなく断面形状に区別なく適度に分散していることで仮撚りを施したとき、糸の表面においてそれぞれの断面形状が分散配置しやすくなるので、凹部を有する断面と凹部を有しない断面との調和した複合効果によるサラサラな風合とマイルドな光沢をより効果的に得ることができる。なお、図2は、本発明の仮撚用ポリアミド混繊複合糸における好ましいフィラメントの分散状態を示す一例である。
 一方、それぞれの断面形状のフィラメント糸が集合して構成される芯鞘2層構造形態を有する複合糸の場合には、調和した複合効果によるサラサラな風合が分散型に比較して得られにくい傾向があるので上記分散型が好ましい。
また、本発明の混繊複合糸は、凹部を有しない断面形状のフィラメントの少なくとも1種類と、前記凹部を有する断面形状のフィラメントの少なくとも1種類とが、接触した場合に該それらのフィラメント断面間に空隙を形成することのできる断面形状であるフィラメントを含むことが好ましい。
 これは、混繊複合糸のフィラメントが最密充填されても十分フィラメント間に空隙を形成し、仮撚することによりドライ感を得ることができるためであり、さらにそのことによって、凹部を有しない断面形状のフィラメントと凹部を有する断面形状のフィラメントとの配列において生じる空隙によって毛細管現象による効果的な吸水性が付与された織物または編物となる。
 また、凹部を有する断面形状のフィラメント糸が混繊された状態にあるために吸水した水分の保水状態においてもサラサラ感に優れた風合の織物を得ることができ、さらに前記特定の関係を有する凹部を有する断面形状と凹部を有しない断面形状との混繊によって、仮撚された状態においても優れた吸水性を発現する織物または編物を提供できるのである。
 また、本発明の混繊複合糸は、凹部を有する断面形状のフィラメントの断面の凹部を挟んで隣り合う2つの凸部に接する接線に対し、該2つの凸部の間に形成される凹部の底点bに降ろした垂線の長さが、凹部を有しない断面形状のフィラメントの糸半径より小さいことが好ましい。例えば図2でいうと、凹部を有する断面形状の単フィラメントの断面の凸部と、該凸部に隣接する凸部とに接する接線に対し、該2つの凸部の間に形成される凹部の底点に降ろした垂線の長さbが、凹部を有しない断面形状のフィラメントの糸半径より小さいということである。
 この場合、凹部を有しないフィラメントが、凹部を有するフィラメントに取り込まれないため、仮撚をかけた時にそれぞれのフィラメントが複合糸内で自由に動き易く、嵩高性が保たれ、サラサラとした風合が得られ、また繊維間空隙が閉塞されることなく保たれ、吸水性に優れる。なお前記垂線の長さbの測定は後述のローバル(lobar)度LBの算出法(1)~(3)のうち、(1)の方法で異形断面フィラメントを選定し、(2)の方法で垂線の長さbを測定し、その平均値を算出するものとする。また、糸半径の測定は後述する方法によるものとする。
 凹部を有しない断面形状のフィラメントの単糸繊度D1と凹部を有する断面形状のフィラメントの単糸繊度D2の関係は、ドライ感および吸水効果の観点から0.5≦D2/D1≦2.0であることが好ましい。ここでいう凹部を有しない断面形状の単糸繊度D1と凹部を有する断面形状のフィラメントの単糸繊度D2は平均繊度である。上記単糸繊度の算出は後述する方法によるものとする。
 ローバル度LBについて図1を用いて説明する。図1は、本発明における異形断面繊維の一例である。図1に示す通り、ローバル度LBとは仮撚用ポリアミド繊維の異形断面単糸横断面において、凹部を挟んで隣り合う2つの凸部における接点SとSとの接線の長さaに対する、それら2つの凸部の間に形成される凹部の低点から該接線におろした垂線の長さbの比の百分率(%)をいう。すなわち、LB(%)=100×b/aで算出される。
 ローバル度LBの平均値は以下の方法で算出する。
 (1)少なくとも1以上の凹部を有する同種類の形状を有する異形断面のフィラメント10本をランダムに選定する(フィラメント数が10以下の場合は全ての異形断面フィラメントを測定する)。
 (2)各フィラメントについて、そのフィラメント内にある全ての凹部の接線の長さaと垂線の長さbを測定してローバル度LBを算出し、フィラメント毎に平均値xを算出する。
 (3)算出したフィラメント毎の平均値xの平均値を算出する。
 本発明において、凹部を有する断面形状は、織物または編物にした時の風合や吸水性等の観点から、次に定義されるローバル度LBでいえば5以上60以下の値を有する断面形状であることが好ましい。より好ましくはローバル度LBが10以上40以下の値を有する断面形状であり、さらに好ましくは10以上30以下の値を有する断面形状である。
 本発明の仮撚用ポリアミド混繊複合糸は、凹部を有しないフィラメントとの混繊とすることで染色後のスジの発生を極限まで抑えることができたり、フィラメント間の空隙率が小さくなることで毛細管現象が働き、布帛とした際により高い吸水性を付与することができたりする。
 本発明の仮撚用ポリアミド混繊複合糸の少なくとも凹部を有する断面形状のフィラメント糸と凹部を有しない断面形状の単フィラメント糸の混繊比率は、織物または編物とした時の風合や吸水特性等の観点から、20:80~80:20であることが好ましく、30:70~70:30であることがさらに好ましい。さらに好ましくは、40:60~60:40である。なお上記混繊比率は後述する方法によるものとする。
 本発明の仮撚用ポリアミド混繊複合糸の生産方法の一例を、図7にしたがって具体的に説明する。図7は本発明に係る仮撚用ポリアミド混繊複合糸の製造工程の一例を示す概略図である。溶融されたポリアミドを口金1から吐出し、口金下保温ゾーン2を通過させた後、チムニー3によって冷却風を吹き当てることにより室温まで冷却し糸条とする。給油装置4で給油するとともに集束し、インターレースノズル5でインターレースを付与し、引き取りローラー6、7を通過し、ワインダー(巻取装置)8で巻き取る。尚、9は繊維フィラメント、10は繊維製品パッケージである。糸条を冷却するに際し、単糸間の冷却斑を抑え糸条の長手方向の繊度斑を低減させる目的で図8のような溶融された熱可塑性ポリマーを口金1から吐出し、口金下保温ゾーン2を通過させた後、内側から冷却風を外側に吹き出す冷却装置11で繊維フィラメント9を室温まで冷却し糸条とする方法や、図9のような溶融された熱可塑性ポリマーを口金1から吐出し、口金下保温ゾーン2を通過させた後、外側から冷却風を内側に吹き出す冷却装置12で繊維フィラメント9を室温まで冷却し糸条とする方法でもよい。図8は、内側から冷却風を外側に吹き出す冷却装置を用いた場合の製造工程の一例を示す概略図であり、図9は外側から冷却風を内側に吹き出す冷却装置を用いた場合の製造工程の一例を示す概略図である。
 なお、溶融紡糸温度は、本発明の仮撚用ポリアミド混繊複合糸が得られる限り、制限はなく、通常用いられる温度、例えばポリカプロアミドの場合は240~260℃、ポリヘキサメチレンアジパミドの場合は275~295℃が好ましく用いられるが、同じ口金を用いた場合、溶融紡糸時の粘度が高い(例えば溶融紡糸温度が低めの場合や、ポリアミドの粘度が高い場合等)とローバル度LBが上昇し、粘度が低い(例えば溶融紡糸温度が高めの場合や、ポリアミドの粘度が低い場合等)と、減少する傾向にある。
 本発明の仮撚用ポリアミド混繊複合糸の製造方法については特に限定はしないが、ポリアミドを溶融し、口金からこれを吐出し、冷却風を吹き付けることによって糸条を冷却し、収束(すなわち油剤、インターレースノズルを付与)した後パッケージに巻き取る1工程法がコストの面から好ましい。
 本発明の仮撚用ポリアミド繊維の伸度は45~70%であることが好ましい。伸度が低くなりすぎると、フィラメントの引張抵抗が高くなり、仮撚加工において加撚される実撚り数が少なくなるため、得られる加工糸に十分な捲縮が付与されにくくなり、また、延伸糸において、糸切れや毛羽が発生しやすくなり、高次通過性が劣る傾向になる。一方、伸度が高すぎると、加撚される実撚り数が過剰となり、得られた加工糸に毛羽が生じたり、強度が低下しやすくなり、延伸糸において、残留伸度が高いために、織編物にスジが発現したりしやすくなり、品位に劣りやすくなる傾向がある。上記伸度の測定は後述の方法によるものとする。
 また、得られた仮撚用ポリアミド繊維を15%伸長させたときの応力は1.0~2.0cN/dtexであることが好ましく、より好ましくは1.2~1.8cN/dtexである。15%伸長時応力が低すぎると、仮撚加工時の張力が低くなりすぎ、加工糸切れや、加工張力変動が生じやすく、加工糸の品位低下や、収率が悪化しやすくなる。また、15%伸長時応力が高すぎると、仮撚加工を行う際、インターレース部に大きな張力が集中し、単糸切れを発生させ、工程通過性や、織編物の品位を低下させやすくなる。上記15%伸長させたときの応力の測定は後述の方法によるものとする。
 本発明の仮撚用ポリアミド混繊複合糸は、一度巻き取られた後、次工程である仮撚り工程へと輸送され、捲縮を与えられて仮撚加工糸としたあと編み物、織物へと加工される。本発明の仮撚用ポリアミド混繊複合糸の仮撚り加工方法については特に限定はしないが、仮撚用ポリアミド混繊複合糸パッケージから糸条を送り出し、ヒーター等により加熱した後、仮撚りディスク等により仮撚りを与えた後、仕上げ剤を付与して仮撚加工糸パッケージを形成する。
 仮撚加工の好ましい一例を挙げる。すなわち、仮撚用ポリアミド混繊複合糸パッケージから300~800m/minで繊維を引き出し、第1仮撚ヒーター(1HT)として、150~240℃のヒーターにて0.05~0.50秒加熱され、1.1~1.5倍程度に延伸を行いながら延伸同時仮撚り加工を行う。この際、摩擦仮撚り具などを用いて延伸同時仮撚り加工を行う。更に第2ヒーター(2HT)を用いることで捲縮性を低下させてもよい。この場合の2HTとしては接触式でも非接触式でも良いが、第2ヒーター温度は120~220℃、好ましくは140~190℃の範囲が適当である。その後、仮撚り加工糸の重量に対して1.0~3.0%程度の油剤を付与する。また、油剤付与の前後で加工糸の収束性を向上する目的でインターレースを付与しても良い。
 本発明の仮撚用ポリアミド繊維は均一に仮撚加工がなされ得ることから見た目や、触感において優れたタイツを得ることができるが、この限りではない。
 また、得られた仮撚加工糸の伸縮復元率(CR2)は5~20%であることが好ましく、より好ましくは8~12%である。伸縮復元率(CR2)が低すぎると、織編物などの布帛にした際、仮撚加工糸の捲縮形態が保持しにくくなり、ソフト感や吸水性が劣る傾向がある。また、伸縮復元率(CR2)が高すぎると、織編物などの布帛にした際、仮撚加工糸が嵩高になり、織編物の目が詰まり、粗硬感になる傾向がある。上記伸縮復元率(CR2)の測定は後述の方法によるものとする。
 以下、実施例により本発明を詳細に説明する。
実施例中の各特性値は次の方法にしたがって求めた。
 (1)酸化チタン含有量
 サンプル5gを精秤して磁性ルツボに入れ、電気炉を用いて1000℃で灰化し、灼熱残分を酸化チタンとして重量%で表した。
 (2)硫酸相対粘度
 試料を秤量し、98重量%濃硫酸に試料濃度(C)が1g/100mlとなるように溶解し、該溶液についてオストワルド粘度計にて25℃での落下秒数(T1)を測定する。さらに試料を溶解していない98重量%濃硫酸について、同様に25℃での落下秒数(T2)を測定した後、試料の相対粘度(ηr)を下式により算出する。
(ηr)=(T1/T2)+{1.891×(1.000-C)}。
 (3)総繊度、単糸繊度および混繊比率
 試料を枠周1.125mの検尺機にて27デシテックス以下の品種は400回巻、28デシテックス以上の品種は200回巻カセを作成(n数:4)し、熱風乾燥機にて乾燥後(105±2℃×60分)天秤にてカセ重量を量り公定水分率を乗じた値から総繊度を算出した。4回測定を行い、算出された繊度を平均して繊度とした。また、少なくとも2種類の異なる断面形状のフィラメントにおける単糸繊度については、以下に示す式にて、それぞれの断面形状におけるフィラメント断面の合計面積の面積比を算出し、上記総繊度に面積比を乗じ、同形状のフィラメントの総数で割った値とした。また、それぞれの断面形状におけるフィラメント断面の合計面積の面積比を混繊比率とした。
断面Aの面積比=断面Aの面積/(断面Aの面積+断面Bの面積)
断面Bの面積比=断面Bの面積/(断面Aの面積+断面Bの面積)
混繊フィラメント中の断面Aの単糸繊度(dtex)=(総繊度(dtex)×断面Aの面積比)/断面Aのフィラメント数
混繊フィラメント中の断面Bの単糸繊度(dtex)=(総繊度(dtex)×断面Bの面積比)/断面Bのフィラメント数。
 (4)面積比
 パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、原糸を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、1つ以上の凹部を有する全ての異形フィラメントについてMicro-MEASURE社製のモニタリング装置(EMM-3100)にて画像処理を行い、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて3000倍でプリントアウトした断面写真を用い、少なくとも1以上の凹部を有する異形フィラメント断面の全ての異形フィラメント断面写真を選定し、凹部を有さないフィラメント断面の全てのフィラメント断面写真を選定し、それぞれの面積比を算出した。
 (5)凹部のローバル度LB(平均値)、b
 パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、原糸を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、ランダムにフィラメントを選択し、そのフィラメント中でランダムに選定した10本の(フィラメント数が10以下の場合は全ての)2つ以上の凹部を有する異形単糸についてMicro-MEASURE社製のモニタリング装置(EMM-3100)にて画像処理を行い、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて3000倍でプリントアウトした断面写真を用いた。垂線の長さb、ローバル度LBの測定や、その平均値の算出は下記の通り行った。
ローバル度LBは、LB(%)=100×b/aで算出し、どの平均値は以下の方法で算出する。
(1)少なくとも1以上の凹部を有する同種類の形状を有する異形断面のフィラメント10本をランダムに選定する(フィラメント数が10以下の場合は全ての異形断面フィラメントを測定する)。
(2)各フィラメントについて、そのフィラメント内にある全ての凹部の接線の長さaと垂線の長さbを測定してローバル度LBを算出し、フィラメント毎に平均値xを算出する。
(3)算出したフィラメント毎の平均値xの平均値を算出する。
 (6)糸半径
 パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、原糸を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、ランダムにフィラメントを選択し、そのフィラメント中でランダムに選定した10本の(フィラメント数が10以下の場合は全ての)凹部を有さない断面形状についてMicro-MEASURE社製のモニタリング装置(EMM-3100)にて画像処理を行い、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて3000倍でプリントアウトした断面写真を用い、凹部を有さない断面形状のフィラメント断面について、その断面に外接する最小の円の半径を測定し、平均して算出した。
 (7)伸度
 伸度はORIENTEC社製TENSIRON RPC-1210Aを使用し、つかみ間隔50cmで把持し、50cm/minの引っ張り速度で伸張させ、糸が破断した際の引っ張り長を3回測定し、その平均値を50cmで割り、100を掛けた値とした。
 (8)15%伸長時応力
 15%伸長時応力はORIENTEC社製TENSIRON RPC-1210Aを使用し、
つかみ間隔50cmで把持し、50cm/minの引っ張り速度で伸長させ、57.5cmまで伸長させたときの張力を3回測定し、その平均値を繊維の繊度で割り返した値とした。
 (9)伸縮復元率(CR2)
 仮撚加工糸を、周長1.0mの検尺機を用いて10回巻きしてカセ取りした後、このカセに総繊度×0.002×巻取回数×2/1.111gの初加重をかけて、温度98℃×時間20分間熱水処理し、脱水後12時間以上放置する。放置後のカセに初荷重と総繊度×0.098×巻取回数×2/1.111gの測定加重をかけて水中に垂下し2分間放置する。放置したカセの長さを測り、Lとする。さらに、測定荷重を除き初荷重だけにした状態で2分間放置し、カセの長さを測り、L1とする。L、L1はサンプルを変えて3点ずつ測定し、次式により伸縮復元率(CR2)を求めた後、平均値をとった。
伸縮復元率(CR2)(%)={(L-L1)/L}×100。
 (10)製糸性
 1t当たりの製糸糸切れについて、次の基準をもって示した。
◎(優):糸切れ1.0回未満、
○(良):糸切れ1.0以上4.0回未満、
△(劣):糸切れ4.0以上7.0回未満、
×(不可):糸切れ7.0回以上または製糸不能。
 (11)仮撚加工性
 得られた繊維を仮撚加工した時の2kg巻き、100本当たりの解じょ不良による解じょ切れ、仮撚り時の撚り切れを合計して加工糸切れを計算し、以下の3段階で判定した。
○(良)・・・加工糸切れ10%未満
△(劣)・・・加工糸切れ10%以上、30%未満
×(不可)・・・加工糸切れ30%以上。
 (12)風合い評価(ソフト感)
 得られた繊維を加工してできた仮撚加工糸を筒編みし、室温20℃、湿度60%の室内環境下で、検査者(10人)の評価によって、布帛のドレープ性、ソフト感を次の基準で相対評価した。
◎(優):ドレープ性・ソフト感が非常にある
○(良):ドレープ性には劣るがソフト感がある
△(劣):ドレープ性・ソフト感が劣る
×(不可):ドレープ性・ソフト感がない。
 (13)吸水性(バイレック法)
 JIS L1907(2010)「バイレック法」により測定した。この測定で得られる吸水高さについて、次の基準で評価した。
◎(優):90mm以上
○(良):65mm以上90mm未満
△(劣):55mm以上65mm未満
×(不可):55mm未満
総合評価として、次の基準をもって評価した。
◎(優):風合い評価、吸水性、製糸性、加工性の全項目において○もしくは◎であり、且つ◎の項目が3項目以上あるもの、
○(良):風合い評価、吸水性、製糸性、加工性の全項目において○もしくは◎であり、且つ◎の数が2項目以下であるもの、
△(劣):風合い評価、吸水性、製糸性、加工性に全項目のうち△の項目が1つ以上あるもの、
×(不可):風合い評価、吸水性、製糸性、加工性に全項目のうち×の項目が1つ以上あるもの。
 実施例1
 酸化チタンを1.9重量%含む25℃、98%硫酸相対粘度2.6のポリカプロアミドを環状に配列した紡糸口金より紡糸温度253℃で溶融ポリマーを吐出させ、該ポリマーを、紡糸口金面に向けて0.25kPaの圧力で285℃の蒸気が噴出されている蒸気噴出ゾーンと、該蒸気噴出ゾーン下流側に設けられ、且つ冷却開始位置30mmで鉛直方向の長さが300mmの単体の円筒型冷却装置で外吹きに放射状に吹く20℃の冷却風にて冷却する冷却ゾーンを通過させて冷却固化を行わせ、該冷却装置下流側にて紡糸口金下面から600mmの位置に環状型給油ガイドを設置し給油を行い、紡速4500m/minにて紡糸し、延伸することなく巻き取り44dtex/46フィラメントの図1に示すような実質120°の等角度間隔の放射線状に突起している三葉断面ポリカプロアミドマルチフィラメントと丸断面からなる混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.3倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例2
 44dtex/46フィラメントの図2に示すような六葉/丸断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.2倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例3
 44dtex/34フィラメントの六葉/丸断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.4倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例4
 44dtex/46フィラメントの六葉/丸断面からなる混繊糸のローバル度LB(平均値)を変更する以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.2倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例5
 44dtex/46フィラメントの六葉/丸断面からなる混繊糸のローバル度LB(平均値)を変更する以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.3倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例6
 44dtex/46フィラメントの六葉/丸断面からなる混繊糸の混繊比率を変更する以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.4倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例7
 44dtex/46フィラメントの六葉/丸断面からなる混繊糸の混繊比率を変更する以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.4倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例8
 44dtex/46フィラメントの図2に示すような六葉/丸断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.2倍、1HT温度200℃、2HT温度190℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 実施例9
 44dtex/46フィラメントの図2に示すような六葉/丸断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.2倍、1HT温度180℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 比較例1
 44dtex/30フィラメントの三葉/丸断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、三葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.5倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 比較例2
 44dtex/46フィラメントの六葉/三葉断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、六葉/三葉断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.1倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 比較例3
 マルチフィラメントを構成するポリマーをポリエチレンテレフタレートとし、口金より紡糸温度290℃で溶融ポリマーを吐出させ、44dtex/46フィラメントの六葉/丸断面からなる混繊糸とし、紡速3000m/minとする以外は実施例1と同様の方法にて紡糸を行い、六葉/丸断面からなるポリエチレンテレフタレートの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.5倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリエチレンテレフタレートの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、混繊比率、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 比較例4
 44dtex/46フィラメントの丸断面からなる繊維とする以外は実施例1と同様の方法にて紡糸を行い、丸断面からなるポリカプロアミドマルチフィラメントの繊維を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.5倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、伸度、15%応力、伸縮復元率(CR2)、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性、加工性および総合評価行った。結果を表1に示す。
 比較例5
 44dtex/22フィラメントの三葉/丸断面からなる混繊糸とする以外は実施例1と同様の方法にて紡糸を行い、三葉/丸断面からなるポリカプロアミドマルチフィラメントの混繊糸を得た。得られた混繊糸を用いて、加工速度500m/分、加工倍率1.7倍、1HT温度180℃、2HT温度170℃で延伸仮撚を行い、仮撚加工糸を得た。
該ポリカプロアミドマルチフィラメントの単糸繊度、横断面形状の凹部数、ローバル度LB(平均値)、糸半径/垂線の長さb、伸度、15%応力、伸縮復元率(CR2)、混繊比率、風合い評価(ソフト感)、吸水性(バイレック法)、製糸性および総合評価行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 口金
2 口金下保温ゾーン
3 チムニー
4 給油装置
5 インターレースノズル
6 引き取りローラー
7 延伸ローラー
8 ワインダー(巻取装置)
9 繊維フィラメント
10 繊維製品パッケージ
11 内側から冷却風を外側に吹き出す冷却装置
12 外側から冷却風を内側に吹き出す冷却装置

Claims (6)

  1. 少なくとも2種類以上の異なる断面形状のフィラメントが分散し混繊して構成されるポリアミド混繊複合糸であって、少なくとも1種類のフィラメントの長手方向に対し垂直方向の断面形状が凹部を有しない形状であり、それ以外のフィラメントの長手方向に対し垂直方向の断面形状が凹部を有する形状であり、前記種類毎のフィラメントの平均繊度が1.3dtex以下の範囲であることを特徴とする仮撚用ポリアミド混繊複合糸。
  2. 凹部を有する断面形状のフィラメントの断面の凹部を挟んで隣り合う2つの凸部に接する接線から、該2つの凸部の間に形成される凹部の底点に降ろした垂線の長さbが、凹部を有しない断面形状のフィラメントの糸半径より小さい断面形状である請求項1に記載の仮撚用ポリアミド混繊複合糸。
  3. 凹部を有するフィラメント断面形状のローバル度LBが5以上60以下である請求項1または2に記載の仮撚用ポリアミド混繊複合糸。
  4. 凹部を有する断面形状のフィラメントと、それ以外のフィラメントの断面比率が30~70%である請求項1~3のいずれかに記載の仮撚用ポリアミド混繊複合糸。
  5. 請求項1~4のいずれかに記載の仮撚用ポリアミド混繊複合糸を仮撚してなる仮撚加工糸。
  6. 伸縮復元率(CR2)が5~20%である請求項5に記載の仮撚加工糸。
PCT/JP2013/053657 2012-02-27 2013-02-15 仮撚用ポリアミド混繊複合糸 WO2013129135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013513874A JP5786938B2 (ja) 2012-02-27 2013-02-15 仮撚用ポリアミド混繊複合糸
CN201380004443.1A CN104024499A (zh) 2012-02-27 2013-02-15 假捻用聚酰胺混纤复合丝

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-040142 2012-02-27
JP2012040142 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013129135A1 true WO2013129135A1 (ja) 2013-09-06

Family

ID=49082337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053657 WO2013129135A1 (ja) 2012-02-27 2013-02-15 仮撚用ポリアミド混繊複合糸

Country Status (4)

Country Link
JP (1) JP5786938B2 (ja)
CN (1) CN104024499A (ja)
TW (1) TWI532893B (ja)
WO (1) WO2013129135A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117177A1 (ja) * 2015-01-23 2016-07-28 東レ株式会社 織編物
EP3207172A4 (en) * 2014-10-14 2018-08-08 Coolcore LLC Hybrid yarns, methods of making hybrid yarns and fabrics made of hybrid yarns
JP2021025140A (ja) * 2019-07-31 2021-02-22 東レ株式会社 仮撚り用ポリアミドマルチフィラメントおよびポリアミド仮撚り加工糸

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134153A (en) * 1978-04-11 1979-10-18 Unitika Ltd False twisting processed yarn comprising blended fiber with different shape and denier
JPS61207638A (ja) * 1985-03-11 1986-09-16 カネボウ株式会社 不透明性に優れた織物
JPH03180529A (ja) * 1989-12-05 1991-08-06 Toray Ind Inc 捲縮糸
JPH09209223A (ja) * 1996-02-01 1997-08-12 Toray Ind Inc 高強度マルチフィラメント糸、その製造方法及び非通気性高強度布帛

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170543A (ja) * 1986-01-21 1987-07-27 旭化成株式会社 ストツキング用仮撚加工糸
JP3119066B2 (ja) * 1993-05-19 2000-12-18 東レ株式会社 混繊複合糸およびその製造方法ならびに編織物
JPH10266036A (ja) * 1997-03-25 1998-10-06 Unitika Ltd フィラメント縫糸及びその製造方法
JP4983518B2 (ja) * 2007-09-28 2012-07-25 東レ株式会社 仮撚用ポリアミド繊維および仮撚用ポリアミド繊維の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134153A (en) * 1978-04-11 1979-10-18 Unitika Ltd False twisting processed yarn comprising blended fiber with different shape and denier
JPS61207638A (ja) * 1985-03-11 1986-09-16 カネボウ株式会社 不透明性に優れた織物
JPH03180529A (ja) * 1989-12-05 1991-08-06 Toray Ind Inc 捲縮糸
JPH09209223A (ja) * 1996-02-01 1997-08-12 Toray Ind Inc 高強度マルチフィラメント糸、その製造方法及び非通気性高強度布帛

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3207172A4 (en) * 2014-10-14 2018-08-08 Coolcore LLC Hybrid yarns, methods of making hybrid yarns and fabrics made of hybrid yarns
WO2016117177A1 (ja) * 2015-01-23 2016-07-28 東レ株式会社 織編物
JP2021025140A (ja) * 2019-07-31 2021-02-22 東レ株式会社 仮撚り用ポリアミドマルチフィラメントおよびポリアミド仮撚り加工糸
JP7287169B2 (ja) 2019-07-31 2023-06-06 東レ株式会社 仮撚り用ポリアミドマルチフィラメントおよびポリアミド仮撚り加工糸

Also Published As

Publication number Publication date
TW201343999A (zh) 2013-11-01
TWI532893B (zh) 2016-05-11
JP5786938B2 (ja) 2015-09-30
CN104024499A (zh) 2014-09-03
JPWO2013129135A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
KR102277678B1 (ko) 편심 심초 복합 섬유 및 혼섬사
JP4079884B2 (ja) ポリエステル系複合繊維パッケージ
JP4736494B2 (ja) ポリフェニレンスルフィド・ナノファイバーを含む混繊糸または混紡糸または織編物
JP6699403B2 (ja) 仮撚り用複合ポリアミド繊維
JP5786938B2 (ja) 仮撚用ポリアミド混繊複合糸
JP6879362B2 (ja) ポリアミドマルチフィラメントおよびそれを用いたレース編物
JP5953819B2 (ja) ポリエステル融着延伸仮撚加工糸
JP2017218698A (ja) 極細扁平仮撚糸
JP4329553B2 (ja) ポリアミド複合仮撚糸およびその製造方法
JP2018053405A (ja) 扁平断面ポリヘキサメチレンアジパミド繊維および繊維製品
JP4315002B2 (ja) 高伸度ポリマーアロイ繊維およびその製造方法
TW201443303A (zh) 含有聚甲基戊烯纖維而成之紡織紗及包含彼等之纖維構造體
JP2018104839A (ja) 収縮特性に優れた仮撚用ポリアミドマルチフィラメント
WO2022191090A1 (ja) ポリアミド捲縮糸、仮撚加工糸および布帛
WO2023182145A1 (ja) 複合仮撚加工糸、織編物及び衣服
WO2023100570A1 (ja) 偏心芯鞘複合仮撚糸及びそれを用いた織編物
JP4021794B2 (ja) 織物用複合繊維及びその製造法
JP2003342843A5 (ja)
JP2007046212A (ja) 複合糸、およびこれを含む布帛製品
JP2006348431A (ja) 複合仮より加工糸
JP6699165B2 (ja) 融着延伸仮撚加工糸
JP2016191174A (ja) 複合仮撚加工糸
JP2005194661A (ja) ポリエステル混繊糸
JP2012211423A (ja) 複合延伸仮撚加工糸
JP4701478B2 (ja) 多色性複合加工糸およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513874

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201405855

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13754552

Country of ref document: EP

Kind code of ref document: A1