WO2023100570A1 - 偏心芯鞘複合仮撚糸及びそれを用いた織編物 - Google Patents

偏心芯鞘複合仮撚糸及びそれを用いた織編物 Download PDF

Info

Publication number
WO2023100570A1
WO2023100570A1 PCT/JP2022/040598 JP2022040598W WO2023100570A1 WO 2023100570 A1 WO2023100570 A1 WO 2023100570A1 JP 2022040598 W JP2022040598 W JP 2022040598W WO 2023100570 A1 WO2023100570 A1 WO 2023100570A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
woven
eccentric core
fiber
sheath composite
Prior art date
Application number
PCT/JP2022/040598
Other languages
English (en)
French (fr)
Inventor
須山浩史
木下豊太郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023100570A1 publication Critical patent/WO2023100570A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/18Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by combining fibres, filaments, or yarns, having different shrinkage characteristics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/37Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/49Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads textured; curled; crimped

Definitions

  • the present invention relates to an eccentric core-sheath composite false-twisted yarn and a woven or knitted fabric using the same.
  • Fibers made from thermoplastic polymers such as polyester and polyamide have excellent mechanical properties, dimensional stability, and various other properties. Therefore, it is used in various fields such as clothing, interiors, vehicle interiors, and industrial materials. On the other hand, with the diversification of uses of fibers, the properties required thereof have also become diversified.
  • Patent Document 1 proposes a latent crimpable conjugate fiber that is a conjugate fiber in which two components of polymers with different viscosities are laminated side-by-side.
  • Patent Document 2 in the cross section of a conjugate fiber composed of two types of polymers, the A component and the B component, the A component is completely covered with the B component, and by specifying the minimum thickness, stretchability and Woven and knitted fabrics with abrasion resistance have been proposed.
  • Patent Document 3 discloses an eccentric core-sheath composite false-twisted yarn in which the A component is completely covered with the B component in the cross section of a composite fiber composed of two types of polymers, the A component and the B component, and the minimum thickness is specified. and its woven and knitted fabrics have been proposed.
  • the fiber is greatly curved toward the high-shrinkage component side after heat treatment, so that this continues to form a three-dimensional spiral structure. .
  • the structure expands and contracts like a spring, and stretchability can be imparted to the woven or knitted fabric.
  • the quality of the woven or knitted product is lowered due to peeling, partially whitening in the form of white streaks, and fluffing.
  • Patent Document 2 considers only the drawn yarn, and furthermore, the wear resistance when stretched assuming actual wearing was not considered.
  • Patent Document 3 Although the woven or knitted fabric described in Patent Document 3 is said to have good wear resistance, it was necessary to improve the wear resistance when stretched assuming actual wear.
  • An object of the present invention is to provide an eccentric core-sheath composite false-twisted yarn that can solve the problem of abrasion resistance during elongation, which has been a problem with conventional high-stretch fabrics, and provide a woven or knitted fabric that is soft and has an excellent feeling of swelling. To provide a woven or knitted fabric using
  • the eccentric core-sheath composite false twisted yarn of the present invention and a woven or knitted fabric using the same have the following configurations.
  • An eccentric core-sheath composite false-twisted yarn which is a multifilament consisting of a single yarn, characterized in that the irregularity difference between the single yarns is 0.2 or more and the crimp rate is 30% or more.
  • the eccentric core-sheath composite false-twisted yarn according to (1) above which has a residual torque of 30 T/M or more.
  • (3) A woven or knitted fabric using the eccentric core-sheath composite false-twisted yarn according to (1) or (2) above.
  • eccentric core-sheath composite false twisted yarn of the present invention By using the eccentric core-sheath composite false twisted yarn of the present invention, it is possible to obtain a woven or knitted fabric that has high stretchability, excellent wear resistance when stretched, and a soft, puffy texture.
  • This woven or knitted fabric can be applied to a wide range of fields including clothing and clothing materials, and can be produced efficiently and at low cost.
  • eccentric core-sheath composite fiber of the present invention is a fiber cross section for explaining the center of gravity position in the fiber cross section. It is a fiber cross section for explaining the fiber diameter (D) and the minimum thickness (S) in the fiber cross section of the eccentric core-sheath composite fiber and composite yarn of the present invention.
  • the fiber cross section of the eccentric core-sheath composite false twisted yarn of the present invention is composed of two types of polymers, the A component and the B component.
  • the polymer referred to here is preferably a fiber-forming thermoplastic polymer, and is preferably a combination of polymers that cause differential shrinkage when subjected to heat treatment. Among them, a combination of polymers having different molecular weights or different compositions is preferable so that the melt viscosity difference between the polymers to be combined is 10 Pa ⁇ s or more.
  • Suitable polymers for achieving the object of the present invention include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, polylactic acid, thermoplastic polyurethane, and polyphenylene sulfide.
  • polyethylene terephthalate polyethylene naphthalate
  • polybutylene terephthalate polytrimethylene terephthalate
  • polyamide polylactic acid
  • thermoplastic polyurethane polyphenylene sulfide
  • component A/component B includes polybutylene terephthalate/polyethylene terephthalate, polytrimethylene terephthalate/polyethylene terephthalate, thermoplastic polyurethane/polyethylene terephthalate, polytrimethylene terephthalate/polybutylene terephthalate, and the like.
  • component A/component B includes polybutylene terephthalate/polyethylene terephthalate, polytrimethylene terephthalate/polyethylene terephthalate, thermoplastic polyurethane/polyethylene terephthalate, polytrimethylene terephthalate/polybutylene terephthalate, and the like.
  • Various combinations are mentioned. Good bulkiness due to the spiral structure can be obtained in these combinations.
  • polyester polyamide, polyethylene, polypropylene, etc. are preferably used.
  • polyester is more preferable because it also has mechanical properties.
  • the polyester referred to here includes polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, copolymers thereof with a dicarboxylic acid component, diol component or oxycarboxylic acid component, and blends of these polyesters.
  • These polymers may optionally contain inorganic fine particles, organic compounds, carbon black as matting agents such as titanium oxide, flame retardants, lubricants, antioxidants, coloring pigments, etc., to the extent that the objects of the present invention are not impaired. can be included.
  • the combined area ratio of the A component and the B component in the fiber cross section is, in view of crimp development, a fine spiral structure due to an increase in the ratio of the high shrinkage component, which is the A component. realizable.
  • the range of 65:35 to 45:55 is more preferred.
  • eccentricity means that the position of the center of gravity of the A component polymer in the cross section of the conjugate fiber is different from the center of the cross section of the conjugate fiber, which will be explained with reference to FIG. In FIG.
  • the horizontal hunting is the B component
  • the 30 degree hunting is the A component
  • the center of gravity of the A component in the cross section of the composite fiber is the center of gravity point a
  • the center of gravity of the cross section of the composite fiber is the center of gravity.
  • Point C the distance between the center of gravity point a and the center of gravity point C of the cross section of the conjugate fiber allows the fiber to be largely curved toward the high-shrinkage component side after the heat treatment. For this reason, the conjugate fiber continues to bend in the direction of the fiber axis, thereby forming a three-dimensional spiral structure.
  • the further apart the center of gravity is, the better the crimp is developed and the better the stretching performance is obtained.
  • the A component is completely covered with the B component, even if the woven or knitted fabric is subjected to friction or impact, interfacial peeling of the conjugate fiber becomes difficult, and wear resistance can be improved.
  • problems of whitening and fluffing due to interfacial peeling tend to occur.
  • the ratio S/D between the minimum thickness S of the B component covering the A component and the fiber diameter (diameter of the composite fiber) D is 0.01 to 0.1. In this case, deterioration of the quality of the woven or knitted fabric due to fluff or the like can be suppressed, and stretchability can be obtained. Preferably, it is between 0.02 and 0.08.
  • the thinnest portion of the B component is the minimum thickness S.
  • the fiber perimeter at a portion within 1.05 times the minimum thickness S occupies 1/3 or more of the total perimeter of the composite fiber.
  • the present invention has the position of the center of gravity of each component in the cross section of the fiber. are farther apart, forming fine spirals and developing good crimps.
  • the peripheral length of the fiber in the portion having a thickness within 1.05 times the minimum thickness S is set to 2/5 or more of the peripheral length of the entire fiber, so that good stretchability can be obtained without crimp unevenness.
  • the upper limit is not particularly limited, it is usually 4/5 or less.
  • the cross section of the fiber discharged from the spinneret can be arbitrarily selected from round, triangular, flat, hexagonal, eight-lobed, daruma, etc.
  • a round shape is preferred in order to obtain high stretchability.
  • the eccentric core-sheath composite false-twisted yarn of the present invention has an irregularity difference of 0.2 or more between single yarns.
  • Single yarn irregularity is a value calculated as circumscribed circle diameter/inscribed circle diameter of single fiber cross section, and irregularity difference between single yarns is an index of variation in irregularity of eccentric core-sheath composite false twisted yarn.
  • a single yarn that is coarse and has a small degree of irregularity has fine crimps. It was found that the eccentric core-sheath composite false-twisted yarn of the present invention is improved in abrasion resistance during elongation by mixing single yarns with a large irregularity and single yarns with a small irregularity.
  • the eccentric core-sheath composite false-twisted yarn of the present invention can improve wear resistance during elongation by setting the irregularity difference between single yarns to 0.2 or more.
  • the upper limit is not particularly limited, it is preferably 3.0 or less from the viewpoint of the surface quality of the woven or knitted fabric. More preferably, the irregularity difference between single yarns is 0.3 to 2.0.
  • the eccentric core-sheath composite false-twisted yarn, which has been worn during stretching of the woven or knitted fabric will have a poor appearance such as conspicuous discoloration.
  • the crimp rate of the eccentric core-sheath composite false twist yarn of the present invention is 30% or more, so that the woven or knitted fabric can be imparted with high stretchability.
  • the crimp ratio is less than 30%, the woven or knitted fabric cannot be imparted with stretchability. More preferably 35% to 65%.
  • the eccentric core-sheath composite false twisted yarn of the present invention preferably has a residual torque of 30 T/M or more. Since the twist of the single yarn of the eccentric core-sheath composite false twisted yarn is large, the single yarn is twisted when the woven or knitted fabric receives an external force in the compression direction at the time of abrasion, and the outermost surface of the worn woven or knitted fabric is easily replaced. change in appearance becomes inconspicuous, which is preferable. A more preferable residual torque range is 50 to 150 T/m.
  • conjugate fibers with a three-dimensional spiral structure tend to have a low residual torque, but by giving the number of entanglements of 30 pieces/m or more, the torque at the converging portion overlaps, and the residual torque is 30T. /M or more.
  • the entanglement number of the eccentric core-sheath composite false twisted yarn of the present invention is preferably 30 to 150/m.
  • a more preferable range of the number of entanglements is 30 to 100/m.
  • the single filament fineness of the eccentric core-sheath composite false twisted yarn of the present invention is preferably 1.5 dtex or less. Since the worn surface of each single yarn is also small, the change in appearance after abrasion becomes less noticeable, which is preferable.
  • the lower limit is not particularly limited, it is preferably 0.5 dtex or more in terms of strength.
  • the ratio of the eccentric core-sheath composite false-twisted yarn of the present invention is preferably in the range of 20 to 80%.
  • the woven or knitted fabric of the present invention is a woven or knitted fabric knitted or woven using at least a part of the core-sheath composite false twisted yarn.
  • the woven or knitted fabric of the present invention preferably has an elongation rate of 15% or more under a load of 1.5 kgf in at least one of the warp direction and the weft direction. It is a performance that is exhibited by the high stretchability of the core-sheath composite false twisted yarn of the present invention, but when it is 15% or more, it inhibits movement not only for sports applications but also for slacks, business shirts, casual shirts, jackets, etc. It is possible to obtain a woven or knitted fabric that is difficult to wash. More preferably, the elongation rate is 20% or more.
  • the woven or knitted fabric of the present invention preferably has a KES surface roughness of 10 ⁇ m or less.
  • the KES surface roughness is a numerical value of surface roughness measured using an automated surface tester (KESFB4). Apply a vertical load of 50 g including the metal friction element, contact the friction element with a force of 10 g by the contact pressure of the spring, move the test piece back and forth 30 mm, and measure the fluctuation of the surface roughness of the test piece. do. This is preferable because it increases the contact surface during wear, disperses the amount of wear to the woven or knitted fabric, and makes the wear less noticeable.
  • a more preferable KES surface roughness is 3 ⁇ m or less.
  • the lower limit is not particularly limited, and is preferably 0 ⁇ m as small as possible.
  • the abrasion resistance (hereinafter sometimes referred to as abrasion strength) of the woven or knitted fabric of the present invention is defined by JIS L 1096 (2010) 8.19 E method in the non-stretched (normal) and stretched state. It is preferable that the abrasion strength to be applied is grade 3 or higher for discoloration after 3000 cycles. Conventionally, abrasion resistance is usually measured in a non-stretched state, but in clothes using highly stretchable woven or knitted fabrics, wear is large in highly movable areas such as knees, elbows, and shoulders. , the tendency did not match the above wear strength measurement results in many cases.
  • the abrasion resistance of woven or knitted fabrics in a stretched state correlates with the abrasion resistance of clothes for practical use in the high motion range. That is, if the wear strength at 10% elongation is JIS L 1096 (2010) 8.19 E method 3000 times or higher, the wear durability can be improved, and it can be used as a highly stretchable garment with excellent wear resistance. preferable. Abrasion strength of grade 3.5 or higher is more preferable in both the non-stretched state and the stretched state.
  • the eccentric core-sheath composite false-twisted yarn and the woven or knitted fabric of the present invention will be described.
  • a preferred spinning speed is 2500-3500 m/min.
  • the spinneret may have any known internal structure as long as it enables spinning with stable quality and operation. is important.
  • By adopting the cross section of the present invention it is possible to suppress ejection line bending (kneeing phenomenon) caused by the difference in flow velocity between the two types of polymers during ejection from the die.
  • ejection line bending kneeing phenomenon
  • the conventional simple lamination structure side-by-side structure
  • any condition can be selected as the false twisting condition for the eccentric core-sheath composite false twisted yarn of the present invention.
  • Any of a spindle type, a friction disk type and a belt nip type may be used as the twister, but a friction disk type and a belt nip type capable of high-speed false twisting are preferred.
  • the first draw false twisting There are two methods of false twisting, the first draw false twisting and the simultaneous draw false twisting method.
  • the pre-drawing false twisting method it is preferable to use a false twisting method in which low magnification heat treatment drawing is performed with a hot pin to impart thick and thin irregularities to the single yarns, thereby locally generating yarn length differences in the single yarns.
  • the false twisting temperature is 170 to 220° C. in the case of a contact heater, it is possible to obtain a high crimp ratio, and it is possible to greatly deform the cross section to increase the irregularity difference between single yarns. It is possible and preferable.
  • the false twist coefficient (number of false twists (T/M) x fineness (dtex) 0.5 ) is in the range of 27,000 to 33,000, a high crimp rate can be obtained. In addition, it is possible to greatly deform the cross section and increase the irregularity difference between the single yarns, which is preferable.
  • entanglement can optionally be imparted using an interlace nozzle.
  • the entanglement pressure is preferably 0.1 to 0.6 (MPa). More preferably, it is 0.2 to 0.4 (MPa).
  • the eccentric core-sheath composite false-twisted yarn of the present invention may be given a real twist depending on the application of the woven or knitted fabric.
  • the twisting method a conventional method may be used, and the twisting conditions may be appropriately selected.
  • the woven or knitted fabric of the present invention can be obtained by forming the eccentric core-sheath composite false twisted yarn of the present invention thus produced into a woven fabric or knitted fabric using a known weaving method or knitting method. Any known structure can be applied as a woven structure or a knitted structure. In the present invention, woven fabrics and knitted fabrics are collectively referred to as "woven or knitted fabrics". The woven or knitted fabric of the present invention is not restricted in any way by texture or density.
  • the looms used for weaving can be exemplified by models such as ordinary looms, rapiers, water jet looms, air jet looms, etc., which are generally used, and can be adopted without particular limitation. Any design such as plain, twill, or satin can be used as the weave structure.
  • eccentric core-sheath composite false-twisted yarn of the present invention is used for at least a part of a knitting yarn, it is preferable to knit by optimizing the tension of each yarn.
  • the knitting structure arbitrary designs such as jersey, smooth, punch, rib and half weaves are possible.
  • the dyeing process preferably applied to the woven or knitted fabric using the eccentric core-sheath composite false-twisted yarn of the present invention will be described.
  • the dyeing process is not particularly limited and can be adopted. Among them, in order to sufficiently express the false twist crimp, it is preferable that the relax heat treatment is performed at a temperature of 120° C. or higher to impart a kneading effect to the woven or knitted fabric.
  • the intermediate set temperature in order to suppress washing shrinkage, it is preferable to set the intermediate set temperature to 170°C or higher and 210°C or lower. By setting the intermediate set temperature within the above preferred range, fusion of the filaments can be prevented.
  • the woven or knitted fabric may be subjected to alkali weight reduction in order to obtain a soft feel, but the preferred weight reduction rate is 15% or less.
  • the woven or knitted fabric of the present invention may be treated with conventional water-absorbing, water-repellent, UV-shielding, softening, or antibacterial agents, antiviral agents, and deodorants as long as the object of the present invention is not impaired.
  • Various types of processing that impart functions such as agents, insect repellents, and retroreflective agents may be additionally applied.
  • the eccentric core-sheath composite false twisted yarn of the present invention and its woven or knitted fabric will be specifically described below with reference to examples, but the present invention is not particularly limited thereto.
  • the examples and comparative examples were evaluated as follows.
  • the obtained value corresponds to the fiber diameter D referred to in the present invention.
  • the circle circumscribing the cross section here is a perfect circle that circumscribes the cross section perpendicular to the fiber axis from the image taken two-dimensionally, and circumscribes this cutting plane at two or more points.
  • the circle diameter means the diameter of the perfect circle.
  • the value obtained by measuring the minimum thickness of the B component covering the A component for 10 fibers (places) corresponds to the minimum thickness S in the present invention. do.
  • the fiber diameter D and the minimum thickness S were measured in units of ⁇ m and rounded off to the second decimal place.
  • a simple numerical average of the measured values and their ratio (S/D) was obtained for ten images taken during the above operation.
  • the ratio of the peripheral length of the fiber in the portion having a thickness within 1.05 times the minimum thickness S to the overall peripheral length of the composite fiber (“S ratio (%)" in Table 1) was obtained for 10 images.
  • a simple numerical average of the measured values was obtained by rounding off to the first decimal place.
  • the degree of entanglement is the number of entangled parts per 1 m under a tension of 0.1 cN / dtex.
  • the pin was moved up and down in the longitudinal direction of the yarn with a tension of 0.1 cN/dtex, and the portion that moved without resistance was recorded as the non-entangled portion, and the distance traveled was recorded, and the portion where the pin stopped was the entangled portion. This operation was repeated 30 times, and the degree of entanglement per 1 m was calculated from the average distance of the unentangled portions.
  • the initial load (g) at this time was 2 mg/dtex
  • the measurement load (g) was 90 mg/dtex
  • the water temperature was 20 ⁇ 2°C.
  • the fabric was set in a state of 10% elongation in the direction of use of the eccentric core-sheath composite false twisted yarn, and other items were measured according to JIS L 1096 8.19 E method (2010, Martindale method). Using a pressure load of 3,000 times, discoloration and fading were evaluated.
  • KES surface roughness (SMD) SMD was measured using an automated surface tester (“KESFB4-AUTO-A” manufactured by Kato Tech Co., Ltd.). A 20 cm square test piece was placed in the tester. Next, a vertical load of 50 g including the metal friction element is applied, the friction element is brought into contact with a force of 10 g by the contact pressure of the spring, and the test piece is moved back and forth 30 mm to measure the surface roughness of the test piece. variation was measured. Measurement was performed five times each in two directions, WARP and WEFT, and the average value was taken as SMD. SMD indicates the fluctuation of surface roughness, and it can be determined that the larger the value, the more irregularities are caused by the protrusions.
  • Example 1 Polybutylene terephthalate (PBT melt viscosity: 160 Pa s) is used as the polymer A component, polyethylene terephthalate (PET melt viscosity: 140 Pa s) is used as the polymer B component, and the weight composite ratio of the polymer A component and the polymer B component is 50/ 50 and flowed into a spinneret for an eccentric core-sheath composite yarn having 48 discharge holes.
  • Each polymer joins inside the spinneret to form an eccentric core-sheath composite form in which the polymer of the polymer A component is included in the polymer of the polymer B component.
  • a highly oriented undrawn yarn of 95 dtex, 48 filaments and an elongation of 152% was obtained.
  • a spinneret of a distribution plate type was used so as to obtain the eccentric core-sheath composite fiber shown in FIG.
  • the S/D in the cross section of the fiber is 0.02, and the length of the portion within 1.05 times the minimum thickness S (hereinafter sometimes referred to as the “minimum thickness portion”) is an eccentric core-sheath composite false twisted yarn.
  • the ratio of the total perimeter (sometimes referred to as “S ratio”) was 40%.
  • Example 2 The same method as in Example 1 was carried out to form an eccentric core-sheath composite form in which the polymer of polymer A component was included in the polymer of polymer B component, and spun from a spinneret at a spinning speed of 3600 (m / min) to obtain a fineness. A highly oriented undrawn yarn with 80 dtex, 48 filaments and an elongation of 115% was obtained.
  • Example 3 Polytrimethylene terephthalate (3GT melt viscosity: 170 Pa s) is used as the polymer A component, polyethylene terephthalate (PET melt viscosity: 140 Pa s) is used as the polymer B component, and the weight composite ratio of the polymer A component and the polymer B component is 50. /50 and flowed into a spinneret for an eccentric core-sheath composite false twist yarn having 48 discharge holes. Each polymer joins inside the spinneret to form an eccentric core-sheath composite form in which the polymer of the polymer A component is included in the polymer of the polymer B component.
  • 3GT melt viscosity: 170 Pa s is used as the polymer A component
  • PET melt viscosity: 140 Pa s polyethylene terephthalate
  • the weight composite ratio of the polymer A component and the polymer B component is 50. /50 and flowed into a spinneret for an eccentric core-sheath composite false twist yarn
  • Example 3 A highly oriented undrawn yarn of 95 dtex, 48 filaments and an elongation of 150% was obtained.
  • a spinneret of a distribution plate type was used so as to obtain the eccentric core-sheath composite fiber shown in FIG.
  • Example 4 The same polymers A and B as in Example 1 were used, and the weight composite ratio of the polymer A component and the polymer B component was set at 50/50. Each polymer joins inside the spinneret to form an eccentric core-sheath composite form in which the polymer of the polymer A component is included in the polymer of the polymer B component. A highly oriented undrawn yarn with 95 dtex, 72 filaments and an elongation of 147% was obtained. In addition, in the spinning of Example 4, a spinneret of a distribution plate type was used so as to obtain the eccentric core-sheath composite fiber shown in FIG.
  • Example 5 A highly oriented undrawn yarn was obtained in the same manner as in Example 1.
  • the highly oriented undrawn yarn was fed from a feed roller and drawn at a low draw ratio with a hot pin at 80 ° C. and a draw ratio of 1.3 times. After that, after stretching at a processing speed of 500 m / min, a draw ratio of 1.2 times, a heater temperature of 180 ° C., and a false twist coefficient of 29,000, a simultaneous stretching and false twisting is performed, and then entangled.
  • ATF12 manufactured by TMT Machinery Co., Ltd.
  • Example 1 A highly oriented undrawn yarn was obtained in the same manner as in Example 1. Next, after that, a stretching heat treatment is performed at 140 ° C. and a stretching ratio of 1.6 times, and then interlacing is performed at an interlacing pressure of 0.2 MPa, fineness: 60 dtex, crimp rate: 20%, residual torque: 1 T / m. , entanglement number: 17 pieces/m, single yarn irregularity: 1.0, irregularity difference between single yarns: 0. An eccentric core-sheath composite yarn was obtained. The S/D in the cross section of the fiber was 0.02, and the length of the minimum thickness portion accounted for 40% of the peripheral length of the entire eccentric core-sheath composite yarn.
  • Example 2 A highly oriented undrawn yarn was obtained in the same manner as in Example 1, and then subjected to drawing heat treatment at 130° C. and a draw ratio of 1.55 times.
  • the drawn yarn was fed from feed rollers, processing speed: 500 m / min, draw ratio: 1.0 times, heater temperature: 160 ° C., False twisting is performed at a false twisting coefficient of 28,000, and then interlacing is performed at an entangling pressure of 0.2 MPa. /m, single yarn irregularity: 1.2, irregularity difference between single yarns: 0.1.
  • the S/D in the cross section of the fiber was 0.02, and the length of the minimum thickness portion accounted for 40% of the total peripheral length of the eccentric core-sheath composite false-twisted yarn.
  • Example 3 Polymers were used in the same manner as in Example 1, and the weight composite ratio of the polymer A component and the polymer B component was set at 50/50. Each polymer was spun from a spinneret at a spinning speed of 3000 (m/min) to obtain a highly oriented undrawn yarn with a fineness of 95 dtex, 48 filaments and an elongation of 150%.
  • Each polymer joins inside the spinneret to form an eccentric core-sheath composite form in which the polymer of polymer A component is included in the polymer of polymer B component, spun from the spinneret at a spinning speed of 300 (m / min), A highly oriented undrawn yarn of 95 dtex, 48 filaments and an elongation of 150% was obtained.
  • a spinneret of a distribution plate type was used so as to obtain the eccentric core-sheath composite fiber shown in FIG.
  • Polybutylene terephthalate (PBT melt viscosity: 160 Pa s) is used as the polymer A component
  • polyethylene terephthalate (PET melt viscosity: 140 Pa s) is used as the polymer B component
  • the weight composite ratio of the polymer A component and the polymer B component is 50/ 50 composite fiber and polyethylene terephthalate obtained by copolymerizing 0.3 mol % of 5-sodium sulfoisophthalic acid as a single fiber and discharged from the discharge hole.
  • the shape of the ejection holes is circular for both the composite yarn and the single yarn, and the number of ejection holes is 24 for the composite fiber and 48 for the single fiber.
  • Each polymer joins inside the spinneret to form an eccentric core-sheath composite form in which the polymer of the polymer A component is included in the polymer of the polymer B component, and a composite form consisting of a single fiber. /min) to obtain a highly oriented undrawn yarn having a fineness of 140 dtex, 72 filaments and an elongation of 150%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

A成分及びB成分の2種のポリマーからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、A成分を覆っているB成分の厚みの最小厚みSと繊維径Dの比S/Dが0.01~0.1であり、かつ最小厚みSより厚みが1.05倍以内の部分の繊維の周囲長が繊維全体の周囲長の1/3以上であり、単糸間の異型度差が0.2以上、捲縮率が30%以上であることを特徴とする偏心芯鞘複合仮撚糸。

Description

偏心芯鞘複合仮撚糸及びそれを用いた織編物
 本発明は、偏心芯鞘複合仮撚糸及びそれを用いた織編物に関する。
 ポリエステルやポリアミドなどの熱可塑性ポリマーを用いた繊維は力学的特性、寸法安定性をはじめ様々な優れた特性を有している。そのため、衣料用途をはじめ、インテリア、車両内装、産業資材等の各種分野で利用されている。一方、繊維の用途が多様化するに伴い、その要求特性も多様なものになってきている。
 特に近年においては着用時の束縛感の抑制や動作の追従性が求められるようになり、ストレッチ性能に関する要求が高く、織編物を構成する原糸にストレッチ性を付与する方法もこれまでに種々提案されている。例えば、織物中にゴム弾性をもつポリウレタン系の繊維を混用し、ストレッチ性を付与する方法がある。しかしながら、染色堅牢度が悪く、変色や色移りしやすいことや、着用時の摩擦で強度劣化したポリウレタンが切断するなどの問題があった。
 ポリウレタンを使用しない手法として例えば特許文献1には、粘度差のある2成分のポリマーをサイドバイサイド型に貼り合わせた複合繊維による潜在捲縮性複合繊維が提案されている。
 また特許文献2には、A成分及びB成分の2種のポリマーからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、最小厚みを規定することで、ストレッチ性と耐摩耗性を兼ね備えた織編物が提案されている。
 また特許文献3には、A成分及びB成分の2種のポリマーからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、最小厚みを規定した偏心芯鞘複合仮撚糸とその織編物が提案されている。
特開平9-157941号公報 WO2018-110523号公報 特開2019-214798号公報
 例えば特許文献1に記載のような潜在捲縮性複合繊維を用いることにより、熱処理後に繊維が高収縮成分側に大きく湾曲することになるため、これが連続することで3次元的なスパイラル構造をとる。このため、該構造がバネのように伸び縮みすることで、織編物にストレッチ性を付与することができるが、本手法ではサイドバイサイド型の単純貼り合わせ構造であることから、摩擦や衝撃によって界面において剥離が生じ、部分的に白い筋状の白化現象や毛羽立ちなどで織編物品位が低下するといった課題があった。
 また特許文献2に記載のような手法は延伸糸のみを考慮しており、さらに実際の実着用を想定した伸長時の耐摩耗性については、考慮されていないものであった。
 さらに、特許文献3に記載のような織編物では耐摩耗性が良好とあるが、実際の着用を想定した伸長時の耐摩耗性は改善が必要であった。
 このように、ストレッチ性を得るために、さまざまな織編物が提案されているが、実着用で問題が発生しやすい肘や膝部等の高可動領域における伸長時の耐摩耗性はさらに十分なものが望まれる。
 本発明の目的は、従来高ストレッチ織物の課題であった伸長時の耐摩耗性を解消し、かつソフトで膨らみ感のある風合いに優れた織編物を提供できる偏心芯鞘複合仮撚糸、及びそれを用いた織編物を提供することにある。
 かかる課題を解決するため本発明の偏心芯鞘複合仮撚糸、及びそれを用いた織編物は、次の構成を有する。
(1)A成分及びB成分の2種のポリマーからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、A成分を覆っているB成分の厚みの最小厚みSと繊維径Dの比S/Dが0.01~0.1であり、かつ最小厚みSより厚みが1.05倍以内の部分の繊維の周囲長が繊維全体の周囲長の1/3以上の単糸からなるマルチフィラメントであり、前記単糸間の異型度差が0.2以上、捲縮率が30%以上であることを特徴とする偏心芯鞘複合仮撚糸。
(2)残留トルクが30T/M以上であることを特徴とする上記(1)に記載の偏心芯鞘複合仮撚糸。
(3)上記(1)または(2)に記載の偏心芯鞘複合仮撚糸を用いた織編物。
(4)KES表面粗さが10μm以下であることを特徴とする上記(3)に記載の織編物。
(5)10%伸長時の耐摩耗性が3級以上であることを特徴とする上記(3)または(4)に記載の織編物。
 本発明の偏心芯鞘複合仮撚糸を用いることで、高ストレッチ性能を有し、伸長時の耐摩耗性に優れ、ソフトで膨らみ感ある風合いに優れた織編物を得ることができる。この織編物は、衣料用、衣料資材用まで含めた幅広い分野に適応できるものであり、効率よく低コストで製造可能である。
本発明の偏心芯鞘複合繊維の一例であり、その繊維断面における重心位置を説明するための繊維横断面である。 本発明の偏心芯鞘複合繊維および複合糸の繊維断面における繊維径(D)と最小厚み(S)を説明するための繊維断面である。
 以下、本発明について、望ましい実施形態とともに詳述する。
 本発明の偏心芯鞘複合仮撚糸は、その繊維横断面が、A成分とB成分の2種のポリマーから構成されている。ここでいうポリマーとは、繊維形成性の熱可塑性重合体が好適に用いられ、加熱処理を施した際に収縮差を生じるポリマーの組み合わせが好適である。中でも組み合わせるポリマーの溶融粘度差が10Pa・s以上となる分子量または組成が異なるポリマーの組み合わせが好適である。
 本発明の目的を達成するために好適なポリマーとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイドが挙げられる。これらの分子量を変更して図1に示すA成分に高分子量ポリマーを、またB成分に低分子量ポリマーを使用する、あるいは一方成分をホモポリマーとし、他方成分を共重合ポリマーとして使用することもできる。
 また、ポリマー組成が異なる組み合わせについても、例えば、A成分/B成分でポリブチレンテレフタレート/ポリエチレンテレフタレート、ポリトリメチレンテレフタレート/ポリエチレンテレフタレート、熱可塑性ポリウレタン/ポリエチレンテレフタレート、ポリトリメチレンテレフタレート/ポリブチレンテレフタレートなどの種々の組み合わせが挙げられる。これらの組み合わせにおいては、スパイラル構造による良好な嵩高性を得ることができる。
 特に、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレンなどが好ましく用いられ、中でもポリエステルは力学特性等も兼ね備えるため、より好ましい。ここでいうポリエステルとは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートや、それらにジカルボン酸成分、ジオール成分あるいはオキシカルボン酸成分が共重合されたもの、あるいはそれらのポリエステルをブレンドしたものが挙げられる。これらのポリマーにおいては、本発明の目的を損なわない範囲で、酸化チタンなどの艶消し剤、難燃剤、滑剤、抗酸化剤、着色顔料等として無機微粒子や有機化合物、カーボンブラックを必要に応じて含有させることができる。
 本発明の偏心芯鞘複合仮撚糸におけるA成分とB成分の繊維横断面における複合面積比率は、捲縮発現から鑑みるとA成分である高収縮成分の比率が多くなることで微細なスパイラル構造を実現できる。また、偏心芯鞘複合仮撚糸として優れた物理特性を有している必要性もあるので、両成分の比率は、A成分:B成分=70:30~30:70(面積比)の範囲が好ましく、65:35~45:55の範囲がより好ましい。
 本発明の偏心芯鞘複合仮撚糸では、2種のポリマーからなる複合繊維の横断面において、2種のポリマーが実質的に分離せず接合された状態で存在し、A成分がB成分で完全に覆われている偏心芯鞘型である。ここで、本発明でいう偏心とは、複合繊維断面においてA成分ポリマーの重心点位置が複合繊維断面中心と異なっていることを指し、図1を用いて説明する。図1において、水平ハンチングがB成分であり、30度ハンチング(右上がり斜線)がA成分であって、複合繊維断面におけるA成分の重心点が重心点aであり、複合繊維断面の重心が重心点Cである。本発明のおいては、重心点aと複合繊維断面の重心点Cが離れていることで、熱処理後に繊維が高収縮成分側に大きく湾曲させることができる。このため、複合繊維が繊維軸方向に湾曲し続けることにより、3次元的なスパイラル構造をとり、さらに仮撚を付与することで良好な捲縮発現することになるのである。ここで、重心位置が離れているほどより良好な捲縮が発現し、良好なストレッチ性能が得られるのである。
 本発明においては、A成分がB成分に完全に覆われることにより、織編物に摩擦や衝撃が加わっても、複合繊維が界面剥離し難くなり、耐摩耗性を向上させることができる。ここで、従来の単純サイドバイサイド型貼り合わせ構造では、界面剥離による白化現象や毛羽立ち問題が発生しやすくなる。
 またサイドバイサイド型の複合糸であれば、単糸繊度を細くしていくと、紡糸操業性が悪くなる問題があった。しかし、A成分がB成分で完全に覆われる構造により、紡糸性が改善し、単糸繊度を1.5dtexよりも細くすることが可能となった。
 本発明の偏心芯鞘複合仮撚糸は、A成分を覆っているB成分の最小となる厚みSと繊維径(複合繊維の直径)Dの比S/Dが0.01~0.1であれば、毛羽等による織編物品位低下が抑制でき、かつストレッチ性能を得ることができる。好ましくは、0.02~0.08である。
 図2に示した繊維断面を用いて更に詳細に説明する。ここでB成分の最薄部が最小厚みSである。
 さらに、本発明において単糸は、最小厚みSの1.05倍以内の厚みの部分の繊維の周囲長が複合繊維の全体の周囲長の1/3以上を占めている。これは、繊維の輪郭に沿ってA成分が存在していることを意味しており、同一面積比の従来の偏心芯鞘糸と比較すると、本発明が、繊維断面においてそれぞれの成分の重心位置がより離れており、微細なスパイラルを形成し、良好な捲縮を発現する。より好ましくは、最小厚みSの1.05倍以内の厚みの部分の繊維の周囲長が繊維全体の周囲長の2/5以上とすることで捲縮斑がなく良好なストレッチ性能が得られる。上限は特に限定されないが、通常4/5以下である。
 また本発明においては、口金から吐出される繊維、すなわち単糸の断面としては、丸型、三角型、扁平型、六角型、八葉型、ダルマ型などから任意に選択することができるが、高ストレッチ性を得るためには丸型が好ましい。
 さらには、本発明の偏心芯鞘複合仮撚糸は単糸間の異型度差が0.2以上である。単糸異型度とは単繊維断面の外接円径÷内接円径として算出した値であり、単糸間の異型度差とは偏心芯鞘複合仮撚糸の異型度のバラツキの指標である。単独ポリマーからなる仮撚糸においては、仮撚加工により単糸の異型度がばらついても捲縮に大きな違いはないが、偏心芯鞘複合仮撚糸においては、異型度が大きい単糸は捲縮が粗く、異型度が小さい単糸は捲縮が細かくなる。本発明の偏心芯鞘複合仮撚糸はこの異型度の大きい単糸と小さい単糸を混在させることで、伸長時の耐摩耗性が向上することを見出した。
 すなわち、織編物の伸長時は異型度が大きく粗い捲縮の単糸が伸びきることで、異型度の小さく捲縮が細かい単糸が織編物の表面に出てくることになり、その結果、異型度の小さい単糸が摩耗されることになる。一方、その後、伸長を回復させた際には、異型度の小さい単糸の捲縮が強く回復し、偏心芯鞘複合仮撚糸の中心部に内側に入り込むことになる。その結果、摩耗されていない異型度の大きい単糸が織編物表面に出てくるので、実際に摩耗した部分は見えにくくなり、摩耗による外観変化も少なくなるのである。
 本発明の偏心芯鞘複合仮撚糸は単糸間の異型度差を0.2以上とすることで、伸長時の耐摩耗性を向上させることができる。上限は特に限定されないが、織編物表面品位の観点から好ましくは3.0以下である。さらに好ましい単糸間の異型度差は0.3~2.0である。ここで、単糸間の異型度差が0.2未満であれば、織編物の伸長時に摩耗を受けた偏心芯鞘複合仮撚糸の変色が目立つ等の外観不良が発生する。
 また本発明の偏心芯鞘複合仮撚糸の捲縮率が30%以上であることで、織編物に高ストレッチ性を付与することができる。ここで捲縮率が30%未満であれば、織編物にストレッチ性を付与することができない。より好ましくは35%~65%である。
 また本発明の偏心芯鞘複合仮撚糸は残留トルクが30T/M以上であることが好ましい。偏心芯鞘複合仮撚糸の単糸の捩れが大きいことで、摩耗時に織編物が圧縮方向に外力を受けた際に単糸が捩れて、摩耗される織編物最表面が入れ替わりやすくなり、摩耗後の外観変化が目立ち難くなり、好ましい。さらに好ましい残留トルクの範囲は50~150T/mである。
 一般的に3次元的なスパイラル構造を有した複合繊維は残留トルクが低くなる傾向にあるが、交絡数を30個/m以上付与することで、収束部のトルクが重ね合わさり、残留トルクを30T/M以上とすることができる。
 また本発明の偏心芯鞘複合仮撚糸の交絡数は30~150個/mであることが好ましい。交絡数が上記範囲に付与されていることで、非伸長時に異型度が大きく粗い捲縮の単糸が織編物表面に出てきやすくなり、摩耗による外觀変化が少なくなる。さらに好ましい交絡数の範囲は30~100個/mである。
 また本発明の偏心芯鞘複合仮撚糸の単糸繊度は、1.5dtex以下が好ましい。単糸1本の摩耗面も小さくなるので、摩耗後の外観変化が目立ち難くなり、好ましい。下限は特に限定されないが、強度の点で0.5dtex以上が好ましい。
 また本発明の偏心芯鞘複合仮撚糸と他の繊維(同一の偏心芯鞘複合仮撚糸でも良い)を2本以上混繊して使用することも可能である。また混繊糸においては、本発明の偏心芯鞘複合仮撚糸の比率が20~80%の範囲であることが好ましい。
 本発明の織編物は、上記芯鞘複合仮撚糸を少なくとも一部に用いて製編織された織編物である。本発明の織編物は、経方向または緯方向の少なくともいずれか一方が、1.5kgf荷重時の伸長率が15%以上であることが好ましい。本発明の芯鞘複合仮撚糸が持つ高いストレッチ性により発揮する性能であるが、15%以上であることでスポーツ用途だけでなく、スラックスやビジネスシャツ、カジュアルシャツ、ジャケットなどにおいても、動きを阻害しにくい織編物を得られる。さらに好ましくは、伸長率が20%以上である。
 また、本発明の織編物はKES表面粗さが10μm以下であることが好ましい。本発明においてKES表面粗さとは、自動化表面試験機(KESFB4)を使用して測定した表面粗さの数値である。金属摩擦子を含めて50gの垂直方向の荷重を掛け、バネの接触圧により10gの力で摩擦子を接触させ、試験片を前後に30mm移動して、試験片の表面粗さの変動を計測する。これにより、摩耗時の接触面が大きくなり、織編物への摩耗量が分散され、摩耗が目立ち難くなるので、好ましい。さらに好ましいKES表面粗さは3μm以下である。下限は特に限定されず小さいほど好ましく0μmである。
 また本発明の織編物の耐摩耗性(以下、摩耗強さという場合がある)においては、非伸長時(通常時)ならびに伸長時状態において、JIS L 1096(2010)8.19 E法で規定される摩耗強さを、3000回での変色が3級以上とすることが好ましい。従来、摩耗強さは非伸長状態で評価するのが通常の測定方法であったが、高ストレッチ織編物を用いた衣料においては、膝や肘、肩部等の高可動領域での摩耗が大きく、上記摩耗強さ測定結果と傾向が合わないことが多かった。高ストレッチ織編物の摩耗性について鋭意検証の結果、織編物の伸長状態での摩耗強さが実着用衣料の高可動領域での摩耗性と相関性があることが分かった。すなわち、10%伸長時の摩耗強さが、JIS L 1096(2010)8.19 E法 3000回において3級以上であれば、摩耗耐久性が向上でき、耐摩耗性に優れた高ストレッチ衣料として好ましい。非伸長時ならびに伸長時状態共にさらに好ましい摩耗強さは3.5級以上である。
 次に、本発明の偏心芯鞘複合仮撚糸及び織編物の好ましい製造方法について述べる。本発明の偏心芯鞘複合仮撚糸の元糸となる原糸を紡糸するにあたっては、高配向未延伸糸を紡糸することが好ましい。高配向未延伸糸を巻き取った後、延伸同時仮撚加工を行うことで、断面をより変形させることができ、単糸間の異型度差を大きくすることができる。好ましい紡糸速度は2500~3500m/minである。
 また口金は、品質および操業安定的に紡糸することが可能であれば、公知のいずれの内部構造のものであっても良いが、図1の如くB成分でA成分を完全に覆っていることが重要である。本発明の断面とすることで、口金吐出時の2種のポリマーの流速差のため起こる、吐出線曲がり(ニーイング現象)を抑制できるのである。また、従来の単純貼り合わせ構造(サイドバイサイド構造)の場合では、口金吐出後の紡糸線上での細化時のそれぞれのポリマーにかかる応力バランスに差が生じ、伸長変形に斑が生じ、これが繊度斑として顕在化し、U%が大きくなる場合があった。この傾向は、粘度差の大きいポリマーの組み合わせや、吐出量を絞るなどして、細繊度化する場合は非常に顕著に現れるものであるが、本発明においては、片方のポリマーで覆われていることで応力バランスが繊維断面内で均衡化して繊度斑が抑制できるのである。さらには、A成分に高分子量ポリマーを用い、B成分に低分子量ポリマーを用いる場合には、B成分で完全に覆われていることで高速製糸安定性に優れることも見出されている。これは、低分子量ポリマーが外側に配置されることで口金吐出後の伸長変形に高分子量ポリマーが追従しやすくなった効果である。
 本発明の偏心芯鞘複合仮撚糸の仮撚条件としては任意の条件を選定できる。ツイスターにはスピンドル式、フリクションディスク式、ベルトニップ式いずれを用いても構わないが、高速で仮撚可能なフリクションディスク式、ベルトニップ式が好ましい。
 仮撚は先延伸仮撚、延伸同時仮撚方法があるが、断面をより変形させ、単糸間の異型度差を大きくできる延伸同時仮撚加工が好ましい。先延伸仮撚方法の場合は、ホットピンで低倍率熱処理延伸を行い、太細ムラを単糸に付与し、局所的に単糸の糸長差を発生させる仮撚方法が好ましい。
 仮撚温度は、接触式ヒータの場合、170~220℃であれば、高い捲縮率を得ることが可能であり、また、断面を大きく変形させて単糸間の異型度差を大きくできることができ、好ましい。
 仮撚数においては、仮撚係数(仮撚数(T/M)×繊度(dtex)0.5)が27,000~33,000の範囲であれば、高い捲縮率を得ることができ、また、断面を大きく変形させて単糸間の異型度差を大きくできることができ、好ましい。
 また、仮撚の前後に任意でインターレースノズルにより交絡を付与することができる。コスト面も考慮して、交絡圧は0.1~0.6(MPa)であることが好ましい。さらに好ましくは0.2~0.4(MPa)である。
 糸加工速度については早ければ生産性が高くなり好ましいが、安定加工性を考慮すると、300~900(m/min)が好ましい。
 また、本発明の偏心芯鞘複合仮撚糸は、織編物の用途に応じて実撚を付与してもよい。加撚方法としては、従来の方法を使用すればよく、加撚条件は適宜選定すれば良い。
 このようにして製造した本発明の偏心芯鞘複合仮撚糸を、公知の製織方法、編成方法を用いて織物や編物とすることで、本発明の織編物とすることができる。織組織や編組織としては公知の如何なる組織をも適用できる。なお本発明においては、織物と編物を総称して「織編物」という。本発明の織編物は、組織あるいは密度になんら制約されることはない。
 製織に用いられる織機は、一般に使用される普通織機、レピア、ウオータージェットルーム、エアージェットルーム等の機種を例示でき、特に限定されることなく採用できる。織組織としては、平、ツイル、サテン等任意の設計が可能となる。
 また、製編の際は、丸編み機、トリコット機およびラッシェル機等、市販の編機を使用することができる。本発明の偏心芯鞘複合仮撚糸を、編糸の少なくとも一部に使用する際は、各々の張力を適正化して製編を行うことが好ましい。編組織としては、天竺、スムース、ポンチ、リブおよびハーフ組織等、任意の設計が可能となる。
 次に、本発明の偏心芯鞘複合仮撚糸を用いた織編物において、好ましく施される染色加工について説明する。染色加工工程は、特に限定されることはなく、採用できる。その中で、仮撚捲縮を充分に発現させるため、リラックス熱処理は120℃以上のリラックス加工とし、織編物にモミ効果を付与することが好ましい。
 また、洗濯収縮を抑制するため、中間セット温度を170℃以上210℃以下にすることが好ましい。中間セット温度を上記好ましい範囲内とすることで、フィラメントが融着することを防ぐことができる。
 本発明においては、ソフト風合いを得る面で、織編物にアルカリ減量を施しても構わないが、好ましい減量率は15%以下である。
 また、本発明の織編物には、本発明の目的が損なわれない範囲内であれば、常法の吸水加工、撥水加工、紫外線遮蔽加工、柔軟加工あるいは抗菌剤、抗ウイルス剤、消臭剤、防虫剤、再帰反射剤等の機能を付与する各種加工を付加適用してもよい。
 以下実施例を挙げて、本発明の偏心芯鞘複合仮撚糸とその織編物について具体的に説明するが、特にこれに限定されるものではない。実施例および比較例については、以下の評価を行った。
 (1)繊度
 枠周1.0mの検尺機を用いて100回分のカセを作製し、下記式に従って繊度を測定した。
繊度(dtex)=100回分のカセ重量(g)×100。
 (2)伸度
 試料を引張試験機(株式会社オリエンテック製“テンシロン”(TENSILON)UCT-100)でJIS L 1013(2010) 8.5.1 標準時試験に示される定速伸長条件で測定した。この時の掴み間隔は20cm、引張り速度は20cm/分、試験回数は10回とした。
なお、破断伸度はSS曲線における最大強力を示した点の伸びから求めた。
 (3)最小厚みSおよび繊維径D
 偏心芯鞘複合仮撚糸からなるマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、繊維方向に対して垂直方向の横断面を透過型電子顕微鏡(TEM)で10本(箇所)以上の繊維が観察できる倍率として画像を撮影した。この際、金属染色を施すとポリマー間の染め差を利用して、A成分とB成分の接合部のコントラストを明確にすることができる。接合部があることで、偏心芯鞘複合繊維が2成分であることが確認出来る。撮影された各画像から同一画像内で無作為に抽出した10本(箇所)の偏心芯鞘複合繊維の単糸の横断面について、横断面に外接する円を設定し、その外接円径を測定した値が、本発明でいう繊維径Dに相当する。ここでいう横断面に外接する円は、2次元的に撮影された画像から繊維軸に対して垂直方向の断面を切断面とし、この切断面に2点以上で最も多く外接する真円、外接円径とはその真円の径を意味する。また、繊維径Dを測定した画像を用いて、10本(箇所)の繊維について、A成分を覆っているB成分の最小となる厚みを測定した値が、本発明でいう最小厚みSに相当する。これら繊維径Dと最小厚みSについては、単位をμmとして測定し、少数第2位以下を四捨五入した。以上の操作を撮影した10箇所の画像について、測定した値およびその比(S/D)の単純な数平均値を求めた。また、最小厚みSの1.05倍以内の厚みの部分の繊維の周囲長の複合繊維の全体の周囲長における割合(表1における「S比率(%)」)については、10箇所の画像について測定した値の単純な数平均値の少数第1位を四捨五入して求めた。なお、上述で撮影した画像、および画像解析ソフト三谷商事株式会社製「WinROOF2015」を用いて求めた。
 (4)単糸異型度、単糸間の異型度差
 前述した繊維径Dと同様の方法で、偏心芯鞘複合仮撚糸の任意の単繊維断面を2次元的に撮影し、単繊維の外接円径の直径に相当する外接円径と単繊維に内接する真円の径である内接円径を測定した。これらの結果から、異型度=外接円径÷内接円径として算出し、偏心芯鞘複合仮撚糸の同じ繊維横断面内の全ての単繊維の平均値を算出した。同じ偏心芯鞘複合仮撚糸の任意の断面5箇所においてこの作業を繰り返して異型度を測定し、その平均値を単糸異型度とした。
 また、前記偏心芯鞘複合仮撚糸の任意の繊維横断面内における単糸異型度が大きい5つの値の平均値-単糸異型度が小さい5つの値の平均値の差を単糸間の異型度差とし、5箇所の値の平均値をその仮撚糸の単糸間の異型度差とした。
 (5)交絡度
 交絡度は、0.1cN/dtexの張力下における1m当たりの交絡部の数であり、糸に0.02cN/dtexの張力下で非交絡部にピンを刺し、糸1mにわたり0.1cN/dtexの張力でピンを糸の長手方向の上下に移動せしめ、抵抗なく移動した部分を非交絡部として移動した距離を記録し、ピンが止まる部分を交絡部とした。この作業を30回繰り返し、その非交絡部の距離の平均値から1m当たりの交絡度を計算した。
 (6)捲縮率
 周長0.8mの検尺機に、90mg/dtexの張力下で糸を10回巻回してカセ取りした後、2cm以下の棒につり下げ、約24時間放置した。このカセをガーゼにくるみ、無緊張状態下で90℃×20分間熱水処理した後、2cm以下の棒につり下げ約12時間放置した。放置後のカセの一端をフックにかけ他端に初荷重と測定荷重をかけ水中に垂下し2分間放置した。このときの初荷重(g)=2mg/dtex、測定荷重(g)=90mg/dtex、水温=20±2℃とした。放置したカセの内側の長さを測り、Lとした。さらに、測定荷重を除き初荷重だけにした状態で2分間放置し、放置したカセの内側の長さを測り、L1とした。次式により、捲縮を求め、この作業を5回繰り返し、平均値により求めた。
捲縮率(%)={(L-L1)/L}×100。
 (7)残留トルク
 偏心芯鞘複合仮撚糸約75cmを横に張り、中央部に0.02mN/dtexの初荷重を吊るした後、両端を引揃えた。糸は残留トルクにより回転しはじめるが初荷重が静止するまでそのままの状態で持ち、撚糸を得た。こうして得た撚糸を1mN/dtexの荷重下で25cm長の撚数を検撚器で測定した。得られた撚数(T/25cm)を4倍にしてトルク(T/m)とした。
 (8)伸縮伸長率
 JIS L 1096(2010)に記載のB法に従い、1.5kgf(14.7N)荷重時の伸長率を測定した。この伸長率をストレッチ性の尺度とした。
 (9)摩耗強さ(非伸長時、伸長時)
 非伸長時の摩耗強さにおいては、JIS L 1096 E法(2010、マーチンデール法)に従い、衣料用の押圧荷重を用いて、摩耗回数3000回のときの変褪色を評価した。
 伸長時の摩耗強さにおいては、偏心芯鞘複合仮撚糸の使用方向に10%伸長した状態で生地をセットし、その他はJIS L 1096 8.19 E法(2010、マーチンデール法)に従い、衣料用の押圧荷重を用いて、摩耗回数3000回のときの変褪色を評価した。
 (10)KES表面粗さ(SMD)
 自動化表面試験機(カトーテック株式会社製「KESFB4-AUTO-A」)を使用してSMDを測定した。20cm四方の試験片を上記試験機に設置した。次に、金属摩擦子を含めて50gの垂直方向の荷重を掛け、バネの接触圧により10gの力で摩擦子を接触させ、試験片を前後に30mm移動して、試験片の表面粗さの変動を計測した。測定は、WARP、WEFTの2方向で各5回行い、その平均値をSMDとした。SMDは表面粗さの変動を示すものであり、値が大きいほど突出部による凹凸があると判定できる。
 (11)ふくらみ感
 実施例で作成した織編物のふくらみ感において、無作為に選んだ30人の評価で最も意見の多かった評価を結果とした。判定が同数の場合は下位の結果を採用した。◎と○は合格と判定できるレベルにある。
◎:織編物を握ったときに非常に大きいふくらみを感じる。
○:織編物を握ったときに大きいふくらみを感じる。
△:織編物を握ったときにふくらみ感が不足している。
×:織編物を握ったときにふくらみをほとんど感じない。
 [実施例1]
 ポリマーA成分として、ポリブチレンテレフタレート(PBT溶融粘度:160Pa・s)、ポリマーB成分として、ポリエチレンテレフタレート(PET溶融粘度:140Pa・s)とし、ポリマーA成分とポリマーB成分の重量複合比は50/50とし、吐出孔数48の偏心芯鞘複合糸用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、ポリマーB成分のポリマー中にポリマーA成分のポリマーが包含された偏心芯鞘複合形態を形成し、口金から紡速3000(m/分)で紡糸し、繊度95dtex、48フィラメント、伸度152%の高配向未延伸糸を得た。なお、実施例1の紡糸においては、図1に示す偏心芯鞘複合繊維が得られるような分配板方式の口金を用いた。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.6倍、ヒータ温度:180℃、仮撚係数:29,000で延伸同時仮撚を行い、その後、交絡圧:0.2MPaでインターレース加工を行い、繊度:60dtex、捲縮率:47%、残留トルク:65T/m、交絡数:40個/m、単糸間の異型度:1.8、単糸間の異型度差:1.4の偏心芯鞘複合仮撚糸を得た。また繊維断面におけるS/Dは0.02であり、最小厚みSより厚みが1.05倍以内の部分(以下、「最小厚み部分」という場合がある)の長さの偏心芯鞘複合仮撚糸全体の周囲長に占める割合(「S比率」という場合がある)は40%であった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:175本/2.54cm、緯糸:125本/2.54cm)の製品とした。得られた織物の伸長率は経26%、緯30%とストレッチ性に大変優れていた。また、KES表面粗さ:1.4μm、耐摩耗性(非伸長時):4.5級、耐摩耗性(伸長時):4級であり、耐摩耗性に非常に優れ、膨らみ感にも優れたストレッチ織物であった。
 [実施例2]
 実施例1と同様の方法を行い、ポリマーB成分のポリマー中にポリマーA成分のポリマーが包含された偏心芯鞘複合形態を形成し、口金から紡速3600(m/分)で紡糸し、繊度80dtex、48フィラメント、伸度115%の高配向未延伸糸を得た。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.3倍、ヒータ温度:170℃、仮撚係数:27,000で延伸同時仮撚を行い、繊度:60dtex、捲縮率:34%、残留トルク:26T/m、交絡数:0個/m、単糸異型度:1.3、単糸間の異型度差:0.4の偏心芯鞘複合仮撚糸を得た。また繊維断面におけるS/Dは0.1であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の35%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:170本/2.54cm、緯糸:120本/2.54cm)の製品とした。得られた織物の伸長率は経17%、緯19%とストレッチ性に優れていた。また、KES表面粗さ:4.3μm、耐摩耗性(非伸長時):4.5級、耐摩耗性(伸長時):3級であり、耐摩耗性に優れ、膨らみ感にも優れたストレッチ織物であった。
 [実施例3]
 ポリマーA成分として、ポリトリメチレンテレフタレート(3GT溶融粘度:170Pa・s)、ポリマーB成分として、ポリエチレンテレフタレート(PET 溶融粘度:140Pa・s)とし、ポリマーA成分とポリマーB成分の重量複合比は50/50とし、吐出孔数48の偏心芯鞘複合仮撚糸用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、ポリマーB成分のポリマー中にポリマーA成分のポリマーが包含された偏心芯鞘複合形態を形成し、口金から紡速3000(m/分)で紡糸し、繊度95dtex、48フィラメント、伸度150%の高配向未延伸糸を得た。なお、実施例3の紡糸においては、図1に示す偏心芯鞘複合繊維が得られるような分配板方式の口金を用いた。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.6倍、ヒータ温度:180℃、仮撚係数:31,000で延伸同時仮撚を行い、その後、交絡圧:0.3MPaでインターレース加工を行い、繊度:60dtex、捲縮率:54%、残留トルク:90T/m、交絡数:62個/m、単糸異型度:1.9、単糸間の異型度差:1.6の偏心芯鞘複合仮撚糸を得た。繊維断面におけるS/Dは0.02であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の40%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:178本/2.54cm、緯糸:128本/2.54cm)の製品とした。得られた織物の伸長率は経29%、緯33%とストレッチ性に大変優れていた。また、KES表面粗さ:2.1μm、耐摩耗性(非伸長時):4.5級、耐摩耗性(伸長時):4級であり、耐摩耗性に非常に優れ、膨らみ感にも優れたストレッチ織物であった。
 [実施例4]
 実施例1と同様のポリマーA、Bを用い、ポリマーA成分とポリマーB成分の重量複合比は50/50とし、吐出孔数72の偏心芯鞘複合仮撚糸用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、ポリマーB成分のポリマー中にポリマーA成分のポリマーが包含された偏心芯鞘複合形態を形成し、口金から紡速3000(m/分)で紡糸し、繊度95dtex、72フィラメント、伸度147%の高配向未延伸糸を得た。なお、実施例4の紡糸においては、図1に示す偏心芯鞘複合繊維が得られるような分配板方式の口金を用いた。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.6倍、ヒータ温度:180℃、仮撚係数:28,000で延伸同時仮撚を行い、その後、交絡圧:0.2MPaでインターレース加工を行い、繊度:60dtex、捲縮率:38%、残留トルク:38T/m、交絡数:34個/m、単糸異型度:1.4、単糸間の異型度差:0.7の偏心芯鞘複合仮撚糸を得た。繊維断面におけるS/Dは0.02であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の40%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:173本/2.54cm、緯糸:123本/2.54cm)の製品とした。得られた織物の伸長率は経22%、緯24%とストレッチ性に大変優れていた。また、KES表面粗さ:2.7μm、耐摩耗性(非伸長時):4.5級、耐摩耗性(伸長時):3.5級であり、耐摩耗性に非常に優れ、膨らみ感にも優れたストレッチ織物であった。
 [実施例5]
 実施例1と同様の方法で高配向未延伸糸を得た。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、ホットピン:80℃、先延伸倍率:1.3倍で先低倍率延伸を行い、その後、加工速度:500m/min、延伸倍率:1.2倍、ヒータ温度:180℃、仮撚係数:29,000で先低倍率延伸後、延伸同時仮撚を行い、その後、交絡圧:0.25MPaでインターレース加工を行い、繊度:60dtex、捲縮率:37%、残留トルク:83T/m、交絡数:64個/m、単糸異型度:2.0、単糸間の異型度差:1.9の偏心芯鞘複合仮撚糸を得た。また繊維断面におけるS/Dは0.02であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の40%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:173本/2.54cm、緯糸:122本/2.54cm)の製品とした。得られた織物の伸長率は経21%、緯24%とストレッチ性に優れていた。また、KES表面粗さ:2.8μm、耐摩耗性(非伸長時):4.5級、耐摩耗性(伸長時):4級であり、耐摩耗性に非常に優れ、膨らみ感にも優れたストレッチ織物であった。
 [比較例1]
 実施例1と同様の方法で高配向未延伸糸を得た。
次にその後140℃、延伸倍率1.6倍で延伸熱処理を実施し、その後、交絡圧:0.2MPaでインターレース加工を行い、繊度:60dtex、捲縮率:20%、残留トルク:1T/m、交絡数:17個/m、単糸異型度:1.0、単糸間の異型度差:0の偏心芯鞘複合糸を得た。繊維断面におけるS/Dは0.02であり、最小厚み部分の長さが偏心芯鞘複合糸全体の周囲長の40%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:160本/2.54cm、緯糸:109本/2.54cm)の製品とした。得られた織物の伸長率は経10%、緯12%とストレッチ性はやや不足していた。また、KES表面粗さ:7.6μm、耐摩耗性(非伸長時):4級、耐摩耗性(伸長時):2級であり、伸長時の耐摩耗性が不足しており、膨らみ感にもやや不足したストレッチ織物であった。
 [比較例2]
 実施例1と同様の方法で高配向未延伸糸を得て、次にその後130℃、延伸倍率1.55倍で延伸熱処理を実施した。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.0倍、ヒータ温度:160℃、仮撚係数:28,000で仮撚を行い、その後、交絡圧:0.2MPaでインターレース加工を行い、繊度:60dtex、捲縮率:36%、残留トルク:55T/m、交絡数:38個/m、単糸異型度:1.2、単糸間の異型度差:0.1の偏心芯鞘複合仮撚糸を得た。繊維断面におけるS/Dは0.02であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の40%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:172本/2.54cm、緯糸:121本/2.54cm)の製品とした。得られた織物の伸長率は経21%、緯23%とストレッチ性に優れていたが、KES表面粗さ:10.5μm、耐摩耗性(非伸長時):4級、耐摩耗性(伸長時):2級であり、伸長時の耐摩耗性が不足したストレッチ織物であった。
 [比較例3]
 実施例1と同様の方法でポリマーを用い、ポリマーA成分とポリマーB成分の重量複合比は50/50とし、吐出孔数48のサイドバイサイド貼り合わせの紡糸口金に流入させた。各ポリマーは、口金から紡速3000(m/分)で紡糸し、繊度95dtex、48フィラメント、伸度150%の高配向未延伸糸を得た。
 次にフリクション仮撚機(ATF12:TMTマシナリー(株)製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.6倍、ヒータ温度:180℃、仮撚係数:29,000で延伸同時仮撚を行い、繊度:60dtex、捲縮率:46%、残留トルク:25T/m、交絡数:0個/m、単糸異型度:1.8、単糸間の異型度差:1.3の偏心芯鞘複合仮撚糸を得た。
その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:175本/2.54cm、緯糸:124本/2.54cm)の製品とした。得られた織物の伸長率は経26%、緯28%とストレッチ性に大変優れていたが、KES表面粗さ:5.2μm、耐摩耗性(非伸長時):2.5級、耐摩耗性(伸長時):1.5級であり、耐摩耗性に不足した織物であった。
 [比較例4]
 ポリマーA成分として、ポリブチレンテレフタレート(PBT溶融粘度:160Pa・s)、ポリマーB成分として、ポリエチレンテレフタレート(PET溶融粘度:140Pa・s)とし、ポリマーA成分とポリマーB成分の重量複合比は50/50とし、吐出孔数48の偏心芯鞘複合糸用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、ポリマーB成分のポリマー中にポリマーA成分のポリマーが包含された偏心芯鞘複合形態を形成し、口金から紡速300(m/分)で紡糸し、繊度95dtex、48フィラメント、伸度150%の高配向未延伸糸を得た。なお、実施例1の紡糸においては、図1に示す偏心芯鞘複合繊維が得られるような分配板方式の口金を用いた。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:500m/min、延伸倍率:1.6倍、ヒータ温度:170℃、仮撚係数:27,000で延伸同時仮撚を行い、繊度:58dtex、捲縮率:31%、残留トルク:18T/m、交絡数:0個/m、単糸異型度:1.3、単糸間の異型度差:0.1の偏心芯鞘複合仮撚糸を得た。また繊維断面におけるS/Dは0.25であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の30%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:163本/2.54cm、緯糸:112本/2.54cm)の製品とした。得られた織物の伸長率は経15%、緯16%とストレッチ性が得られた。一方、KES表面粗さ:11.6μm、耐摩耗性(非伸長時):4級、耐摩耗性(伸長時):2.5級であり、耐摩耗性に不足した織物であった。
 [比較例5]
 ポリマーA成分として、ポリブチレンテレフタレート(PBT溶融粘度:160Pa・s)、ポリマーB成分として、ポリエチレンテレフタレート(PET溶融粘度:140Pa・s)とし、ポリマーA成分とポリマーB成分の重量複合比は50/50である複合繊維とし、さらに5-ナトリウムスルホイソフタル酸を0.3mol%共重合したポリエチレンテレフタレートを単独繊維として、吐出孔から吐出した。なお、吐出孔形状は複合糸、単独糸ともに丸とし、吐出孔数は複合繊維が24、単独繊維が48である。各ポリマーは、口金内部で合流し、ポリマーB成分のポリマー中にポリマーA成分のポリマーが包含された偏心芯鞘複合形態、及び単独繊維からなる複合形態を形成され、口金から紡速3400(m/分)で紡糸し、繊度140dtex、72フィラメント、伸度150%の高配向未延伸糸を得た。
 次にフリクション仮撚機(ATF12:TMTマシナリー株式会社製)を用いて上記高配向未延伸糸をフィードローラから給糸し、加工速度:100m/min、延伸倍率:1.4倍、ヒータ温度:170℃、仮撚係数:28,000で延伸同時仮撚を行い、繊度:100dtex、捲縮率:30%、残留トルク:21T/m、交絡数:0個/m、単糸異型度:1.4、単糸間の異型度差:0.1の偏心芯鞘複合仮撚糸を得た。また複合繊維断面におけるS/Dは0.02であり、最小厚み部分の長さが偏心芯鞘複合仮撚糸全体の周囲長の40%を占めるものであった。
 その後、上記糸を経糸・緯糸に用いて、エアージェット織機で平織物に製織を行い、次に、得られた製織生地を98℃拡布連続精練、120℃液流リラックス、180℃中間セット、130℃染色、160℃仕上げセットを施し、加工密度(経糸:135本/2.54cm、緯糸:95本/2.54cm)の製品とした。得られた織物の伸長率は経15%、緯17%とストレッチ性が得られた。一方、KES表面粗さ:13.5μm、耐摩耗性(非伸長時):4級、耐摩耗性(伸長時):2.5級であり、耐摩耗性にやや不足した織物であった。
Figure JPOXMLDOC01-appb-T000001
a:複合繊維断面におけるA成分の重心点
C:複合繊維断面の重心点
S:B成分の最小厚み
D:繊維径

Claims (5)

  1. A成分及びB成分の2種のポリマーからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、A成分を覆っているB成分の厚みの最小厚みSと繊維径Dの比S/Dが0.01~0.1であり、かつ最小厚みSより厚みが1.05倍以内の部分の繊維の周囲長が繊維全体の周囲長の1/3以上の単糸からなるマルチフィラメントであり、前記単糸間の異型度差が0.2以上、捲縮率が30%以上であることを特徴とする偏心芯鞘複合仮撚糸。
  2. 残留トルクが30T/M以上であることを特徴とする請求項1に記載の偏心芯鞘複合仮撚糸。
  3. 請求項1または2に記載の偏心芯鞘複合仮撚糸を用いた織編物。
  4. KES表面粗さが10μm以下であることを特徴とする請求項3に記載の織編物。
  5. 10%伸長時の耐摩耗性が3級以上であることを特徴とする請求項3に記載の織編物。
PCT/JP2022/040598 2021-12-01 2022-10-31 偏心芯鞘複合仮撚糸及びそれを用いた織編物 WO2023100570A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-195220 2021-12-01
JP2021195220 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100570A1 true WO2023100570A1 (ja) 2023-06-08

Family

ID=86611934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040598 WO2023100570A1 (ja) 2021-12-01 2022-10-31 偏心芯鞘複合仮撚糸及びそれを用いた織編物

Country Status (1)

Country Link
WO (1) WO2023100570A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4421171B1 (ja) * 1967-03-06 1969-09-10
JPH09157941A (ja) 1995-11-30 1997-06-17 Toray Ind Inc 潜在捲縮性複合繊維及び製造方法
JP2002339169A (ja) * 2001-05-17 2002-11-27 Toray Ind Inc 潜在捲縮発現性を有するポリエステル複合糸およびその製造方法、パッケージ
WO2018110523A1 (ja) 2016-12-14 2018-06-21 東レ株式会社 偏心芯鞘複合繊維および混繊糸
JP2019214798A (ja) 2018-06-11 2019-12-19 東レ株式会社 偏心芯鞘複合繊維を用いた織編物
WO2020095861A1 (ja) * 2018-11-06 2020-05-14 東レ株式会社 伸縮加工糸、繊維製品、複合口金及び複合繊維の製造方法
WO2020110890A1 (ja) * 2018-11-27 2020-06-04 帝人フロンティア株式会社 布帛および繊維製品
JP2020105682A (ja) * 2018-12-25 2020-07-09 東レ株式会社 芯鞘複合繊維
WO2020213395A1 (ja) * 2019-04-15 2020-10-22 帝人フロンティア株式会社 織物および衣料
JP2020186503A (ja) * 2019-03-28 2020-11-19 ユニチカトレーディング株式会社 ポリエステル複合仮撚糸、ストレッチ性織編物、およびこれらの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4421171B1 (ja) * 1967-03-06 1969-09-10
JPH09157941A (ja) 1995-11-30 1997-06-17 Toray Ind Inc 潜在捲縮性複合繊維及び製造方法
JP2002339169A (ja) * 2001-05-17 2002-11-27 Toray Ind Inc 潜在捲縮発現性を有するポリエステル複合糸およびその製造方法、パッケージ
WO2018110523A1 (ja) 2016-12-14 2018-06-21 東レ株式会社 偏心芯鞘複合繊維および混繊糸
JP2019214798A (ja) 2018-06-11 2019-12-19 東レ株式会社 偏心芯鞘複合繊維を用いた織編物
WO2020095861A1 (ja) * 2018-11-06 2020-05-14 東レ株式会社 伸縮加工糸、繊維製品、複合口金及び複合繊維の製造方法
WO2020110890A1 (ja) * 2018-11-27 2020-06-04 帝人フロンティア株式会社 布帛および繊維製品
JP2020105682A (ja) * 2018-12-25 2020-07-09 東レ株式会社 芯鞘複合繊維
JP2020186503A (ja) * 2019-03-28 2020-11-19 ユニチカトレーディング株式会社 ポリエステル複合仮撚糸、ストレッチ性織編物、およびこれらの製造方法
WO2020213395A1 (ja) * 2019-04-15 2020-10-22 帝人フロンティア株式会社 織物および衣料

Similar Documents

Publication Publication Date Title
JP7135854B2 (ja) 偏心芯鞘複合繊維および混繊糸
JP7135469B2 (ja) 偏心芯鞘複合繊維を用いた織編物
JP2006214056A (ja) 織物
US20220341060A1 (en) Sheath-core composite fiber and multifilament
JP3624824B2 (ja) 織・編物
WO2023100570A1 (ja) 偏心芯鞘複合仮撚糸及びそれを用いた織編物
KR20030083577A (ko) 멜란지 효과가 우수한 이수축 혼섬사 및 그의 제조방법
JP6759661B2 (ja) 海島複合繊維
JPH0665837A (ja) 保温性織編物
JP3972631B2 (ja) ポリエステル系複合仮撚加工糸およびその製造方法
JP3506129B2 (ja) 仮撚加工糸およびその製造方法
JP2023123956A (ja) 織物
EP4283027A1 (en) Composite fiber, composite mixed-filament fiber including same, woven/knitted fabric, and garment
JP3992604B2 (ja) ポリエステル混繊糸
JP7439960B2 (ja) 複合繊維、マルチフィラメントおよび繊維製品
CN118265821A (en) Eccentric core-sheath composite false-twist yarn and woven and knitted fabric using same
WO2024018818A1 (ja) 複合繊維、構造糸、織編物及び衣類
JP2019123970A (ja) 織物
US20240018703A1 (en) Woven/knitted fabric
JP7367407B2 (ja) 複合仮撚加工糸及びそれからなる織編物
JP2022040590A (ja) 織編物
KR100635860B1 (ko) 스웨드 효과가 우수한 극세 혼섬사
JP2001214335A (ja) 低収縮ポリエステル太細糸およびそれからなるポリエステル混繊糸
JP4687091B2 (ja) ソフトストレッチ糸および布帛
JP2023002952A (ja) 融着仮撚糸及び織編物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022567065

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901003

Country of ref document: EP

Kind code of ref document: A1