WO2024018818A1 - 複合繊維、構造糸、織編物及び衣類 - Google Patents

複合繊維、構造糸、織編物及び衣類 Download PDF

Info

Publication number
WO2024018818A1
WO2024018818A1 PCT/JP2023/023193 JP2023023193W WO2024018818A1 WO 2024018818 A1 WO2024018818 A1 WO 2024018818A1 JP 2023023193 W JP2023023193 W JP 2023023193W WO 2024018818 A1 WO2024018818 A1 WO 2024018818A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite fiber
thermoplastic resin
yarn
fiber
polyester thermoplastic
Prior art date
Application number
PCT/JP2023/023193
Other languages
English (en)
French (fr)
Inventor
慎也 中道
太一 吉開
康二郎 稲田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024018818A1 publication Critical patent/WO2024018818A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to composite fibers, structural yarns, woven and knitted fabrics, and clothing.
  • one possible means of obtaining a soft, fluffy texture similar to that of wool is to obtain a fabric using an interlaced blended yarn of long fibers that has the crimp structure found in wool.
  • the technique disclosed in Patent Document 1 if the boiling water shrinkage rate of the high shrinkage fibers is 10% or more, the fibers will be restricted in the fabric and sufficient softness will not be obtained.
  • the low shrinkage fiber disclosed in Patent Document 1 has a problem in that it cannot achieve both durability and texture because its physical properties are significantly deteriorated by alkali treatment. In other words, it was not possible to simultaneously satisfy softness, deep coloring, bulky texture that resembles wool, stretchability, and abrasion resistance.
  • the present invention was made in view of the above circumstances, and its purpose is to satisfy both stretch performance and abrasion resistance, and to have softness, deep coloring, and bulkiness among wool materials. It is an object of the present invention to provide composite fibers, structural yarns, woven and knitted fabrics, and clothing that exhibit the high sensitivity of woolen materials, in particular, a soft woolen feel.
  • the present invention has the following configuration.
  • the difference (M A ⁇ M B ) between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B is 2,000 to 15,000.
  • the apparent thick/thin ratio (D thick /D thin ) of the composite fiber is 1.00 to 1.04.
  • the crimp elongation rate of the composite fiber is 3.0 to 25.0%.
  • the polyester thermoplastic resin B covers the polyester thermoplastic resin A, and the minimum value t min of the thickness t of the polyester thermoplastic resin B and the thickness of the composite fiber
  • the ratio (t min /D) to the fiber diameter D is 0.01 to 0.10.
  • the length C t of the portion where the area where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the circumferential line of the composite fiber overlaps is the entire length of the composite fiber.
  • C t ⁇ 0.33C.
  • the woolen material satisfies both stretch performance and abrasion resistance, and has the characteristics of softness, deep color development, and bulkiness among wool materials, and in particular, the soft woolen material.
  • Composite fibers exhibiting tone are obtained.
  • structural yarns, woven and knitted fabrics, and clothing using the composite fibers of the present invention can be made into items in the field of outwear worn as women's and men's clothing, such as jackets, suits, and bottoms.
  • FIG. 1 is a cross-sectional view illustrating the existence form of polyester thermoplastic resin A and polyester thermoplastic resin B of the composite fiber of the present invention.
  • FIG. 2 is a perspective view illustrating one embodiment of the surface of the composite fiber of the present invention.
  • FIG. 3 is a schematic diagram of a drawing and relaxation heat treatment apparatus used in producing the composite fiber of the present invention.
  • FIG. 4 is a schematic diagram of a final distribution plate according to Example 1 of the composite fiber of the present invention.
  • FIG. 5 is a schematic diagram of a final distribution plate according to Comparative Example 5 of the composite fiber of the present invention.
  • the composite fiber of the present invention includes polyester thermoplastic resin A and polyester thermoplastic resin B, and satisfies the following requirements (1) to (5).
  • the difference (M A ⁇ M B ) between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B is 2,000 to 15,000.
  • the apparent thick/thin ratio (D thick /D thin ) of the composite fiber is 1.00 to 1.04.
  • the crimp elongation rate of the composite fiber is 3.0 to 25.0%.
  • the polyester thermoplastic resin B covers the polyester thermoplastic resin A, and the minimum value t min of the thickness t of the polyester thermoplastic resin B and the thickness of the composite fiber
  • the ratio (t min /D) to the fiber diameter D is 0.01 to 0.10.
  • the length C t of the portion where the area where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the circumferential line of the composite fiber overlaps is the entire length of the composite fiber. For the peripheral length C, C t ⁇ 0.33C.
  • the composite fiber of the present invention includes a polyester thermoplastic resin A and a polyester thermoplastic resin B.
  • the polyester resin used in the composite fiber of the present invention is a polyethylene terephthalate resin whose main repeating unit is ethylene terephthalate, a polytrimethylene terephthalate resin whose main repeating unit is trimethylene terephthalate, or a polytrimethylene terephthalate resin whose main repeating unit is butylene.
  • Polybutylene terephthalate resin, which is terephthalate, is preferred.
  • the main repeating unit of both the polyester thermoplastic resin A and the polyester thermoplastic resin B is ethylene terephthalate.
  • the main repeating unit is ethylene terephthalate
  • the proportion of the structure derived from ethylene terephthalate contained in the repeating unit is 60 mol% or more. The same applies hereafter.
  • the above polyethylene terephthalate resin, polytrimethylene terephthalate resin, and polybutylene terephthalate resin may have a small amount (usually less than 30 mol %) of a copolymer component, if necessary.
  • the copolymerization component of the polyester thermoplastic resin A is 8 mol % or less, the crimp elongation rate can be increased and the strength can be maintained even after alkali weight loss, making it easy to obtain softness, which is preferable.
  • the copolymerization component to 8 mol % or less, the molecular orientation in the composite fiber can be maintained even after dyeing, thereby improving dimensional stability.
  • both the polyester thermoplastic resin A and the polyester thermoplastic resin B have a copolymerization component of 5 mol% or less, and more preferably, both the polyester thermoplastic resin A and the polyester thermoplastic resin B contain a copolymerization component. This is something that cannot be done. Since no copolymerization component is included, the boiling water shrinkage rate of the composite fiber can be reduced to 10% or less, making it easier to make the texture of woven or knitted fabrics softer.
  • a micropore forming agent, a cationic dyeing agent, and a coloring inhibitor may be added as necessary within a range that does not impair the purpose of the present invention.
  • a heat stabilizer, a flame retardant, a fluorescent whitening agent, a matting agent, a coloring agent, an antistatic agent, a moisture absorbent, an antibacterial agent, an inorganic fine particle, etc. may be contained one or more.
  • the composite fiber of the present invention has a difference between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B (M A - M B , hereinafter simply referred to as "the weight average molecular weight of the polyester thermoplastic resin B"). (sometimes referred to as “difference") is between 2,000 and 15,000. If the difference in weight average molecular weight is less than 2,000, the resilience and stretchability of the composite fiber will be low, and since cracks will not be formed due to alkali treatment, the color development will also be low.
  • the difference in weight average molecular weight is preferably 5000 or more. On the other hand, if the difference in weight average molecular weight is greater than 15,000, the strength of the yarn decreases and spinning becomes unstable.
  • the difference in weight average molecular weight is preferably 13,000 or less.
  • the weight average molecular weight M A of the polyester thermoplastic resin A is preferably in the range of 20,000 to 28,000
  • the weight average molecular weight M B of the polyester thermoplastic resin B is preferably in the range of 12,000 to 20,000. It is preferable that When each content is within this range, the functionality and durability of the composite fiber are improved, and the process stability when spinning the composite fiber is also improved.
  • weight average molecular weight in the present invention is measured by the method described in Examples.
  • polyester thermoplastic resin B covers polyester thermoplastic resin A. That is, as schematically illustrated in FIG. 1, the polyester thermoplastic resin A1 and the polyester thermoplastic resin B2 are joined together without being substantially separated in a cross section substantially perpendicular to the fiber axis of the composite fiber. It has a composite cross section in which the polyester thermoplastic resin B2 covers the polyester thermoplastic resin A1 on the fiber surface.
  • the ratio between the minimum value t min of the thickness t16 of the polyester thermoplastic resin B covering the polyester thermoplastic resin A and the fiber diameter D of the composite fiber (t min /D) is 0.01 to 0.10. If (t min /D) is less than 0.01, the quality of the fabric, abrasion resistance, and color development due to fuzz etc. will be reduced. Preferably, it is 0.02 or more. Moreover, when (t min /D) exceeds 0.10, it becomes difficult to obtain bulkiness and softness due to sufficient crimp development force. From the viewpoint of further improving bulkiness and softness as well as stretchability, (t min /D) is preferably 0.08 or less. As a method of adjusting (t min /D) to the above range, as will be described later, there is a method of carrying out the spinning process using a specific distribution plate.
  • the cross section of the composite fiber of the present invention is preferably an eccentric core-sheath type.
  • the length C t of the portion where the region where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the circumferential line of the composite fiber overlaps is the entire length of the composite fiber.
  • C t For the peripheral length C, C t ⁇ 0.33C.
  • the individual total value is set as C t .
  • the composite fiber of the present invention has an apparent thick/thin ratio (D thick /D thin ) of 1.00 to 1.04.
  • the apparent thick/thin ratio (D thick /D thin ) is defined by measuring the width in the direction orthogonal to the fiber axis direction of a 50 cm composite fiber bundle at a load of 0.11 cN/dtex, and measuring the width in the direction perpendicular to the fiber axis direction. It is the ratio of the average fiber diameter (D thick ) of the relatively thick portion to the average fiber diameter (D thin ) of the relatively thin portion after classifying the fibers into relatively thick and thin portions.
  • the apparent thick/thin ratio (D thick /D thin ) of the composite fiber is theoretically 1.0 or more.
  • (D thick /D thin ) when (D thick /D thin ) is larger than 1.04, the abrasion resistance decreases, and the bulkiness and softness decrease.
  • (D thick /D thin ) is preferably 1.02 or less.
  • (D thick /D thin ) can be set within the above range by performing pin stretching in a range exceeding the natural stretching ratio and performing relaxation heat treatment.
  • the composite fiber of the present invention has a crimp elongation rate of 3.0 to 25.0%.
  • the crimp elongation rate is preferably 5.0% or more.
  • the crimp elongation rate exceeds 25.0%, the crimp becomes too fine and the bulkiness and softness of the surface of the woven or knitted fabric are impaired.
  • the crimp elongation rate is preferably 15.0% or less. The crimp elongation rate can be measured by the method described in Examples.
  • the crimp elongation rate can be set within the above range by subjecting the yarn obtained in the spinning process to pin stretching and relaxation heat treatment. If only pin stretching is performed, the difference in orientation of the thermoplastic resin constituting the composite fiber becomes large, and the crimp elongation rate becomes too large. On the other hand, if only the relaxation heat treatment is performed, the difference in orientation of the thermoplastic resin constituting the composite fiber becomes too small, and the crimp elongation rate becomes too small.
  • the present invention achieves wool-like high sensitivity such as softness, deep color development, and bulkiness, which were problems of conventional mixed fiber materials, and stretch. Both performance and wear resistance characteristics can be solved at once.
  • the cross-sectional shape of the composite fiber is not particularly limited, and circular, elliptical, triangular, etc. cross-sectional shapes can be adopted, but the composite fiber that satisfies requirements (1) to (5) must be circular. This method is more preferable because the fiber can be stably spun.
  • the ratio S A :S B of the area of polyester thermoplastic resin A (S A ) to the area of polyester thermoplastic resin B (S B ) in the cross section is preferably 70:30 to 70:30.
  • the ratio is 30:70, more preferably 60:40 to 40:60, physical properties are improved.
  • S A ⁇ SB in order to make the crimp of the composite fiber finer, it is further preferable that S A ⁇ SB .
  • the average fiber diameter D ave of the composite fiber in the present invention is preferably 10 ⁇ m to 30 ⁇ m. By setting it within this range, it is possible to obtain firmness, firmness and stretchability when made into a woven or knitted fabric, and a soft feel that is closer to that of natural wool materials.
  • the average fiber diameter D ave is a value calculated from the fineness of the composite fiber.
  • the composite fiber of the present invention is preferably twisted depending on the desired purpose.
  • the twisted yarn preferably has a twist coefficient (K) of 6,000 to 24,000. By setting it within this range, it is easier to obtain stretchability and resilience of the woven or knitted material.
  • the twist coefficient can be calculated using the following formula.
  • Twist coefficient (K) number of twists (T/m) x ⁇ (fineness (dtex) x 0.9).
  • the composite fiber of the present invention usually develops a structure such as crimp due to thermal history.
  • the thermal history include hot water treatment, alkali weight loss treatment, etc. performed in the dyeing process described below.
  • composite fibers exhibiting such a structure such as crimping are referred to as structural yarns.
  • the structural yarn of the present invention preferably has cracks around the entire surface of the structural yarn in at least a portion of the fiber in the fiber length direction.
  • cracks around the entire surface of the structural yarn By having cracks around the entire surface of the structural yarn, the color development of the woven or knitted fabric can be further enhanced.
  • “having cracks all over the surface” may mean that cracks are formed around the entire surface of the structural yarn due to a single crack, or cracks are formed around the entire surface of the structural yarn due to two or more cracks. Cracks may be formed around the circumference.
  • it is preferable that cracks are formed around the entire surface of the structural yarn by 10 or less cracks. More preferably, the cracks are formed in a direction substantially perpendicular to the longitudinal direction of the structural yarn.
  • the depth of the cracks in the direction substantially perpendicular to the structural threads is changed in the circumferential direction of the fibers. Further, the depth of the crack is preferably 0.5 to 5.0 ⁇ m. Moreover, as for the frequency of crack formation, it is preferable that cracks are formed over the entire surface of the structural yarn with 10 or less cracks within a range of 1 cm in the fiber axis direction. By doing so, the woven or knitted fabric using the structural yarn can be made to have higher softness and deeper color development.
  • the depth of the crack shall be measured at the deepest point of the crack.
  • direction substantially perpendicular to the longitudinal direction of the structural threads means that the cracks 4 are formed along the circumference, substantially perpendicular to the longitudinal direction of the structural threads 3, as schematically illustrated in FIG. It is.
  • the depth and length of cracks are observed using an electron microscope, and the average value obtained by measuring 10 cracks within one structural thread is used. The specific measurement method is as described in Examples. Furthermore, if it is difficult to continuously observe the entire circumference of the structural yarn, if cracks are uniformly present in any part of the multifilament, it can be assumed that the cracks cover the entire surface.
  • the conjugate fiber of the present invention may coexist with at least one other yarn in the form of a mixed conjugate fiber. That is, the mixed fiber conjugate fiber of the present invention is the composite fiber of the present invention mixed with at least one type of other yarn. By doing so, the abrasion resistance of the woven or knitted fabric can be further improved.
  • polyester is preferred because it has good crimp and mechanical properties and has excellent dimensional stability against changes in humidity and temperature. It is preferable that the material is made of resin.
  • the polyester resin include polyethylene terephthalate resin whose main repeating unit is ethylene terephthalate, polytrimethylene terephthalate resin whose main repeating unit is trimethylene terephthalate, or polybutylene terephthalate resin whose main repeating unit is butylene terephthalate. is preferred.
  • the above polyethylene terephthalate resin or polybutylene terephthalate resin may contain a small amount (usually less than 30 mol% (the total of the acid component and diol component is 100 mol%)) of a copolymerized component, if necessary. Good too. Further, from the viewpoint of soft texture and fiber recycling, it is more preferable that all threads constituting the mixed fiber composite fiber are polyethylene terephthalate resin containing no covalent components.
  • the boiling water shrinkage rate of the other yarns is preferably 10% or less, particularly preferably 8% or less. When the boiling water shrinkage rate is 10% or less, the softness of the woven or knitted fabric can be further improved. Further, the boiling water shrinkage rate is preferably 0% or more. When the boiling water shrinkage rate is 0% or more, dimensional stability is excellent. The boiling water shrinkage rate can be determined from the dimensions before and after immersion in 100°C hot water according to the JIS L1013 (2021) 8.18.1a method.
  • the other yarns are latent crimped yarns.
  • the term “potentially crimped yarn” refers to a yarn with a crimp elongation rate of 5.0% or more.
  • the crimp elongation rate of the other yarn is preferably 10.0 to 30.0% higher than the crimp elongation rate of the composite fiber.
  • the composite fiber and crimps having different coil diameters are mixed in the mixed composite fiber, so that it is possible to obtain bulkiness and softness that are closer to those of wool.
  • the difference in crimp development rate is 10% or more, bulkiness and softness can be further improved.
  • the difference in crimp development rate is within 30%, the difference in coil diameter between the composite fiber and the composite fiber becomes small, and separation of the composite fiber and other yarns can be prevented.
  • the structural yarn of the present invention may be a structural yarn in which at least one other yarn coexists in the form of a mixed fiber composite fiber. If the other threads coexisting with the composite fiber in the mixed composite fiber are latent crimped fibers, the above thermal history will develop a structure such as crimps, and the composite fiber will form a structure as an actual crimped fiber. It will coexist with the developed structural threads.
  • the woven or knitted fabric of the present invention contains at least a portion of the composite fiber and/or mixed composite fiber of the present invention.
  • a woven or knitted fabric can also be constructed using only conjugate fibers or mixed conjugate fibers.
  • the woven or knitted fabric of the present invention can be made into a woven or knitted fabric by weaving or knitting the conjugate fiber of the present invention at least in part.
  • the composite fibers in the woven or knitted fabric become structural yarns that have developed a structure through a dyeing process and an alkali weight loss process that is carried out as necessary.
  • the former method is preferable.
  • Such a woven or knitted fabric is a woven or knitted fabric that includes structural yarns at least in part.
  • the composite fiber or structural yarn to be subjected to the above-mentioned weaving and knitting may be in the form of a composite mixed fiber mixed with other threads.
  • the blended composite fiber may be a blended yarn of a composite fiber and other yarns, a composite false twisted yarn, or a combined twisted yarn, and may also be a blended yarn of a composite fiber and other yarns in a form such as inter-knitting or interweaving.
  • the proportion of the conjugate fiber and/or mixed conjugate fiber of the present invention used is preferably 30% by mass or more, more preferably 40% by mass or more based on the mass of the woven or knitted fabric. It is also a preferred embodiment that all of the fibers constituting the woven or knitted fabric are composed of the conjugate fibers and/or mixed conjugate fibers of the present invention.
  • the fabric structure of the woven or knitted fabric of the present invention is a woven fabric or a knitted fabric.
  • the fabric structure is selected from plain weave, twill weave, satin weave, and variations thereof depending on the texture and design. Furthermore, a multiple weave structure such as a double weave may be used.
  • the knitting structure may be selected according to the desired texture and design, and examples of weft knitting include jersey knitting, rubber knitting, pearl knitting, tuck knitting, floating knitting, lace knitting, and variations thereof.
  • Warp knitting includes single denby knitting, single vandyke knitting, single cord knitting, Berlin knitting, double denby knitting, atlas knitting, cording knitting, half tricot knitting, satin knitting, sharkskin knitting, and their variations. can be mentioned.
  • relatively simple weaving and knitting structures such as plain weave or its variations, twill weave or its variations, and satin weave are more preferable in order to have a delicate worsted texture and a deep natural appearance.
  • the clothing of the present invention includes at least a portion of the composite fiber of the present invention (including structural yarns in which the fiber has a structure), a mixed composite fiber, or a woven or knitted fabric.
  • the composite fiber of the present invention including structural yarns in which the fiber has a structure
  • a mixed composite fiber or a woven or knitted fabric.
  • the clothing of the present invention refers to items in the field of outwear worn as women's and men's clothing, sports clothing, and outdoor clothing, particularly jackets, suits, bottoms, and parts thereof, such as front bodies, back bodies, and collars. These items include items such as jackets, sleeves, chest pockets, and side pockets, as well as innerwear, socks, and hats.
  • the composite fiber of the present invention can be produced by winding the discharged thermoplastic resin as an undrawn yarn or a semi-drawn yarn, then drawing it once, and subjecting it to a relaxation heat treatment.
  • it is a composite fiber obtained by including a step of stretching after winding it as a semi-drawn yarn, due to the orientation difference between polyester thermoplastic resin A and polyester thermoplastic resin B, when it is made into a woven or knitted fabric and dyed. It is particularly preferable because it has excellent stretchability, and because the polyester resin A is highly oriented, it has excellent resistance to embrittlement due to alkali weight loss.
  • polyester thermoplastic resin A and polyester thermoplastic resin B are each melted, and these are discharged from a spinneret at a rate of preferably 1400 m/min to 3800 m/min.
  • the yarn is wound as an undrawn yarn or a semi-drawn yarn at a spinning speed.
  • the spinning temperature is preferably +20° C. to +50° C. relative to the melting points (T mA , T mB ) of the thermoplastic polyester resin A and the thermoplastic polyester B.
  • (T mA , T mB )+20° C. or higher can prevent the melted polyester thermoplastic resin A and polyester thermoplastic resin B from solidifying and clogging inside the spinning machine piping.
  • by setting the temperature to (T mA , T mB )+50° C. or lower thermal deterioration of the molten polyester thermoplastic resin A and polyester thermoplastic resin B can be suppressed.
  • the die used in the method for producing composite fibers of the present invention may have any known internal structure as long as it is capable of spinning with stable quality and stable operation.
  • the polyester thermoplastic resin A is completely covered with the polyester thermoplastic resin B in the cross section of the composite fiber as described above.
  • the composite fiber of the present invention has a minimum value t min of the thickness t of the polyester thermoplastic resin B covering the polyester thermoplastic resin A, and a thickness t in the cross section of the composite fiber of 1.00 t min ⁇ It is preferable to precisely control the length C t of the portion where the region satisfying t ⁇ 1.05t min overlaps with the peripheral line of the composite fiber, as disclosed in JP-A No. 2011-174215 and JP-A No. 2011-208313.
  • a spinning method using a distribution plate as exemplified in Japanese Patent Publication No. 2012-136804, is preferably used.
  • t min can be kept within the above-mentioned range, the exposure of the polyester thermoplastic resin A that occurs as a result of an excessively small t min can be suppressed, and the woven fabric can be further suppressed. It is possible to suppress the whitening phenomenon and fuzz of knitted fabrics. Alternatively, it is possible to prevent t min from becoming excessively large, and to allow crimp of the composite fiber to occur within a suitable range, thereby improving the stretchability of the woven or knitted fabric.
  • the cross-sectional form of the single yarn can be controlled by the arrangement of the distribution holes in the final distribution plate installed most downstream among the distribution plates made up of a plurality of plates.
  • FIG. 3 is a schematic diagram of a drawing and relaxation heat treatment apparatus used in producing the composite fiber of the present invention. That is, after the semi-drawn yarn 5 passes through the guide 6, it is heated and stretched between the first feed roller 7 and the second feed roller 9 with a hot pin 8, and further between the second feed roller 9 and the third feed roller 11. It is subjected to a relaxation heat treatment with a heater 10 to become a composite fiber 12, which is wound up in a winding section 13.
  • a semi-drawn yarn obtained by composite spinning at a spinning speed of 2500 to 3800 m/min was pin-stretched at a draw ratio of 1.5 to 2.2 times, a hot pin temperature of 70 to 150°C, and a yarn speed of 200 to 800 m/min. Afterwards, it is subjected to relaxation heat treatment at a heater temperature of 130 to 180°C and an overfeed rate of +25 to 55%. After pin drawing at 95°C and a yarn speed of 300 m/min, relaxation heat treatment is performed at a heater temperature of 140°C and an overfeed rate of +10%) to achieve an apparent thickness ratio of 1.00 to 1.04 and a crimp elongation rate.
  • the stretching be performed in a region equal to or higher than the upper limit of the natural stretching ratio, and that the overfeed rate of the relaxation heat treatment be 50% or less of the stretching ratio.
  • ком ⁇ онентs may be mixed with it to form a mixed fiber composite fiber.
  • the method of blending is not particularly limited, and general methods such as interlace blending, taslan blending, etc. may be used without any problem.
  • the composite fibers obtained in the drawing process are made into woven or knitted fabrics.
  • air jet looms, water jet looms, rapier looms, projectile looms, shuttle looms, etc. are used for weaving.
  • the woven or knitted fabric obtained in the above-described woven or knitted fabric forming step is subjected to an alkali weight loss treatment, if necessary, so that the alkali weight loss rate is 5 to 20%, more preferably 10 to 15%.
  • the composite fiber can be made to have cracks on its entire surface. Further, in order to avoid embrittlement due to selective reduction, a process using a continuous reduction method is preferable.
  • the composite fiber of the present invention usually develops its structure and develops crimp due to the thermal history in the dyeing process or the alkali weight loss process. Then, cracks are formed on the surface of the composite fiber due to the alkali weight loss process.
  • Detector Differential refractive index detector RI (Waters-2414, sensitivity 128x) Column: Showa Denko K.K. ShodexHFIP806M (2 columns connected) Solvent: Tetrohydrofuran (25cm 3 ) Flow rate: 1.0mL/min Column temperature: 30°C Injection volume: 0.10mL Standard material: polystyrene.
  • the fiber diameter D was a diameter in terms of yen.
  • Ten sets of the obtained fiber diameter D, peripheral length C, thickness t, and area ratio Sa of the polyester thermoplastic resin A were prepared and averaged.
  • the fiber diameter D was determined using three significant digits, the perimeter C and the thickness t, and the area ratio Sa was determined using two significant digits, and were defined as the fiber diameter D, peripheral length C, thickness t, and area ratio Sa of the present invention.
  • the thickness t is measured at 360 points every 1° in the fiber circumferential direction, and the smallest one is t min , and the area where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the peripheral line of the composite fiber are The length of the overlapping portion was defined as Ct . Further, the area ratio Sa of the polyester thermoplastic resin A was subtracted from the total area S of the cross section to obtain the area ratio Sb of the polyester thermoplastic resin B.
  • Crimping elongation rate The crimp elongation rate of the composite fiber was determined using the following formula.
  • Crimp elongation rate (%) [(L1-L0)/L0] x 100
  • L0 After wrapping 50 cm of composite fiber in gauze in a free state and leaving it for 24 hours, it was treated with hot water at 100°C x 15 minutes without load, and after drying at 20°C x 65RH% for 24 hours, 1.1 ⁇ 10 -3 Length after 30 seconds when a load of cN/dtex is suspended
  • L1 After measuring L0, the length after 30 seconds when a load of 0.22cN/dtex is suspended is measured 10 times. , the second decimal place of the average value was rounded off to one decimal place.
  • the conjugate fibers were separated and measured before L0 measurement.
  • the apparent thick/fine ratio of the structural yarns extracted from the woven or knitted fabrics after the dyeing process was determined using the same method.
  • Abrasion resistance A woven or knitted fabric was dyed black, and the dyed woven or knitted fabric was cut into a circle with a diameter of 10 cm, moistened with distilled water, and attached to a disk. Furthermore, the woven or knitted fabric cut into 30 cm squares was fixed on a horizontal board while it was dry. The disk to which the woven or knitted fabric moistened with distilled water was attached was placed in horizontal contact with the fabric fixed on a horizontal plate, and the disk was heated at a speed of 50 rpm for 10 minutes so that the center of the disk drew a circle with a diameter of 10 cm. The disk was moved in a circular motion for a minute to cause friction between the two woven and knitted fabrics. After the friction was finished, the fabric was left to stand for 4 hours, and then the degree of discoloration of the woven or knitted fabric attached to the disk was evaluated using a gray scale for discoloration, using grades 1 to 5 in 0.5 grade increments.
  • the polyester thermoplastic resin A was polyethylene terephthalate with a weight average molecular weight of 25,000
  • the polyester thermoplastic resin B was polyethylene terephthalate with a weight average molecular weight of 15,000
  • the spinning temperature was 290°C
  • the polyester thermoplastic resin A and the polyester thermoplastic resin B were
  • the arrangement of the distribution holes in the final distribution plate installed most downstream among the distribution plates made up of multiple plates is as shown in Figure 4 so that the mass composite ratio is 50:50, and the number of discharge holes is 12 composite fiber spinnerets.
  • FIG. 4 it is shown that in the final distribution plate, a group of distribution holes 15 for polyester thermoplastic resin B are arranged around a group of distribution holes 14 for polyester thermoplastic resin A.
  • an eccentric core-sheath type composite cross section in which polyester thermoplastic resin A was included in polyester thermoplastic resin B was formed.
  • the yarn discharged from the spinneret was cooled with an air cooling device, and after being applied with an oil agent, it was wound up with a winder at a speed of 2600 m/min, and was stably wound up as a semi-drawn yarn with a total fineness of 100 dtex and a single filament count of 12.
  • the obtained semi-drawn yarn was fed to a drawing device at a speed of 300 m/min, and pin-stretched using a drawing device as shown in FIG. 3 at a drawing ratio of 1.80 times and a hot pin temperature of 95°C.
  • a composite fiber having an apparent thick/thin ratio (D thick /D thin ) of 1.02 was obtained.
  • S A :S B 50:50.
  • a 3/1 twill fabric was fabricated with a warp density of 115/2.54 cm and a weft density of 105/2.54 cm. Created.
  • this fabric was subjected to scouring, relaxing treatment, and intermediate heat setting. Thereafter, as a dyeing step, dyeing was performed using a disperse dye "Dystar Navy Blue S-GL" at a concentration of 1.0 owf% at a temperature of 130°C for 30 minutes, and a finishing heat setting was performed at 160°C. The results are shown in Table 1.
  • Example 2 Composite fibers and woven fabrics were obtained in the same manner as in Example 1, except that in the dyeing process, an alkali weight loss process (weight loss rate of 10%) was performed after intermediate setting to form cracks on the single yarn surface of the composite fibers. The results are shown in Table 1.
  • Example 3 The composite fiber produced in Example 1 was interlaced with polyethylene terephthalate fiber (56 dtex-24 f, boiling water shrinkage rate: 8%, crimp elongation rate: 0.0%) as another yarn using an interlace nozzle.
  • a woven fabric was obtained in the same manner as in Example 2, except that the mixed fiber composite fibers had a blend ratio of 54%, the warp density was 88 threads/inch, and the weft density was 79 threads/inch (2.54 cm).
  • the results are shown in Table 1.
  • the boiling water shrinkage rate was determined by measuring dimensional changes before and after immersion in 100° C. hot water according to JIS L1013 (2021) 8.18.1a method.
  • Example 4 A woven fabric was obtained in the same manner as in Example 3, except that the following drawn yarns were used as other yarns. The results are shown in Table 1.
  • Drawn yarn Side-by-side type composite fiber with 12 discharge holes, spun polyethylene terephthalate with a weight average molecular weight of 25,000 and polyethylene terephthalate with a weight average molecular weight of 15,000 at a spinning temperature of 290°C so that the mass composite ratio of each polyethylene terephthalate is 50:50.
  • the spinneret was then flowed into the spinneret.
  • the yarn discharged from the spinneret is cooled by an air cooling device, applied with an oil agent, and then taken out at 1,500 m/min, drawn 2.67 times between a preheated roller at 80°C and a roller at 4,000 m/min, and then drawn at 130 m/min. After heat-setting at 0.degree. C., the yarn was wound up using a winder to form a drawn yarn having a total fineness of 56 dtex, a single filament count of 12, and a crimp elongation rate of 32.0%.
  • Example 5 A woven fabric was obtained in the same manner as in Example 2, except that the polyester thermoplastic resin A was a polyester with a weight average molecular weight of 19,000, and the polyester thermoplastic resin B was a polyester with a weight average molecular weight of 15,000. The results are shown in Table 1.
  • Example 6 A woven fabric was obtained in the same manner as in Example 2, except that the thermoplastic polyester resin A was a polyester having a weight average molecular weight of 25,000, which was obtained by copolymerizing 10 mol% of isophthalic acid (IPA) with respect to the acid component. The results are shown in Table 1.
  • Example 7 A woven fabric was obtained in the same manner as in Example 4, except that the heat setting temperature of the other yarns was 125° C. and the boiling water shrinkage rate was 10%. The results are shown in Table 1.
  • Example 8 A woven fabric was obtained in the same manner as in Example 3 except that the following drawn yarn was used as the other yarn. The results are shown in Table 1.
  • Drawn yarn Polyethylene terephthalate with a weight average molecular weight of 25,000 and polyethylene terephthalate with a weight average molecular weight of 15,000 copolymerized with 10 mol% of isophthalic acid (IPA) based on the acid component at a spinning temperature of 290°C and a ratio of 50:50 of each polyethylene terephthalate. It was made to flow into a side-by-side type composite fiber spinneret having 12 discharge holes so as to achieve a mass composite ratio.
  • IPA isophthalic acid
  • the yarn discharged from the spinneret is cooled by an air cooling device, applied with an oil agent, and then taken out at 1,500 m/min, drawn 2.67 times between a preheated roller at 80°C and a roller at 4,000 m/min, and then drawn at 130 m/min. After heat-setting at °C, the yarn was wound up using a winder to form a drawn yarn having a total fineness of 56 dtex and a single filament count of 12.
  • Example 4 the spinneret used was replaced with a spinneret of the type described in JP-A-09-157941 from a distribution plate type spinneret, and was made of polyester thermoplastic resin A and polyester thermoplastic resin B.
  • a woven fabric was obtained in the same manner as in Example 4, except that the side-by-side composite fibers were used.
  • the obtained fabric had low abrasion resistance due to peeling of the side-by-side composite cross section due to abrasion, and poor color development because high molecular weight polyethylene terephthalate with low color development was exposed.
  • Table 2 The results are shown in Table 2.
  • Example 2 A woven fabric was obtained in the same manner as in Example 4, except that the relaxation heat treatment was performed without pin stretching.
  • the obtained woven fabric had low abrasion resistance due to local fiber cutting caused by the alkali treatment, and had poor bulkiness due to the low crimp elongation rate of the composite fiber. The results are shown in Table 2.
  • Example 3 A woven fabric was obtained in the same manner as in Example 4, except that pin stretching was performed and relaxation heat treatment was not performed.
  • the resulting woven fabric had low color development due to the high orientation of the conjugate fibers, and poor bulkiness and softness due to the excessively high crimp elongation rate. The results are shown in Table 2.
  • Example 5 A woven fabric was obtained in the same manner as in Example 4, except that the pin draw ratio was 1.50 times and a composite fiber with an apparent thick/fine ratio of 1.22 was obtained.
  • the obtained woven fabric had low abrasion resistance in the thick part, low crimp elongation rate, and was therefore inferior in bulk and softness. The results are shown in Table 2.
  • Example 4 the distribution holes of the final distribution plate of the spinneret used are such that the minimum value t min of the thickness t of the polyester thermoplastic resin B covering the polyester thermoplastic resin A is 10 times.
  • the arrangement was changed from Fig. 4 to Fig. 5, and a core-sheath type composite fiber consisting of polyester thermoplastic resin A and polyester thermoplastic resin B and having (t min /D) of 0.20 was obtained.
  • a woven fabric was obtained in the same manner as in Example 4 except for the following. The results are shown in Table 2.
  • Example 7 A woven fabric was obtained in the same manner as in Example 2, except that the polyester thermoplastic resin A was polyethylene terephthalate with a weight average molecular weight of 20,000, and the polyester thermoplastic resin B was polyethylene terephthalate with a weight average molecular weight of 19,000. The results are shown in Table 2.
  • Polyester thermoplastic resin A 2 Polyester thermoplastic resin B 3: Composite fiber 4: Crack 5: Semi-drawn yarn 6: Guide 7: First feed roller 8: Hot pin 9: Second feed roller 10: Heater 11: Third feed roller 12: Composite fiber 13: Winding section 14: Distribution hole 15 of polyester thermoplastic resin A: Distribution hole 16 of polyester thermoplastic resin B: Thickness t of polyester thermoplastic resin B covering polyester thermoplastic resin A

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

ストレッチ性能と耐摩耗性の両特性を満足し、ウール素材の中でもソフト性や、深みのある発色性、嵩高性に特長のある紡毛素材の高感性を発現する複合繊維並びにこれを含む混繊複合繊維、織編物及び衣類を提供するために、本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす、複合繊維である。 (1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。 (2)前記複合繊維の見かけの太細比(Dthick/Dthin)が1.00~1.04である。 (3)前記複合繊維の捲縮伸長率が3.0~25.0%である。 (4)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。 (5)前記複合繊維の断面において、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域との前記複合繊維の周囲線とが重複する部分の長さCが前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。

Description

複合繊維、構造糸、織編物及び衣類
 本発明は、複合繊維、構造糸、織編物及び衣類に関する。
 従来からウール素材の中でも柔らかさや、深みのある発色性、嵩高性に特長のある紡毛素材の風合いと、ストレッチ性や耐摩耗性といった機能や耐久性を合わせ持つ紡毛調布帛が求められている。
 これまで、ウール調の布帛として、例えば特許文献1に開示されるような、熱収縮率の異なる2種類の潜在捲縮繊維の混繊交絡からなる布帛が提案されている。
特開2004-197231号公報
 ウール調の杢外観を得るための手法として、自然延伸倍率以下の延伸倍率により繊維長手方向に太細を付与する手法が知られており、本手法では種々のウール素材の1つの特長である杢外観を得ることができる。一方で、均一で深みのある発色性や嵩高性、ソフト性といったウールの特長は不十分であり、また太細の太部の繊維構造が未発達であるため耐摩耗性も得られ難い。
 また、紡毛調の柔らかで膨らみのある風合いを得る手段の1つとして、ウールに見られるクリンプ(捲縮)構造を有する長繊維の交絡混繊糸で布帛を得る手段が考えられる。しかし特許文献1に開示されるような技術において、高収縮繊維の沸水収縮率が10%以上である場合には、布帛の中で繊維が拘束されてしまい、十分な柔らかさが得られない。さらに、特許文献1に開示される低収縮繊維はアルカリ処理による物性低下が著しいため、耐久性と風合いを両立できないという課題がある。すなわち、ソフト性や、深みのある発色性、嵩高性といった紡毛調の風合い、ストレッチ性、耐摩耗性を同時に満足することができなかった。
 本発明は、上記の事情に鑑みてなされたものであって、その目的は、ストレッチ性能と耐摩耗性の両特性を満足し、ウール素材の中でもソフト性や、深みのある発色性、嵩高性に特長のある紡毛素材の高感性、特に、柔らかな紡毛調を発現する複合繊維、構造糸、織編物及び衣類を提供することにある。
 本発明は下記の構成を有する。
[1]ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす、複合繊維。
(1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
(2)前記複合繊維の見かけの太細比(Dthick/Dthin)が1.00~1.04である。
(3)前記複合繊維の捲縮伸長率が3.0~25.0%である。
(4)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。
(5)前記複合繊維の断面において、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCが前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。
[2]少なくとも1種の他の糸条が、混繊された混繊複合繊維の態様で共存する、前記[1]記載の複合繊維。
[3]前記他の糸条が潜在捲縮糸である、前記[2]に記載の複合繊維。
[4]前記[1]に記載の複合繊維の表面全周にクラックを形成してなる、構造糸。
[5]少なくとも1種の他の糸条が、混繊された混繊複合繊維の態様で共存する、前記[4記載の構造糸。
[6]前記他の糸条が顕在捲縮糸である、前記[5]に記載の構造糸。
[7]前記[1]~[3]のいずれかに記載の複合繊維を少なくとも一部に用いて製織編してなる、織編物。
[8]前記[4]~[6]のいずれかに記載の構造糸を少なくとも一部に含む、織編物。
[9]前記[7]または[8]に記載の織編物を少なくとも一部に含む、衣類。
 本発明によれば、ストレッチ性能と耐摩耗性の両特性を満足し、ウール素材の中でもソフト性や、深みのある発色性、嵩高性に特長のある紡毛素材の高感性、特に、柔らかな紡毛調を発現する複合繊維が得られる。特に、本発明の複合繊維を用いた構造糸や織編物、衣類は、婦人・紳士衣料として着用されるアウトウエア分野のアイテム、例えば、ジャケット、スーツ、ボトムス等の衣類にすることができる。
図1は、本発明の複合繊維のポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとの存在形態を例示する断面図である。 図2は、本発明の複合繊維の表面の一実施態様を例示する斜視図である。 図3は、本発明の複合繊維を製造する際に使用される延伸、弛緩熱処理装置の概略図である。 図4は、本発明の複合繊維の実施例1に係る最終分配プレートの概略図である。 図5は、本発明の複合繊維の比較例5に係る最終分配プレートの概略図である。
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の(1)~(5)の要件を満たす。
(1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
(2)前記複合繊維の見かけの太細比(Dthick/Dthin)が1.00~1.04である。
(3)前記複合繊維の捲縮伸長率が3.0~25.0%である。
(4)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。
(5)前記複合繊維の断面において、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCが前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。
 以下に、本発明について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。
 [ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂B]
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含む。
 本発明の複合繊維に用いられるポリエステル系樹脂としては、主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート系樹脂、又は主たる繰り返し単位がトリメチレンテレフタレートであるポリトリメチレンテレフタレート系樹脂、又は主たる繰り返し単位がブチレンテレフタレートであるポリブチレンテレフタレート系樹脂が好ましい。さらに好ましくはポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bともに主たる繰り返し単位がエチレンテレフタレートである。ここで、「主たる繰り返し単位がエチレンテレフタレートである」とは、繰り返し単位中に含まれるエチレンテレフタレート由来の構造の割合が60モル%以上であることをいう。以下、同様である。
 上記のポリエチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂は、必要に応じて少量(通常30mol%未満)の共重合成分を有していてもよい。ポリエステル系熱可塑性樹脂Aの共重合成分が8mol%以下であると、捲縮伸長率を高めることができるとともに、アルカリ減量後も強度を維持するため、ソフト性を得ることが容易となり好ましい。さらに、共重合成分を8mol%以下とすることで、染色加工後でも複合繊維中の分子配向が維持できる等により寸法安定性が向上する。また、好ましくはポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bともに共重合成分が5mol%以下であり、さらに好ましくはポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bともに共重合成分が含まれないことである。共重合成分が含まれないことで複合繊維の沸水収縮率を10%以下にできるため、織編物の風合いをよりソフトにすることが容易となる。
 なお、本発明におけるポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bには、本発明の目的を損なわない範囲内で、必要に応じて、微細孔形成剤、カチオン可染剤、着色防止剤、熱安定剤、難燃剤、蛍光増白剤、艶消剤、着色剤、帯電防止剤、吸湿剤、抗菌剤、無機微粒子等が1種又は2種以上含まれていてもよい。
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aの重量平均分子量Mとポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M、以降、単に「重量平均分子量の差」と称することがある)は2000~15000である。重量平均分子量の差が2000未満であると、複合繊維の反発性およびストレッチ性が低くなり、またアルカリ処理によるクラックが形成されないので発色性も低下する。重量平均分子量の差は好ましくは5000以上である。一方、重量平均分子量の差が15000より大きいと、原糸の強度が低下し、紡糸が不安定となる。重量平均分子量の差は、好ましくは13000以下である。
 また、ポリエステル系熱可塑性樹脂Aの重量平均分子量Mの値の範囲としては20000~28000であることが好ましく、ポリエステル系熱可塑性樹脂Bの重量平均分子量Mの値の範囲としては12000~20000であることが好ましい。それぞれこの範囲とすると、複合繊維の機能性と耐久性が向上し、複合繊維を紡糸する際の工程安定性も良好となる。
 なお、本発明における重量平均分子量は、実施例記載の方法で測定するものとする。
 [複合繊維若しくは構造糸]
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Bがポリエステル系熱可塑性樹脂Aを覆っている。すなわち、図1に模式的に例示するように、複合繊維の繊維軸に略垂直となる断面においてポリエステル系熱可塑性樹脂A1とポリエステル系熱可塑性樹脂B2とが実質的に分離せず接合された状態で存在し、繊維表面においてポリエステル系熱可塑性樹脂B2がポリエステル系熱可塑性樹脂A1を覆っている複合断面を有している。
 このとき、複合繊維の断面において、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt16の最小値tminと、複合繊維の繊維直径Dとの比(tmin/D)は、0.01~0.10である。(tmin/D)が0.01未満であると、毛羽等による布帛品位や耐摩耗性、発色性が低下する。好ましくは、0.02以上である。また、(tmin/D)が0.10を超えると十分な捲縮発現力による嵩高性、ソフト性を得ることが困難になる。更に嵩高性、ソフト性を高めるとともに、よりストレッチ性をも向上させる観点から、(tmin/D)は、好ましくは0.08以下である。(tmin/D)を上記範囲にする方法としては、後述するとおり、特定の分配プレートを用いて紡出工程を行うこと等が挙げられる。
 また、本発明の複合繊維における断面は偏心芯鞘型が好ましい。
 また、本発明の複合繊維における断面において、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCが複合繊維全体の周囲長Cに対し、C≧0.33Cである。ここで、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分が不連続な場合は、個々の合計値をCとする。このようにすることで、断面におけるポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)の比率が同一である従来の偏心芯鞘複合繊維と比較して、それぞれの樹脂が存在する領域の重心が離れることとなるため、得られる捲縮繊維がより微細なスパイラルを形成させることができ、良好な捲縮を発現させることができ、嵩高性、ソフト性に優れた織編物を得ることができる。さらに、嵩高性やソフト性を有する織編物に好適な捲縮を得るため、C≧0.40Cとすることがより好ましい。また、原理的にC<Cとなるが、C≦0.70Cが好ましい。C≧0.33Cとする方法としては、後述するとおり、特定の分配プレートを用いて紡出工程を行うこと等が挙げられる。
 さらに、本発明の複合繊維は、見掛けの太細比(Dthick/Dthin)が1.00~1.04である。本発明において、見掛けの太細比(Dthick/Dthin)とは、荷重0.11cN/dtexにおける複合繊維束50cmについて、繊維軸方向に直交する方向の幅を測定し、実施例記載の方法により相対的に太い部分と細い部分に分類した後、相対的に太い部分の平均の繊維直径(Dthick)と相対に細い部分の平均の繊維直径(Dthin)との比のことである。複合繊維の見かけの太細比(Dthick/Dthin)は理論上1.0以上となる。一方、(Dthick/Dthin)が1.04より大きいと、耐摩耗性が低下するとともに、嵩高性、ソフト性が低下する。(Dthick/Dthin)は、好ましくは1.02以下である。(Dthick/Dthin)は、自然延伸倍率を超える範囲でピン延伸を行うとともに、弛緩熱処理を行うことで、上記範囲に設定することができる。
 なお、上記の厚みtや繊維直径D、太細比、周囲長Cなど、具体的な測定方法は実施例に記載したとおりである。
 また、本発明の複合繊維は、捲縮伸長率が3.0~25.0%である。捲縮伸長率が3.0%未満の場合は嵩高性や耐摩耗性が得られない。捲縮伸長率は、好ましくは5.0%以上である。一方、捲縮伸長率が25.0%を超える場合は捲縮が細かくなりすぎて織編物表面の嵩高性やソフト性が損なわれる。また捲縮伸長率が高すぎる場合は、複合繊維を構成する熱可塑性樹脂の配向が高いためクラックが形成されず、発色性も劣る。捲縮伸長率は、好ましくは15.0%以下である。捲縮伸長率は、実施例記載の方法により測定することができる。
 捲縮伸長率は、紡出工程にて得られた糸を、ピン延伸を行うとともに、弛緩熱処理を行うことで、上記範囲に設定することができる。ピン延伸を行ったのみでは、複合繊維を構成する熱可塑性樹脂の配向差が大きくなり、捲縮伸長率が大きくなりすぎる。一方、弛緩熱処理を行ったのみでは、複合繊維を構成する熱可塑性樹脂の配向差が小さくなりすぎて、捲縮伸長率が小さくなりすぎる。
 本発明では上述した要件(1)~(5)を同時に満たすことにより、従来の混繊素材の課題であったソフト性や、深みのある発色性、嵩高性といった紡毛調の高感性と、ストレッチ性能と耐摩耗性の両特性を一挙に解決することが出来る。
 また、前記複合繊維の断面形状は特に限定されず、円形、楕円形、三角形、などの断面形状を採用することができるが、円形であることが、要件(1)~(5)を満たす複合繊維を安定的に紡糸することができるためより好ましい。
 本発明の複合繊維において、断面におけるポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)との比S:Sが、好ましくは70:30~30:70、より好ましくは60:40~40:60であると、物理特性が向上する。また、複合繊維の捲縮をより微細なものとするためには、さらにS≧Sであることが好ましい。
 本発明における複合繊維の平均繊維直径Daveは、10μm~30μmであることが好ましい。この範囲とすることで、織編物とした際のハリ、コシとストレッチ性、天然のウール素材により近いソフトな触感を得ることが出来る。本発明において、平均繊維直径Daveとは、複合繊維の繊度から算出した値である。
 また、本発明の複合繊維は、所望の目的に合わせて、撚糸を行うことが好ましい。撚糸は撚り係数(K)が6000~24000とすることが好ましい。かかる範囲とすることで織編物のストレッチ性や反発性がより得られやすい。ここで、撚り係数は、以下の式により算出することができる。
 撚り係数(K)=撚り数(T/m)×√(繊度(dtex)×0.9)。
 本発明の複合繊維は、通常、熱履歴により捲縮等の構造を発現する。熱履歴としては、後述の染色工程等で行われる、熱水処理、アルカリ減量処理などが挙げられる。本発明においては、このような捲縮等の構造を発現した複合繊維を構造糸と称する。
 本発明の構造糸は、繊維の繊維長方向の少なくとも一部において、前記構造糸の表面全周にクラックを有することが好ましい。構造糸の表面全周にクラックを有することで、織編物の発色性をより高めることができる。ここで、「表面全周にクラックを有する」とは、1つのクラックにより構造糸の表面全周にクラックが形成されているものであってもよいし、2以上のクラックにより構造糸の表面全周にわたってクラックが形成されるものであってもよい。また、10個以下のクラックにより構造糸の表面全周にわたってクラックが形成されることが好ましい。より好ましくは、構造糸の長手方向とほぼ垂直方向にクラックが形成されていることである。さらに好ましくは、構造糸とほぼ垂直方向のクラックの深さが繊維周長方向で変化するように形成されていることである。また、クラックの深さは0.5~5.0μmであることが好ましい。また、クラック形成の頻度としては、繊維軸方向1cmの範囲内で、10個以下のクラックにより構造糸の表面全周にわたってクラックが形成される態様であることが好ましい。このようにすることによって、構造糸を用いた織編物を、よりソフト性が高く、より深みのある発色性とすることができる。
 ここで、クラックの深さは、クラックの最も深い個所を測定するものとする。また、構造糸の長手方向とほぼ垂直方向とは、図2に模式的に例示されるように、クラック4が構造糸3の長手方向とほぼ垂直に、円周に沿って形成されるということである。本発明において、クラックの深さ、長さは電子顕微鏡を用いて観察し、一本の構造糸内で10個のクラックを測定した平均値を用いるものとする。具体的な測定方法は、実施例に記載のとおりである。また、構造糸の全周を連続して観察することが困難な場合は、マルチフィラメントのどの部分にでも一様にクラックがあればクラックが表面全周を覆っているとみなすこともできる。
 [複合繊維若しくは構造糸を含む混繊複合繊維、織編物、衣類]
 本発明の複合繊維は、少なくとも1種の他の糸条が、混繊された混繊複合繊維の態様で共存するものであってよい。すなわち、本発明の混繊複合繊維は、本発明の複合繊維に、少なくとも1種の他の糸条が混繊されている。このようにすることで織編物とした際の耐摩耗性を更に良好とすることができる。
 他の糸条としては本発明の複合繊維と異なるものであれば特に限定されないが、なかでも、良好な捲縮と力学特性を有し、湿度や気温変化に対する寸法安定性に優れることから、ポリエステル系樹脂からなることが好ましい。ポリエステル系樹脂としては、主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート系樹脂、又は主たる繰り返し単位がトリメチレンテレフタレートであるポリトリメチレンテレフタレート系樹脂、又は主たる繰り返し単位がブチレンテレフタレートであるポリブチレンテレフタレート系樹脂が好ましい。なお、上記のポリエチレンテレフタレート系樹脂又はポリブチレンテレフタレート系樹脂は、必要に応じて少量(通常30mol%未満(酸成分、ジオール成分の合計を100mol%とする))の共重合成分を有していてもよい。また、ソフトな風合いや繊維tо繊維リサイクルの観点から混繊複合繊維を構成するすべての糸条は共有合成分を含まないポリエチレンテレフタレート樹脂であることがより好ましい。
 また、他の糸条は沸水収縮率が10%以下であることが好ましく、8%以下であることが特に好ましい。沸水収縮率が10%以下であると、織編物のソフト性をより高めることができる。また、沸水収縮率は0%以上が好ましい。沸水収縮率が0%以上であると、寸法安定性に優れる。沸水収縮率は、JIS L1013(2021)8.18.1a法に準じて100℃の熱水中に浸漬した前後の寸法により求めることができる。
 さらに、他の糸条は潜在捲縮糸であることが好ましい。ここでは「潜在捲縮糸」とは、捲縮伸長率が5.0%以上である糸を示す。他の糸条が潜在捲縮糸であることにより、ストレッチ性および嵩高性を向上することができる。
 他の糸条が潜在捲縮糸である場合、他の糸条の捲縮伸長率は複合繊維の捲縮伸長率より10.0~30.0%高いことが好ましい。かかる範囲の捲縮発現率とすることで複合繊維とコイル径の異なる捲縮が混繊複合繊維中に混在するため、より紡毛に近い嵩高性やソフト性を得ることができる。捲縮発現率の差が10%以上の場合、嵩高性やソフト性をより高めることができる。捲縮発現率の差が30%以内であると、複合繊維とのコイル径の差が小さくなり、複合繊維と他の糸条が分離するのを防止することができる。
 このような混繊複合繊維においても、混繊複合繊維中の複合繊維は、前述と同様、通常、熱履歴により捲縮等の構造を発現する。よって、本発明の構造糸は、少なくとも1種の他の糸条が、混繊された混繊複合繊維の態様で共存する構造糸であってよい。そして、混繊複合繊維中、複合繊維とともに共存する他の糸条が潜在捲縮繊維である場合、上記熱履歴により、捲縮等の構造を発現し、顕在捲縮繊維として、複合繊維から構造発現した構造糸と共存することになる。
 本発明の織編物は、本発明の複合繊維及び/または混繊複合繊維を少なくとも一部に含む。複合繊維または混繊複合繊維のみで織編物を構成することもできる。
 すなわち、本発明の織編物は、本発明の複合繊維を少なくとも一部に用いて製織編することにより織編物とすることができる。前記製織編後、染色工程、必要に応じて行われるアルカリ減量工程により、織編物中の複合繊維は構造を発現した構造糸となる、予め構造を発現させた構造糸とした後に、製織編しても構わないが、前者の方法が好ましい。このような織編物は、構造糸を少なくとも一部に含む織編物である。また、上記製織編に供する複合繊維または構造糸は、他の糸条と混繊した複合混繊繊維の態様であってよいことは前述のとおりである。
 混繊複合繊維は、複合繊維と他の糸条との混繊糸、複合仮撚糸、合撚糸であってよく、更に混繊複合繊維と他の糸条を交編、交織等の形態として織編物を構成することで、より嵩高性やソフト性が得られる。
 本発明の織編物において、本発明の複合繊維および/または混繊複合繊維が使用される割合は、織編物の質量に対して30質量%以上が好ましく、40質量%以上がより好ましい。織編物を構成する繊維の全てが本発明の複合繊維および/または混繊複合繊維からなることも好ましい態様である。
 本発明の織編物の布帛構造は、織物または編物である。織物組織としては、風合いや意匠性に合わせて、平織り、綾織り、繻子織りやそれらの変化組織から選択される。さらに、二重織りなどの多重織り組織としてもよい。編物組織としては、所望する風合いや意匠性に合わせて選択すればよく、緯編では、天竺編、ゴム編、パール編、タック編、浮き編、レース編やそれらの変化組織などが挙げられ、経編では、シングル・デンビー編、シングル・バンダイク編、シングル・コード編、ベルリン編、ダブル・デンビー編、アトラス編、コード編、ハーフ・トリコット編、サテン編、シャークスキン編やそれらの変化組織などが挙げられる。これらの中でも、繊細な梳毛調と深みのあるナチュラルな外観を有させるために、平織もしくはその変化組織、綾織もしくはその変化組織、サテン織等の比較的単純な織編構造がより好ましい。
 また、本発明の衣類は、本発明の複合繊維(それが構造発現した構造糸を含む)、若しくは混繊複合繊維、又は織編物を少なくとも一部に含む。このようにすることで、本発明の複合繊維(それが構造発現した構造糸を含む)、若しくは混繊複合繊維、又は織編物が有する、ストレッチ性能と耐摩耗性の両特性を満足し、ソフト性や、深みのある発色性、嵩高性を発揮した衣類とすることができる。本発明の衣類とは、婦人・紳士衣料、スポーツ衣料、アウトドア衣料として着用されるアウトウエア分野のアイテム、特に、ジャケット、スーツ、ボトムス、及び、これらの一部分、たとえば、前身頃、後身頃、襟部、袖部、胸ポケット、サイドポケットを含むものや、インナー、靴下、帽子などである。
 [複合繊維、それが構造発現した構造糸、混繊複合繊維、織編物の製造方法]
 次に、本発明の複合繊維、それが構造発現した構造糸、混繊複合繊維、織編物の好ましい製造方法の一例について述べる。
 本発明の複合繊維は吐出された熱可塑性樹脂を未延伸糸又は半延伸糸として巻き取った後に、一度延伸して、弛緩熱処理する工程で製造できる。特に半延伸糸として巻き取った後に延伸する工程を含むことで得られた複合繊維とすると、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの配向差により、織編物とし、染色加工した際に特にストレッチ性に優れ、また、ポリエステル樹脂Aが高配向化することによりアルカリ減量による耐脆化に優れるため好ましい。
 [紡出工程]
 本発明の複合繊維の製造方法においては、まずポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとをそれぞれ溶融し、これらを紡糸口金から吐出して、好ましくは1400m/分~3800m/分の紡糸速度にて未延伸糸又は半延伸糸として巻き取る。本発明においては、紡糸速度を2500~3800m/分として、半延伸糸として巻き取ることが好ましい。
 半延伸糸から複合繊維とすると、アルカリ減量後の耐摩耗性に優れるため好ましい。半延伸糸は未延伸糸に比べ結晶化が進んでいるため、アルカリ減量による局所的な繊維の切断を抑制することができる。
 紡糸温度は、ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bの融点(TmA、TmB)に対し、+20℃~+50℃であることが好ましい。(TmA、TmB)+20℃以上であることによって、溶融したポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bが紡糸機配管内で固化して閉塞することを防ぐことができる。一方、(TmA、TmB)+50℃以下であることによって、溶融したポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bが熱劣化してしまうことを抑制することができる。
 本発明の複合繊維の製造方法において用いられる口金は、品質および操業安定的に紡糸することが可能であれば、公知のいずれの内部構造のものであっても良い。
 ここで、本発明の複合繊維は、上記のとおり複合繊維の断面において、ポリエステル系熱可塑性樹脂Aがポリエステル系熱可塑性樹脂Bで完全に覆われている。このような複合繊維の断面とすることで、複合繊維の製造時において課題となっている、口金から吐出される2種類の熱可塑性樹脂の流速差を起因とする吐出線曲がりを抑制することもできるのである。
 本発明の複合繊維は、上記のようにポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと、複合繊維の断面における厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCとを精密に制御することが好ましく、特開2011-174215号公報や特開2011-208313号公報、特開2012-136804号公報に例示されるような、分配プレートを用いた紡糸方法が好適に用いられる。このような分配プレートを用いることによって、tminを上述した範囲内にすることができ、tminが過剰に小さくなった結果として発生するポリエステル系熱可塑性樹脂Aの露出を抑制し、さらには織編物の白化現象や毛羽を抑制することができる。あるいは、tminが過剰に大きくなることを抑制でき、複合繊維の捲縮を好適な範囲で発現させて、織編物のストレッチ性を向上させることもできる。このような分配プレートを用いた方法では、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置により、単糸の断面形態を制御することができる。
 [延伸、弛緩熱処理工程]
 次に、上記の紡出工程を経て製造された糸を、この糸の自然延伸倍率を超える範囲の延伸倍率で、図3に例示するような延伸、弛緩熱処理装置を用いて延伸加工し、その後に弛緩熱処理を行い、弛緩熱処理糸を形成する。この工程によって、所望の複合繊維を得ることが出来る。
 図3は、本発明の複合繊維を製造する際に使用される延伸、弛緩熱処理装置の概略図である。すなわち、半延伸糸5はガイド6を通過した後、第1フィードローラー7と第2フィードローラー9の間でホットピン8で加熱延伸され、更に第2フィードローラー9と第3フィードローラー11の間のヒーター10で弛緩熱処理され、複合繊維12となり、巻取り部13で巻き取られる。
 たとえば、紡糸速度2500~3800m/分で複合紡糸して得た半延伸糸を、延伸倍率1.5~2.2倍、ホットピン温度70~150℃、糸速200~800m/分でピン延伸した後に、ヒーター温度130~180℃、オーバーフィード率+25~55%で弛緩熱処理する(一例として、紡糸速度2600m/分で複合紡糸して得た半延伸糸を、延伸倍率1.8倍、ホットピン温度95℃、糸速300m/分でピン延伸した後に、ヒーター温度140℃、オーバーフィード率+10%で弛緩熱処理する)ことで見かけの太細比で1.00以上1.04以下、捲縮伸長率が3.0~25.0%の複合繊維を得ることが出来る。また、延伸は自然延伸倍率の上限以上の領域で延伸、弛緩熱処理のオーバーフィード率は延伸倍率の50%以下が好ましい。上記範囲で延伸することで、アルカリ処理による繊維の減量程度をコントロールしやすくなり、ソフト性と耐摩耗性を両立することができる。
 また、この延伸された複合繊維に対して巻取り前もしくは巻取り後に、他の糸条を混繊などで複合して混繊複合繊維としてもよい。混繊方法としては特に限定されず、インターレース混繊、タスラン混繊等の一般的な方法でも問題ない。
 [織編物の形成工程]
 延伸工程で得た複合繊維を織物あるいは編物とする。織物の場合は、エアジェット織機、ウォータージェット織機、レピア織機、プロジェクタイル織機、シャトル織機などを使用して製織する。編物の場合は、横編機、フルファッション編機、丸編機、コンピュータージャガード編機、ソックス編機、筒編み機といった緯編み機や、トリコット編機、ラッセル編機エアジェット織機、ミラニーズ編機とった経編み機を使用して編成する。
 [アルカリ減量工程]
 さらに、上記の織編物の形成工程で得られた織編物を、必要に応じて、アルカリ減量率5~20%、より好ましくは10~15%となるようにアルカリ減量加工処理する。この工程により、上記の複合繊維の表面全体にクラックを有する状態とすることができる。また、選択的な減量による脆化を避けるため連続減量方式のプロセスが好ましい。
 [染色工程]
 さらに必要に応じて、上記のアルカリ減量工程の前及び/又は後に、あるいは同時に、常法の精練、リラックス処理、中間熱セット、染色加工、仕上げ熱セットを施してもよい(本発明では、これらの加工を総称して「染色工程」と称する場合がある)。本発明の嵩高性やソフト性を得るために、適宜各工程のフィード、張力管理を行う。例えば、本発明の複合繊維軸方向に対して、フィード量とコントロールできるRoll to roll等の方式の設備ではオーバーフィード10%以内、バッチ式の液流染色機などでは進行方向への過剰な張力がかからないように液量や流速をコントロールすることが望ましい。染色は、複合繊維を構成する熱可塑性樹脂、あるいは複合する他の糸条の染色性にもよるが、分散染料あるいはカチオン染料を用いて好ましくは110~130℃の染色液中で行う。
 本発明の複合繊維は、通常、上記染色工程もしくはアルカリ減量工程における熱履歴により、構造発現し、捲縮発現する。そして、アルカリ減量工程することにより複合繊維の表面にクラックが形成されることになる。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、上述した方法に基づいて測定を行ったものである。
 [測定方法]
 (1)熱可塑性樹脂の重量平均分子量の測定
 複合繊維に用いたポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bについて、ゲル透過クロマトグラフィー(GPC)試験機として、東ソー株式会社製“TOSO GMHHR-H(S)HT”を用いて重量平均分子量を測定した。
 検出器:示差屈折率検出器RI(Waters-2414,感度128x)
 カラム:昭和電工株式会社製 ShodexHFIP806M(2本連結)
 溶媒:テトロヒドロフラン(25cm
 流速:1.0mL/min
 カラム温度:30℃
注入量:0.10mL
標準物質:ポリスチレン。
 (2)平均繊維直径Daveの測定
 複合繊維の繊度およびフィラメント数をそれぞれJIS L1013(2010)8.3.1B法、JIS L1013(2010)8.4に準じて測定し、繊度/フィラメント数により単糸繊度を得た。得られた単糸繊度から下記式により平均繊維直径を算出した。
Figure JPOXMLDOC01-appb-M000001
 ρ:密度(g/m) ポリエチレンテレフタレートの場合、1.38×10g/m
 (3)繊維直径D、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt、繊維の周囲長Cの測定
 複合繊維からなるマルチフィラメントを繊維軸方向に1cm間隔で10か所連続してエポキシ樹脂などの包埋剤にて包埋したものを試料とし、透過型電子顕微鏡(TEM)で10本以上の繊維が観察できる倍率として各試料の画像を撮影した。この際、金属染色を施して、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの接合部のコントラストを明確にした。画像解析ソフトとして、三谷商事株式会社製“WinROOF2015”を用い、観察画像中すべての単糸から繊維直径Dと、そこからそれぞれの周囲長Cおよび、ポリエステル系熱可塑性樹脂Bの厚みt、断面におけるポリエステル系熱可塑性樹脂Aの面積Saを測定した。繊維直径Dは、円換算直径とする。得られた繊維直径D、周囲長C、厚みt、ポリエステル系熱可塑性樹脂Aの面積率Saのセットを10点揃え、それを平均した。繊維直径Dは有効数字3桁、周囲長Cおよび厚みt、面積率Saは有効数字2桁で求め本発明の繊維直径D、周囲長C、厚みt、面積率Saとした。また、厚みtは繊維周方向に1°毎、360箇所測定し、最も小さいものをtmin、厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さをCとした。また断面の総面積Sからポリエステル系熱可塑性樹脂Aの面積率Saを引き、ポリエステル系熱可塑性樹脂Bの面積率Sbとした。
 (4)捲縮伸長率
 複合繊維の捲縮伸長率を以下の式により求めた。
 捲縮伸長率(%)=[(L1-L0)/L0]×100
 L0:複合繊維50cmをガーゼにフリーな状態で包み24時間放置後、無荷重の状態で100℃×15分で熱水処理し、20℃×65RH%で24時間乾燥させた後、1.1×10-3cN/dtexの荷重を吊るした時の30秒後の長さ
 L1:L0を測定後、0.22cN/dtexの荷重を吊るした時の30秒後の長さ
測定は10回行い、その平均値の小数点以下2桁目を四捨五入して小数点以下1桁で求めた。なお、混繊複合繊維の場合はL0測定前に複合繊維を分離して測定した。
 (5)見掛けの太細比(Dthick/Dthin)の測定
 複合繊維を0.11cN/dtexの荷重をかけた状態で複合繊維の両端を固定した。固定した試料の側面を株式会社キーエンス製デジタルマイクロスコープ“VHX2000”にて200倍の倍率で撮影した画像において、繊維束の直径を繊維軸方向に連続して1.0mm間隔で500か所測定した。太部の繊維直径(Dthick)および細部の繊維直径(Dthin)の判別は、全測定データの平均値より細い部分を細部(細部<平均値)、全測定データの平均値より太い部分を太部(太部>平均値)とすることにより行ない、太部、細部の平均値を求めて見掛けの太細比を算出した。見掛けの太細比は小数点以下3桁目を四捨五入して小数点以下2桁で求めた。
 また、染色工程(仕上げ熱セット)後の織編物から構造糸を抜き取り採取した構造糸ついても同様の方法で見掛けの太細比を求めた。
 (6)クラックの有無および深さの測定
 染色加工後の織編物から構造糸の任意の箇所を、電子顕微鏡として、株式会社日立製作所製走査型電子顕微鏡“S-3400N”を用いて観察した。仕上げ熱セット後の織編物から複合繊維を、外力を掛けずに引き出し、クラックの有無およびクラック形態を確認すると共に、クラック有の場合はクラックと略直交する方向の側面を倍率2000倍にて観察した。クラックの最も深い深さと長さを計測し、一本の複合繊維内で10個のクラックを測定した平均値をクラック深さとした。
なお、クラック形態は以下の基準で判断した。
A.繊維軸方向1cmの範囲内で、10個以下のクラックにより構造糸の表面全周にわたってクラックが形成される態様である。
B.10個以下のクラックにより構造糸の表面全周にわたってクラックがある。
C.クラックは形成されるが、BとCの中間程度である。
D.クラックは形成されるが、構造糸の表面半周にわたる程度である。
E.DとFの中間程度である。
F.クラックは形成されない。
 (7)織編物のストレッチ性
 JIS L1096(2010)8.16.1B法に準じて本発明の複合繊維に沿った方向の伸長率を測定した。経緯ともに本発明の複合繊維を用いた場合は経緯それぞれの伸長率を測定し、その平均値を結果とした。
 (8)耐摩耗性
 織編物を黒色に染色し、染色後の織編物を直径10cmの円形に切り出し、蒸留水で湿潤させて円盤に取り付けた。更に30cm角に切り出した織編物を乾いたまま水平の板の上に固定した。蒸留水で湿潤させた織編物が取り付けられた円盤を水平な板の上に固定された織物に対して水平に接触させ、円盤の中心が直径10cmの円を描くように、50rpmの速度で10分間円盤を円運動させ、2枚の織編物を摩擦させた。摩擦終了後4時間放置してから、円盤に取り付けた織編物の変褪色の程度を、変褪色用グレースケールを用い、0.5級刻みで1~5級の級判定を実施した。
 (9)複合繊維、混繊複合繊維を用いた織編物の発色性、嵩高性、ソフト性の評価
 本発明における複合繊維を用いて形成した織編物のサンプルを、健康な成人10名(男性と女性各5名)を評価者として、織編物の発色性を目視によって、嵩高性とソフト性を触感によって、非常に良い(5点)、良い(4点)、普通(3点)、あまり良くない(2点)、悪い(1点)の5段階で官能評価し、各検査者の平均値の小数点以下2桁目を四捨五入して小数点以下1桁で求めた。なお、比較としては実施例、比較例と同総繊度、同フィラメント数のポリエチレンテレフタレートの仮撚加工糸からなる織物を普通(3点)とした。
 [実施例1]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量25000のポリエチレンテレフタレート、ポリエステル系熱可塑性樹脂Bを重量平均分子量15000のポリエチレンテレフタレートとし、紡糸温度290℃、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとが50:50の質量複合比となるように、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置を図4に示した形とし、吐出孔数12の複合繊維用紡糸口金に流入させた。図4において、最終分配プレートにおいて、ポリエステル系熱可塑性樹脂Aの分配孔14の群の周囲にポリエステル系熱可塑性樹脂Bの分配孔15の群が配置されている様子が示されている。このようにしてポリエステル系熱可塑性樹脂B中にポリエステル系熱可塑性樹脂Aが包含された偏心芯鞘型(図1)の複合断面を形成した。口金から吐出された糸条は、空冷装置により冷却、油剤付与後、ワインダーにより2600m/分の速度で巻き取り、総繊度100dtex-単糸数12フィラメントの半延伸糸として安定的に巻き取った。
 続いて、得られた半延伸糸を300m/分の速度で延伸装置に送糸し、図3に示すような延伸装置を用いて延伸倍率1.80倍、ホットピン温度95℃でピン延伸した後に、ヒーター温度140℃、オーバーフィード率+20%で弛緩熱処理することで、見かけの太細比(Dthick/Dthin)1.02の複合繊維を得た。この複合繊維について、前記の(tmin/D)は0.020、CとCとの関係は、C=0.40C(C/C=0.40)であった。また、S:S=50:50であった。
 次に、1200T/mの撚りを上記複合繊維に付与したものを経糸および緯糸として用い、経糸密度115本/2.54cm、緯糸密度105本/2.54cmで、3/1ツイル組織の織物を作製した。
 さらにこの織物に、精練、リラックス処理、中間熱セットを施した。その後、染色工程として分散染料「Dystar Navy BlueS-GL」を用いて濃度1.0owf%、130℃の温度で30分間染色し、160℃での仕上げ熱セットを施した。結果を表1に示す。
 [実施例2]
 染色加工において、中間セット後にアルカリ減量加工(減量率10%)を行い複合繊維の単糸表面にクラックを形成したこと以外は、実施例1と同様に複合繊維、織物を得た。結果を表1に示す。
 [実施例3]
 実施例1で作製した複合繊維に、他の糸条としてポリエチレンテレフタレート繊維(56dtex-24f、沸水収縮率が8%、捲縮伸長率が0.0%)をインターレースノズルにて交絡混繊して複合繊維の混率が54%である混繊複合繊維とし、経糸密度を88本/inch、緯糸密度を79本/inch(2.54cm)とした以外は実施例2と同様に織物を得た。結果を表1に示す。ここで沸水収縮率は、JIS L1013(2021)8.18.1a法に準じて、100℃の熱水中に浸漬した前後の寸法変化を測定することで求めた。
 [実施例4]
 他の糸条として、以下の延伸糸を用いた以外は実施例3と同様に織物を得た。結果を表1に示す。
 延伸糸:重量平均分子量25000のポリエチレンテレフタレートと重量平均分子量15000のポリエチレンテレフタレートを紡糸温度290℃、それぞれのポリエチレンテレフタレートが50:50の質量複合比となるように、吐出孔数12のサイドバイサイド型複合繊維用紡糸口金に流入させた。口金から吐出された糸条は、空冷装置により冷却、油剤付与後、1500m/分で引き取られ、そのまま80℃の予熱ローラーと、4000m/分のローラーとの間で2.67倍延伸し、130℃で熱セットした後に、ワインダーにより巻き取り、総繊度56dtex-単糸数12フィラメント、捲縮伸長率が32.0%の延伸糸として安定的に巻き取った。
 [実施例5]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量19000のポリエステルとし、ポリエステル系熱可塑性樹脂Bを重量平均分子量15000のポリエステルとした以外は実施例2と同様に織物を得た。結果を表1に示す。
 [実施例6]
 ポリエステル系熱可塑性樹脂Aとしてイソフタル酸(IPA)を酸成分に対して10mol%共重合させた重量平均分子量25000のポリエステルとした以外は実施例2と同様に織物を得た。結果を表1に示す。
 [実施例7]
 他の糸条の熱セット温度を125℃として沸水収縮率を10%とした以外は実施例4と同様に織物を得た。結果を表1に示す。
 [実施例8]
 他の糸条として、以下の延伸糸を用いた以外は実施例3と同様に織物を得た。結果を表1に示す。
 延伸糸:イソフタル酸(IPA)を酸成分に対して10mol%共重合させた重量平均分子量25000のポリエチレンテレフタレートと重量平均分子量15000のポリエチレンテレフタレートを紡糸温度290℃、それぞれのポリエチレンテレフタレートが50:50の質量複合比となるように、吐出孔数12のサイドバイサイド型複合繊維用紡糸口金に流入させた。口金から吐出された糸条は、空冷装置により冷却、油剤付与後、1500m/分で引き取られ、そのまま80℃の予熱ローラーと、4000m/分のローラーとの間で2.67倍延伸し、130℃で熱セットした後に、ワインダーにより巻き取り、総繊度56dtex-単糸数12フィラメントの延伸糸として安定的に巻き取った。
 [比較例1]
 実施例4において、使用する紡糸口金を、分配板方式の口金から特開平09-157941号公報に記載された形式の口金に置き換え、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなるサイドバイサイド型複合繊維としたこと以外は、実施例4と同様に織物を得た。得られた織物は、摩耗によりサイドバイサイドの複合断面の剥離により耐摩耗性が低く、発色性の低い高分子量のポリエチレンテレフタレートが露出しているため発色性に劣っていた。結果を表2に示す。
 [比較例2]
 ピン延伸を行わずに弛緩熱処理を行ったこと以外は実施例4と同様に織物を得た。得られた織物は、アルカリ処理による局所的な繊維の切断によって耐摩耗性が低く、複合繊維の捲縮伸長率が低いため嵩高性にも劣っていた。結果を表2に示す。
 [比較例3]
 ピン延伸を行い、弛緩熱処理を行わなかったこと以外は実施例4と同様に織物を得た。得られた織物は、複合繊維の配向が高いため発色性が低く、また捲縮伸長率が高すぎるため嵩高性やソフト性にも劣っていた。結果を表2に示す。
 [比較例4]
 ピン延伸倍率を1.50倍、熱処理オーバーフィード率を0%として見掛けの太細比が1.22、捲縮伸長率が27.0%である複合繊維とした以外は実施例4と同様に織物を得た。得られた織物は、太部の耐摩耗性が低く、捲縮伸長率が高いためソフト性も劣っていた。結果を表2に示す。
 [比較例5]
 ピン延伸倍率を1.50倍として見掛けの太細比が1.22である複合繊維とした以外は実施例4と同様に織物を得た。得られた織物は、太部の耐摩耗性が低く、捲縮伸長率も低いため嵩高性やソフト性も劣っていた。結果を表2に示す。
 [比較例6]
 実施例4において、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminの値が10倍となるように使用する紡糸口金の最終分配板プレートの分配孔の配置を図4から図5となるように変更し、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなり、(tmin/D)が0.20である芯鞘型複合繊維としたこと以外は、実施例4と同様に織物を得た。結果を表2に示す。
 [比較例7]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量20000のポリエチレンテレフタレート、ポリエステル系熱可塑性樹脂Bを重量平均分子量19000のポリエチレンテレフタレートとした以外は実施例2と同様に織物を得た。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1:ポリエステル系熱可塑性樹脂A
2:ポリエステル系熱可塑性樹脂B
3:複合繊維
4:クラック
5:半延伸糸
6:ガイド
7:第1フィードローラー
8:ホットピン
9:第2フィードローラー
10:ヒーター
11:第3フィードローラー
12:複合繊維
13:巻き取り部
14:ポリエステル系熱可塑性樹脂Aの分配孔
15:ポリエステル系熱可塑性樹脂Bの分配孔
16:ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt

Claims (9)

  1. ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす、複合繊維。
    (1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
    (2)前記複合繊維の見かけの太細比(Dthick/Dthin)が1.00~1.04である。
    (3)前記複合繊維の捲縮伸長率が3.0~25.0%である。
    (4)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。
    (5)前記複合繊維の断面において、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCが前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。
  2. 少なくとも1種の他の糸条が、混繊された混繊複合繊維の態様で共存する、請求項1記載の複合繊維。
  3. 前記他の糸条が潜在捲縮糸である、請求項2に記載の複合繊維。
  4. 請求項1に記載の複合繊維の表面全周にクラックを形成してなる、構造糸。
  5. 少なくとも1種の他の糸条が、混繊された混繊複合繊維の態様で共存する、請求項4記載の構造糸。
  6. 前記他の糸条が顕在捲縮糸である、請求項5に記載の構造糸。
  7. 請求項1~3のいずれかに記載の複合繊維を少なくとも一部に用いて製織編してなる、織編物。
  8. 請求項4~6のいずれかに記載の構造糸を少なくとも一部に含む、織編物。
  9. 請求項7または8に記載の織編物を少なくとも一部に含む、衣類。
PCT/JP2023/023193 2022-07-22 2023-06-22 複合繊維、構造糸、織編物及び衣類 WO2024018818A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116919 2022-07-22
JP2022-116919 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024018818A1 true WO2024018818A1 (ja) 2024-01-25

Family

ID=89617597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023193 WO2024018818A1 (ja) 2022-07-22 2023-06-22 複合繊維、構造糸、織編物及び衣類

Country Status (1)

Country Link
WO (1) WO2024018818A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000408A1 (en) * 1990-06-22 1992-01-09 Kanebo Ltd. Composite elastic filament with rough surface, production thereof, and fibrous structure comprising the same
JPH08269868A (ja) * 1995-04-03 1996-10-15 Toray Ind Inc ポリエステル中空糸織編物およびその製造方法
JP2000212837A (ja) * 1999-01-20 2000-08-02 Kuraray Co Ltd 捲縮性複合繊維
JP2001123336A (ja) * 1999-10-25 2001-05-08 Toray Ind Inc 潜在捲縮発現性ポリエステル繊維および製造方法
JP2003293226A (ja) * 2002-04-01 2003-10-15 Nippon Ester Co Ltd 潜在捲縮性ポリ乳酸複合繊維及びその不織布
JP2005273116A (ja) * 2004-03-25 2005-10-06 Hyosung Corp 複合繊維及びその製造方法
JP2006507421A (ja) * 2002-11-26 2006-03-02 コーロン インダストリーズ インク 高伸縮性サイドバイサイド型複合フィラメント及びその製造方法
WO2018110523A1 (ja) * 2016-12-14 2018-06-21 東レ株式会社 偏心芯鞘複合繊維および混繊糸

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000408A1 (en) * 1990-06-22 1992-01-09 Kanebo Ltd. Composite elastic filament with rough surface, production thereof, and fibrous structure comprising the same
JPH08269868A (ja) * 1995-04-03 1996-10-15 Toray Ind Inc ポリエステル中空糸織編物およびその製造方法
JP2000212837A (ja) * 1999-01-20 2000-08-02 Kuraray Co Ltd 捲縮性複合繊維
JP2001123336A (ja) * 1999-10-25 2001-05-08 Toray Ind Inc 潜在捲縮発現性ポリエステル繊維および製造方法
JP2003293226A (ja) * 2002-04-01 2003-10-15 Nippon Ester Co Ltd 潜在捲縮性ポリ乳酸複合繊維及びその不織布
JP2006507421A (ja) * 2002-11-26 2006-03-02 コーロン インダストリーズ インク 高伸縮性サイドバイサイド型複合フィラメント及びその製造方法
JP2005273116A (ja) * 2004-03-25 2005-10-06 Hyosung Corp 複合繊維及びその製造方法
WO2018110523A1 (ja) * 2016-12-14 2018-06-21 東レ株式会社 偏心芯鞘複合繊維および混繊糸

Similar Documents

Publication Publication Date Title
US6276121B1 (en) Crimped yarn, textile fabric, and process for preparing the same
US10323341B2 (en) Highly air-permeable woven fabric resistant to washing
JP7135469B2 (ja) 偏心芯鞘複合繊維を用いた織編物
JP3545749B2 (ja) 梳毛調布帛及びその製造方法
WO2024018818A1 (ja) 複合繊維、構造糸、織編物及び衣類
KR20030083577A (ko) 멜란지 효과가 우수한 이수축 혼섬사 및 그의 제조방법
WO2024018814A1 (ja) 仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類
JP7292066B2 (ja) 混繊追撚糸及び織編物
EP4283027A1 (en) Composite fiber, composite mixed-filament fiber including same, woven/knitted fabric, and garment
JP5012646B2 (ja) 分割型ポリアミド・ポリエステル複合繊維、それからなる織編物、繊維製品
JP5216974B2 (ja) 芯鞘型複合糸を用いてなる布帛および衣料
TW202417702A (zh) 複合纖維、構造紗、織編物及衣物
TW202415820A (zh) 假撚加工紗以及包含其之複合假撚加工紗、撚紗、織編物及衣物
WO2023100570A1 (ja) 偏心芯鞘複合仮撚糸及びそれを用いた織編物
WO2023182145A1 (ja) 複合仮撚加工糸、織編物及び衣服
KR102479830B1 (ko) 심초형 복합가연사 및 이의 제조방법
JP2019123970A (ja) 織物
JP2001214335A (ja) 低収縮ポリエステル太細糸およびそれからなるポリエステル混繊糸
JP2024024786A (ja) 複合仮撚糸及びそれを含む織編物
JP2003278039A (ja) ポリエステル複合仮撚糸
JP2015221953A (ja) 織編物
JP2020015992A (ja) 異繊度異形断面混繊ポリアミド糸および繊維製品
JP4228504B2 (ja) 混繊糸からなる織編物
JP2021161550A (ja) ポリエステル複合仮撚糸
JP2023123956A (ja) 織物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842749

Country of ref document: EP

Kind code of ref document: A1