WO2013125583A1 - 分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子 - Google Patents

分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子 Download PDF

Info

Publication number
WO2013125583A1
WO2013125583A1 PCT/JP2013/054190 JP2013054190W WO2013125583A1 WO 2013125583 A1 WO2013125583 A1 WO 2013125583A1 JP 2013054190 W JP2013054190 W JP 2013054190W WO 2013125583 A1 WO2013125583 A1 WO 2013125583A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
nonwoven fabric
separation
membrane support
roll
Prior art date
Application number
PCT/JP2013/054190
Other languages
English (en)
French (fr)
Inventor
羽根 亮一
雅樹 東
山崎 仁
松浦 博幸
善和 矢掛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380010317.7A priority Critical patent/CN104136104B/zh
Priority to KR1020147018385A priority patent/KR101950256B1/ko
Priority to US14/380,529 priority patent/US20150060354A1/en
Priority to EP13751733.0A priority patent/EP2818229B1/en
Priority to ES13751733.0T priority patent/ES2657281T3/es
Priority to JP2013510403A priority patent/JP6248629B2/ja
Publication of WO2013125583A1 publication Critical patent/WO2013125583A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • B29C66/7294Non woven mats, e.g. felt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2267/00Use of polyesters or derivatives thereof as reinforcement
    • B29K2267/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a separation membrane support comprising a nonwoven fabric for supporting a separation membrane such as a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane, and a method for producing the same.
  • the present invention also relates to a separation membrane and a fluid separation element using the separation membrane support.
  • Membrane technology is applied to water treatment in recent years in many cases.
  • microfiltration membranes and ultrafiltration membranes are used for water treatment at water purification plants, and reverse osmosis membranes are used for desalination of seawater.
  • reverse osmosis membranes and nanofiltration membranes are used for the treatment of semiconductor manufacturing water, boiler water, medical water, laboratory pure water, and the like.
  • a membrane separation activated sludge method using a microfiltration membrane or an ultrafiltration membrane is also applied to the treatment of sewage wastewater.
  • These separation membranes are roughly classified into flat membranes and hollow fiber membranes according to their shapes.
  • flat membranes formed mainly from synthetic polymers are generally used integrally with a support such as a nonwoven fabric or woven fabric because a membrane having a separation function is inferior in mechanical strength. There are many cases.
  • a membrane having a separation function and a support are integrated by a method of casting and fixing a polymer solution as a raw material for the membrane having a separation function on a support such as a nonwoven fabric or a woven fabric.
  • a semipermeable membrane such as a reverse osmosis membrane
  • a solution of a polymer is cast on a support such as a nonwoven fabric or a woven fabric to form a support layer, and then a semipermeable membrane is formed on the support layer. It is integrated by a method of forming.
  • the nonwoven fabric or woven fabric used as the support when the polymer solution is cast, it penetrates by over-penetration, the membrane material is peeled off, and further, the support is fluffed.
  • the membrane material is peeled off, and further, the support is fluffed.
  • high dimensional stability is also required to make it difficult to deform against heat and tension applied to the support during the separation membrane production process.
  • examples of the form of the fluid separation element for facilitating the handling of the separation membrane include flat membrane plate frame type, pleated type, spiral type and the like.
  • a plate frame type a process of attaching a separation membrane cut to a predetermined size to the frame is required, and in the case of a spiral type, the outer peripheral portion of the separation membranes cut to a predetermined size is attached.
  • a process of processing into an envelope shape and winding it around the water collecting pipe is necessary. Therefore, the separation membrane support is required to have excellent processability so that the membrane is not bent or rounded in these steps.
  • the support is required to have high mechanical strength.
  • the seawater desalination apparatus incorporating the reverse osmosis composite membrane may be continuously operated at a certain operating pressure. If so, there is a case where the operation pressure is changed every time in response to a change in the quality and temperature of the supplied seawater, a change in the management value of the target water production amount, or the like.
  • the reverse osmosis composite membrane expands and contracts in the thickness direction due to fluctuations in the operating pressure applied in the thickness direction of the reverse osmosis composite membrane.
  • the operation may be repeated, and the support layer and the support of the reverse osmosis composite membrane may be peeled off.
  • forward osmosis works from the permeate water side to the supply water side, and the support layer and the support may be separated from each other. For this reason, the separation membrane support is also required to have high peel strength when the separation membrane is formed.
  • a separation membrane support a double structure of a surface layer having a large opening and a large surface roughness using a thick fiber and a back layer having a small structure and a small opening using a thin fiber
  • a separation membrane support made of a nonwoven fabric of a multilayer structure based on the above has been proposed (see Patent Document 1).
  • the average value of the longitudinal direction (MD) and transverse direction (CD) breaking length at 5% elongation is 4.0 km or more and the air permeability is 0.2 to 10.0 cc / cm 2 ⁇ sec.
  • a semipermeable membrane support made of a nonwoven fabric has been proposed (see Patent Document 2).
  • a separation membrane support in which 2 to 5 layers of long fiber nonwoven fabric composed of thermoplastic continuous filaments are laminated has been proposed (see Patent Document 3). Also, a separation membrane using a base material obtained by heat-treating a nonwoven fabric composed of a composite fiber having polypropylene as a core material and polyethylene as a sheath material, and the dry heat shrinkage rate of the nonwoven fabric under the condition of 110 ° C / 5 minutes is vertical. / A separation membrane that is 0.5% or less in both sides has been proposed (see Patent Document 4). A separation membrane support made of a nonwoven fabric having a boiling water shrinkage in the width direction (lateral direction) of 0.1 to 5.0% has been proposed (see Patent Document 5). In these documents, there are proposals and descriptions regarding the film-forming properties at the time of production of the separation membrane, the durability of the separation membrane, and the dimensional stability, and the peel strength between the separation membrane and the support is also mentioned.
  • Japanese Examined Patent Publication No. 4-21526 Japanese Patent No. 3153487 JP 2009-61373 A Japanese Patent Laid-Open No. 2001-17842 JP 2011-212602 A
  • the technical problem of the present invention is that the membrane is stable and excellent in high yield when supporting separation membranes such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and fluid separation elements.
  • separation membranes such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and fluid separation elements.
  • Another technical problem of the present invention is to provide a separation membrane and a fluid separation element having high membrane peel strength using the above-mentioned separation membrane support.
  • the present invention is to solve the above-mentioned problems, and the separation membrane support of the present invention is a separation membrane support made of a nonwoven fabric, and is 5 in boiling water in the length direction (longitudinal direction) of the nonwoven fabric. It is characterized by comprising a nonwoven fabric having a boiling water shrinkage of -0.2 to 2.0% treated for a minute.
  • the non-woven fabric described in 7.1 Water absorption rate method of 7.1.1 of JIS L L1907: 2010 “Fabricity water absorption test method”
  • the water absorption time measured based on the dropping method is 15 seconds or more, and is a non-hydrophilic nonwoven fabric.
  • the back surface of the non-woven fabric is Beck smooth measured according to JIS P8119: 1998 “Paper and paperboard—Smoothness test method using Beck smoothness tester”. The degree is 5 to 35 seconds.
  • the nonwoven fabric is a spunbond nonwoven fabric composed of thermoplastic filaments.
  • the nonwoven fabric is a nonwoven fabric composed of fibers made of a polyester polymer.
  • the separation membrane support of the present invention is not limited to a specific production method, but is preferably produced by the production method of the present invention described below. That is, the method for producing a separation membrane support of the present invention is a method for producing a separation membrane support comprising a nonwoven fabric, and after the nonwoven fabric is thermocompression bonded with a thermocompression-bonding roll for integrating the nonwoven fabric, The cooling roller is brought into contact with a cooling roll, and the speed ratio of the cooling roll to the speed of the thermocompression-bonding roll at the time of contact is set to 0.98 to 1.02.
  • the surface temperature of the cooling roll is 20 to 100 ° C.
  • the contact time between the nonwoven fabric and the cooling roll is 0.5 to 2.0 seconds.
  • the separation membrane of the present invention is a separation membrane formed by forming a membrane having a separation function on the surface of the above-mentioned separation membrane support.
  • the membrane peel strength is 20 to 75 cN / 15 mm.
  • the fluid separation element of the present invention is a fluid separation element including the separation membrane as a component.
  • a separation membrane support comprising a nonwoven fabric, and a cast polymer solution for supporting a separation membrane such as a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane.
  • a separation membrane such as a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane.
  • excellent film-forming properties that do not break through due to over-penetration, peel off of membrane material, or cause defects such as pinholes, and do not bend or curl when the fluid separation element is manufactured
  • the separation membrane is made of a nonwoven fabric having excellent mechanical strength that does not deform or break due to pressure applied when used as a separation membrane or fluid separation element. A support is obtained.
  • the dimensional change in the length direction during the separation membrane manufacturing process is small, and it is possible to stably manufacture a separation membrane with a high yield.
  • the above-described separation membrane support is being used.
  • the separation membrane support of the present invention is a separation membrane support that forms a membrane having a separation function on the surface thereof.
  • the separation membrane support of the present invention comprises a nonwoven fabric.
  • the polymer of fibers constituting the nonwoven fabric in the present invention include polyester polymers, polyamide polymers, polyolefin polymers, and mixtures and copolymers thereof.
  • a polyester polymer is preferably used because it can provide a separation membrane support having excellent mechanical strength, durability such as heat resistance, water resistance, and chemical resistance.
  • the polyester polymer is a polyester composed of an acid component and an alcohol component.
  • the acid component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid.
  • the alcohol component ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used.
  • the polyester polymer include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and the like, and copolymers thereof.
  • biodegradable resins are preferably used as the polymer of fibers constituting the nonwoven fabric because they can be easily discarded after use and have a low environmental impact.
  • the biodegradable resin include polylactic acid, polybutylene succinate, polycaprolactone, polyethylene succinate, polyglycolic acid, polyhydroxybutyrate and the like.
  • polylactic acid is a plant-derived resin that does not deplete petroleum resources, has relatively high mechanical properties and heat resistance, and is a biodegradable resin that is low in production cost and is preferably used.
  • the polylactic acid preferably used in the present invention includes poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, or a blend thereof.
  • the fibers constituting the nonwoven fabric constituting the separation membrane support of the present invention may be a single component fiber, a composite fiber composed of a plurality of components, or a so-called mixed fiber type in which a plurality of types of fibers are mixed.
  • a composite fiber in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is arranged around the high melting point polymer is preferably used.
  • the nonwoven fabric when used as a separation membrane support, non-uniformity during casting of the polymer solution due to fluffing or membrane Disadvantages can be suppressed.
  • the number of adhesion points is larger than that of a mixed fiber type in which fibers made only of a high melting point polymer and fibers made only of a low melting point polymer are mixed. It leads to improvement of mechanical strength when used as a body.
  • the melting point difference between the high melting point polymer and the low melting point polymer is preferably 10 to 140 ° C. Heat which contributes to the improvement of mechanical strength without impairing the strength of the high melting point polymer disposed inside by making the difference in melting point preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher. Adhesiveness can be obtained.
  • the difference in melting point is preferably 140 ° C. or less, more preferably 120 ° C. or less, and further preferably 100 ° C. or less
  • the low melting point polymer component is fused to the roll during thermocompression bonding using a hot roll. It can suppress that productivity falls.
  • the melting point of the high melting point polymer is 160 to 320 ° C. from the viewpoint of obtaining a separation membrane having good film forming property and excellent durability when forming the separation membrane on the separation membrane support of the present invention.
  • the melting point of the high melting point polymer is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and even more preferably 180 ° C. or higher, so that it is dimensionally stable even if it passes through a process of applying heat when manufacturing a separation membrane or a fluid separation element. Excellent in properties.
  • the melting point of the high-melting polymer is preferably 320 ° C. or lower, more preferably 300 ° C. or lower, and further preferably 280 ° C.
  • the melting point of the low melting point polymer is preferably 120 to 250 ° C, more preferably 140 to 240 ° C, and further preferably 230 to 240 ° C. If the melting point of the low melting point polymer is 120 ° C. or higher, the thermocompression bonded nonwoven fabric is not easily deformed, and elongation and strain due to the longitudinal tension applied to the nonwoven fabric before winding can be suppressed.
  • high melting point polymer / low melting point polymer examples include, for example, polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethylene terephthalate, polyethylene terephthalate / polylactic acid, Examples include polyethylene terephthalate / copolymerized polyethylene terephthalate. Further, isophthalic acid or the like is preferably used as a copolymerization component of the above copolymerized polyethylene terephthalate.
  • the proportion of the low-melting polymer in the composite fiber is preferably 10 to 70% by mass from the viewpoint of obtaining a nonwoven fabric suitable for the separation membrane support.
  • the proportion of the low-melting polymer is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more to obtain thermal adhesiveness that can be used as a separation membrane support. Can do.
  • the ratio of the low-melting polymer is preferably 70% by mass or less, more preferably 60% by mass or less, and further preferably 50% by mass or less, so that the fiber strength is reduced by decreasing the high-melting polymer.
  • An additive such as a crystal nucleating agent, a matting agent, a lubricant, a pigment, an antifungal agent, an antibacterial agent or a flame retardant may be added to the nonwoven fabric as long as the effects of the present invention are not impaired.
  • metal oxides such as titanium oxide improve the spinnability by reducing the surface friction of the fibers and preventing the fibers from fusing together, and increase the thermal conductivity during thermocompression molding with a hot roll of nonwoven fabric.
  • aliphatic bisamides such as ethylenebisstearic acid amide and / or alkyl-substituted aliphatic monoamides can be bonded by increasing the releasability between the hot roll and the web. It has the effect of improving stability.
  • Examples of the composite form of the composite fiber include a concentric core-sheath type, an eccentric core-sheath type, and a sea-island type from the viewpoint of efficiently obtaining a thermal bonding point between the fibers.
  • examples of the cross-sectional shape of the fibers constituting the nonwoven fabric include a circular cross section, a flat cross section, a polygon cross section, a multi-leaf cross section, and a hollow cross section.
  • the composite form is a concentric core-sheath type
  • the cross-sectional shape of the fiber is a circular cross section or a flat cross section, and the fibers can be firmly bonded to each other by thermocompression bonding.
  • the thickness of the support can be reduced, and the separation membrane area per fluid separation element unit can be increased.
  • the average single fiber diameter of the fibers constituting the nonwoven fabric is preferably 3 to 30 ⁇ m.
  • the spinnability is hardly lowered during the production of the nonwoven fabric, and the voids inside the separation membrane support are maintained. Therefore, the separation membrane excellent in membrane peeling strength can be obtained by allowing the polymer solution cast at the time of membrane formation to rapidly penetrate into the inside of the separation membrane support and adhere firmly.
  • the average single fiber diameter of the fibers is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less, a nonwoven fabric and a separation membrane support excellent in uniformity can be obtained. Since the support can be densified, there is little over-penetration during casting of the polymer solution, and good film forming properties can be obtained.
  • a spunbond nonwoven fabric produced by a spunbond method is preferably used as the nonwoven fabric constituting the separation membrane support of the present invention.
  • a spunbond nonwoven fabric which is a long-fiber nonwoven fabric composed of thermoplastic filaments, non-uniformity during casting of a polymer solution caused by fuzz, which tends to occur when short-fiber nonwoven fabric is used, and membrane defects Can be suppressed.
  • the spunbonded nonwoven fabric is superior in mechanical strength, has good film-forming properties in use as a separation membrane support, and can provide a separation membrane having excellent durability.
  • the separation membrane support of the present invention a laminate comprising a plurality of non-woven fabric layers, a separation membrane support with better uniformity can be obtained, and further the density distribution in the thickness direction of the support can be obtained. Adjustment is also easy.
  • the laminated body include, for example, a laminated body of two layers of spunbonded nonwoven fabric, a laminated body of a three-layer structure in which a meltblown nonwoven fabric is disposed between two layers of spunbonded nonwoven fabric, and at least one layer. Is preferably a spunbonded non-woven fabric, and more preferably a spunbonded non-woven fabric alone.
  • the basis weight of the nonwoven fabric constituting the separation membrane support of the present invention is preferably 20 to 150 g / m 2 .
  • the basis weight is preferably 20 g / m 2 or more, more preferably 30 g / m 2 or more, and even more preferably 40 g / m 2 or more, good film-forming properties are obtained with less over-permeation at the time of casting a polymer solution. It is possible to obtain a separation membrane having excellent dimensional stability, high membrane peel strength and mechanical strength, and excellent durability.
  • the basis weight is preferably 150 g / m 2 or less, more preferably 120 g / m 2 or less, and even more preferably 90 g / m 2 or less, thereby reducing the thickness of the separation membrane and separating per fluid separation element unit.
  • the membrane area can be increased.
  • the thickness of the nonwoven fabric constituting the separation membrane support of the present invention is preferably 0.03 to 0.20 mm.
  • the film thickness is preferably 0.03 mm or more, more preferably 0.04 mm or more, and even more preferably 0.05 mm or more.
  • the dimensional change during the separation membrane manufacturing process is small, curling and bending after film formation can be suppressed, and excellent processability when manufacturing a fluid separation element can be obtained.
  • a separation membrane having high membrane peel strength and mechanical strength and excellent durability can be obtained.
  • the thickness of the nonwoven fabric is preferably 0.20 mm or less, more preferably 0.16 mm or less, and even more preferably 0.12 mm or less, thereby reducing the thickness of the separation membrane and separating per fluid separation element unit.
  • the membrane area can be increased.
  • the nonwoven fabric constituting the separation membrane support of the present invention has a boiling water shrinkage in the length direction (longitudinal direction) of -0.2 to 2.0%.
  • the boiling water shrinkage in the length direction (longitudinal direction) of the nonwoven fabric is 2.0% or less, preferably 1.0% or less, more preferably 0.5% or less.
  • the boiling water shrinkage referred to in the present invention means that four samples of 25 cm in length and 25 cm in width are collected from an arbitrary part of the nonwoven fabric, and are each 20 cm in the length direction at three places in the width direction (lateral direction). After marking for 5 minutes in boiling water, taking it out and letting it dry naturally, we measured the length of the three marked locations up to 0.01 cm, and measured the dimensional change. It is obtained as a shrinkage rate.
  • a cooling roll is provided after the thermocompression-bonding roll for integrating the nonwoven fabric, and the surface
  • the cooling roll is brought into contact with a cooling roll at a temperature of 20 to 100 ° C. for 0.5 to 2.0 seconds, and the speed ratio of the cooling roll to the speed of the thermocompression bonding roll is 0.98 to 1.02.
  • a pair of upper and lower flat rolls is used as the thermocompression bonding roll.
  • this cooling roll is used in a form such as passing a nonwoven fabric through a pair of upper and lower metal rolls so as to draw a letter “S”.
  • a method for controlling the surface temperature of the cooling roll As a method for controlling the surface temperature of the cooling roll, a method of circulating cooling water inside the cooling roll or a method of blowing cooling air to the surface of the cooling roll can be used, but the temperature can be controlled more uniformly. Therefore, a method of circulating the cooling water inside the cooling roll is more preferably used.
  • the speed ratio of the cooling roll to the thermocompression roll can be arbitrarily changed, for example, by adjusting the speed of the cooling roll while keeping the speed of the thermocompression roll constant.
  • the nonwoven fabric constituting the separation membrane support of the present invention preferably has no hydrophilicity.
  • a separation membrane having high membrane peel strength can be obtained.
  • the mechanism is presumed as follows.
  • the separation membrane and the separation membrane support are often integrated by a method in which a polymer solution as a raw material for the separation membrane is cast and fixed on the separation membrane support.
  • fixing the polymer solution a method of immersing and fixing the cast polymer solution together with the separation membrane support in a coagulating liquid containing water as a main component is widely used.
  • the separation membrane support that is, a non-hydrophilic nonwoven fabric
  • the coagulation liquid penetrates into the separation membrane support from the opposite surface on which the polymer solution is cast.
  • the separation membrane and the separation membrane support can be firmly bonded.
  • the nonwoven fabric constituting the separation membrane support of the present invention has a time required for water droplets to permeate into the nonwoven fabric when water is dropped on the nonwoven fabric, that is, the water absorption time is JIS L 1907: 2010 “Test method for water absorption of textile products” It is preferable that it is 15 seconds or more when measured using 7.1 (water absorption rate method) of 7.1.1 (drop method).
  • the water absorption time of the nonwoven fabric is preferably 15 seconds or more, more preferably 20 seconds or more, and even more preferably 25 seconds or more, the coagulation liquid containing water as a main component is excessively introduced into the separation membrane support during the production of the separation membrane.
  • the polymer solution cast on the support is sufficiently permeated into the inside of the support and then solidified to improve the membrane peeling strength of the formed separation membrane.
  • the nonwoven fabric in order to set the water absorption time of the nonwoven fabric to 15 seconds or more, it is preferable to use a polyester-based polymer, particularly polyethylene terephthalate or a copolymer thereof, as the polymer of the fibers constituting the nonwoven fabric.
  • the spun bond method and the melt blow method which do not use an oil agent at the time of manufacture of the nonwoven fabric and the fiber which comprises a nonwoven fabric are preferably used as a manufacturing method of a nonwoven fabric.
  • oil agents when using oil agents, the amount of oil agents present in the nonwoven fabric is reduced by 0.1 by reducing the amount of use as much as possible or removing the oil agents by washing and drying after production. It is preferable to set it as mass% or less.
  • the back surface of the nonwoven fabric constituting the separation membrane support of the present invention is based on JIS P8119: 1998 “Paper and paperboard—Smoothness test method using Beck smoothness tester”.
  • the measured Beck smoothness is preferably 5 to 35 seconds.
  • a separation membrane support for a coagulation liquid containing water as a main component during the production of the separation membrane by setting the Beck smoothness of the back surface of the nonwoven fabric to preferably 5 seconds or more, more preferably 10 seconds or more, and even more preferably 15 seconds or more. It is possible to suppress excessive penetration from the back to the inside, solidify after the polymer solution cast on the support has sufficiently penetrated into the inside of the support, and improve the membrane peeling strength of the formed separation membrane.
  • the Beck smoothness of the back surface of the nonwoven fabric is set to preferably 35 seconds or less, more preferably 30 seconds or less, and even more preferably 25 seconds or less, the air inside the separation membrane support can be quickly discharged during the production of the separation membrane. It is possible to suppress a partial decrease in film peeling strength and to suppress the occurrence of film forming defects such as pinholes.
  • thermocompression bonding for integrating the nonwoven fabric
  • a method of integrating the nonwoven fabric by thermocompression bonding with a pair of upper and lower flat rolls Is preferably used.
  • a pair of upper and lower flat rolls it is preferable to use a metal roll and an elastic roll as a pair, and to make the surface in contact with the elastic roll the back of the nonwoven fabric.
  • setting the hardness (Shore D) of the elastic roll to 70 to 99 is also a preferable mode in order to make the Beck smoothness of the back surface of the nonwoven fabric 5 to 35 seconds.
  • the spunbond method as a method for producing a nonwoven fabric, a molten thermoplastic polymer is extruded from a nozzle, sucked and stretched with a high-speed suction gas, spun, and then collected on a moving conveyor. It is possible to produce a long-fiber non-woven fabric by integrating it by forming a web and further continuously applying thermocompression bonding or the like.
  • the spinning speed is preferably 2000 m / min or more in order to highly orientate and crystallize the fibers constituting the fiber web. Preferably it is 3000 m / min or more, More preferably, it is 4000 m / min or more.
  • the thermoplastic polymer is stretched into ultrafine fibers by spraying a heated high-speed gas fluid on the molten thermoplastic polymer, and the long fiber nonwoven fabric is collected by collecting. Can be manufactured. Moreover, if it is a short fiber nonwoven fabric, the method of cut
  • the laminated body of the nonwoven fabric mentioned above for example, in the case of the manufacturing method of the laminated body which consists of two layers of nonwoven fabrics, after the two layers of the temporarily bonded nonwoven fabric obtained with one pair of rolls are overlapped A method of integrating by thermocompression bonding can be preferably used.
  • a method for producing a laminate having a three-layer structure in which a meltblown nonwoven fabric is disposed between two layers of spunbond nonwoven fabric a separate line is provided between two layers of temporarily bonded spunbond nonwoven fabric obtained by a pair of rolls.
  • melt blown nonwoven fabric manufactured in step 1 After the melt blown nonwoven fabric manufactured in step 1 is stacked, it is extruded from the spunbond nozzle, meltblown nozzle, and spunbond nozzle arranged on the top of the collection conveyor.
  • a method of collecting, laminating and thermocompression bonding the fiberized webs in order can be preferably used.
  • a method of stacking a plurality of wound nonwoven fabrics and then integrating them by thermocompression bonding can be preferably used.
  • thermocompression bonding for integrating the nonwoven fabric
  • the dimensional change during the separation membrane manufacturing process is small, the film forming property is good when the separation membrane is formed, and the mechanical strength and durability are improved.
  • a method of integrating by uniformly thermocompressing the entire nonwoven fabric with a pair of upper and lower flat rolls in that the surface is smooth and mechanical strength is excellent. It can be preferably used.
  • This flat roll is a metal roll or elastic roll with no irregularities on the surface of the roll, and a pair of metal roll and metal roll or a pair of metal roll and elastic roll is used. Can do.
  • the membrane peel strength of the separation membrane can be improved when used as a separation membrane support.
  • a method of thermocompression bonding a nonwoven fabric with a heated metal roll and an elastic roll is preferably used.
  • the membrane peel strength of the separation membrane is improved, and over-penetration of the polymer solution cast on the support during production of the separation membrane can be suppressed, so that the surface in contact with the non-woven metal roll is supported on the separation membrane.
  • the surface in contact with the elastic roll is preferably used as the back surface of the separation membrane support for the film-forming surface of the body.
  • the elastic roll is a roll made of a material having elasticity compared to a metal roll.
  • a material of the elastic roll so-called paper rolls such as paper, cotton, and aramid paper, urethane-based resins, epoxy-based resins, silicon-based resins, polyester-based resins, hard rubbers, and resin rolls made of a mixture of these Is mentioned.
  • the hardness (Shore D) of the elastic roll is preferably 70 to 99.
  • the separation membrane support The polymer solution that has improved the smoothness of the back surface of the polymer, and has suppressed the excessive permeation of the coagulation liquid mainly composed of water from the back surface of the separation membrane support to the inside during the production of the separation membrane. Can be solidified after sufficiently penetrating the inside of the support, and the separation strength of the formed separation membrane can be improved.
  • the hardness (Shore D) of the elastic roll is preferably 99 or less, more preferably 95 or less, and even more preferably 91 or less.
  • a combination of metal / elastic rolls in a manufacturing process is used continuously or discontinuously.
  • a three-roll method such as a method, elasticity / metal / elastic roll, elasticity / metal / metal roll, metal / elastic / metal roll, or the like can also be preferably used.
  • heat and pressure can be applied twice to the nonwoven fabric, making it easy to control the properties of the nonwoven fabric and increasing the production speed.
  • Control the surface properties of the front and back surfaces of the nonwoven fabric because the elastic roll contact surface is easy to reverse, for example, the lower side of the first set of two rolls is an elastic roll and the upper side of the second set of two rolls is an elastic roll. If it becomes easier.
  • the nonwoven fabric obtained by thermocompression bonding between the elastic 1 / metal / elastic 2 roll elastic 1 / metal roll is folded and further thermocompression bonded between the metal / elastic 2 roll 2
  • Heat and pressure can be applied twice to the nonwoven fabric in the same manner as the present roll ⁇ 2 set method, and the facility cost can be suppressed and the space can be saved as compared with the continuous two roll ⁇ 2 set method.
  • the hardness (Shore D) of the nonwoven fabric, the elastic roll contacting the first stage, and the elastic roll contacting the second stage may be changed.
  • the surface temperature of the metal roll is preferably 150 to 210 ° C.
  • the surface temperature of the metal roll preferably 150 ° C. or higher, more preferably 170 ° C. or higher, the fibers constituting the nonwoven fabric are firmly bonded to each other, and the nonwoven fabric has high mechanical strength by increasing the density. A separation membrane support can be obtained.
  • the surface temperature of the metal roll is preferably 210 ° C. or lower, more preferably 190 ° C. or lower, excessive fusion of the nonwoven fabric surface fibers can be suppressed, and the polymer solution can easily penetrate. A separation membrane support excellent in membrane peel strength can be obtained.
  • the surface temperature of the metal roll is preferably 210 ° C. or lower, more preferably 190 ° C. or lower.
  • the nonwoven fabric can be sufficiently cooled and solidified by the cooling roll, and the elongation and distortion due to the longitudinal tension applied to the nonwoven fabric before winding can be suppressed.
  • the surface temperature of the metal roll is preferably 20 to 80 ° C. lower than the melting point of the polymer constituting at least the surface of the fibers constituting the nonwoven fabric. If the surface temperature of the metal roll is 20 ° C. or more lower than the melting point of the polymer constituting at least the surface of the fibers constituting the nonwoven fabric, excessive fusion of the nonwoven fabric surface fibers can be suppressed. A separation membrane support having excellent membrane peel strength can be obtained because the solution can easily penetrate.
  • the fiber constituting the nonwoven fabric by making the difference between the surface temperature of the metal roll and the melting point of the polymer constituting at least the surface of the fiber constituting the nonwoven fabric preferably 80 ° C. or lower, more preferably 40 ° C. or lower.
  • a separation membrane support excellent in mechanical strength can be obtained by firmly bonding together and densifying the non-woven fabric, and the dimensional change during the separation membrane production process is small, and the polymer solution It is possible to obtain a good film forming property with little over-permeation at the time of casting.
  • a temperature difference is provided between the metal roll and the elastic roll so that the surface temperature of the elastic roll is 10 to 120 ° C. lower than the surface temperature of the metal roll.
  • an induction heat generation method, a heat medium circulation method, or the like can be preferably used, but since a separation membrane support excellent in uniformity can be obtained, the temperature difference in the nonwoven fabric width direction becomes a central value. On the other hand, it is preferably within ⁇ 3 ° C., more preferably within ⁇ 2 ° C.
  • a heating method for the elastic roll As a heating method for the elastic roll, a contact heating method that is heated by contact with a metal roll heated during pressurization, or a non-contact heating method that uses an infrared heater or the like that can more precisely control the surface temperature of the elastic roll. Etc. can be preferably used.
  • the temperature difference in the nonwoven fabric width direction of the elastic roll is preferably within ⁇ 10 ° C., more preferably within ⁇ 5 ° C. with respect to the center value.
  • an infrared heater or the like may be divided and installed in the width direction and the respective outputs may be adjusted.
  • the linear pressure of the flat roll is preferably 196 to 4900 N / cm.
  • the linear pressure of the flat roll is preferably 196 N / cm or more, more preferably 490 N / cm or more, and even more preferably 980 N / cm or more, the fibers constituting the nonwoven fabric are firmly bonded to each other, and the nonwoven fabric has a high density. Therefore, a separation membrane support having excellent mechanical strength can be obtained, and the dimensional change during the separation membrane production process is small, and there is little over-permeation during casting of the polymer solution. A film forming property can be obtained.
  • the linear pressure of the flat roll is preferably 4900 N / cm or less, excessive fusion of the nonwoven fabric surface fibers can be suppressed, and the penetration of the polymer solution into the nonwoven fabric is not hindered. A separation membrane support excellent in peel strength can be obtained.
  • the temperature of the cooling roll is preferably 20 to 100 ° C.
  • the temperature of the cooling roll is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, more preferably 30 ° C. or higher, and even more preferably 40 ° C. or higher. Distortion caused by uniform quenching can be suppressed.
  • the temperature of the cooling roll is preferably 100 ° C. or lower, more preferably 90 ° C.
  • the contact time between the nonwoven fabric and the cooling roll at this time is preferably 0.5 to 2.0 seconds.
  • the contact time between the nonwoven fabric and the cooling roll is preferably 0.5 seconds or more, more preferably 0.7 seconds or more, and even more preferably 0.9 seconds or more. Elongation and distortion due to the longitudinal tension applied to the nonwoven fabric can be suppressed.
  • the contact time between the nonwoven fabric and the cooling roll is preferably 2.0 seconds or less, more preferably 1.9 seconds or less, and even more preferably 1.8 seconds or less. The roll diameter is not excessively increased, and the production cost of the nonwoven fabric can be suppressed.
  • the speed ratio of the thermocompression-bonding roll such as a pair of upper and lower flat rolls and the cooling roll is arbitrarily changed is also a preferable aspect as the method for producing the separation membrane support of the present invention.
  • the speed ratio of the cooling roll to the speed of the thermocompression-bonding roll is preferably 0.98 to 1.02.
  • the speed ratio of the cooling roll to the speed of the thermocompression-bonding roll preferably 0.98 or more, more preferably 0.99 or more, the nonwoven fabric does not loosen or wind around the thermocompression-bonding roll after thermocompression bonding.
  • a nonwoven fabric can be produced stably.
  • the speed ratio of the cooling roll to the speed of the thermocompression-bonding roll preferably 1.02 or less, more preferably 1.01 or less, the elongation and distortion in the length direction of the thermocompressed nonwoven fabric are suppressed.
  • the boiling water shrinkage in the length direction (longitudinal direction) of the nonwoven fabric can be made 2.0% or less, and the dimensional change (shrinkage) in the length direction during the separation membrane manufacturing process is small, so the yield is high.
  • a separation membrane can be stably produced, and furthermore, the adhesion to the separation membrane fixed on the separation membrane support can be maintained, whereby a separation membrane having high membrane peeling strength can be obtained.
  • thermocompression bonding it is preferable that two to five laminated nonwoven fabric layers are integrated by thermocompression bonding. If the number of laminated layers is two or more, the texture is improved as compared with a single layer, and sufficient uniformity can be obtained. Moreover, if the number of laminated layers is 5 or less, it is possible to suppress wrinkling during lamination and to suppress delamination between layers.
  • thermocompression bonding method for a spunbonded nonwoven fabric a two-step adhesion method can be adopted in order to control the properties of the nonwoven fabric more precisely, rather than thermocompression bonding the nonwoven fabric with only a pair of flat rolls. . That is, the nonwoven fabric is preliminarily thermocompression bonded between a pair of flat rolls, or is preliminarily thermocompression bonded between a single flat roll and a collection conveyor used for collecting fiber webs to obtain a temporarily bonded nonwoven fabric.
  • a two-step bonding method in which a nonwoven fabric in a continuous process or a temporarily bonded state is wound up and then thermally bonded again between flat rolls can be preferably used.
  • the nonwoven fabric can be densified at the time of the second-stage thermocompression bonding. 3 is preferable.
  • the temperature of the flat roll used for the first stage pre-thermocompression bonding is preferably 20 to 120 ° C. lower than the melting point of the fibers constituting the nonwoven fabric, and the linear pressure is preferably 49 to 686 N / cm.
  • the separation membrane of the present invention is a separation membrane formed by forming a membrane having a separation function on the above-mentioned separation membrane support.
  • separation membranes include microfiltration membranes, ultrafiltration membranes, semiconductor manufacturing water, boiler water, medical water, or laboratory pure water used for water treatment in water purification plants and the production of industrial process water.
  • semi-permeable membranes such as nanofiltration membranes and reverse osmosis membranes used for seawater desalination treatment.
  • a method for producing the separation membrane a method of forming a membrane having a separation function by casting a polymer solution on at least one surface of the above-mentioned separation membrane support is preferably used.
  • the membrane having a separation function may be a composite membrane including a support layer and a semipermeable membrane layer, and the composite membrane may be laminated on at least one surface of the separation membrane support. This is a preferred form.
  • the polymer solution for casting on the separation membrane support of the present invention includes those having a separation function when formed into a membrane, for example, polyarylethersulfone such as polysulfone or polyethersulfone, polyimide, polyfluoride.
  • a solution of vinylidene chloride or cellulose acetate is preferably used.
  • a solution of polysulfone and polyarylethersulfone is preferably used in terms of chemical, mechanical and thermal stability.
  • the solvent can be appropriately selected according to the film-forming substance.
  • a semipermeable membrane when the separation membrane is a composite membrane comprising a support layer and a semipermeable membrane layer, a crosslinked polyamide membrane obtained by polycondensation of a polyfunctional acid halide and a polyfunctional amine is preferably used.
  • the separation membrane of the present invention preferably has a membrane peel strength of 20 to 75 cN / 15 mm.
  • the membrane peel strength is preferably 20 cN / 15 mm or more, more preferably 30 cN / 15 mm or more, and even more preferably 35 cN / 15 mm or more, fluctuations in operating pressure when used as a fluid separation element, or separation membrane cleaning Therefore, the separation membrane can be prevented from peeling off from the support by a so-called backwashing operation.
  • the membrane peel strength is preferably 75 cN / 15 mm or less, more preferably 70 cN / 15 mm or less, and even more preferably 65 cN / 15 mm or less, thereby suppressing excessive consumption of the polymer solution during the production of the separation membrane.
  • the membrane peel strength when the separation membrane is a composite membrane including a support layer and a semipermeable membrane layer is the peel strength between the support layer and the separation membrane support that are directly bonded to the separation membrane support. That is.
  • the fluid separation element of the present invention is, for example, a fluid separation element in which the above separation membrane is housed in a casing for easy handling when incorporated in a seawater desalination apparatus.
  • Examples of the form include flat membrane plate frame type, pleat type, spiral type and the like, and in particular, the separation membrane is spiral around the water collecting pipe together with the permeate flow channel material and the supply liquid flow channel material.
  • a spiral type wound around is preferably used.
  • a plurality of fluid separation elements can be connected in series or in parallel to form a separation membrane unit.
  • Melting point (° C) Using a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd., measurement was performed under the condition of a heating rate of 20 ° C./min, and the temperature giving an extreme value in the obtained melting endotherm curve was defined as the melting point. Further, in the differential scanning calorimeter, for a resin whose melting endotherm curve does not show an extreme value, the resin was heated on a hot plate, and the temperature at which the resin was completely melted by microscopic observation was taken as the melting point.
  • Intrinsic viscosity IV The intrinsic viscosity IV of the polyethylene terephthalate resin was measured by the following method. 8 g of a sample was dissolved in 100 ml of orthochlorophenol, and the relative viscosity ⁇ r was determined by the following formula using an Ostwald viscometer at a temperature of 25 ° C.
  • viscosity of polymer solution
  • ⁇ 0 viscosity of orthochlorophenol
  • t drop time of solution (seconds)
  • d density of the solution (g / cm 3 )
  • t 0 Fall time of orthochlorophenol (seconds)
  • d Orthochlorophenol density (g / cm 3 )
  • IV 0.0242 ⁇ r +0.2634
  • Non-woven fabric thickness (mm) Based on 5.1 of JIS L 1906: 2000 “Testing method for general long-fiber nonwoven fabric”, a pressurizer having a diameter of 10 mm is used, and the thickness at 10 points is equally spaced per 1 m in the width direction of the nonwoven fabric with a load of 10 kPa. Measured in units of 0.01 mm and rounded off to the third decimal place.
  • L1 and L2 are as follows. L1: Total length of three wires before immersion (total of four samples) (cm) L2: Total length of three wires after immersion (total of four samples) (cm)
  • Nonwoven fabric water absorption time (seconds) As the hydrophilicity of the nonwoven fabric, the water absorption time was measured based on 7.1 (water absorption rate method) 7.1.1 (dropping method) of JIS L 1907: 2010 “Water absorption test method for textile products”. That is, five 20 cm ⁇ 20 cm non-woven fabrics were collected, and the collected samples were fixed to a holding frame having a diameter of 15 cm and a height of 1 cm. The tip of the buret was placed above the fixed sample so that the distance from the sample surface was 1 cm, and one drop of water was dropped from the buret.
  • the time from when the water droplet reached the sample surface until the specular reflection disappeared and only the moisture remained as the sample absorbed the water droplet was measured in units of 1 second using a stopwatch.
  • the time was measured for the front and back surfaces of each of the five samples, and the value obtained by rounding off the second decimal place of the average value of the obtained values was the water absorption time of the front and back surfaces of the nonwoven fabric, respectively, and less than 15 seconds.
  • the case was hydrophilic and the case of 15 seconds or longer was not hydrophilic.
  • the film-forming surface was the front surface
  • the non-film-forming surface was the back surface.
  • Beck smoothness of non-woven fabric (second) Using a Beck smoothness tester, five points were measured for the front and back surfaces of the nonwoven fabric based on JIS P 8119: 1998 “Paper and paperboard—Smoothness test method using Beck smoothness tester”. A value obtained by rounding off the first decimal place of the average value of 5 points was defined as the Beck smoothness of the front surface and the back surface.
  • the film-forming surface was the front surface
  • the non-film-forming surface was the back surface.
  • Separation amount of separation membrane ( ⁇ m) A spiral-type fluid separation element (element) having an effective membrane area of 40 m 2 using a supply liquid channel material made of a polypropylene net, a reverse osmosis membrane for seawater desalination, a pressure-resistant sheet, and the following permeate channel material Produced.
  • Permeate channel material A polyester single tricot (double denby knitting) having a groove width of 200 ⁇ m, a groove depth of 150 ⁇ m, a groove density of 40 lines / inch, and a thickness of 200 ⁇ m was used.
  • the manufactured fluid separation element was subjected to a durability test under conditions of a reverse osmosis pressure of 7 MPa, a seawater salt concentration of 3 wt%, and an operating temperature of 40 ° C., and the fluid separation element was disassembled after 1000 hours of operation. Then, the adhesion state between the membrane and the support was observed, and the amount of the separation membrane dropped into the permeate channel material was measured. The amount of sagging is measured by taking 500 to 3000 times photographs with a scanning electron microscope (unit: ⁇ m) for any three cross-sections of the separation membrane in one fluid separation element. Calculated by rounding off the first place. The direction in which the separation membrane support and the permeate flow path material overlap each other was such that the nonwoven fabric width direction (lateral direction) of the separation membrane support was orthogonal to the groove direction of the permeate flow path material.
  • Example 1 A polyethylene terephthalate resin having an intrinsic viscosity of IV 0.65, a melting point of 260 ° C., and a titanium oxide content of 0.3% by mass, which was dried to a moisture content of 10 ppm, was used as a core component.
  • Sheath component As a sheath component, a copolymerized polyethylene terephthalate resin having an intrinsic viscosity of IV0.66, an isophthalic acid copolymerization ratio of 11 mol%, a melting point of 230 ° C., and a titanium oxide content of 0.2 mass%, dried to a moisture content of 10 ppm. Using.
  • the core component and the sheath component are melted at temperatures of 295 ° C. and 270 ° C., respectively, and are combined into a concentric core-sheath type (circular cross-section) at a base temperature of 300 ° C. and a core / sheath mass ratio of 80/20.
  • the ejector was spun at a spinning speed of 4400 m / min and collected as a fiber web on a moving net conveyor.
  • Preliminary thermocompression bonding The collected fiber web is passed between a pair of upper and lower metal flat rolls, each flat roll surface temperature is 140 ° C., and pre-thermocompression bonding is performed at a linear pressure of 588 N / cm.
  • the fiber diameter is 10 ⁇ m and the basis weight is 38 g /
  • the laminated nonwoven fabric (1) is folded and thermocompression-bonded between the upper and middle rolls, and the laminated nonwoven fabric (1) subjected to thermocompression bonding is placed on a pair of upper and lower metal cooling rolls (5, 6) having a surface temperature of 60 ° C.
  • the surface (rear surface) (7) in contact with the elastic roll (2, 4) of the laminated non-woven fabric (1) that has been thermocompression bonded to the upper roll (5) is drawn as 0.
  • the surface (surface) (8) of the laminated nonwoven fabric (1) that was brought into contact with the lower roll (6) for 5 seconds and then contacted with the metal roll (3) of thermocompression bonding was set to 0. 0.
  • a spunbonded nonwoven fabric having a time of 60 seconds or longer and a back surface smoothness of 15 seconds was produced to obtain a separation membrane support.
  • the surface temperature of the three flat rolls at this time was 100 ° C. for the upper roll (2), 180 ° C. for the middle roll (3) and 130 ° C. for the lower roll (4), and the linear pressure was 1715 N / cm.
  • the speed ratio of the cooling roll (5, 6) to the three flat rolls (2, 3, 4) was 1.00.
  • Example 2 In laminated thermocompression bonding, the basis weight is 76 g / m 2 , the thickness is 0.09 mm, and the boiling in the length direction is the same as in Example 1 except that the speed ratio of the cooling roll to the three flat rolls is 1.02.
  • a spunbonded nonwoven fabric having a water shrinkage of 1.0%, a water absorption time of 60 seconds or more, and a back-bekk smoothness of 14 seconds was produced to obtain a separation membrane support, and Example 1 was applied to the separation membrane support.
  • a polysulfone membrane was produced. At this time, there was no see-through of the casting solution, the separation membrane forming length / support unwinding length was 0.995, and the separation strength of the produced separation membrane was 44 cN / 15 mm.
  • Example 3 In laminated thermocompression bonding, the basis weight is 76 g / m 2 and the thickness is the same as in Example 1 except that the surface temperature of the cooling roll is 90 ° C. and the speed ratio of the cooling roll to the three flat rolls is 1.02.
  • a spunbond nonwoven fabric having a boiling water shrinkage of 0.09 mm, a lengthwise boiling water shrinkage of 1.8%, a water absorption time of 60 seconds or more, and a back surface smoothness of 13 seconds is obtained, and a separation membrane support is obtained.
  • a polysulfone membrane was produced on the separation membrane support in the same manner as in Example 1.
  • Example 4 Paper making nonwoven fabric
  • the papermaking nonwoven fabric (b) and the papermaking nonwoven fabric (c) prepared as described above are overlapped one by one so that the papermaking nonwoven fabric (b) is on top, and as shown in FIG. ), And the bottom of the elastic roll (9) made of cotton paper having a hardness (Shore D) of 85.
  • the laminated nonwoven fabric (1) which is thermocompression-bonded between a pair of two flat rolls and subjected to thermocompression bonding, has a surface temperature. Is passed through a pair of upper and lower metal cooling rolls (5, 6) at 90 ° C. in an “S” shape. First, the elastic roll (1) of the laminated nonwoven fabric (1) that is thermocompression-bonded to the upper roll (5).
  • the surface (back surface) (7) contacted with 9) was contacted for 0.3 seconds, and then the lower roll (6) was contacted with the metal roll (3) of the laminated nonwoven fabric (1) that was thermocompression bonded.
  • surface (surface) (8) contacting 0.3 seconds (i.e., by contacting a total 0.6 seconds cooling roll.), a basis weight of 72 g / m 2, a thickness Produced a laminated paper making nonwoven fabric with 0.09mm, boiling water shrinkage in the length direction of 1.1%, residual oil amount of 0.04%, water absorption time of 18 seconds, back surface smoothness of 18 seconds, separation membrane A support was obtained.
  • the surface temperature of the two flat rolls at this time was 230 ° C. for the upper roll (3), 120 ° C.
  • Example 5 (Spinning and fiber web collection) A polyethylene terephthalate resin dried to a moisture content of 10 ppm with an intrinsic viscosity IV of 0.65, a melting point of 260 ° C., and containing 0.3% by mass of titanium oxide is melted at a temperature of 295 ° C. After spinning from the hole, spinning with a rectangular ejector having slits in the width direction of the nonwoven fabric at a spinning speed of 4400 m / min. I collected it. The discharge rate was adjusted so that the basis weight of the spunbond nonwoven fabric layer (d) was 30 g / m 2 .
  • melt blown nonwoven fabric layer (e) was collected on the spunbonded nonwoven fabric layer (d) on the moving net conveyor by spinning by spraying heated air of 1000 Nm 3 / hr / m. The discharge rate was adjusted so that the basis weight of the melt blown nonwoven fabric layer (e) was 10 g / m 2 .
  • the spunbond nonwoven fabric layer (f) was collected on the melt blown nonwoven fabric layer (e) under the same conditions as the spunbond nonwoven fabric layer (d). The discharge rate was adjusted so that the basis weight of the spunbond nonwoven fabric layer (f) was 30 g / m 2 .
  • the collected laminated fiber web is passed between a metal flat roll and a net conveyor, and the surface temperature of the flat roll is 180 ° C., the linear pressure is 294 N / cm, preliminarily thermocompression bonded, the basis weight is 70 g / m 2 , and the thickness is A 0.35 mm temporarily bonded spunbond / meltblown / spunbond composite nonwoven fabric was produced.
  • the composite nonwoven fabric in a temporarily bonded state is formed of a pair of elastic rolls (9) having a metal roll (3) on the top and a hardness (Shore D) 75 on the bottom. Pass the thermocompression bonding between the flat rolls and pass the thermocompression-bonded laminated nonwoven fabric (1) through a pair of upper and lower metal cooling rolls (5, 6) with a surface temperature of 40 ° C so as to draw a letter “S”.
  • the upper roll (5) is brought into contact with the surface (rear surface) (7) of the laminated nonwoven fabric (1) that has been thermocompression bonded to the elastic roll (9) for 0.5 seconds, and then the lower roll ( 6) is brought into contact with the surface (surface) (8) of the laminated nonwoven fabric (1) that has been brought into contact with the metal roll (3) for 0.5 second (that is, in contact with the cooling roll for a total of 1.0 second).
  • a basis weight of 70 g / m 2 a thickness of 0.09 mm, a boiling water shrinkage of 1.0% in the length direction, water absorption time is 60 seconds or more, the rear surface of the Beck smoothness of 20 seconds
  • the surface temperature of the two flat rolls at this time was 230 ° C. for the upper roll (3), 130 ° C. for the lower roll (9), and the linear pressure was 1519 N / cm.
  • the speed ratio of the cooling roll (5, 6) to the two flat rolls (3, 9) was 1.01.
  • Example 6 Except that the sheath component was a polybutylene terephthalate resin dried at a melting point of 220 ° C. and a moisture content of 10 ppm, the basis weight was 76 g / m 2 , the thickness was 0.09 mm, and the boiling water in the length direction was the same as in Example 1. A spunbonded nonwoven fabric having a shrinkage rate of 0.8%, a water absorption time of 60 seconds or more, and a back-bekk smoothness of 17 seconds is produced to obtain a separation membrane support, and the separation membrane support is the same as in Example 1. Thus, a polysulfone membrane was produced. At this time, there was no see-through of the casting solution, the separation membrane formation length / support unwinding length was 0.992, and the separation strength of the produced separation membrane was 34 cN / 15 mm. The results are shown in Tables 1 and 2.
  • Example 7 In laminated thermocompression bonding, the basis weight is 76 g / m 2 , the thickness is 0.09 mm, and the boiling water shrinks in the length direction in the same manner as in Example 1 except that the temperature of the metal roll of the three flat rolls is 190 ° C.
  • a spunbonded nonwoven fabric having a rate of 0.5%, a water absorption time of 60 seconds or more, and a back surface smoothness of 15 seconds is manufactured to obtain a separation membrane support, and the separation membrane support is the same as in Example 1.
  • a polysulfone membrane was prepared. At this time, there was no see-through of the casting solution, the separation membrane formation length / support unwinding length was 0.996, and the membrane separation strength of the produced separation membrane was 51 cN / 15 mm.
  • Example 8 In laminated thermocompression bonding, the basis weight is 76 g / m 2 , the thickness is 0.09 mm, and the boiling water shrinks in the length direction in the same manner as in Example 1 except that the temperature of the metal roll of the three flat rolls is 200 ° C.
  • a spunbonded nonwoven fabric having a rate of 0.6%, a water absorption time of 60 seconds or more, and a back-bekk smoothness of 15 seconds was produced to obtain a separation membrane support, and the separation membrane support was treated in the same manner as in Example 1.
  • a polysulfone membrane was prepared. At this time, there was no see-through of the casting solution, the separation membrane formation length / support unwinding length was 0.994, and the separation strength of the produced separation membrane was 42 cN / 15 mm.
  • [Comparative Example 2] Paper making nonwoven fabric
  • Polyethylene terephthalate resin having a melting point of 260 ° C., a fiber diameter of 11 ⁇ m, a basis weight of 37 g / m 2 and a thickness of 0.16 mm, and a polyethylene terephthalate resin having a melting point of 260 ° C.
  • a papermaking nonwoven fabric (h) having a fiber diameter of 10 ⁇ m, a basis weight of 37 g / m 2 and a thickness of 0.17 mm was prepared.
  • the prepared papermaking nonwoven fabric (g) and the papermaking nonwoven fabric (h) are superposed one by one so that the papermaking nonwoven fabric (g) is on top, and the top is a metal roll (3) as shown in FIG.
  • the laminated nonwoven fabric (1) which is thermocompression bonded between a pair of two flat rolls of elastic roll (9) made of cotton paper having a hardness (Shore D) 85 below, has a surface temperature of 110 ° C. It passes through a pair of upper and lower metal cooling rolls (5, 6) so as to draw a letter “S”, and first contacts the upper roll (5) with the elastic roll (9) of the laminated nonwoven fabric (1) that is thermocompression bonded.
  • the contacted surface (back surface) (7) is contacted for 0.3 seconds, and then the surface (front surface) contacted with the metal roll (3) of the laminated nonwoven fabric (1) which is thermocompression bonded to the lower roll (6).
  • (8) is contacted 0.3 seconds (i.e., by contacting a total 0.6 seconds cooling roll.), a basis weight of 74 g / m 2, thickness 0.09mm
  • a laminated papermaking nonwoven fabric having a boiling water shrinkage in the length direction of 2.4%, a remaining amount of oil of 0.1%, a water absorption time of 16 seconds, and a back surface Bekk smoothness of 18 seconds is produced. Obtained.
  • the surface temperature of the two flat rolls at this time was 235 ° C. for the upper roll (3), 130 ° C.
  • the characteristics of the obtained separation membrane support and separation membrane are as shown in Tables 1 and 2, and are described in paragraph [0079] using the separation membranes of Comparative Example 1, Comparative Example 2, and Comparative Example 3.
  • the workability was good.
  • partial film peeling was observed.
  • the drop amounts of the separation membranes of Comparative Examples 1, 2, and 3 into the permeate channel material were 39 ⁇ m, 48 ⁇ m, and 38 ⁇ m, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

 各種の精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜等の分離膜を支持する際の高い歩留まりで安定して優れた製膜性と、流体分離素子製造時に優れた加工性を有し、優れた機械的強度を有する、不織布からなる分離膜支持体を提供する。またこの分離膜支持体を用いた高い膜剥離強度を有する分離膜および流体分離素子を提供する。 分離膜支持体は不織布からなる。不織布は、長さ方向(縦方向)の、沸騰水中で5分間処理した沸騰水収縮率が-0.2~2.0%である。分離膜は、この分離膜支持体の表面上に、分離機能を有する膜を形成してなる。流体分離素子は、この分離膜を構成要素として含む。

Description

分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子
 本発明は、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜等の分離膜を支持するための不織布からなる分離膜支持体とその製造方法に関するものである。また、本発明は、その分離膜支持体を用いた分離膜および流体分離素子に関するものである。
 近年の水処理には、多くの場合において膜技術が適用されている。例えば、浄水場での水処理には、精密ろ過膜や限外ろ過膜が用いられており、海水の淡水化には、逆浸透膜が用いられている。また、半導体製造用水、ボイラー用水、医療用水、ラボ用純水等の処理には、逆浸透膜やナノろ過膜が用いられている。さらに、下廃水の処理には、精密ろ過膜や限外ろ過膜を用いた膜分離活性汚泥法も適用されている。
 これらの分離膜は、その形状から平膜と中空糸膜とに大別される。これらの分離膜のうち、主に合成重合体から形成される平膜は、分離機能を有する膜単体では機械的強度に劣るため、一般に不織布や織布等の支持体と一体化して使用されることが多い。
 一般に、分離機能を有する膜と支持体は、不織布や織布等の支持体上に、分離機能を有する膜の原料となる高分子重合体の溶液を流延して固着させる方法により一体化される。また、逆浸透膜等の半透膜においては、不織布や織布等の支持体上に高分子重合体の溶液を流延し支持層を形成させた後に、その支持層上に半透膜を形成させる方法等により一体化される。
 したがって支持体となる不織布や織布等には、高分子重合体の溶液を流延した際にそれが過浸透により裏抜けしたり、膜物質が剥離したり、さらには支持体の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりすることがないような、優れた製膜性が要求される。また、高い歩留まりで安定して分離膜を製造するために、分離膜製造工程中で支持体にかかる熱や張力に対し、変形しにくくするための高い寸法安定性も要求される。
 また、分離膜の取り扱いを容易にするための流体分離素子の形態としては、平膜のプレートフレーム型、プリーツ型、スパイラル型等のものが挙げられる。例えば、プレートフレーム型であれば、所定の大きさにカットした分離膜をフレームに取り付ける工程が必要であり、またスパイラル型であれば、所定の大きさにカットした分離膜同士の外周部を貼り合わせて封筒状に加工し集水管の周りに巻き付ける工程が必要である。そのため、分離膜支持体には、これらの工程で膜が折れ曲がったり丸まったりすることがないような、優れた加工性が要求される。
 さらに、高圧下で使用されることが多い逆浸透膜等の半透膜の場合は、特に、支持体には高い機械的強度が要求される。
 またさらに、海水淡水化等に使用される逆浸透複合膜の場合は、該逆浸透複合膜が組み込まれている海水淡水化装置を、ある一定の運転圧力で継続して連続運転をする場合もあれば、供給海水の水質や温度の変化や目標とする造水量の管理値の変動等に対応して、運転圧力をその都度変化させるような運転をする場合もある。実際には、後者のような運転が一般的であるが、その場合、逆浸透複合膜の厚さ方向に付与される運転圧力が変動することにより、逆浸透複合膜はその膜厚方向における伸縮動作を反復し、逆浸透複合膜の支持層と支持体が剥離することもある。また、装置停機時に透過水側から供給水側に正浸透が働き、支持層と支持体が互いに剥離することもある。そのため、分離膜支持体には分離膜を形成した際の高い剥離強度も要求される。
 従来、このような分離膜支持体として、太い繊維を使用した目開きおよび表面粗度の大きな表面層と、細い繊維を使用した目開きが小で緻密な構造を有する裏面層との二重構造を基本とした、多層構造体の不織布からなる分離膜支持体が提案されている(特許文献1参照。)。また、5%伸長時の縦方向(MD)と横方向(CD)の裂断長の平均値が4.0km以上であり、且つ通気度が0.2~10.0cc/cm・秒の不織布からなる半透膜支持体が提案されている(特許文献2参照。)。また、熱可塑性連続フィラメントから構成される長繊維不織布が2~5層に積層されてなる分離膜支持体が提案されている(特許文献3参照。)。また、ポリプロピレンを芯材としポリエチレンを鞘材とする複合繊維からなる不織布を熱処理した基材を用いてなる分離膜であって、110℃/5分の条件下における不織布の乾熱収縮率が縦/横共に0.5%以下である分離膜が提案されている(特許文献4参照。)。また、幅方向(横方向)の沸騰水収縮率が0.1~5.0%である不織布からなる分離膜支持体が提案されている(特許文献5参照。)。
 これらの文献には、分離膜製造時の製膜性や分離膜の耐久性および寸法安定性については提案や記載があり、また分離膜と支持体の剥離強度についても言及されている。
特公平4-21526号公報 特許第3153487号公報 特開2009-61373号公報 特開2001-17842号公報 特開2011-212602号公報
 しかしながら上記の従来技術では、高い歩留まりで安定して分離膜を製造するための、分離膜支持体の高い寸法安定性についての具体的な提案や記載はなかった。また、剥離強度を向上させるための分離膜支持体の特性や製造方法についての具体的な提案や記載もなかった。よって、このような分離膜支持体を用いた場合、高い歩留まりで安定して分離膜を製造することが難しく、また十分な剥離強度が得られず、使用中に分離膜や複合半透膜の支持層が分離膜支持体から剥離するという問題があった。
 そこで本発明の技術的課題は、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜等の分離膜を支持する際の高い歩留まりで安定して優れた製膜性と、流体分離素子製造時に優れた加工性を有することに加え、優れた機械的強度を有する不織布からなる分離膜支持体とその製造方法を提供することにある。
 本発明の他の技術的課題は、上記の分離膜支持体を用いた高い膜剥離強度を有する分離膜および流体分離素子を提供することにある。
 本発明は、上記の課題を解決せんとするものであり、本発明の分離膜支持体は、不織布からなる分離膜支持体であって、不織布の長さ方向(縦方向)の沸騰水中で5分間処理した沸騰水収縮率が-0.2~2.0%である不織布からなることを特徴とする。
 本発明の分離膜支持体の好ましい態様によれば、前記の不織布は、JIS L 1907:2010「繊維製品の吸水性試験方法」の、7.1(吸水速度法)の7.1.1(滴下法)に基づいて測定される吸水時間が15秒以上であり、親水性の低い不織布である。
 本発明の分離膜支持体の好ましい態様によれば、前記の不織布の裏面は、JIS P 8119:1998「紙及び板紙―ベック平滑度試験機による平滑度試験方法」に基づいて測定されるベック平滑度が5~35秒である。
 本発明の分離膜支持体の好ましい態様によれば、前記の不織布は、熱可塑性フィラメントから構成されたスパンボンド不織布である。
 本発明の分離膜支持体の好ましい態様によれば、前記の不織布は、ポリエステル系重合体からなる繊維から構成された不織布である。
 本発明の分離膜支持体は、特定の製法によるものに限定されないが、次に記載の本発明の製造方法により製造すると好ましい。
 即ち、本発明の分離膜支持体の製造方法は、不織布からなる分離膜支持体の製造方法であって、不織布を一体化するための熱圧着用ロールで不織布を熱圧着した後に、この不織布を冷却ロールに接触させ、この接触の際の熱圧着用ロールの速度に対する冷却ロールの速度比を0.98~1.02とすることを特徴とする。
 本発明の分離膜支持体の製造方法の好ましい態様によれば、前記の冷却ロールの表面温度は20~100℃である。
 また本発明の分離膜支持体の製造方法の好ましい態様によれば、前記の不織布と冷却ロールとの接触時間は0.5~2.0秒間である。
 本発明の分離膜は、前記の分離膜支持体の表面上に、分離機能を有する膜を形成してなる分離膜である。この分離膜の好ましい態様によれば、その膜剥離強度は20~75cN/15mmである。
 本発明の流体分離素子は、前記の分離膜を構成要素として含む流体分離素子である。
 本発明により、不織布からなる分離膜支持体であって、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜等の分離膜を支持する際の、流延した高分子重合体溶液が過浸透により裏抜けしたり、膜物質が剥離したり、ピンホール等の欠点が生じたりすることがない優れた製膜性と、流体分離素子製造時に膜が折れ曲がったり、丸まったりすることがないような優れた加工性を有することに加え、分離膜や流体分離素子として使用したときにかかる圧力等で変形したり、破断したりすることのない優れた機械的強度を有する不織布からなる分離膜支持体が得られる。
 また、本発明により、分離膜製造工程中の長さ方向の寸法変化が小さく、高い歩留まりで安定して分離膜を製造することが可能となり、さらに上記の分離膜支持体を用いた、使用中の圧力変動等による分離膜の分離膜支持体からの剥離を抑制できる、高い膜剥離強度を有する分離膜および流体分離素子を得ることが可能となる。
本発明の実施例の、分離膜支持体の積層熱圧着工程を説明する、概略フロー図である。 本発明の他の実施例の、分離膜支持体の積層熱圧着工程を説明する、概略フロー図である。
 本発明の分離膜支持体は、その表面上に分離機能を有する膜を形成させる分離膜支持体である。
 本発明の分離膜支持体は、不織布からなる。本発明において不織布を構成する繊維のポリマーとしては、例えば、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、あるいはこれらの混合物や共重合体等を挙げることができる。なかでもポリエステル系重合体が、より機械的強度や、耐熱性、耐水性、耐薬品性等の耐久性に優れた分離膜支持体を得ることができることから、好ましく用いられる。
 ポリエステル系重合体は、酸成分とアルコール成分からなるポリエステルである。酸成分としては、テレフタル酸、イソフタル酸、フタル酸等の芳香族カルボン酸、アジピン酸やセバシン酸等の脂肪族ジカルボン酸、あるいはシクロヘキサンカルボン酸等の脂環族ジカルボン酸等を用いることができる。また、アルコール成分としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等を用いることができる。
 ポリエステル系重合体の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート等、またこれらの共重合体を挙げることができる。
 また、生分解性樹脂も、用済み後の廃棄が容易であり環境負荷が小さいことから、不織布を構成する繊維のポリマーとして好ましく用いられる。生分解性樹脂としては、例えば、ポリ乳酸、ポリブチレンサクシネート、ポリカプロラクトン、ポリエチレンサクシネート、ポリグリコール酸、ポリヒドロキシブチレート等が挙げられる。なかでもポリ乳酸は、石油資源を枯渇させない植物由来の樹脂であり、力学特性や耐熱性も比較的高く、製造コストの低い生分解性樹脂であり好ましく用いられる。本発明で好ましく用いられるポリ乳酸としては、ポリ(D-乳酸)、ポリ(L-乳酸)、D-乳酸とL-乳酸との共重合体、あるいはこれらのブレンド体が挙げられる。
 また、本発明の分離膜支持体を構成する不織布を構成する繊維は、単一成分からなる繊維でも、複数成分からなる複合型繊維でも、複数種の繊維を混合したいわゆる混繊型でもよいが、本発明の分離膜支持体においては、高融点重合体の周りに当該高融点重合体の融点よりも低い融点を有する低融点重合体を配した複合型繊維が好ましく用いられる。かかる複合型繊維を用いることにより、熱圧着により不織布における繊維同士が強固に接着するため、不織布を分離膜支持体として使用した際、毛羽立ちによる高分子重合体溶液流延時の不均一化や、膜欠点を抑制することができる。また、上記の複合型繊維を用いる場合は、高融点重合体のみからなる繊維と低融点重合体のみからなる繊維を混合した混繊型に比べ、接着点の数も多くなるため、分離膜支持体として用いた際の機械的強度の向上につながる。
 高融点重合体と低融点重合体の融点差は、10~140℃であることが好ましい。融点差を好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上とすることにより、内部に配した高融点重合体の強度を損なうことなく、機械的強度の向上に資する熱接着性を得ることができる。一方、融点差を好ましくは140℃以下、より好ましくは120℃以下、さらに好ましくは100℃以下とすることにより、熱ロールを用いた熱圧着時に該ロールに低融点重合体成分が融着して生産性が低下することを抑制できる。
 高融点重合体の融点は、本発明の分離膜支持体上に分離膜を形成する際の製膜性が良好であり耐久性に優れる分離膜を得ることができる点から、160~320℃であることが好ましい。高融点重合体の融点を好ましくは160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上とすることにより、分離膜または流体分離素子製造時に熱が加わる工程を通過しても寸法安定性に優れる。一方、高融点重合体の融点を好ましくは320℃以下、より好ましくは300℃以下、さらに好ましくは280℃以下とすることにより、不織布製造時に溶融するための熱エネルギーを多大に消費し生産性が低下することを抑制できる。
 また、低融点重合体の融点は、120~250℃が好ましく、より好ましくは140~240℃であり、さらに好ましくは230~240℃である。低融点重合体の融点が120℃以上であれば、熱圧着した不織布が変形しにくく、巻取りまでに不織布にかかる長さ方向の張力による伸びや歪みを抑制することができる。
 また、高融点重合体および低融点重合体の組み合わせ(高融点重合体/低融点重合体)としては、例えば、ポリエチレンテレフタレート/ポリブチレンテレフタレート、ポリエチレンテレフタレート/ポリトリメチレンテレフタレート、ポリエチレンテレフタレート/ポリ乳酸、ポリエチレンテレフタレート/共重合ポリエチレンテレフタレート等を挙げることができる。また、上記の共重合ポリエチレンテレフタレートの共重合成分としては、イソフタル酸等が好ましく用いられる。
 複合型繊維における低融点重合体の占める割合は、分離膜支持体に適した不織布を得る点から10~70質量%であることが好ましい。低融点重合体の占める割合を好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上とすることにより、分離膜支持体としての使用に堪える熱接着性を得ることができる。一方、低融点重合体の占める割合を好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下とすることにより、高融点重合体が減少することにより繊維強度が低下することを抑制し、また熱ロールによる熱圧着時に当該ロールに低融点重合体成分が融着し生産性が低下することを抑制できる。
 不織布には、本発明の効果を損なわない範囲で、結晶核剤、艶消し剤、滑剤、顔料、防カビ剤、抗菌剤あるいは難燃剤等の添加剤を添加してもよい。なかでも、酸化チタン等の金属酸化物は繊維の表面摩擦を低減し繊維同士の融着を防ぐことで紡糸性を向上し、また不織布の熱ロールによる熱圧着成形の際、熱伝導性を増すことで不織布の接着性を向上させる効果があり、またエチレンビスステアリン酸アミド等の脂肪族ビスアミド、および/またはアルキル置換型の脂肪族モノアミドは熱ロールとウエブ間の離型性を増すことで接着安定性を向上させる効果がある。
 複合型繊維の複合形態としては、効率的に繊維同士の熱接着点を得られる点から、例えば、同心芯鞘型、偏心芯鞘型あるいは海島型等を挙げることができる。
 また、不織布を構成する繊維の横断面形状としては、円形断面、扁平断面、多角形断面、多葉断面、中空断面等を挙げることができる。
 なかでも、複合形態としては同心芯鞘型とし、繊維の横断面形状としては円形断面や扁平断面とすることが、熱圧着により繊維同士を強固に接着させることができ、さらには得られる分離膜支持体の厚さを低減し、流体分離素子ユニットあたりの分離膜面積を増大させることができる。
 不織布を構成する繊維の平均単繊維直径は、3~30μmであることが好ましい。繊維の平均単繊維直径を好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上とすることにより、不織布製造時に紡糸性が低下することが少なく、また分離膜支持体内部の空隙を維持できるため製膜時に流延させた高分子重合体溶液が分離膜支持体内部に速やかに浸透し、強固に接着することで膜剥離強度に優れた分離膜を得ることができる。一方、繊維の平均単繊維直径を好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下とすることにより、均一性に優れた不織布および分離膜支持体を得ることができ、また分離膜支持体を高密度化できるため高分子重合体溶液の流延時の過浸透等が少なく、良好な製膜性を得ることができる。
 本発明の分離膜支持体を構成する不織布としては、スパンボンド法によって製造したスパンボンド不織布が好ましく用いられる。熱可塑性フィラメントから構成された長繊維不織布であるスパンボンド不織布を用いることにより、短繊維不織布を用いたときに起こりやすい、毛羽立ちによって生じる高分子重合体溶液流延時の不均一化や、膜欠点を抑制することができる。また、スパンボンド不織布は機械的強度により優れていて、分離膜支持体としての使用における製膜性が良好であり、耐久性に優れる分離膜を得ることもできるからである。
 また、本発明の分離膜支持体を複数の不織布層からなる積層体とすることにより、より均一性に優れた分離膜支持体を得ることができ、さらに支持体の厚さ方向の密度分布の調整も容易にできる。積層体の態様としては、例えば、2層のスパンボンド不織布の積層体や、2層のスパンボンド不織布の層間にメルトブロー不織布を配した3層構造の積層体等を挙げることができ、少なくとも1層はスパンボンド不織布であることが好ましく、スパンボンド不織布のみからなることがより好ましい態様である。
 本発明の分離膜支持体を構成する不織布の目付は、20~150g/mであることが好ましい。目付を好ましくは20g/m以上、より好ましくは30g/m以上、さらに好ましくは40g/m以上とすることにより、高分子重合体溶液流延時の過浸透等が少なく良好な製膜性を得ることができ、寸法安定性にも優れ、高い膜剥離強度および機械的強度を有し耐久性に優れた分離膜を得ることができる。一方、目付を好ましくは150g/m以下、より好ましくは120g/m以下、さらに好ましくは90g/m以下とすることにより、分離膜の厚さを低減し、流体分離素子ユニットあたりの分離膜面積を増大させることができる。
 本発明の分離膜支持体を構成する不織布の厚さは、0.03~0.20mmであることが好ましい。不織布の厚さを好ましくは0.03mm以上、より好ましくは0.04mm以上、さらに好ましくは0.05mm以上とすることにより、高分子重合体溶液流延時の過浸透等が少なく良好な製膜性を得ることができ、また高い寸法安定性を有するため分離膜製造工程中の寸法変化が小さく、製膜後のカールや折れ曲がりを抑制し流体分離素子製造時の優れた加工性を得ることができ、高い膜剥離強度および機械的強度を有し耐久性に優れた分離膜を得ることができる。一方、不織布の厚さを好ましくは0.20mm以下、より好ましくは0.16mm以下、さらに好ましくは0.12mm以下とすることにより、分離膜の厚さを低減し、流体分離素子ユニットあたりの分離膜面積を増大させることができる。
 本発明の分離膜支持体を構成する不織布は、長さ方向(縦方向)の沸騰水収縮率が-0.2~2.0%であることが重要である。不織布の長さ方向(縦方向)の沸騰水収縮率を-0.2%以上、好ましくは-0.1%以上、より好ましくは0.0%以上とすることにより、分離膜製造工程中でかかる熱により分離膜支持体が伸びて弛むことを防ぎ、安定して分離膜を製造することができる。一方、不織布の長さ方向(縦方向)の沸騰水収縮率を2.0%以下、好ましくは1.0%以下、より好ましくは0.5%以下とすることにより、分離膜製造工程中の長さ方向の寸法変化(収縮)が小さいため、高い歩留まりで安定して分離膜を製造することが可能となり、さらに分離膜支持体上に固着した分離膜との接着性を維持できることにより、高い膜剥離強度を有する分離膜を得ることができる。
 本発明でいう沸騰水収縮率とは、不織布の任意の部分から縦25cm×横25cmのサンプルを4個採取し、幅方向(横方向)の3カ所に、それぞれ長さ方向へ20cmの長さを表す印を付け、沸騰水中に5分間浸漬してから取り出し、自然乾燥した後、4個のサンプルについて、印を付けた3カ所の長さを0.01cm単位まで測定して、寸法変化を収縮率として求めたものである。
 ここで不織布の長さ方向(縦方向)の沸騰水収縮率を-0.2~2.0%とするには、不織布を一体化するための熱圧着用ロールの後に冷却ロールを設け、表面温度が20~100℃の冷却ロールに0.5~2.0秒間接触させ、熱圧着用ロールの速度に対する冷却ロールの速度比を0.98~1.02とする、などが好ましい態様である。この熱圧着用ロールは例えば上下1対のフラットロール等が用いられる。またこの冷却ロールは例えば上下1対の金属製ロールに、「S」の字を描くように不織布を通す等の形態で用いられる。冷却ロールの表面温度を制御する方法としては、冷却ロール内部に冷却水を循環させる方法や、冷却ロール表面に冷却風を吹きつける方法などを用いることができるが、より均一に温度制御が可能なことから、冷却ロール内部に冷却水を循環させる方法がより好ましく用いられる。この熱圧着用ロールに対する上記の冷却ロールの速度比は、例えば熱圧着用ロールの速度を一定とし、冷却ロールの速度を調整することなどで任意に変更できる。
 本発明の分離膜支持体を構成する不織布は、親水性を有さないことが好ましい。分離膜支持体として親水性を有さない不織布を用いることにより、高い膜剥離強度を有する分離膜を得ることができる。そのメカニズムとしては、次のようなことを推測している。すなわち、分離膜と分離膜支持体は、分離膜支持体上に分離膜の原料となる高分子溶液を流延し、固着させる方法により一体化されることが多いが、分離膜支持体上に高分子溶液を固着させるにあたっては、流延させた高分子溶液を分離膜支持体ごと、水を主成分とする凝固液に浸漬し固着させる方法が広く用いられている。このとき、分離膜支持体として本発明の態様、すなわち親水性を有さない不織布を用いることにより、高分子溶液を流延させた反対側の面から分離膜支持体内部への凝固液の浸透を適度に抑制し、分離膜支持体内部へ高分子溶液が十分に浸透することにより、分離膜と分離膜支持体が強固に接着することができるものである。
 本発明の分離膜支持体を構成する不織布は、不織布上に水を滴下したときの水滴が不織布に浸透するまでの時間、すなわち吸水時間が、JIS L 1907:2010「繊維製品の吸水性試験方法」の、7.1(吸水速度法)の7.1.1(滴下法)を用いて測定したときに15秒以上であることが好ましい。不織布の吸水時間を好ましくは15秒以上、より好ましくは20秒以上、さらに好ましくは25秒以上とすることにより、分離膜製造時に水を主成分とする凝固液の分離膜支持体内部への過度の浸透を抑制し、支持体上に流延した高分子溶液が支持体内部へ十分に浸透した後に凝固させ、形成した分離膜の膜剥離強度を向上させることができる。
 ここで、不織布の吸水時間を15秒以上とするためには、不織布を構成する繊維のポリマーとしてポリエステル系重合体、中でもポリエチレンテレフタレートやその共重合体を用いることが好ましい。また、不織布や不織布を構成する繊維の製造時に油剤類を使用しない、スパンボンド法やメルトブロー法が不織布の製造方法として好ましく用いられる。またさらに、油剤類を使用する場合にはその使用量を極力少なくしたり、製造後の洗浄や乾燥により油剤類を除去したりすることにより、不織布中に存在する油剤類の量を0.1質量%以下とすることが好ましい。
 本発明の分離膜支持体を構成する不織布の裏面(製膜面とは反対側の面)は、JIS P 8119:1998「紙及び板紙―ベック平滑度試験機による平滑度試験方法」に基づいて測定されるベック平滑度が5~35秒であることが好ましい。不織布の裏面のベック平滑度を好ましくは5秒以上、より好ましくは10秒以上、さらに好ましくは15秒以上とすることにより、分離膜製造時に、水を主成分とする凝固液の分離膜支持体裏面から内部への過度の浸透を抑制し、支持体上に流延した高分子重合体溶液が支持体内部へ十分に浸透した後に凝固させ、形成した分離膜の膜剥離強度を向上させることができ、また、分離膜製造時の巻取工程において、製膜面と裏面が擦過することにより生じる分離膜面の傷を抑制できる。一方、不織布の裏面のベック平滑度を好ましくは35秒以下、より好ましくは30秒以下、さらに好ましくは25秒以下とすることにより、分離膜製造時に分離膜支持体内部の空気を速やかに排出でき、部分的な膜剥離強度の低下を抑制し、またピンホール等の製膜欠点の発生を抑制することができる。
 ここで不織布の裏面のベック平滑度を5~35秒とするためには、不織布を一体化するための熱圧着の方法として、上下1対のフラットロールにより不織布を熱圧着し、一体化する方法が好ましく用いられる。また上下1対のフラットロールとしては金属製ロールと弾性ロールを対にして用い、弾性ロールに接触する面を不織布の裏面とすることが好ましい。またさらに、弾性ロールの硬度(Shore D)を70~99とすることも、不織布の裏面のベック平滑度を5~35秒とするために好ましい態様である。
 次に、本発明の分離膜支持体の製造方法について説明する。
 本発明において、不織布を構成する繊維として芯鞘型等の複合型繊維とする場合は、通常の複合方法を採用することができる。
 不織布を製造する方法として、スパンボンド法の場合は、溶融した熱可塑性重合体をノズルから押し出し、これを高速吸引ガスにより吸引延伸して紡糸した後、移動コンベア上に繊維を捕集して繊維ウエブとし、さらに連続的に熱圧着等を施すことにより一体化して、長繊維不織布を製造することができる。その際、分離膜製造工程中にかかる熱に対し高い寸法安定性を有するという観点から、繊維ウエブを構成する繊維をより高度に配向結晶化させるため、紡糸速度は2000m/分以上が好ましく、より好ましくは3000m/分以上であり、さらに好ましくは4000m/分以上である。
 不織布を製造する方法としてメルトブロー法を用いる場合は、溶融した熱可塑性重合体に加熱高速ガス流体を吹き当てることにより、該熱可塑性重合体を引き伸ばして極細繊維化し、捕集して長繊維不織布を製造することができる。
 また、短繊維不織布であれば、長繊維をカットして短繊維とし、乾式法や湿式法により不織布とする方法が好ましく用いられる。
 また、前述した不織布の積層体の製造方法としては、例えば、2層の不織布からなる積層体の製造方法の場合は、1対のロールで得た仮接着状態の不織布を2層重ね合わせた後、熱圧着により一体化する方法を好ましく用いることができる。
 また、2層のスパンボンド不織布の層間にメルトブロー不織布を配した3層構造の積層体の製造方法としては、1対のロールで得た仮接着状態のスパンボンド不織布2層の間に、別ラインで製造したメルトブロー不織布を挟むように重ね合わせた後、熱圧着により一体化する方法や、一連の捕集コンベア上部に配されたスパンボンド用ノズル、メルトブロー用ノズル、スパンボンド用ノズルからそれぞれ押し出され、繊維化されたウエブを順に捕集、積層し、熱圧着する方法を好ましく用いることができる。
 乾式短繊維不織布や抄紙不織布の場合は、一旦巻き取った不織布を複数層重ね合わせた後、熱圧着により一体化する方法を好ましく用いることができる。
 ここで、不織布を一体化するための熱圧着の方法としては、分離膜製造工程中の寸法変化が小さく、分離膜を形成した際に製膜性が良好であり、機械的強度と耐久性に優れ、さらには膜剥離強度に優れる分離膜を得るために、表面が平滑であり機械的強度に優れる点で、上下1対のフラットロールにより不織布全面を均一に熱圧着し、一体化する方法を好ましく用いることができる。このフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。特に、不織布の表面の繊維の融着を抑え、形態を保持することにより、分離膜製造工程中の寸法変化が小さく、分離膜支持体として使用した際に分離膜の膜剥離強度を向上できることから、不織布を、加熱した金属製ロールと弾性ロールにより熱圧着する方式が好ましく用いられる。さらに、分離膜の膜剥離強度を向上させると共に、分離膜製造時に支持体上に流延した高分子重合体溶液の過浸透を抑制できることから、不織布の金属製ロールと接触した面を分離膜支持体の製膜面に、弾性ロールと接触した面を分離膜支持体の裏面に用いることが好ましい。
 ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質からなるロールのことである。弾性ロールの材質としては、ペーパー、コットン、アラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂、硬質ゴム等や、これらの混合物からなる樹脂製ロール等が挙げられる。
 弾性ロールの硬度(Shore D)は、70~99であることが好ましい。弾性ロールの硬度(Shore D)を好ましくは70以上、より好ましくは75以上、さらに好ましくは80以上とすることにより、不織布の弾性ロールと接触した面を裏面に用いた際に、分離膜支持体の裏面の平滑性を向上させ、分離膜製造時に水を主成分とする凝固液の分離膜支持体裏面から内部への過度の浸透を抑制し、支持体上に流延した高分子重合体溶液を、支持体内部へ十分に浸透した後に凝固させ、形成した分離膜の膜剥離強度を向上させることができる。一方、弾性ロールの硬度(Shore D)を好ましくは99以下、より好ましくは95以下、さらに好ましくは91以下とすることにより、不織布の弾性ロールと接触した面を裏面に用いた際に、分離膜支持体の裏面の平滑性の過度の向上を抑制することで、分離膜製造時に水を主成分とする凝固液が分離膜支持体内部へ浸透することが可能となり、製膜面に流延した高分子重合体溶液の過浸透、すなわち裏抜けを抑制することができる。
 また、2本以上のフラットロールの構成としては、金属/弾性ロールの組み合わせを製造工程中で連続して、または非連続で2組以上用いる2本ロール×2組方式、2本ロール×3組方式や、弾性/金属/弾性ロール、弾性/金属/金属ロール、金属/弾性/金属ロール等の3本ロール方式等も好ましく用いることができる。
 2本ロール×2組方式の場合、不織布に対して2度熱と圧力を加えることができるため、不織布の特性のコントロールが容易になり、製造する際の速度を上げることも可能となり、また例えば1組目の2本ロールの下側を弾性ロールとし、2組目の2本ロールの上側を弾性ロールとするなど、弾性ロール接触面の反転が容易なため不織布の表裏面の表面特性のコントロールもしやすくなる。
 一方、3本ロール方式の場合、例えば、弾性1/金属/弾性2ロールの弾性1/金属ロール間で熱圧着した不織布を折り返して金属/弾性2ロール間でさらに熱圧着することにより、上記2本ロール×2組方式と同じように不織布に対して2度熱と圧力を加えることができる上、連続した2本ロール×2組方式に比べ設備費の抑制や省スペース化が可能となる。
 これらの弾性ロールを2本以上使用する製造方法においては、不織布と1段目に接触する弾性ロールと2段目に接触する弾性ロールの硬度(Shore D)を変更させても構わない。
 金属ロールの表面温度は、150~210℃であることが好ましい。金属ロールの表面温度を好ましくは150℃以上、さらに好ましくは170℃以上とすることにより、不織布を構成する繊維同士を強固に接着させ、また不織布を高密度化することにより機械的強度に優れた分離膜支持体を得ることができる。一方、金属ロールの表面温度を好ましくは210℃以下、より好ましくは190℃以下とすることにより、不織布表面繊維の過度の融着を抑制することができ、高分子重合体溶液が浸透しやすくなり、膜剥離強度に優れた分離膜支持体を得ることができる。また、上下1対のフラットロール等により熱圧着し不織布を一体化した後に冷却ロールにより不織布を冷却する場合、金属ロールの表面温度を好ましくは210℃以下、より好ましくは190℃以下とすることにより、冷却ロールにより不織布を十分に冷却固化させることができ、巻取りまでに不織布にかかる長さ方向の張力による伸びや歪みを抑制することができる。
 また、金属ロールの表面温度は、不織布を構成する繊維の少なくとも表面を構成する高分子重合体の融点よりも20~80℃低いことが好ましい。金属ロールの表面温度が不織布を構成する繊維の少なくとも表面を構成する高分子重合体の融点よりも20℃以上低ければ、不織布表面繊維の過度の融着を抑制することができ、高分子重合体溶液が浸透しやすくなり、膜剥離強度に優れた分離膜支持体を得ることができる。一方、金属ロールの表面温度と不織布を構成する繊維の少なくとも表面を構成する高分子重合体の融点の差を好ましくは80℃以下、より好ましくは40℃以下とすることにより、不織布を構成する繊維同士を強固に接着させ、また不織布を高密度化することにより機械的強度に優れた分離膜支持体を得ることができ、また、分離膜製造工程中の寸法変化が小さく、高分子重合体溶液の流延時の過浸透等が少ない、良好な製膜性を得ることができる。
 さらに、金属ロールと弾性ロールの間に温度差を設け、弾性ロールの表面温度を金属ロールの表面温度よりも10~120℃低い温度とすることも好ましい態様である。
 金属ロールの加熱方式としては、誘導発熱方式や熱媒循環方式等を好ましく用いることができるが、均一性に優れた分離膜支持体が得られることから、不織布幅方向の温度差は中心値に対して±3℃以内であることが好ましく、より好ましくは±2℃以内である。
 弾性ロールの加熱方式としては、加圧時に加熱した金属ロールと接触することで加熱される接触加熱方式や、より厳密に弾性ロールの表面温度をコントロールできる、赤外線ヒーター等を使用した非接触加熱方式等を好ましく用いることができる。弾性ロールの不織布幅方向の温度差は、中心値に対して±10℃以内であることが好ましく、±5℃以内であることがより好ましい。弾性ロールの不織布幅方向の温度差をさらに厳密にコントロールするには、赤外線ヒーター等を幅方向に分割して設置し、それぞれの出力を調整するなどすればよい。
 また、フラットロールの線圧は、196~4900N/cmであることが好ましい。フラットロールの線圧を好ましくは196N/cm以上、より好ましくは490N/cm以上、さらに好ましくは980N/cm以上とすることにより、不織布を構成する繊維同士を強固に接着させ、また不織布を高密度化することにより、機械的強度に優れた分離膜支持体を得ることができ、また、分離膜製造工程中の寸法変化が小さく、高分子重合体溶液の流延時の過浸透等が少なく良好な製膜性を得ることができる。一方、フラットロールの線圧を好ましくは4900N/cm以下とすることにより、不織布表面繊維の過度の融着を抑制することができ、高分子重合体溶液の不織布内部への浸透を妨げず、膜剥離強度に優れた分離膜支持体を得ることができる。
 また、上下1対のフラットロール等により熱圧着し不織布を一体化した後に、冷却ロールにより不織布を冷却する態様も、本発明の分離膜支持体の製造方法として好ましい態様である。このときの冷却ロールの温度は、20~100℃であることが好ましい。冷却ロールの温度を好ましくは20℃以上、より好ましくは25℃以上、さらに好ましくは30℃以上、一層好ましくは40℃以上とすることにより、不織布の厚さの斑が大きいとき等に不織布が不均一に急冷されることにより生じる歪みを抑制することができる。一方、冷却ロールの温度を好ましくは100℃以下、より好ましくは90℃以下、さらに好ましくは80℃以下、さらにより好ましくは60℃以下、一層好ましくは50℃以下とすることにより、不織布を冷却固化することで巻取りまでに不織布にかかる長さ方向の張力による伸びや歪みを抑制することができる。
 また、このときの不織布と冷却ロールの接触時間は、0.5~2.0秒であることが好ましい。不織布と冷却ロールの接触時間を好ましくは0.5秒以上、より好ましくは0.7秒以上、さらに好ましくは0.9秒以上とすることにより、熱圧着した不織布を十分に冷却固化させ、巻取りまでに不織布にかかる長さ方向の張力による伸びや歪みを抑制することができる。一方、不織布と冷却ロールの接触時間を好ましくは2.0秒以下、より好ましくは1.9秒以下、さらに好ましくは1.8秒以下とすることにより、不織布の製造速度が低下したり、冷却ロール径を過剰に大きくしたりすることがなく、不織布の製造コストを抑制することができる。
 また、上下1対のフラットロール等の熱圧着用ロールと、冷却ロールの速度比を任意に変更する態様も、本発明の分離膜支持体の製造方法として好ましい態様である。このときの熱圧着用ロールの速度に対する冷却ロールの速度比は、0.98~1.02であることが好ましい。熱圧着用ロールの速度に対する冷却ロールの速度比を好ましくは0.98以上、より好ましくは0.99以上とすることにより、熱圧着後に不織布が弛んだり熱圧着用ロールに巻き付いたりすることがなく、不織布を安定して製造することができる。一方、熱圧着用ロールの速度に対する冷却ロールの速度比を好ましくは1.02以下、より好ましくは1.01以下とすることにより、熱圧着した不織布の長さ方向の伸びや歪みを抑制することで、不織布の長さ方向(縦方向)の沸騰水収縮率を2.0%以下とすることができ、分離膜製造工程中の長さ方向の寸法変化(収縮)が小さいため、高い歩留まりで安定して分離膜を製造することが可能となり、さらに分離膜支持体上に固着した分離膜との接着性を維持できることにより、高い膜剥離強度を有する分離膜を得ることができる。
 本発明の分離膜支持体の製造方法は、2~5層積層された不織布層を熱圧着により一体化することが好ましい。積層数が2層以上であれば、単層時に比べて地合いが向上し、十分な均一性が得られる。また、積層数が5層以下であれば、積層時にシワが入ることを抑制し、そして層間の剥離を抑制することができる。
 また、スパンボンド不織布の熱圧着方法としては、1対のフラットロールのみで不織布を熱圧着するのではなく、より精密に不織布の特性をコントロールするために、2段階接着方式を採用することもできる。すなわち、不織布を1対のフラットロール間で予備熱圧着して、または1本のフラットロールと繊維ウエブの捕集に用いられる捕集コンベア間で予備熱圧着して、仮接着状態の不織布を得た後に、連続工程であるいは仮接着状態の不織布を巻き取った後に、さらにそれをもう1度フラットロール間で熱圧着するような2段階接着方式も好ましく用いることができる。
 この2段階接着方式での1段階目の予備熱圧着においては、2段階目の熱圧着時に不織布をより高密度化できることから、その仮接着の状態の不織布の充填密度を0.1~0.3とすることが好ましい。その際の1段階目の予備熱圧着に用いられるフラットロールの温度は、不織布を構成する繊維の融点よりも20~120℃低く、線圧は49~686N/cmであることが好ましい。
 本発明の分離膜とは、上記の分離膜支持体の上に、分離機能を有する膜を形成してなる分離膜である。そのような分離膜の例として、浄水場での水処理や工業プロセス用水の製造等に利用される精密ろ過膜、限外ろ過膜や、半導体製造用水、ボイラー用水、医療用水あるいはラボ用純水等の処理や、海水淡水化処理に利用されるナノろ過膜、逆浸透膜等の半透膜が挙げられる。分離膜の製造方法としては、上記の分離膜支持体の少なくとも片方の表面上に、高分子重合体溶液を流延して分離機能を有する膜を形成させ分離膜とする方法が好ましく用いられる。また、分離膜が半透膜の場合は、分離機能を有する膜を支持層と半透膜層を含む複合膜とし、この複合膜を分離膜支持体の少なくとも片方の表面上に積層することも好ましい形態である。
 本発明の分離膜支持体に流延する高分子重合体溶液は、膜となった際に分離機能を有するものを含み、例えば、ポリスルホンやポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンあるいは酢酸セルロース等の溶液が好ましく用いられる。なかでも特に、化学的、機械的および熱的な安定性の点で、ポリスルホンとポリアリールエーテルスルホンの溶液が好ましく用いられる。溶媒は、膜形成物質に応じて、適宜選定することができる。また、分離膜が支持層と半透膜層を含む複合膜の場合の半透膜として、多官能酸ハロゲン化物と多官能アミンとの重縮合等によって得られる架橋ポリアミド膜等が好ましく用いられる。
 本発明の分離膜は、膜剥離強度が20~75cN/15mmであることが好ましい。膜剥離強度が好ましくは20cN/15mm以上、より好ましくは30cN/15mm以上、さらに好ましくは35cN/15mm以上とすることにより、流体分離素子として使用した際の運転圧力の変動や、分離膜の洗浄のためのいわゆる逆洗操作により分離膜が支持体から剥離することを防止することができる。一方、膜剥離強度が好ましくは75cN/15mm以下、より好ましくは70cN/15mm以下、さらに好ましくは65cN/15mm以下とすることにより、分離膜製造時の高分子重合体溶液の過度の消費を抑制することができる。なお、分離膜が支持層と半透膜層を含む複合膜の場合の膜剥離強度とは、分離膜支持体と直接的に接着している支持層と分離膜支持体の間の剥離強度のことである。
 本発明の流体分離素子とは、例えば、海水淡水化装置に組み込む際に取り扱いを容易にするため、上記の分離膜を筐体に納めた流体分離素子である。その形態としては、平膜のプレートフレーム型、プリーツ型、スパイラル型等のものが挙げられ、なかでも特に、分離膜が透過液流路材と供給液流路材と共に集水管の周りにスパイラル状に巻き付けられた、スパイラル型のものが好ましく用いられる。そして、複数の流体分離素子を直列あるいは並列に接続して、分離膜ユニットとすることができる。
 [測定方法]
 (1)融点(℃)
 パーキンエルマ社製示差走査型熱量計DSC-2型を用い、昇温速度20℃/分の条件で測定し、得られた融解吸熱曲線において極値を与える温度を融点とした。また、示差走査型熱量計において、融解吸熱曲線が極値を示さない樹脂については、ホットプレート上で加熱し、顕微鏡観察により樹脂が完全に溶融した温度を融点とした。
 (2)固有粘度IV
 ポリエチレンテレフタレート樹脂の固有粘度IVは、次の方法で測定した。オルソクロロフェノール100mlに対し試料8gを溶解し、温度25℃においてオストワルド粘度計を用いて相対粘度ηを、下記式により求めた。
  η=η/η=(t×d)/(t×d
   ここで、η:ポリマー溶液の粘度
       η:オルソクロロフェノールの粘度
       t:溶液の落下時間(秒)
       d:溶液の密度(g/cm
       t:オルソクロロフェノールの落下時間(秒)
       d:オルソクロロフェノールの密度(g/cm
 次いで、相対粘度ηから下記式により、固有粘度IVを算出した。
  IV=0.0242η+0.2634
 (3)平均単繊維直径(μm)
 不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の単繊維の直径を測定し、それらの平均値を、小数点以下第一位を四捨五入して求めた。
 (4)不織布の目付(g/m
 30cm×50cmの不織布を3個採取して、各試料の質量をそれぞれ測定し、得られた値の平均値を単位面積当たりに換算し、小数点以下第一位を四捨五入した。
 (5)不織布の厚さ(mm)
 JIS L 1906:2000「一般長繊維不織布試験方法」の5.1に基づいて、直径10mmの加圧子を使用し、荷重10kPaで不織布の幅方向1mあたり等間隔に10点での厚さを0.01mm単位で測定し、その平均値の小数点以下第三位を四捨五入した。
 (6)不織布の沸騰水収縮率(%)
 不織布の任意の部分から縦25cm×横25cmのサンプルを4個採取し、幅方向(横方向)の3カ所に、それぞれ長さ方向(縦方向)へ20cmの長さを表す印を付け、沸騰水中に5分間浸漬してから取り出し自然乾燥する。4個のサンプルについて、印を付けた3カ所の長さを0.01cm単位まで測定し、4個のサンプルの合計を次式に当てはめ、小数点以下第一位を四捨五入して熱収縮率を算出した。
  沸騰水収縮率(%)=((L1-L2)/L1)×100
 ここで、L1とL2は次のとおりである。
  L1:浸漬前の3線の長さの合計(サンプル4個の合計)(cm)
  L2:浸漬後の3線の長さの合計(サンプル4個の合計)(cm)
 (7)不織布の吸水時間(秒)
 不織布の親水性として、JIS L 1907:2010「繊維製品の吸水性試験方法」の、7.1(吸水速度法)の7.1.1(滴下法)に基づき吸水時間を測定した。即ち、20cm×20cmの不織布を5個採取して、採取した試料を直径15cm×高さ1cmの保持枠に固定した。固定した試料の上方に、試料表面からの距離が1cmになるようにビュレットの先端を設置し、ビュレットから水を1滴滴下した。水滴が試料面に達したときから、試料が水滴を吸収するにつれ鏡面反射が消え、湿潤だけが残った状態になるまでの時間を、ストップウォッチを用い1秒単位で測定した。5個の各試料の表面と裏面について時間をそれぞれ測定し、得られた値の平均値の小数点以下第二位を四捨五入した値を、それぞれ不織布の表面と裏面の吸水時間とし、15秒未満の場合を親水性有り、15秒以上の場合を親水性無しとした。ここで、分離膜支持体として用いる際の、製膜面を表面とし、非製膜面を裏面とした。
 (8)不織布のベック平滑度(秒)
 ベック平滑度試験機を用い、JIS P 8119:1998「紙及び板紙―ベック平滑度試験機による平滑度試験方法」に基づいて、不織布の表面、裏面についてそれぞれ5点の測定を実施した。5点の平均値の小数点以下第一位を四捨五入した値を、表面と裏面のベック平滑度とした。ここで分離膜支持体として用いる際の、製膜面を表面とし、非製膜面を裏面とした。
 (9)製膜時のキャスト液裏抜け性
 作製したポリスルホン膜の裏面を目視で観察し、キャスト液の裏抜け性について、次の5段階で評価し、評価点が4点以上のものを合格とした。
  5点:キャスト液の裏抜けが全く見られない。
  4点:わずかにキャスト液の裏抜けが見られる(面積比率5%未満)。
  3点:キャスト液の裏抜けが見られる(面積比率5~50%)。
  2点:大部分でキャスト液の裏抜けが見られる(面積比率51~80%)。
  1点:ほぼ全面でキャスト液の裏抜けが見られる。
 (10)膜剥離強度(cN/15mm)
 作製したポリスルホン膜を幅15mmに切り出し、その一端のポリスルホン層を分離膜支持体から引き剥がし、定速伸長型引張試験機のつかみ部の一方にポリスルホン層を、もう一方に分離膜支持体を固定し、つかみ間隔が50mmで、引張速度50mm/minの条件で、縦方向および横方向それぞれ5点について強力を測定し、強力が安定した点からつかみ間隔が65mmとなるまでの強力の平均値を計算し、少数点以下第一位を四捨五入した値を縦方向と横方向の膜剥離強度とし、縦方向と横方向の平均値の小数点以下第一位を四捨五入した値を、分離膜の膜剥離強度とした。
 (11)分離膜落ち込み量(μm)
 ポリプロピレン製のネットからなる供給液流路材、海水淡水化用逆浸透膜、耐圧シート、および下記の透過液流路材を用い、有効膜面積40mのスパイラル型の流体分離素子(エレメント)を作製した。
 [透過液流路材]
 溝幅が200μmで、溝深さが150μmで、溝密度が40本/インチで、そして厚さが200μmのポリエステル製シングルトリコット(ダブルデンビー編)を用いた。
 次に、作製した流体分離素子について、逆浸透圧が7MPaで、海水塩分濃度が3wt%で、運転温度が40℃の各条件で耐久性試験を実施し、1000時間運転後に流体分離素子を解体し、膜と支持体の接着状態を観察するとともに、分離膜の透過液流路材への落ち込み量を測定した。落ち込み量は、1つの流体分離素子における任意の3点の分離膜断面について、走査型電子顕微鏡で500~3000倍の写真を撮影して測定し(単位:μm)、それらの平均値の小数点以下第一位を四捨五入して求めた。分離膜支持体と透過液流路材の重ね合わせる方向は、透過液流路材の溝方向に対し、分離膜支持体の不織布幅方向(横方向)が直交するようにした。
 [実施例1]
 (芯成分)
 固有粘度IV0.65、融点260℃、酸化チタンの含有量0.3質量%のポリエチレンテレフタレート樹脂であって、水分率10ppmに乾燥したものを芯成分として用いた。
 (鞘成分)
 固有粘度IV0.66、イソフタル酸共重合率11モル%、融点230℃、酸化チタンの含有量0.2質量%の共重合ポリエチレンテレフタレート樹脂であって、水分率10ppmに乾燥したものを鞘成分として用いた。
 (紡糸・繊維ウエブ捕集)
 上記の芯成分および鞘成分を、それぞれ295℃と270℃の温度で溶融し、口金温度300℃、芯/鞘の質量比率80/20で同心芯鞘型(断面円形)に複合して細孔から紡出した後、エジェクターにより紡糸速度4400m/分で紡糸して、移動するネットコンベアー上に繊維ウエブとして捕集した。
 (予備熱圧着)
 捕集した繊維ウエブを、上下1対の金属製フラットロール間に通し、各フラットロール表面温度が140℃で、線圧が588N/cmで予備熱圧着し、繊維径が10μm、目付が38g/mで、厚さが0.16mmの仮接着状態のスパンボンド不織布(a)を得た。
 (積層熱圧着)
 得られた仮接着状態のスパンボンド不織布(a)を2枚重ね合わせ、図1に示すようにその積層不織布(1)を、上が硬度(Shore D)91の樹脂製の弾性ロール(2)で、中が金属ロール(3)で、下が硬度(Shore D)75の樹脂製の弾性ロール(4)の1組の3本フラットロールの、中-下ロール間に通し熱圧着し、さらにその積層不織布(1)を折り返して上-中ロール間を通し熱圧着し、熱圧着した積層不織布(1)を、表面温度が60℃の上下1対の金属製冷却ロール(5・6)に「S」の字を描くように通し、まず上側のロール(5)に、熱圧着した積層不織布(1)の弾性ロール(2・4)と接触させた面(裏面)(7)を0.5秒間接触させ、続いて下側のロール(6)に、熱圧着した積層不織布(1)の金属ロール(3)と接触させた面(表面)(8)を0.5秒間接触させ(即ち、冷却ロールに合計1.0秒接触させている。)、目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が0.4%、吸水時間が60秒以上、裏面のベック平滑度が15秒のスパンボンド不織布を製造し、分離膜支持体を得た。このときの3本フラットロールの表面温度は、上ロール(2)が100℃、中ロール(3)が180℃、下ロール(4)が130℃とし、線圧は1715N/cmとした。また3本フラットロール(2・3・4)に対する冷却ロール(5・6)の速度比は、1.00とした。
 (分離膜形成)
 [ポリスルホン膜]
 得られた分離膜支持体50cm幅×10m長を、12m/minの速度で巻き出し、その上にポリスルホン(ソルベイアドバンスドポリマーズ社製の“Udel”(登録商標)-P3500)の16質量%ジメチルホルムアミド溶液(キャスト液)を50μm厚みで、室温(20℃)でキャストし、ただちに純水中に室温(20℃)で10秒間浸漬した後、75℃の温度の純水中に120秒間浸漬し、続いて90℃の温度の純水中に120秒間浸漬し、100N/全幅の張力で巻き取り、ポリスルホン膜を作製した。このときキャスト液の裏抜けが全く見られず、また分離膜製膜長/支持体巻出長は0.998であり、また作製した分離膜の膜剥離強度は、54cN/15mmであった。結果を表1と表2に示す。
 [実施例2]
 積層熱圧着において、3本フラットロールに対する冷却ロールの速度比を1.02とした他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が1.0%、吸水時間が60秒以上、裏面のベック平滑度が14秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.995であり、また作製した分離膜の膜剥離強度は、44cN/15mmであった。結果を表1と表2に示す。
 [実施例3]
 積層熱圧着において、冷却ロールの表面温度を90℃、3本フラットロールに対する冷却ロールの速度比を1.02とした他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が1.8%、吸水時間が60秒以上、裏面のベック平滑度が13秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.992であり、また作製した分離膜の膜剥離強度は、36cN/15mmであった。結果を表1と表2に示す。
 [実施例4]
 (抄紙不織布)
 融点が260℃のポリエチレンテレフタレート樹脂からなる、繊維径が11μmで、目付が36g/mで、厚さが0.15mmの抄紙不織布(b)と、融点が260℃のポリエチレンテレフタレート樹脂からなる、繊維径が14μmで、目付が36g/mで、厚さが0.17mmの抄紙不織布(c)を用意した。
 (積層熱圧着)
 上記のとおり用意した抄紙不織布(b)と抄紙不織布(c)を、抄紙不織布(b)が上になるように1枚ずつ重ね合わせ、それを図2に示すように、上が金属ロール(3)で、下が硬度(Shore D)85のコットンペーパー製の弾性ロール(9)の、1組の2本フラットロールの間に通し熱圧着し、熱圧着した積層不織布(1)を、表面温度が90℃の上下1対の金属製冷却ロール(5・6)に「S」の字を描くように通し、まず上側のロール(5)に、熱圧着した積層不織布(1)の弾性ロール(9)と接触させた面(裏面)(7)を0.3秒間接触させ、続いて下側のロール(6)に、熱圧着した積層不織布(1)の金属ロール(3)と接触させた面(表面)(8)を0.3秒間接触させ(即ち、冷却ロールに合計0.6秒接触させている。)、目付が72g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が1.1%、油剤残量が0.04%で吸水時間が18秒、裏面のベック平滑度が18秒の積層抄紙不織布を製造し、分離膜支持体を得た。このときの2本フラットロールの表面温度は、上ロール(3)が230℃、下ロール(9)が120℃とし、線圧は1274N/cmとした。また2本フラットロール(3・9)に対する冷却ロール(5・6)の速度比は、1.01とした。得られた分離膜支持体を用い、実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.994であり、また作製した分離膜の膜剥離強度は21cN/15mmであった。結果を表1と表2に示す。
 [実施例5]
 (紡糸・繊維ウエブ捕集)
 水分率10ppmに乾燥した固有粘度IVが0.65で、融点が260℃であり、酸化チタンを0.3質量%含むポリエチレンテレフタレート樹脂を、295℃の温度で溶融し、口金温度300℃で細孔から紡出した後、不織布幅方向にスリットを有する矩形エジェクターにより紡糸速度4400m/分で紡糸して、フィラメント(断面円形)とし、該フィラメント群を噴射させ、移動するネットコンベアー上に繊維ウエブとして捕集した。このスパンボンド不織布層(d)の目付は、30g/mとなるように吐出量を調整した。
 続いて、水分率10ppmに乾燥した固有粘度IVが0.50で、融点が260℃であるポリエチレンテレフタレート樹脂を、295℃の温度で溶融し、口金温度300℃で細孔から紡出した後、1000Nm/hr/mの加熱空気を吹き当てることにより紡糸して、噴射させ、移動するネットコンベアー上のスパンボンド不織布層(d)の上にメルトブロー不織布層(e)を捕集した。このメルトブロー不織布層(e)の目付は、10g/mとなるように吐出量を調整した。
 さらに、スパンボンド不織布層(d)と同様の条件とし、メルトブロー不織布層(e)の上にスパンボンド不織布層(f)を捕集した。このスパンボンド不織布層(f)の目付は、30g/mとなるように吐出量を調整した。
 (予備熱圧着)
 捕集した積層繊維ウエブを、金属フラットロールとネットコンベアーの間に通し、フラットロール表面温度が180℃で、線圧が294N/cmで予備熱圧着し目付が70g/mで、厚さが0.35mmの仮接着状態のスパンボンド/メルトブロー/スパンボンド複合不織布を製造した。
 (積層熱圧着)
 得られた仮接着状態の複合不織布を、図2に示すように上が金属ロール(3)で、下が硬度(Shore D)75の樹脂製の弾性ロール(9)の、1組の2本フラットロールの間に通し熱圧着し、熱圧着した積層不織布(1)を、表面温度が40℃の上下1対の金属製冷却ロール(5・6)に「S」の字を描くように通し、まず上側のロール(5)に、熱圧着した積層不織布(1)の弾性ロール(9)と接触させた面(裏面)(7)を0.5秒間接触させ、続いて下側のロール(6)に、熱圧着した積層不織布(1)の金属ロール(3)と接触させた面(表面)(8)を0.5秒間接触させ(即ち、冷却ロールに合計1.0秒接触させている。)、目付が70g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が1.0%、吸水時間が60秒以上、裏面のベック平滑度が20秒の複合不織布を製造し、分離膜支持体を得た。このときの2本フラットロールの表面温度は、上ロール(3)が230℃、下ロール(9)が130℃とし、線圧は1519N/cmとした。また、2本フラットロール(3・9)に対する冷却ロール(5・6)の速度比は、1.01とした。
 (分離膜形成)
 [ポリスルホン膜]
 得られた分離膜支持体を用い、実施例1と同様の方法でポリスルホン膜を作製した。このときキャスト液の裏抜けが全く見られず、また分離膜製膜長/支持体巻出長は0.994であり、また作製した分離膜の膜剥離強度は30cN/15mmであった。結果を表1と表2に示す。
 [実施例6]
 鞘成分を、融点220℃で水分率10ppmに乾燥したポリブチレンテレフタレート樹脂とした他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が0.8%、吸水時間が60秒以上、裏面のベック平滑度が17秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.992であり、また作製した分離膜の膜剥離強度は、34cN/15mmであった。結果を表1と表2に示す。
 [実施例7]
 積層熱圧着において、3本フラットロールの金属ロールの温度を190℃とした他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が0.5%、吸水時間が60秒以上、裏面のベック平滑度が15秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.996であり、また作製した分離膜の膜剥離強度は、51cN/15mmであった。結果を表1と表2に示す。 
 [実施例8]
 積層熱圧着において、3本フラットロールの金属ロールの温度を200℃とした他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が0.6%、吸水時間が60秒以上、裏面のベック平滑度が15秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.994であり、また作製した分離膜の膜剥離強度は、42cN/15mmであった。結果を表1と表2に示す。
 [比較例1]
 積層熱圧着において、冷却ロールの表面温度を90℃、3本フラットロールに対する冷却ロールの速度比を1.03とした他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が2.3%、吸水時間が60秒以上、裏面のベック平滑度が12秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.988であり、また作製した分離膜の膜剥離強度は、18cN/15mmであった。結果を表1と表2に示す。
 [比較例2]
 (抄紙不織布)
 融点が260℃のポリエチレンテレフタレート樹脂からなる、繊維径が11μmで、目付が37g/mで、厚さが0.16mmの抄紙不織布(g)と、融点が260℃のポリエチレンテレフタレート樹脂からなる、繊維径が10μmで、目付が37g/mで、厚さが0.17mmの抄紙不織布(h)を用意した。
 (積層熱圧着)
 用意した抄紙不織布(g)と抄紙不織布(h)を、抄紙不織布(g)が上になるように1枚ずつ重ね合わせ、それを、図2に示すように上が金属ロール(3)で、下が硬度(Shore D)85のコットンペーパー製の弾性ロール(9)の1組の2本フラットロールの間に通し熱圧着し、熱圧着した積層不織布(1)を、表面温度が110℃の上下1対の金属製冷却ロール(5・6)に「S」の字を描くように通し、まず上側のロール(5)に、熱圧着した積層不織布(1)の弾性ロール(9)と接触させた面(裏面)(7)を0.3秒間接触させ、続いて下側のロール(6)に、熱圧着した積層不織布(1)の金属ロール(3)と接触させた面(表面)(8)を0.3秒間接触させ(即ち、冷却ロールに合計0.6秒接触させている。)、目付が74g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が2.4%、油剤残量が0.1%で吸水時間が16秒、裏面のベック平滑度が18秒の積層抄紙不織布を製造し、分離膜支持体を得た。このときの2本フラットロールの表面温度は、上ロール(3)が235℃、下ロール(9)が130℃とし、線圧は1176N/cmとした。また2本フラットロール(3・9)に対する冷却ロール(5・6)の速度比は、1.02とした。得られた分離膜支持体を用い、実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また作製した分離膜の膜剥離強度は15cN/15mmであった。結果を表1と表2に示す。
[比較例3]
 積層熱圧着において、冷却ロールを使用しない他は、実施例1と同様にして目付が76g/m、厚さが0.09mm、長さ方向の沸騰水収縮率が2.2%、吸水時間が60秒以上、裏面のベック平滑度が12秒のスパンボンド不織布を製造し、分離膜支持体を得て、当該分離膜支持体に実施例1と同様にしてポリスルホン膜を作製した。このときキャスト液の裏抜けは全く見られず、また分離膜製膜長/支持体巻出長は0.989であり、また作製した分離膜の膜剥離強度は、19cN/15mmであった。結果を表1と表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた分離膜支持体と分離膜の特性は、表1と表2に示すとおりであり、比較例1と比較例2と比較例3の分離膜を用いて、段落[0079]に記載したようにスパイラル型の流体分離素子を作製したところ、加工性は良好であった。しかし、作製した流体分離素子について、段落[0080]に記載したように耐久性試験を実施した結果、部分的に膜剥離が見られた。そして、比較例1、2、3の分離膜の透過液流路材への落ち込み量は、それぞれ39μm、48μm、38μmであった。
 これに対し本発明の実施例1~8の分離膜を用いて、段落[0079]に記載したようにスパイラル型の流体分離素子を作製したところ、加工性は良好であった。さらに作製した流体分離素子について、段落[0080]に記載したように耐久性試験を実施した結果、いずれも膜接着状態は良好であり、分離膜の透過液流路材への落ち込みも少なく、耐久性に優れたものであった。

Claims (11)

  1.  不織布からなる分離膜支持体であって、不織布の長さ方向(縦方向)の沸騰水中で5分間処理した沸騰水収縮率が-0.2~2.0%である不織布からなることを特徴とする、分離膜支持体。
  2.  前記の不織布は、JIS L 1907:2010「繊維製品の吸水性試験方法」の、7.1(吸水速度法)の7.1.1(滴下法)に基づいて測定される吸水時間が15秒以上である、請求項1に記載の分離膜支持体。
  3.  前記の不織布の裏面は、JIS P 8119:1998「紙及び板紙―ベック平滑度試験機による平滑度試験方法」に基づいて測定されるベック平滑度が5~35秒である、請求項1または2に記載の分離膜支持体。
  4.  前記の不織布が熱可塑性フィラメントから構成されたスパンボンド不織布である、請求項1~3のいずれかに記載の分離膜支持体。
  5.  上記の不織布がポリエステル系重合体からなる繊維から構成された不織布である、請求項1~4のいずれかに記載の分離膜支持体。
  6.  不織布からなる分離膜支持体の製造方法であって、不織布を一体化するための熱圧着用ロールで不織布を熱圧着した後に、この不織布を冷却ロールに接触させ、この接触の際の熱圧着用ロールの速度に対する冷却ロールの速度比を0.98~1.02とすることを特徴とする、分離膜支持体の製造方法。
  7.  上記の冷却ロールの表面温度は20~100℃である、請求項6に記載の分離膜支持体の製造方法。
  8.  上記の不織布と冷却ロールとの接触時間は0.5~2.0秒間である、請求項6または7に記載の分離膜支持体の製造方法。
  9.  請求項1~5のいずれかに記載の分離膜支持体の表面上に、分離機能を有する膜を形成してなることを特徴とする、分離膜。
  10.  膜剥離強度が20~75cN/15mmである、請求項9に記載の分離膜。
  11.  請求項9または10に記載の分離膜を構成要素として含むことを特徴とする、流体分離素子。
PCT/JP2013/054190 2012-02-23 2013-02-20 分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子 WO2013125583A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380010317.7A CN104136104B (zh) 2012-02-23 2013-02-20 分离膜支持体和其制造方法、以及使用分离膜支持体的分离膜和流体分离元件
KR1020147018385A KR101950256B1 (ko) 2012-02-23 2013-02-20 분리막 지지체와 그 제조방법, 분리막 지지체를 사용한 분리막 및 유체 분리 소자
US14/380,529 US20150060354A1 (en) 2012-02-23 2013-02-20 Separation membrane support, method for producing same, and separation membrane and fluid separation element using separation membrane support
EP13751733.0A EP2818229B1 (en) 2012-02-23 2013-02-20 Separation membrane support, method for producing same, and separation membrane and fluid separation element using separation membrane support
ES13751733.0T ES2657281T3 (es) 2012-02-23 2013-02-20 Soporte de membrana de separación, procedimiento de producción del mismo, y membrana de separación y elemento de separación de fluidos que usan el soporte de membrana de separación
JP2013510403A JP6248629B2 (ja) 2012-02-23 2013-02-20 分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-037464 2012-02-23
JP2012037464 2012-02-23
JP2012-243876 2012-11-05
JP2012243876 2012-11-05

Publications (1)

Publication Number Publication Date
WO2013125583A1 true WO2013125583A1 (ja) 2013-08-29

Family

ID=49005765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054190 WO2013125583A1 (ja) 2012-02-23 2013-02-20 分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子

Country Status (7)

Country Link
US (1) US20150060354A1 (ja)
EP (1) EP2818229B1 (ja)
JP (1) JP6248629B2 (ja)
KR (1) KR101950256B1 (ja)
CN (1) CN104136104B (ja)
ES (1) ES2657281T3 (ja)
WO (1) WO2013125583A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029221A (ja) * 2014-07-25 2016-03-03 東レ株式会社 不織布および分離膜支持体
CN105593423A (zh) * 2013-09-26 2016-05-18 东丽株式会社 无纺布、分离膜支持体、分离膜、流体分离元件及无纺布的制造方法
WO2017115653A1 (ja) * 2015-12-28 2017-07-06 日東電工株式会社 スパイラル型膜エレメント
WO2018043322A1 (ja) * 2016-09-02 2018-03-08 東レ株式会社 スパンボンド不織布およびその製造方法
JPWO2017098887A1 (ja) * 2015-12-10 2018-09-13 富士フイルム株式会社 保護層付きガス分離膜の製造方法、保護層付きガス分離膜、ガス分離膜モジュール及びガス分離装置
JPWO2018043324A1 (ja) * 2016-09-02 2019-07-04 東レ株式会社 スパンボンド不織布およびその製造方法
EP3603778A4 (en) * 2017-03-24 2021-01-20 Mitsubishi Paper Mills Limited SEMI-PERMEABLE MEMBRANE SUPPORT BODY
JP2021525168A (ja) * 2018-06-22 2021-09-24 コーロン インダストリーズ インク ろ過性能が向上した不織布の製造方法
JP2021186733A (ja) * 2020-05-29 2021-12-13 三菱製紙株式会社 膜分離活性汚泥処理用半透膜用支持体及びその製造方法
JP2022006929A (ja) * 2020-06-25 2022-01-13 三菱製紙株式会社 膜分離活性汚泥処理用半透膜用支持体及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013810B1 (ko) * 2018-02-22 2019-08-23 국일제지 주식회사 습식공정을 이용한 수처리 필터용 분리막 지지체 제조방법 및 이에 따라 제조된 분리막 지지체
CN112236060A (zh) * 2018-05-31 2021-01-15 东丽株式会社 帘用无纺布及其制造方法
CN109594390A (zh) * 2018-11-23 2019-04-09 浙江福斯特新材料研究院有限公司 一种半透膜支撑材料的热压设备
KR102235320B1 (ko) 2018-12-19 2021-04-01 도레이첨단소재 주식회사 역삼투막 및 이의 제조방법
CN113272051A (zh) * 2019-01-09 2021-08-17 三菱制纸株式会社 半透膜支撑体及半透膜支撑体的制造方法
CN111485453A (zh) * 2020-04-10 2020-08-04 宝鸡科达特种纸业有限责任公司 一种分离膜支撑用无纺布的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421526B2 (ja) 1984-05-10 1992-04-10 Awa Seishi Kk
JP2001017842A (ja) 1999-07-09 2001-01-23 Nitto Denko Corp 分離膜
JP3153487B2 (ja) 1997-02-13 2001-04-09 三木特種製紙株式会社 半透膜支持体
JP2001162688A (ja) * 1999-12-13 2001-06-19 Nitto Denko Corp 多孔質フィルムの製造方法
WO2004043579A1 (ja) * 2002-11-12 2004-05-27 Mitsubishi Rayon Co., Ltd. 複合多孔質膜及びその製造方法
JP2009061373A (ja) 2007-09-05 2009-03-26 Toray Ind Inc 分離膜支持体
JP2011212602A (ja) 2010-03-31 2011-10-27 Toray Ind Inc 分離膜支持体および分離膜支持体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921766A (ja) * 1982-07-22 1984-02-03 東レ株式会社 不織布の製造方法
US4556601A (en) * 1984-01-05 1985-12-03 E. I. Du Pont De Nemours And Company Heavy-weight nonwoven fabric of hydraulically-entangled fibers
JPH0421526A (ja) 1990-05-16 1992-01-24 Hitachi Cable Ltd 屈折率分布を有する石英系ガラス体の製造方法
JP2000510198A (ja) * 1996-04-23 2000-08-08 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 接合されたポリオレフィンシート
EP1427500B1 (en) * 2001-01-17 2006-09-06 Polymer Group Inc. Hydroentangled filter media and method
JP5724180B2 (ja) * 2007-07-31 2015-05-27 東レ株式会社 分離膜支持体およびその製造方法
US8759606B2 (en) * 2009-06-03 2014-06-24 The Procter & Gamble Company Structured fibrous web

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421526B2 (ja) 1984-05-10 1992-04-10 Awa Seishi Kk
JP3153487B2 (ja) 1997-02-13 2001-04-09 三木特種製紙株式会社 半透膜支持体
JP2001017842A (ja) 1999-07-09 2001-01-23 Nitto Denko Corp 分離膜
JP2001162688A (ja) * 1999-12-13 2001-06-19 Nitto Denko Corp 多孔質フィルムの製造方法
WO2004043579A1 (ja) * 2002-11-12 2004-05-27 Mitsubishi Rayon Co., Ltd. 複合多孔質膜及びその製造方法
JP2009061373A (ja) 2007-09-05 2009-03-26 Toray Ind Inc 分離膜支持体
JP2011212602A (ja) 2010-03-31 2011-10-27 Toray Ind Inc 分離膜支持体および分離膜支持体の製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593423A (zh) * 2013-09-26 2016-05-18 东丽株式会社 无纺布、分离膜支持体、分离膜、流体分离元件及无纺布的制造方法
EP3051014A1 (en) * 2013-09-26 2016-08-03 Toray Industries, Inc. Non-woven fabric, separation membrane support, separation membrane, fluid separation element, and method for manufacturing non-woven fabric
JPWO2015046215A1 (ja) * 2013-09-26 2017-03-09 東レ株式会社 不織布、分離膜支持体、分離膜、流体分離素子および不織布の製造方法
EP3051014A4 (en) * 2013-09-26 2017-05-03 Toray Industries, Inc. Non-woven fabric, separation membrane support, separation membrane, fluid separation element, and method for manufacturing non-woven fabric
JP2016029221A (ja) * 2014-07-25 2016-03-03 東レ株式会社 不織布および分離膜支持体
JPWO2017098887A1 (ja) * 2015-12-10 2018-09-13 富士フイルム株式会社 保護層付きガス分離膜の製造方法、保護層付きガス分離膜、ガス分離膜モジュール及びガス分離装置
US10843137B2 (en) 2015-12-10 2020-11-24 Fujifilm Corporation Method for producing protective-layer-covered gas separation membrane, protective-layer-covered gas separation membrane, gas separation membrane module, and gas separation apparatus
KR102035951B1 (ko) 2015-12-28 2019-10-23 닛토덴코 가부시키가이샤 스파이럴형 막 엘리먼트
JP2017119238A (ja) * 2015-12-28 2017-07-06 日東電工株式会社 スパイラル型膜エレメント
WO2017115653A1 (ja) * 2015-12-28 2017-07-06 日東電工株式会社 スパイラル型膜エレメント
US10974200B2 (en) 2015-12-28 2021-04-13 Nitto Denko Corporation Spiral membrane element
KR20180074770A (ko) * 2015-12-28 2018-07-03 닛토덴코 가부시키가이샤 스파이럴형 막 엘리먼트
WO2018043322A1 (ja) * 2016-09-02 2018-03-08 東レ株式会社 スパンボンド不織布およびその製造方法
JPWO2018043322A1 (ja) * 2016-09-02 2019-07-04 東レ株式会社 スパンボンド不織布およびその製造方法
JPWO2018043324A1 (ja) * 2016-09-02 2019-07-04 東レ株式会社 スパンボンド不織布およびその製造方法
US11998879B2 (en) 2017-03-24 2024-06-04 Mitsubishi Paper Mills Limited Semipermeable membrane support
EP3603778A4 (en) * 2017-03-24 2021-01-20 Mitsubishi Paper Mills Limited SEMI-PERMEABLE MEMBRANE SUPPORT BODY
JP2021525168A (ja) * 2018-06-22 2021-09-24 コーロン インダストリーズ インク ろ過性能が向上した不織布の製造方法
JP7220235B2 (ja) 2018-06-22 2023-02-09 コーロン インダストリーズ インク ろ過性能が向上した不織布の製造方法
US11976396B2 (en) 2018-06-22 2024-05-07 Kolon Industries, Inc. Method for producing nonwoven fabric with improved filtration performance
JP7256148B2 (ja) 2020-05-29 2023-04-11 三菱製紙株式会社 膜分離活性汚泥処理用半透膜用支持体及びその製造方法
JP2021186733A (ja) * 2020-05-29 2021-12-13 三菱製紙株式会社 膜分離活性汚泥処理用半透膜用支持体及びその製造方法
JP2022006929A (ja) * 2020-06-25 2022-01-13 三菱製紙株式会社 膜分離活性汚泥処理用半透膜用支持体及びその製造方法
JP7232795B2 (ja) 2020-06-25 2023-03-03 三菱製紙株式会社 膜分離活性汚泥処理用半透膜用支持体及びその製造方法

Also Published As

Publication number Publication date
CN104136104B (zh) 2018-08-24
EP2818229B1 (en) 2017-11-22
KR101950256B1 (ko) 2019-02-20
ES2657281T3 (es) 2018-03-02
JP6248629B2 (ja) 2017-12-20
EP2818229A4 (en) 2015-11-25
US20150060354A1 (en) 2015-03-05
CN104136104A (zh) 2014-11-05
EP2818229A1 (en) 2014-12-31
KR20140130422A (ko) 2014-11-10
JPWO2013125583A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6248629B2 (ja) 分離膜支持体とその製造方法、ならびに分離膜支持体を用いた分離膜および流体分離素子
JP5257004B2 (ja) 分離膜支持体並びにそれを用いた分離膜及び流体分離素子、それらの製造方法
JP5724180B2 (ja) 分離膜支持体およびその製造方法
JP6492662B2 (ja) 不織布、分離膜支持体、分離膜、流体分離素子および不織布の製造方法
JP6492441B2 (ja) 不織布の製造方法
JP5206277B2 (ja) 分離膜支持体の製造方法、並びに分離膜及び流体分離素子
JP2013071106A (ja) 分離膜支持体ならびにそれを用いた分離膜および流体分離素子
JP6919573B2 (ja) スパンボンド不織布およびその製造方法
JP5386901B2 (ja) 分離膜支持体並びにそれを用いた分離膜及び流体分離素子
JP5585105B2 (ja) 分離膜支持体ならびにそれを用いた分離膜および流体分離素子
JP2011005455A (ja) 分離膜支持体並びにそれを用いた分離膜および膜分離エレメント
JP5581779B2 (ja) 分離膜支持体の製造方法
JP2009061373A (ja) 分離膜支持体
JP5135955B2 (ja) 耐圧シートおよびそれを用いた流体分離素子
JP2019093366A (ja) 分離膜
JP2012045509A (ja) 分離膜支持体の製造方法
US20200385907A1 (en) Spunbonded nonwoven fabric and production method therefor
JP5811532B2 (ja) 分離膜支持体およびその製造方法、分離膜シートならびに膜分離エレメント
JP6380056B2 (ja) 分離膜支持体ならびにそれを用いた分離膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013510403

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018385

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380529

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013751733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013751733

Country of ref document: EP