WO2013118882A1 - 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器 - Google Patents

酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器 Download PDF

Info

Publication number
WO2013118882A1
WO2013118882A1 PCT/JP2013/053121 JP2013053121W WO2013118882A1 WO 2013118882 A1 WO2013118882 A1 WO 2013118882A1 JP 2013053121 W JP2013053121 W JP 2013053121W WO 2013118882 A1 WO2013118882 A1 WO 2013118882A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
absorbing
group
layer
container
Prior art date
Application number
PCT/JP2013/053121
Other languages
English (en)
French (fr)
Inventor
聡史 岡田
俊哉 高木
隆史 加柴
慎平 岩本
真一 池田
史裕 伊東
小川 俊
翔太 荒川
健一郎 薄田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013007769A external-priority patent/JP5975348B2/ja
Priority claimed from JP2013009176A external-priority patent/JP6064616B2/ja
Priority claimed from JP2013010498A external-priority patent/JP5954194B2/ja
Priority claimed from JP2013012444A external-priority patent/JP5954197B2/ja
Priority claimed from JP2013014562A external-priority patent/JP2014144584A/ja
Priority claimed from JP2013014493A external-priority patent/JP5954201B2/ja
Priority claimed from JP2013015002A external-priority patent/JP5971137B2/ja
Priority claimed from JP2013017248A external-priority patent/JP6048175B2/ja
Priority claimed from JP2013016602A external-priority patent/JP2014148566A/ja
Priority claimed from JP2013017330A external-priority patent/JP6060711B2/ja
Priority claimed from JP2013017424A external-priority patent/JP2014147322A/ja
Priority claimed from JP2013018696A external-priority patent/JP6089739B2/ja
Priority claimed from JP2013018203A external-priority patent/JP2014147344A/ja
Priority claimed from JP2013018216A external-priority patent/JP2014147346A/ja
Priority claimed from JP2013018142A external-priority patent/JP6051896B2/ja
Priority claimed from JP2013018243A external-priority patent/JP5971139B2/ja
Priority claimed from JP2013019543A external-priority patent/JP6024495B2/ja
Priority claimed from JP2013020299A external-priority patent/JP6051900B2/ja
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201380018249.9A priority Critical patent/CN104379662B/zh
Priority to US14/376,563 priority patent/US9732167B2/en
Priority to KR1020147022158A priority patent/KR20140132337A/ko
Priority to EP13747239.5A priority patent/EP2813544B1/en
Publication of WO2013118882A1 publication Critical patent/WO2013118882A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/16Holders for containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • B65D81/267Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants the absorber being in sheet form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3117Means preventing contamination of the medicament compartment of a syringe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/10Applications used for bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to an oxygen-absorbing resin composition, and particularly to an oxygen-absorbing resin composition containing at least a copolymer polyolefin compound having a tetralin ring and a transition metal catalyst.
  • the present invention also provides an oxygen-absorbing multilayer body, an oxygen-absorbing multilayer container, an oxygen-absorbing paper container, and a tube excellent in oxygen barrier performance and oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity.
  • the present invention relates to a container, an oxygen-absorbing PTP package, an oxygen-absorbing multilayer bottle and the like.
  • the present invention relates to a medical container having an oxygen barrier performance and an oxygen absorption function, a molded article including an oxygen-absorbing multilayer body, and more specifically, using the oxygen-absorbing multilayer body as a lid for a gas barrier molding container.
  • the present invention relates to an oxygen-absorbing sealed container and the like, and a storage method using them.
  • Oxygen absorber Prevents oxygen oxidation of various products that are easily altered or deteriorated by the influence of oxygen, such as food, beverages, pharmaceuticals, and cosmetics, and removes oxygen in the package that contains them for the purpose of long-term storage Oxygen absorber is used.
  • an oxygen absorbent containing iron powder as a main reaction agent is generally used from the viewpoint of oxygen absorption capacity, ease of handling, and safety.
  • this iron-based oxygen absorbent is sensitive to a metal detector, it has been difficult to use the metal detector for foreign object inspection.
  • the package which enclosed the iron-type oxygen absorber has a possibility of ignition, it cannot be heated with a microwave oven.
  • water is essential for the oxidation reaction of iron powder, the effect of oxygen absorption could only be exhibited if the material to be preserved was a high moisture type.
  • the container is made of a multilayer material in which an oxygen absorbing layer made of an oxygen absorbing resin composition in which an iron-based oxygen absorbent is blended with a thermoplastic resin, thereby improving the gas barrier property of the container and improving the container itself.
  • a packaging container having an oxygen absorbing function has been developed (see Patent Document 1). Specifically, in this multilayer material, an oxygen absorption layer made of a thermoplastic resin in which an iron-based oxygen absorbent is dispersed is provided between layers of a gas barrier multilayer film having a conventional structure in which a heat seal layer and a gas barrier layer are laminated.
  • this also applies to metal detectors used for detecting foreign substances such as food, so that metal detectors cannot be used for foreign object inspection, heating with a microwave oven is not possible, and stored objects are of high moisture content. There is a problem that only an effect is exhibited. Furthermore, there is a problem that the internal visibility is insufficient due to the problem of opacity.
  • iron powder when forming an oxygen-absorbing multilayer sheet using iron powder, since iron powder is used, its own weight is high, and there is a problem that a molding defect occurs during molding. For example, neck-in at the time of sheet forming, uneven thickness, and drawdown at the time of thermoforming are exemplified. Moreover, when it shape
  • an oxygen absorbent having an organic substance as a reaction main agent is desired.
  • an oxygen absorbent containing an organic substance as a main reaction agent an oxygen absorbent containing ascorbic acid as a main agent is known (see Patent Document 2).
  • an oxygen-absorbing resin composition comprising a resin and a transition metal catalyst
  • a resin composition comprising a polyamide, particularly a xylylene group-containing polyamide and a transition metal catalyst as an oxidizable organic component is known (see Patent Documents 3 and 4). Further, these Patent Documents 3 and 4 also exemplify oxygen absorbents, packaging materials, and multilayer multilayer films for packaging obtained by molding this resin composition.
  • an oxygen-absorbing resin composition that does not require moisture for oxygen absorption
  • an oxygen-absorbing resin composition comprising a resin having a carbon-carbon unsaturated bond and a transition metal catalyst is known (see Patent Document 5). .
  • composition for collecting oxygen a composition comprising a polymer containing a substituted cyclohexene functional group or a low molecular weight substance having the cyclohexene functional group bonded thereto and a transition metal is known (see Patent Document 6). .
  • Tubular containers are used to store a wide variety of items such as foods, pharmaceuticals, cosmetics, sanitary materials such as toothpaste, and chemicals such as adhesives. Many types of methods are known.
  • a container in which an aluminum foil is laminated as a gas barrier layer has been used for these tubular containers.
  • Aluminum foil is an excellent material that can completely block the permeation of gas such as oxygen, and has been used particularly as a container for pharmaceuticals.
  • an aluminum foil is made of an ethylene-vinyl alcohol copolymer or a polyamide obtained from metaxylylenediamine and adipic acid (hereinafter sometimes referred to as “nylon MXD6”).
  • nylon MXD6 ethylene-vinyl alcohol copolymer or a polyamide obtained from metaxylylenediamine and adipic acid
  • oxygen in the package containing them for the purpose of preventing oxygen oxidation of medicinal solutions in containers that are easily altered or deteriorated by the influence of oxygen and storing them for a long period of time.
  • An oxygen absorber that performs the removal is used.
  • a container filled with a chemical solution is handled in a state of being filled in an envelope made of a synthetic resin film in order to prevent the container from being contaminated before it is actually used. Since the container is made of a resin that transmits oxygen from the standpoint of hygiene and the like, the outer package needs to have gas barrier properties in order to prevent the content liquid from being altered by oxygen. However, there is some oxygen in the envelope after sealing, and oxygen can permeate with time even if a barrier envelope is used. There is also a need to prevent.
  • patches containing various medicinal ingredients as anti-inflammatory agents such as joint pain and muscle pain are sealed and stored using a film having a barrier property.
  • the film used for hermetic packaging When preserving a patch containing a medicinal ingredient, the film used for hermetic packaging must have a gas barrier property in order to prevent the medicinal ingredient from being altered by oxygen.
  • oxygen remaining in the package after sealing and oxygen permeate even in the case of a barrier package, so that it is necessary to remove these oxygens in order to suppress alteration of the medicinal component. Therefore, conventionally, the oxygen absorbent is filled and sealed together with the patch, or is filled and sealed in a packaging bag having an oxygen absorbing function.
  • PTP press-through packaging
  • containers and packagings such as PTP (press-through packaging) packages (also referred to as blister packages) are used for packaging drugs such as tablets and capsules, and granular foods.
  • the PTP package is formed, for example, with a plastic sheet such as a polyvinyl chloride resin or a polypropylene resin as a bottom material, forming a pocket portion for storing an object by performing pressure forming, vacuum forming, etc.
  • the material to be stored is stored in the package, for example, it is a package in a form in which a foil or film of a material that can be easily torn by hand or opened easily like an aluminum foil is laminated and sealed as a lid.
  • a transparent plastic sheet is used for the bottom material, so that an object to be stored stored in the pocket portion can be directly confirmed with the naked eye before opening. Further, when opening, the object to be preserved can be easily taken out by pushing the object to be preserved with a finger from the pocket portion side and breaking the lid material.
  • metal cans and glass bottles have problems with non-combustible waste disposal and weight reduction of packaging containers, and metal cans have a problem that metal components dissolve into the contents. Transfer to a plastic container such as a gas barrier tray has been performed.
  • Oxygen present in the packaging container is the main cause of the deterioration of the dried article and the decrease in flavor unique to the dried article during the distribution process and the product storage period.
  • glass ampules, vials, prefilled syringes, and the like have been conventionally used as medical packaging containers for filling and storing chemical solutions in a sealed state.
  • these glass containers are colored when a light-shielding glass container colored with metal is used, in which sodium ions and the like are eluted in the liquid in the container during storage, and a fine substance called flakes is generated.
  • the metal for use is mixed into the contents, and is easily broken by an impact such as dropping.
  • the specific gravity is relatively large, there is a problem that the medical packaging container is heavy. Therefore, development of alternative materials is expected. Specifically, plastics that are lighter than glass, such as polyester, polycarbonate, polypropylene, and cycloolefin polymers, are being considered as glass substitutes.
  • Patent Document 7 For example, a medical container made of a polyester resin material has been proposed (see Patent Document 7).
  • a multilayer container having a gas barrier layer as an intermediate layer has been studied. Specifically, a prefilled syringe with improved oxygen barrier properties, which has an innermost layer and an outermost layer made of a polyolefin-based resin, and an intermediate layer made of a resin composition excellent in oxygen barrier properties, has been presented (Patent Literature). 8).
  • a gas barrier layer such as polyamide obtained from metaxylylenediamine and adipic acid, ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinylidene chloride, aluminum foil, carbon coat, inorganic oxide deposition, etc. is used as the resin layer.
  • Laminated multilayer containers are also being considered.
  • examples of medical containers include artificial kidney hemodialyzers (dialyzers).
  • dialyzers For the housing of the dialyzer, polystyrene or polycarbonate is used as a transparent plastic that can be clearly seen.
  • polystyrene or polycarbonate is used as a transparent plastic that can be clearly seen.
  • polycarbonate having good impact resistance is more preferably used (see Patent Document 10).
  • Patent Document 2 has the problems that the oxygen absorption performance is low in the first place, and only the high moisture content of the object to be preserved exhibits the effect, and is relatively expensive.
  • Patent Document 3 since the resin composition of patent document 3 expresses an oxygen absorption function by containing a transition metal catalyst and oxidizing a xylylene group-containing polyamide resin, the polymer chain due to oxidative degradation of the resin after oxygen absorption. There is a problem that cutting occurs and the strength of the packaging container itself is reduced. Furthermore, this resin composition has a problem that oxygen absorption performance is still insufficient, and the object to be preserved exhibits only an effect of high moisture. Further, Patent Document 4 describes a method for improving delamination, but the effect is limited. Furthermore, this resin composition has a problem that oxygen absorption performance is still insufficient, and the object to be preserved exhibits only an effect of high moisture.
  • the oxygen-absorbing resin composition of Patent Document 5 generates a low molecular weight organic compound that becomes an odor component by breaking the polymer chain accompanying the oxidation of the resin in the same manner as described above, and generates odor after oxygen absorption. There's a problem.
  • composition of Patent Document 6 needs to use a special material containing a cyclohexene functional group, and this material still has a problem that it is relatively easy to generate an odor.
  • the above-mentioned conventional gas barrier multilayer containers and medical multilayer containers have insufficient basic performance such as oxygen barrier property, water vapor barrier property, chemical solution adsorption property, container durability, etc. Improvement is required from the viewpoint of storage stability.
  • the medical container made of polyester resin of Patent Document 7 has relatively excellent oxygen barrier property, the oxygen barrier property is insufficient to completely block oxygen, and the polyolefin resin Compared to a container made of, the water vapor barrier property is also inferior. Moreover, this polyester resin does not have oxygen absorption performance. Therefore, when oxygen enters the container from the outside, or oxygen remains in the head space existing above the contents of the container, there is a problem in that the chemical solution in the container cannot be prevented from deteriorating. there were.
  • the prefilled syringe of Patent Document 8 has relatively excellent oxygen barrier properties and water vapor barrier properties, but has insufficient oxygen barrier properties to completely block oxygen. And the oxygen barrier resin composition of an intermediate
  • the resin composition of Patent Document 9 has a problem that, as in Patent Documents 3 and 4 described above, a decrease in strength occurs due to oxidative degradation of the resin after oxidative absorption, and the strength of the packaging container itself decreases. Yes. Furthermore, this resin composition has a problem that oxygen absorption performance is still insufficient, and the object to be preserved exhibits only an effect of high moisture.
  • the housing of the dialyzer disclosed in Patent Document 10 has excellent transparency and impact resistance.
  • polycarbonate in order to apply to a container for storing and storing a chemical solution, polycarbonate has an oxygen barrier property and a water vapor barrier property. It is insufficient and has a problem in terms of long-term preservation of contents.
  • the oxygen absorbent filled in the sachet is stored as it is in the outer package as described above, the oxygen absorbent may be accidentally taken.
  • fixing the oxygen absorbent in the outer package so that it cannot be easily taken out from the outer package has a problem that the manufacturing process becomes very complicated and the productivity is poor.
  • the object to be stored is sealed after being stored in a container or package such as a PTP package, if this is performed in the air, air will be taken into the container or package and stored. As a matter of course, a certain amount of oxygen is taken into the container or package. As a result, the object to be preserved is affected by the mixed oxygen. In this case, although there is a difference in the degree of the influence depending on the chemical properties of the storage object, the medicinal components of the drug, the flavor and color of the food may be gradually lost after sealing. Moreover, since the longer the storage period or the distribution period after sealing, the greater the influence of oxygen, there is a possibility that the quality of the object to be stored is impaired. Therefore, the presence of even a small amount of oxygen cannot be ignored.
  • the present invention has been made in view of the above problems, and its purpose is to suppress the generation of odor after oxygen absorption without using a material sensitive to a metal detector, and has excellent oxygen absorption performance.
  • the object is to provide a novel oxygen-absorbing resin composition.
  • Another object of the present invention is to provide a novel oxygen-absorbing multilayer body having excellent oxygen-absorbing performance in which odor generation after oxygen absorption is suppressed without using a material sensitive to a metal detector, and the multilayer Oxygen-absorbing multilayer container containing body, oxygen-absorbing multilayer container, oxygen-absorbing sealed container using oxygen-absorbing multilayer body as a cover material for gas-barrier molded containers, oxygen-absorbing paper containers, tubular containers, oxygen-absorbing
  • An object of the present invention is to provide an oxygen-absorbing PTP package and an oxygen-absorbing multilayer bottle using the multilayer body as the bottom material of the oxygen-absorbing PTP package.
  • Another object of the present invention is to provide an oxygen-absorbing resin composition, an oxygen-absorbing multilayer body, and an oxygen containing the multilayer body, which have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity.
  • An object of the present invention is to provide an oxygen-absorbing PTP package and an oxygen-absorbing multilayer bottle used as the bottom material of the absorbent PTP package.
  • Another object of the present invention is that the formation of low molecular weight compounds after oxygen absorption is remarkably suppressed, and has excellent oxygen absorption performance, preferably also has excellent water vapor barrier performance, and is strong even during long-term storage.
  • Another object of the present invention is to provide an oxygen-absorbing medical multilayer molded container and an oxygen-absorbing prefilled syringe having excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity. There is.
  • Still another object of the present invention is to provide pulps, alcoholic beverages, liquid teas or pastes, fruit juices and / or vegetable juice teas, pulps and liquid teas while maintaining the color tone without impairing the flavor of the dried product.
  • Another object of the present invention is to provide a method for preserving pasty tea, fruit juice and / or vegetable juice, dried articles for a long period of time, and a method for preserving alcohols for a long period of time.
  • the present inventors have found that the above problem can be solved by using a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention has been completed. That is, the present invention provides the following ⁇ 1-1> to ⁇ 1-23>.
  • Each represents an integer, and at least one hydrogen atom is bonded to the benzylic position of the tetralin ring, where X is — (C ⁇ O) O—, — (C ⁇ O) NH—, —O (C ⁇ O) Represents a divalent group selected from the group consisting of —, —NH (C ⁇ O) — and — (CHR) s—, wherein s represents an integer of 0 to 12. Y represents — (CHR) t— T represents an integer of 0 to 12.
  • R represents a monovalent chemical species selected from the group consisting of a hydrogen atom, a methyl group and an ethyl group.
  • An oxygen-absorbing resin composition which is a copolymerized polyolefin compound containing a structural unit (b) having at least one tetralin ring selected from the group consisting of: ⁇ 1-2>
  • ⁇ 1-3> The above ⁇ 1-1> or ⁇ 1-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the oxygen-absorbing resin composition according to any one of 1-1-1 to ⁇ 1-3>.
  • ⁇ 1-5> Structural units in which the structural unit (a) is represented by the following formulas (4) and (5); At least one structural unit selected from the group consisting of:
  • the structural unit (b) is represented by the following formulas (6) and (7);
  • the oxygen-absorbing resin composition according to any one of the above ⁇ 1-1> to ⁇ 1-4> which is at least one structural unit selected from the group consisting of: ⁇ 1-6>
  • ⁇ 1-7> An oxygen-absorbing multilayer container comprising the oxygen-absorbing multilayer body according to ⁇ 1-6> above.
  • An oxygen-permeable layer containing a thermoplastic resin, an oxygen-absorbing layer comprising the oxygen-absorbing resin composition according to any one of ⁇ 1-1> to ⁇ 1-5>, and gas barrier properties An oxygen-absorbing multilayer container formed by thermoforming an oxygen-permeable layer of an oxygen-absorbing multilayer body comprising at least three layers, in which gas barrier layers containing substances are laminated in this order.
  • ⁇ 1-9> Contains a cover material containing the oxygen-absorbing multilayer body described in ⁇ 1-6> above, an inner layer containing a thermoplastic resin, a gas barrier layer containing a gas barrier substance, and a thermoplastic resin An oxygen-absorbing hermetically sealed container in which the sealant layer in the lid member and the inner layer in the gas-barrier shaped container are joined to each other.
  • ⁇ 1-10> An isolation layer containing a thermoplastic resin, an oxygen absorption layer comprising the oxygen-absorbing resin composition according to any one of the above ⁇ 1-1> to ⁇ 1-5>, and a gas barrier substance
  • An oxygen-absorbing paper container formed by boxing an oxygen-absorbing multilayer body comprising at least four layers in which a gas barrier layer and a paper base material layer are laminated in this order.
  • An inner layer containing a thermoplastic resin, an oxygen-absorbing layer comprising the oxygen-absorbing resin composition according to any one of the above ⁇ 1-1> to ⁇ 1-5>, and a gas barrier substance A tube-shaped container provided with an oxygen-absorbing multilayer body composed of at least three layers in which gas barrier layers to be contained are laminated in this order.
  • ⁇ 1-12> First resin layer containing at least polyester, oxygen-absorbing layer comprising the oxygen-absorbing resin composition according to any one of ⁇ 1-1> to ⁇ 1-5>, and polyester
  • An oxygen-absorbing medical multilayer molded container composed of at least three layers, in which a second resin layer containing at least the above is laminated in this order.
  • ⁇ 1-13> A prefilled syringe in which a medicine is stored in a sealed state in advance and can be dispensed by releasing the sealed state in use, wherein the prefilled syringe contains at least polyester A first resin layer, an oxygen-absorbing layer comprising the oxygen-absorbing resin composition according to any one of the above items ⁇ 1-1> to ⁇ 1-5>, and a second resin layer containing at least polyester An oxygen-absorbing prefilled syringe comprising a multilayer structure having at least three layers in this order.
  • Biopharmaceuticals are stored in the oxygen-absorbing medical multilayer molded container described in ⁇ 1-12> above or in the oxygen-absorbing prefilled syringe described in ⁇ 1-13> above Method.
  • a container filled with a chemical solution wherein the container filled with the chemical solution is stored in an oxygen-absorbing container using all or part of the oxygen-absorbing multilayer body according to ⁇ 1-6> above How to save.
  • the medicinal component-containing patch is stored in an oxygen-absorbing container using the oxygen-absorbing multilayer body described in the above ⁇ 1-6> in whole or in part. How to store patches.
  • An oxygen-absorbing bottom material formed by molding the oxygen-absorbing multilayer body according to the above ⁇ 1-6>, an inner layer containing a thermoplastic resin, and a gas barrier layer containing a gas barrier substance
  • an oxygen-absorbing PTP package formed by joining the sealant layer in the oxygen-absorbing bottom material and the inner layer in the gas-barrier lid material.
  • ⁇ 1-18> An oxygen-permeable layer containing a thermoplastic resin, an oxygen-absorbing layer comprising the oxygen-absorbing resin composition according to any one of the above ⁇ 1-1> to ⁇ 1-5>, and gas barrier properties
  • An oxygen-absorbing multilayer bottle having at least three layers in which gas barrier layers containing substances are laminated in this order from the inside.
  • ⁇ 1-19> A method for storing pulps, wherein the pulps are stored in an oxygen-absorbing container using all or part of the oxygen-absorbing multilayer body according to ⁇ 1-6> above.
  • ⁇ 1-20> A method for storing an alcoholic beverage, wherein the alcoholic beverage is stored in an oxygen-absorbing container using all or part of the oxygen-absorbing multilayer body according to ⁇ 1-6> above.
  • ⁇ 1-21> Liquid tea or paste-like tea stored in an oxygen-absorbing container using the oxygen-absorbing multilayer body according to ⁇ 1-6> in whole or in part as liquid tea or pasty tea How to save.
  • ⁇ 1-22> Fruit juice and / or vegetable juice is stored in an oxygen-absorbing container using all or part of the oxygen-absorbing multilayer body described in ⁇ 1-6> above. How to save.
  • ⁇ 1-23> A method for storing a dried article, wherein the dried article is stored in an oxygen-absorbing container using all or part of the oxygen-absorbing multilayer body according to ⁇ 1-6> above.
  • the present inventors have found that the above problem can be solved by using a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the headline and the present invention were completed. That is, the present invention provides the following ⁇ 2-1> to ⁇ 2-4>.
  • a structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • An oxygen-absorbing resin composition which is a copolymerized polyolefin compound containing ⁇ 2-2>
  • object. ⁇ 2-3> The above ⁇ 2-1> or ⁇ 2-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the oxygen-absorbing resin composition according to any one of 2-1> to ⁇ 2-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the present inventors have found that the above-mentioned problems can be solved by using a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention provides the following ⁇ 3-1> to ⁇ 3-6>.
  • ⁇ 3-1> A sealant layer containing a thermoplastic resin, an oxygen absorbing layer composed of an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier material are laminated in this order.
  • An oxygen-absorbing multilayer body comprising at least three layers, wherein the copolymerized polyolefin compound is at least one structural unit selected from the group consisting of structural units represented by the general formula (1) (a And a structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • Oxygen-absorbing multilayer body ⁇ 3-2> The oxygen-absorbing multilayer according to ⁇ 3-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. body.
  • ⁇ 3-3> The above ⁇ 3-1> or ⁇ 3-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • ⁇ 3-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the oxygen-absorbing multilayer body according to any one of 3-1> to ⁇ 3-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b) The above ⁇ 3-1> to ⁇ 3-4>, which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) Oxygen-absorbing multilayer body.
  • An oxygen-absorbing multilayer container comprising the oxygen-absorbing multilayer body according to any one of ⁇ 3-1> to ⁇ 3-5> above.
  • the present inventors have used the above-described copolymer polyolefin compound having a predetermined tetralin ring and a transition metal catalyst in at least one layer of the multilayer container.
  • the present invention has been completed by finding that the problems can be solved. That is, the present invention provides the following ⁇ 4-1> to ⁇ 4-5>.
  • ⁇ 4-1> An oxygen-permeable layer containing a thermoplastic resin, an oxygen-absorbing layer comprising an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas-barrier substance in this order.
  • An oxygen-absorbing multilayer container formed by thermoforming with an oxygen-permeable layer of an oxygen-absorbing multilayer body consisting of at least three layers laminated, wherein the copolymerized polyolefin compound is represented by the general formula (1) And at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • An oxygen-absorbing multilayer container which is a copolymerized polyolefin compound containing a structural unit (b) having: ⁇ 4-2> The oxygen-absorbing multilayer according to ⁇ 4-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. container.
  • ⁇ 4-3> The above ⁇ 4-1> or ⁇ 4-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • ⁇ 4-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5).
  • the present inventors have found that the above-mentioned problems can be solved by using a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention provides the following ⁇ 5-1> to ⁇ 5-5>.
  • a sealant layer containing a thermoplastic resin, an oxygen absorbing layer composed of an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier material are laminated in this order.
  • the laminate containing an oxygen-absorbing multilayer body composed of at least three layers, an inner layer containing a thermoplastic resin, a gas barrier layer containing a gas barrier substance, and an outer layer containing a thermoplastic resin were laminated in this order.
  • a gas barrier molding container comprising at least three layers, wherein the sealant layer in the lid member and the inner layer in the gas barrier molding container are joined together, wherein the copolymerized polyolefin compound Is at least one structure selected from the group consisting of structural units represented by the above general formula (1) Copolymer polyolefin containing unit (a) and structural unit (b) having at least one tetralin ring selected from the group consisting of structural units represented by general formulas (2) and (3) above An oxygen-absorbing sealed container that is a compound.
  • ⁇ 5-2> The oxygen-absorbing hermetic seal according to ⁇ 5-1>, wherein the transition metal catalyst includes at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. container.
  • ⁇ 5-3> The above ⁇ 5-1> or ⁇ 5-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal amount with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • Oxygen-absorbing sealed container. ⁇ 5-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the oxygen-absorbing sealed container according to any one of 5-1> to ⁇ 5-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 5-1> to ⁇ 5-4> which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) Oxygen-absorbing sealed container.
  • the present inventors contain a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst in at least one layer of the multilayer body constituting the paper container.
  • the present invention has been completed by finding that the above problems can be solved by using an oxygen-absorbing resin composition. That is, the present invention provides the following ⁇ 6-1> to ⁇ 6-5>.
  • Isolation layer containing thermoplastic resin, oxygen absorption layer comprising oxygen-absorbing resin composition containing copolymerized polyolefin compound and transition metal catalyst, gas barrier layer containing gas barrier substance, and paper substrate
  • An oxygen-absorbing paper container obtained by boxing an oxygen-absorbing multilayer body comprising at least four layers, in which layers are laminated in this order, wherein the copolymerized polyolefin compound is represented by the general formula (1)
  • An oxygen-absorbing paper container which is a copolymerized polyolefin compound containing the structural unit (b).
  • ⁇ 6-2> The oxygen-absorbing paper according to ⁇ 6-1>, wherein the transition metal catalyst includes at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. container.
  • ⁇ 6-3> The above ⁇ 6-1> or ⁇ 6-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • Oxygen-absorbing paper container. ⁇ 6-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the oxygen-absorbing paper container according to any one of 6-1> to ⁇ 6-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 6-1> to ⁇ 6-4> which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) Oxygen-absorbing paper container.
  • the present inventors have determined that oxygen containing a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst in at least one of the multilayer bodies constituting the tubular container. It has been found that the above problems can be solved by using the absorbent resin composition, and the present invention has been completed. That is, the present invention provides the following ⁇ 7-1> to ⁇ 7-5>.
  • ⁇ 7-1> An inner layer containing a thermoplastic resin, an oxygen absorbing layer composed of an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier material were laminated in this order.
  • a tube-shaped container comprising an oxygen-absorbing multilayer body comprising at least three layers, wherein the copolymerized polyolefin compound is at least one selected from the group consisting of structural units represented by the general formula (1)
  • a copolymer comprising the structural unit (a) and the structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • ⁇ 7-3> The above ⁇ 7-1> or ⁇ 7-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • Tube-shaped container. ⁇ 7-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b) The above ⁇ 7-1> to ⁇ 7-4>, which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) Tube-shaped container.
  • the present inventors have used an oxygen-absorbing layer using a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst, and polyester.
  • the inventors have found that the above-mentioned problems can be solved by laminating resin layers, and have completed the present invention. That is, the present invention provides the following ⁇ 8-1> to ⁇ 8-10>.
  • First resin layer containing at least polyester, oxygen-absorbing layer composed of oxygen-absorbing resin composition containing copolymerized polyolefin compound and transition metal catalyst, and second resin layer containing at least polyester Are laminated in this order, and an oxygen-absorbing medical multilayer molded container comprising at least three layers, wherein the copolymerized polyolefin compound is at least selected from the group consisting of structural units represented by the general formula (1) 1 type of structural unit (a) and a structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3)
  • ⁇ 8-2> The oxygen-absorbing property according to ⁇ 8-1>, wherein the transition metal catalyst includes at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper.
  • Medical multilayer molded container. ⁇ 8-3> The above ⁇ 8-1> or ⁇ 8-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • Oxygen-absorbing medical multilayer molded container. ⁇ 8-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the oxygen-absorbing medical multilayer molded container according to any one of 8-1> to ⁇ 8-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b) The above ⁇ 8-1> to ⁇ 8-4>, which is at least one structural unit selected from the group consisting of the structural units represented by the formulas (6) and (7).
  • Oxygen-absorbing medical multilayer molded container is at least one structural unit selected from the group consisting of structural units represented by the formulas (6) and (7).
  • the polyester is such that 70 mol% or more of dicarboxylic acid units are terephthalic acid, isophthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2 , 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid derived from one or more dicarboxylic acids selected from the group, ⁇ 8-1> to ⁇ 8-5> Oxygen-absorbing medical multilayer container.
  • ⁇ 8-7> The oxygen-absorbing medicine according to any one of ⁇ 8-1> to ⁇ 8-5>, wherein the polyester is derived from terephthalic acid in an amount of 70 mol% or more in the dicarboxylic acid unit.
  • ⁇ 8-8> The oxygen-absorbing medical use according to any one of the above ⁇ 8-1> to ⁇ 8-5>, wherein 90% by mole or more of the dicarboxylic acid unit is derived from terephthalic acid. Multi-layer molded container.
  • ⁇ 8-9> The polyester according to any one of the above ⁇ 8-1> to ⁇ 8-5>, wherein 70% by mole or more in the dicarboxylic acid unit is derived from 2,6-naphthalenedicarboxylic acid.
  • ⁇ 8-10> The polyester according to any one of the above ⁇ 8-1> to ⁇ 8-5>, wherein 90% by mole or more in the dicarboxylic acid unit is a 2,6-naphthalenedicarboxylic acid skeleton. Oxygen-absorbing medical multilayer container.
  • the present inventors have developed an oxygen-absorbing layer using a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst, and a resin layer using a polyester. It was found that the above-mentioned problems can be solved by laminating, and the present invention was completed. That is, the present invention provides the following ⁇ 9-1> to ⁇ 9-10>.
  • ⁇ 9-1> A prefilled syringe that contains a drug in a sealed state in advance and can release the sealed state when the drug is used, and the prefilled syringe contains at least polyester.
  • the copolymer polyolefin compound comprises at least one structural unit (a) selected from the group consisting of the structural unit (a) represented by the general formula (1), and the general formula (2). And a structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by (3) and (3).
  • An oxygen-absorbing prefilled syringe which is a copolymerized polyolefin compound.
  • ⁇ 9-2> The oxygen-absorbing property according to ⁇ 9-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. Prefilled syringe.
  • ⁇ 9-3> The above ⁇ 9-1> or ⁇ 9-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound. Oxygen-absorbing prefilled syringe.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the oxygen-absorbing prefilled syringe according to any one of 9-1> to ⁇ 9-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 9-1> to ⁇ 9-4> which is at least one structural unit selected from the group consisting of the structural units represented by the formulas (6) and (7). Oxygen-absorbing prefilled syringe.
  • dicarboxylic acid units 70 mol% or more of dicarboxylic acid units is terephthalic acid, isophthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2 , 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid derived from one or more dicarboxylic acids selected from the group described in any one of ⁇ 9-1> to ⁇ 9-5> above Oxygen absorbing prefilled syringe.
  • ⁇ 9-7> The oxygen-absorbing prefilled syringe according to any one of the above ⁇ 9-1> to ⁇ 9-5>, wherein the polyester is derived from terephthalic acid in an amount of 70 mol% or more in the dicarboxylic acid unit. . ⁇ 9-8>
  • the oxygen-absorbing prefilled syringe according to any one of the above ⁇ 9-1> to ⁇ 9-5>, wherein 90% by mole or more of the polyester is derived from terephthalic acid. . ⁇ 9-9> The above polyester according to any one of ⁇ 9-1> to ⁇ 9-5>, wherein 70% by mole or more of the dicarboxylic acid unit is derived from 2,6-naphthalenedicarboxylic acid.
  • Oxygen absorbing prefilled syringe ⁇ 9-10> The above polyester according to any one of ⁇ 9-1> to ⁇ 9-5>, wherein 90% by mole or more in the dicarboxylic acid unit is a 2,6-naphthalenedicarboxylic acid skeleton. Oxygen absorbing prefilled syringe.
  • a biopharmaceutical is a first resin layer containing at least a polyester, an oxygen absorbing layer comprising an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a first containing at least a polyester.
  • a biopharmaceutical storage method wherein two resin layers are laminated in this order and stored in an oxygen-absorbing medical multilayer molded container comprising at least three layers, wherein the copolymerized polyolefin compound is represented by the general formula (1) At least one structural unit (a) selected from the group consisting of the structural units represented, and at least one selected from the group consisting of the structural units represented by the general formulas (2) and (3) A method for preserving a biopharmaceutical, which is a copolymerized polyolefin compound containing a structural unit (b) having a tetralin ring.
  • ⁇ 10-2> The biopharmaceutical according to the above ⁇ 10-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. Preservation method.
  • ⁇ 10-3> The above ⁇ 10-1> or ⁇ 10-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the biopharmaceutical storage method according to any one of 10-1> to ⁇ 10-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 10-1> to ⁇ 10-4> which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) For preserving biopharmaceuticals.
  • ⁇ 10-6> In the polyester, 70 mol% or more of dicarboxylic acid units is terephthalic acid, isophthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2
  • the above ⁇ 10-1> to ⁇ 10-5> which are derived from one or more dicarboxylic acids selected from the group consisting of 1,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid.
  • Biopharmaceutical storage method Biopharmaceutical storage method.
  • ⁇ 10-7> The biopharmaceutical storage method according to any one of the above ⁇ 10-1> to ⁇ 10-5>, wherein 70% by mole or more of the polyester is derived from terephthalic acid in the dicarboxylic acid unit. . ⁇ 10-8>
  • the biopharmaceutical storage method according to any one of the above ⁇ 10-1> to ⁇ 10-5>, wherein 90% by mole or more of the polyester is derived from terephthalic acid in the dicarboxylic acid unit. . ⁇ 10-9> The polyester according to any one of the above ⁇ 10-1> to ⁇ 10-5>, wherein 70% by mole or more in the dicarboxylic acid unit is derived from 2,6-naphthalenedicarboxylic acid.
  • Biopharmaceutical storage method ⁇ 10-10> The polyester according to any one of the above ⁇ 10-1> to ⁇ 10-5>, wherein 90% by mole or more in the dicarboxylic acid unit is a 2,6-naphthalenedicarboxylic acid skeleton. Biopharmaceutical storage method.
  • the present inventors have determined that the container filled with the chemical solution is absorbed with oxygen by a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by storing the functional resin composition in a container used for one layer of the container. That is, the present invention provides the following ⁇ 11-1> to ⁇ 11-5>.
  • a container filled with a chemical solution is provided with a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier substance.
  • a method for storing a container filled with a chemical solution wherein the container is filled with a gas barrier layer and is stored in an oxygen-absorbing container using all or part of an oxygen-absorbing multilayer body composed of at least three layers.
  • the copolymerized polyolefin compound is represented by at least one structural unit (a) selected from the group consisting of structural units represented by the general formula (1), and the general formulas (2) and (3).
  • the transition metal catalyst includes at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. How to store the container.
  • the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound. To store a container filled with the chemical solution.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 11-1> to ⁇ 11-4> which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) To store a container filled with the chemical solution.
  • the present inventors have determined that the patch containing a medicinal component is an oxygen-absorbing agent comprising a copolymer polyolefin compound having a predetermined tetralin ring and a transition metal catalyst. It discovered that the said subject was solved by preserve
  • a patch containing a medicinal component, a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier substance This is a method for preserving a patch containing a medicinal component, which is stored in an oxygen-absorbing container in which all or part of an oxygen-absorbing multilayer body composed of at least three layers, in which gas barrier layers containing are laminated in this order.
  • the copolymerized polyolefin compound is at least one structural unit (a) selected from the group consisting of structural units represented by the general formula (1), and the general formulas (2) and (3).
  • a medicinal effect comprising a copolymerized polyolefin compound containing at least one tetralin ring-containing structural unit (b) selected from the group consisting of the structural units represented Preservation method of the patch containing the minute.
  • the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. How to store the patch.
  • the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the present inventors have used the oxygen-absorbing resin composition comprising a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst, so that the above problem can be solved.
  • the present invention has been completed. That is, the present invention provides the following ⁇ 13-1> to ⁇ 13-5>.
  • ⁇ 13-1> A sealant layer containing a thermoplastic resin, an oxygen absorbing layer composed of an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier material are laminated in this order.
  • An oxygen-absorbing PTP package in which the sealant layer in the oxygen-absorbing bottom material and the inner layer in the gas-barrier lid material are joined to each other, and the copolymer polyolefin The compound is at least one structural unit selected from the group consisting of structural units represented by the general formula (1) ( a copolymerized polyolefin compound containing a) and a structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • An oxygen-absorbing PTP package ⁇ 13-2> The oxygen-absorbing PTP according to ⁇ 13-1>, wherein the transition metal catalyst includes at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper.
  • Packaging body ⁇ 13-3> The above ⁇ 13-1> or ⁇ 13-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the oxygen-absorbing PTP package according to any one of 13-1> to ⁇ 13-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 13-1> to ⁇ 13-4> which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) Oxygen-absorbing PTP package.
  • the present inventors have used the above-described copolymer polyolefin compound having a predetermined tetralin ring and a transition metal catalyst in at least one layer of the multilayer bottle.
  • the present invention has been completed by finding that the problems can be solved. That is, the present invention provides the following ⁇ 14-1> to ⁇ 14-6>.
  • the oxygen-absorbing multilayer bottle having at least three layers laminated in this order, wherein the copolymerized polyolefin compound is at least one selected from the group consisting of structural units represented by the general formula (1)
  • a copolymer comprising the structural unit (a) and the structural unit (b) having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • ⁇ 14-2> The oxygen-absorbing multilayer according to ⁇ 14-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper Bottle.
  • ⁇ 14-3> The above ⁇ 14-1> or ⁇ 14-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b) The above ⁇ 14-1> to ⁇ 14-4>, which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) Oxygen absorbing multilayer bottle.
  • ⁇ 14-6> The oxygen-absorbing multilayer bottle according to any one of the above ⁇ 14-1> to ⁇ 14-5>, wherein the oxygen-absorbing multilayer bottle is obtained by coextrusion blow. .
  • the present inventors have used the oxygen-absorbing resin composition comprising a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst for one layer of the pulp.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by storing in a container. That is, the present invention provides the following ⁇ 15-1> to ⁇ 15-5>.
  • a pulp comprising a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier substance
  • the copolymerized polyolefin compound is the above-mentioned Selected from the group consisting of at least one structural unit (a) selected from the group consisting of structural units represented by general formula (1) and the structural units represented by general formulas (2) and (3) above
  • a method for preserving fruit pulp which is a copolymerized polyolefin compound containing the structural unit (b) having at least one tetralin ring.
  • ⁇ 15-2> Preservation of pulp according to the above ⁇ 15-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel and copper Method.
  • ⁇ 15-3> The above ⁇ 15-1> or ⁇ 15-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound. To preserve the flesh of the fruit.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio. 15.
  • the method for preserving pulp according to any one of 15-1> to ⁇ 15-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b) Any one of the above ⁇ 15-1> to ⁇ 15-4>, which is at least one structural unit selected from the group consisting of the structural units represented by the formulas (6) and (7). To preserve the flesh of the fruit.
  • an alcoholic beverage is a layer of an oxygen-absorbing resin composition comprising a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by storing in the container used in the above. That is, the present invention provides the following ⁇ 16-1> to ⁇ 16-5>.
  • An alcoholic beverage, a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier substance are stored in an oxygen-absorbing container in which all or part of an oxygen-absorbing multilayer body consisting of at least three layers is laminated in this order.
  • a storage unit for alcoholic beverages which is a copolymerized polyolefin compound containing at least one tetralin ring-containing structural unit (b) Law.
  • the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel and copper Method.
  • ⁇ 16-3> The above ⁇ 16-1> or ⁇ 16-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal amount with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b) The above-mentioned ⁇ 16-1> to ⁇ 16-4>, which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7) To store alcoholic beverages.
  • liquid tea or pasty tea has oxygen absorption comprising a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by storing the functional resin composition in a container used for one layer of the container. That is, the present invention provides the following ⁇ 17-1> to ⁇ 17-5>.
  • a liquid tea or pasty tea a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier substance.
  • a method for preserving liquid tea or pasty tea comprising storing gas barrier layers contained in this order in an oxygen-absorbing container using all or part of an oxygen-absorbing multilayer body comprising at least three layers,
  • the copolymerized polyolefin compound is represented by at least one structural unit (a) selected from the group consisting of structural units represented by the general formula (1), and the general formulas (2) and (3).
  • ⁇ 17-2> The liquid tea or paste according to the above ⁇ 17-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. How to save tea.
  • ⁇ 17-3> The above ⁇ 17-1> or ⁇ 17-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound. Of preserving liquid tea or pasty tea.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above-described ⁇ 17-1> to ⁇ 17-4> which is at least one structural unit selected from the group consisting of structural units represented by the above formulas (6) and (7). Of preserving liquid tea or pasty tea.
  • the present inventors have found that fruit juice and / or vegetable juice is absorbed with oxygen by a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by storing the functional resin composition in a container used for one layer of the container. That is, the present invention provides the following ⁇ 18-1> to ⁇ 18-5>.
  • a fruit juice and / or vegetable juice a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier substance.
  • a method for preserving fruit juices and / or vegetable juices comprising storing gas barrier layers contained in this order in an oxygen-absorbing container using all or part of an oxygen-absorbing multilayer body comprising at least three layers,
  • the copolymerized polyolefin compound is represented by at least one structural unit (a) selected from the group consisting of structural units represented by the general formula (1), and the general formulas (2) and (3).
  • ⁇ 18-2> The fruit juice and / or the above-described ⁇ 18-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. How to save vegetable juice.
  • ⁇ 18-3> The above ⁇ 18-1> or ⁇ 18-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the copolymerized polyolefin compound. Of preserving fruit juice and / or vegetable juice.
  • the content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in terms of molar ratio.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 18-1> to ⁇ 18-4> which is at least one structural unit selected from the group consisting of structural units represented by the formulas (6) and (7). Of preserving fruit juice and / or vegetable juice.
  • the present inventors have determined that the dry article has an oxygen-absorbing resin composition comprising a copolymerized polyolefin compound having a predetermined tetralin ring and a transition metal catalyst in a container.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by storing in the container used in the above. That is, the present invention provides the following ⁇ 19-1> to ⁇ 19-5>.
  • a dry article, a sealant layer containing a thermoplastic resin, an oxygen absorbing layer comprising an oxygen absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst, and a gas barrier layer containing a gas barrier substance are stored in an oxygen-absorbing container using all or part of an oxygen-absorbing multi-layer body consisting of at least three layers, wherein the copolymerized polyolefin compound is Selected from the group consisting of at least one structural unit (a) selected from the group consisting of structural units represented by general formula (1) and the structural units represented by general formulas (2) and (3) above
  • ⁇ 19-2> Storage of a dried article according to the above ⁇ 19-1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper.
  • Method. ⁇ 19-3> The above ⁇ 19-1> or ⁇ 19-2>, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal amount with respect to 100 parts by mass of the copolymerized polyolefin compound.
  • Storage method for dried articles. ⁇ 19-4> The content ratio of the structural unit (a) to the content ratio of the structural unit (b) contained in the copolymerized polyolefin compound is 1/99 to 99/1 in molar ratio.
  • the method for preserving a dry article according to any one of 19-1> to ⁇ 19-3>.
  • the structural unit (a) is at least one structural unit selected from the group consisting of structural units represented by the above formulas (4) and (5), and the structural unit (b)
  • the above ⁇ 19-1> to ⁇ 19-4> which is at least one structural unit selected from the group consisting of the structural units represented by the formulas (6) and (7). Storage method for dried articles.
  • an oxygen-absorbing resin composition having excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, an oxygen-absorbing multilayer body, and an oxygen containing the multilayer body Absorbing multilayer container, oxygen-absorbing multilayer container, oxygen-absorbing sealed container using oxygen-absorbing multilayer body as a cover material for gas-barrier molded container, oxygen-absorbing paper container, tubular container, oxygen-absorbing multilayer body at the bottom
  • the oxygen-absorbing PTP package used as the material, the oxygen-absorbing multilayer bottle, the container filled with the chemical solution using the oxygen-absorbing multilayer body, and the method of storing the patch containing the medicinal component can be realized.
  • oxygen-absorbing resin compositions and the like can absorb oxygen regardless of the presence or absence of moisture in the object to be preserved, and do not generate odor after oxygen absorption.
  • foods, cooked foods, beverages It can be used in a wide range of applications regardless of the target, such as pharmaceuticals and health foods.
  • an oxygen-absorbing resin composition that is insensitive to a metal detector can be realized.
  • the strength of the copolymerized polyolefin compound due to oxidation is very small even after oxygen absorption, and the oxygen absorbing layer strength is maintained even in long-term use.
  • Absorbent multilayer body and oxygen-absorbing multilayer container including the multilayer body, oxygen-absorbing multilayer container, oxygen-absorbing sealed container using the oxygen-absorbing multilayer body as a lid for a gas barrier molded container, oxygen-absorbing paper container, Tubular containers and oxygen-absorbing multilayer bottles can also be realized. Further, since the oxygen-absorbing multilayer body has good internal visibility, a container filled with a chemical solution and a patch containing a medicinal component can be suitably stored and used as a bottom material of an oxygen-absorbing PTP package. It is preferable.
  • vials and prefilled have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, good oxygen barrier properties, and excellent water vapor barrier in a preferred embodiment.
  • An oxygen-absorbing medical multilayer molded container such as a syringe can be realized.
  • the oxygen-absorbing medical multilayer molded container can absorb oxygen regardless of the presence or absence of moisture in the stored object.
  • the oxygen-absorbing medical treatment in which delamination does not easily occur because the decrease in strength of the copolymerized polyolefin compound having a tetralin ring due to oxidation is extremely small after oxygen absorption and the strength of the oxygen-absorbing layer is maintained even in long-term use.
  • a multilayer molded container for use and an oxygen-absorbing PTP package can also be realized, and an object to be stored can be suitably stored. Furthermore, since the generation of low molecular weight organic compounds after oxygen absorption is remarkably suppressed, it is possible to realize an oxygen-absorbing medical multilayer molded container in which the content of the low molecular weight organic compounds is extremely small. Therefore, the oxygen-absorbing medical multilayer molded container of the present invention is particularly useful for storing pharmaceuticals, biopharmaceuticals, medical products and the like that are required to be stored under a low oxygen concentration.
  • biopharmaceuticals can be stored under low oxygen concentration, it is possible to suppress deterioration of biopharmaceuticals and decrease in efficacy. Furthermore, in the medical multilayer container used in the present invention, since the generation of low molecular organic substances after oxygen absorption is suppressed, according to the present invention, it is possible to prevent impurities from being mixed into the contents. In addition, the medical multilayer container used in the present invention has very little deterioration of the copolymerized polyolefin compound having a tetralin ring due to oxidation even after oxygen absorption, and the strength of the container is maintained even in long-term use. Biopharmaceuticals can be stored for a long time.
  • the pulps, alcoholic beverages, liquid tea or paste-like tea juice and / or vegetable juices pulps that do not impair the flavor of the dried article, retain the color tone, and have no odor. It is possible to provide a method capable of storing alcoholic beverages, liquid tea or pasty tea juice and / or vegetable juice, and dried articles for a long period of time. Further, even after long-term storage, the containers for storing them retain strength.
  • the oxygen-absorbing resin composition of the present embodiment is a structural unit (a) that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1), and A copolymerized polyolefin compound containing the structural unit (b) which is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) (Hereinafter also simply referred to as “tetralin ring-containing copolymer polyolefin compound”) and at least a transition metal catalyst.
  • the tetralin ring-containing copolymer polyolefin compound of this embodiment is a structural unit (a) that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1), And a structural unit (b) which is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formulas (2) and (3).
  • the structural unit (a) represented by the general formula (1) is preferably at least one selected from the group consisting of structural units represented by the above formulas (4) and (5).
  • the structural unit (b) represented by the general formula (2) is preferably at least one selected from the group consisting of structural units represented by the above formulas (6) and (7).
  • “containing a structural unit” means that the compound has one or more of the structural unit.
  • Such a structural unit is preferably contained as a repeating unit in the tetralin ring-containing copolymer polyolefin compound.
  • the tetralin ring-containing copolymer polyolefin compound may be either a random copolymer of the structural unit (a) and the structural unit (b) or a block copolymer of the structural unit (a) and the structural unit (b). .
  • the form of copolymerization of these structural units may be, for example, alternating copolymerization or graft copolymerization.
  • the tetralin ring-containing copolymer polyolefin compound may contain other structural units other than the structural unit (a) and the structural unit (b), and the structural unit (a), the structural unit (b), and the other structural units. Any of a random copolymer with a structural unit and the block copolymer of the said structural unit (a), a structural unit (b), and another structural unit may be sufficient. Alternatively, the form of copolymerization of these structural units may be, for example, alternating copolymerization or graft copolymerization.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 (Denoted as “R 1 to R 11 ”, the same applies hereinafter) (first monovalent substituent, second monovalent substituent, and third monovalent substitution) Group) is a halogen atom (for example, chlorine atom, bromine atom, iodine atom), alkyl group (preferably linear, branched or cyclic having 1 to 15 carbon atoms, more preferably 1 to 6 carbon atoms).
  • Alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group), alkenyl group (preferably having carbon number) 2 to 10, more preferably a straight chain having 2 to 6 carbon atoms , Branched or cyclic alkenyl groups such as vinyl and allyl groups, alkynyl groups (preferably alkynyl groups having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms such as ethynyl groups and propargyl groups) ), An aryl group (preferably an aryl group having 6 to 16 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group or a naphthyl group), a heterocyclic group (preferably having a carbon number of 1 to
  • An aryloxy group having ⁇ 8 for example, a phenoxy group, an acyl group (including a formyl group, preferably an alkylcarbonyl group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, preferably 7 carbon atoms.
  • an arylcarbonyl group having 7 to 9 carbon atoms such as an acetyl group, a pivaloyl group or a benzoyl group
  • an amino group preferably having a carbon number of 1 to 10, more preferably 1 to 6 carbon atoms).
  • Alkylamino groups preferably an anilino group having 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms.
  • Heterocyclic amino group for example, amino group, methylamino group, anilino group), mercapto group, alkylthio group (preferably an alkylthio group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, for example, methylthio group) , An ethylthio group), an arylthio group (preferably an arylthio group having 6 to 12 carbon atoms, more preferably an arylthio group having 6 to 8 carbon atoms, such as a phenylthio group), a heterocyclic thio group (preferably having 2 to 10 carbon atoms, More preferably, the heterocyclic thio group having 1 to 6 carbon atoms, such as a 2-benzothiazolylthi
  • the hydrogen atom is a substituent T (wherein the substituent T is the monovalent substituent R 1 to R 11 described above). It may be further substituted with the same meaning as described. Specific examples thereof include an alkyl group substituted with a hydroxy group (eg, hydroxyethyl group), an alkyl group substituted with an alkoxy group (eg, methoxyethyl group), and an alkyl group substituted with an aryl group (eg, benzyl).
  • a hydroxy group eg, hydroxyethyl group
  • an alkyl group substituted with an alkoxy group eg, methoxyethyl group
  • an alkyl group substituted with an aryl group eg, benzyl
  • an alkyl group substituted with a primary or secondary amino group eg, aminoethyl group
  • an aryl group substituted with an alkyl group eg, p-tolyl group
  • an aryl substituted with an alkyl group eg, 2-methylphenoxy group
  • An oxy group for example, 2-methylphenoxy group and the like can be mentioned, but not limited thereto.
  • the monovalent substituents R 1 to R 11 have a monovalent substituent T
  • the number of carbons described above does not include the number of carbons of the substituent T.
  • a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group.
  • X represents — (C ⁇ O) O—, — (C ⁇ O) NH—, —O (C ⁇ O) —, —NH.
  • Y represents — (CHR) t—, and t represents an integer of 0 to 12.
  • R represents a monovalent chemical species selected from the group consisting of a hydrogen atom (—H), a methyl group (—CH 3 ), and an ethyl group (—C 2 H 5 ).
  • the tetralin ring-containing copolymer polyolefin compound of the present embodiment is obtained by copolymerizing a vinyl compound (I) having a tetralin ring and another vinyl compound (II).
  • vinyl compound (I) which has a tetralin ring used by this embodiment, the vinyl compound selected from the group which consists of a compound represented by the following general formula (8) or (9) is mentioned, for example.
  • the vinyl compound (I) having a tetralin ring can be used alone or in combination of two or more. (Wherein R 5 to R 7 each independently represents a hydrogen atom or a second monovalent substituent, and R 8 to R 11 each independently represents a third monovalent substituent.
  • the second monovalent substituent and the third monovalent substituent are each independently a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, hydroxy group, At least one selected from the group consisting of carboxyl group, ester group, amide group, nitro group, alkoxy group, aryloxy group, acyl group, amino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group and imide group a seed, it may further have a substituent, and when R 8, R 9, R 10 or R 11 there are a plurality, the plurality of R 8, R 9, R 10 or R 11 are each M is 0 to 3, n is 0 to 7, p is 0 to 6, q is an integer of 0 to 4, and at least one is present at the benzyl position of the tetralin ring.
  • X is — (C ⁇ O) O—, — (C ⁇ O) NH—, —O (C ⁇ O) —, —NH (C ⁇ O) — and — (CHR) s represents a divalent group selected from the group consisting of s-, s represents an integer of 0 to 12.
  • Y represents-(CHR) t-, and t represents an integer of 0 to 12.
  • R represents A monovalent chemical species selected from the group consisting of —H, —CH 3 , and —C 2 H 5 is shown.
  • vinyl compound (II) used by this embodiment the vinyl compound selected from the group which consists of a compound represented by following General formula (10) is mentioned, for example.
  • Vinyl compound (II) can be used individually by 1 type or in combination of 2 or more types. (Wherein R 1 to R 4 each independently represents a hydrogen atom or a first monovalent substituent, and the first monovalent substituent is a halogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • Examples of the vinyl compound represented by the general formula (10) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene Ethylene or ⁇ -olefin having 2 to 20 carbon atoms, such as 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene; Cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl
  • the tetralin ring-containing copolymer polyolefin compound of this embodiment is a substituent having at least one naphthalene ring selected from the group consisting of the structural unit (a) and a structural unit represented by the following general formula (11). It can also be obtained by reacting a copolymerized polyolefin compound containing a substituted ethylene structural unit (c) containing hydrogen with hydrogen.
  • R 5 to R 7 each independently represents a hydrogen atom or a second monovalent substituent
  • R 8 and R 9 each independently represents a third monovalent substituent.
  • the second monovalent substituent and the third monovalent substituent are each independently a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, hydroxy group, At least one selected from the group consisting of carboxyl group, ester group, amide group, nitro group, alkoxy group, aryloxy group, acyl group, amino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group and imide group a seed, it may further have a substituent, and when R 8 or R 9 there are a plurality, the plurality of R 8 or R 9 is optionally being the same or different .
  • m 0 to 3 n represents an integer of 0 to 4
  • X represents — (C ⁇ O) O—, — (C ⁇ O) NH—, —O (C ⁇ O) —, —NH (C ⁇ O ) — And — (C
  • tetralin ring-containing copolymer polyolefin compound of the present embodiment there is a method of reacting a polyolefin (III) having a reactive functional group in the side chain with a compound (IV) having a tetralin ring. It is done.
  • polyolefin (III) having a reactive functional group in the side chain examples include unsaturated carboxylic acid polymers such as poly (meth) acrylic acid; unsaturated carboxylic acid ester polymers such as poly (meth) acrylic acid methyl Polyvinyl acetate and polyvinyl acetate derivatives such as polyvinyl acetate; ethylene-unsaturated carboxylic acid copolymer; ethylene-unsaturated carboxylic acid ester copolymer; ethylene-vinyl alcohol copolymer; maleic anhydride-modified polyethylene, maleic anhydride And maleic anhydride-modified polyolefin such as acid-modified polypropylene. These can be used alone or in combination of two or more.
  • the compound (IV) having a tetralin ring a compound having a functional group that easily binds to the polyolefin (III) having a reactive functional group in the side chain is preferable, and an alcohol compound, an amine compound, a carboxyl having a tetralin ring is preferable.
  • an alcohol compound, an amine compound, a carboxyl having a tetralin ring is preferable.
  • examples thereof include acid compounds, acid anhydride compounds, and epoxide compounds. These can be used alone or in combination of two or more.
  • a tetralin ring as the compound (IV) having the tetralin ring is added to a solution obtained by dissolving a polyolefin having an ester group in the side chain as a polyolefin (III) having a reactive functional group in the side chain in an organic solvent.
  • a method of adding an alcohol compound having a transesterification catalyst and a transesterification reaction is preferable.
  • the transesterification reaction can be performed by a known method.
  • the reaction temperature and reaction time are not particularly limited as long as transesterification is possible, but the reaction temperature is preferably 50 to 300 ° C. and the reaction time is preferably 10 minutes to 24 hours.
  • the organic solvent used for the transesterification reaction can be used without particular limitation as long as it is an organic solvent capable of dissolving the polymer. Examples of such an organic solvent include benzene, toluene, xylene, decalin and the like.
  • a polyolefin (III) having a reactive functional group in the side chain as a polyolefin (III) having an ester group in the side chain and a tetralin ring as the compound (IV) having the tetralin ring are used.
  • examples thereof include a method of melt-kneading the alcohol compound having and the transesterification catalyst with, for example, a single screw extruder, a twin screw extruder, a kneader or the like.
  • transesterification catalyst used in the transesterification reaction a known substance can be used.
  • the content ratio ((a) / (b)) of the structural unit (a) to the content ratio of the structural unit (b) contained in the tetralin ring-containing copolymer polyolefin compound of the present embodiment is 1/99 in molar ratio. To 99/1, more preferably 1/19 to 19/1, and particularly preferably 1/9 to 9/1.
  • the melt mass flow rate (hereinafter referred to as “MFR”) of the tetralin ring-containing copolymer polyolefin compound of the present embodiment is not particularly limited, but is 0.1 to 500 g / 10 min at 190 ° C. from the viewpoint of moldability. 0.2 to 100 g / 10 min is more preferable.
  • MFR means a value when measured under the condition of a load of 2160 g at a specific temperature using a device conforming to JIS K7210. Expressed with the measured temperature in units of “10 minutes”.
  • Preferred specific examples of the structural unit (a) include, but are not limited to, the structural unit represented by the above formula (4) or (5).
  • structural unit (b) include structural units represented by the above formula (6) or (7) and structural units represented by the following formula (12) or (13). It is not limited to.
  • the molecular weight of the tetralin ring-containing copolymer polyolefin compound can be appropriately set in consideration of desired performance, handleability and the like, and is not particularly limited.
  • the weight average molecular weight (Mw) is preferably 1.0 ⁇ 10 3 to 8.0 ⁇ 10 5 , more preferably 5.0 ⁇ 10 3 to 5.0 ⁇ 10 5 .
  • the number average molecular weight (Mn) is preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 6 , more preferably 5.0 ⁇ 10 3 to 1.0 ⁇ 10 5 .
  • all the molecular weights here mean the value of polystyrene conversion.
  • said tetralin ring containing copolymer polyolefin compound can be used individually by 1 type or in combination of 2 or more types.
  • All of the tetralin ring-containing copolymer polyolefin compounds described above have hydrogen at the benzylic position of the tetralin ring, and when used in combination with the transition metal catalyst described in detail later, the hydrogen at the benzylic position is extracted, which is excellent. Expresses oxygen absorption ability.
  • the oxygen-absorbing resin composition of the present embodiment is one in which odor generation after oxygen absorption is remarkably suppressed.
  • the reason is not clear, for example, the following oxidation reaction mechanism is assumed. That is, in the above-described tetralin ring-containing copolymer polyolefin compound, hydrogen at the benzylic position of the tetralin ring is first extracted to generate a radical, and then the carbon at the benzylic position is oxidized by the reaction between the radical and oxygen, Group or ketone group is considered to be formed.
  • the molecular chain of the oxygen-absorbing main agent is not broken by the oxidation reaction as in the prior art, the structure of the tetralin ring-containing copolymer polyolefin compound is maintained, and the odor is reduced. This is presumably because the low molecular weight organic compound that is the cause is difficult to be formed after oxygen absorption.
  • the transition metal catalyst used in the oxygen-absorbing resin composition of the present embodiment is appropriately selected from known ones as long as it can function as a catalyst for the oxidation reaction of the tetralin ring-containing copolymer polyolefin compound. It can be used and is not particularly limited.
  • transition metal catalysts include organic acid salts, halides, phosphates, phosphites, hypophosphites, nitrates, sulfates, oxides and hydroxides of transition metals.
  • examples of the transition metal contained in the transition metal catalyst include, but are not limited to, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ruthenium, and rhodium. Among these, manganese, iron, cobalt, nickel, and copper are preferable.
  • organic acid examples include acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, toluic acid, oleic acid, Examples include capric acid and naphthenic acid, but are not limited thereto.
  • the transition metal catalyst is preferably a combination of the above-mentioned transition metal and an organic acid, more preferably the transition metal is manganese, iron, cobalt, nickel or copper, still more preferably manganese, iron or cobalt, organic More preferably, the acid is acetic acid, stearic acid, 2-ethylhexanoic acid, oleic acid or naphthenic acid, even more preferably acetic acid or stearic acid, and a combination of any of these transition metals with any of organic acids is particularly preferred. preferable.
  • a transition metal catalyst can be used individually by 1 type or in combination of 2 or more types.
  • the content ratio of the tetralin ring-containing copolymer polyolefin compound and the transition metal catalyst in the oxygen-absorbing resin composition of the present embodiment is appropriately determined according to the type and desired performance of the tetralin ring-containing copolymer polyolefin compound and the transition metal catalyst used. It can be set and is not particularly limited. From the viewpoint of the amount of oxygen absorbed by the oxygen-absorbing resin composition, the content of the transition metal catalyst should be 0.001 to 10 parts by mass as a transition metal with respect to 100 parts by mass of the tetralin ring-containing copolymer polyolefin compound. More preferably, 0.002 to 2 parts by mass, still more preferably 0.005 to 1 part by mass, still more preferably 0.008 to 0.5 parts by mass, particularly preferably 0.01 to 0.2 parts by mass. Part.
  • the tetralin ring-containing copolymer polyolefin compound and the transition metal catalyst can be mixed by a known method.
  • the oxygen-absorbing resin composition which has higher dispersibility can also be obtained by kneading
  • the oxygen-absorbing resin composition of the present embodiment may contain various additives known in the art as long as the effects of the present embodiment are not excessively impaired in addition to the components described above.
  • Such optional additives include, for example, desiccants, pigments such as titanium oxide, dyes, antioxidants, slip agents, antistatic agents, stabilizers and other additives, calcium carbonate, clay, mica, silica, etc.
  • An agent, a deodorant, etc. are mentioned, However, It is not limited to these.
  • the oxygen-absorbing resin composition of the present embodiment may further contain a radical generator and a photoinitiator as necessary in order to promote the oxygen absorption reaction.
  • a radical generator include various N-hydroxyimide compounds. Specifically, N-hydroxysuccinimide, N-hydroxymaleimide, N, N′-dihydroxycyclohexanetetracarboxylic diimide, N-hydroxyphthalimide, N-hydroxytetrachlorophthalimide, N-hydroxytetrabromophthalimide, N-hydroxy Hexahydrophthalimide, 3-sulfonyl-N-hydroxyphthalimide, 3-methoxycarbonyl-N-hydroxyphthalimide, 3-methyl-N-hydroxyphthalimide, 3-hydroxy-N-hydroxyphthalimide, 4-nitro-N-hydroxyphthalimide, 4-chloro-N-hydroxyphthalimide, 4-methoxy-N-hydroxyphthalimide, 4-dimethylamino-N-hydroxyphthalimide, 4-carboxy-N-hydroxyhexahydride Ph
  • photoinitiator examples include, but are not limited to, benzophenone and its derivatives, thiazine dyes, metal porphyrin derivatives, anthraquinone derivatives, and the like. These radical generators and photoinitiators can be used singly or in combination of two or more.
  • the oxygen-absorbing resin composition of the present embodiment further contains other thermoplastic resin other than the tetralin ring-containing copolymer polyolefin compound as necessary, as long as the purpose of the present embodiment is not impaired. It may be. By using another thermoplastic resin in combination, moldability and handleability can be improved.
  • thermoplastic resins known ones can be used as appropriate.
  • low-density polyethylene medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, polyethylene such as polyethylene by metallocene catalyst, propylene homopolymer, propylene-ethylene block copolymer, propylene- Randomness of ⁇ -olefins such as polypropylene, poly-1-butene, poly-4-methyl-1-pentene, or ethylene, propylene, 1-butene, 4-methyl-1-pentene, etc.
  • Polyolefins such as block copolymers; acid-modified polyolefins such as maleic anhydride grafted polyethylene and maleic anhydride grafted polypropylene; ethylene-vinyl acetate copolymers, ethylene-vinyl chloride copolymers, ethylene- (meth) acrylic acid copolymers Polymers and their ionic cross-linked products (ionomers), ethylene-vinyl compound copolymers such as ethylene-methyl methacrylate copolymer; styrene-based materials such as polystyrene, acrylonitrile-styrene copolymer, ⁇ -methylstyrene-styrene copolymer Resins; Polyvinyl compounds such as polymethyl acrylate and polymethyl methacrylate; Polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, polymetaxylylene adipamide (MXD6); polyethylene terephthalate (PET),
  • the tetralin ring-containing copolymer polyolefin compound, the transition metal catalyst, and various additives and thermoplastic resins contained as necessary can be mixed by a known method.
  • the oxygen-absorbing resin composition which has higher dispersibility can also be obtained by kneading
  • the oxygen-absorbing resin composition of the present embodiment a known granulation method or a known molding method such as extrusion molding can be applied.
  • powder, granule, pellet, film or sheet Alternatively, it can be formed into other small pieces. Therefore, the oxygen-absorbing resin molding obtained in this way can be used as an oxygen absorbent as it is, or by filling the obtained oxygen-absorbing resin molding into a breathable packaging material, It can also be used as an oxygen absorbent package.
  • the oxygen-absorbing resin composition of the present embodiment formed into a film shape or a sheet shape can also be used in the form of a label, a card, a packing or the like.
  • a film having a thickness of 0.1 to 500 ⁇ m is classified as a film
  • a film having a thickness exceeding 500 ⁇ m is classified as a sheet.
  • the pellet-shaped oxygen-absorbing resin molded body is preferably further pulverized into a powder form from the viewpoint of increasing the contact area with oxygen and expressing the oxygen absorption performance more effectively.
  • the well-known packaging material which has air permeability can be applied, and it is not specifically limited.
  • the breathable packaging material is preferably highly breathable.
  • Specific examples of breathable packaging materials include highly breathable packaging materials used in various applications, for example, paper such as Japanese paper, western paper, rayon paper, various fibers obtained from pulp, cellulose, and synthetic resin.
  • Nonwoven fabric, plastic film or perforated material thereof used, microporous film stretched after adding calcium carbonate or the like, and those obtained by laminating two or more selected from these, etc. are particularly limited to these. Not.
  • plastic film for example, a film of polyethylene terephthalate, polyamide, polypropylene, polycarbonate or the like and a film of polyethylene, ionomer, polybutadiene, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer or ethylene vinyl acetate copolymer as a sealing layer are laminated. Adhered laminated films can also be used.
  • the molded oxygen-absorbing resin composition of the present embodiment can be used as a packaging material or a packaging container in a single layer form, as well as an aspect of a laminate in which this is superimposed on another substrate.
  • the oxygen-absorbing resin composition (layer) of the present embodiment formed into a film or sheet is provided on the inner side of the outer surface of the container or the like so as not to be exposed on the outer surface of the container or the like. Is preferred.
  • the oxygen-absorbing resin composition (layer) of the present embodiment formed into a film or sheet is provided outside the inner surface of a container or the like. Is preferred.
  • molded in the film form or the sheet form is provided as at least 1 intermediate
  • At least three of a sealant layer containing a thermoplastic resin, an oxygen absorbing layer containing the oxygen absorbing resin composition of the present embodiment, and a gas barrier layer containing a gas barrier substance are used.
  • An oxygen-absorbing multilayer body having layers in this order may be mentioned.
  • having at least three layers in this order means that the sealant layer, the oxygen absorption layer, and the gas barrier layer are arranged in this order, and the sealant layer, the oxygen absorption layer, and the gas barrier layer are directly overlaid.
  • At least one or more other layers such as a metal foil layer or an adhesive layer (for example, “sealant layer / resin layer / oxygen absorbing layer / adhesive layer / Gas barrier layer ”,“ sealant layer / resin layer / adhesive layer / oxygen absorption layer / adhesive layer / resin layer / adhesive layer / gas barrier layer / adhesive layer / support ”, etc. Even in The way is.).
  • thermoplastic resin and polyolefin resin used in the sealant layer the same thermoplastic resins and polyolefin resins described in the oxygen-absorbing resin composition of the present embodiment can be used.
  • the thermoplastic resin and polyolefin resin used in the sealant layer are appropriately selected in consideration of compatibility with other adjacent layers (oxygen absorption layer, gas barrier layer, resin layer, adhesive layer, support, etc.). It is preferable.
  • gas barrier material used for the gas barrier layer a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various deposited films such as silica, alumina, and aluminum, a metal foil such as an aluminum foil, and the like can be used.
  • gas barrier thermoplastic resin include ethylene-vinyl alcohol copolymer, MXD6, and polyvinylidene chloride.
  • gas barrier thermosetting resin include a gas barrier epoxy resin such as “MAXIVE” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • a method for producing the oxygen-absorbing multilayer body known methods such as a co-extrusion method, various laminating methods, and various coating methods can be applied depending on the properties of various materials, processing purposes, processing steps, and the like.
  • a film or sheet is produced by extruding a resin composition melted through a T die, a circular die, or the like from an attached extruder, or an oxygen absorbing film or sheet is coated with an adhesive and another film or sheet is produced. It can shape
  • a multilayer container having a predetermined shape or a preform for manufacturing a container can be formed by co-injecting or sequentially injecting a molten resin into an injection mold through a multilayer multiple die using an injection machine.
  • the preform is heated to a stretching temperature, stretched in the axial direction, and blow stretched in the circumferential direction by fluid pressure to obtain a stretch blow bottle.
  • a film-like oxygen-absorbing multilayer body can be processed into a bag shape or a lid material.
  • a sheet-like oxygen-absorbing multilayer body is thermoformed into an oxygen-absorbing multilayer container having a predetermined shape such as a tray, a cup, a bottle, or a tube by a molding method such as vacuum forming, pressure forming, or plug assist molding.
  • a molding method such as vacuum forming, pressure forming, or plug assist molding.
  • the bag-like container is a pouch with an easy-to-open mouth that is compatible with microwave oven cooking, which is provided with an opening after filling the contents such as food, thereby releasing steam from the opening during microwave cooking. It can be preferably used.
  • energy rays are irradiated to accelerate the start of the oxygen-absorbing reaction, or to increase the oxygen absorption rate. can do.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the oxygen-absorbing resin composition of the present embodiment and various molded articles such as laminates (for example, containers) using the same do not require moisture for oxygen absorption, in other words, regardless of the presence or absence of moisture in the object to be stored. Since it can absorb oxygen, it can be used in a wide range of applications regardless of the type of the object to be stored. In particular, since there is no generation of odor after oxygen absorption, it can be particularly suitably used in, for example, foods, cooked foods, beverages, health foods, pharmaceuticals and the like. That is, the oxygen-absorbing resin composition of the present embodiment and various molded articles such as laminates using the same are oxygen in a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity.
  • the oxygen-absorbing resin composition of the present embodiment is different from the oxygen-absorbing resin composition using conventional iron powder, and is not stored due to the presence of iron (for example, alcoholic beverages or carbonated beverages). Can be suitably used.
  • Specific examples of stored items include beverages such as milk, juice, coffee, teas, alcoholic beverages; liquid seasonings such as sauces, soy sauce, noodle soups, dressings; cooked foods such as soups, stews, and curries; jams, mayonnaise Pasty foods such as tuna, fish and shellfish products; processed milk products such as cheese, butter and eggs; processed meat products such as meat, salami, sausage and ham; carrots, potatoes, asparagus, shiitake mushrooms Fruits; Eggs; Noodles; Rices such as rice and milled rice; Grains such as beans; Rice processed foods such as cooked rice, red rice, rice cakes and rice bran; Sweets such as buns; powder seasonings, powdered coffee, coffee beans, tea, infant milk powder, infant foods, powder diet foods, nursing foods, dried vegetables, rice crackers, rice crackers, etc.
  • beverages such as milk, juice, coffee, teas, alcoholic beverages
  • liquid seasonings such as sauces, soy sauce, noodle soups, dressings
  • cooked foods
  • Dry foods foods with low water activity
  • chemicals such as adhesives, adhesives, pesticides and insecticides
  • pharmaceuticals health foods such as vitamins; pet foods; miscellaneous goods such as cosmetics, shampoos, rinses and detergents;
  • health foods such as vitamins; pet foods; miscellaneous goods such as cosmetics, shampoos, rinses and detergents;
  • the present invention is not particularly limited thereto.
  • preserved items that tend to deteriorate in the presence of oxygen such as beer, wine, sake, shochu, fruit juice drinks, fruit juices, vegetable juices, carbonated soft drinks, teas, etc. for beverages, fruits, nuts, vegetables for foods , Meat products, infant food, coffee, jam, mayonnaise, ketchup, edible oil, dressing, sauces, boiled foods, dairy products, etc.
  • the container and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • the sterilization method for example, heat sterilization at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as ultra-high temperature heat treatment at 130 ° C. or higher, sterilization by electromagnetic waves such as ultraviolet rays, microwaves, and gamma rays, Examples thereof include gas treatment such as ethylene oxide, and chemical sterilization such as hydrogen peroxide and hypochlorous acid.
  • the oxygen-absorbing multilayer body of this embodiment includes a sealant layer (layer C) containing a thermoplastic resin, an oxygen-absorbing layer (layer A) comprising the oxygen-absorbing resin composition of the first embodiment, and a gas barrier substance. And at least three gas barrier layers (layer D) containing bismuth. Moreover, the oxygen-absorbing multilayer body of this embodiment may have a layer other than these three layers at an arbitrary position as necessary.
  • the oxygen-absorbing multilayer body of the present embodiment absorbs oxygen in the container and permeates or penetrates the container wall surface from outside the container by using the layer C as an inside for a part or all of the sealing packaging container. In the case where a small amount of oxygen is used, the permeated or invaded oxygen is also absorbed, and alteration of the stored content item (stored object) due to oxygen can be prevented.
  • the sealant layer (layer C) of the oxygen-absorbing multilayer body of the present embodiment contains a thermoplastic resin. In addition to the role as a sealant, this layer C allows oxygen in the container to permeate to the oxygen absorbing layer and at the same time isolates the oxygen absorbing layer (layer A) from the contents (stored object) (layer A and stored object). (Inhibiting physical contact with objects).
  • the oxygen permeability of the layer C is 300 mL / (m 2 ⁇ day ⁇ atm) or more when measured with a film having a thickness of 20 ⁇ m at 23 ° C. and a relative humidity of 60%.
  • the rate of absorbing oxygen in the layer A can be further increased as compared to the case where the oxygen permeability is not so.
  • thermoplastic resin used for the layer C of the oxygen-absorbing multilayer body of this embodiment high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, and metallocene catalyst are used.
  • Polyethylenes such as polyethylene; polystyrene; polymethylpentene; polypropylenes such as propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer; PET, A-PET, PETG having heat sealability; Examples thereof include polyester such as PBT; amorphous nylon and the like. These can be used alone or in combination.
  • thermoplastic resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid, as necessary. Copolymers, ethylene-methyl methacrylate copolymers, and thermoplastic elastomers may be added.
  • the thermoplastic resin used for the layer C of the oxygen-absorbing multilayer body of the present embodiment has an MFR of 1 to 35 g / 10 minutes at 200 ° C., or an MFR of 240, considering the moldability and workability of the multilayer body. Those having a temperature of 2 to 45 g / 10 min at ° C are preferably used.
  • the layer C of the oxygen-absorbing multilayer body of this embodiment may contain various additives known in the art in addition to the above-described thermoplastic resin.
  • optional components include desiccants, coloring pigments such as titanium oxide, dyes, antioxidants, slip agents, antistatic agents, plasticizers, stabilizers, additives such as lubricants, calcium carbonate, clay, mica, Examples thereof include fillers such as silica, deodorants and the like, but are not particularly limited thereto.
  • the content ratio of the thermoplastic resin in the layer C can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably based on the total amount of the layer C. Is 90 to 100% by mass.
  • the thermoplastic resin used in the layer C of the present embodiment preferably contains 50 to 100% by mass of thermoplastic resin other than the tetralin ring-containing copolymer polyolefin compound, more preferably 70 to 100% by mass, more preferably 90 to 100% by mass.
  • the oxygen absorption layer (layer A) of the oxygen-absorbing multilayer body of the present embodiment is a configuration that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of the structural units represented by the general formula (1).
  • a structural unit (b) which is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural unit represented by the unit (a) and the general formula (2) or (3). It comprises an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the content ratio of the tetralin ring-containing copolymer polyolefin compound in layer A is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass with respect to the total amount of layer A. That's it.
  • the content ratio of the tetralin ring-containing copolymer polyolefin compound is equal to or more than the preferable value, the oxygen absorption performance can be further improved as compared to the case where the content is not so.
  • the thickness of the oxygen-absorbing layer (layer A) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thickness of the sealant layer (layer C) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 80 ⁇ m.
  • the thickness ratio of layer C to layer A is preferably 1: 0.5 to 1: 3, more preferably 1: 1.5 to 1: 2.5.
  • the gas barrier layer (layer D) of the oxygen-absorbing multilayer body of the present embodiment contains a gas barrier substance.
  • the oxygen permeability of layer D is preferably 100 mL / (m 2 ⁇ day ⁇ atm) or less when measured under the conditions of 23 ° C. and 60% relative humidity for a film having a thickness of 20 ⁇ m. It is preferably 80 mL / (m 2 ⁇ day ⁇ atm) or less, more preferably 50 mL / (m 2 ⁇ day ⁇ atm) or less.
  • Examples of the gas barrier material used for the layer D of the oxygen-absorbing multilayer body of the present embodiment include a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various deposited films such as silica, alumina, and aluminum, and a metal such as an aluminum foil. A foil or the like can be used.
  • Examples of the gas barrier thermoplastic resin include ethylene-vinyl alcohol copolymer, MXD6, and polyvinylidene chloride.
  • Examples of the gas barrier thermosetting resin include a gas barrier epoxy resin such as “MAXIVE” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the thickness of the gas barrier layer (layer D) is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thickness of the layer D is preferably 0.1 to 100 ⁇ m, more preferably 0.00. 5 to 20 ⁇ m.
  • the oxygen-absorbing multilayer body of the present embodiment includes a resin layer between the layer C and the layer A, between the layer A and the layer D, or on the outer layer of the layer C or on the outer layer of the layer D.
  • You may have at least 1 or more other layers, such as a metal foil layer or an adhesive bond layer.
  • a protective layer made of a thermoplastic resin can be provided inside or outside the layer D.
  • the resin used for this protective layer examples include polyethylenes such as high-density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 Polyamides such as PET, polyesters such as PET, and combinations thereof.
  • the oxygen-absorbing multilayer body of this embodiment preferably has an intermediate layer made of a polyolefin resin interposed between the layer D and the layer A.
  • the thickness of the intermediate layer is preferably substantially the same as the thickness of the layer C from the viewpoint of workability.
  • thickness ratios within ⁇ 10% are substantially the same.
  • the oxygen-absorbing multilayer body of the present embodiment can be used as an oxygen-absorbing paper substrate or an oxygen-absorbing paper container by laminating a paper substrate on the outer layer of the layer D.
  • the total thickness of the layers inside the layer D is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less. .
  • the oxygen-absorbing multilayer body of the present embodiment can be produced using a known method such as a co-extrusion method, various laminating methods, various coating methods, etc., depending on the properties of various materials, processing purposes, processing steps, and the like.
  • the manufacturing method is not particularly limited. It is possible to apply a method for laminating ordinary packaging materials, for example, wet lamination method, dry lamination method, solventless dry lamination method, extrusion lamination method, T-die coextrusion molding method, coextrusion lamination method, inflation method, etc. it can.
  • an adhesive is applied to an oxygen-absorbing film or sheet formed by extruding a melted resin composition from an extruder attached with a T die, a circular die, or the like.
  • pretreatment such as corona treatment and ozone treatment can be applied to the film and the like, and for example, an isocyanate type (urethane type), polyethyleneimine type, polybutadiene type, organic titanium type anchor, etc.
  • Coating agents, or known anchor coating agents such as adhesives for laminating, such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, cellulose, etc., can also be used. .
  • the oxygen-absorbing multilayer container of this embodiment includes the above-described oxygen-absorbing multilayer body in the whole or a part of the packaging container.
  • the oxygen-absorbing multilayer container according to the present embodiment absorbs oxygen in the container, and also absorbs the permeated or invaded oxygen when a small amount of oxygen permeates or penetrates from the outside of the container. Further, it is possible to prevent alteration of the stored content item (stored object) due to oxygen.
  • the shape of the oxygen-absorbing multilayer container of the present embodiment is not particularly limited, and can be set as appropriate according to the articles to be stored and stored. For example, by making a bag of the above-mentioned film-like or sheet-like oxygen-absorbing multilayer, a three-side sealed flat bag, a standing pouch, a gusset packaging bag, a pillow packaging bag, a main chamber and a sub-chamber are formed. It can be set as the multi-chamber pouch which provided the easy peeling wall between chambers, shrink film packaging, etc. Moreover, it can also be set as the container of arbitrary shapes by performing thermoforming.
  • the film- or sheet-like oxygen-absorbing multilayer body is formed by a method such as vacuum forming, pressure forming, plug assist forming, etc., so that a tray, cup, bottle, tube, PTP (press -An oxygen-absorbing multilayer container having a predetermined shape such as a through package) can be manufactured.
  • the molten resin can be molded into a multilayer container having a predetermined shape by co-injection or sequential injection into an injection mold through a multilayer multiple die using an injection machine.
  • thermoformed container which has a flange part
  • an oxygen absorbing function can be imparted to these containers.
  • irradiating energy rays to accelerate the start of the oxygen-absorbing reaction or increase the oxygen absorption rate can do.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the oxygen-absorbing multilayer body of this embodiment and the oxygen-absorbing multilayer container including the multilayer body do not require moisture for oxygen absorption, in other words, can absorb oxygen regardless of the presence or absence of moisture in the object to be stored. Therefore, it can be used in a wide range of applications regardless of the type of the object to be stored. In particular, since there is no generation of odor after oxygen absorption, it can be particularly suitably used in, for example, foods, cooked foods, beverages, health foods, pharmaceuticals and the like. That is, the oxygen-absorbing multilayer body of this embodiment and the oxygen-absorbing multilayer container including the multilayer body have oxygen absorption performance under a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity.
  • the oxygen-absorbing resin composition of the present embodiment is different from the oxygen-absorbing resin composition using conventional iron powder, and is not stored due to the presence of iron (for example, alcoholic beverages or carbonated beverages). Can be suitably used.
  • the stored items include the same as those described in the first embodiment, and before and after filling (packaging) of these stored items in a form suitable for the stored items.
  • the container and the object to be stored can be sterilized.
  • the sterilization method may be the same as that described in the first embodiment.
  • the oxygen-absorbing multilayer container of this embodiment is also suitably used for storing a container filled with a chemical solution (hereinafter also simply referred to as “chemical solution-filled container”).
  • the chemical liquid to be filled in the chemical liquid filling container is not particularly limited, and may be conventionally known, for example, glucose, amino acids, various vitamins, dobutamine, morphine hydrochloride, insulin, epinephrine, Electrocatalysts such as elcatonin, biopharmaceuticals such as protein drugs and nucleic acid drugs, electrolytes such as sorbitol-lactated Ringer's solution, maltose-lactated Ringer's solution, vitamins, amino acids, dipotassium glycyrrhizinate, epsilon-aminocaproic acid, naphazoline hydrochloride, Examples include eye drops containing various medicinal ingredients such as tetrahydrozoline hydrochloride.
  • the drug solution filling container is not particularly limited and may be a conventionally known one, and examples thereof include an infusion solution inner bag, an eye drop container, a prefilled syringe, an ampule, and a vial.
  • the material of the container is not particularly limited and may be a conventionally known material, for example, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene.
  • polyethylenes such as polyethylene by metallocene catalyst; polystyrene; polymethylpentene; polypropylenes such as propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer; PET having heat sealability,
  • PET having heat sealability
  • A- Examples thereof include polyesters such as PET, PETG, and PBT; thermoplastic resins such as amorphous nylon. These can be used alone or in combination.
  • thermoplastic resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid, as necessary.
  • Copolymers, ethylene-methyl methacrylate copolymers, and thermoplastic elastomers may be added.
  • polypropylenes are preferably used in view of visibility, moldability, and heat sterilization resistance.
  • the oxygen-absorbing multilayer container of the present embodiment is also suitably used for storing a patch containing a medicinal component.
  • the medicinal ingredients contained in the patch of the present embodiment are not particularly limited and may be those conventionally known.
  • the patch itself is mainly composed of a sheet-like support and a medicinal composition, and the medicinal composition is held on at least one surface of the sheet-like support.
  • the sheet-like support used in the patch of the present embodiment can be used without particular limitation as long as it is usually used in patches.
  • a sheet-like support for example, a nonwoven fabric, a polyurethane film, a nylon film, a polypropylene film and the like may be mentioned, and a laminate of some of these may be used.
  • a method usually performed with a patch such as laminating or impregnating the medicinal composition on a sheet-like support may be followed.
  • a patch is provided with a detachable film that covers the entire surface of the medicinal composition held before use, and the film is peeled off and used on an affected part when used. Also in the patch of this embodiment, it is desirable to provide a detachable film for convenience of storage.
  • a detachable film for convenience of storage.
  • the film covering the retained medicinal composition those usually used in patches can be used. Examples of such a film include a polyethylene film, a polypropylene film, and a polyethylene terephthalate film.
  • the oxygen-absorbing multilayer container of this embodiment is also suitably used for storing pulp.
  • the pulp of the present embodiment is not particularly limited and may be conventionally known, for example, cherry, mandarin, grapefruit, apple, strawberry, pineapple, peach, chestnut, grape, pear, kiwifruit, Watermelon, bananas, etc., and mixtures thereof. It can also be a mixture of pulp and syrup or other ingredients.
  • the oxygen-absorbing multilayer container of this embodiment is also suitably used for storing alcoholic beverages.
  • the alcoholic beverage of this embodiment will not be limited at all if it is a beverage containing ethyl alcohol, and the alcohol concentration is not limited at all.
  • Alcoholic beverages include low-alcohol beverages such as cocktails, distilled liquor (whiskey, rum, cachassa, vodka, gin, tequila, brandy, lac, alac, ouzo, white liquor, shochu, awamori), brewed liquor (wine, beer, Fruit wine, Shaoxing sake, Japanese sake), mixed liquor (liqueur, mirin), and beverages containing these are exemplified.
  • the oxygen-absorbing multilayer container of this embodiment is also suitably used for storing liquid tea or pasty tea.
  • the liquid tea of this embodiment is a liquid beverage tea obtained by extracting tea with hot water after grinding the tea as it is or in a powder form, and a concentration obtained by subjecting this beverage tea to various known treatments such as vacuum concentration.
  • the pasty tea means a powdered tea obtained by grinding tea mixed with fats and oils and / or water.
  • non-fermented tea (green tea), semi-fermented tea, or fermented tea can be used as the raw material tea.
  • non-fermented tea examples include roasted tea obtained by roasting green teas and green teas such as gyokuro, matcha, sencha,nadoha, tencha, and tama green tea.
  • examples of the semi-fermented tea include oolong tea and bun tea.
  • black tea etc. are mentioned as fermented tea.
  • the types of fats and oils that may be contained in the pasty tea can be appropriately selected from known ones and are not particularly limited. From the viewpoint of being liquid at room temperature and easy to mix with powdered tea, for example, vegetable oils such as cottonseed oil, sesame oil, olive oil, coconut oil, palm oil, corn oil, soybean oil, rapeseed oil, sunflower oil, and palm oil Two or more mixed oils selected from these are preferred. Further, from the viewpoint of not impairing the color, flavor and aroma of tea, the fats and oils are preferably tasteless, odorless and colorless.
  • an emulsifier may be appropriately mixed.
  • water-soluble pasty tea By mixing the emulsifier, water-soluble pasty tea can be easily obtained, and can be used for processed foods such as soft cream. Furthermore, a seasoning such as a sweetener may be appropriately added in advance according to the application. Moreover, you may add nutrients, such as ascorbic acid, suitably.
  • liquid beverage tea including concentrated tea
  • pasty tea may be subjected to heat treatment.
  • the temperature and heating time of the heat treatment can be set according to a conventional method, and are not particularly limited, and examples thereof include conditions under which coliforms can be killed and conditions under which other live bacteria can be killed.
  • the oxygen-absorbing multilayer container of this embodiment is also preferably used for storing fruit juice and / or vegetable juice.
  • the fruit juice and / or vegetable juice of the present embodiment means a liquid obtained by grinding or squeezing fruit and / or vegetables as raw materials, and may include solids in the raw materials.
  • the fruit and / or vegetable used as a raw material is not specifically limited.
  • fruit juice and / or vegetable juice obtained by heat treatment such as boiling, baking, warming, steaming, etc., and washing with sufficient water, exposure to water, chemical treatment, etc. before and after juice extraction It can be used as a raw material.
  • the fruit juice and / or vegetable juice which removed the specific component contained in fruit juice and / or vegetable juice by passing fruit juice and / or vegetable juice through specific resin can also be used as a raw material.
  • these fruit juices and / or vegetable juices can be used individually or in combination of two or more.
  • citrus fruit juice includes terpenes such as d-limonene, ⁇ -terbinene, myrcene, ⁇ -pinene, ⁇ -pinene, citronellol, linalool, and n- Aldehydes such as octyl aldehyde and n-decyl aldehyde are included in apple juice, esters such as amyl butyrate and amyl acetate, and aldehydes such as hexanal and trans-2-hexanal are included in grape juice.
  • terpenes such as d-limonene, ⁇ -terbinene, myrcene, ⁇ -pinene, ⁇ -pinene, citronellol, linalool
  • n- Aldehydes such as octyl aldehyde and n-decyl aldehyde are included in apple juice
  • esters such as amyl butyrate
  • Esters such as methyl anthranilate and ethyl crotonate, terpenes such as linalool and geraniol, and vegetable juices made from tomatoes include terpenes such as ⁇ -pinene, myrcene and d-limonene, hexanal and heptanal. Aldehydes and the like are included. When these aromatic components are oxidatively decomposed by oxygen, the flavor and color tone are impaired.
  • sugar for fruit juice and / or vegetable juice, sugar, glucose, fructose, fructose glucose liquid sugar, glucose fructose liquid sugar, high fructose liquid sugar, oligosaccharide, trehalose, xylitol, sucralose, stevia extract, sorbitol, licorice extract
  • Sugars and sweeteners such as citrus and kankan extract, pectin, gelatin, collagen, agar, carrageenan, sodium alginate, soy polysaccharide, gum arabic, guar gum, xanthan gum, tamarind seed gum, gellan gum, etc.
  • citric acid Acidulants such as malic acid, tartaric acid, lactic acid and gluconic acid, antioxidants such as L-ascorbic acid and sodium L-ascorbate
  • pH adjusters such as sodium hydrogen carbonate, glycerin fatty acid esters, sucrose fatty acid esters, etc.
  • the oxygen-absorbing multilayer container of this embodiment is also suitably used for storing dry articles.
  • the dry article to be packaged is a food in a dry state.
  • the dry state in this case should not be understood in a narrow sense, and covers semi-dried foods in addition to ordinary dry foods. Examples of those dried foods and semi-dried foods are as follows.
  • Processed seafood dried scallops, tatami mats, salmon, salmon processed products, Udonada, fish sprinkles
  • Delicacy foods beef jerky, mixed nuts, grilled seaweed
  • Nuts foods peanuts, almonds , Almond flakes, cashew nuts, galvanso (4) snack foods: potato chips, shoestring, popcorn
  • cereal foods cornflakes, muesley
  • luxury goods powdered instant coffee, powdered instant tea, coffee beans, Black tea (leaves), green tea (leaves), oolong tea (leaves)
  • Dried noodles / pasta dried rice cake, dried noodles, macaroni, spaghetti, instant ramen, rice noodles, vermicelli, dry bread, powdered instant potage soup, croutons "Hotcake premix", wheat germ (9)
  • Dried vegetables dried shiitake mushrooms, dried springspring, freeze dried koji, dried radish, dried seaweed, dried young cloth, dried deer tailed vegetables, perilla powder (10) confectionery: “Baumku
  • the oxygen-absorbing multilayer body of this embodiment includes an oxygen-permeable layer (layer H) containing a thermoplastic resin, an oxygen-absorbing layer (layer A) comprising the oxygen-absorbing resin composition of the first embodiment, and gas barrier properties. At least three gas barrier layers (layer D) containing substances are laminated in this order. Moreover, the oxygen-absorbing multilayer body of this embodiment may have a layer other than these three layers at an arbitrary position as necessary.
  • the oxygen-absorbing multilayer body of the present embodiment absorbs oxygen in the container and permeates or penetrates the container wall surface from outside the container by using the layer H as a part or all of the sealing packaging container. In the case where a small amount of oxygen is used, the permeated or invaded oxygen is also absorbed, and alteration of the stored content item (stored object) due to oxygen can be prevented.
  • the oxygen-permeable layer (layer H) of the oxygen-absorbing multilayer body of the present embodiment contains a thermoplastic resin. This layer H allows oxygen in the container to permeate to the oxygen absorbing layer and at the same time isolates the oxygen absorbing layer (layer A) from the contents (stored object) (physical contact between layer A and the stored object). Has a role to inhibit.
  • the layer H may also serve as a sealant when the multilayer container is sealed by heat-sealing the oxygen-absorbing multilayer container of the present embodiment and a top film (covering material) having gas barrier properties. it can.
  • the oxygen permeability of the layer H is 300 mL / (m 2 ⁇ day ⁇ atm) or more when measured with a film having a thickness of 20 ⁇ m at 23 ° C. and a relative humidity of 60%. It is preferably 400 mL / (m 2 ⁇ day ⁇ atm) or more, and more preferably 500 mL / (m 2 ⁇ day ⁇ atm) or more.
  • the rate of absorbing oxygen in the layer A can be further increased as compared to the case where the oxygen permeability is not so.
  • thermoplastic resin used for the layer H of the oxygen-absorbing multilayer body of this embodiment high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, and metallocene catalyst are used.
  • Polyethylenes such as polyethylene; polystyrene; polymethylpentene; polypropylenes such as propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer; PET, A-PET, PETG having heat sealability; Examples thereof include polyester such as PBT; amorphous nylon and the like. These can be used alone or in combination.
  • thermoplastic resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid, as necessary. Copolymers, ethylene-methyl methacrylate copolymers, and thermoplastic elastomers may be added.
  • the layer H of the oxygen-absorbing multilayer body of the present embodiment may contain various additives known in the art in addition to the above thermoplastic resin.
  • optional components include desiccants, coloring pigments such as titanium oxide, dyes, antioxidants, slip agents, antistatic agents, plasticizers, stabilizers, additives such as lubricants, calcium carbonate, clay, mica, Examples thereof include fillers such as silica, deodorants and the like, but are not particularly limited thereto.
  • an antioxidant is preferably added to the layer H from the viewpoint of recycling and reworking offcuts generated during production.
  • the content ratio of the thermoplastic resin in the layer H can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably based on the total amount of the layer H. Is 90 to 100% by mass.
  • the thermoplastic resin used for the layer H of the present embodiment preferably contains 50 to 100% by mass of thermoplastic resin other than the tetralin ring-containing copolymer polyolefin compound, more preferably 70 to 100% by mass, more preferably 90 to 100% by mass.
  • the oxygen absorption layer (A) of the oxygen-absorbing multilayer body of the present embodiment is a structural unit that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1). And (a) and a structural unit (b) that is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) And an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described in the second embodiment, except for the matters specified below.
  • the thickness of the oxygen-absorbing layer (layer A) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 800 ⁇ m, more preferably 10 to It is 600 ⁇ m, particularly preferably 20 to 500 ⁇ m.
  • the thickness of the oxygen permeable layer (layer H) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 5 to 800 ⁇ m, and particularly preferably 10 to 700 ⁇ m.
  • the oxygen absorption rate of the layer A can be further increased and the workability and economy can be maintained at a high level as compared with the case where the thickness is not.
  • the gas barrier layer (layer D) of the oxygen-absorbing multilayer body of the present embodiment contains a gas barrier substance.
  • the gas barrier layer (layer D) and the gas barrier material thereof are the same as those described in the second embodiment except for the matters specifically described below.
  • the thickness of the gas barrier layer (layer D) is preferably 5 to 500 ⁇ m, more preferably 10 to 300 ⁇ m.
  • the thickness of the layer D is preferably 0.1 to 100 ⁇ m, more preferably 0.00. 5 to 20 ⁇ m.
  • the oxygen-absorbing multilayer body of the present embodiment includes a resin layer between the layer H and the layer A, between the layer A and the layer D, or on the outer layer of the layer H or on the outer layer of the layer D.
  • You may have at least 1 or more other layers, such as a metal foil layer or an adhesive bond layer.
  • a protective layer made of a thermoplastic resin can be provided inside or outside the layer D.
  • the resin used for this protective layer examples include polyethylenes such as high-density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 Polyamides such as PET, polyesters such as PET, and combinations thereof.
  • the adhesive layer preferably contains a thermoplastic resin having adhesiveness.
  • a thermoplastic resin having adhesiveness for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc. Examples include polyolefin resins.
  • the oxygen-absorbing multilayer body of this embodiment preferably has an intermediate layer made of a polyolefin resin interposed between the layer D and the layer A.
  • the thickness of the intermediate layer is preferably substantially the same as the thickness of the layer H from the viewpoint of workability.
  • thickness ratios within ⁇ 10% are substantially the same.
  • the manufacturing method of the oxygen-absorbing multilayer body of the present embodiment is the same as that described in the second embodiment.
  • the oxygen-absorbing multilayer container of this embodiment includes the above-described oxygen-absorbing multilayer body in the whole or a part of the packaging container.
  • the oxygen-absorbing multilayer container according to the present embodiment absorbs oxygen in the container, and also absorbs the permeated or invaded oxygen when a small amount of oxygen permeates or penetrates from the outside of the container. Further, it is possible to prevent alteration of the stored content item (stored object) due to oxygen.
  • the configuration of the oxygen-absorbing multilayer container of the present embodiment is not particularly limited, and can be set as appropriate according to the articles to be stored and stored.
  • the above-described oxygen-absorbing multilayer body can be thermoformed to form a main body of a packaging container, and a top film (lid material) having a gas barrier layer containing a gas barrier substance can be joined to create a sealed container. it can.
  • the gas barrier substance used for the gas barrier layer of the top film (lid material) the gas barrier substance used for the layer D of the oxygen-absorbing multilayer body described above can be used.
  • the oxygen permeability of the top film (lid) is 100 mL / (m 2 ⁇ day ⁇ atm) or less when measured at 23 ° C.
  • the top film (cover material) is produced as a multilayer body, and the thermoplastic resin used for the layer H of the oxygen-absorbing multilayer body described above is used as the inner layer, so that the layer H and the top film (cover material) inner layer are heated. It can also be fused and sealed.
  • the oxygen-absorbing multilayer body of the present embodiment can be thermoformed into a container having a predetermined shape by heating, softening, and vacuuming, compressed air, or a method of narrowing down using vacuum and compressed air.
  • the film-like or sheet-like oxygen-absorbing multilayer body is formed by a method such as vacuum molding, pressure molding, press molding, free blow molding, etc., with the oxygen permeable layer inside, a tray, It can be thermoformed into an oxygen-absorbing multilayer container having a predetermined shape such as a cup, a bottle, a tube, or a PTP (Press Through Package).
  • thermoformed container which has a flange part
  • an oxygen absorption function can be provided to these containers by using the oxygen-absorbing multilayer body as a member of the container main body.
  • the oxygen-absorbing multilayer container of this embodiment it is possible to accelerate the start of the oxygen absorption reaction or increase the oxygen absorption rate by irradiating energy rays.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the oxygen-absorbing multilayer container of the present embodiment does not require moisture for oxygen absorption, in other words, oxygen can be absorbed regardless of the presence or absence of moisture in the preserved object, so that it can be used regardless of the type of preserved object. Can be used in applications.
  • oxygen-absorbing multilayer container of this embodiment is excellent in oxygen absorption performance under a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity, and the flavor retention of the contents. Since it is excellent, it is suitable for packaging of various articles.
  • the oxygen-absorbing multilayer container of the present embodiment is suitable for an object to be stored (for example, alcoholic beverage or carbonated beverage) because of the presence of iron. Can be used.
  • Specific examples of the objects to be preserved include the same as those described in the first embodiment, and shapes suitable for the objects to be preserved before and after filling (packaging) of these objects to be preserved.
  • sterilization of the container and the object to be stored can be performed.
  • the sterilization method may be the same as that described in the first embodiment.
  • the oxygen-absorbing sealed container of this embodiment includes a lid material containing an oxygen-absorbing multilayer body, an inner layer containing a thermoplastic resin, a gas barrier layer containing a gas barrier material, and an outer layer containing a thermoplastic resin.
  • a gas barrier molding container composed of at least three layers laminated in order, and a sealant layer (layer C) in the lid member and an inner layer in the gas barrier molding container are joined to each other.
  • the oxygen-absorbing multilayer body of this embodiment includes a sealant layer (layer C) containing a thermoplastic resin, an oxygen-absorbing layer (layer A) comprising the oxygen-absorbing resin composition of the first embodiment, and a gas barrier substance. And at least three gas barrier layers (layer D) containing bismuth. Moreover, the oxygen-absorbing multilayer body of this embodiment may have a layer other than these three layers at an arbitrary position as necessary.
  • the oxygen-absorbing multilayer body according to the present embodiment absorbs oxygen in the sealed container by using the layer C as an inner side for the lid of the sealed container, and transmits or enters the lid from the outside of the sealed container. If there is even a slight amount, the permeated or penetrated oxygen can be absorbed to prevent alteration of the stored content item (stored object) due to oxygen.
  • the sealant layer (layer C) of the oxygen-absorbing multilayer body of the present embodiment contains a thermoplastic resin.
  • the sealant layer (layer C) and the thermoplastic resin of the oxygen-absorbing multilayer body of the present embodiment are the same as those described in the second embodiment.
  • the oxygen absorption layer (A) of the oxygen-absorbing multilayer body of the present embodiment is a structural unit that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1). And (a) and a structural unit (b) that is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) And an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described in the second embodiment.
  • the gas barrier layer (layer D) of the oxygen-absorbing multilayer body of the present embodiment contains a gas barrier substance.
  • the gas barrier layer (layer D) and the gas barrier substance are the same as those described in the second embodiment.
  • the oxygen-absorbing multilayer body of the present embodiment includes a resin layer and a metal foil between the layer C and the layer A, between the layer A and the layer D, on the outer layer of the layer C, or on the outer layer of the layer D
  • a protective layer made of a thermoplastic resin can be provided inside or outside the layer D.
  • the resin used for this protective layer examples include polyethylenes such as high-density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 Polyamides such as PET, polyesters such as PET, and combinations thereof. Further, a paper base material can be laminated on the outer layer of the layer D to be used as an oxygen-absorbing paper base material.
  • the manufacturing method of the oxygen-absorbing multilayer body of the present embodiment is the same as that described in the second embodiment.
  • the gas barrier molded container of the present embodiment is composed of at least three layers in which an inner layer containing a thermoplastic resin, a gas barrier layer containing a gas barrier substance, and an outer layer containing a thermoplastic resin are laminated in this order, It is possible to reduce the amount of oxygen that permeates or penetrates into the oxygen-absorbing sealed container from the outside of the gas-barrier molded container. Moreover, the gas-barrier molded object of this embodiment may have layers other than these three layers in arbitrary positions as needed.
  • thermoplastic resin used for the inner layer or outer layer of the gas barrier molding container of the present embodiment is not particularly limited, and for example, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra-high density Low density polyethylene, various polyethylenes such as polyethylene by metallocene catalyst; polystyrene; polymethylpentene; polypropylenes such as propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer; PET having heat sealability , Polyesters such as A-PET, PETG and PBT; amorphous nylon and the like. These can be used alone or in combination.
  • thermoplastic resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid, as necessary. Copolymers, ethylene-methyl methacrylate copolymers, and thermoplastic elastomers may be added.
  • the inner layer or the outer layer of the gas barrier molded container of the present embodiment may contain various additives known in the art in addition to the thermoplastic resin.
  • optional components include desiccants, coloring pigments such as titanium oxide, dyes, antioxidants, slip agents, antistatic agents, plasticizers, stabilizers, additives such as lubricants, calcium carbonate, clay, mica, Examples thereof include fillers such as silica, deodorants and the like, but are not particularly limited thereto.
  • an antioxidant from the viewpoint of recycling and reworking offcuts generated during production.
  • the content ratio of the thermoplastic resin in the inner layer or the outer layer can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass with respect to the total amount of the layer C. Preferably, it is 90 to 100% by mass.
  • thermoplastic resin used for the inner layer of the gas barrier molded container of the present embodiment is the same type as the thermoplastic resin used for the layer C of the oxygen-absorbing multilayer body from the viewpoint of ensuring the heat fusion strength of the sealed container. preferable.
  • the gas barrier layer of the gas barrier molding container of this embodiment contains a gas barrier substance.
  • the oxygen permeability of the gas barrier layer is preferably 100 mL / (m 2 ⁇ day ⁇ atm) or less when measured at 23 ° C. and 60% relative humidity for a film having a thickness of 20 ⁇ m. It is preferably 80 mL / (m 2 ⁇ day ⁇ atm) or less, more preferably 50 mL / (m 2 ⁇ day ⁇ atm) or less.
  • Examples of the gas barrier material used in the gas barrier layer of the gas barrier molding container of the present embodiment include a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various vapor deposition films such as silica, alumina, and aluminum, and a metal foil such as an aluminum foil. Etc. can be used.
  • Examples of the gas barrier thermoplastic resin include ethylene-vinyl alcohol copolymer, MXD6, and polyvinylidene chloride. Among these, MXD6 is preferable when heat sterilization treatment is performed at a temperature of 80 ° C. or higher on the object to be stored in the gas barrier molded container.
  • Examples of the gas barrier thermosetting resin include a gas barrier epoxy resin such as “MAXIVE” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the thickness of the gas barrier layer is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thickness of the gas barrier layer is preferably 0.1 to 100 ⁇ m, more preferably 0.8. 5 to 20 ⁇ m.
  • the oxygen-absorbing sealed container of this embodiment includes a lid material containing the above-described oxygen-absorbing multilayer body and a gas barrier molding container, and the sealant layer of the lid material and the inner layer of the gas barrier molding container are joined together. This is an oxygen-absorbing sealed container.
  • the oxygen-absorbing sealed container according to the present embodiment absorbs oxygen in the container, and if a small amount of oxygen enters from the outside of the container, the oxygen-absorbing sealed container also absorbs the intruded oxygen and stores the contents (stored object) Can be prevented from being deteriorated by oxygen.
  • the joining mode of the sealant layer of the lid material and the inner layer of the gas barrier molding container is not particularly limited, and examples thereof include heat fusion and adhesion with an adhesive. These joining modes can be used singly or in combination of two or more. Among these, heat fusion is preferable.
  • the joining conditions may be appropriately determined in consideration of the material, shape, dimensions, etc. of the sealant layer and the inner layer.
  • energy rays can be irradiated to promote the start of the oxygen absorption reaction or increase the oxygen absorption rate.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the oxygen-absorbing sealed container of the present embodiment does not require moisture for oxygen absorption, in other words, it can absorb oxygen regardless of the presence or absence of moisture in the object to be preserved. Can be used in applications. In particular, since there is no generation of odor after oxygen absorption, it can be particularly suitably used in, for example, foods, cooked foods, beverages, health foods, pharmaceuticals and the like. That is, the oxygen-absorbing sealed container of this embodiment is excellent in oxygen absorption performance under a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity, and has good flavor retention of contents. Since it is excellent, it is suitable for packaging of various articles. In addition, the oxygen-absorbing resin composition of the present embodiment is different from the oxygen-absorbing resin composition using conventional iron powder, and is not stored due to the presence of iron (for example, alcoholic beverages or carbonated beverages). Can be suitably used.
  • Specific examples of the objects to be preserved include the same as those described in the first embodiment, and shapes suitable for the objects to be preserved before and after filling (packaging) of these objects to be preserved.
  • sterilization of the container and the object to be stored can be performed.
  • the sterilization method may be the same as that described in the first embodiment.
  • the shape and size of the oxygen-absorbing sealed container including the lid material and gas barrier molded container of the present embodiment may be any shape and size suitable for the above-mentioned use or storage of non-preserved materials.
  • it is not particularly limited, and may be a conventionally known shape and size.
  • the manufacturing method is not particularly limited.
  • the above-mentioned oxygen-absorbing multilayer body in the form of a film or sheet can be used as a lid material.
  • a gas barrier molding container having a predetermined shape such as a cup, a bottle, or a tube can be produced by molding by a method such as vacuum molding, pressure molding, or plug assist molding. Moreover, it can also be set as the container of arbitrary shapes by performing thermoforming.
  • the molten resin can be formed into a multilayer container having a predetermined shape by co-injecting or sequentially injecting the molten resin into an injection mold through a multilayer multiple die using an injection machine.
  • the oxygen absorptive sealed container of this embodiment can be obtained by joining the obtained lid
  • the oxygen-absorbing paper container of this embodiment is a paper container formed by boxing an oxygen-absorbing multilayer body. More specifically, the oxygen-absorbing multilayer body constituting the paper container includes an isolation layer (layer F) containing a thermoplastic resin and an oxygen-absorbing layer (layer) comprising the oxygen-absorbing resin composition of the first embodiment. A), a gas barrier layer containing a gas barrier substance (layer D), and a paper base material layer (layer E) are laminated in this order. Moreover, the oxygen-absorbing multilayer body of the present embodiment may have layers other than these four layers at arbitrary positions as necessary.
  • the oxygen-absorbing paper container of the present embodiment absorbs oxygen in the container by using the above-described oxygen-absorbing multilayer body in part or all of the sealing packaging container with the layer F as the inside, and the container When a small amount of oxygen permeates or enters the container wall from the outside, the permeated or invading oxygen is also absorbed, and alteration of the stored content item (stored material) due to oxygen can be prevented. .
  • the isolation layer (layer F) of the oxygen-absorbing multilayer body contains a thermoplastic resin.
  • This layer F allows oxygen in the container to permeate to the oxygen absorbing layer (layer A) and at the same time isolates the oxygen absorbing layer (layer A) and the contents (stored material) (the layer A and the material to be stored). (Inhibiting physical contact).
  • the layer F can also serve as a sealant that seals the paper container by heat-sealing with each other when the container is formed by forming an oxygen-absorbing multilayer body.
  • thermoplastic resin having a fusible property examples include thermoplastic resins such as various polyolefin resins that can be melted by heat and fused to each other.
  • thermoplastic resins such as various polyolefin resins that can be melted by heat and fused to each other.
  • low density polyethylene medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, ethylene- ⁇ / olefin copolymer polymerized using metallocene catalyst, polypropylene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-propylene copolymer, methylpentene polymer, polybutene polymer, polyvinyl acetate Resin, poly (meth) acrylic resin, polyvinyl chloride resin, polyolefin resin such as polyethylene or polypropylene, unsatur
  • low density polyethylene medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, ethylene polymerized using a metallocene catalyst ⁇ -olefin copolymers are preferred.
  • the content ratio of the thermoplastic resin in the layer F can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably based on the total amount of the layer F. Is 90 to 100% by mass.
  • the thermoplastic resin used in the layer F of the present embodiment preferably contains 50 to 100% by mass, more preferably 70 to 100%, of a thermoplastic resin other than the tetralin ring-containing polyolefin compound with respect to the total amount. % By mass, more preferably 90 to 100% by mass.
  • the layer F may contain various additives known in the art in addition to the thermoplastic resin.
  • optional components include desiccants, coloring pigments such as titanium oxide, dyes, antioxidants, slip agents, antistatic agents, plasticizers, stabilizers, additives such as lubricants, calcium carbonate, clay, mica, Examples thereof include fillers such as silica, deodorants and the like, but are not particularly limited thereto.
  • an antioxidant to the layer F from the viewpoint of recycling and reworking offcuts generated during production.
  • the thickness of the isolation layer can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 50 ⁇ m, more preferably 10 ⁇ 40 ⁇ m.
  • the oxygen absorption rate of the oxygen absorbing layer can be further increased as compared to the case where the thickness is not so, and the workability and economy can be maintained at a high level.
  • the oxygen absorption layer (layer A) of the oxygen-absorbing multilayer body of the present embodiment is a configuration that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of the structural units represented by the general formula (1).
  • a structural unit (b) which is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural unit represented by the unit (a) and the general formula (2) or (3). It comprises an oxygen-absorbing resin composition containing a tetralin ring-containing copolymer polyolefin compound and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described in the second embodiment, except for the matters specified below.
  • the thickness of the oxygen-absorbing layer (layer A) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the oxygen absorbing layer can further improve the performance of absorbing oxygen, and the workability and economy can be maintained at a high level as compared with the case where the thickness is not.
  • the gas barrier layer (layer D) of the oxygen-absorbing multilayer body of the present embodiment contains a gas barrier substance.
  • the gas barrier layer (layer D) and the gas barrier substance are the same as those described in the second embodiment.
  • the paper base material layer (layer E) is a basic material constituting the container, it is preferable that the paper base material layer (layer E) is excellent in formability, flex resistance, rigidity, waist, strength, and the like.
  • the paper substrate constituting the layer E it is possible to use, for example, a strongly sized bleached or unbleached paper substrate, pure white roll paper, kraft paper, paperboard, processed paper, and other various paper substrates. it can.
  • the basis weight of the layer E can be appropriately set and is not particularly limited, but is preferably in the range of about 80 to 600 g / m 2 , more preferably in the range of 100 to 450 g / m 2 .
  • desired print patterns such as characters, figures, patterns, symbols, etc. may be arbitrarily formed by a normal printing method.
  • the oxygen-absorbing multilayer body of the present embodiment includes the layer F and the layer A, the layer A and the layer D, the layer D and the layer E, or the outer layer of the layer F or
  • the outer layer of the layer E may have at least one or more other layers such as a resin layer, a metal foil layer, or an adhesive layer.
  • a protective layer made of a thermoplastic resin can be provided inside or outside the layer D.
  • the resin used for this protective layer examples include polyethylenes such as high-density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 And polyamides such as PET, and polyesters such as PET and combinations thereof.
  • an outer layer of a thermoplastic resin may be provided on the outer layer of the paper substrate (layer E).
  • the same thermoplastic resin as the isolation layer (layer F) described above is used, so that the layer F and the thermoplastic resin outer layer can be thermally fused and sealed. .
  • an intermediate layer made of polyolefin resin can be interposed between the layer A and the layer D.
  • the thickness of the intermediate layer is preferably substantially the same as the thickness of the layer F from the viewpoint of workability.
  • thickness ratios within ⁇ 10% are substantially the same.
  • the manufacturing method of the oxygen-absorbing multilayer body of the present embodiment is the same as that described in the second embodiment.
  • the oxygen-absorbing paper container of the present embodiment has the above-described oxygen-absorbing multilayer body as a part or all of the constituent material.
  • the paper container which makes an oxygen absorptive multilayer body the whole means the paper container comprised only by the oxygen absorptive multilayer body.
  • a paper container having an oxygen-absorbing multilayer body as a part of its constituent material means a paper container in which a part of the paper container is composed of an oxygen-absorbing multilayer body and the rest is composed of other materials. .
  • a transparent material for example, a state in which the paper base material is removed from the oxygen-absorbing multilayer body layer
  • an article stored object stored in the container can be confirmed from the outside.
  • the paper container comprised by using is mentioned.
  • the usage mode and shape of the oxygen-absorbing paper container of the present embodiment are not particularly limited, and can be set as appropriate according to the articles to be stored and stored.
  • Examples of the shape of the oxygen-absorbing paper container of the present embodiment include various shapes such as a gobel top type, a brick type, and a flat top type.
  • the oxygen-absorbing paper container of the present embodiment it is possible to promote the start of the oxygen absorption reaction or increase the oxygen absorption rate by irradiating energy rays.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the oxygen-absorbing paper container of the present embodiment does not require moisture for oxygen absorption, in other words, it can absorb oxygen regardless of the presence or absence of moisture in the preserved object, so it is wide regardless of the kind of preserved object. Can be used in applications. In particular, since there is no generation of odor after oxygen absorption, it can be particularly suitably used in, for example, foods, cooked foods, beverages, health foods, pharmaceuticals and the like. That is, the oxygen-absorbing paper container of this embodiment is excellent in oxygen absorption performance under a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity, and the flavor retention of the contents. Since it is excellent, it is suitable for packaging of various articles. In addition, the oxygen-absorbing resin composition of the present embodiment is different from the oxygen-absorbing resin composition using conventional iron powder, and is not stored due to the presence of iron (for example, alcoholic beverages or carbonated beverages). Can be suitably used.
  • the oxygen-absorbing paper container of the present embodiment is, in particular, an object that easily deteriorates in the presence of oxygen, such as beer, wine, sake, shochu, fruit juice drink, fruit juice, vegetable juice, carbonated soft drink, Suitable for packaging coffee, tea, mayonnaise, ketchup, cooking oil, dressing, sauces, etc.
  • the container and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • the sterilization method should just be the same as what was demonstrated in the said 1st Embodiment.
  • the tubular container of this embodiment contains an inner layer (layer G) containing a thermoplastic resin, an oxygen absorption layer (layer A) made of the oxygen-absorbing resin composition of the first embodiment, and a gas barrier substance.
  • An oxygen-absorbing multilayer body (hereinafter simply referred to as “multilayer body” in the present embodiment) in which at least three gas barrier layers (layer D) are laminated in this order is provided.
  • the multilayer body with which the tubular container of this embodiment is equipped may have layers other than these three layers in arbitrary positions as needed.
  • the tube-like container of the present embodiment absorbs oxygen in the container, and when there is a small amount of oxygen that permeates or enters the tube container from outside the container, it absorbs this permeated or penetrated oxygen and stores it. It is possible to prevent alteration of the content item (stored object) due to oxygen.
  • the inner layer (layer G) of the multilayer body provided in the tubular container of the present embodiment contains a thermoplastic resin.
  • This layer G allows oxygen in the container to permeate to the oxygen absorbing layer and at the same time isolates the oxygen absorbing layer (layer A) and the contents (stored object) (physical contact between the layer A and the stored object).
  • the layer G may have a joint surface with the opening
  • the oxygen permeability of the layer G is 300 mL / (m 2 ⁇ day ⁇ atm) or more when measured with a film having a thickness of 20 ⁇ m at 23 ° C. and a relative humidity of 60%.
  • the rate of absorbing oxygen in the layer A can be further increased as compared to the case where the oxygen permeability is not so.
  • thermoplastic resin used for the layer G of the multilayer body provided in the tubular container of the present embodiment high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, Polyethylenes such as polyethylene by metallocene catalyst; polystyrene; polymethylpentene; polypropylenes such as propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer, and the like. These can be used alone or in combination.
  • thermoplastic resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid, as necessary. Copolymers, ethylene-methyl methacrylate copolymers, and thermoplastic elastomers may be added.
  • the thermoplastic resin used for the layer G of the multilayer body provided in the tubular container of the present embodiment has an MFR of 1 to 35 g / 10 minutes at 200 ° C., considering the moldability and processability of the tubular container, or A compound having an MFR of 2 to 45 g / 10 min at 240 ° C. is preferably used.
  • the multilayer layer G provided in the tubular container of the present embodiment may contain various additives known in the art in addition to the above thermoplastic resin.
  • optional components include desiccants, coloring pigments such as titanium oxide, dyes, antioxidants, slip agents, antistatic agents, plasticizers, stabilizers, additives such as lubricants, calcium carbonate, clay, mica, Examples thereof include fillers such as silica, deodorants and the like, but are not particularly limited thereto.
  • the content ratio of the thermoplastic resin in the layer G can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably based on the total amount of the layer G. Is 90 to 100% by mass.
  • the thermoplastic resin used in the layer G of the present embodiment preferably contains 50 to 100% by mass of thermoplastic resin other than the tetralin ring-containing copolymer polyolefin compound, more preferably 70 to 100% by mass, more preferably 90 to 100% by mass.
  • the multilayer oxygen-absorbing layer (A) provided in the tubular container of the present embodiment is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1).
  • a structural unit (a), and a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) It comprises an oxygen-absorbing resin composition containing a copolymerized polyolefin compound containing b) and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described in the second embodiment, except for the matters specified below.
  • the thickness of the oxygen absorbing layer (layer A) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably. Is 10 to 150 ⁇ m.
  • the thickness of the inner layer (layer G) can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m.
  • the thickness ratio of layer G to layer A is preferably 1: 0.5 to 1: 3, more The ratio is preferably 1: 1 to 1: 2.5.
  • the multilayer gas barrier layer (layer D) provided in the tubular container of the present embodiment contains a gas barrier substance.
  • the gas barrier layer (layer D) and the gas barrier material thereof are the same as those described in the second embodiment except for the matters specifically described below.
  • Examples of the gas barrier material used for the layer D of the multilayer body provided in the tubular container of this embodiment include a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various deposited films such as silica, alumina, and aluminum, and an aluminum foil. A metal foil or the like can be used.
  • Examples of the gas barrier thermoplastic resin include ethylene-vinyl alcohol copolymer, MXD6, and polyvinylidene chloride.
  • the gas barrier thermosetting resin include a gas barrier epoxy resin such as “MAXIVE” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the multilayer body provided in the tube-shaped container of this embodiment can prevent deterioration of the contents due to oxygen even without using an aluminum foil for the layer D, particularly by providing an oxygen absorbing layer (layer A). be able to. However, this does not prevent the use of an aluminum foil as the layer D.
  • the multilayer body provided in the tubular container of the present embodiment is between the layer G and the layer A, between the layer A and the layer D, on the outer layer of the layer G, or on the outer layer of the layer D.
  • a protective layer made of a thermoplastic resin can be provided inside or outside the layer D.
  • the resin used for this protective layer examples include polyethylenes such as high-density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 Polyamides such as PET, polyesters such as PET, and combinations thereof.
  • the multilayer body provided in the tubular container of the present embodiment has an intermediate layer made of polyolefin resin interposed between the layer D and the layer A.
  • the thickness of the intermediate layer is preferably substantially the same as the thickness of the layer G from the viewpoint of workability.
  • thickness ratios within ⁇ 10% are substantially the same.
  • a paper base material can be laminated on the outer layer of the layer D in the multilayer body, and the tubular container of this embodiment can be used as an oxygen-absorbing paper base material or an oxygen-absorbing paper container.
  • the total thickness of the layers inside the layer D is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less. .
  • the tube-like container of the present embodiment is not particularly limited except that it includes a multilayer body in which the above-mentioned layer G, layer A, and layer D are laminated to form a tube, and has the same structure as a conventional tube-like container Or may have a shape and dimensions.
  • the tube-shaped container of the present embodiment may further include a mouth portion in which an opening for pouring the stored object (content) is formed, and includes a cap for sealing the tube-shaped container. It may be.
  • the manufacturing method of the tube-shaped container of this embodiment is not specifically limited, For example, you may manufacture by a well-known method, for example, you may manufacture the tube-shaped container of this embodiment as follows.
  • the tube body is cut into a desired size and molded, and the mouth portion provided with an opening (pouring portion) is joined to the end portion of the molded body to manufacture the tube-shaped container of the present embodiment.
  • the tubular container of the present embodiment is manufactured by joining a mouth portion provided with an opening (pouring portion) in the same manner as in the past to a parison having a multilayer structure formed by coextrusion. Can do.
  • the above-mentioned laminated film can be produced using a known method such as a co-extrusion method, various laminating methods, various coating methods, etc., depending on the properties of various materials, processing purposes, processing steps, etc. Is not particularly limited. It is possible to apply a method for laminating ordinary packaging materials, for example, wet lamination method, dry lamination method, solventless dry lamination method, extrusion lamination method, T-die coextrusion molding method, coextrusion lamination method, inflation method, etc. it can.
  • a method for laminating ordinary packaging materials for example, wet lamination method, dry lamination method, solventless dry lamination method, extrusion lamination method, T-die coextrusion molding method, coextrusion lamination method, inflation method, etc. it can.
  • an adhesive is applied to an oxygen-absorbing film or sheet formed by extruding a melted resin composition from an extruder attached with a T die, a circular die, or the like.
  • pretreatment such as corona treatment and ozone treatment can be applied to the film and the like, and for example, an isocyanate type (urethane type), polyethyleneimine type, polybutadiene type, organic titanium type anchor, etc.
  • Coating agents, or known anchor coating agents such as adhesives for laminating, such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, cellulose, etc., can also be used. .
  • energy rays can be irradiated to promote the start of the oxygen absorption reaction or increase the oxygen absorption rate.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the tubular container of the present embodiment does not require moisture for oxygen absorption, in other words, it can absorb oxygen regardless of the presence or absence of moisture in the object to be preserved, so that it can be used in a wide range of applications regardless of the kind of object to be preserved. Can be used.
  • the tubular container of this embodiment is excellent in oxygen absorption performance under a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity, and excellent in flavor retention of contents. Suitable for packaging of various articles.
  • preserved items include seasonings such as grated spices such as mayonnaise, miso, mustard, wasabi, ginger, garlic; pasty foods such as jam, cream, butter, margarine, chocolate paste; toothpaste, Cosmetics such as hair dyes, dyes, soaps and medicinal cosmetics; pharmaceuticals; chemicals; and other various articles may be mentioned, but the invention is not particularly limited thereto.
  • seasonings such as grated spices such as mayonnaise, miso, mustard, wasabi, ginger, garlic
  • pasty foods such as jam, cream, butter, margarine, chocolate paste
  • toothpaste Cosmetics such as hair dyes, dyes, soaps and medicinal cosmetics
  • pharmaceuticals for example, a packaging material for seasonings, pharmaceuticals, cosmetics and the like.
  • the container and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • the sterilization method should just be the same as what was demonstrated in the said 1st Embodiment.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment includes a first resin layer (layer B) containing at least polyester and an oxygen-absorbing layer (layer A) comprising the oxygen-absorbing resin composition of the first embodiment. ) And a second resin layer (layer B) containing at least polyester, in this order.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment absorbs oxygen in the container, and if there is little oxygen that permeates or penetrates the container wall surface from outside the container, the oxygen-absorbing medical multilayer molded container also has this permeated or invading oxygen. It is possible to prevent alteration or the like due to oxygen of the content article (preservation object) to be absorbed and stored.
  • the layer structure in the oxygen-absorbing medical multilayer molded container of this embodiment is the number of oxygen-absorbing layers (layer A) and resin layers (layer B).
  • the type is not particularly limited.
  • a five-layer configuration of B1 / B2 / A / B2 / B1 including one layer A, two layers B1, and two layers B2 may be used.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment may include an arbitrary layer such as an adhesive layer (layer AD) as necessary.
  • layer AD adhesive layer
  • B1 / B2 / AD / A / AD / B2 / A seven-layer configuration of B1 may be used.
  • the oxygen-absorbing layer (A) is at least one ethylene or substituted ethylene constituent unit selected from the group consisting of constituent units represented by the general formula (1).
  • a structural unit (a), and a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) It comprises an oxygen-absorbing resin composition containing a copolymerized polyolefin compound containing b) and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described in the second embodiment, except for the matters specified below.
  • the thickness of the oxygen-absorbing layer (layer A) can be appropriately set according to the application and desired performance, and is not particularly limited, but has high oxygen-absorbing performance, From the viewpoint of ensuring various physical properties required for the medical multilayer molded container, the thickness is preferably 1 to 1000 ⁇ m, more preferably 50 to 900 ⁇ m, and still more preferably 100 to 800 ⁇ m.
  • the resin layer (layer B) is a layer containing polyester.
  • the polyester content in the layer B can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and more preferably, based on the total amount of the layer B.
  • the content is preferably 90 to 100% by mass.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment may have a plurality of layers B such as the above-described layers B1 and B2, and the configurations of the plurality of layers B may be the same or different from each other. Also good.
  • the thickness of the layer B can be appropriately determined according to the use and is not particularly limited. However, from the viewpoint of ensuring various physical properties required for the medical multilayer molded container, 50 to 10,000 ⁇ m is preferable, and more preferably 100 ⁇ m. It is ⁇ 7000 ⁇ m, more preferably 300 to 5,000 ⁇ m.
  • polyester used in the layer B of this embodiment are selected from one or more polycarboxylic acids including dicarboxylic acids and ester-forming derivatives thereof and polyhydric alcohols including glycols.
  • polycarboxylic acids including dicarboxylic acids and ester-forming derivatives thereof
  • polyhydric alcohols including glycols.
  • the thing which consists of 1 type, or 2 or more types, or what consists of hydroxycarboxylic acid and these ester-forming derivatives, or what consists of cyclic ester etc. are mentioned.
  • dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid 3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid Saturated aliphatic dicarboxylic acids exemplified in the above, or ester-forming derivatives thereof, unsaturated aliphatic dicarboxylic acids exemplified in fumaric acid, male
  • Aromatic dicarboxylic acids or their ester-forming derivatives 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2- Exemplified by potassium sulfoterephthalic acid Metal sulfonate group-containing aromatic dicarboxylic acid or lower alkyl ester derivatives thereof, and the like.
  • terephthalic acid terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acids are particularly preferable from the viewpoint of physical properties of the resulting polyester.
  • polycarboxylic acids other than these dicarboxylic acids include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyl. Examples thereof include tetracarboxylic acid and ester-forming derivatives thereof.
  • glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, and 2,3-butylene glycol.
  • 1,4-butylene glycol 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2 -Cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol Aliphatic glycols exemplified by polytrimethylene glycol and polytetramethylene glycol, hydroquinone, 4,4′-dihydroxybisphenol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,4-bis ( ⁇ -hydroxyethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether
  • glycols it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as main components.
  • polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like.
  • hydroxycarboxylic acid examples include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid. Or ester-forming derivatives thereof.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include alkyl esters, acid chlorides, acid anhydrides, and the like.
  • polyesters in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol are preferable.
  • the polyester whose main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof in total with respect to the total acid component, More preferred is a polyester containing 80 mol% or more, and even more preferred is a polyester containing 90 mol% or more.
  • the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is preferably a polyester containing naphthalenedicarboxylic acid or an ester-forming derivative in total of 70 mol% or more, more preferably It is a polyester containing 80 mol% or more, more preferably a polyester containing 90 mol% or more.
  • 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid exemplified in dicarboxylic acids 2,7-naphthalenedicarboxylic acid or their ester-forming derivatives are preferred.
  • polyester used for the layer B of the oxygen-absorbing multilayer body of the present embodiment include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide. Can be mentioned.
  • the polyglycolic acid may be one in which other components such as lactide are copolymerized.
  • the polyester used in the layer B of the present embodiment is a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof, or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol. Is preferred. Moreover, it is preferable that 70 mol% or more of alkylene glycol is included at points, such as a physical characteristic, and it is more preferable that 90 mol% or more is included.
  • terephthalic acid isophthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid
  • the use of 2,7-naphthalenedicarboxylic acid is preferable from the viewpoint of the physical properties of the resulting polyester, and preferably contains 70 mol% or more.
  • terephthalic acid and / or 2,6-naphthalenedicarboxylic acid are particularly preferable.
  • terephthalic acid and / or 2,6-naphthalenedicarboxylic acid from the viewpoint of physical properties and the like, and more preferably 90 mol% or more.
  • the use of one or more copolymerization components is preferable for achieving both transparency and moldability.
  • at least one selected from the group consisting of isophthalic acid, diethylene glycol, neopentyl glycol, and 1,4-cyclohexanedimethanol is more preferable.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment has an optional layer in addition to the above-described oxygen-absorbing layer (layer A) and polyester-containing resin layer (layer B) depending on the desired performance and the like. May be included. Examples of such an arbitrary layer include an adhesive layer.
  • the adhesive layer preferably contains a thermoplastic resin having adhesiveness.
  • a thermoplastic resin having adhesiveness for example, an acid modification obtained by modifying a polyolefin resin such as polyethylene or polypropylene with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid or itaconic acid Polyolefin resin; polyester-based thermoplastic elastomer mainly composed of a polyester-based block copolymer.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 2 to 100 ⁇ m, more preferably 5 to 90 ⁇ m, and still more preferably, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength. Is 10 to 80 ⁇ m.
  • the manufacturing method of the oxygen-absorbing medical multilayer molded container of the present embodiment can be applied with known methods according to the properties of various materials, the target shape, etc., and is not particularly limited.
  • a multilayer molded container can be manufactured by applying various injection molding methods.
  • the thickness of the oxygen-absorbing medical multilayer molded container of the present embodiment is not particularly limited, but is preferably 3 to 5000 ⁇ m from the viewpoint of enhancing oxygen absorption performance and ensuring various physical properties required for the medical multilayer molded container. More preferably, it is 5 to 4500 ⁇ m, and further preferably 10 to 4000 ⁇ m.
  • a multilayer molded body can be obtained by a compression molding method, and the obtained multilayer molded body is subjected to the secondary processing described above to be molded into a desired container shape.
  • a multilayer molded article can be obtained by providing an oxygen-absorbing resin composition in a polyester melt, supplying the molten mass to a male mold, compressing with a female mold, and cooling and solidifying the compression molded article.
  • the secondary processing for example, extrusion molding, compression molding (sheet molding, blow molding) or the like can be applied.
  • the usage aspect of the oxygen-absorbing medical multilayer molded container of the present embodiment is not particularly limited, and can be used in various applications and forms.
  • Preferred examples of usage include, but are not particularly limited to, vials, ampoules, prefilled syringes, vacuum blood collection tubes, and the like.
  • preferred usage modes will be described in detail.
  • the oxygen-absorbing medical multilayer molded container of this embodiment can be used as a vial.
  • a vial is composed of a bottle, a rubber stopper, and a cap. After filling the bottle with a chemical solution, the vial is sealed with a rubber stopper, and the cap is tightened from above to seal the inside of the bottle.
  • the oxygen-absorbing medical multilayer molded container of this embodiment can be used for the bottle portion of this vial.
  • injection blow molding As a method for forming the oxygen-absorbing medical multilayer molded container of this embodiment into a bottle portion of a vial, for example, injection blow molding, extrusion blow molding, and the like are suitable.
  • an injection blow molding method is shown below.
  • the material constituting the layer A and the material constituting the layer B are passed through the mold hot runners from the respective injection cylinders, and the injection mold.
  • a multilayer injection molded body having a three-layer structure B / A / B having a shape corresponding to the cavity shape of the injection mold can be manufactured.
  • the material constituting the layer B is injected from the injection cylinder, then the material constituting the layer A is injected from another injection cylinder simultaneously with the resin constituting the layer B, and then the resin constituting the layer B
  • a multilayer injection molded body having a three-layer structure B / A / B can be manufactured.
  • a multilayer injection molded article having a five-layer structure B / A / B / A / B can be produced.
  • the material constituting the layer B1 is injected from the injection cylinder, then the material constituting the layer B2 is injected from another injection cylinder simultaneously with the resin constituting the layer B1, and then the layer A is constituted.
  • the resin simultaneously with the resins constituting the layers B1 and B2, and then injecting a necessary amount of the resin constituting the layer B1 to fill the cavity, the five-layer structure B1 / B2 / A / B2 / B1 A multilayer injection molded article can be produced.
  • the multilayer injection molded body obtained by the above method is fitted in a final shape mold (blow mold) while being heated to some extent, and air is blown and inflated into the mold. It can be formed into a bottle shape by closely contacting and solidifying by cooling.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment can be used as an ampoule.
  • an ampoule is composed of a small container having a narrow neck, and the container is hermetically sealed by filling the container with a chemical solution and then sealing the tip of the neck.
  • the oxygen-absorbing medical multilayer molded container of this embodiment can be used for this ampoule (small container).
  • injection blow molding, extrusion blow molding and the like are suitable.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment can be used as a prefilled syringe.
  • a prefilled syringe is composed of at least a barrel for filling a liquid medicine, a joint for joining an injection needle to one end of the barrel, and a plunger for pushing out the liquid medicine at the time of use.
  • a syringe that is configured to be sealed in a sealed state and to be opened when the barrel is in use and the injection needle is attached, and is widely used for its ease of use.
  • the oxygen-absorbing medical multilayer molded container of this embodiment can be used for this barrel.
  • an injection molding method is suitable. Specifically, first, a certain amount of resin constituting the layer B is injected into the cavity of the injection mold, then a certain amount of resin constituting the layer A is injected, and a certain amount of resin constituting the layer B is again injected. By injecting, a barrel can be manufactured as a multilayer injection molded article.
  • the oxygen absorbing layer (layer A) is preferably formed up to the vicinity of the nozzle tip surface. By forming the oxygen absorbing layer (layer A) up to the vicinity of the front end surface, the barrier property of the barrel is further ensured.
  • the oxygen absorption layer (layer A) is formed up to the insertion position of the gasket to be inserted into the barrel.
  • the barrier property of the barrel is further ensured.
  • the barrel and the joint may be molded as an integral part, or may be joined separately.
  • the method is not particularly limited, and a known method can be adopted.
  • the resin at the tip of the joint may be heated to a molten state and sandwiched with pliers or the like to be fused.
  • the thickness of the container of the barrel of the prefilled syringe can be appropriately set according to the purpose and size of use, and is not particularly limited. In general, from the viewpoint of long-term storage stability of the chemical solution, moldability, and operability of the syringe, the thickness is preferably about 0.5 to 20 mm, more preferably about 0.5 to 5 mm. Moreover, even if thickness is uniform, what changed thickness may be sufficient.
  • the barrel has a male luer taper nozzle that can connect the injection needle in a liquid-tight manner at the tip, and a shoulder is formed from the base end of the nozzle to the cylindrical wall. A cylindrical shape having a finger hook flange at the end is preferably employed. Note that another gas barrier film or a light shielding film may be further formed on the barrel surface for the purpose of long-term storage stability. These arbitrary films and methods for forming them are described in, for example, Japanese Patent Application Laid-Open No. 2004-323058.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment can be used as a vacuum blood collection tube.
  • the vacuum blood collection tube is composed of a tubular body and a stopper.
  • the oxygen-absorbing medical multilayer molded container of this embodiment can be used for this tubular body.
  • an injection molding method is suitable as a method of forming the oxygen-absorbing medical multilayer molded container of this embodiment into a tubular body of a vacuum blood collection tube. Specifically, first, a certain amount of resin constituting the layer B is injected into the cavity of the injection mold, then a certain amount of resin constituting the layer A is injected, and a certain amount of resin constituting the layer B is again injected. By injecting, a tubular body can be produced as a multilayer injection molded body.
  • the material to be stored (filled material) filled in the oxygen-absorbing medical multilayer molded container of the present embodiment is not particularly limited.
  • vitamins such as vitamin A, vitamin B2, vitamin B12, vitamin C, vitamin D, vitamin E and vitamin K, alkaloids such as atropine, hormones such as adrenaline and insulin, sugars such as glucose and maltose, ceftriaxone
  • Any natural product or compound such as antibiotics such as cephalosporin and cyclosporine, and benzodiazepines such as oxazolam, flunitrazepam, clothiazepam and clobazam can be filled.
  • the oxygen-absorbing medical multilayer molded container of the present embodiment when filled with these natural products and compounds, has a small amount of adsorption of these natural products and compounds, and can suppress alteration due to oxidation, Moreover, transpiration of the solvent (for example, water) can be suppressed.
  • the solvent for example, water
  • the oxygen-absorbing medical multilayer molded container of the present embodiment can be suitably used as a biopharmaceutical storage container.
  • biopharmaceuticals examples include protein pharmaceuticals and nucleic acid pharmaceuticals.
  • various monoclonal antibodies various vaccines, interferon, insulin, growth hormone, erythropoietin, colony stimulating factor, TPA, interleukin, blood coagulation factor VIII, blood coagulation factor IX, natriuretic hormone, somatomedin, Glucagon, serum albumin, calcitonin, growth hormone releasing factor, digestive enzyme agent, inflammatory enzyme agent, antibiotics, antisense nucleic acid, antigene nucleic acid, decoy nucleic acid, aptamer, siRNA, microRNA, etc. .
  • the medical multilayer container and the stored objects can be sterilized in a form suitable for the stored objects.
  • sterilization methods for example, hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, high temperature heat treatment at 121 ° C. or higher, etc., electromagnetic wave sterilization of ultraviolet rays, microwaves, gamma rays, etc., ethylene Examples include gas treatment of oxide and the like, and chemical sterilization such as hydrogen peroxide and hypochlorous acid.
  • the oxygen-absorbing PTP package of the present embodiment includes an oxygen-absorbing bottom material formed by molding an oxygen-absorbing multilayer body, an inner layer containing a thermoplastic resin, and a gas barrier layer containing a gas barrier material in this order. And a gas barrier lid material composed of at least two layers, wherein the sealant layer (layer C) in the oxygen-absorbing bottom material and the inner layer in the gas barrier lid material are joined.
  • the oxygen-absorbing multilayer body of this embodiment includes a sealant layer (layer C) containing a thermoplastic resin, an oxygen-absorbing layer (layer A) comprising the oxygen-absorbing resin composition of the first embodiment, and a gas barrier substance. And at least three gas barrier layers (layer D) containing bismuth. Moreover, the oxygen-absorbing multilayer body of this embodiment may have a layer other than these three layers at an arbitrary position as necessary.
  • the oxygen-absorbing multilayer body of this embodiment absorbs oxygen in the container by using the layer C as an inner side for the oxygen-absorbing PTP package, and oxygen that permeates or penetrates the container wall surface from the outside of the container. If there is even a slight amount, this permeated or invading oxygen can be absorbed, and alteration of the stored content item (stored object) due to oxygen can be prevented.
  • the sealant layer (layer C) of the oxygen-absorbing multilayer body of the present embodiment contains a thermoplastic resin.
  • the sealant layer (layer C) and the thermoplastic resin of the oxygen-absorbing multilayer body of the present embodiment are the same as those described in the second embodiment.
  • the oxygen absorption layer (A) of the oxygen-absorbing multilayer body of the present embodiment is a structural unit that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1). And (a) and a structural unit (b) that is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) And an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described in the second embodiment.
  • the gas barrier layer (layer D) of the oxygen-absorbing multilayer body of the present embodiment contains a gas barrier substance.
  • the gas barrier layer (layer D) and the gas barrier material thereof are the same as those described in the second embodiment except for the matters specifically described below.
  • Examples of the gas barrier material used for the layer D of the oxygen-absorbing multilayer body of the present embodiment include a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various deposited films such as silica, alumina, and aluminum, and a metal such as an aluminum foil. A foil or the like can be used.
  • Examples of the gas barrier thermoplastic resin for ensuring the visibility of the material to be stored include ethylene-vinyl alcohol copolymer, MXD6, polyvinylidene chloride, and the like.
  • Examples of the gas barrier thermosetting resin include a gas barrier epoxy resin such as “MAXIVE” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the oxygen-absorbing multilayer body of the present embodiment includes a resin layer between the layer C and the layer A, between the layer A and the layer D, or on the outer layer of the layer C or on the outer layer of the layer D.
  • the arbitrary layers are the same as those described in the second embodiment.
  • the manufacturing method of the oxygen-absorbing multilayer body of the present embodiment is the same as that described in the second embodiment.
  • the oxygen-absorbing bottom material of this embodiment is formed by molding the oxygen-absorbing multilayer body described above.
  • the shape of the oxygen-absorbing bottom material of the present embodiment is not particularly limited, and can be made into a container of any shape by performing thermoforming according to the article to be stored and stored.
  • the film- or sheet-like oxygen-absorbing multilayer body by a method such as vacuum forming, pressure forming, or plug-assist forming, a space capable of storing an object to be stored such as a tablet is provided.
  • An oxygen-absorbing bottom material can be produced.
  • the oxygen-absorbing bottom material having a flange portion when producing the oxygen-absorbing bottom material having a flange portion, special processing for imparting an easy peeling function to the flange portion may be performed. Further, by using the oxygen-absorbing multilayer body as a member such as a container lid or a top seal, an oxygen absorbing function can be imparted to these containers.
  • the gas barrier lid material of this embodiment is composed of at least two layers in which an inner layer containing a thermoplastic resin and a gas barrier layer containing a gas barrier substance are laminated in this order, and the gas barrier is provided in the oxygen-absorbing PTP package. It is possible to reduce the amount of oxygen that permeates or enters the lid material from the outside.
  • the gas-barrier molded object of this embodiment may have layers other than these two layers in arbitrary positions as needed.
  • the lid member can also be given an oxygen absorption function.
  • thermoplastic resin used for the inner layer of the gas barrier lid material of the present embodiment is not particularly limited, and as a specific example, a thermoplastic resin suitably used in the above-described oxygen-absorbing multilayer sealant layer (layer C). As shown in FIG.
  • the inner layer of the gas barrier lid material of the present embodiment may contain various additives known in the art in addition to the above thermoplastic resin. Specific examples thereof include those shown as additives that are preferably used in the above-described sealant layer (layer C) of the oxygen-absorbing multilayer body.
  • the content ratio of the thermoplastic resin in the inner layer can be appropriately set and is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90%, based on the total amount of the inner layer. To 100% by mass.
  • the thickness of the inner layer can be appropriately set according to the application and desired performance, and is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • thermoplastic resin used for the inner layer of the gas barrier lid material of the present embodiment from the viewpoint of ensuring the thermal fusion strength of the oxygen-absorbing PTP package, the thermoplastic resin used for the layer C of the oxygen-absorbing multilayer body is The same kind is preferable.
  • the gas barrier layer of the gas barrier lid material of this embodiment contains a gas barrier substance.
  • the oxygen permeability of the gas barrier layer is preferably 100 mL / (m 2 ⁇ day ⁇ atm) or less when measured at 23 ° C. and 60% relative humidity for a film having a thickness of 20 ⁇ m. It is preferably 80 mL / (m 2 ⁇ day ⁇ atm) or less, more preferably 50 mL / (m 2 ⁇ day ⁇ atm) or less.
  • gas barrier substance used for the gas barrier layer of the gas barrier lid material of the present embodiment include those shown as the gas barrier substance suitably used in the gas barrier layer (layer D) of the oxygen-absorbing multilayer body described above. It is done. In particular, in an oxygen-absorbing PTP package, it is particularly preferable to use an aluminum foil because the stored object is pushed out and taken out.
  • the thickness of the gas barrier layer of the gas barrier cover material is preferably 1 to 100 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the oxygen-absorbing PTP package of this embodiment includes an oxygen-absorbing bottom material formed by molding the above-described oxygen-absorbing multilayer body and a gas barrier lid material, and the sealant layer of the oxygen-absorbing bottom material and the gas barrier The inner layer of the cover material is joined.
  • the oxygen-absorbing PTP package of the present embodiment absorbs oxygen in the container, and if there is a small amount of oxygen that enters from the outside of the container, the oxygen-absorbing PTP package also absorbs the oxygen that has entered, It is possible to prevent deterioration of the preserved material) due to oxygen.
  • the PTP (press-through package) package is called a blister package in foreign countries.
  • energy rays are irradiated to promote the start of the oxygen-absorbing reaction or increase the oxygen absorption rate.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the container and the object to be preserved can be sterilized in a form suitable for the object to be preserved.
  • the sterilization method may be the same as that described in the first embodiment.
  • save thing accommodated in the oxygen absorptive PTP package of this embodiment is not specifically limited,
  • a tablet is mentioned. More specifically, for example, various foods such as health foods such as vitamin C and vitamin E, tablets for internal use, orally disintegrating tablets (OD tablets) can be stored.
  • the oxygen-absorbing multilayer bottle of this embodiment includes an oxygen-permeable layer (layer H) containing a thermoplastic resin, an oxygen-absorbing layer (layer A) comprising the oxygen-absorbing resin composition of the first embodiment, and gas barrier properties.
  • a gas barrier layer (layer D) containing a substance is laminated in this order from the inside and has at least three layers.
  • the oxygen-absorbing multilayer bottle of the present embodiment may have a layer other than these three layers at an arbitrary position as necessary.
  • the oxygen-absorbing multilayer bottle according to the present embodiment absorbs oxygen in the container and penetrates or penetrates the container wall surface from outside the container by using the layer H as a part or all of the sealing packaging container. In the case where a small amount of oxygen is used, the permeated or invaded oxygen is also absorbed, and alteration of the stored content item (stored object) due to oxygen can be prevented.
  • the oxygen permeable layer (layer H) of the oxygen-absorbing multilayer bottle of the present embodiment contains a thermoplastic resin. This layer H allows oxygen in the container to permeate to the oxygen absorbing layer and at the same time isolates the oxygen absorbing layer (layer A) from the contents (stored object) (physical contact between layer A and the stored object). Has a role to inhibit.
  • the layer H may also serve as a sealant when the multilayer bottle is sealed by heat-sealing the oxygen-absorbing multilayer bottle of the present embodiment and a top film (covering material) having gas barrier properties. it can.
  • the layer H of the oxygen-absorbing multilayer bottle of this embodiment is the same as that described as the oxygen-permeable layer (layer H) of the oxygen-absorbing multilayer body in the third embodiment.
  • the oxygen-absorbing layer (A) of the oxygen-absorbing multilayer bottle of this embodiment is a structural unit that is at least one ethylene or substituted ethylene structural unit selected from the group consisting of structural units represented by the general formula (1). And (a) and a structural unit (b) that is a substituted ethylene structural unit having at least one tetralin ring selected from the group consisting of the structural units represented by the general formula (2) or (3) And an oxygen-absorbing resin composition containing a copolymerized polyolefin compound and a transition metal catalyst.
  • the oxygen-absorbing resin composition used here is the same as that described in the first embodiment.
  • the oxygen absorbing layer (layer A) is the same as that described as the oxygen absorbing layer (layer A) of the oxygen absorbing multilayer body in the third embodiment.
  • the gas barrier layer (layer D) of the oxygen-absorbing multilayer bottle of the present embodiment contains a gas barrier substance.
  • the gas barrier layer (layer D) is the same as that described as the gas barrier layer (layer D) of the oxygen-absorbing multilayer body in the third embodiment.
  • the oxygen-absorbing multilayer bottle of the present embodiment has a resin layer between the layer H and the layer A, between the layer A and the layer D, or on the outer layer of the layer H or on the outer layer of the layer D.
  • the arbitrary layer is the same as that described as the optional layer of the oxygen-absorbing multilayer body in the third embodiment.
  • the oxygen-absorbing multilayer bottle of the present embodiment can be manufactured using a known method such as a co-extrusion method, various laminating methods, various coating methods, etc., depending on the properties of various materials, processing purposes, processing steps, and the like.
  • the manufacturing method is not particularly limited. Methods for laminating ordinary packaging materials such as wet lamination, dry lamination, solventless dry lamination, extrusion lamination, T-die coextrusion, coextrusion lamination, coextrusion blow molding, inflation Etc. can be applied.
  • molding a normal bottle for example, a coextrusion blow method, is used preferably.
  • an adhesive is applied to a method in which a melted resin composition is extruded from an extruder attached with a T die, a circular die, or the like, or a separately formed oxygen-absorbing film or sheet.
  • coating and bonding with another film or sheet is mentioned.
  • pretreatment such as corona treatment and ozone treatment can be applied to the film and the like, and for example, an isocyanate type (urethane type), polyethyleneimine type, polybutadiene type, organic titanium type anchor, etc.
  • Coating agents, or known anchor coating agents such as adhesives for laminating, such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, cellulose, etc., can also be used. .
  • the configuration of the oxygen-absorbing multilayer bottle of the present embodiment is not particularly limited, and can be set as appropriate according to the article to be stored and stored.
  • the body of a packaging container (bottle) having the above-described layers is formed by coextrusion molding blow, and this is joined to a top film (covering material) having a gas barrier layer containing a gas barrier substance to create a sealed container. can do.
  • the gas barrier substance used for the gas barrier layer of the top film (cover material) the gas barrier substance used for the layer D of the oxygen-absorbing multilayer bottle described above can be used.
  • the oxygen permeability of the top film (lid) is 100 mL / (m 2 ⁇ day ⁇ atm) or less when measured at 23 ° C.
  • the top film (cover material) is produced as a multilayer body, and the thermoplastic resin used for the layer H of the oxygen-absorbing multilayer bottle described above is used as the inner layer, so that the layer H and the top film (cover material) inner layer are heated. It can also be fused and sealed.
  • thermoformed container which has a flange part
  • an oxygen absorption function can be provided to these containers by using the oxygen-absorbing multilayer bottle as a member of the container body.
  • the oxygen-absorbing multilayer bottle of the present embodiment it is possible to accelerate the start of the oxygen absorption reaction or increase the oxygen absorption rate by irradiating energy rays.
  • the energy ray for example, visible light, ultraviolet ray, X-ray, electron beam, ⁇ -ray or the like can be used.
  • the amount of irradiation energy can be appropriately selected according to the type of energy beam used.
  • the oxygen-absorbing multilayer bottle of the present embodiment does not require moisture for oxygen absorption, in other words, it can absorb oxygen regardless of the presence or absence of moisture in the preserved object, so it is wide regardless of the kind of preserved object. Can be used in applications. In particular, since there is no generation of odor after oxygen absorption, it can be particularly suitably used in, for example, foods, cooked foods, beverages, health foods, pharmaceuticals and the like. That is, the oxygen-absorbing multilayer bottle of this embodiment is excellent in oxygen absorption performance under a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity, and also maintains the flavor retention of the contents. Since it is excellent, it is suitable for packaging of various articles.
  • the oxygen-absorbing multilayer bottle of the present embodiment is suitable for an object to be stored (for example, an alcoholic beverage or a carbonated beverage) that cannot be stored due to the presence of iron, unlike an oxygen-absorbing multilayer bottle using conventional iron powder. Can be used.
  • materials to be stored include pharmaceuticals; health foods such as vitamins; cosmetics, shampoos, rinses, detergents and other miscellaneous goods; and other various articles, but are not particularly limited thereto.
  • the container and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • the sterilization method may be the same as that described in the first embodiment.
  • the weight average molecular weight in terms of polystyrene was 9.5 ⁇ 10 4
  • the number average molecular weight. was 3.1 ⁇ 10 4
  • the melting point was 71 ° C.
  • Synthesis Example 2 Instead of 6-hydroxylmethyl-1,2,3,4-tetrahydronaphthalene of Synthesis Example 1, 1,5-dimethyl-8-hydroxylmethyl-1,2,3,4-tetrahydronaphthalene was used, and the mass was 95.
  • a tetralin ring-containing copolymer polyolefin compound B was synthesized in the same manner as in Synthesis Example 1 except that the amount was 0.0 g.
  • the tetralin ring-containing copolymer polyolefin compound B had a polystyrene equivalent weight average molecular weight of 9.1 ⁇ 10 4 , a number average molecular weight of 3.0 ⁇ 10 4 , and a melting point of 71 ° C.
  • Synthesis Example 3 Instead of the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass in Synthesis Example 1, an ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 5% by mass (product name: Sumitomo Chemical Co., Ltd.) A tetralin ring was prepared in the same manner as in Synthesis Example 1 except that the amount of 6-hydroxylmethyl-1,2,3,4-tetrahydronaphthalene was changed from 81 g to 16.2 g. Containing copolymerized polyolefin compound C was synthesized.
  • This tetralin ring-containing copolymer polyolefin compound C had a polystyrene equivalent weight average molecular weight of 9.6 ⁇ 10 4 , a number average molecular weight of 3.0 ⁇ 10 4 , and a melting point of 98 ° C.
  • Synthesis Example 4 Instead of the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass in Synthesis Example 1, an ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 10% by mass (product name: Sumitomo Chemical Co., Ltd.) Tetralin ring in the same manner as in Synthesis Example 1 except that the amount of 6-hydroxylmethyl-1,2,3,4-tetrahydronaphthalene was changed from 81 g to 32.4 g. Containing copolymer polyolefin compound D was synthesized.
  • This tetralin ring-containing copolymer polyolefin compound D had a polystyrene-equivalent weight average molecular weight of 9.3 ⁇ 10 4 , a number average molecular weight of 3.1 ⁇ 10 4 , and a melting point of 92 ° C.
  • Example 1-1 A mixture obtained by dry blending cobalt stearate (II) so that the amount of cobalt is 0.1 parts by mass with respect to 100 parts by mass of the tetralin ring-containing copolymerized polyolefin compound A 2 has two screws having a diameter of 20 mm.
  • a film is formed with a width of 130 mm and a thickness of 90 to 100 ⁇ m by forming a film under the conditions of an extrusion temperature of 220 ° C., a screw rotation speed of 60 rpm, a feed screw rotation speed of 16 rpm, and a take-off speed of 1.0 m / min.
  • An oxygen-absorbing film which is an oxygen-absorbing resin composition was prepared.
  • Example 1-2 An oxygen-absorbing film was prepared in the same manner as in Example 1-1 except that cobalt stearate (II) was dry blended so that the cobalt amount was 0.05 parts by mass instead of 0.1 parts by mass. Measurement of the amount of absorption, confirmation of odor, and visual confirmation of the appearance were performed. The results are shown in Table 1.
  • Example 1-3 An oxygen-absorbing film was produced in the same manner as in Example 1-1 except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.1 parts by mass. Measurement of absorption, odor, and visual confirmation of appearance were performed. The results are shown in Table 1.
  • Example 1-4 An oxygen-absorbing film was prepared in the same manner as in Example 1-1 except that cobalt acetate (II) was used instead of cobalt stearate (II), and the oxygen absorption amount was measured, the odor was confirmed, and the appearance was visually observed. Confirmed. The results are shown in Table 1.
  • Example 1-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.1 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.1 parts by mass. Then, an oxygen-absorbing film was produced in the same manner as in Example 1-1, and the oxygen absorption amount was measured, the odor was confirmed, and the appearance was visually confirmed. The results are shown in Table 1.
  • Example 1-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.1 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.1 parts by mass. Then, an oxygen-absorbing film was produced in the same manner as in Example 1-1, and the oxygen absorption amount was measured, the odor was confirmed, and the appearance was visually confirmed. The results are shown in Table 1.
  • Example 1--7 An oxygen-absorbing film was prepared in the same manner as in Example 1-1 except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A, and the oxygen absorption amount was measured. Confirmation and visual confirmation of the appearance were performed. The results are shown in Table 1.
  • Example 1-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.1 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.1 parts by mass. Then, an oxygen-absorbing film was produced in the same manner as in Example 1-7, and the oxygen absorption amount was measured, the odor was confirmed, and the appearance was visually confirmed. The results are shown in Table 1.
  • Example 1-9 instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.1 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.1 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.1 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.1 parts by mass.
  • an oxygen-absorbing film was produced, and the amount of oxygen absorbed was measured, the odor was confirmed, and the appearance was visually confirmed. The results are shown in Table 1.
  • Example 1-10 An oxygen-absorbing film was prepared in the same manner as in Example 1-1 except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A, and the oxygen absorption amount was measured. Confirmation and visual confirmation of the appearance were performed. The results are shown in Table 1.
  • Example 1-11 An oxygen-absorbing film was prepared in the same manner as in Example 1-1 except that the tetralin ring-containing copolymer polyolefin compound D was used instead of the tetralin ring-containing copolymer polyolefin compound A, and the oxygen absorption amount was measured. Confirmation and visual confirmation of the appearance were performed. The results are shown in Table 1.
  • Example 1 Example except that nylon MXD6 (product name: “MX nylon S6011” manufactured by Mitsubishi Gas Chemical Co., Inc., also referred to as “N-MXD6”, the same applies hereinafter) was used in place of the tetralin ring-containing copolymer polyolefin compound A.
  • An oxygen-absorbing film was prepared in the same manner as in 1-1, and the amount of oxygen absorbed was measured, the odor was confirmed, and the appearance was visually confirmed. The results are shown in Table 1.
  • the oxygen-absorbing resin composition of the present invention exhibits good oxygen absorption performance under both high humidity and low humidity, no odor generation, And even after oxygen absorption, the shape of the film was maintained and did not collapse.
  • Example 2-1 100 parts by mass of a tetralin ring-containing copolymer polyolefin compound A and 0.05 parts by mass of cobalt stearate (II) as a cobalt amount were dry blended in a twin screw extruder having two screws having a diameter of 37 mm. The obtained mixture was supplied and kneaded under the conditions of an extrusion temperature of 220 ° C. and a screw rotation speed of 100 rpm to obtain an oxygen-absorbing resin composition A.
  • II cobalt stearate
  • Oxygen-absorbing resin composition A was extruded as a layer material, and a two-type two-layer film (thickness; oxygen-absorbing layer 20 ⁇ m / sealant) having a width of 900 mm through a feed block. To prepare a 20 ⁇ m). Thereafter, the surface of the oxygen absorbing layer was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps. Moreover, when the obtained film was observed, the external appearance was favorable and the HAZE of the film was 8%.
  • a nylon 6 film (product name; manufactured by Toyobo Co., Ltd.) was used on the corona-treated surface side using an urethane dry laminate adhesive (product name: “TM-319 / CAT-19B” manufactured by Toyo Morton Co., Ltd.).
  • N1202 aluminum foil
  • PET film product name: “E5102” manufactured by Toyobo Co., Ltd.
  • PET film (12 ⁇ m) / urethane-based dry lamination adhesive (3 ⁇ m) / Oxygen absorbency of aluminum foil (9 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / nylon 6 film (15 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / oxygen absorbing layer (20 ⁇ m) / LLDPE1 (20 ⁇ m)
  • An oxygen-absorbing multilayer film comprising a multilayer body was obtained.
  • the number of the micrometer unit in a parenthesis shows thickness. In the following examples, the same is applied unless otherwise specified.
  • a 10 cm ⁇ 20 cm three-sided seal bag was produced with the LLDPE1 side as the inner surface, and a powder seasoning “dashimi” having a water activity of 0.35 was placed in the three-side seal bag. After filling 150 g of “elementary”, it was sealed. The sealed bag thus obtained was stored at 23 ° C. And the oxygen concentration in a bag after 7-day preservation
  • Example 2-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-1, except that cobalt (II) acetate was used instead of cobalt (II) stearate. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • Example 2-1 an oxygen-absorbing multilayer film was obtained. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured.
  • Example 2-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • Example 2-1 an oxygen-absorbing multilayer film was obtained.
  • a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1.
  • the sealing strength of the bag was measured.
  • Example 2--7 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass. Then, an oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-7. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass. Then, an oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-7. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-10 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • Example 2-11 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 2-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured, the flavor of the powder seasoning was confirmed, and the odor was confirmed after the bag was opened as in Example 2-1. The sealing strength of the bag was measured. These results are shown in Table 2.
  • a linear low-density polyethylene film having a thickness of 40 ⁇ m (product name: “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Examples 2-1 to 2-3).
  • the above-mentioned iron-based oxygen-absorbing resin composition is laminated by extrusion lamination with a thickness of 20 ⁇ m as an oxygen-absorbing layer, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side is corona at 60 m / min. Discharge treatment was performed to obtain a laminate film.
  • the laminate film was laminated on the corona-treated surface side by dry lamination in the same manner as in Example 2-1, and PET film (12 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / aluminum foil (9 ⁇ m) / Urethane-based dry laminate adhesive (3 ⁇ m) / Nylon 6 film (15 ⁇ m) / Urethane-based dry laminate adhesive (3 ⁇ m) / Oxygen absorbing layer (20 ⁇ m) / LLDPE2 (40 ⁇ m) iron-based oxygen-absorbing multilayer film Produced.
  • Example 2 a three-side sealed bag was produced in the same manner as in Example 2-1, and the oxygen concentration in the bag was measured and the powder seasoning was conducted in the same manner as in Example 2-1.
  • the flavor of the bag, the odor after opening the bag, and the sealing strength of the bag were measured.
  • the oxygen-absorbing multilayer body of the present invention exhibits good oxygen-absorbing performance under low humidity, suppresses the flavor deterioration of the contents, and absorbs oxygen. No odor was generated later, and the seal strength before storage was maintained.
  • Example 2-12 Using a multilayer film production apparatus equipped with two extruders, feed block, T-die, cooling roll, corona discharge treatment device, winder, etc., LLDPE1 is transferred from the first extruder to the second extruder
  • the oxygen-absorbing resin composition A obtained in Example 2-1 was extruded, and the oxygen-absorbing resin composition A was used as a core layer, and LLDPE1 was used as a skin layer on both sides of the core layer.
  • a seed three-layer film (thickness: 10 ⁇ m / 20 ⁇ m / 10 ⁇ m) was prepared, and then one side thereof was subjected to corona discharge treatment at 60 m / min.
  • the following layers were laminated by extrusion lamination using low density polyethylene (product name: “Novatech LD LC604” manufactured by Nippon Polyethylene Co., Ltd., 20 ⁇ m).
  • the obtained oxygen-absorbing multilayer paper base material was formed into a 1-liter paperbell-top type paper container.
  • the moldability of the container was good.
  • the paper container was filled with sake and then sealed.
  • the sealed body thus obtained was stored at 23 ° C. for 1 month.
  • the oxygen concentration in the paper container after storage for 1 month was 0.1% by volume or less, and the flavor of sake was well maintained.
  • Comparative Example 2-2 Bleached kraft paper (basis weight 340 g / m 2 ) / urethane-based dry laminate in the same manner as in Example 2-12 except that the laminate film obtained in Comparative Example 2-1 was used instead of the two-type three-layer film Adhesive (3 ⁇ m) / Alumina-deposited PET film (12 ⁇ m) / Urethane anchor coating agent (0.5 ⁇ m) / Low density polyethylene (20 ⁇ m) / Oxygen absorbing layer (20 ⁇ m) / LLDPE2 (40 ⁇ m) oxygen-absorbing multilayer paper An attempt was made to produce a gobeltop paper container made of a base material.
  • the oxygen-absorbing multilayer paper substrate is thick and it is difficult to produce the corner portion of the paper container. For this reason, attempts were made to produce a paper container at a reduced container production speed, and it was finally possible to obtain a paper container by eliminating many defective products.
  • a sake storage test was conducted in the same manner as in Example 2-12. When opened one month later, an aldehyde odor was generated and the flavor was significantly reduced.
  • Example 2-13 An oxygen-absorbing resin composition B was produced in the same manner as in Example 2-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Subsequently, a two-kind three-layer film (thickness: 10 ⁇ m / 20 ⁇ m / 10 ⁇ m) was prepared in the same manner as in Example 2-12 except that the oxygen-absorbing resin composition B was used in place of the oxygen-absorbing resin composition A. Then, the one side was subjected to corona discharge treatment at 60 m / min.
  • nylon 6 is used by dry lamination with urethane-based dry laminate adhesive (product name: “AD-817 / CAT-RT86L-60” manufactured by Toyo Morton Co., Ltd.).
  • a film product name: “N1202” manufactured by Toyobo Co., Ltd.
  • an alumina-deposited PET film product name: “GL-ARH-F” manufactured by Toppan Printing Co., Ltd.
  • an alumina-deposited PET film (12 ⁇ m) / urethane system
  • Oxygen absorption of dry laminate adhesive (3 ⁇ m) / nylon 6 film (15 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / LLDPE1 (10 ⁇ m) / oxygen-absorbing resin composition B (20 ⁇ m) / LLDPE1 (10 ⁇ m)
  • An oxygen-absorbing multilayer film composed of a porous multilayer was obtained.
  • the LLDPE 1 layer side is the inner surface, and two side films and one bottom film are heat-sealed and bonded to each other to form a self-supporting bag (11 cm wide ⁇ 11 cm wide)
  • a standing pouch having a length of 17 cm and a bottom gusset of 3 cm was prepared.
  • the self-supporting bag was sealed so that the amount of air in the headspace was 5 cc, and boiled at 90 ° C. for 30 minutes. Stored at 40 ° C.
  • the oxygen concentration in the bag after storage for 2 weeks was measured to be 0.1% by volume or less, and when the color tone of the mandarin orange was confirmed from the outside of the bag, it was well maintained.
  • Comparative Example 2-3 instead of the oxygen-absorbing multilayer film, an alumina-deposited PET film (12 ⁇ m) / urethane-based dry laminate was used in the same manner as in Example 2-13, except that a laminate film obtained in the same manner as in Comparative Example 2-1 was used.
  • a self-supporting bag was produced in the same manner as in Example 2-13, and a storage test was conducted. As a result, the oxygen concentration in the bag was 0.1% by volume or less, but the color tone of the mandarin orange could not be confirmed from the outside of the bag.
  • the oxygen-absorbing multilayer body of the present invention exhibits good oxygen absorption performance even under high humidity, and the contents can be visually confirmed from the outside of the bag. Was possible.
  • Example 3-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film manufacturing apparatus equipped with first to fourth extruders, feed blocks, T dies, cooling rolls, corona discharge treatment apparatuses, winders, etc., linear low density polyethylene (product) Name: “Novatec LL UF641” manufactured by Nippon Polyethylene Co., Ltd. Hereinafter, “LLDPE” is used in Examples 3-1 to 3-11 and Comparative Examples 3-1 to 3-3), and oxygen is supplied from the second extruder.
  • LLDPE linear low density polyethylene
  • the oxygen-absorbing resin composition A As the material of the absorbent layer, the oxygen-absorbing resin composition A, a polyethylene-based adhesive resin (product name: “Modic M545” manufactured by Mitsubishi Chemical Corporation) from the third extruder, Examples 3-1 to 3-11, In Comparative Examples 3-1 to 3-3, “AD” is used.) From the fourth extruder, an ethylene-vinyl alcohol copolymer (product name; “Eval L104B” manufactured by Kuraray Co., Ltd., hereinafter Examples) -1 to 3-11, Comparative Examples 3-1 to 3-3 is referred to as "EVOH".) The extruded respectively, to obtain a four 4-layer film having a width of 300mm through the feedblock. The structure of the multilayer film was LLDPE (20 ⁇ m) / oxygen absorption layer (40 ⁇ m) / AD (10 ⁇ m) / EVOH (10 ⁇ m) from the inner layer.
  • LLDPE 20 ⁇ m
  • oxygen absorption layer 40 ⁇ m
  • AD 10 ⁇ m
  • a non-stretched polyethylene terephthalate sheet having a thickness of 250 ⁇ m product name: “NOVA CLEAR” manufactured by Mitsubishi Chemical Corporation. Examples 3-1 to 3-11, hereinafter
  • PET polyethylene terephthalate sheet
  • PET an adhesive for dry lamination
  • a two-component curable adhesive product name: “LX-75A / KW-40” manufactured by DIC Graphics Co., Ltd.
  • the obtained multilayer body is thermoformed into a cup-shaped oxygen-absorbing multilayer container (inner volume 70 cc, diameter 62 mm ⁇ bottom diameter 52 mm ⁇ depth 28 mm) using a vacuum molding machine with the inner layer (LLDPE) inside. did.
  • the obtained oxygen-absorbing multilayer container had no thickness unevenness and the appearance was good.
  • the obtained oxygen-absorbing multilayer container is filled with 10 g of a humidity control agent, the relative humidity in the container is adjusted to 100% or 30%, an aluminum foil laminated film is used as the top film, and the initial oxygen concentration is replaced by nitrogen. Was 5 vol% and sealed. Then, it preserve
  • Example 3-2 An oxygen-absorbing multilayer body was obtained in the same manner as in Example 3-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • Example 3-3 An oxygen-absorbing multilayer body was obtained in the same manner as in Example 3-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • Example 3-4 An oxygen-absorbing multilayer was obtained in the same manner as in Example 3-1, except that cobalt (II) acetate was used instead of cobalt (II) stearate. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • Example 3-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer body was obtained. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1.
  • Example 3-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer body was obtained. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1.
  • Example 3-7 An oxygen-absorbing multilayer was obtained in the same manner as in Example 3-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • Example 3-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer body was obtained. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1.
  • Example 3-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer body was obtained. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1.
  • Example 3-10 An oxygen-absorbing multilayer was obtained in the same manner as in Example 3-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • Example 3-11 An oxygen-absorbing multilayer was obtained in the same manner as in Example 3-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing multilayer container was produced in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • Example 3-1 instead of the tetralin ring-containing copolymer polyolefin compound A, the same procedure as in Example 3-1 was used, except that the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass used in Synthesis Example 1 was used. Thus, a multilayer body was obtained. Thereafter, a multilayer container was prepared in the same manner as in Example 3-1, and the oxygen concentration in the container was measured and the odor in the container was confirmed in the same manner as in Example 3-1. These results are shown in Table 3.
  • the oxygen-absorbing resin composition L was extruded from the second extruder as a material for the oxygen-absorbing layer, and the polyethylene-based adhesive resin was extruded from the third extruder to obtain a three-kind five-layer film having a width of 300 mm through a feed block.
  • the multilayer film was composed of LLDPE (20 ⁇ m) / AD (10 ⁇ m) / oxygen absorbing layer (40 ⁇ m) / AD (10 ⁇ m) / LLDPE (20 ⁇ m) from the inner layer.
  • the oxygen-absorbing multilayer container of the present invention exhibited good oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity.
  • Example 4-1 Using a multilayer film manufacturing apparatus equipped with an extruder, a T die, a cooling roll, a corona discharge treatment apparatus, a winder, etc., a sealant film having a thickness of 40 ⁇ m (product name: “VMX XB15FT” manufactured by J Film Co., Ltd.)
  • the oxygen-absorbing resin composition A was laminated by extrusion lamination at a thickness of 30 ⁇ m as a material for the oxygen-absorbing layer, and then the surface of the oxygen-absorbing layer was subjected to corona discharge treatment at 60 m / min to obtain a laminate film.
  • a nylon 6 film (product name: Toyo) was used on the corona-treated surface side of the laminate film by using an urethane dry laminate adhesive (product name: “AD-817 / CAT-RT86L-60” manufactured by Toyo Morton Co., Ltd.). Spinning Co., Ltd.
  • N1202 and alumina vapor-deposited PET film (product name: “GL-ARH-F” produced by Toppan Printing Co., Ltd.) were laminated by dry lamination, and alumina vapor-deposited PET film (12 ⁇ m) / urethane-based dry laminate -Absorbing multilayer film consisting of an oxygen-absorbing multilayered body of adhesive (3 ⁇ m) / nylon 6 film (15 ⁇ m) / adhesive for urethane-based dry laminate (3 ⁇ m) / oxygen-absorbing layer (30 ⁇ m) / sealant film (40 ⁇ m) Got.
  • an ethylene-propylene random copolymer ( Product name: “Novatec PP EG7F” manufactured by Nippon Polypro Co., Ltd., hereinafter referred to as “PP” in Examples 4-1 to 4-11 and Comparative Examples 4-1 to 4-3), nylon from the second extruder MXD6 (product name: “MX Nylon S7007” manufactured by Mitsubishi Gas Chemical Co., Inc.) and maleic anhydride-modified polypropylene (product name: “Admer QF500” manufactured by Mitsui Chemicals, Inc.) were respectively extruded from the third extruder and fed through a feed block.
  • PP ethylene-propylene random copolymer
  • nylon from the second extruder MXD6 product name: “MX Nylon S7007” manufactured by Mitsubishi Gas Chemical Co., Inc.
  • maleic anhydride-modified polypropylene product name: “Admer QF500” manufactured by Mitsui Chemicals, Inc.
  • the obtained gas barrier multilayer sheet was placed with the inner layer (PP having a thickness of 80 ⁇ m) inside, and using a vacuum molding machine, a cup-shaped container (inner volume 70 cc, aperture 62 mm ⁇ bottom diameter) as a gas barrier molding container 52 mm ⁇ depth 28 mm).
  • This cup-shaped container was filled with 10 g of a humidity control agent, and the relative humidity in the container was adjusted to 100% or 30%.
  • the oxygen-absorbing multilayer film was used as a lid, and sealed by thermal fusion bonding while adjusting the initial oxygen concentration to 2 vol% by nitrogen substitution to obtain an oxygen-absorbing sealed container.
  • the heat fusion was performed using a pack sealing machine manufactured by Aisin Pack Industry Co., Ltd., with a fusion temperature of 240 ° C., a fusion time of 2 seconds, and a fusion pressure of 0.3 MPa. After that, store under conditions of 23 ° C. and 50% relative humidity, measure the oxygen concentration in the container after storage for 1 month, measure the sealing strength between the cover material and the gas barrier molded container after storage for 1 month, and open the cover material. The odor inside the container was confirmed. In the measurement of the seal strength, a 15 mm wide section was cut out from the heat-sealed portion, and the seal strength of the section was measured with a tensile tester (the same applies hereinafter).
  • Example 4-2 An oxygen-absorbing sealed container was produced in the same manner as in Example 4-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. .
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1.
  • Example 4-3 An oxygen-absorbing sealed container was produced in the same manner as in Example 4-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. .
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1. These results are shown in Table 4.
  • Example 4-4 An oxygen-absorbing sealed container was produced in the same manner as in Example 4-1, except that cobalt (II) acetate was used in place of cobalt (II) stearate.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1. These results are shown in Table 4.
  • Example 4-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • Example 4-1 an oxygen-absorbing sealed container was produced.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1.
  • Example 4-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • Example 4-7 An oxygen-absorbing sealed container was produced in the same manner as in Example 4-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1.
  • Example 4-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • An oxygen-absorbing sealed container was produced in the same manner as in Example 4-7.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1.
  • Example 4-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • An oxygen-absorbing sealed container was produced in the same manner as in Example 4-7.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1. These results are shown in Table 4.
  • Example 4-10 An oxygen-absorbing sealed container was produced in the same manner as in Example 4-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1.
  • Example 4-11 An oxygen-absorbing sealed container was produced in the same manner as in Example 4-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1.
  • Example 4-2 A sealed container was produced in the same manner as in Example 4-1, except that cobalt (II) stearate was not used.
  • the oxygen concentration and seal strength in the container were measured and the odor in the container was confirmed in the same manner as in Example 4-1. These results are shown in Table 4.
  • the oxygen-absorbing sealed container of the present invention exhibits good oxygen absorption performance at high and low humidity, maintains sealing strength, and absorbs oxygen. There was no later generation of odor.
  • Example 5-1 A mixture obtained by dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass with respect to 100 parts by mass of the tetralin ring-containing copolymer polyolefin compound A 2 has two screws having a diameter of 37 mm.
  • the oxygen-absorbing resin composition C is supplied to the shaft extruder at a rate of 15 kg / h, melt-kneaded at a cylinder temperature of 240 ° C., extruding the strand from the extruder head, cooled, and pelletized. Obtained.
  • the first extruder was used to produce low density polyethylene (product name: “Novatec” manufactured by Nippon Polyethylene Co., Ltd.
  • LD LC602A oxygen absorbing property as the material of the oxygen absorbing layer from the second extruder
  • the resin composition C was extruded, and an oxygen-absorbing multilayer film having a width of 800 mm, which is a two-kind / three-layer film, was produced through a feed block so as to be in the order of LDPE / oxygen absorbing layer / LDPE. Thereafter, one side of the oxygen-absorbing multilayer film C was subjected to corona discharge treatment at 60 m / min.
  • a multilayer paper base material is laminated by extrusion lamination with LDPE, so that bleached kraft paper (basis weight 330 g / m 2 ) / urethane-based dry Laminate adhesive (Product name: “TM-250HV / CAT-RT86L-60” manufactured by Toyo Morton Co., Ltd., 3 ⁇ m) / Alumina-deposited PET film (Product name: “GL-AE” manufactured by Toppan Printing Co., Ltd., 12 ⁇ m) / Urethane anchor coating agent (product name: “EL-557A / B” manufactured by Toyo Morton Co., Ltd., 0.5 ⁇ m) / LDPE (15 ⁇ m) / LDPE (20 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LDPE (20 ⁇ m)
  • a film-like oxygen-absorbing paper base multilayer body oxygen-absorbing multilayer body
  • Example 5-2 An oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-3 An oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5-1.
  • Example 5-4 An oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that cobalt (II) acetate was used in place of cobalt (II) stearate. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing paper container was produced.
  • measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed.
  • Example 5-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (II) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing paper container was produced.
  • measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-7 An oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass. Then, an oxygen-absorbing paper container was produced in the same manner as in Example 5-7. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (II) is dry blended so that the amount of iron is 0.05 parts by mass. Then, an oxygen-absorbing paper container was produced in the same manner as in Example 5-7. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-10 An oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-11 An oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-1 The same procedure as in Example 5-1, except that the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass used in Synthesis Example 1 was used instead of the tetralin ring-containing copolymer polyolefin compound A. Thus, a paper container was produced. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-2 A paper container was produced in the same manner as in Example 5-1, except that cobalt (II) stearate was not used. Thereafter, in the same manner as in Example 5-1, measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed. These results are shown in Table 5.
  • Example 5-3 The oxygen-absorbing resin composition was the same as in Example 5-1, except that N-MXD6 (product name: “MX Nylon S6011” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used instead of the tetralin ring-containing copolymer polyolefin compound A. Product D was made.
  • N-MXD6 product name: “MX Nylon S6011” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the multilayer film was composed of LDPE (20 ⁇ m) / polyethylene adhesive resin (10 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / polyethylene adhesive resin (10 ⁇ m) / LDPE (20 ⁇ m) from the inner layer.
  • an oxygen-absorbing paper container was produced in the same manner as in Example 5-1, except that the oxygen-absorbing multilayer film D was used instead of the oxygen-absorbing multilayer film C.
  • measurement of the headspace oxygen concentration, confirmation of the flavor of sake, and measurement of the heat fusion strength at the top of the paper container were performed.
  • Comparative Example 5-5 The iron-based oxygen-absorbing resin composition obtained in Comparative Example 5-4 as an oxygen-absorbing layer was laminated to the LDPE having a thickness of 50 ⁇ m by extrusion lamination at a thickness of 30 ⁇ m, and the oxygen-absorbing layer (30 ⁇ m) / LDPE (50 ⁇ m) was laminated. A laminate film was produced, and then the oxygen absorbing layer surface was subjected to corona discharge treatment.
  • the laminate film was laminated with a multilayer paper substrate by extrusion lamination using LDPE in the same manner as in Example 5-1, and bleached kraft paper (Basis weight 330 g / m 2 ) / urethane-based dry laminate adhesive (3 ⁇ m) / alumina-deposited PET film (12 ⁇ m) / urethane-based anchor coating agent (0.5 ⁇ m) / LDPE (15 ⁇ m) / oxygen absorbing layer (30 ⁇ m) An oxygen-absorbing paper base multilayer body of / LDPE (50 ⁇ m) was produced.
  • Example 6-1 High-density polyethylene (product name: Nippon Polyethylene Co., Ltd.) was used as the inner layer from the first extruder, using a 5-type 6-layer multi-layer tube manufacturing device equipped with 5 extruders, feed block, T-die, cooling roll, etc. “Novatech HD HB420R”, hereinafter referred to as “HDPE” in Examples 6-1 to 6-11 and Comparative Examples 6-1 to 6-3.) From the second extruder, oxygen is used as an oxygen absorbing layer.
  • Absorbent resin composition A Adhesive polyethylene (product name: “Modic L502” manufactured by Mitsubishi Chemical Corporation) from the third extruder, Examples 6-1 to 6-11, Comparative Example 6- 1 to 6-3, it is referred to as “adhesive PE”.) From the fourth extruder, an ethylene-vinyl alcohol copolymer (product name: “EVAL F171B” manufactured by Kuraray Co., Ltd.) is used as a gas barrier layer. Below, in Examples 6-1 to 6-11 and Comparative Examples 6-1 to 6-3, “EVOH” is indicated.) Low density polyethylene (product name: manufactured by Nippon Polyethylene Co., Ltd.) from the fifth extruder.
  • LDPE "NOVATEC LD YF30", hereinafter referred to as "LDPE” in Examples 6-1 to 6-11 and Comparative Examples 6-1 to 6-3)), respectively, and in order from the inner layer side to the outer layer side, HDPE (120 ⁇ m) / Oxygen absorption layer (100 ⁇ m) / Adhesive PE (30 ⁇ m) / Gas barrier layer (50 ⁇ m) / Adhesive PE (30 ⁇ m) / LDPE (120 ⁇ m) Obtained.
  • one end of the tubular molded body has gas barrier properties and high density polyethylene (product name: Nippon Polyethylene Co., Ltd.)
  • the main part was “Novatech HD HJ360” manufactured by the company, and the mouth part in which the opening for pouring the contents was formed was joined.
  • mouth part was mounted
  • the said tube-shaped container was filled with the content by the following evaluation test, the other edge part of the tube-shaped molded object was not closed at this stage, but was the open state.
  • Example 6-1 The following tests were performed using the tubular container obtained in Example 6-1.
  • air oxygen concentration 20.8 vol% is introduced into the tube-shaped container from the opening of the mouth provided in the tube-shaped container. Then, after the inside was replaced with air, 100 cc of air was sealed, the opening of the mouth was sealed with an aluminum foil laminated film, and the cap was further closed from above.
  • This container was stored at 25 ° C. and 50% RH for 7 days, and the oxygen concentration in the container after storage was measured. Further, the container obtained in the same manner as described above was stored at 25 ° C. and 50% RH for 1 month until the cap was closed, and the oxygen concentration in the container after storage was measured.
  • Example 6-2 A tube-shaped container was prepared and carried out in the same manner as in Example 6-1 except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Each test was performed in the same manner as in Example 6-1. These results are shown in Table 6.
  • Example 6-3 A tubular container was prepared in the same manner as in Example 6-1 except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Each test was performed in the same manner as in 6-1. These results are shown in Table 6.
  • Example 6-4 A tube-like container was prepared in the same manner as in Example 6-1 except that cobalt (II) acetate was used instead of cobalt (II) stearate, and each test was performed in the same manner as in Example 6-1. . These results are shown in Table 6.
  • Example 6-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • a tube-like container was prepared in the same manner as in Example 6-1, and each test was performed in the same manner as in Example 6-1. These results are shown in Table 6.
  • Example 6-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • a tube-like container was prepared in the same manner as in Example 6-1, and each test was performed in the same manner as in Example 6-1. These results are shown in Table 6.
  • Example 6-7 A tube-shaped container was prepared in the same manner as in Example 6-1 except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Each test was performed. These results are shown in Table 6.
  • Example 6-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • a tubular container was prepared in the same manner as in Example 6-7, and each test was performed in the same manner as in Example 6-1. These results are shown in Table 6.
  • Example 6-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • a tubular container was prepared in the same manner as in Example 6-7, and each test was performed in the same manner as in Example 6-1. These results are shown in Table 6.
  • Example 6-10 A tube-shaped container was prepared in the same manner as in Example 6-1 except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Each test was performed. These results are shown in Table 6.
  • Example 6-11 A tube-shaped container was prepared in the same manner as in Example 6-1 except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Each test was performed. These results are shown in Table 6.
  • Example 6-2 A tube-like container was prepared in the same manner as in Example 6-1 except that cobalt (II) stearate was not used, and each test was performed in the same manner as in Example 6-1. These results are shown in Table 6.
  • one end of the tubular molded body has gas barrier properties and high density polyethylene (product name: Nippon Polyethylene Co., Ltd.)
  • the main part was “NOVATEC HD-HJ360” manufactured by the company, and the mouth part in which the opening for pouring the contents was formed was joined. And the removable cap for sealing the opening formed in the opposite side to the tube-shaped molded object side of an opening
  • Each test was performed in the same manner as in Example 6-1 by using the obtained tubular container. These results are shown in Table 6.
  • the tubular container of the present invention exhibits good oxygen absorption performance under low humidity, improves the storage stability of the contents, and reduces the odor after oxygen absorption. There was no occurrence and the strength was maintained.
  • Examples 7-1 to 7-4 below vials are exemplified, but as shown in the present specification, the required characteristics for ampoules, prefilled syringes, and vacuum blood collection tubes are the same as those for vials. Therefore, the present invention is not limited to the following Examples 7-1 to 7-4.
  • Example 7-1 A mixture obtained by dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass with respect to 100 parts by mass of the tetralin ring-containing copolymer polyolefin compound A 2 has two screws having a diameter of 37 mm.
  • the oxygen-absorbing resin composition E is supplied to the shaft extruder at a rate of 30 kg / h, melt-kneaded at a cylinder temperature of 220 ° C., extruding a strand from the extruder head, cooling, and pelletizing. Obtained. Next, as shown below, this oxygen-absorbing resin composition E was used to produce a vial that was a multilayer injection-molded container. Then, the performance evaluation of the obtained vial was performed as shown below. Table 7 shows the evaluation results.
  • the polyester constituting the resin layer (layer B) is injected from the injection cylinder, and then the oxygen-absorbing resin composition E constituting the oxygen absorption layer (layer A) is transferred from another injection cylinder to the layer B.
  • the polyester constituting the resin layer (layer B) is injected from the injection cylinder, and then the oxygen-absorbing resin composition E constituting the oxygen absorption layer (layer A) is transferred from another injection cylinder to the layer B.
  • an injection molded article having a three-layer constitution of B / A / B was obtained.
  • the obtained injection-molded product was cooled to a predetermined temperature, transferred to a blow mold, and blow-molded to produce a vial (bottle part).
  • the polyester constituting the layer B includes polyethylene terephthalate resin (product name: “RT-553C” manufactured by Nihon Unipet Co., Ltd., hereinafter Examples 7-1 to 7-4, Comparative Examples 7-1 to 7- 2 was also abbreviated as “PET”).
  • PET polyethylene terephthalate resin
  • the vial was filled with 50 mL of pure water and sealed with a rubber stopper and an aluminum cap. It was stored in an atmosphere of 23 ° C. and 60% RH, and the oxygen concentration in the head space after 3 days and 1 month was measured with an oxygen concentration measuring device (LC-750F manufactured by Toray Engineering Co., Ltd.).
  • Examples 7-2 to 7-4 The same procedure as in Example 7-1 was conducted except that the tetralin ring-containing copolymer polyolefin compound shown in Table 7 was used in place of the tetralin ring-containing copolymer polyolefin compound A, and the oxygen-absorbing resin composition and the vial were respectively separated. Manufactured. The performance evaluation of the obtained vial was performed in the same manner as in Example 7-1. Table 7 shows the evaluation results.
  • Example 7-1 was performed in the same manner as in Example 7-1 except that 100 parts by mass of PET was used instead of oxygen-absorbing resin composition E, and the injection cylinder temperature for layer A was changed from 220 ° C. to 280 ° C. A single-layer vial of the same shape was produced. The performance evaluation of the obtained vial was performed in the same manner as in Example 7-1. Table 7 shows the evaluation results.
  • Comparative Example 7-2 Obtained by dry blending cobalt stearate (II) so that the amount of cobalt is 0.04 parts by mass with respect to 100 parts by mass of nylon MXD6 (product name: trade name “MX Nylon S7007” manufactured by Mitsubishi Gas Chemical Co., Ltd.)
  • the mixture was supplied to a twin screw extruder having two screws with a diameter of 37 mm at a speed of 30 kg / h, melt kneaded at a cylinder temperature of 280 ° C., extruded a strand from the extruder head, cooled,
  • the oxygen-absorbing resin composition M was obtained by pelletizing.
  • a vial was prepared in the same manner as in Example 7-1 except that this oxygen-absorbing resin composition M was used in place of the oxygen-absorbing resin composition E, and the injection cylinder temperature for layer A was changed from 220 ° C. to 280 ° C. Manufactured.
  • the performance evaluation of the obtained vial was performed in the same manner as in Example 7-1. Table 7 shows the evaluation results.
  • the vials of Examples 7-1 to 7-4 have good oxygen absorption, maintain good strength even after long-term storage, and the amount of elution from the container to the contents It was confirmed to be low. Further, it was confirmed that the vials of Examples 7-1 to 7-4 had excellent visibility inside the container and were excellent in transparency.
  • Example 8-1 A syringe was produced using the oxygen-absorbing resin composition E as shown below. Then, performance evaluation of the obtained syringe was performed as shown below. The evaluation results are shown in Table 8.
  • the polyester constituting the resin layer (layer B) is injected from the injection cylinder, and then the oxygen-absorbing resin composition E constituting the oxygen absorption layer (layer A) is transferred from another injection cylinder to the layer B.
  • the polyester forming the layer B was injected at the same time as the polyester forming the layer B, and then a required amount of the polyester forming the layer B was injected to fill the cavity in the injection mold, thereby producing a syringe having a three-layer structure of B / A / B.
  • the total mass of the syringe was 1.95 g
  • the mass of the layer A was 30% by mass of the total mass of the syringe.
  • the polyester constituting the layer B is polyethylene terephthalate (product name: “RT-553C” manufactured by Nihon Unipet Co., Ltd., hereinafter Examples 8-1 to 8-4, Comparative Examples 8-1 to 8-1.
  • PET polyethylene terephthalate
  • Example 8-2 to 8-4 The same procedure as in Example 8-1 was conducted except that the tetralin ring-containing copolymer polyolefin compound shown in Table 8 was used instead of the tetralin ring-containing copolymer polyolefin compound A, and the oxygen-absorbing resin composition and the syringe were respectively used. Manufactured. The performance of the obtained syringe was evaluated in the same manner as in Example 8-1. The evaluation results are shown in Table 8.
  • Example 8-1 was carried out in the same manner as in Example 8-1, except that 100 parts by mass of PET was used in place of the oxygen-absorbing resin composition E, and the injection cylinder temperature for layer A was changed from 220 ° C. to 280 ° C. A single-layer syringe having the same shape as that in Example 1 was produced. The performance of the obtained syringe was evaluated in the same manner as in Example 8-1. The evaluation results are shown in Table 8.
  • Example 8-2 A syringe was prepared in the same manner as in Example 8-1, except that the oxygen-absorbing resin composition M was used in place of the oxygen-absorbing resin composition E, and the injection cylinder temperature for the layer A was changed from 220 ° C to 280 ° C. Manufactured. The performance of the obtained syringe was evaluated in the same manner as in Example 8-1. The evaluation results are shown in Table 8.
  • the syringes of Examples 8-1 to 8-4 have good oxygen absorption, maintain good strength even after long-term storage, and the amount of elution from the container to the contents It was confirmed to be low. Further, it was confirmed that the syringes of Examples 8-1 to 8-4 had excellent visibility inside the container and were excellent in transparency.
  • Example 9-1 As the polyethylene terephthalate resin, instead of the product name “RT-553C” manufactured by Nihon Unipet Co., Ltd., the product name “BK-2180” manufactured by Nihon Unipet Co., Ltd. (hereinafter, Examples 9-1 to 9-4, Vials were produced in the same manner as in Example 7-1 except that “PET” was used in Comparative Examples 9-1 and 9-2. Then, the performance evaluation of the obtained vial was performed as shown below. Table 9 shows the evaluation results.
  • Vials oxygen permeability The oxygen permeability on the 30th day from the start of measurement was measured in an atmosphere of 23 ° C., 50% relative humidity outside the molded body, and 100% relative humidity inside the molded body.
  • OX-TRAN 2-21 ML an oxygen permeability measuring device (manufactured by MOCON, trade name: OX-TRAN 2-21 ML) was used. It shows that oxygen barrier property is so favorable that a measured value is low.
  • the lower limit of detection of the measurement is an oxygen transmission rate of 5 ⁇ 10 ⁇ 5 mL / (0.21 atm ⁇ day ⁇ package).
  • Biopharmaceutical preservation test (binding ratio measurement method) Using an isothermal titration calorimeter, a 5 ⁇ M antigen solution (FGF1-Mouse manufactured by Biologic Industries Ltd.) was filled on the cell side, and the binding ratio was measured at 25 ° C. while 10 ⁇ L of the antibody solution was dropped into the cell.
  • FGF1-Mouse manufactured by Biologic Industries Ltd.
  • Example 9-2 to 9-4 The same procedure as in Example 9-1 was conducted except that each of the tetralin ring-containing copolymer polyolefin compounds shown in Table 9 was used in place of the tetralin ring-containing copolymer polyolefin compound A, and the oxygen-absorbing resin composition and the vial were respectively used. Manufactured. The performance evaluation of the obtained vial was performed in the same manner as in Example 9-1. Table 9 shows the evaluation results.
  • Example 9-1 was carried out in the same manner as Example 9-1 except that 100 parts by mass of PET was used in place of the oxygen-absorbing resin composition E, and the injection cylinder temperature for layer A was changed from 220 ° C. to 280 ° C. A single-layer vial of the same shape as was manufactured. The performance evaluation of the obtained vial was performed in the same manner as in Example 9-1. Table 9 shows the evaluation results.
  • Example 10-1 an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film production apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material of the sealant layer was directly changed from the first extruder.
  • Extrusion and a two-type two-layer film (thickness; oxygen absorption layer 50 ⁇ m / sealant layer 50 ⁇ m) having a width of 900 mm were produced through a feed block. Thereafter, the surface of the oxygen absorbing layer was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • a nylon 6 film (product name; manufactured by Toyobo Co., Ltd.) was used on the corona-treated surface side using an urethane dry laminate adhesive (product name: “TM-319 / CAT-19B” manufactured by Toyo Morton Co., Ltd.).
  • N1202 and alumina vapor-deposited PET film (product name: “GL-ARH-F” manufactured by Toppan Printing Co., Ltd.) are laminated by dry lamination, and then alumina vapor-deposited PET film (12 ⁇ m) / adhesive for urethane-based dry laminate
  • An oxygen-absorbing multilayer film comprising an oxygen-absorbing multilayer body of an agent (3 ⁇ m) / nylon 6 film (15 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / oxygen absorbing layer (50 ⁇ m) / LLDPE1 (50 ⁇ m) was obtained. .
  • Example 10-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 10-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag was produced in the same manner as in Example 10-1, except that the oxygen-absorbing multilayer film was used. In addition, using the three-sided seal bag, instead of a block copolymer polypropylene container filled and sealed with 15 cc of eye drops containing taurine, 1000 cc of 50% by weight glucose solution is filled and sealed in an infusion bag made of a propylene-ethylene block copolymer.
  • a sealed bag was obtained in the same manner as in Example 10-1, except that the bag after heat treatment at 121 ° C. for 20 minutes was used.
  • the oxygen concentration in the bag was measured in the same manner as in Example 10-1, and the retention rate of the glucose solution was measured.
  • the retention rate of glucose solution it measured based on the quantitative method described in the Japanese Pharmacopoeia.
  • Example 10-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 10-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag was produced in the same manner as in Example 10-1, except that the oxygen-absorbing multilayer film was used. In addition, an ampule made of a propylene-ethylene block copolymer filled and sealed with 5 cc of a 10% by weight amino acid solution was used instead of the block copolymer polypropylene container filled and sealed with 15 cc of eye drops containing taurine using the three-side sealed bag.
  • a sealed bag was obtained in the same manner as in Example 10-1, except that it was used.
  • the oxygen concentration in the bag was measured in the same manner as in Example 10-1, and the retention rate of amino acids was measured.
  • the amino acid retention rate was measured based on the quantitative method described in the Japanese Pharmacopoeia. These results are shown in Table 10.
  • Example 10-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 10-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag was produced in the same manner as in Example 10-1, except that the oxygen-absorbing multilayer film was used.
  • 1 cc of a solution containing 0.1% by mass of epinephrine is a prefilled syringe barrel made of a propylene-ethylene block copolymer.
  • a sealed bag was obtained in the same manner as in Example 10-1, except that the prefilled syringe was used after sealing the tip and the plunger with a rubber stopper made of butyl rubber.
  • the oxygen concentration in the bag was measured in the same manner as in Example 10-1, and the retention rate of epinephrine was measured. The epinephrine retention rate was measured based on the quantitative method described in the Japanese Pharmacopoeia.
  • a 50 ⁇ m-thick linear low-density polyethylene film (product name: “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Example 10-1) is used for oxygen.
  • the iron-based oxygen-absorbing resin composition was laminated by extrusion lamination with a thickness of 50 ⁇ m, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side was subjected to corona discharge treatment at 60 m / min. A laminated film was obtained.
  • each layer was laminated by dry lamination in the same manner as in Example 10-1.
  • An iron-based oxygen-absorbing multilayer film of 6 films (15 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / oxygen absorbing layer (50 ⁇ m) / LLDPE2 (50 ⁇ m) was produced.
  • Example 10-1 a three-side sealed bag was produced in the same manner as in Example 10-1, and the same procedure as in Example 10-2 was performed except that the three-side sealed bag was used.
  • Example 10-2 the same procedure as in Example 10-2 was performed except that the three-side sealed bag was used.
  • the oxygen concentration in the bag and the retention rate of the glucose solution were measured in the same manner as in Example 10-2.
  • Example 11-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film production apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material of the sealant layer was directly changed from the first extruder.
  • Extrusion and a two-type two-layer film (thickness; oxygen absorption layer 30 ⁇ m / sealant layer 30 ⁇ m) having a width of 900 mm were produced through a feed block. Thereafter, the surface of the oxygen absorbing layer was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • the obtained oxygen-absorbing multilayer paper base material was cut to prepare two oxygen-absorbing multilayer paper base materials having a size of 12 cm ⁇ 12 cm.
  • the two oxygen-absorbing multilayer paper base materials were heat-sealed in three directions with a seal width of 5 mm with the LLDPE 1 side as the inner surface, thereby producing an oxygen-absorbing paper base material bag (three-side seal bag).
  • a composition containing 0.5% by mass of the medicinal component indomethacin, 0.3% by mass of tocopherol acetate, 10% by mass of talc, and 10 g of rubber adhesive is spread on a support made of 10 cm ⁇ 10 cm non-woven fabric.
  • a layer containing a medicinal component was produced.
  • a release film made of unstretched polypropylene having a thickness of 25 ⁇ m and embossed was applied to the layer containing the medicinal component to prepare a patch containing the medicinal component.
  • the appearance of the release film side of the patch was white.
  • the sealed bag thus obtained was stored at 23 ° C. and 60% RH.
  • the oxygen concentration in the bag after storage for 3 days and after storage for 7 days and the retention rate of tocopherol acetate after storage for 3 months were measured.
  • the sealed bag was stored at 40 ° C. and 20% RH for 3 months, and the color tone of the release film side of the patch was examined.
  • Example 11-2 An oxygen-absorbing multilayer paper base material was obtained in the same manner as in Example 11-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag and a sealed bag were produced in the same manner as in Example 11-1, except that the oxygen-absorbing multilayer paper base material was used. The retention rate was measured and the color tone of the release film side of the patch was investigated. These results are shown in Table 11.
  • Example 11-3 An oxygen-absorbing multilayer paper base was obtained in the same manner as in Example 11-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-side sealed bag and a sealed bag were produced in the same manner as in Example 11-1, except that the oxygen-absorbing multilayer paper base material was used. The retention rate was measured and the color tone of the release film side of the patch was investigated. These results are shown in Table 11.
  • Example 11-4 An oxygen-absorbing multilayer paper base material was obtained in the same manner as in Example 11-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, a three-sided sealed bag and a sealed bag were produced in the same manner as in Example 11-1, except that the oxygen-absorbing multilayer paper base material was used, and the oxygen concentration in the bag was measured in the same manner as in Example 11-1. The tocopherol acetate retention rate was measured and the color tone of the release film side of the patch was investigated. These results are shown in Table 11.
  • a linear low-density polyethylene film product name; “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Example 11-1) having a thickness of 30 ⁇ m).
  • the iron-based oxygen-absorbing resin composition was laminated by extrusion lamination with a thickness of 30 ⁇ m, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side was subjected to corona discharge treatment at 60 m / min. A laminated film was obtained.
  • each layer was laminated by dry lamination in the same manner as in Example 11-1, and bleached kraft paper (basis weight 50 g / m 2 ) / urethane-based dry laminate adhesive ( Product name: “TM251 / CAT-RT88” manufactured by Toyo Morton Co., Ltd., 3 ⁇ m) / aluminum foil (7 ⁇ m) / urethane anchor coating agent (“EL-557A / B” manufactured by Toyo Morton Co., Ltd., 0.5) / low
  • An iron-based oxygen-absorbing multilayer paper substrate of density polyethylene (20 ⁇ m) / oxygen absorption layer (30 ⁇ m) / LLDPE2 (30 ⁇ m) was produced.
  • Example 11-1 a three-side sealed bag and a sealed bag were produced in the same manner as in Example 11-1, except that the obtained iron-based oxygen-absorbing multilayer paper base material was used. Concentration measurement, tocopherol acetate retention rate, and color tone survey on the release film side of the patch were performed. These results are shown in Table 11.
  • the container showed good oxygen absorption performance and suppressed deterioration of the medicinal component.
  • Example 12-1 an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film production apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material of the sealant layer was directly changed from the first extruder.
  • Extrusion was carried out to prepare a two-type two-layer oxygen-absorbing film (oxygen absorbing layer (30 ⁇ m) / sealant layer (30 ⁇ m)) having a width of 900 mm through a feed block. Thereafter, the surface of the oxygen absorbing layer was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • An aqueous dispersion (product name: “Saran Latex L-509” manufactured by Asahi Kasei Co., Ltd.) is coated with a gravure coating to a thickness of 15 ⁇ m, and two types and two layers of gas barrier sheet (thickness: gas barrier layer 15 ⁇ m) / COC layer 250 ⁇ m).
  • the oxygen-absorbing layer of the above-mentioned oxygen-absorbing film and the gas-barrier layer of the gas-barrier sheet are bonded together using an adhesive for urethane-based dry lamination (product name: “TM251 / CAT-RT88” manufactured by Toyo Morton Co., Ltd.)
  • An oxygen-absorbing multilayer body was produced.
  • the composition of the oxygen-absorbing multilayer was LLDPE1 (30 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / adhesive layer (3 ⁇ m) / gas barrier layer (15 ⁇ m) / COC layer (250 ⁇ m).
  • the oxygen-absorbing multilayer body was plug-assisted pneumatically molded so that the LLDPE1 was inside the pocket, and the oxygen-absorbing bottom A material was prepared.
  • the number of shots during molding was fixed at 50 shots / minute, and the dimensions of the oxygen-absorbing bottom material were 10 mm ⁇ at the bottom, 9 mm ⁇ at the top (opening), and 4 mm in depth.
  • Example 12-2 An oxygen-absorbing bottom material was obtained in the same manner as in Example 12-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing PTP package containing tablets was prepared in the same manner as in Example 12-1, and the oxygen concentration and vitamin E retention in the pocket were measured in the same manner as in Example 12-1. . These results are shown in Table 12.
  • Example 12-3 An oxygen-absorbing bottom material was obtained in the same manner as in Example 12-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing PTP package containing tablets was prepared in the same manner as in Example 12-1, and the oxygen concentration and vitamin E retention in the pocket were measured in the same manner as in Example 12-1. . These results are shown in Table 12.
  • Example 12-4 An oxygen-absorbing bottom material was obtained in the same manner as in Example 12-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing PTP package containing tablets was prepared in the same manner as in Example 12-1, and the oxygen concentration and vitamin E retention in the pocket were measured in the same manner as in Example 12-1. . These results are shown in Table 12.
  • a linear low-density polyethylene film product name: “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Example 12-1) having a thickness of 30 ⁇ m.
  • the iron-based oxygen-absorbing resin composition was laminated by extrusion lamination with a thickness of 30 ⁇ m, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side was subjected to corona discharge treatment at 60 m / min. A laminated film was obtained.
  • Example 12-1 Next, on the corona-treated surface side of the laminate film, the following layers were laminated by dry lamination in the same manner as in Example 12-1, and LLDPE2 (30 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / adhesive layer (3 ⁇ m) / An iron-based oxygen-absorbing bottom material having a gas barrier layer (15 ⁇ m) / COC layer (250 ⁇ m) was produced.
  • Example 12 an oxygen-absorbing PTP package containing tablets was prepared in the same manner as in Example 12-1, and the pockets were formed in the same manner as in Example 12-1. Measurement of oxygen concentration in the part and measurement of vitamin E retention were performed. These results are shown in Table 12.
  • the oxygen-absorbing PTP package of the present invention has good stored object visibility and oxygen-absorbing performance, and is made of vitamin E sealed in a container. Deterioration was suppressed.
  • Example 13-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multi-layer container manufacturing apparatus equipped with first to fourth extruders, feed blocks, cylindrical dies, blow molds, etc., high-density polyethylene (product name: Nippon Polyethylene Co., Ltd.) from the first extruder as the oxygen permeable layer and outer layer. “NOVATEC HDHB420R” manufactured by the company, hereinafter referred to as “HDPE1” in Examples 13-1 to 13-4 and Comparative Example 13-1) was used as an oxygen absorbing layer from the second extruder as an oxygen absorbing resin composition A.
  • HDPE1 high-density polyethylene
  • the polyethylene-based adhesive resin (product name: “Modic M545” manufactured by Mitsubishi Chemical Corporation) as an adhesive layer from the third extruder, hereinafter referred to as “AD” in Examples 13-1 to 13-4 and Comparative Example 13-1.
  • an ethylene-vinyl alcohol copolymer (product name: “EVAL F101B” manufactured by Kuraray Co., Ltd.) as a gas barrier layer from the fourth extruder.
  • EVAL F101B manufactured by Kuraray Co., Ltd.
  • the layer configuration of the oxygen-absorbing multilayer bottle was oxygen permeable layer (50 ⁇ m) / oxygen absorbing layer (50 ⁇ m) / adhesive layer (10 ⁇ m) / gas barrier layer (30 ⁇ m) / adhesive layer (10 ⁇ m) / outer layer (750 ⁇ m). .
  • linear low-density polyethylene product name: “NOVATEC LL UF641” manufactured by Nippon Polyethylene Co., Ltd., hereinafter referred to as “LLDPE1” in Examples 13-1 to 13-4 and Comparative Example 13-1)
  • LLDPE1 linear low-density polyethylene
  • Example 13-2 An oxygen-absorbing multilayer bottle was obtained in the same manner as in Example 13-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing multilayer bottle containing tablets was prepared in the same manner as in Example 13-1, and the oxygen concentration and vitamin C retention in the oxygen-absorbing multilayer bottle were measured in the same manner as in Example 13-1. Went. These results are shown in Table 13.
  • Example 13-3 An oxygen-absorbing multilayer bottle was obtained in the same manner as in Example 13-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing multilayer bottle containing tablets was prepared in the same manner as in Example 13-1, and the oxygen concentration and vitamin C retention in the oxygen-absorbing multilayer bottle were measured in the same manner as in Example 13-1. Went. These results are shown in Table 13.
  • Example 13-4 An oxygen-absorbing multilayer bottle was obtained in the same manner as in Example 13-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing multilayer bottle containing tablets was prepared in the same manner as in Example 13-1, and the oxygen concentration and vitamin C retention in the oxygen-absorbing multilayer bottle were measured in the same manner as in Example 13-1. Went. These results are shown in Table 13.
  • the layer structure of the oxygen-absorbing multilayer bottle is as follows: oxygen permeable layer (50 ⁇ m) / oxygen absorbing layer (50 ⁇ m) / adhesive layer (10 ⁇ m) / oxygen barrier layer (30 ⁇ m) / adhesive layer (10 ⁇ m) / outer layer (750 ⁇ m) did. Thereafter, an oxygen-absorbing multilayer bottle containing tablets was prepared in the same manner as in Example 13-1, and the oxygen concentration in the oxygen-absorbing multilayer bottle was measured and the vitamin C retention rate was measured as in Example 13-1. Was measured. These results are shown in Table 13.
  • the oxygen-absorbing multilayer bottle of the present invention has good visibility of stored objects and oxygen-absorbing performance, and vitamin C sealed in the bottle. Deterioration was suppressed.
  • Example 14-1 First, 100 parts by mass of tetralin ring-containing copolymer polyolefin compound C and 0.05 parts by mass of cobalt (II) stearate as a cobalt amount were dry blended into a twin screw extruder having two screws with a diameter of 37 mm. The obtained mixture was supplied and kneaded under the conditions of an extrusion temperature of 220 ° C. and a screw rotation speed of 100 rpm to obtain an oxygen-absorbing resin composition F.
  • cobalt (II) stearate as a cobalt amount
  • the material from the first extruder is directly Chain low density polyethylene (product name: “Novatec LL UF641” manufactured by Nippon Polyethylene Co., Ltd., MFR 2.1 g / 10 min at 190 ° C., MFR 4.4 g / 10 min at 240 ° C., MFR 5.2 g / 10 min at 250 ° C., Hereinafter, in Examples 14-1 to 14-9 and Comparative Examples 14-1 to 14-3, they are expressed as “LLDPE1”.)
  • the oxygen-absorbing resin composition as the material of the oxygen-absorbing layer from the second extruder Each of the products F was extruded, and a two-type three-layer film having a width of 900 mm (LLDPE1 (20 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LLDPE
  • a nylon 6 film (product name; manufactured by Toyobo Co., Ltd.) was used on the corona-treated surface side using an urethane dry laminate adhesive (product name: “TM-319 / CAT-19B” manufactured by Toyo Morton Co., Ltd.).
  • N1202 and alumina vapor-deposited PET film (product name: “GL-ARH-F” manufactured by Toppan Printing Co., Ltd.) are laminated by dry lamination, and then alumina vapor-deposited PET film (12 ⁇ m) / adhesive for urethane-based dry laminate
  • Oxygen Absorbency Consisting of Oxygen Absorbing Multilayers of Agent (3 ⁇ m) / Nylon 6 Film (15 ⁇ m) / Urethane-based Dry Laminate Adhesive (3 ⁇ m) / LLDPE1 (20 ⁇ m) / Oxygen Absorbing Layer (30 ⁇ m) / LLDPE1 (20 ⁇ m)
  • a multilayer film was obtained.
  • the self-supporting bag 120 mm wide ⁇ 200 mm long ⁇ opened
  • the LLDPE 1 side being the inner surface and heat-sealing and bonding two side films and one bottom film
  • the bag processability was good.
  • Example 14-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 14-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. These results are shown in Table 14.
  • Example 14-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 14-1, except that cobalt stearate (II) was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. These results are shown in Table 14.
  • Example 14-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 14-1, except that cobalt acetate (II) was used in place of cobalt stearate (II). Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. These results are shown in Table 14.
  • Example 14-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1.
  • Example 14-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1.
  • Example 14-7 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 14-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound C. Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. These results are shown in Table 14.
  • Example 14-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • Example 14-7 an oxygen-absorbing multilayer film was obtained. Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. These results are shown in Table 14.
  • Example 14-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1.
  • Example 14-1 (Comparative Example 14-1) Instead of the tetralin ring-containing copolymer polyolefin compound C, the same procedure as in Example 14-1 was used, except that the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 5% by mass used in Synthesis Example 3 was used. Thus, an oxygen-absorbing multilayer film was obtained. Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. The oxygen concentration after storage for 1 month was decreased to 5.4 vol%, but the flavor and color tone of grapefruit were decreased. The self-supporting bag does not absorb oxygen, but it is thought that the oxygen concentration decreased because the grapefruit itself was oxidized. These results are shown in Table 14.
  • Example 14-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 14-1, except that cobalt (II) stearate was not used. Thereafter, self-supporting bags and airtight bags were produced in the same manner as in Example 14-1, and the oxygen concentration in the bag was measured and the flavor and color tone of grapefruit were confirmed in the same manner as in Example 14-1. The oxygen concentration after storage for 1 month was reduced to 6.1 vol%, but the flavor and color tone of grapefruit were reduced. The self-supporting bag does not absorb oxygen, but it is thought that the oxygen concentration decreased because the grapefruit itself was oxidized. These results are shown in Table 14.
  • a 50 ⁇ m-thick linear low-density polyethylene film (product name: “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Example 14-3) is used with oxygen.
  • the iron-based oxygen-absorbing resin composition was laminated by extrusion lamination with a thickness of 30 ⁇ m, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side was subjected to corona discharge treatment at 60 m / min. A laminated film was obtained.
  • Example 14-1 Next, on the corona-treated surface side of the laminate film, the following layers were laminated by dry lamination in the same manner as in Example 14-1, and alumina-deposited PET film (12 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / An iron-based oxygen-absorbing multilayer film of nylon 6 film (15 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LLDPE2 (50 ⁇ m) was produced.
  • the container showed good oxygen absorption performance and suppressed the flavor and color tone of the contents. .
  • Example 15-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film production apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material of the sealant layer was directly changed from the first extruder.
  • Each product A was extruded, and through a feed block, two kinds and three layers of oxygen-absorbing multilayer film (LLDPE1 (20 ⁇ m) / oxygen-absorbing layer (30 ⁇ m) / L) with a width of 900 mm DPE1 the (20 ⁇ m)) was prepared. Thereafter, the surface of one LLDPE 1 was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • LLDPE1 oxygen-absorbing multilayer film
  • a multilayer paper base material is laminated on the corona-treated surface side by extrusion laminating with LLDPE1, so that bleached kraft paper (basis weight 330 g / m 2 ) / urethane-based dry laminating adhesive (product name: Toyo Morton) “TM-250HV / CAT-RT86L-60”, 3 ⁇ m) / alumina-deposited PET film (product name: “GL-AE”, 12 ⁇ m, manufactured by Toppan Printing Co., Ltd.) / Urethane anchor coating agent (product name: Toyo “EL-557A / B” manufactured by Morton Co., Ltd., 0.5 ⁇ m) / LLDPE1 (15 ⁇ m) / LLDPE1 (20 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LLDPE1 (20 ⁇ m) oxygen-absorbing paper base multilayer (oxygen absorbing) Multi-layered body) was obtained.
  • bleached kraft paper basic weight 330 g
  • the resulting multilayer body was boxed to obtain a 7-cm square bottom, 100 mL gobel-top oxygen-absorbing paper container. At this time, the moldability and workability of the paper container were good, and the box could be easily manufactured.
  • Example 15-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that cobalt (II) acetate was used instead of cobalt (II) stearate. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured.
  • Example 15-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1.
  • the thermal fusion strength of was measured.
  • Example 15-7 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • Example 15-7 an oxygen-absorbing multilayer film was obtained. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured.
  • Example 15-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured.
  • Example 15-10 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-11 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-1 In the same manner as in Example 15-1, except that the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass used in Synthesis Example 1 was used in place of the tetralin ring-containing copolymer polyolefin compound A. An oxygen-absorbing multilayer film was obtained. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • Example 15-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 15-1, except that cobalt (II) stearate was not used. Thereafter, an oxygen-absorbing paper container and a sealed paper container were produced in the same manner as in Example 15-1, and the headspace oxygen concentration was measured, the flavor of the shochu liquor was confirmed, and the upper part of the paper container as in Example 15-1. The thermal fusion strength of was measured. These results are shown in Table 15.
  • a 50 ⁇ m-thick linear low-density polyethylene film (product name: “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Example 15-3) is used with oxygen.
  • the iron-based oxygen-absorbing resin composition was laminated by extrusion lamination with a thickness of 30 ⁇ m, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side was subjected to corona discharge treatment at 60 m / min. A laminated film was obtained.
  • Example 15-1 production of a sealed paper container, measurement of the headspace oxygen concentration, confirmation of the flavor of the shochu shochu, and measurement of the heat fusion strength of the upper part of the paper container were performed. These results are shown in Table 15.
  • the container exhibits good oxygen absorption performance, suppresses a decrease in flavor of the contents, and before storage.
  • the heat-sealing strength was maintained.
  • Example 16-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film manufacturing apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material for the sealant layer is low from the first extruder.
  • Density polyethylene product name: “Novatech LD LC602A” manufactured by Nippon Polyethylene Co., Ltd., hereinafter abbreviated as “LDPE” in Examples 16-1 to 16-11 and Comparative Examples 16-1 to 16-3) 2
  • Oxygen-absorbing resin composition A is extruded from the second extruder as a material for the oxygen-absorbing layer, and a two-type three-layer film (LDPE (20 ⁇ m) / oxygen-absorbing layer (30 ⁇ m) / LDPE) having a width of 800 mm through a feed block. (20 ⁇ m)).
  • LDPE two-type three-layer film
  • the surface of one LDPE was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • a multilayer paper base material is laminated on the corona-treated surface side of the obtained two-type three-layer film by extrusion lamination using LDPE, so that bleached kraft paper (basis weight 330 g / m 2 ) / urethane-based dry Laminate adhesive (Product name: “TM-250HV / CAT-RT86L-60” manufactured by Toyo Morton Co., Ltd., 3 ⁇ m) / Alumina-deposited PET film (Product name: “GL-AE” manufactured by Toppan Printing Co., Ltd., 12 ⁇ m) / Urethane anchor coating agent (product name: “EL-557A / B” manufactured by Toyo Morton Co., Ltd., 0.5 ⁇ m) / LDPE (15 ⁇ m) / LDPE (20 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LDPE (20 ⁇ m) oxygen An absorbent paper base multilayer body (oxygen-absorbing multilayer body) was obtained.
  • Example 16-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 16-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and the headspace oxygen concentration was measured, the taste of gyokuro tea was confirmed, and the upper part of the paper container as in Example 16-1. The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 16-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 16-1, except that cobalt acetate (II) was used in place of cobalt stearate (II). Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and the headspace oxygen concentration was measured, the taste of gyokuro tea was confirmed, and the upper part of the paper container as in Example 16-1. The heat fusion strength of was measured.
  • Example 16-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured.
  • Example 16-7 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 16-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and the headspace oxygen concentration was measured, the taste of gyokuro tea was confirmed, and the upper part of the paper container as in Example 16-1. The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured.
  • Example 16-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-10 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 16-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-11 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 16-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-1 The same procedure as in Example 16-1 except that instead of the tetralin ring-containing copolymer polyolefin compound A, an ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass used in Synthesis Example 1 was used. A multilayer film was obtained. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-2 A multilayer film was obtained in the same manner as in Example 16-1, except that cobalt (II) stearate was not used. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 16-1, and measurement of headspace oxygen concentration, confirmation of gyokuro tea flavor, The heat fusion strength of was measured. These results are shown in Table 16.
  • Example 16-3 An iron powder having an average particle diameter of 20 ⁇ m and calcium chloride were mixed at a mass ratio of 100: 1, and this mixture and LDPE were kneaded at a mass ratio of 30:70 to obtain an iron-based oxygen-absorbing resin composition. .
  • a two-kind three-layer film was prepared in the same manner as in Example 16-1, except that an iron-based oxygen-absorbing resin composition was used instead of the oxygen-absorbing resin composition A. Asperities of the iron powder occurred, and a film with a smooth surface that could withstand the following examination was not obtained.
  • the above-mentioned iron-based oxygen-absorbing resin composition is laminated as an oxygen-absorbing layer with a thickness of 30 ⁇ m on LDPE having a thickness of 50 ⁇ m, and then the layer-side surface of the iron-based oxygen-absorbing resin composition is laminated.
  • a laminate film was obtained by performing a corona discharge treatment at 60 m / min.
  • extrusion lamination by LDPE was carried out in the same manner as in Example 16-1 to laminate with a multilayer paper substrate, and bleached kraft paper ( Basis weight 330 g / m 2 ) / urethane dry laminate adhesive (3 ⁇ m) / alumina-deposited PET film (12 ⁇ m) / urethane anchor coat agent (0.5 ⁇ m) / LDPE (15 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / An LDPE (50 ⁇ m) oxygen-absorbing paper base multilayer body was prepared.
  • Example 16-1 a sealed paper container was prepared, the headspace oxygen concentration was measured, the flavor of gyokuro tea was confirmed, and the heat-sealing strength of the upper part of the paper container was measured.
  • the container exhibits good oxygen absorption performance and suppresses the deterioration of the flavor of the contents.
  • the heat fusion strength before storage was maintained.
  • Example 17-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film manufacturing apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material for the sealant layer is low from the first extruder.
  • Oxygen-absorbing resin composition A is extruded from the second extruder as a material for the oxygen-absorbing layer, and a two-type three-layer film (LDPE (20 ⁇ m) / oxygen-absorbing layer (30 ⁇ m) / LDPE) having a width of 800 mm through a feed block. (20 ⁇ m)). Thereafter, the surface of one LDPE was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • LDPE Density polyethylene
  • a multilayer paper base material is laminated on the corona-treated surface side of the obtained two-type three-layer film by extrusion lamination using LDPE, so that bleached kraft paper (basis weight 330 g / m 2 ) / urethane-based dry Laminate adhesive (Product name: “TM-250HV / CAT-RT86L-60” manufactured by Toyo Morton Co., Ltd., 3 ⁇ m) / Alumina-deposited PET film (Product name: “GL-AE” manufactured by Toppan Printing Co., Ltd., 12 ⁇ m) / Urethane anchor coating agent (product name: “EL-557A / B” manufactured by Toyo Morton Co., Ltd., 0.5 ⁇ m) / LDPE (15 ⁇ m) / LDPE (20 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LDPE (20 ⁇ m) oxygen An absorbent paper base multilayer body (oxygen-absorbing multilayer body) was obtained.
  • Example 17-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 17-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 17-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 17-1, except that cobalt (II) acetate was used instead of cobalt (II) stearate. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured.
  • Example 17-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured.
  • Example 17-7 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 17-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured.
  • Example 17-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-10 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 17-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-11 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 17-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-1 The same procedure as in Example 17-1 except that the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass used in Synthesis Example 1 was used in place of the tetralin ring-containing copolymer polyolefin compound A. A multilayer film was obtained. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-2 A multilayer film was obtained in the same manner as in Example 17-1, except that cobalt (II) stearate was not used. Thereafter, an oxygen-absorbing paper container and a sealed paper container were prepared in the same manner as in Example 17-1, measurement of headspace oxygen concentration, confirmation of orange juice flavor, and upper part of the paper container as in Example 17-1. The heat fusion strength of was measured. These results are shown in Table 17.
  • Example 17-3 An iron powder having an average particle diameter of 20 ⁇ m and calcium chloride were mixed at a mass ratio of 100: 1, and this mixture and LDPE were kneaded at a mass ratio of 30:70 to obtain an iron-based oxygen-absorbing resin composition. .
  • a two-kind three-layer film was prepared in the same manner as in Example 17-1, except that an iron-based oxygen-absorbing resin composition was used in place of the oxygen-absorbing resin composition A. Asperities of the iron powder occurred, and a film with a smooth surface that could withstand the following examination could not be obtained.
  • the above-mentioned iron-based oxygen-absorbing resin composition is laminated as an oxygen-absorbing layer with a thickness of 30 ⁇ m on LDPE having a thickness of 50 ⁇ m, and then the layer-side surface of the iron-based oxygen-absorbing resin composition is laminated.
  • a laminate film was obtained by performing a corona discharge treatment at 60 m / min.
  • extrusion lamination by LDPE was carried out in the same manner as in Example 17-1 to laminate with a multilayer paper substrate, and bleached kraft paper ( Basis weight 330 g / m 2 ) / urethane dry laminate adhesive (3 ⁇ m) / alumina-deposited PET film (12 ⁇ m) / urethane anchor coat agent (0.5 ⁇ m) / LDPE (15 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / An LDPE (50 ⁇ m) oxygen-absorbing paper base multilayer body was prepared.
  • Example 17-1 production of a sealed paper container, measurement of headspace oxygen concentration, confirmation of the flavor of orange juice, and measurement of the heat fusion strength of the upper part of the paper container were performed. These results are shown in Table 17.
  • the container exhibits good oxygen absorption performance and suppresses a decrease in the flavor of the contents.
  • the heat fusion strength before storage was maintained.
  • Example 18-1 First, an oxygen-absorbing resin composition A was obtained in the same manner as in Example 2-1. Next, using a multilayer film production apparatus equipped with two extruders, a feed block, a T die, a cooling roll, a corona discharge treatment device, a winder, etc., the material of the sealant layer was directly changed from the first extruder.
  • Each of the products A was extruded, and a two-type three-layer film (LLDPE1 (20 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LLDPE1 (20 ⁇ m) having a width of 900 mm through a feed block. m)). Thereafter, the surface of one LLDPE 1 was subjected to corona discharge treatment at 60 m / min to produce a film roll. When the obtained film roll was observed, there was no uneven thickness such as bumps.
  • an adhesive for urethane-based dry laminating (product name: “TM-319 / CAT-19B” manufactured by Toyo Morton Co., Ltd.) is used to make a nylon 6 film.
  • Example 18-2 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 18-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.01 parts by mass instead of 0.05 parts by mass. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-3 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 18-1, except that cobalt (II) stearate was dry blended so that the cobalt amount was 0.1 parts by mass instead of 0.05 parts by mass. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-4 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 18-1, except that cobalt (II) acetate was used in place of cobalt (II) stearate. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. Was measured. These results are shown in Table 18.
  • Example 18-5 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-6 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured.
  • Example 18-7 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 18-1, except that the tetralin ring-containing copolymer polyolefin compound B was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-8 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, manganese stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • cobalt stearate (II) is dry blended so that the amount of manganese is 0.05 parts by mass.
  • Example 18-7 an oxygen-absorbing multilayer film was obtained. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-9 Instead of dry blending cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass, iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • cobalt stearate (II) so that the amount of cobalt is 0.05 parts by mass
  • iron stearate (III) is dry blended so that the amount of iron is 0.05 parts by mass.
  • an oxygen-absorbing multilayer film was obtained.
  • three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured.
  • Example 18-10 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 18-1, except that the tetralin ring-containing copolymer polyolefin compound C was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-11 An oxygen-absorbing multilayer film was obtained in the same manner as in Example 18-1, except that the tetralin ring-containing copolymer polyolefin compound D was used in place of the tetralin ring-containing copolymer polyolefin compound A. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-1 In the same manner as in Example 18-1, except that the ethylene-methyl methacrylate copolymer having a methyl methacrylate content of 25% by mass used in Synthesis Example 1 was used instead of the tetralin ring-containing copolymer polyolefin compound A. A multilayer film was obtained. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. was measured. These results are shown in Table 18.
  • Example 18-2 A multilayer film was obtained in the same manner as in Example 18-1, except that cobalt stearate (II) was not used. Thereafter, three-side sealed bags and sealed bags were produced in the same manner as in Example 18-1, measurement of oxygen concentration in the bag, confirmation of beef jerky flavor and color tone, and sealing strength of the bag in the same manner as in Example 18-1. Was measured. These results are shown in Table 18.
  • a 50 ⁇ m-thick linear low-density polyethylene film (product name: “Tosero TUX HC” manufactured by Tosero Co., Ltd., hereinafter referred to as “LLDPE2” in Comparative Example 18-3) is used with oxygen.
  • the iron-based oxygen-absorbing resin composition was laminated by extrusion lamination with a thickness of 30 ⁇ m, and then the surface of the iron-based oxygen-absorbing resin composition on the layer side was subjected to corona discharge treatment at 60 m / min. A laminated film was obtained.
  • Example 18-1 Alumina-deposited PET film (12 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / nylon 6 film
  • An iron-based oxygen-absorbing multilayer film of (15 ⁇ m) / urethane-based dry laminate adhesive (3 ⁇ m) / oxygen absorbing layer (30 ⁇ m) / LLDPE2 (50 ⁇ m) was produced.
  • Example 18- In the same manner as in Example 1, the oxygen concentration in the bag, the flavor and color tone of the beef jerky, and the seal strength of the bag were measured. These results are shown in Table 18.
  • the container exhibits good oxygen absorption performance, suppresses the flavor and color tone of the contents, and The seal strength before storage was maintained.
  • the oxygen-absorbing resin composition and the like of the present invention has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, it is widely and effectively used in general technical fields that require oxygen absorption. Is available.
  • these oxygen-absorbing resin compositions and the like can absorb oxygen regardless of the presence or absence of moisture in the object to be preserved, and further, since there is no odor generation after oxygen absorption, for example, food, cooked food It can be used particularly effectively in beverages, pharmaceuticals, health foods and the like.
  • it since it is possible to realize a mode insensitive to the metal detector, it can be used widely and effectively in applications in which metals, metal pieces, and the like are inspected from the outside by a metal detector, such as packaging and containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

 金属探知機に感応する材料を用いなくても、酸素吸収後の臭気発生が抑制され、優れた酸素吸収性能を有する、新規な酸素吸収性樹脂組成物を提供する。また、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する、酸素吸収性樹脂組成物を提供する。そのような酸素吸収性樹脂組成物は、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物であって、前記共重合ポリオレフィン化合物が、少なくとも1種のテトラリン環を有する構成単位を含有するものである。

Description

酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器
 本発明は、酸素吸収性樹脂組成物に関し、特に、テトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを少なくとも含有する酸素吸収性樹脂組成物に関する。また、本発明は、低湿度から高湿度までの広範な湿度条件下で、酸素バリア性能および酸素吸収性能に優れた、酸素吸収性多層体および酸素吸収性多層容器、酸素吸収性紙容器、チューブ状容器、酸素吸収性PTP包装体、酸素吸収性多層ボトル等に関する。さらに、本発明は、酸素バリア性能および酸素吸収機能を有する医療用容器、酸素吸収性多層体を含む成形体、より具体的には、酸素吸収性多層体をガスバリア性成形容器の蓋材として用いた酸素吸収性密封容器等、並びにそれらを用いた保存方法に関する。
 食品、飲料、医薬品、化粧品に代表される、酸素の影響を受けて変質或いは劣化しやすい各種物品の酸素酸化を防止し、長期に保存する目的で、これらを収納した包装体内の酸素除去を行う酸素吸収剤が使用されている。
 酸素吸収剤としては、酸素吸収能力、取り扱い易さ、安全性の点から、鉄粉を反応主剤とする酸素吸収剤が一般的に用いられている。しかし、この鉄系酸素吸収剤は、金属探知機に感応するために、異物検査に金属探知機を使用することが困難であった。また、鉄系酸素吸収剤を同封した包装体は、発火の恐れがある為に電子レンジによる加熱ができない。さらに、鉄粉の酸化反応には水分が必須であるため、被保存物が高水分系であるものでしか、酸素吸収の効果を発現することができなかった。
 また、熱可塑性樹脂に鉄系酸素吸収剤を配合した酸素吸収性樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成することにより、容器のガスバリア性の向上を図ると共に、容器自体に酸素吸収機能を付与した包装容器の開発が行われている(特許文献1参照)。具体的には、この多層材料は、ヒートシール層及びガスバリア層が積層された従来構成のガスバリア性多層フィルムの層間に、鉄系酸素吸収剤を分散した熱可塑性樹脂からなる酸素吸収層を設けた酸素吸収性多層フィルムであって、外部からの酸素透過を防ぐ機能に加えて、容器内の酸素を吸収する機能が付与されたものであり、押し出しラミネート、共押し出しラミネート、ドライラミネート等の従来公知の製造方法を利用して製造されている。しかし、これも同様に、食品等の異物検知等に使用される金属探知機に感応するために異物検査に金属探知器を使用できない、電子レンジによる加熱ができない、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。さらに、不透明性の問題により内部視認性が不足するといった課題を有している。
 さらに、鉄粉を使用した酸素吸収性多層シートを成形する際には、鉄粉を使用しているため自重が高く、成形体成形時に成形不良が発生する課題を有している。例えば、シート成形時のネックイン、偏肉、熱成形時のドローダウンが例示される。また、成形した際には、表面に凹凸が生じる課題も有している。
 上記のような事情から、有機系の物質を反応主剤とする酸素吸収剤が望まれている。有機系の物質を反応主剤とする酸素吸収剤としては、アスコルビン酸を主剤とする酸素吸収剤が知られている(特許文献2参照)。
 一方、樹脂と遷移金属触媒からなる酸素吸収性樹脂組成物が知られている。例えば、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属触媒からなる樹脂組成物が知られている(特許文献3および4参照)。さらに、これらの特許文献3および4には、この樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムも例示されている。
 また、酸素吸収に水分を必要としない酸素吸収性樹脂組成物として、炭素-炭素不飽和結合を有する樹脂と遷移金属触媒からなる酸素吸収性樹脂組成物が知られている(特許文献5参照)。
 さらに、酸素を捕集する組成物として、置換されたシクロヘキセン官能基を含むポリマーまたは該シクロヘキセン官能基が結合した低分子量物質と遷移金属とからなる組成物が知られている(特許文献6参照)。
 また、チューブ状容器は、食品や医薬品、化粧品、練り歯磨き等の衛生材料、接着剤等の化学品等、多岐の物品の保存に用いられ、容器を形成する材料の構成や容器の形状、製造方法等も数多くの種類のものが知られている。これらのチューブ状容器は、内容物の変質、特に酸素による変質を防止するために、古くは、ガスバリア層としてアルミニウム箔を積層した容器が用いられていた。アルミニウム箔は酸素等のガスの透過を完全に遮断できる材料として優れたものであり、特に医薬品等の容器として利用されてきた。
 しかしながら、アルミニウム箔を積層したチューブ状容器では、使用後の資源リサイクルにおいて積層樹脂とアルミニウム箔との分別回収が著しく困難であり、また、焼却廃棄にあたっては、アルミニウム箔の灰状の残渣が廃棄物処理を困難にする等の問題があった。このような問題を解決する手段として、アルミニウム箔をエチレン-ビニルアルコール共重合体や、メタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下、「ナイロンMXD6」と称することがある。)のようなガスバリア性に優れる熱可塑性樹脂や、酸化アルミニウムや酸化ケイ素等の無機酸化物を蒸着した樹脂フィルムに置き換えたチューブ状容器が多く提案され、実用化されてきた。
 ところで、医薬品等の薬液が充填された容器について、酸素の影響を受けて変質或いは劣化しやすい容器内の薬液の酸素酸化を防止し、長期に保存する目的で、これらを収納した包装体内の酸素除去を行う酸素吸収剤が使用されている。
 薬液を充填した容器は、実際に使用されるまでの間に容器が汚染されるのを防止すべく、合成樹脂のフィルムから成る外包体に充填された状態で取り扱われている。容器は衛生性等の面から酸素を透過する樹脂から成っているため、酸素による内容液の変質を防止するには、外包体はガスバリア性を有していることが必要である。しかし、密封後の外包体内には多少なりとも酸素が存在しており、また、バリア性外包体を使用しても時間と共に酸素が透過してくるため、そのような酸素による内容液の変質をも防止する必要がある。そこで、従来は、低酸素濃度で薬液を充填した容器を単に保存するだけでなく、外包体内に酸素吸収剤を、薬液を充填した容器と一緒に収容し、この酸素吸収剤により、外包体内の残存酸素と、更に外部から透過してくる酸素とを吸収し、外包体内の酸素の量を低レベルに維持し、輸液容器の内容液の変質を防止していた。
 また、関節痛、筋肉痛等の消炎剤として各種薬効成分を含んだ貼付剤は、バリア性を有するフィルムを用いて、密封包装され保存されている。
 薬効成分を含んだ貼付剤を保存する場合、酸素による薬効成分の変質を防止するためには、密封包装に用いるフィルムはガスバリア性を有していることが必要である。しかし、密封後の包装体内に残存する酸素や、バリア性包装体といえども微量ながら酸素が透過してくるため、薬効成分の変質を抑制するには、これらの酸素を除去する必要がある。そこで、従来は、酸素吸収剤を貼付剤と共に充填密封したり、酸素吸収機能を有する包装袋に充填密封したりしていた。
 ところで、医薬品や食品等の包装分野においては、錠剤やカプセル等の薬剤、粒状の食品等を包装するためにPTP(プレススルーパッケージ)包装体(ブリスターパッケージともいわれる。)等の容器や包装体が広く利用されている。PTP包装体とは、例えば、ポリ塩化ビニル系樹脂やポリロピレン系樹脂等のプラスチックシートを底材として、圧空成形、真空成形等を施すことにより被保存物を収納するポケット部を形成し、ポケット部に被保存物を収納した後、例えば、アルミニウム箔のように手で容易に引き裂いたり、容易に開封したりできる材質の箔やフィルムを蓋材として積層して密封した形態の包装体である。PTP包装体では、底材に透明なプラスチックシートを用いることでポケット部に収納された被保存物を開封前に直接肉眼で確認できる。また、開封する際には、ポケット部側から被保存物を指で押して蓋材を押し破ることにより、被保存物を容易に取り出すことができる。
 また、みかん、栗、チェリー、桃、リンゴ、パイナップル等の果肉類の保存方法としては、缶詰等の金属缶に充填し、保存する技術があり、日本酒、ワイン、焼酎等のアルコール飲料、液状茶又はペースト状茶を、金属缶やガラス瓶に充填し、保存する技術がある。さらに、近年、様々な果実及び/又は野菜を加工した果汁及び/又は野菜汁がある。これらの果汁及び/又は野菜汁は、酸素に暴露されるとその含有成分である香気成分、糖類、ビタミン等が酸化分解、劣化を起こし、その色調が変化し、その風味が失われる。そこで、上記アルコール飲料と同様に、果汁及び/又は野菜汁を金属缶やガラス瓶に充填し、保存する技術がある。ところが、金属缶やガラス瓶は、不燃性廃棄物処理の問題や包装容器の軽量化への要請があり、さらに金属缶では金属成分が内容物中に溶けだす問題があることから、ガスバリア性袋やガスバリア性トレイ等のプラスチック系容器への移管が行われている。
 さらに、風味や色調が商品価値を左右する、コーヒー、茶、ピーナッツ、海苔、魚節粉末、調味料、乾燥野菜等の乾燥物品は、風味や色調を維持することが商品価値及び商品寿命を長く維持する上で重要である。流通過程や商品保存期間中における、乾燥物品の劣化や乾燥物品特有の風味の低下は、その包装容器中に存在する酸素が主な原因となる。
 さらに、従来から、薬液を密閉状態で充填し保管するための医療用包装容器として、ガラス製のアンプル、バイアル、プレフィルドシリンジ等が使用されている。しかしながら、これらのガラス製容器は、保管中に容器中の内容液にナトリウムイオン等が溶出する、フレークスという微細な物質が発生する、金属で着色した遮光性ガラス製容器を使用する場合には着色用の金属が内容物に混入する、落下等の衝撃により割れやすい、等の問題があった。また、比較的に比重が大きいため、医療用包装容器が重いという問題点もあった。そのため、代替材料の開発が期待されている。具体的には、ガラスに比べて軽量なプラスチック、例えば、ポリエステル、ポリカーボネート、ポリプロピレン、シクロオレフィンポリマー等が、ガラス代替として検討されている。
 例えば、ポリエステル系樹脂材料からなる医療用容器が提示されている(特許文献7参照)。
 一方、プラスチックからなる容器にガスバリア性を付与するために、ガスバリア層を中間層として有する多層容器の検討が行われている。具体的には、ポリオレフィン系樹脂からなる最内層および最外層と、酸素バリア性に優れた樹脂組成物からなる中間層と有する、酸素バリア性を向上させたプレフィルドシリンジが提示されている(特許文献8参照)。他にも、メタキシリレンジアミンとアジピン酸とから得られるポリアミド、エチレン-ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニリデン、アルミニウム箔、カーボンコート、無機酸化物蒸着等のガスバリア層を樹脂層に積層した多層容器も検討されている。
 他方、近年においては、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することが提案されている(特許文献9参照)。
 また、医療用容器としては、アンプル、バイアル、シリンジの他に人工腎臓血液透析器(ダイヤライザー)が挙げられる。ダイヤライザーのハウジングには、中身がよく見える透明性プラスチックとしてポリスチレンやポリカーボネートが用いられる。それらの中でも、落下その他の衝撃で破損することを避けるため、耐衝撃性のよいポリカーボネートがより好んで使用されている(特許文献10参照)。
特開平9-234832号公報 特開昭51-136845号公報 特開2001-252560号公報 特開2009-108153号公報 特開平05-115776号公報 特表2003-521552号公報 特開平08-127641号公報 特開2004-229750号公報 特開平02-500846号公報 特開平01-259870号公報
 しかしながら、特許文献2の酸素吸収剤は、そもそも酸素吸収性能が低く、また、被保存物が高水分系のものしか効果を発現しない、比較的に高価である、といった課題を有している。
 また、特許文献3の樹脂組成物は、遷移金属触媒を含有させキシリレン基含有ポリアミド樹脂を酸化させることで酸素吸収機能を発現させるものであるため、酸素吸収後に樹脂の酸化劣化による高分子鎖の切断が発生し、包装容器そのものの強度が低下するという問題を有している。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。また、特許文献4では層間剥離の改善方法が記載されているが、効果は限定的である。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。
 さらに、特許文献5の酸素吸収性樹脂組成物は、上記と同様に樹脂の酸化にともなう高分子鎖の切断により臭気成分となる低分子量の有機化合物が生成し、酸素吸収後に臭気が発生するという問題がある。
 一方、特許文献6の組成物は、シクロヘキセン官能基を含む特殊な材料を用いる必要があり、また、この材料は比較的に臭気が発生しやすい、という課題が依然として存在する。
 他方、上記従来のガスバリア性多層容器や医療用多層容器は、酸素バリア性、水蒸気バリア性、薬液吸着性、容器の耐久性等の基本性能が十分ではなく、そのため、薬液や食品等の内容物の保存性の観点から改善が求められている。
 とりわけ、従来のガスバリア性多層容器を用いて食品や薬液等を保存する場合、如何にガス置換操作を行ったとしても、包装容器内の酸素を完全に除去することは困難或いは極めて不経済であるという実情がある。すなわち、内容物の液中に溶存する酸素、内容物の混合時に発生し混入する気泡に含まれる酸素、水を添加する場合にはそれに溶存する酸素等を完全に排除することは困難である。原料の選別・調製条件や製造条件において高度な管理を行なって、酸素を可能な限り除去することは可能であるものの、このような経済性を無視した取り扱いは現実的ではない。しかも、上記のとおりガスバリア性多層容器の酸素バリア性が十分ではないため、容器の壁部を透過して外部から侵入してくる微量酸素を完全に排除することができない。
 例えば、特許文献7のポリエステル系樹脂製の医療用容器は、比較的に優れた酸素バリア性を有するものの、酸素を完全に遮断するには酸素バリア性が不十分であり、また、ポリオレフィン系樹脂からなる容器と比較すると水蒸気バリア性にも劣る。しかも、このポリエステル系樹脂は、酸素吸収性能を有さない。そのため、外部から酸素が容器内に侵入した場合に、または、容器の内容物の上部に存在するヘッドスペースに酸素が残存している場合には、容器内の薬液の劣化を防げないという問題があった。
 また、特許文献8のプレフィルドシリンジは、比較的に優れた酸素バリア性および水蒸気バリア性を有するものの、酸素を完全に遮断するには酸素バリア性が不十分である。しかも、中間層の酸素バリア性樹脂組成物は、酸素吸収性能を有さない。そのため、外部から酸素が容器内に侵入した場合に、または、容器の内容物の上部に存在するヘッドスペースに酸素が残存している場合には、容器内の薬液の劣化を防げないという問題があった。
 一方、特許文献9の樹脂組成物は、上記の特許文献3および4と同様に、酸化吸収後に樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。
 また、特許文献10のダイヤライザーのハウジングは、優れた透明性、耐衝撃性を有しているが、薬液を収容し保存する容器に適用するには、ポリカーボネートは酸素バリア性や水蒸気バリア性が不十分であり、内容物の長期保存性の面で課題を有している。
 また、上記のような外包体内に、小袋に充填された酸素吸収剤をそのまま収容すると、酸素吸収剤を誤って服用してしまうおそれがある。一方、酸素吸収剤を外包体から容易に取り出せないように外包体内に固着させるのは、製造工程が非常に煩雑になって生産性に劣るという問題も有していた。
 さらに、このような小袋に充填された酸素吸収剤をそのまま入れると、異物感の問題や衛生的な問題もある。一方、酸素吸収剤を包装袋から容易に取り出せないように包装袋内に固着させるのは、製造工程が非常に煩雑になって生産性に劣るという問題も有していた。
 また、被保存物をPTP包装体等の容器や包装体に収納後に密封する際、空気中でこれを行えば収納の際に容器や包装体内に空気が取り込まれ、封入される。当然、これに伴って一定量の酸素が容器や包装体内に取り込まれることになる。これにより、被保存物は混在する酸素により何らかの影響を受ける。そうすると、被保存物の化学的性質によりその影響の程度に差はあるものの、密封後に徐々に、薬剤の薬効成分や、食品の風味や色調が損なわれるおそれがある。また、密封後の保管期間又は流通期間が長ければ長いほど、酸素による影響を大きく受けるため、被保存物の品質が損なわれるおそれがある。したがって、微量の酸素であっても、その存在は無視できない。
 さらに、通常のガスバリア性袋等のガスバリア性容器で果肉類やアルコール飲料、液状茶又はペースト状茶、果汁及び/又は野菜汁、乾燥物品を保存した場合、包装容器に果肉類やアルコール飲料、液状茶又はペースト状茶、果汁及び/又は野菜汁、乾燥物品を充填する際に空気中でその作業を行えば当然空気の混入を排除できない。この混入を防ぐために不活性ガス、多くは窒素ガスを用いて空気の混入を防いでいる。ところが、このような方法では完全に空気の混入を阻止できず、また、実際の生産工程において、このような方法を実施すれば工程を増やすことになり、生産効率が低下する。つまり、容器内をいかにガス置換した場合でも、容器内に残存する微量酸素、または果肉類とともに充填されるシラップ内やアルコール飲料、液状茶もしくはペースト状茶、果汁及び/又は野菜汁に溶存する微量酸素により、果肉類、アルコール飲料、液状茶又はペースト状茶、果汁及び/又は野菜汁、乾燥物品の風味劣化や褐変が生じることは避けがたい。
 本発明は、上記課題を鑑みてなされたものであり、その目的は、金属探知機に感応する材料を用いなくても、酸素吸収後の臭気発生が抑制され、優れた酸素吸収性能を有する、新規な酸素吸収性樹脂組成物を提供することにある。
 本発明の別の目的は、金属探知機に感応する材料を用いなくても、酸素吸収後の臭気発生が抑制され、優れた酸素吸収性能を有する、新規な、酸素吸収性多層体および該多層体を含む酸素吸収性多層容器、酸素吸収性多層容器、酸素吸収性多層体をガスバリア性成形容器の蓋材として用いた酸素吸収性密封容器、酸素吸収性紙容器、チューブ状容器、酸素吸収性多層体を酸素吸収性PTP包装体の底材として用いた酸素吸収性PTP包装体、酸素吸収性多層ボトルを提供することにある。
 また、本発明の他の目的は、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する、酸素吸収性樹脂組成物、酸素吸収性多層体および該多層体を含む酸素吸収性多層容器、酸素吸収性多層容器、酸素吸収性多層体をガスバリア性成形容器の蓋材として用いた酸素吸収性密封容器、酸素吸収性紙容器、チューブ状容器、酸素吸収性多層体を酸素吸収性PTP包装体の底材として用いた酸素吸収性PTP包装体、酸素吸収性多層ボトルを提供することにある。
 そして、本発明の別の目的は、酸素吸収後の低分子量化合物の生成が著しく抑制され、優れた酸素吸収性能を有し、好ましくは優れた水蒸気バリア性能をも有し、長期保存時でも強度が維持され、不純物の溶出量が極めて少なく、薬液低吸着性を有する新規な酸素吸収性医療用多層成形容器、酸素吸収性プレフィルドシリンジを提供することにある。また、本発明の他の別の目的は、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する、酸素吸収性医療用多層成形容器、酸素吸収性プレフィルドシリンジを提供することにある。
 さらに、本発明のなおも別の目的は、バイオ医薬の変質や薬効の低下を抑制し、不純物が混入すること無く、長期間保存できる方法を提供することにある。また、本発明のさらに別の目的は、薬液成分の劣化を抑制したまま薬液が充填された容器や薬効成分を含んだ貼付剤を長期間保存できる方法を提供することにある。
 また、本発明のなおも他の目的は、果肉類、アルコール飲料、液状茶又はペースト状、果汁及び/又は野菜汁茶、乾燥物品の風味を損なわず、色調を保持したまま果肉類、液状茶又はペースト状茶、果汁及び/又は野菜汁、乾燥物品を長期間保存できる方法、アルコール類を長期間保存できる方法を提供することにある。
 本発明者らは、酸素吸収性樹脂組成物等について鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<1-1>~<1-23>を提供する。
<1-1> 共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物であって、前記共重合ポリオレフィン化合物が、下記一般式(1)で表される構成単位;
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、RおよびRは、それぞれ独立して水素原子または第1の一価の置換基を示し、前記第1の一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。)
からなる群より選択される少なくとも1種の構成単位(a)と、下記一般式(2)および(3)で表される構成単位;
Figure JPOXMLDOC01-appb-C000006
(式中、R、RおよびRは、それぞれ独立して水素原子または第2の一価の置換基を示し、R、R、R10およびR11は、それぞれ独立して第3の一価の置換基を示し、前記第2の一価の置換基および前記第3の一価の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよく、前記R、R、R10またはR11が複数存在する場合、複数の前記R、R、R10またはR11は、互いに同一であっても異なっていてもよい。mは0~3、nは0~7、pは0~6、qは0~4の整数をそれぞれ示し、テトラリン環のベンジル位には少なくとも1つの水素原子が結合している。Xは-(C=O)O-、-(C=O)NH-、-O(C=O)-、-NH(C=O)-および-(CHR)s-からなる群より選択される二価の基を示し、sは0~12の整数を示す。Yは-(CHR)t-であって、tは0~12の整数を示す。Rは水素原子、メチル基およびエチル基からなる群より選択される一価の化学種を示す。)
からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性樹脂組成物。
<1-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<1-1>記載の酸素吸収性樹脂組成物。
<1-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<1-1>または<1-2>に記載の酸素吸収性樹脂組成物。
<1-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<1-1>~<1-3>のいずれか一項に記載の酸素吸収性樹脂組成物。
<1-5> 前記構成単位(a)が下記式(4)および(5)で表される構成単位;
Figure JPOXMLDOC01-appb-C000007
からなる群より選択される少なくとも1種の構成単位であり、
 前記構成単位(b)が下記式(6)および(7)で表される構成単位;
Figure JPOXMLDOC01-appb-C000008
からなる群より選択される少なくとも1種の構成単位である、上記<1-1>~<1-4>のいずれか一項に記載の酸素吸収性樹脂組成物。
<1-6> 熱可塑性樹脂を含有するシーラント層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体。
<1-7> 上記<1-6>に記載の酸素吸収性多層体を含む、酸素吸収性多層容器。
<1-8> 熱可塑性樹脂を含有する酸素透過層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体の酸素透過層を内側として熱成形してなる酸素吸収性多層容器。
<1-9> 上記<1-6>に記載の酸素吸収性多層体を含有する蓋材と、熱可塑性樹脂を含有する内層、ガスバリア性物質を含有するガスバリア層、および熱可塑性樹脂を含有する外層をこの順に積層した、少なくとも3層からなるガスバリア性成形容器と、を備え、前記蓋材における前記シーラント層と前記ガスバリア性成形容器における前記内層とが接合されてなる酸素吸収性密封容器。
<1-10> 熱可塑性樹脂を含有する隔離層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、ガスバリア性物質を含有するガスバリア層、並びに紙基材層をこの順に積層した、少なくとも4層からなる酸素吸収性多層体を製函してなる酸素吸収性紙容器。
<1-11> 熱可塑性樹脂を含有する内層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を備えるチューブ状容器。
<1-12> ポリエステルを少なくとも含有する第1の樹脂層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにポリエステルを少なくとも含有する第2の樹脂層をこの順に積層した、少なくとも3層からなる酸素吸収性医療用多層成形容器。
<1-13> 予め薬剤を密封状態下に収容し、使用に際し前記密封状態を解除して前記薬剤を注出し得るようにされたプレフィルドシリンジであって、前記プレフィルドシリンジが、ポリエステルを少なくとも含有する第1の樹脂層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにポリエステルを少なくとも含有する第2の樹脂層の少なくとも3層をこの順に有する多層構造からなる、酸素吸収性プレフィルドシリンジ。
<1-14> バイオ医薬を、上記<1-12>に記載の酸素吸収性医療用多層成形容器内又は上記<1-13>記載の酸素吸収性プレフィルドシリンジ内に保存する、バイオ医薬の保存方法。
<1-15> 薬液が充填された容器を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、薬液が充填された容器の保存方法。
<1-16> 薬効成分を含んだ貼付剤を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、薬効成分を含んだ貼付剤の保存方法。
<1-17> 上記<1-6>に記載の酸素吸収性多層体を成形してなる酸素吸収性底材と、熱可塑性樹脂を含有する内層、およびガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも2層からなるガスバリア性蓋材と、を備え、前記酸素吸収性底材における前記シーラント層と前記ガスバリア性蓋材における前記内層とが接合されてなる酸素吸収性PTP包装体。
<1-18> 熱可塑性樹脂を含有する酸素透過層、上記<1-1>~<1-5>のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層を、内側からこの順に積層した、少なくとも3層を有する酸素吸収性多層ボトル。
<1-19> 果肉類を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、果肉類の保存方法。
<1-20> アルコール飲料を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、アルコール飲料の保存方法。
<1-21> 液状茶又はペースト状茶を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、液状茶又はペースト状茶の保存方法。
<1-22> 果汁及び/又は野菜汁を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、果汁及び/又は野菜汁の保存方法。
<1-23> 乾燥物品を、上記<1-6>に記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、乾燥物品の保存方法。
 また、本発明者らは、酸素吸収性樹脂組成物について鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<2-1>~<2-4>を提供する。
<2-1> 共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性樹脂組成物。
<2-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<2-1>記載の酸素吸収性樹脂組成物。
<2-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<2-1>または<2-2>に記載の酸素吸収性樹脂組成物。
<2-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<2-1>~<2-3>のいずれか一項に記載の酸素吸収性樹脂組成物。
<2-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が下記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<2-1>~<2-4>のいずれか一項に記載の酸素吸収性樹脂組成物。
 本発明者らは、酸素吸収性多層体について鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<3-1>~<3-6>を提供する。
<3-1> 熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性多層体。
<3-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<3-1>に記載の酸素吸収性多層体。
<3-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<3-1>または<3-2>に記載の酸素吸収性多層体。
<3-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<3-1>~<3-3>のいずれか一項に記載の酸素吸収性多層体。
<3-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<3-1>~<3-4>のいずれか一項に記載の酸素吸収性多層体。
<3-6> 上記<3-1>~<3-5>のいずれか一項に記載の酸素吸収性多層体を含む、酸素吸収性多層容器。
 さらに、本発明者らは、酸素吸収性多層容器について鋭意検討を進めた結果、多層容器の少なくとも1層に、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<4-1>~<4-5>を提供する。
<4-1> 熱可塑性樹脂を含有する酸素透過層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体の酸素透過層を内側として熱成形してなる酸素吸収性多層容器であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性多層容器。
<4-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<4-1>に記載の酸素吸収性多層容器。
<4-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<4-1>または<4-2>に記載の酸素吸収性多層容器。
<4-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<4-1>~<4-3>のいずれか一項に記載の酸素吸収性多層容器。
<4-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<4-1>~<4-4>のいずれか一項に記載の酸素吸収性多層容器。
 本発明者らは、酸素吸収性密閉容器について鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒を用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<5-1>~<5-5>を提供する。
<5-1> 熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を含有する蓋材と、熱可塑性樹脂を含有する内層、ガスバリア性物質を含有するガスバリア層、および熱可塑性樹脂を含有する外層をこの順に積層した、少なくとも3層からなるガスバリア性成形容器と、を備え、前記蓋材における前記シーラント層と前記ガスバリア性成形容器における前記内層とが接合されてなる酸素吸収性密封容器であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性密封容器。
<5-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<5-1>記載の酸素吸収性密封容器。
<5-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<5-1>または<5-2>に記載の酸素吸収性密封容器。
<5-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<5-1>~<5-3>のいずれか一項に記載の酸素吸収性密封容器。
<5-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<5-1>~<5-4>のいずれか一項に記載の酸素吸収性密封容器。
 また、本発明者らは、酸素吸収性紙容器について鋭意検討を進めた結果、紙容器を構成する多層体の少なくとも1層に、所定のテトラリン環を有する共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物を用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<6-1>~<6-5>を提供する。
<6-1> 熱可塑性樹脂を含有する隔離層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、ガスバリア性物質を含有するガスバリア層、並びに紙基材層をこの順に積層した、少なくとも4層からなる酸素吸収性多層体を製函してなる酸素吸収性紙容器であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性紙容器。
<6-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<6-1>に記載の酸素吸収性紙容器。
<6-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<6-1>または<6-2>に記載の酸素吸収性紙容器。
<6-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<6-1>~<6-3>のいずれか一項に記載の酸素吸収性紙容器。
<6-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<6-1>~<6-4>のいずれか一項に記載の酸素吸収性紙容器。
 さらに、本発明者らは、チューブ状容器について鋭意検討を進めた結果、チューブ状容器を構成する多層体の少なくとも一層に、所定のテトラリン環を有する共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物を用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<7-1>~<7-5>を提供する。
<7-1> 熱可塑性樹脂を含有する内層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を備えるチューブ状容器であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、チューブ状容器。
<7-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<7-1>記載のチューブ状容器。
<7-3>前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<7-1>または<7-2>に記載のチューブ状容器。
<7-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<7-1>~<7-3>のいずれか一項に記載のチューブ状容器。
<7-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<7-1>~<7-4>のいずれか一項に記載のチューブ状容器。
 本発明者らは、酸素吸収性医療用多層成形容器について鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いた酸素吸収層、および、ポリエステルを用いた樹脂層を積層することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<8-1>~<8-10>を提供する。
<8-1> ポリエステルを少なくとも含有する第1の樹脂層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにポリエステルを少なくとも含有する第2の樹脂層をこの順に積層した、少なくとも3層からなる酸素吸収性医療用多層成形容器であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性医療用多層成形容器。
<8-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<8-1>に記載の酸素吸収性医療用多層成形容器。
<8-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<8-1>または<8-2>に記載の酸素吸収性医療用多層成形容器。
<8-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<8-1>~<8-3>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
<8-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<8-1>~<8-4>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
<8-6> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上がテレフタル酸、イソフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸からなる群から選ばれる1種以上のジカルボン酸に由来する、上記<8-1>~<8-5>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
<8-7> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上がテレフタル酸に由来する、上記<8-1>~上記<8-5>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
<8-8> 前記ポリエステルが、ジカルボン酸単位中の90モル%以上がテレフタル酸に由来する、上記<8-1>~<8-5>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
<8-9> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上が2,6-ナフタレンジカルボン酸に由来する、上記<8-1>~<8-5>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
<8-10> 前記ポリエステルが、ジカルボン酸単位中の90モル%以上が2,6-ナフタレンジカルボン酸骨格である、上記<8-1>~<8-5>のいずれか一項に記載の酸素吸収性医療用多層成形容器。
 本発明者らは、酸素吸収性プレフィルドシリンジについて鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いた酸素吸収層、および、ポリエステルを用いた樹脂層を積層することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<9-1>~<9-10>を提供する。
<9-1> 予め薬剤を密封状態下に収容し、使用に際し前記密封状態を解除して前記薬剤を注出し得るようにされたプレフィルドシリンジであって、前記プレフィルドシリンジが、ポリエステルを少なくとも含有する第1の樹脂層と、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層と、ポリエステルを少なくとも含有する第2の樹脂層と、の少なくとも3層をこの順に有する多層構造からなり、前記共重合ポリオレフィン化合物が、上記一般式(1)で表わされる構成単位(a)からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性プレフィルドシリンジ。
<9-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<9-1>に記載の酸素吸収性プレフィルドシリンジ。
<9-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<9-1>または<9-2>に記載の酸素吸収性プレフィルドシリンジ。
<9-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<9-1>~<9-3>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
<9-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<9-1>~<9-4>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
<9-6> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上がテレフタル酸、イソフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸からなる群から選ばれる1種以上のジカルボン酸に由来する、上記<9-1>~<9-5>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
<9-7> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上がテレフタル酸に由来する、上記<9-1>~<9-5>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
<9-8> 前記ポリエステルが、ジカルボン酸単位中の90モル%以上がテレフタル酸に由来する、上記<9-1>~<9-5>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
<9-9> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上が2,6-ナフタレンジカルボン酸に由来する、上記<9-1>~<9-5>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
<9-10> 前記ポリエステルが、ジカルボン酸単位中の90モル%以上が2,6-ナフタレンジカルボン酸骨格である、上記<9-1>~<9-5>のいずれか一項に記載の酸素吸収性プレフィルドシリンジ。
 また、本発明者らは、バイオ医薬の保存方法について鋭意検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いた酸素吸収層、および、ポリエステルを用いた樹脂層を積層することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<10-1>~<10-10>を提供する。
<10-1> バイオ医薬を、ポリエステルを少なくとも含有する第1の樹脂層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにポリエステルを少なくとも含有する第2の樹脂層をこの順に積層した、少なくとも3層からなる酸素吸収性医療用多層成形容器内に保存するバイオ医薬の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、バイオ医薬の保存方法。
<10-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<10-1>に記載のバイオ医薬の保存方法。
<10-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<10-1>または<10-2>に記載のバイオ医薬の保存方法。
<10-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<10-1>~<10-3>のいずれか一項に記載のバイオ医薬の保存方法。
<10-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<10-1>~<10-4>のいずれか一項に記載のバイオ医薬の保存方法。
<10-6> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上がテレフタル酸、イソフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸からなる群から選ばれる1種以上のジカルボン酸に由来する、上記<10-1>~<10-5>のいずれか一項に記載のバイオ医薬の保存方法。
<10-7> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上がテレフタル酸に由来する、上記<10-1>~<10-5>のいずれか一項に記載のバイオ医薬の保存方法。
<10-8> 前記ポリエステルが、ジカルボン酸単位中の90モル%以上がテレフタル酸に由来する、上記<10-1>~<10-5>のいずれか一項に記載のバイオ医薬の保存方法。
<10-9> 前記ポリエステルが、ジカルボン酸単位中の70モル%以上が2,6-ナフタレンジカルボン酸に由来する、上記<10-1>~<10-5>のいずれか一項に記載のバイオ医薬の保存方法。
<10-10> 前記ポリエステルが、ジカルボン酸単位中の90モル%以上が2,6-ナフタレンジカルボン酸骨格である、上記<10-1>~<10-5>のいずれか一項に記載のバイオ医薬の保存方法。
 さらに、本発明者らは、薬液が充填された容器の保存方法について検討を進めた結果、薬液が充填された容器を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を容器の一層に用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<11-1>~<11-5>を提供する。
<11-1> 薬液が充填された容器を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、薬液が充填された容器の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、薬液が充填された容器の保存方法。
<11-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<11-1>に記載の薬液が充填された容器の保存方法。
<11-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<11-1>または<11-2>に記載の薬液が充填された容器の保存方法。
<11-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<11-1>~<11-3>のいずれか一項に記載の薬液が充填された容器の保存方法。
<11-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<11-1>~<11-4>のいずれか一項に記載の薬液が充填された容器の保存方法。
 本発明者らは、薬効成分を含んだ貼付剤の保存方法について検討を進めた結果、薬効成分を含んだ貼付剤を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<12-1>~<12-5>を提供する。
<12-1> 薬効成分を含んだ貼付剤を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、薬効成分を含んだ貼付剤の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、薬効成分を含んだ貼付剤の保存方法。
<12-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<12-1>に記載の薬効成分を含んだ貼付剤の保存方法。
<12-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<12-1>または<12-2>に記載の薬効成分を含んだ貼付剤の保存方法。
<12-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<12-1>~<12-3>のいずれか一項に記載の薬効成分を含んだ貼付剤の保存方法。
<12-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<12-1>~<12-4>のいずれか一項に記載の薬効成分を含んだ貼付剤の保存方法。
 また、本発明者らは、酸素吸収性PTP包装体について検討を進めた結果、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<13-1>~<13-5>を提供する。
<13-1> 熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を成形してなる酸素吸収性底材と、熱可塑性樹脂を含有する内層、およびガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも2層からなるガスバリア性蓋材と、を備え、前記酸素吸収性底材における前記シーラント層と前記ガスバリア性蓋材における前記内層とが接合されてなる酸素吸収性PTP包装体であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性PTP包装体。
<13-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<13-1>に記載の酸素吸収性PTP包装体。
<13-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<13-1>または<13-2>に記載の酸素吸収性PTP包装体。
<13-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<13-1>~<13-3>のいずれか一項に記載の酸素吸収性PTP包装体。
<13-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<13-1>~<13-4>のいずれか一項に記載の酸素吸収性PTP包装体。
 さらに、本発明者らは、酸素吸収性多層ボトルについて鋭意検討を進めた結果、多層ボトルの少なくとも1層に、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒とを用いることにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<14-1>~<14-6>を提供する。
<14-1> 熱可塑性樹脂を含有する酸素透過層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層を、内側からこの順に積層した、少なくとも3層を有する酸素吸収性多層ボトルであって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性多層ボトル。
<14-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<14-1>に記載の酸素吸収性多層ボトル。
<14-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<14-1>または<14-2>に記載の酸素吸収性多層ボトル。
<14-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<14-1>~<14-3>のいずれか一項に記載の酸素吸収性多層ボトル。
<14-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<14-1>~<14-4>のいずれか一項に記載の酸素吸収性多層ボトル。
<14-6> 前記酸素吸収性多層ボトルが、共押出成形ブローにて得られるものである、上記<14-1>~<14-5>のいずれか一項に記載の酸素吸収性多層ボトル。
 本発明者らは、果肉類の保存方法について検討を進めた結果、果肉類を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を容器の一層に用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<15-1>~<15-5>を提供する。
<15-1> 果肉類を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、果肉類の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、果肉類の保存方法。
<15-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<15-1>に記載の果肉類の保存方法。
<15-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<15-1>または<15-2>に記載の果肉類の保存方法。
<15-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<15-1>~<15-3>のいずれか一項に記載の果肉類の保存方法。
<15-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<15-1>~<15-4>のいずれか一項に記載の果肉類の保存方法。
 また、本発明者らは、アルコール飲料の保存方法について検討を進めた結果、アルコール飲料を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を容器の一層に用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<16-1>~<16-5>を提供する。
<16-1> アルコール飲料を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、アルコール飲料の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、アルコール飲料の保存方法。
<16-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<16-1>に記載のアルコール飲料の保存方法。
<16-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<16-1>または<16-2>に記載のアルコール飲料の保存方法。
<16-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<16-1>~<16-3>のいずれか一項に記載のアルコール飲料の保存方法。
<16-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<16-1>~<16-4>のいずれか一項に記載のアルコール飲料の保存方法。
 また、本発明者らは、液状茶又はペースト状茶の保存方法について検討を進めた結果、液状茶又はペースト状茶を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を容器の一層に用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<17-1>~<17-5>を提供する。
<17-1> 液状茶又はペースト状茶を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、液状茶又はペースト状茶の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、液状茶又はペースト状茶の保存方法。
<17-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<17-1>に記載の液状茶又はペースト状茶の保存方法。
<17-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<17-1>または<17-2>に記載の液状茶又はペースト状茶の保存方法。
<17-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<17-1>~<17-3>のいずれか一項に記載の液状茶又はペースト状茶の保存方法。
<17-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<17-1>~<17-4>のいずれか一項に記載の液状茶又はペースト状茶の保存方法。
 さらに、本発明者らは、果汁及び/又は野菜汁の保存方法について検討を進めた結果、果汁及び/又は野菜汁を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を容器の一層に用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<18-1>~<18-5>を提供する。
<18-1> 果汁及び/又は野菜汁を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、果汁及び/又は野菜汁の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、果汁及び/又は野菜汁の保存方法。
<18-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<18-1>に記載の果汁及び/又は野菜汁の保存方法。
<18-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<18-1>または<18-2>に記載の果汁及び/又は野菜汁の保存方法。
<18-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<18-1>~<18-3>のいずれか一項に記載の果汁及び/又は野菜汁の保存方法。
<18-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<18-1>~<18-4>のいずれか一項に記載の果汁及び/又は野菜汁の保存方法。
 そして、本発明者らは、乾燥物品の保存方法について検討を進めた結果、乾燥物品を、所定のテトラリン環を有する共重合ポリオレフィン化合物と遷移金属触媒からなる酸素吸収性樹脂組成物を容器の一層に用いた容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下<19-1>~<19-5>を提供する。
<19-1> 乾燥物品を、熱可塑性樹脂を含有するシーラント層、共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、乾燥物品の保存方法であって、前記共重合ポリオレフィン化合物が、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種の構成単位(a)と、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、乾燥物品の保存方法。
<19-2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、上記<19-1>に記載の乾燥物品の保存方法。
<19-3> 前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、上記<19-1>または<19-2>に記載の乾燥物品の保存方法。
<19-4> 前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、上記<19-1>~<19-3>のいずれか一項に記載の乾燥物品の保存方法。
<19-5> 前記構成単位(a)が上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種の構成単位であり、前記構成単位(b)が上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種の構成単位である、上記<19-1>~<19-4>のいずれか一項に記載の乾燥物品の保存方法。
 本発明のいくつかの態様によれば、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する酸素吸収性樹脂組成物、酸素吸収性多層体および該多層体を含む酸素吸収性多層容器、酸素吸収性多層容器、酸素吸収性多層体をガスバリア性成形容器の蓋材として用いた酸素吸収性密封容器、酸素吸収性紙容器、チューブ状容器、酸素吸収性多層体を底材として用いた酸素吸収性PTP包装体、酸素吸収性多層ボトル、酸素吸収性多層体を用いて薬液を充填した容器や薬効成分を含んだ貼付剤を保存する方法を実現することができる。そして、これらの酸素吸収性樹脂組成物等は、被保存物の水分の有無によらず酸素を吸収することができ、しかも酸素吸収後の臭気発生がないので、例えば、食品、調理食品、飲料、医薬品、健康食品等、対象物を問わず幅広い用途で使用することができる。また、金属探知機に感応しない酸素吸収性樹脂組成物等を実現することもできる。さらに、本発明の好ましい態様によれば、酸素吸収後も酸化による共重合ポリオレフィン化合物の強度低下が極めて小さく、長期の利用においても酸素吸収層の強度が維持されるため、層間剥離が生じにくい酸素吸収性多層体および該多層体を含む酸素吸収性多層容器、酸素吸収性多層容器、酸素吸収性多層体をガスバリア性成形容器の蓋材として用いた酸素吸収性密封容器、酸素吸収性紙容器、チューブ状容器、酸素吸収性多層ボトルを実現することもできる。また、酸素吸収性多層体は内部視認性も良好であるので、薬液を充填した容器や薬効成分を含んだ貼付剤を好適に保存することができ、酸素吸収性PTP包装体の底材として用いると好適である。
 さらに、本発明によれば、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有し、酸素バリア性が良好で、好適な態様ではさらに水蒸気バリアに優れる、バイアルやプレフィルドシリンジ等の酸素吸収性医療用多層成形容器を実現することができる。そして、この酸素吸収性医療用多層成形容器は、被保存物の水分の有無によらず酸素吸収することができる。また、酸素吸収後も酸化による上記のテトラリン環を有する共重合ポリオレフィン化合物の強度低下が極めて小さく、長期の利用においても酸素吸収層の強度が維持されるため、層間剥離が生じにくい酸素吸収性医療用多層成形容器、酸素吸収性PTP包装体を実現することもでき、被保存物を好適に保存することができる。さらに、酸素吸収後の低分子有機化合物の生成が著しく抑制されているので、この低分子量有機化合物の内容物への混入が極めて少ない酸素吸収性医療用多層成形容器を実現することもできる。そのため、本発明の酸素吸収性医療用多層成形容器は、低酸素濃度下で保存が要求される医薬品、バイオ医薬、医療品等の保存において殊に有用である。
 また、本発明によれば、バイオ医薬を低酸素濃度下で保存できるため、バイオ医薬の変質や薬効の低下を抑制することができる。さらに、本発明で用いる医療用多層容器では、酸素吸収後の低分子の有機物の発生が抑制されているため、本発明によると、内容物への不純物の混入を防止することが可能である。また、本発明で用いる医療用多層容器は酸素吸収後も酸化によるテトラリン環を有する共重合ポリオレフィン化合物の劣化が極めて小さく、長期の利用においても容器の強度が維持されるため、本発明によれば、バイオ医薬を長期間保存することができる。
 さらに、本発明によれば、果肉類、アルコール飲料、液状茶又はペースト状茶果汁及び/又は野菜汁、乾燥物品の風味を損なわず、色調を保持したまま、臭気の発生のない、果肉類、アルコール飲料、液状茶又はペースト状茶果汁及び/又は野菜汁、乾燥物品を長期間保存できる方法を提供できる。また、長期間保存後も、それらを保存する容器は強度を保持している。
 以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
(第1実施形態)
[酸素吸収性樹脂組成物]
 本実施形態の酸素吸収性樹脂組成物は、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物(以下、単に「テトラリン環含有共重合ポリオレフィン化合物」ともいう)と遷移金属触媒とを少なくとも含有する。
<テトラリン環含有共重合ポリオレフィン化合物>
 本実施形態のテトラリン環含有共重合ポリオレフィン化合物は、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)および(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する。
 また、上記一般式(1)で表される構成単位(a)は、上記式(4)および(5)で表される構成単位からなる群より選択される少なくとも1種であることが好ましく、上記一般式(2)で表される構成単位(b)は、上記式(6)および(7)で表される構成単位からなる群より選択される少なくとも1種であることが好ましい。ここで、「構成単位を含有する」とは、化合物中に当該構成単位を1以上有することを意味する。かかる構成単位は、テトラリン環含有共重合ポリオレフィン化合物中に繰り返し単位として含まれていることが好ましい。テトラリン環含有共重合ポリオレフィン化合物は、上記構成単位(a)と構成単位(b)とのランダムコポリマー、上記構成単位(a)と構成単位(b)とのブロックコポリマーのいずれであっても構わない。或いは、それらの構成単位の共重合の形態は、例えば、交互共重合、グラフト共重合等であってもよい。
 また、テトラリン環含有共重合ポリオレフィン化合物は、構成単位(a)、構成単位(b)以外の他の構成単位を含有してもよく、上記構成単位(a)と構成単位(b)と他の構成単位とのランダムコポリマー、上記構成単位(a)と構成単位(b)と他の構成単位とのブロックコポリマーのいずれであっても構わない。或いは、それらの構成単位の共重合の形態は、例えば、交互共重合、グラフト共重合等であってもよい。
 上記一般式(1)~(3)で表される構成単位において、R、R、R、R、R、R、R、R、R、R10およびR11(「R~R11」と表記する。以下同様。)で示す一価の置換基(第1の一価の置換基、第2の一価の置換基、および第3の一価の置換基)としては、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数が1~15、より好ましくは炭素数が1~6の直鎖状、分岐状または環状アルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(好ましくは炭素数が2~10、より好ましくは炭素数が2~6の直鎖状、分岐状または環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(好ましくは炭素数が2~10、より好ましくは炭素数が2~6のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素数が6~16、より好ましくは炭素数が6~10のアリール基、例えば、フェニル基、ナフチル基)、複素環基(好ましくは炭素数が1~12、より好ましくは炭素数が2~6の5員環或いは6員環の芳香族または非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる一価の基、例えば、1-ピラゾリル基、1-イミダゾリル基、2-フリル基)、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基(好ましくは炭素数が1~10、より好ましくは炭素数が1~6の直鎖状、分岐状または環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(好ましくは炭素数が6~12、より好ましくは炭素数が6~8のアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基を含む。好ましくは炭素数が2~10、より好ましくは炭素数が2~6のアルキルカルボニル基、好ましくは炭素数が7~12、より好ましくは炭素数が7~9のアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(好ましくは炭素数が1~10、より好ましくは炭素数が1~6のアルキルアミノ基、好ましくは炭素数が6~12、より好ましくは炭素数が6~8のアニリノ基、好ましくは炭素数が1~12、より好ましくは炭素数が2~6の複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(好ましくは炭素数が1~10、より好ましくは炭素数が1~6のアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(好ましくは炭素数が6~12、より好ましくは炭素数が6~8のアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(好ましくは炭素数が2~10、より好ましくは炭素数が1~6の複素環チオ基、例えば、2-ベンゾチアゾリルチオ基)、イミド基(好ましくは炭素数が2~10、より好ましくは炭素数が4~8のイミド基、例えば、N-スクシンイミド基、N-フタルイミド基)等が例示されるが、これらに特に限定されない。
 なお、上記の一価の置換基R~R11が水素原子を有する場合、その水素原子が置換基T(ここで、置換基Tは、上記の一価の置換基R~R11で説明したものと同義である。)でさらに置換されていてもよい。その具体例としては、ヒドロキシ基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、第1級或いは第2級アミノ基で置換されたアルキル基(例えば、アミノエチル基)、アルキル基で置換されたアリール基(例えば、p-トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2-メチルフェノキシ基)等が挙げられるが、これらに特に限定されない。なお、上記の一価の置換基R~R11が一価の置換基Tを有する場合、上述した炭素数には、置換基Tの炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と看做し、フェニル基で置換された炭素数7のアルキル基とは看做さない。また、上記の一価の置換基R~R11が置換基Tを有する場合、その置換基Tは複数あってもよい。
 上記一般式(2)または(3)で表される構成単位において、Xは、-(C=O)O-、-(C=O)NH-、-O(C=O)-、-NH(C=O)-および-(CHR)s-からなる群から選択される二価の基を示し、sは0~12の整数を示す。Yは-(CHR)t-であって、tは0~12の整数を示す。Rは水素原子(-H)、メチル基(-CH)、およびエチル基(-C)からなる群から選択される一価の化学種を示す。
 本実施形態のテトラリン環含有共重合ポリオレフィン化合物は、テトラリン環を有するビニル化合物(I)と、他のビニル化合物(II)とを共重合することで得られる。
 本実施形態で用いられるテトラリン環を有するビニル化合物(I)としては、例えば、下記一般式(8)または(9)で表される化合物からなる群より選択されるビニル化合物が挙げられる。テトラリン環を有するビニル化合物(I)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000009
(式中、R~Rは、それぞれ独立して水素原子または第2の一価の置換基を示し、R~R11は、それぞれ独立して第3の一価の置換基を示し、第2の一価の置換基および第3の一価の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよく、R、R、R10またはR11が複数存在する場合、複数のR、R、R10またはR11は、互いに同一であっても異なっていてもよい。mは0~3、nは0~7、pは0~6、qは0~4の整数をそれぞれ示し、テトラリン環のベンジル位には少なくとも1つの水素原子が結合している。Xは-(C=O)O-、-(C=O)NH-、-O(C=O)-、-NH(C=O)-および-(CHR)s-からなる群から選択される二価の基を示し、sは0~12の整数を示す。Yは-(CHR)t-であって、tは0~12の整数を示す。Rは-H、-CH、および-Cからなる群から選択される一価の化学種を示す。)
 本実施形態で用いるビニル化合物(II)としては、例えば、下記一般式(10)で表される化合物からなる群より選択されるビニル化合物が挙げられる。ビニル化合物(II)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000010
(式中、R~Rは、それぞれ独立して水素原子または第1の1価の置換基を示し、第1の一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。)
 上記一般式(10)で表されるビニル化合物としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数2~20のエチレンまたはα-オレフィン;シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン等のシクロオレフィン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;ブタジエン、イソプレン、2,3-ジメチルブタジエン、ペンタジエン、ヘキサジエン等の共役ジエン;スチレン、α-メチルスチレン、2-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-tert-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、2,4,6-トリメチルスチレン等のスチレン類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、i-アミル(メタ)アクリレート、(メタ)アクリル酸、クロトン酸、けい皮酸、マレイン酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-ジメチルアミノプロピル(メタ)アクリレート、(メタ)アクリロニトリル、α-クロロアクリロニトリル、エタクリロニトリル、2-シアノエチル(メタ)アクリレート、2-シアノプロピル(メタ)アクリレート、(メタ)アクリルアミド、α-クロロ(メタ)アクリルアミド、エタクリルアミド、N-メチル(メタ)アクリルアミド、N-ビニル-ε-カプロラクタム、N-ビニルピロリドン、2-ニトロエチル(メタ)アクリレート、3-ニトロプロピル(メタ)アクリレート等が挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。なお、(メタ)アクリレートとは、アクリレートおよびそれに対応するメタクリレートを意味し、(メタ)アクリル酸とは、アクリル酸およびそれに対応するメタクリル酸を意味する。
 本実施形態のテトラリン環含有共重合ポリオレフィン化合物は、上記構成単位(a)と、下記一般式(11)で表される構成単位からなる群より選択される少なくとも1種のナフタレン環を有する置換基を含有する置換エチレン構成単位(c)とを含有する共重合ポリオレフィン化合物を水素と反応させることによって得ることもできる。
Figure JPOXMLDOC01-appb-C000011
(式中、R~Rは、それぞれ独立して水素原子または第2の一価の置換基を示し、RおよびRは、それぞれ独立して第3の一価の置換基を示し、第2の一価の置換基および第3の一価の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよく、RまたはRが複数存在する場合、複数のRまたはRは、互いに同一であっても異なっていてもよい。mは0~3、nは0~4の整数をそれぞれ示し、Xは-(C=O)O-、-(C=O)NH-、-O(C=O)-、-NH(C=O)-および-(CHR)s-からなる群から選択される二価の基を示し、sは0~12の整数を示す。Yは-(CHR)t-であって、tは0~12の整数を示す。Rは-H、-CH、および-Cからなる群から選択される一価の化学種を示す。)
 本実施形態のテトラリン環含有共重合ポリオレフィン化合物のさらに別の製造方法としては、側鎖に反応性官能基を有するポリオレフィン(III)と、テトラリン環を有する化合物(IV)とを反応させる方法が挙げられる。
 上記側鎖に反応性官能基を有するポリオレフィン(III)としては、例えば、ポリ(メタ)アクリル酸等の不飽和カルボン酸重合体;ポリ(メタ)アクリル酸メチル等の不飽和カルボン酸エステル重合体;ポリビニルアルコール、ポリビニル酢酸等のポリ酢酸ビニル誘導体;エチレン-不飽和カルボン酸共重合体;エチレン-不飽和カルボン酸エステル共重合体;エチレン-ビニルアルコール共重合体;無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン等の無水マレイン酸変性ポリオレフィン等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 上記テトラリン環を有する化合物(IV)としては、上記側鎖に反応性官能基を有するポリオレフィン(III)と結合しやすい官能基を有する化合物が好ましく、テトラリン環を有する、アルコール化合物、アミン化合物、カルボン酸化合物、酸無水物化合物、エポキシド化合物を例示することができる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 特に、上記側鎖に反応性官能基を有するポリオレフィン(III)として側鎖にエステル基を有するポリオレフィンを有機溶媒に溶解して得た溶液に、上記テトラリン環を有する化合物(IV)としてテトラリン環を有するアルコール化合物、およびエステル交換触媒を添加し、エステル交換反応により製造する方法が好ましい。
 エステル交換反応は公知の方法で行うことができる。反応温度および反応時間はエステル交換反応が可能な範囲であれば特に限定されないが、反応温度は50~300℃、反応時間は10分から24時間が好ましい。エステル交換反応に用いられる有機溶媒は、重合体を溶解し得る有機溶媒であれば特に限定することなく使用することができる。このような有機溶媒としては、ベンゼン、トルエン、キシレン、デカリン等が挙げられる。
 エステル交換反応の別の方法としては、例えば、上記側鎖に反応性官能基を有するポリオレフィン(III)として側鎖にエステル基を有するポリオレフィンと、上記テトラリン環を有する化合物(IV)としてテトラリン環を有するアルコール化合物と、エステル交換触媒とを、例えば、一軸押出機、二軸押出機、ニーダー等で溶融混練する方法が挙げられる。
 エステル交換反応に用いられるエステル交換触媒としては、公知の物質を用いることが可能であり、例えば、ナトリウム-tert-ブトキシド、ナトリウムプロポキシド、ナトリウムエトキシド、水酸化ナトリウム、テトライソプロピルチタネート、テトラブチルチタネート、酸化チタン、塩化チタン、塩化ジルコニウム、塩化ハフニウム、塩化錫、およびチタン、ジルコニウム、錫のメタロセン錯体触媒等が挙げられる。これらは1種を単独でまたは2種を組み合わせて用いることができる。
 本実施形態のテトラリン環含有共重合ポリオレフィン化合物に含まれる、上記構成単位(b)の含有割合に対する上記構成単位(a)の含有割合((a)/(b))はモル比で1/99~99/1とすることが好ましく、1/19~19/1とすることがより好ましく、1/9~9/1とすることが特に好ましい。
 本実施形態のテトラリン環含有共重合ポリオレフィン化合物のメルトマスフローレート(以下、「MFR」と表記する。)は特に限定されないが、成形性の面から、190℃で0.1~500g/10分が好ましく、0.2~100g/10分がより好ましい。なお、本明細書においては、特に断りがない限り、MFRは、JIS K7210に準拠した装置を用いて、特定の温度において、荷重2160gの条件下で測定したときの値を意味し、「g/10分」の単位で測定温度とともに表記する。
 構成単位(a)の好ましい具体例としては、上記式(4)または(5)で表される構成単位が挙げられるが、これらに限定されない。
 前記構成単位(b)の好ましい具体例としては、上記式(6)または(7)で表される構成単位、下記式(12)または(13)で表される構成単位が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000012
 上記のテトラリン環含有共重合ポリオレフィン化合物の分子量は、所望する性能や取扱性等を考慮して適宜設定することができ、特に限定されない。一般的には、重量平均分子量(Mw)が1.0×10~8.0×10であることが好ましく、より好ましくは5.0×10~5.0×10である。また同様に、数平均分子量(Mn)が1.0×10~1.0×10であることが好ましく、より好ましくは5.0×10~1.0×10である。なお、ここでいう分子量は、いずれもポリスチレン換算の値を意味する。なお、上記のテトラリン環含有共重合ポリオレフィン化合物は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 上述したテトラリン環含有共重合ポリオレフィン化合物は、いずれも、テトラリン環のベンジル位に水素を有するものであり、後に詳述する遷移金属触媒と併用することでベンジル位の水素が引き抜かれ、これにより優れた酸素吸収能を発現する。
 また、本実施形態の酸素吸収性樹脂組成物は、酸素吸収後の臭気発生が著しく抑制されたものである。その理由は明らかではないが、例えば以下の酸化反応機構が推測される。すなわち、上記のテトラリン環含有共重合ポリオレフィン化合物においては、まずテトラリン環のベンジル位にある水素が引き抜かれてラジカルが生成し、その後、ラジカルと酸素との反応によりベンジル位の炭素が酸化され、ヒドロキシ基またはケトン基が生成すると考えられる。そのため、本実施形態の酸素吸収性樹脂組成物においては、上記従来技術のような酸化反応による酸素吸収主剤の分子鎖の切断がなく、テトラリン環含有共重合ポリオレフィン化合物の構造が維持され、臭気の原因となる低分子量の有機化合物が酸素吸収後に生成され難いためと推測される。
<遷移金属触媒>
 本実施形態の酸素吸収性樹脂組成物において用いられる遷移金属触媒としては、上記のテトラリン環含有共重合ポリオレフィン化合物の酸化反応の触媒として機能し得るものであれば、公知のものから適宜選択して用いることができ、特に限定されない。
 かかる遷移金属触媒の具体例としては、遷移金属の有機酸塩、ハロゲン化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩、硫酸塩、酸化物、水酸化物等が挙げられる。ここで、遷移金属触媒に含まれる遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム等が挙げられるが、これらに限定されない。これらの中でも、マンガン、鉄、コバルト、ニッケル、銅が好ましい。また、有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2-エチルヘキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸等が挙げられるが、これらに限定されない。遷移金属触媒は、上述した遷移金属と有機酸とを組み合わせたものが好ましく、遷移金属がマンガン、鉄、コバルト、ニッケルまたは銅であるとより好ましく、マンガン、鉄、コバルトであるとさらに好ましく、有機酸が酢酸、ステアリン酸、2-エチルヘキサン酸、オレイン酸またはナフテン酸であるとより好ましく、酢酸、ステアリン酸であるとさらに好ましく、それらの遷移金属のいずれかと有機酸のいずれかとの組み合わせが特に好ましい。なお、遷移金属触媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 本実施形態の酸素吸収性樹脂組成物におけるテトラリン環含有共重合ポリオレフィン化合物および遷移金属触媒の含有割合は、使用するテトラリン環含有共重合ポリオレフィン化合物や遷移金属触媒の種類および所望の性能に応じて適宜設定することができ、特に限定されない。酸素吸収性樹脂組成物の酸素吸収量の点から、遷移金属触媒の含有量は、テトラリン環含有共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部であることが好ましく、より好ましくは0.002~2質量部、さらに好ましくは0.005~1質量部、なおもさらに好ましくは0.008~0.5質量部、特に好ましくは0.01~0.2質量部である。
 テトラリン環含有共重合ポリオレフィン化合物および遷移金属触媒は、公知の方法で混合することができる。また、押出機を用いてこれらを混練することにより、より高い分散性を有する酸素吸収性樹脂組成物を得ることもできる。
<各種添加剤>
 ここで、本実施形態の酸素吸収性樹脂組成物は、上述した各成分以外に、本実施形態の効果を過度に損なわない範囲で、当業界で公知の各種添加剤を含有していてもよい。かかる任意の添加剤としては、例えば、乾燥剤、酸化チタン等の顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。
 さらに、本実施形態の酸素吸収性樹脂組成物は、酸素吸収反応を促進させるために、必要に応じて、さらにラジカル発生剤や光開始剤を含有していてもよい。ラジカル発生剤の具体例としては、各種のN-ヒドロキシイミド化合物が挙げられる。具体的には、N-ヒドロキシコハクイミド、N-ヒドロキシマレイミド、N,N’-ジヒドロキシシクロヘキサンテトラカルボン酸ジイミド、N-ヒドロキシフタルイミド、N-ヒドロキシテトラクロロフタルイミド、N-ヒドロキシテトラブロモフタルイミド、N-ヒドロキシヘキサヒドロフタルイミド、3-スルホニル-N-ヒドロキシフタルイミド、3-メトキシカルボニル-N-ヒドロキシフタルイミド、3-メチル-N-ヒドロキシフタルイミド、3-ヒドロキシ-N-ヒドロキシフタルイミド、4-ニトロ-N-ヒドロキシフタルイミド、4-クロロ-N-ヒドロキシフタルイミド、4-メトキシ-N-ヒドロキシフタルイミド、4-ジメチルアミノ-N-ヒドロキシフタルイミド、4-カルボキシ-N-ヒドロキシヘキサヒドロフタルイミド、4-メチル-N-ヒドロキシヘキサヒドロフタルイミド、N-ヒドロキシヘット酸イミド、N-ヒドロキシハイミック酸イミド、N-ヒドロキシトリメリット酸イミド、N,N-ジヒドロキシピロメリット酸ジイミド等が挙げられるが、これらに特に限定されない。また、光開始剤の具体例としては、ベンゾフェノンとその誘導体、チアジン染料、金属ポルフィリン誘導体、アントラキノン誘導体等が挙げられるが、これらに特に限定されない。なお、これらのラジカル発生剤および光開始剤は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、本実施形態の酸素吸収性樹脂組成物は、必要に応じて、本実施形態の目的を阻害しない範囲で、上記テトラリン環含有共重合ポリオレフィン化合物以外の、他の熱可塑性樹脂をさらに含有していてもよい。他の熱可塑性樹脂を併用することで、成形性や取扱性を高めることができる。
 他の熱可塑性樹脂としては、公知のものを適宜用いることができる。例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン、プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、或いはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダムまたはブロック共重合体等のポリオレフィン;無水マレイン酸グラフトポリエチレンや無水マレイン酸グラフトポリプロピレン等の酸変性ポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-塩化ビニル共重合体、エチレン-(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン-メタクリル酸メチル共重合体等のエチレン-ビニル化合物共重合体;ポリスチレン、アクリロニトリル-スチレン共重合体、α-メチルスチレン-スチレン共重合体等のスチレン系樹脂;ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物;ナイロン6、ナイロン66、ナイロン610、ナイロン12、ポリメタキシリレンアジパミド(MXD6)等のポリアミド;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、グリコール変性ポリエチレンテレフタレート(PETG)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等のポリエステル;ポリカーボネート;ポリエチレンオキサイド等のポリエーテル等;環状オレフィンを使用したシクロオレフィンポリマーおよびシクロオレフィンコポリマー等の環状ポリオレフィン或いはこれらの混合物等が挙げられるが、これらに限定されない。これらの熱可塑性樹脂は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 テトラリン環含有共重合ポリオレフィン化合物および遷移金属触媒並びに必要に応じて含有される各種添加剤や熱可塑性樹脂は、公知の方法で混合することができる。また、押出機を用いてこれらを混練することにより、より高い分散性を有する酸素吸収性樹脂組成物を得ることもできる。
<使用態様>
 本実施形態の酸素吸収性樹脂組成物は、公知の造粒方法或いは押出成形等の公知の成形方法等を適用することができ、例えば粉体状、顆粒状、ペレット状、フィルム状或いはシート状またはその他の小片状に成形加工することができる。したがって、このようにして得られた酸素吸収性樹脂成形体をそのまま酸素吸収剤として用いることができ、或いは、得られた酸素吸収性樹脂成形体を通気性包装材料に充填することで、小袋状の酸素吸収剤包装体として使用することもできる。また、フィルム状或いはシート状に成形された本実施形態の酸素吸収性樹脂組成物は、ラベル、カード、パッキング等の形態で使用することもできる。なお、ここでは、厚みが0.1~500μmのものをフィルム、厚みが500μmを超えるものをシートと区分する。
 ここで、ペレット状の酸素吸収性樹脂成形体は、酸素との接触面積を高めて酸素吸収性能をより効果的に発現させる観点から、その使用時には、さらに粉砕して粉末状とすることが好ましい。
 なお、上記の通気性包装材料としては、通気性を有する公知の包装材料を適用することができ、特に限定されない。酸素吸収効果を十分に発現させる観点から、通気性包装材料は通気性の高いものが好ましい。通気性包装材料の具体例としては、各種用途で用いられている通気性の高い包装材料、例えば、和紙、洋紙、レーヨン紙等の紙類、パルプ、セルロース、合成樹脂から得られる各種繊維類を用いた不織布、プラスチックフィルムまたはその穿孔物等、或いは炭酸カルシウム等を添加した後に延伸したマイクロポーラスフィルム等、さらにはこれらから選ばれる2種以上を積層したもの等が挙げられるが、これらに特に限定されない。また、プラスチックフィルムとして、例えば、ポリエチレンテレフタレート、ポリアミド、ポリプロピレン、ポリカーボネート等のフィルムと、シール層としてポリエチレン、アイオノマー、ポリブタジエン、エチレンアクリル酸コポリマー、エチレンメタクリル酸コポリマーまたはエチレン酢酸ビニルコポリマー等のフィルムとを積層接着した積層フィルム等も使用することができる。
 さらに、成形された本実施形態の酸素吸収性樹脂組成物は、単層の形で包装材料または包装容器として使用できるのは勿論のこと、これを他の基材と重ね合わせた積層体の態様で使用することができる。かかる積層体の典型例としては、本実施形態の酸素吸収性樹脂組成物からなる少なくとも一層と、他の樹脂層、紙基材層或いは金属箔層等から選択される少なくとも一層とを重ね合わせたものであり、これは酸素吸収性多層包装材料または酸素吸収性多層包装容器として使用することができる。なお、一般に、フィルム状或いはシート状に成形された本実施形態の酸素吸収性樹脂組成物(の層)は、容器等の外表面に露出しないように容器等の外表面よりも内側に設けることが好ましい。また、内容物との直接的な接触を避ける観点から、フィルム状或いはシート状に成形された本実施形態の酸素吸収性樹脂組成物(の層)は、容器等の内表面より外側に設けることが好ましい。このように多層の積層体において使用する場合には、少なくとも1つの中間層として、フィルム状或いはシート状に成形された本実施形態の酸素吸収性樹脂組成物(の層)を配置することが好ましい。
 上記の積層体の好適な一態様としては、熱可塑性樹脂を含有するシーラント層、本実施形態の酸素吸収性樹脂組成物を含有する酸素吸収層、およびガスバリア性物質を含有するガスバリア層の少なくとも3層をこの順に有する酸素吸収性多層体が挙げられる。ここで、少なくとも3層をこの順に有するとは、シーラント層、酸素吸収層およびガスバリア層がこの順に配列していることを意味し、シーラント層と酸素吸収層とガスバリア層とが直接重ね合わせられた態様(以下、「シーラント層/酸素吸収層/ガスバリア層」と表記する。)のみならず、シーラント層と酸素吸収層との間に、または、酸素吸収層とガスバリア層との間に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層(以下、「中間層」ともいう。)が介在した態様(例えば、「シーラント層/樹脂層/酸素吸収層/接着剤層/ガスバリア層」、「シーラント層/樹脂層/接着剤層/酸素吸収層/接着剤層/樹脂層/接着剤層/ガスバリア層/接着剤層/支持体」等)を包含する概念である(以降においてもすべて同様である。)。
 また、上記の積層体の他の好適な一態様としては、ポリオレフィン樹脂を含有するシーラント層、本実施形態の酸素吸収性樹脂組成物を含有する酸素吸収層、およびガスバリア性物質を含有するガスバリア層の少なくとも3層をこの順に有する酸素吸収性多層体が挙げられる。
 シーラント層で用いる熱可塑性樹脂およびポリオレフィン樹脂としては、本実施形態の酸素吸収性樹脂組成物において説明した他の熱可塑性樹脂およびポリオレフィン樹脂と同様のものを用いることができる。シーラント層で用いる熱可塑性樹脂およびポリオレフィン樹脂は、これに隣接する他の層(酸素吸収層、ガスバリア層、樹脂層、接着剤層、支持体等)との相溶性を考慮して、適宜選択することが好ましい。
 また、ガスバリア層に用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミニウム等の各種蒸着フィルム、アルミニウム箔等の金属箔等を用いることができる。ガスバリア性熱可塑性樹脂としては、例えば、エチレン-ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。また、ガスバリア性熱硬化性樹脂としては、ガスバリア性エポキシ樹脂、例えば、三菱ガス化学株式会社製「マクシーブ」等が例示できる。
 上記の酸素吸収性多層体の製造方法としては、各種材料の性状、加工目的、加工工程等に応じて、共押出法、各種ラミネート法、各種コーティング法などの公知の方法を適用することができ、特に限定されない。例えば、フィルムやシートは、Tダイ、サーキュラーダイ等を通して溶融させた樹脂組成物を付属した押出機から押し出して製造する方法や、酸素吸収フィルムまたはシートに接着剤を塗布し、他のフィルムやシートと貼り合わせる方法で成形することができる。また、射出機を用い、溶融した樹脂を多層多重ダイスを通して射出金型中に共射出または逐次射出することによって、所定の形状の多層容器または容器製造用のプリフォームを成形することができる。このプリフォームを、延伸温度に加熱し、軸方向に延伸するとともに、流体圧によって周方向にブロー延伸することにより、延伸ブローボトルを得ることができる。
 さらに、例えばフィルム状の酸素吸収性多層体は、袋状或いは蓋材に加工することができる。また、例えばシート状の酸素吸収性多層体は、真空成形、圧空成形、プラグアシスト成形等の成形方法によりトレイ、カップ、ボトル、チューブ等の所定の形状の酸素吸収性多層容器に熱成形することができる。また、袋状容器は、食品等の内容物を充填した後に、開封口を設けることで、電子レンジ加熱調理時にその開封口から蒸気を放出する、電子レンジ調理対応の易通蒸口付パウチとして好ましく用いることができる。
 本実施形態の酸素吸収性樹脂組成物およびこれを用いた積層体等の各種成形品を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態の酸素吸収性樹脂組成物およびこれを用いた積層体(例えば容器)等の各種成形品は、酸素吸収に水分を必要としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、医薬品等において特に好適に用いることができる。すなわち、本実施形態の酸素吸収性樹脂組成物およびこれを用いた積層体等の各種成形品は、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。しかも、本実施形態の酸素吸収性樹脂組成物は、従来の鉄粉を使用した酸素吸収性樹脂組成物とは異なり、鉄の存在のため保存できない被保存物(例えばアルコール飲料や炭酸飲料等)に好適に用いることができる。
 被保存物の具体例としては、牛乳、ジュース、コーヒー、茶類、アルコール飲料等の飲料;ソース、醤油、めんつゆ、ドレッシング等の液体調味料;スープ、シチュー、カレー等の調理食品;ジャム、マヨネーズ等のペースト状食品;ツナ、魚貝等の水産製品;チーズ、バター、卵等の乳加工品或いは卵加工品;肉、サラミ、ソーセージ、ハム等の畜肉加工品;にんじん、じゃがいも、アスパラ、しいたけ等の野菜類;フルーツ類;卵;麺類;米、精米等の米類;豆等の穀物類;米飯、赤飯、もち、米粥等の米加工食品或いは穀物加工食品;羊羹、プリン、ケーキ、饅頭等の菓子類;粉末調味料、粉末コーヒー、コーヒー豆、茶、乳幼児用粉末ミルク、乳幼児用調理食品、粉末ダイエット食品、介護調理食品、乾燥野菜、おかき、せんべい等の乾燥食品(水分活性の低い食品);接着剤、粘着剤、農薬、殺虫剤等の化学品;医薬品;ビタミン剤等の健康食品;ペットフード;化粧品、シャンプー、リンス、洗剤等の雑貨品;その他の種々の物品を挙げることができるが、これらに特に限定されない。特に、酸素存在下で劣化を起こしやすい被保存物、例えば、飲料ではビール、ワイン、日本酒、焼酎、果汁飲料、フルーツジュース、野菜ジュース、炭酸ソフトドリンク、茶類等、食品では果物、ナッツ、野菜、肉製品、幼児食品、コーヒー、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、佃煮類、乳製品類等、その他では医薬品、化粧品等の包装材に好適である。なお、水分活性とは、物品中の自由水含有量を示す尺度であって、0~1の数字で示されるものであり、水分のない物品は0、純水は1となる。すなわち、ある物品の水分活性Awは、その物品を密封し平衡状態に到達した後の空間内の水蒸気圧をP、純水の水蒸気圧をP、同空間内の相対湿度をRH(%)、とした場合、
  Aw=P/P=RH/100
と定義される。
 なお、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法としては、例えば、100℃以下での熱水処理、100℃以上の加圧熱水処理、130℃以上の超高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。
 以下、第1実施形態の酸素吸収性樹脂組成物を用いたより具体的な実施態様について詳述する。
(第2実施形態)
 以下、本発明の第2実施形態について説明する。なお、上記第1実施形態と同一内容については、ここでの重複する説明を省略する。
[酸素吸収性多層体]
 本実施形態の酸素吸収性多層体は、熱可塑性樹脂を含有するシーラント層(層C)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、並びにガスバリア性物質を含有するガスバリア層(層D)の少なくとも3層をこの順に積層したものである。また、本実施形態の酸素吸収性多層体は、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態の酸素吸収性多層体は、層Cを内側として密封用包装容器の一部または全部に使用することにより、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[シーラント層(層C)]
 本実施形態の酸素吸収性多層体のシーラント層(層C)は、熱可塑性樹脂を含有するものである。この層Cは、シーラントとしての役割に加え、容器内の酸素を酸素吸収層まで透過させると同時に酸素吸収層(層A)と内容物(被保存物)とを隔離する(層Aと被保存物との物理的な接触を阻害する)役割を有する。ここで、層Cの酸素透過度は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、300mL/(m・day・atm)以上であることが好ましく、より好ましくは400mL/(m・day・atm)以上、さらに好ましくは500mL/(m・day・atm)以上である。酸素透過度が上記の好ましい値以上であると、そうでない場合に比べて、層Aの酸素を吸収する速度をより高めることができる。
 本実施形態の酸素吸収性多層体の層Cに用いる熱可塑性樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類;ポリスチレン;ポリメチルペンテン;プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン類;ヒートシール性を有するPET、A-PET、PETG、PBT等のポリエステル;アモルファスナイロン等が挙げられる。これらは、1種を単独でまたは組み合わせて使用することができる。これら熱可塑性樹脂には、必要に応じて、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。本実施形態の酸素吸収性多層体の層Cに用いる熱可塑性樹脂は、多層体の成形性と加工性を考慮すると、MFRが200℃で1~35g/10分である、または、MFRが240℃で2~45g/10分であるものが好ましく用いられる。
 また、本実施形態の酸素吸収性多層体の層Cは、上記の熱可塑性樹脂以外に、当業界で公知の各種添加剤を含有していてもよい。かかる任意成分としては、例えば、乾燥剤、酸化チタン等の着色顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、可塑剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。特に、製造中に発生した端材をリサイクルして再加工する観点から、層Cに酸化防止剤を配合することが好ましい。
 層C中の熱可塑性樹脂の含有割合は、適宜設定でき、特に限定されないが、層Cの総量に対して、70~100質量%が好ましく、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。また、本実施形態の層Cに用いる熱可塑性樹脂は、テトラリン環含有共重合ポリオレフィン化合物以外の熱可塑性樹脂を、その総量に対して、50~100質量%含むものが好ましく、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性多層体の酸素吸収層(層A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。
 層A中のテトラリン環含有共重合ポリオレフィン化合物の含有割合は、特に限定されないが、層Aの総量に対して、50質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。テトラリン環含有共重合ポリオレフィン化合物の含有割合が前記好ましい値以上にあると、そうでない場合に比べて、酸素吸収性能をより高めることができる。
 本実施形態の酸素吸収性多層体において、酸素吸収層(層A)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~200μmが好ましく、より好ましくは10~100μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、層Aが酸素を吸収する性能をより高めることができるとともに、加工性や経済性を高次元で維持することができる。また、シーラント層(層C)の厚みも、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~200μmが好ましく、より好ましくは10~80μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、層Aの酸素吸収速度をより高めることができるとともに、加工性や経済性を高次元で維持することができる。さらに、得られる酸素吸収性多層体の加工性を考慮すると、層Cと層Aの厚み比が、1:0.5~1:3にあることが好ましく、より好ましくは1:1.5~1:2.5である。
[ガスバリア層(層D)]
 本実施形態の酸素吸収性多層体のガスバリア層(層D)は、ガスバリア性物質を含有するものである。層Dの酸素透過率は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、100mL/(m・day・atm)以下であることが好ましく、より好ましくは80mL/(m・day・atm)以下、さらに好ましくは50mL/(m・day・atm)以下である。
 本実施形態の酸素吸収性多層体の層Dに用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミニウム等の各種蒸着フィルム、アルミニウム箔等の金属箔等を用いることができる。ガスバリア性熱可塑性樹脂としては、例えば、エチレン-ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。また、ガスバリア性熱硬化性樹脂としては、ガスバリア性エポキシ樹脂、例えば、三菱ガス化学株式会社製「マクシーブ」等が例示できる。
 ガスバリア性物質として熱可塑性樹脂を用いる場合、ガスバリア層(層D)の厚みは、5~200μmが好ましく、より好ましくは10~100μmである。また、ガスバリア性物質として或いはガスバリア性接着剤層としてアミン-エポキシ硬化剤のような熱硬化性樹脂を使用する場合は、層Dの厚みは、0.1~100μmが好ましく、より好ましくは0.5~20μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、ガスバリア性がより高められる傾向にあるとともに、加工性や経済性を高次元で維持することができる。
[任意の層]
 なお、本実施形態の酸素吸収性多層体は、層Cと層Aとの間に、層Aと層Dとの間に、または、層Cの外層に或いは層Dの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。例えば、層Dの破損やピンホールを防ぐために、層Dの内側や外側に熱可塑性樹脂からなる保護層を設けることができる。この保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類およびこれらの組み合わせが挙げられる。
 また、加工性を考慮すると、本実施形態の酸素吸収性多層体は、層Dと層Aとの間に、ポリオレフィン樹脂からなる中間層を介在させることが好ましい。この中間層の厚みは、加工性の観点から、層Cの厚みと略同一であることが好ましい。なお、ここでは、加工によるバラツキを考慮して、厚み比が±10%以内を略同一とする。
 また、本実施形態の酸素吸収性多層体は、層Dの外層に紙基材を積層して、酸素吸収性紙基材或いは酸素吸収性紙容器として用いることもできる。紙基材と積層して紙容器とする際の加工性を高い次元で維持する観点から、層Dよりも内側の層の総厚みが100μm以下であることが好ましく、より好ましくは80μm以下である。
 本実施形態の酸素吸収性多層体は、各種材料の性状、加工目的、加工工程等に応じて、共押出法、各種ラミネート法、各種コーティング法等の公知の方法を利用して製造することができ、その製造方法は特に限定されない。通常の包装材料を積層する方法、例えば、ウェットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押出ラミネーション法、Tダイ共押出成形法、共押出ラミネーション法、インフレーション法等を適用することができる。例えば、フィルムやシートの成形については、Tダイ、サーキュラーダイ等が付属した押出機から溶融した樹脂組成物を押し出して製造する方法や、別途製膜した酸素吸収性フィルムもしくはシートに接着剤を塗布し、他のフィルムやシートと貼り合わせることで製造する方法がある。さらに必要に応じて、例えば、コロナ処理、オゾン処理等の前処理をフィルム等に施すことができ、また、例えば、イソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジエン系、有機チタン系等のアンカーコーティング剤、或いはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系、セルロース系、その他等の、ラミネート用接着剤等の公知のアンカーコート剤、接着剤等を使用することもできる。
[酸素吸収性多層容器]
 本実施形態の酸素吸収性多層容器は、上述した酸素吸収性多層体を包装容器の全体又は一部に含むものである。本実施形態の酸素吸収性多層容器は、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
 本実施形態の酸素吸収性多層容器の形状は特に限定されず、収納、保存する物品に応じて適宜設定することができる。例えば、上記のフィルム状或いはシート状の酸素吸収性多層体を製袋することで、三方シール平袋、スタンディングパウチ、ガセット包装袋、ピロー包装袋、主室と副室とからなり主室と副室との間に易剥離壁を設けた多室パウチ、シュリンクフィルム包装等とすることができる。また、熱成形を施すことで、任意の形状の容器にすることもできる。
 より具体的には、上記のフィルム状或いはシート状の酸素吸収性多層体を、真空成形、圧空成形、プラグアシスト成形等の方法で成形することにより、トレイ、カップ、ボトル、チューブ、PTP(プレス・スルー・パッケージ)等の所定の形状の酸素吸収性多層容器を作製することができる。また、射出機を用い、溶融した樹脂を、多層多重ダイスを通して射出金型中に共射出または逐次射出することによって所定の形状の多層容器に一挙に成形することもできる。
 なお、フランジ部を有する熱成形容器を作製する場合には、そのフランジ部に易剥離機能を付与する特殊加工を施してもよい。また、上記の酸素吸収性多層体を容器の蓋材、トップシール等の部材として用いることで、これらの容器に酸素吸収機能を付与することができる。
 本実施形態の酸素吸収性多層体および該多層体を含む酸素吸収性多層容器を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態の酸素吸収性多層体および該多層体を含む酸素吸収性多層容器は、酸素吸収に水分を必須としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、医薬品等において特に好適に用いることができる。すなわち、本実施形態の酸素吸収性多層体および該多層体を含む酸素吸収性多層容器は、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。しかも、本実施形態の酸素吸収性樹脂組成物は、従来の鉄粉を使用した酸素吸収性樹脂組成物とは異なり、鉄の存在のため保存できない被保存物(例えばアルコール飲料や炭酸飲料等)に好適に用いることができる。
 被保存物の具体例としては、上記第1実施形態において説明したものと同じものをあげることができ、また、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法も、上記第1実施形態において説明したものと同じものであればよい。
[薬液、および薬液が充填された容器]
 本実施形態の酸素吸収性多層容器は、薬液が充填された容器(以下、単に「薬液充填容器」ともいう。)を保存するのにも好適に用いられる。本実施形態において、薬液充填容器に充填される薬液としては特に限定されず、従来知られているものであってもよく、例えば、ブドウ糖、アミノ酸、各種ビタミン、ドブタミン、塩酸モルヒネ、インシュリン、エピネフリン、エルカトニン等やタンパク医薬品、核酸医薬品等のバイオ医薬等の注射剤液やソルビトール加乳酸リンゲル液、マルトース加乳酸リンゲル液等の電解質、ビタミン類、アミノ酸類やグリチルリチン酸二カリウム、イプシロン-アミノカプロン酸、塩酸ナファゾリン、塩酸テトラヒドロゾリン等の各種薬効成分を含んだ目薬が挙げられる。
 薬液充填容器としては特に限定されず、従来知られているものであってもよく、例えば、輸液内袋、目薬容器、プレフィルドシリンジ、アンプル、バイアル等が挙げられる。容器の材料としては特に限定されず、従来知られているものであってもよく、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類;ポリスチレン;ポリメチルペンテン;プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン類;ヒートシール性を有するPET、A-PET、PETG、PBT等のポリエステル;アモルファスナイロン等の熱可塑性樹脂が挙げられる。これらは、1種を単独でまたは組み合わせて使用することができる。これら熱可塑性樹脂には、必要に応じて、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。中でも、視認性、成形性や加熱殺菌耐性からポリプロピレン類が好ましく用いられる。
[薬効成分および貼付剤]
 本実施形態の酸素吸収性多層容器は、薬効成分を含んだ貼付剤を保存するのにも好適に用いられる。本実施形態の貼付剤が含有する薬効成分は特に限定されず、従来知られているものであってもよく、例えば、インドメタシン若しくはその誘導体、ケトプロフェン、サリチル酸メチル、サリチル酸グリコール若しくはその誘導体、dl-カンフル、I-メントール、ノニル酸ワニリルアミド、トウガラシエキス、アスコルビン酸若しくはアスコルビン酸誘導体、レチノイド類、ビタミンE、オウバク末、ヨウバイヒ、ハッカ油、ニコチン酸エステル等、レゾルシン等が挙げられる。
 貼付剤自体は、主にシート状支持体と薬効組成物とからなり、シート状支持体の少なくとも一方の面に薬効組成物が保持されているものである。本実施形態の貼付剤に用いられるシート状支持体は、通常貼付剤に用いられているものであれば特に制限なく用いることができる。そのようなシート状支持体としては、例えば、不織布、ポリウレタンフィルム、ナイロンフィルム、ポリプロピレンフィルム等が挙げられ、これらのうちのいくつかを積層させたものでもよい。薬効組成物を支持体に保持させるには、例えば、薬効組成物をシート状支持体に積層させる、または含浸させる等、貼付剤で通常行われる方法に従えばよい。
 一般に貼付剤は、使用前の状態では保持された薬効組成物の表面全体を覆う着脱可能なフィルムが備えられており、使用する際に前記フィルムを剥がして患部に貼付して用いられる。本実施形態の貼付剤においても、収納の便宜上等から、着脱可能なフィルムを備えることが望ましい。保持された薬効組成物を覆うフィルムは、通常貼付剤で用いられているものを用いることができる。そのようなフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム等が例示できる。
[果肉類]
 本実施形態の酸素吸収性多層容器は、果肉類を保存するのにも好適に用いられる。本実施形態の果肉類としては特に限定されず、従来知られているものであってもよく、例えば、チェリー、みかん、グレープフルーツ、リンゴ、いちご、パイナップル、桃、栗、ぶどう、梨、キウイフルーツ、すいか、バナナ、等、およびこれらの混合物が挙げられる。また、果肉とシラップその他の食材との混合物でも差し支えない。
[アルコール飲料]
 本実施形態の酸素吸収性多層容器は、アルコール飲料を保存するのにも好適に用いられる。本実施形態のアルコール飲料は、エチルアルコールを含有する飲料であれば何ら限定されず、アルコール濃度も何ら限定されない。アルコール飲料としては、カクテル類等の低アルコール飲料、蒸留酒(ウイスキー、ラム、カシャッサ、ウォッカ、ジン、テキーラ、ブランデー、ラク、アラック、ウーゾ、白酒、焼酎、泡盛)、醸造酒(ワイン、ビール、果実酒、紹興酒、日本酒)、混成酒(リキュール、みりん)、およびこれらを含む飲料が例示される。
[液状茶又はペースト状茶]
 本実施形態の酸素吸収性多層容器は、液状茶又はペースト状茶を保存するのにも好適に用いられる。本実施形態の液状茶とは、茶をそのまま又は粉末状に挽いてからお湯で抽出して得られる液状の飲料茶や、この飲料茶に真空濃縮等の各種公知の処理を施して得られる濃縮茶液を意味する。また、ペースト状茶とは、茶を挽いて得られる粉末茶を油脂および/又は水と混合したものを意味する。ここで、原料となる茶としては、不発酵茶(緑茶)、半発酵茶或いは発酵茶が挙げられる。不発酵茶としては、玉露、抹茶、煎茶、番茶、テン茶、玉緑茶等の緑茶類や緑茶類を焙じて得られる焙じ茶が挙げられる。また、半発酵茶としては、ウーロン茶や包種茶等が挙げられる。さらに、発酵茶としては、紅茶等が挙げられる。
 ペースト状茶に含まれていてもよい油脂の種類は、公知のものの中から適宜選択して用いることができ、特に限定されない。常温で液体であり、粉末茶と混合させやすいとの観点から、例えば、綿実油、胡麻油、オリーブ油、椿油、パーム油、コーン油、大豆油、なたね油、ひまわり油、やし油等の植物性油脂やこれらから選ばれる2種以上の混合油が好ましい。また、茶の色、風味、香りを損なわない観点から、油脂は、無味、無臭、無色のものが好ましい。ここで、ペースト状茶を得る際には、乳化剤を適宜混合してもよい。乳化剤を混合することにより、水溶性のペースト状茶を容易に得ることができ、例えばソフトクリーム等の加工食品に使用することができる。さらに、用途に応じて、予め甘味料等の調味料を適宜添加してもよい。また、適宜アスコルビン酸等の栄養素を添加してもよい。
 これら液状の飲料茶(濃縮茶を含む。)およびペースト状茶は、熱処理を施してもよい。熱処理の温度および加熱時間は、常法にしたがって設定することができ、特に限定されないが、例えば、特に大腸菌群が死滅し得る条件や、その他一般生菌が死滅し得る条件が挙げられる。
[果汁及び/又は野菜汁]
 本実施形態の酸素吸収性多層容器は、果汁及び/又は野菜汁を保存するのにも好適に用いられる。本実施形態の果汁及び/又は野菜汁とは、原料となる果実及び/又は野菜を磨り潰したり搾ったりして得られる液体を意味し、原料中の固体を含んでもよい。原料となる果実及び/又は野菜は、特に限定されない。例えば、オレンジ、ミカン、リンゴ、モモ、ナシ、ブドウ、ブルーベリー、グレープフルーツ、パインアップル、シイクワシャー、グアバ、アセロラ、プルーン、パパイヤ、マンゴー、メロン、キウイフルーツ、ヤマモモ、バナナ、ユズ、レモン、トマト、ナス、カボチャ、ピーマン、ゴーヤ、ナーベラ、トウガン、オクラ、エダマメ、サヤエンドウ、サヤインゲン、ソラマメ、トウガラシ、トウモロコシ、キュウリ等の果菜類、ニンジン、ゴボウ、タマネギ、タケノコ、レンコン、カブ、ダイコン、ジャガイモ、サツマイモ、サトイモ、ラッキョウ、ニンニク、ショウガ等の根菜類、モロヘイヤ、アスパラガス、セロリ、ケール、チンゲンサイ、ホウレンソウ、コマツナ、キャベツ、レタス、ハクサイ、ブロッコリー、カリフラワー、ミツバ、パセリ、ネギ、シュンギク、ニラ等の葉茎類等を挙げることができる。また、煮る、焼く、温める、蒸す等の加熱処理や、十分な水洗い、水にさらす、薬品処理する等の非加熱処理を搾汁前後に施す等して得られた果汁及び/又は野菜汁を原料として用いることができる。さらに、果汁及び/又は野菜汁を特定の樹脂に通液するなどして、果汁及び/又は野菜汁に含まれる特定の成分を除去した果汁及び/又は野菜汁も原料として用いることができる。さらに、これら果汁及び/又は野菜汁をそれぞれ単品若しくは2種以上配合して用いることもできる。
 また、果汁及び/又は野菜汁の香気成分として、例えば、柑橘類の果汁には、d-リモネン、γ-テルビネン、ミルセン、α-ピネン、β-ピネン、シトロネロール、リナロール等のテルペン類と、n-オクチルアルデヒド、n-デシルアルデヒド等のアルデヒド類が、りんごの果汁には、アミルブチレート、アミルアセテート等のエステル類と、ヘキサナール、トランス-2-ヘキサナール等のアルデヒド類が、ぶどうの果汁には、アンスラニル酸メチル、クロトン酸エチル等のエステル類、リナロール、ゲラニオール等のテルペン類が、さらに、トマトを原料とする野菜汁には、α-ピネン、ミルセン、d-リモネン等のテルペン類、ヘキサナール、ヘプタナール等のアルデヒド類等が、それぞれ含まれている。これらの香気成分が酸素により酸化分解されると、風味や色調が損なわれる。
 さらに、果汁及び/又は野菜汁には、砂糖、ブドウ糖、果糖、果糖ブドウ糖液糖、ブドウ糖果糖液糖、高果糖液糖、オリゴ糖、トレハロース、キシリトール、スクラロース、ステビア抽出物、ソルビトール、カンゾウ抽出物やラカンカ抽出物等の砂糖類及び甘味料、ペクチン、ゼラチン、コラーゲン、寒天、カラギーナン、アルギン酸ナトリウム、大豆多糖類、アラビアガム、グァーガム、キサンタンガム、タマリンドシードガム、ジェランガム等の増粘安定剤、クエン酸、リンゴ酸、酒石酸、乳酸、グルコン酸等の酸味料、L-アスコルビン酸、L-アスコルビン酸ナトリウム等の酸化防止剤、炭酸水素ナトリウム等のpH調整剤、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル等の乳化剤、食物繊維、カルシウム塩、マグネシウム塩、ナイアシン、パントテン酸等の強化剤、ウコン等の香辛料や香料が添加されていてもよい。
[乾燥物品]
 本実施形態の酸素吸収性多層容器は、乾燥物品を保存するのにも好適に用いられる。本実施形態において、包装の対象となる乾燥物品は乾燥状態にある食品である。この場合の乾燥状態は、狭義に理解すべきではなく、通常の乾燥食品に加えて半乾燥食品をも対象とする。それらの乾燥食品、半乾燥食品を例示すれば、以下の通りである。
(1)魚介類加工品:干貝柱、畳鰯、鯣、鯣加工品、魚田麩、魚肉振掛け
(2)珍味食品類:ビーフジャーキー、ミックスナッツ、焼海苔
(3)ナッツ食品類:ピーナッツ、アーモンド、アーモンドフレーク、カシューナッツ、ガルバンソー
(4)スナック食品類:ポテトチップス、シューストリング、ポップコーン
(5)シリアル食品類:コーンフレークス、ミューズレー
(6)嗜好品類:粉末インスタントコーヒー、粉末インスタントテイー、コーヒー豆、紅茶(葉)、緑茶(葉)、烏竜茶(葉)
(7)乾麺・パスタ類:乾饂飩、乾素麺、マカロニ、スパゲッティー、インスタント・ラーメン、ビーフン、春雨、乾パン、粉末インスタント・ポタージュ・スープ、クルトン
(8)穀類・穀粉類:搗精白米、「寒梅粉」、「ホットケーキ・プレミックス」、小麦胚芽
(9)乾燥野菜類:干椎茸、乾燥ゼンマイ、凍結乾燥葱、切干し大根、乾海苔、乾若布、乾鹿尾菜、当り胡麻粉末
(10)菓子類:「バウムクーヘン」、「カステラ」、「銅鑼焼き」、「ビスケット」、「クラッカ-」、「クッキー」、「花林糖」、「おこし」、「落雁」、「素甘」、「練切り」、「羊羮」、「最中」、「五家宝」、「諸越」
(11)米菓類:「柿の種」、「草加煎餅」、「瓦煎餅」、「おかき」、「油揚げおかき」
(12)乳製品類:パルメザンチーズ粉末、脱脂粉乳、調整粉乳
(13)調味料類:魚節粉末とグルタミン酸モノナトリウム等からなる顆粒調味料、削り魚節、焼干し、煮干し、昆布粉末、粉末胡椒、粒胡椒
(第3実施形態)
 以下、本発明の第3実施形態について説明する。なお、上記第1および第2実施形態と同一内容については、ここでの重複する説明を省略する。
[酸素吸収性多層体]
 本実施形態の酸素吸収性多層体は、熱可塑性樹脂を含有する酸素透過層(層H)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、並びにガスバリア性物質を含有するガスバリア層(層D)の少なくとも3層をこの順に積層したものである。また、本実施形態の酸素吸収性多層体は、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態の酸素吸収性多層体は、層Hを内側として密封用包装容器の一部または全部に使用することにより、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[酸素透過層(層H)]
 本実施形態の酸素吸収性多層体の酸素透過層(層H)は、熱可塑性樹脂を含有するものである。この層Hは、容器内の酸素を酸素吸収層まで透過させると同時に酸素吸収層(層A)と内容物(被保存物)とを隔離する(層Aと被保存物との物理的な接触を阻害する)役割を有する。また、この層Hは、本実施形態の酸素吸収性多層容器とガスバリア性を有するトップフィルム(蓋材)とを熱融着して多層容器を密封する際に、シーラントとしての役割を有することもできる。ここで、層Hの酸素透過度は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、300mL/(m・day・atm)以上であることが好ましく、より好ましくは400mL/(m・day・atm)以上、さらに好ましくは500mL/(m・day・atm)以上である。酸素透過度が上記の好ましい値以上であると、そうでない場合に比べて、層Aの酸素を吸収する速度をより高めることができる。
 本実施形態の酸素吸収性多層体の層Hに用いる熱可塑性樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類;ポリスチレン;ポリメチルペンテン;プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン類;ヒートシール性を有するPET、A-PET、PETG、PBT等のポリエステル;アモルファスナイロン等が挙げられる。これらは、1種を単独でまたは組み合わせて使用することができる。これら熱可塑性樹脂には、必要に応じて、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。
 また、本実施形態の酸素吸収性多層体の層Hは、上記の熱可塑性樹脂以外に、当業界で公知の各種添加剤を含有していてもよい。かかる任意成分としては、例えば、乾燥剤、酸化チタン等の着色顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、可塑剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。特に、製造中に発生した端材をリサイクルして再加工する観点から、層Hに酸化防止剤を配合することが好ましい。
 層H中の熱可塑性樹脂の含有割合は、適宜設定でき、特に限定されないが、層Hの総量に対して、70~100質量%が好ましく、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。また、本実施形態の層Hに用いる熱可塑性樹脂は、テトラリン環含有共重合ポリオレフィン化合物以外の熱可塑性樹脂を、その総量に対して、50~100質量%含むものが好ましく、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性多層体の酸素吸収層(A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 本実施形態の酸素吸収性多層体において、酸素吸収層(層A)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~800μmが好ましく、より好ましくは10~600μmであり、特に好ましくは20~500μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、層Aが酸素を吸収する性能をより高めることができるとともに、加工性や経済性を高次元で維持することができる。また、酸素透過層(層H)の厚みも、用途や所望する性能に応じて適宜設定でき、特に限定されないが、1~1000μmが好ましく、より好ましくは5~800μmであり、特に好ましくは10~700μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、層Aの酸素吸収速度をより高めることができるとともに、加工性や経済性を高次元で維持することができる。
[ガスバリア層(層D)]
 本実施形態の酸素吸収性多層体のガスバリア層(層D)は、ガスバリア性物質を含有するものである。このガスバリア層(層D)およびそのガスバリア性物質は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 ガスバリア性物質として熱可塑性樹脂を用いる場合、ガスバリア層(層D)の厚みは、5~500μmが好ましく、より好ましくは10~300μmである。また、ガスバリア性物質として或いはガスバリア性接着剤層としてアミン-エポキシ硬化剤のような熱硬化性樹脂を使用する場合は、層Dの厚みは、0.1~100μmが好ましく、より好ましくは0.5~20μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、ガスバリア性がより高められる傾向にあるとともに、加工性や経済性を高次元で維持することができる。
[任意の層]
 なお、本実施形態の酸素吸収性多層体は、層Hと層Aとの間に、層Aと層Dとの間に、または、層Hの外層に或いは層Dの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。例えば、層Dの破損やピンホールを防ぐために、層Dの内側や外側に熱可塑性樹脂からなる保護層を設けることができる。この保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類およびこれらの組み合わせが挙げられる。
 また、本実施形態の酸素吸収性多層体において、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、当該2つの層の間に接着層を設けることが好ましい。接着層は、接着性を有する熱可塑性樹脂を含有することが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂が挙げられる。
 また、加工性を考慮すると、本実施形態の酸素吸収性多層体は、層Dと層Aとの間に、ポリオレフィン樹脂からなる中間層を介在させることが好ましい。この中間層の厚みは、加工性の観点から、層Hの厚みと略同一であることが好ましい。なお、ここでは、加工によるバラツキを考慮して、厚み比が±10%以内を略同一とする。
 本実施形態の酸素吸収性多層体の製造方法については、上記第2実施形態において説明したものと同様である。
[酸素吸収性多層容器]
 本実施形態の酸素吸収性多層容器は、上述した酸素吸収性多層体を包装容器の全体又は一部に含むものである。本実施形態の酸素吸収性多層容器は、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
 本実施形態の酸素吸収性多層容器の構成は特に限定されず、収納、保存する物品に応じて適宜設定することができる。例えば、上述した酸素吸収性多層体を熱成型して包装容器の本体とし、これとガスバリア性物質を含有するガスバリア層を有するトップフィルム(蓋材)とを接合して密封容器を作成することができる。トップフィルム(蓋材)のガスバリア層に用いるガスバリア性物質には上述した酸素吸収性多層体の層Dに用いるガスバリア性物質を用いることができる。トップフィルム(蓋材)の酸素透過率は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、100mL/(m・day・atm)以下であることが好ましく、より好ましくは80mL/(m・day・atm)以下、さらに好ましくは50mL/(m・day・atm)以下である。なお、トップフィルム(蓋材)を多層体として作製し、上述した酸素吸収性多層体の層Hに用いる熱可塑性樹脂を内層に用いることで、層Hとトップフィルム(蓋材)内層とを熱融着させて密封することもできる。
 また、本実施形態の酸素吸収性多層体は、加熱軟化した後、真空、圧空、または真空と圧空を利用して絞り込む方法により所定の形状の容器に熱成形できる。具体的には、上記のフィルム状或いはシート状の酸素吸収性多層体を、酸素透過層を内側として、真空成形、圧空成形、プレス成形、フリーブロー成形等の方法で成形することにより、トレイ、カップ、ボトル、チューブ、PTP(プレス・スルー・パッケージ)等の所定の形状の酸素吸収性多層容器に熱成形することができる。
 なお、フランジ部を有する熱成形容器を作製する場合には、そのフランジ部に易剥離機能を付与する特殊加工を施してもよい。また、上記の酸素吸収性多層体を容器の本体の部材として用いることで、これらの容器に酸素吸収機能を付与することができる。
 本実施形態の酸素吸収性多層容器を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態の酸素吸収性多層容器は、酸素吸収に水分を必須としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、医薬品等において特に好適に用いることができる。すなわち、本実施形態の酸素吸収性多層容器は、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。しかも、本実施形態の酸素吸収性多層容器は、従来の鉄粉を使用した酸素吸収性多層容器とは異なり、鉄の存在のため保存できない被保存物(例えばアルコール飲料や炭酸飲料等)に好適に用いることができる。
 被保存物の具体例としては、上記第1の実施形態において説明したものと同じものをあげることができ、また、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法も、上記第1実施形態において説明したものと同じものであればよい。
(第4実施形態)
 以下、本発明の第4実施形態について説明する。なお、上記第1乃至第3実施形態と同一内容については、ここでの重複する説明を省略する。
 本実施形態の酸素吸収性密封容器は、酸素吸収性多層体を含有する蓋材と、熱可塑性樹脂を含有する内層、ガスバリア性物質を含有するガスバリア層、および熱可塑性樹脂を含有する外層をこの順に積層した、少なくとも3層からなるガスバリア性成形容器と、を備え、蓋材におけるシーラント層(層C)とガスバリア性成形容器における内層とが接合されてなるものである。
〔酸素吸収性多層体〕
 本実施形態の酸素吸収性多層体は、熱可塑性樹脂を含有するシーラント層(層C)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、並びにガスバリア性物質を含有するガスバリア層(層D)の少なくとも3層をこの順に積層したものである。また、本実施形態の酸素吸収性多層体は、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態の酸素吸収性多層体は、層Cを内側として密封容器の蓋材に使用することにより、密封容器内の酸素を吸収して、密封容器外から蓋材を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[シーラント層(層C)]
 本実施形態の酸素吸収性多層体のシーラント層(層C)は、熱可塑性樹脂を含有するものである。本実施形態の酸素吸収性多層体のシーラント層(層C)およびその熱可塑性樹脂は、上記第2実施形態において説明したものと同一である。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性多層体の酸素吸収層(A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、上記第2実施形態において説明したものと同一である。
[ガスバリア層(層D)]
 本実施形態の酸素吸収性多層体のガスバリア層(層D)は、ガスバリア性物質を含有するものである。このガスバリア層(層D)およびそのガスバリア性物質は、上記第2実施形態において説明したものと同一である。
[任意の層]
 本実施形態の酸素吸収性多層体は、層Cと層Aとの間に、層Aと層Dとの間に、または、層Cの外層に或いは層Dの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。例えば、層Dの破損やピンホールを防ぐために、層Dの内側や外側に熱可塑性樹脂からなる保護層を設けることができる。この保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類およびこれらの組み合わせが挙げられる。また、層Dの外層に紙基材を積層して、酸素吸収性紙基材として用いることもできる。
 本実施形態の酸素吸収性多層体の製造方法については、上記第2実施形態において説明したものと同様である。
〔ガスバリア性成形容器〕
 本実施形態のガスバリア性成形容器は、熱可塑性樹脂を含有する内層、ガスバリア性物質を含有するガスバリア層、および熱可塑性樹脂を含有する外層をこの順に積層した、少なくとも3層からなるものであり、酸素吸収性密封容器内にガスバリア性成形容器外からその成形容器壁面を透過してくる或いは侵入してくる酸素の量を低減することができる。また、本実施形態のガスバリア性成形体は、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態のガスバリア性成形容器の内層または外層に用いる熱可塑性樹脂としては、特に限定されず、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類;ポリスチレン;ポリメチルペンテン;プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン類;ヒートシール性を有するPET、A-PET、PETG、PBT等のポリエステル;アモルファスナイロン等が挙げられる。これらは、1種を単独でまたは組み合わせて使用することができる。これら熱可塑性樹脂には、必要に応じて、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。
 また、本実施形態のガスバリア性成形容器の内層または外層は、上記の熱可塑性樹脂以外に、当業界で公知の各種添加剤を含有していてもよい。かかる任意成分としては、例えば、乾燥剤、酸化チタン等の着色顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、可塑剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。特に、製造中に発生した端材をリサイクルして再加工する観点から、酸化防止剤を配合することが好ましい。
 内層または外層中の熱可塑性樹脂の含有割合は、適宜設定でき、特に限定されないが、層Cの総量に対して、70~100質量%が好ましく、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。
 本実施形態のガスバリア性成形容器の内層に用いる熱可塑性樹脂としては、密封容器の熱融着強度を確保する観点から、上記酸素吸収性多層体の層Cに用いる熱可塑性樹脂と同種のものが好ましい。
 本実施形態のガスバリア性成形容器のガスバリア層は、ガスバリア性物質を含有するものである。ガスバリア層の酸素透過率は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、100mL/(m・day・atm)以下であることが好ましく、より好ましくは80mL/(m・day・atm)以下、さらに好ましくは50mL/(m・day・atm)以下である。
 本実施形態のガスバリア性成形容器のガスバリア層に用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミニウム等の各種蒸着フィルム、アルミニウム箔等の金属箔等を用いることができる。ガスバリア性熱可塑性樹脂としては、例えば、エチレン-ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。これらの中で、ガスバリア性成形容器内の被保存物に対して80℃以上の温度で加熱殺菌処理を行う場合は、MXD6が好ましい。また、ガスバリア性熱硬化性樹脂としては、ガスバリア性エポキシ樹脂、例えば、三菱ガス化学株式会社製「マクシーブ」等が例示できる。
 ガスバリア性物質として熱可塑性樹脂を用いる場合、ガスバリア層の厚みは、5~200μmが好ましく、より好ましくは10~100μmである。また、ガスバリア性物質として或いはガスバリア性接着剤層としてアミン-エポキシ硬化剤のような熱硬化性樹脂を使用する場合は、ガスバリア層の厚みは、0.1~100μmが好ましく、より好ましくは0.5~20μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、ガスバリア性がより高められる傾向にあるとともに、加工性や経済性を高次元で維持することができる。
〔酸素吸収性密封容器〕
 本実施形態の酸素吸収性密封容器は、上述した酸素吸収性多層体を含有する蓋材とガスバリア性成形容器とを備え、該蓋材のシーラント層と該ガスバリア性成形容器の内層とが接合されてなる酸素吸収性密封容器である。本実施形態の酸素吸収性密封容器は、容器内の酸素を吸収して、容器外から侵入する酸素がわずかでもある場合にはこの侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
 蓋材のシーラント層とガスバリア性成形容器の内層との接合態様は特に限定されず、例えば、熱融着、および、接着剤による接着が挙げられる。これらの接合態様は、1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中では、熱融着が好ましい。接合条件は、シーラント層および内層の材質や形状や寸法等を考慮して適宜決定すればよい。
 本実施形態の酸素吸収性密封容器を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態の酸素吸収性密封容器は、酸素吸収に水分を必須としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、医薬品等において特に好適に用いることができる。すなわち、本実施形態の酸素吸収性密封容器は、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。しかも、本実施形態の酸素吸収性樹脂組成物は、従来の鉄粉を使用した酸素吸収性樹脂組成物とは異なり、鉄の存在のため保存できない被保存物(例えばアルコール飲料や炭酸飲料等)に好適に用いることができる。
 被保存物の具体例としては、上記第1の実施形態において説明したものと同じものをあげることができ、また、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法も、上記第1実施形態において説明したものと同じものであればよい。
 本実施形態の蓋材およびガスバリア性成形容器を備える酸素吸収性密封容器の形状および寸法は、蓋材やガスバリア性成形容器が、上述の用途や非保存物の保存に適した形状および寸法であれば、特に限定されず、従来知られている形状および寸法であってもよい。また、その製造方法も特に限定されない。例えば、フィルム状或いはシート状の上記酸素吸収性多層体を蓋材として用いることができる。一方、フィルム状或いはシート状の、熱可塑性樹脂を含有する内層、ガスバリア性物質を含有するガスバリア層、および熱可塑性樹脂を含有する外層からなる積層体を、必要に応じて熱を印加しながら、真空成形、圧空成形、プラグアシスト成形等の方法で成形することにより、カップ、ボトル、チューブ等の所定の形状のガスバリア性成形容器を作製することができる。また、熱成形を施すことで、任意の形状の容器にすることもできる。或いは、射出機を用い、溶融した樹脂を、多層多重ダイスを通して射出金型中に共射出または逐次射出することによって所定の形状の多層容器に一挙に成形することもできる。そして、得られた蓋材およびガスバリア性成形容器を上述の接合方法により接合することにより、本実施形態の酸素吸収性密封容器を得ることができる。
(第5実施形態)
 以下、本発明の第5実施形態について説明する。なお、上記第1乃至第4実施形態と同一内容については、ここでの重複する説明を省略する。
[酸素吸収性紙容器および酸素吸収性多層体]
 本実施形態の酸素吸収性紙容器は、酸素吸収性多層体を製函してなる紙容器である。より具体的には、紙容器を構成する酸素吸収性多層体は、熱可塑性樹脂を含有する隔離層(層F)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、ガスバリア性物質を含有するガスバリア層(層D)、および紙基材層(層E)の少なくとも4層をこの順に積層したものである。また、本実施形態の酸素吸収性多層体は、必要に応じて、これら4層以外の層を任意の位置に層を有していてもよい。
 本実施形態の酸素吸収性紙容器は、上記の酸素吸収性多層体を、層Fを内側として密封用包装容器の一部または全部に使用することにより、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入する酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[熱可塑性樹脂を含有する隔離層(層F)]
 本実施形態において、酸素吸収性多層体の隔離層(層F)は、熱可塑性樹脂を含有するものである。この層Fは、容器内の酸素を酸素吸収層(層A)まで透過させると同時に酸素吸収層(層A)と内容物(被保存物)とを隔離する(層Aと被保存物との物理的な接触を阻害する)役割を有する。また、この層Fは、酸素吸収性多層体を製函して容器を成形する際に、それ同士で熱融着して紙容器を密封するシーラントとしての役割を有することもできる。
 上記の層Fに用いることのできる融着性を有する熱可塑性樹脂としては、熱によって溶融し相互に融着し得る各種ポリオレフィン系樹脂等の熱可塑性樹脂が例示される。具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン-α・オレフィン共重合体、ポリプロピレン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸共重合体、エチレン-プロピレン共重合体、メチルペンテンポリマー、ポリブテンポリマー、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂を、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂等を挙げることができる。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。これらの中でも、成形加工性や衛生性、臭気等の観点から、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン-α・オレフィン共重合体が好ましい。
 層F中の熱可塑性樹脂の含有割合は、適宜設定でき、特に限定されないが、層Fの総量に対して、70~100質量%が好ましく、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。また、本実施形態の層Fに用いる熱可塑性樹脂は、テトラリン環含有ポリオレフィン化合物以外の熱可塑性樹脂を、その総量に対して、50~100質量%含むものであることが好ましく、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。
 また、上記の層Fは、上記の熱可塑性樹脂以外に、当業界で公知の各種添加剤を含有していてもよい。かかる任意成分としては、例えば、乾燥剤、酸化チタン等の着色顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、可塑剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。特に、製造中に発生した端材をリサイクルして再加工する観点から、層Fに酸化防止剤を添加することが好ましい。
 また、本実施形態の酸素吸収性多層体において、隔離層(層F)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~50μmが好ましく、より好ましくは10~40μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、酸素吸収層の酸素を吸収する速度をより高めることができるとともに、加工性や経済性を高次元で維持することができる。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性多層体の酸素吸収層(層A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有するテトラリン環含有共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 本実施形態の酸素吸収性多層体において、酸素吸収層(層A)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~50μmが好ましく、より好ましくは10~40μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、酸素吸収層が酸素を吸収する性能をより高めることができるとともに、加工性や経済性を高次元で維持することができる。
[ガスバリア層(層D)]
 本実施形態の酸素吸収性多層体のガスバリア層(層D)は、ガスバリア性物質を含有するものである。このガスバリア層(層D)およびそのガスバリア性物質は、上記第2実施形態において説明したものと同一である。
[紙基材層(層E)]
 本実施形態において、紙基材層(層E)は、容器を構成する基本素材となることから、賦型性、耐屈曲性、剛性、腰、強度等に優れることが好ましい。層Eを構成する紙基材としては、例えば、強サイズ性の晒または未晒の紙基材、純白ロール紙、クラフト紙、板紙、加工紙、その他の各種の紙基材を使用することができる。上記の層Eの坪量は、適宜設定することができ、特に限定されないが、約80~600g/mの範囲であることが好ましく、より好ましくは100~450g/mの範囲である。なお、本実施形態において、紙基材層には、例えば、文字、図形、絵柄、記号、その他等の所望の印刷絵柄が通常の印刷方式にて任意に形成されていてもよい。
[任意の層]
 なお、本実施形態の酸素吸収性多層体は、層Fと層Aとの間に、層Aと層Dとの間に、層Dと層Eとの間に、または、層Fの外層或いは層Eの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。例えば、層Dの破損やピンホールを防ぐために、層Dの内側や外側に熱可塑性樹脂からなる保護層を設けることができる。この保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類およびこれらの組み合わせが挙げられる。
 また、紙基材(層E)の外層に、必要に応じて、熱可塑性樹脂外層を設けてもよい。このように熱可塑性樹脂外層を設ける場合、上述した隔離層(層F)と同一の熱可塑性樹脂を使用することで層Fと熱可塑性樹脂外層とを熱融着させて、密封することもできる。
 また、加工性を考慮して、層Aと層Dとの層間に、ポリオレフィン樹脂からなる中間層を介在させることもできる。この中間層の厚みは、加工性の観点から、層Fの厚みと略同一であることが好ましい。なお、ここでは、加工によるバラツキを考慮して、厚み比が±10%以内を略同一とする。
 本実施形態の酸素吸収性多層体の製造方法については、上記第2実施形態において説明したものと同様である。
[酸素吸収性紙容器]
 本実施形態の酸素吸収性紙容器は、上述した酸素吸収性多層体をその構成材の一部または全部とするものである。なお、酸素吸収性多層体を全部とする紙容器とは、酸素吸収性多層体のみによって構成された紙容器を意味する。また、酸素吸収性多層体をその構成材の一部とする紙容器とは、紙容器の一部が酸素吸収性多層体によって構成され、残りが他の素材より構成された紙容器を意味する。後者の例としては、容器内に収納した物品(被保存物)を外部から確認できるように、透明な素材(例えば、上記酸素吸収性多層体層から紙基材を除いた様態)を一部に用いて構成した紙容器が挙げられる。
 本実施形態の酸素吸収性紙容器の使用態様およびその形状は特に限定されず、収納、保存する物品に応じて適宜設定することができる。本実施形態の酸素吸収性紙容器の形状は、例えば、ゲーベルトップ型、ブリック型、フラットトップ型等、種々の形状が挙げられる。
 本実施形態の酸素吸収性紙容器を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態の酸素吸収性紙容器は、酸素吸収に水分を必須としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、医薬品等において特に好適に用いることができる。すなわち、本実施形態の酸素吸収性紙容器は、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。しかも、本実施形態の酸素吸収性樹脂組成物は、従来の鉄粉を使用した酸素吸収性樹脂組成物とは異なり、鉄の存在のため保存できない被保存物(例えばアルコール飲料や炭酸飲料等)に好適に用いることができる。
 被保存物の具体例としては、牛乳、ジュース、コーヒー、茶類、アルコール飲料等の飲料;ソース、醤油、めんつゆ、ドレッシング等の液体調味料、さらには、接着剤、粘着剤、農薬、殺虫剤等の化学品;医薬品;化粧品、シャンプー、リンス、洗剤等の雑貨品;その他の種々の物品を挙げることができるが、これらに特に限定されない。本実施形態の酸素吸収性紙容器は、とりわけ、酸素存在下で劣化を起こしやすい被存物、例えば、飲料ではビール、ワイン、日本酒、焼酎、果汁飲料、フルーツジュース、野菜ジュース、炭酸ソフトドリンク、コーヒー、茶類等、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類等の包装に好適である。
 なお、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法は、上記第1実施形態において説明したものと同じものであればよい。
(第6実施形態)
 以下、本発明の第6実施形態について説明する。なお、上記第1乃至第5実施形態と同一内容については、ここでの重複する説明を省略する。
[チューブ状容器]
 本実施形態のチューブ状容器は、熱可塑性樹脂を含有する内層(層G)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、並びにガスバリア性物質を含有するガスバリア層(層D)の少なくとも3層をこの順に積層した酸素吸収性多層体(以下、本実施形態において、単に「多層体」と表記する。)を備えるものである。また、本実施形態のチューブ状容器に備えられる多層体は、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態のチューブ状容器は、容器内の酸素を吸収して、容器外からチューブ容器を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[内層(層G)]
 本実施形態のチューブ状容器に備えられる多層体の内層(層G)は、熱可塑性樹脂を含有するものである。この層Gは、容器内の酸素を酸素吸収層まで透過させると同時に酸素吸収層(層A)と内容物(被保存物)とを隔離する(層Aと被保存物との物理的な接触を阻害する)役割を有する。また、層Gは、チューブ状容器に備えられ得る口部との接合面を有していてもよい。ここで、層Gの酸素透過度は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、300mL/(m・day・atm)以上であることが好ましく、より好ましくは400mL/(m・day・atm)以上、さらに好ましくは500mL/(m・day・atm)以上である。酸素透過度が上記の好ましい値以上であると、そうでない場合に比べて、層Aの酸素を吸収する速度をより高めることができる。
 本実施形態のチューブ状容器に備えられる多層体の層Gに用いる熱可塑性樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類;ポリスチレン;ポリメチルペンテン;プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン類等が挙げられる。これらは、1種を単独でまたは組み合わせて使用することができる。これら熱可塑性樹脂には、必要に応じて、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。本実施形態のチューブ状容器に備えられる多層体の層Gに用いる熱可塑性樹脂は、チューブ状容器の成形性と加工性を考慮すると、MFRが200℃で1~35g/10分である、または、MFRが240℃で2~45g/10分であるものが好ましく用いられる。
 また、本実施形態のチューブ状容器に備えられる多層体の層Gは、上記の熱可塑性樹脂以外に、当業界で公知の各種添加剤を含有していてもよい。かかる任意成分としては、例えば、乾燥剤、酸化チタン等の着色顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、可塑剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。特に、製造中に発生した端材をリサイクルして再加工する観点から、層Gに酸化防止剤を配合することが好ましい。
 層G中の熱可塑性樹脂の含有割合は、適宜設定でき、特に限定されないが、層Gの総量に対して、70~100質量%が好ましく、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。また、本実施形態の層Gに用いる熱可塑性樹脂は、テトラリン環含有共重合ポリオレフィン化合物以外の熱可塑性樹脂を、その総量に対して、50~100質量%含むものが好ましく、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。
[酸素吸収層(層A)]
 本実施形態のチューブ状容器に備えられる多層体の酸素吸収層(A)は、上記一般式(1)で表される構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 本実施形態のチューブ状容器に備えられる多層体において、酸素吸収層(層A)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~200μmが好ましく、より好ましくは10~150μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、層Aが酸素を吸収する性能をより高めることができるとともに、加工性や経済性を高次元で維持することができる。また、内層(層G)の厚みも、用途や所望する性能に応じて適宜設定でき、特に限定されないが、5~200μmが好ましく、より好ましくは10~150μmである。厚みが上記好ましい範囲内にあると、そうでない場合に比べて、層Aの酸素吸収速度をより高めることができるとともに、加工性や経済性を高次元で維持することができる。さらに、得られる酸素吸収性多層体の加工性を考慮すると、層Gと層Aとの厚み比(層G:層A)が、1:0.5~1:3にあることが好ましく、より好ましくは1:1~1:2.5である。
[ガスバリア層(層D)]
 本実施形態のチューブ状容器に備えられる多層体のガスバリア層(層D)は、ガスバリア性物質を含有するものである。このガスバリア層(層D)およびそのガスバリア性物質は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 本実施形態のチューブ状容器に備えられる多層体の層Dに用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミニウム等の各種蒸着フィルム、アルミニウム箔等の金属箔等を用いることができる。ガスバリア性熱可塑性樹脂としては、例えば、エチレン-ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。また、ガスバリア性熱硬化性樹脂としては、ガスバリア性エポキシ樹脂、例えば、三菱ガス化学株式会社製「マクシーブ」等が例示できる。なお、本実施形態のチューブ状容器に備えられる多層体は、特に酸素吸収層(層A)を備えることにより、層Dにアルミニウム箔を用いなくても、内容物の酸素による変質を良好に防ぐことができる。ただし、層Dとしてアルミニウム箔を用いることを妨げるものではない。
[任意の層]
 なお、本実施形態のチューブ状容器に備えられる多層体は、層Gと層Aとの間に、層Aと層Dとの間に、または、層Gの外層に或いは層Dの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。例えば、層Dの破損やピンホールを防ぐために、層Dの内側や外側に熱可塑性樹脂からなる保護層を設けることができる。この保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類およびこれらの組み合わせが挙げられる。
 また、加工性を考慮すると、本実施形態のチューブ状容器に備えられる多層体は、層Dと層Aとの間に、ポリオレフィン樹脂からなる中間層を介在させることが好ましい。この中間層の厚みは、加工性の観点から、層Gの厚みと略同一であることが好ましい。なお、ここでは、加工によるバラツキを考慮して、厚み比が±10%以内を略同一とする。
 また、多層体において層Dの外層に紙基材を積層して、本実施形態のチューブ状容器を酸素吸収性紙基材或いは酸素吸収性紙容器として用いることもできる。紙基材と積層して紙容器とする際の加工性を高い次元で維持する観点から、層Dよりも内側の層の総厚みが100μm以下であることが好ましく、より好ましくは80μm以下である。
 本実施形態のチューブ状容器は、上述の層G、層Aおよび層Dを積層した積層フィルムをチューブ状にした多層体を備える他は、特に限定されず、従来のチューブ状容器と同様の構造や形状、寸法を有していてもよい。例えば、本実施形態のチューブ状容器は、被保存物(内容物)を注出するための開口が形成された口部を更に備えていてもよく、チューブ状容器を密閉するためのキャップを備えていてもよい。また、本実施形態のチューブ状容器の製造方法は特に限定されず、公知の方法により製造されてもよく、例えば、下記のようにして本実施形態のチューブ状容器を製造してもよい。
 まず、少なくとも上述の層G、層Aおよび層Dを積層した積層フィルムを製造した後、フィルム両端の端部同士を融着させてチューブ体を形成する。その後、チューブ体を所望の大きさに切断して成形し、その成形体の端部に、開口(注出部)を設けた口部を接合することにより、本実施形態のチューブ状容器を製造することができる。また、共押出により成形された多層構造を持つパリソンに対して、従来と同様にして開口(注出部)を設けた口部を接合することにより、本実施形態のチューブ状容器を製造することができる。
 上述の積層フィルムは、各種材料の性状、加工目的、加工工程等に応じて、共押出法、各種ラミネート法、各種コーティング法等の公知の方法を利用して製造することができ、その製造方法は特に限定されない。通常の包装材料を積層する方法、例えば、ウェットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押出ラミネーション法、Tダイ共押出成形法、共押出ラミネーション法、インフレーション法等を適用することができる。例えば、フィルムやシートの成形については、Tダイ、サーキュラーダイ等が付属した押出機から溶融した樹脂組成物を押し出して製造する方法や、別途製膜した酸素吸収性フィルムもしくはシートに接着剤を塗布し、他のフィルムやシートと貼り合わせることで製造する方法がある。さらに必要に応じて、例えば、コロナ処理、オゾン処理等の前処理をフィルム等に施すことができ、また、例えば、イソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジエン系、有機チタン系等のアンカーコーティング剤、或いはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系、セルロース系、その他等の、ラミネート用接着剤等の公知のアンカーコート剤、接着剤等を使用することもできる。
 本実施形態のチューブ状容器を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態のチューブ状容器は、酸素吸収に水分を必須としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、化粧品、医薬品等において特に好適に用いることができる。すなわち、本実施形態のチューブ状容器は、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。
 被保存物の具体例としては、マヨネーズ、味噌、からし、わさび、生姜、ニンニク等のすり下ろし香辛料等の調味料;ジャム、クリーム、バター、マーガリン、チョコレートペースト等のペースト状食品;練り歯磨き、染毛剤、染色剤、石鹸等の化粧品および薬用化粧品;医薬品;化学品;その他の種々の物品を挙げることができるが、これらに特に限定されない。特に、酸素存在下で劣化を起こしやすい被保存物、例えば、調味料、医薬品、化粧品等の包装材に好適である。
 なお、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法は、上記第1実施形態において説明したものと同じものであればよい。
(第7実施形態)
 以下、本発明の第7実施形態について説明する。なお、上記第1乃至第6実施形態と同一内容については、ここでの重複する説明を省略する。
[酸素吸収性医療用多層成形容器]
 本実施形態の酸素吸収性医療用多層成形容器は、ポリエステルを少なくとも含有する第1の樹脂層(層B)と、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)と、ポリエステルを少なくとも含有する第2の樹脂層(層B)との少なくとも3層をこの順に有する。
 本実施形態の酸素吸収性医療用多層成形容器は、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入する酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
 本実施形態の酸素吸収性医療用多層成形容器における層構成は、これらの層がB/A/Bの順に配列されている限り、酸素吸収層(層A)および樹脂層(層B)の数や種類は特に限定されない。例えば、1つの層A、2つの層B1および2つの層B2からなるB1/B2/A/B2/B1の5層構成であってもよい。また、本実施形態の酸素吸収性医療用多層成形容器は、必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、B1/B2/AD/A/AD/B2/B1の7層構成であってもよい。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性医療用多層成形容器において、酸素吸収層(A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 本実施形態の酸素吸収性医療用多層成形容器において、酸素吸収層(層A)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、高い酸素吸収性能を有し、医療用多層成形容器に要求される諸物性を確保するという観点から、1~1000μmが好ましく、より好ましくは50~900μm、さらに好ましくは100~800μmである。
[ポリエステルを含有する樹脂層(層B)]
 本実施形態の酸素吸収性医療用多層成形容器において、樹脂層(層B)は、ポリエステルを含有する層である。層Bにおけるポリエステルの含有率は、適宜設定することができ、特に限定されないが、層Bの総量に対して、70~100質量%であることが好ましく、より好ましくは80~100質量%、さらに好ましくは90~100質量%である。ポリエステルの含有率を70質量%以上とすることで薬液保存性、薬液低吸着性を高めることができる。
 本実施形態の酸素吸収性医療用多層成形容器は、例えば上記層B1、B2のように層Bを複数有していてもよく、複数の層Bの構成は互いに同一であっても異なっていてもよい。層Bの厚みは、用途に応じて適宜決定することができ、特に限定されないが、医療用多層成形容器に要求される諸物性を確保するという観点から、50~10000μmが好ましく、より好ましくは100~7000μm、さらに好ましくは300~5000μmである。
<ポリエステル>
 この本実施形態の層Bで用いられるポリエステルの具体例としては、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種または二種以上とグリコールを含む多価アルコールから選ばれる一種または二種以上とからなるもの、またはヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、または環状エステルからなるもの等が挙げられる。
 ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸類、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体、5-ナトリウムスルホイソフタル酸、2-ナトリウムスルホテレフタル酸、5-リチウムスルホイソフタル酸、2-リチウムスルホテレフタル酸、5-カリウムスルホイソフタル酸、2-カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸またはそれらの低級アルキルエステル誘導体等が挙げられる。
 上記のジカルボン酸のなかでも、得られるポリエステルの物理特性等の観点から、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸類の使用が好ましい。なお、必要に応じて他のジカルボン酸を共重合してもよい。
 これらジカルボン酸以外の多価カルボン酸の具体例としては、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。
 グリコールの具体例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノ-ル、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。
 上記のグリコールのなかでも、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールを主成分として使用することが好適である。
 これらグリコール以外の多価アルコールの具体例としては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロ-ル、ヘキサントリオール等が挙げられる。
 ヒドロキシカルボン酸の具体例としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体等が挙げられる。
 環状エステルの具体例としては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。
 多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体の具体例としては、これらのアルキルエステル、酸クロライド、酸無水物等が挙げられる。
 上述したものの中でも、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸類またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。
 なお、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。同様に、主たる酸成分がナフタレンジカルボン酸類またはそのエステル形成性誘導体であるポリエステルは、ナフタレンジカルボン酸類またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
 上述したナフタレンジカルボン酸類またはそのエステル形成性誘導体の中でも、ジカルボン酸類において例示した1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。
 また、本実施形態の酸素吸収性多層体の層Bに用いるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。なお、このポリグリコール酸は、ラクチド等の他成分が共重合されているものであってもよい。
 とりわけ、本実施形態の層Bで用いるポリエステルとしては、主たる酸成分がテレフタル酸類もしくはそのエステル形成性誘導体、または、ナフタレンジカルボン酸類もしくはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。また、アルキレングリコールを70モル%以上含むことが物理特性等の点で好ましく、90モル%以上含むことがより好ましい。そして、上述したジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、これらを70モル%以上含むことが好ましい。これらジカルボン酸の中でも、特にテレフタル酸および/または2,6-ナフタレンジカルボン酸が好ましい。また、テレフタル酸および/または2,6-ナフタレンジカルボン酸を70モル%以上含むことが物理特性等の点で好ましく、90モル%以上含むことがより好ましい。必要に応じて他のジカルボン酸を共重合してもよい。さらに、イソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,2-プロパンジオール、1,3-プロパンジオールおよび2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上の共重合成分の使用が、透明性と成形性とを両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上がより好ましい。
 本実施形態の酸素吸収性医療用多層成形容器は、所望する性能等に応じて、上述した酸素吸収層(層A)およびポリエステルを含有する樹脂層(層B)の他に、任意の層を含んでいてもよい。そのような任意の層としては、例えば、接着層等が挙げられる。
 例えば、隣接する2つの層の間の層間接着強度をより高める観点から、当該2つの層の間に接着層(層AD)を設けることが好ましい。接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂;ポリエステル系ブロック共重合体を主成分としたポリエステル系熱可塑性エラストマー等が挙げられる。なお、接着層の厚みは、特に限定されないが、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、2~100μmであることが好ましく、より好ましくは5~90μm、さらに好ましくは10~80μmである。
 本実施形態の酸素吸収性医療用多層成形容器の製造方法は、各種材料の性状や目的とする形状等に応じて、公知の方法を適用することができ、特に限定されない。例えば、各種の射出成形法を適用して、多層成形容器を製造することができる。
 本実施形態の酸素吸収性医療用多層成形容器の厚みは、特に限定されないが、酸素吸収性能を高めるとともに医療用多層成形容器に要求される諸物性を確保するという観点から、3~5000μmが好ましく、より好ましくは5~4500μmであり、さらに好ましくは10~4000μmである。
 また、射出成形法以外の方法としては、例えば、圧縮成形法により多層成形体を得ることができ、得られた多層成形体に上述した二次加工を施すことにより、所望の容器形状に成形することもできる。例えば、ポリエステル溶融物中に酸素吸収性樹脂組成物を設け、その溶融塊を雄型に供給するとともに、雌型により圧縮し、圧縮成形物を冷却固化することにより多層成形体を得ることができる。また、二次加工としては、例えば押出成形、圧縮成形(シート成形、ブロー成形)等が適用可能である。
 本実施形態の酸素吸収性医療用多層成形容器の使用態様としては、特に限定されず、種々の用途および形態で用いることができる。好ましい使用態様としては、例えば、バイアル、アンプル、プレフィルドシリンジ、真空採血管等が挙げられるが、これらに特に限定されない。以下、好ましい使用態様について詳述する。
〔バイアル〕
 本実施形態の酸素吸収性医療用多層成形容器は、バイアルとして使用することができる。一般的には、バイアルは、ボトル、ゴム栓、キャップから構成され、薬液をボトルに充填後、ゴム栓をして、さらにその上からキャップを巻締めることで、ボトル内が密閉されている。このバイアルのボトル部分に、本実施形態の酸素吸収性医療用多層成形容器を用いることができる。
 本実施形態の酸素吸収性医療用多層成形容器をバイアルのボトル部分に成形する方法としては、例えば、射出ブロー成形、押出しブロー成形等が好適である。その具体例として、射出ブロー成形方法を以下に示す。例えば、2台以上の射出機を備えた成形機および射出用金型を用いて、層Aを構成する材料および層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、射出用金型のキャビティー内に射出することにより、射出用金型のキャビティー形状に対応した形状を有する、3層構造B/A/Bの多層インジェクション成形体を製造することができる。また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより、3層構造B/A/Bの多層インジェクション成形体を製造することができる。さらに、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造B/A/B/A/Bの多層インジェクション成形体を製造することができる。またさらに、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する樹脂と同時に射出し、次に層Aを構成する樹脂を層B1、層B2を構成する樹脂と同時に射出し、次に層B1を構成する樹脂を必要量射出してキャビティーを満たすことにより、5層構造B1/B2/A/B2/B1の多層インジェクション成形体を製造することができる。そして、この射出ブロー成形では、上記方法により得られた多層インジェクション成形体をある程度加熱された状態を保ったまま最終形状金型(ブロー金型)に嵌め、空気を吹込み、膨らませて金型に密着させ、冷却固化させることで、ボトル状に成形することができる。
〔アンプル〕
 また、本実施形態の酸素吸収性医療用多層成形容器は、アンプルとして使用することができる。一般的には、アンプルは、頸部が細く形成された小容器から構成され、薬液を容器内に充填後、頸部の先を熔封することで、容器内が密閉されている。このアンプル(小容器)に本実施形態の酸素吸収性医療用多層成形容器を用いることができる。本実施形態の酸素吸収性医療用多層成形容器をアンプルに成形する方法としては、例えば、射出ブロー成形、押出しブロー成形等が好適である。
〔プレフィルドシリンジ〕
 さらに、本実施形態の酸素吸収性医療用多層成形容器は、プレフィルドシリンジとして使用することができる。一般的には、プレフィルドシリンジは、少なくとも薬液を充填するためのバレル、バレルの一端に注射針を接合するための接合部および使用時に薬液を押し出すためのプランジャーから構成され、予めバレル内に薬剤を密封状態に収容しておき、使用時に前記バレルの先端側を開封して注射針を装着するように構成された注射器であり、その使用簡便性のために広く用いられている。このバレルに本実施形態の酸素吸収性医療用多層成形容器を用いることができる。
 本実施形態の酸素吸収性医療用多層成形容器をプレフィルドシリンジのバレルに成形する方法としては、例えば、射出成形法が好適である。具体的には、先ず層Bを構成する樹脂を射出用金型のキャビティー内に一定量射出し、次いで層Aを構成する樹脂を一定量射出し、再び層Bを構成する樹脂を一定量射出することにより、多層インジェクション成形体としてバレルを製造することができる。酸素吸収層(層A)は、ノズル先端面近傍まで形成されていることが好ましい。先端面近傍まで酸素吸収層(層A)を形成することにより、バレルのバリア性の確保が一層確実になる。また、酸素吸収層(層A)は、バレル内に挿入されるガスケットの挿入予定位置まで形成されていることが好ましい。ガスケットの挿入予定位置まで酸素吸収層(層A)を形成することにより、バレルのバリア性の確保が一層確実になる。なお、バレルと接合部は一体のものとして成形してもよいいし、別々に成形したものを接合してもよい。また、薬液を充填後、接合部の先端は封をする必要があるが、その方法は特に限定されず、公知の方法を採用することができる。例えば、接合部先端の樹脂を溶融状態に加熱し、ペンチ等で挟み込んで融着させる等すればよい。
 プレフィルドシリンジのバレルの容器の厚さは、使用目的や大きさに応じて適宜設定することができ、特に限定されない。一般的には、薬液の長期保存安定性、成型性およびシリンジの操作性の観点から、0.5~20mm程度が好ましく、より好ましくは0.5~5mm程度である。また、厚さは均一であっても、厚さを変えたものであってもいずれでもよい。また、バレルの形状は、注射針を液密に接続することのできるオス型ルアーテーパーのノズルを先端に有し、ノズルの基端から円筒壁にかけて肩部を形成してなり、開放された基端に指掛用フランジを有している円筒形状が好適に採用される。なお、バレル表面には、長期保存安定の目的で、他のガスバリア膜や遮光膜がさらに形成されていてもよい。これらの任意の膜およびその形成方法については、例えば、特開2004-323058号公報等に記載されている。
〔真空採血管〕
 また、本実施形態の酸素吸収性医療用多層成形容器は、真空採血管として使用することができる。一般的には、真空採血管は、管状体および栓体から構成されている。この管状体に、本実施形態の酸素吸収性医療用多層成形容器を用いることができる。
 本実施形態の酸素吸収性医療用多層成形容器を真空採血管の管状体に成形する方法としては、例えば、射出成形法が好適である。具体的には、先ず層Bを構成する樹脂を射出用金型のキャビティー内に一定量射出し、次いで層Aを構成する樹脂を一定量射出し、再び層Bを構成する樹脂を一定量射出することにより、多層インジェクション成形体として管状体を製造することができる。
〔被保存物〕
 本実施形態の酸素吸収性医療用多層成形容器に充填される被保存物(充填物)は、特に限定されない。例えば、ビタミンA、ビタミンB2、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK等のビタミン剤、アトロピン等のアルカロイド、アドレナリン、インシュリン等のホルモン剤、ブドウ糖、マルトース等の糖類、セフトリアキソン、セファロスポリン、シクロスポリン等の抗生物質、オキサゾラム、フルニトラゼパム、クロチアゼパム、クロバザム等のベンゾジアゼピン系薬剤等、任意の天然物や化合物を充填可能である。本実施形態の酸素吸収性医療用多層成形容器は、これらの天然物や化合物を充填した場合、これらの天然物や化合物の吸着量が少なく、またこれらの酸化による変質を抑制することができ、また、溶媒(例えば水分)の蒸散を抑制することもできる。
〔バイオ医薬〕
 また、本実施形態の酸素吸収性医療用多層成形容器は、バイオ医薬の保存容器としても好適に使用することができる。本実施形態の効果の点から、好適に用いることのできるバイオ医薬としては、タンパク医薬品、核酸医薬品等が挙げられる。より具体的には、各種モノクロナール抗体、各種ワクチン、インターフェロン、インスリン、成長ホルモン、エリスロポエチン、コロニー刺激因子、TPA、インターロイキン、血液凝固第VIII因子、血液凝固第IX因子、ナトリウム利尿ホルモン、ソマトメジン、グルカゴン、血清アルブミン、カルシトニン、成長ホルモン放出因子、消化酵素剤、炎症酵素剤、抗生物質、アンチセンス核酸、アンチジーン核酸、デコイ核酸、アプタマー、siRNA、microRNA等が挙げられるが、これらに特に限定されない。これらのバイオ医薬を医療用多層容器に充填した場合、これらのバイオ医薬の吸着量が少なく、またこれらの酸化による変質や、薬効の低下を抑制することができ、また、溶媒(例えば水分)の蒸散を抑制することもできる。
 なお、これらの被保存物の充填前後に、被保存物に適した形で、医療用多層容器や被保存物の殺菌処理を施すことができる。殺菌方法としては、例えば、100℃以下での熱水処理、100℃以上の加圧熱水処理、121℃以上の高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。
(第8実施形態)
 以下、本発明の第8実施形態について説明する。なお、上記第1乃至第7実施形態と同一内容については、ここでの重複する説明を省略する。
 本実施形態の酸素吸収性PTP包装体は、酸素吸収性多層体を成形してなる酸素吸収性底材と、熱可塑性樹脂を含有する内層、およびガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも2層からなるガスバリア性蓋材と、を備え、酸素吸収性底材におけるシーラント層(層C)とガスバリア性蓋材における内層とが接合されてなるものである。
[酸素吸収性多層体]
 本実施形態の酸素吸収性多層体は、熱可塑性樹脂を含有するシーラント層(層C)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、並びにガスバリア性物質を含有するガスバリア層(層D)の少なくとも3層をこの順に積層したものである。また、本実施形態の酸素吸収性多層体は、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態の酸素吸収性多層体は、層Cを内側として酸素吸収性PTP包装体に使用することにより、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[シーラント層(層C)]
 本実施形態の酸素吸収性多層体のシーラント層(層C)は、熱可塑性樹脂を含有するものである。本実施形態の酸素吸収性多層体のシーラント層(層C)およびその熱可塑性樹脂は、上記第2実施形態において説明したものと同一である。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性多層体の酸素吸収層(A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、上記第2実施形態において説明したものと同一である。
[ガスバリア層(層D)]
 本実施形態の酸素吸収性多層体のガスバリア層(層D)は、ガスバリア性物質を含有するものである。このガスバリア層(層D)およびそのガスバリア性物質は、以下に特記した事項を除き、上記第2実施形態において説明したものと同一である。
 本実施形態の酸素吸収性多層体の層Dに用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミニウム等の各種蒸着フィルム、アルミニウム箔等の金属箔等を用いることができる。被保存物の視認性を有するためのガスバリア性熱可塑性樹脂としては、例えば、エチレン-ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。また、ガスバリア性熱硬化性樹脂としては、ガスバリア性エポキシ樹脂、例えば、三菱ガス化学株式会社製「マクシーブ」等が例示できる。
[任意の層]
 なお、本実施形態の酸素吸収性多層体は、層Cと層Aとの間に、層Aと層Dとの間に、または、層Cの外層に或いは層Dの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。任意の層は、上記第2実施形態において説明したものと同一である。
 本実施形態の酸素吸収性多層体の製造方法については、上記第2実施形態において説明したものと同様である。
[酸素吸収性底材]
 本実施形態の酸素吸収性底材は、上述した酸素吸収性多層体を成形してなるものである。本実施形態の酸素吸収性底材の形状は特に限定されず、収納、保存する物品に応じて、熱成形を施すことで、任意の形状の容器にすることができる。
 より具体的には、上記のフィルム状或いはシート状の酸素吸収性多層体を、真空成形、圧空成形、プラグアシスト成形等の方法で成形することにより、錠剤等の被保存物を収納できる空間を有する酸素吸収性底材を作製することができる。
 なお、フランジ部を有する酸素吸収性底材を作製する場合には、そのフランジ部に易剥離機能を付与する特殊加工を施してもよい。また、上記の酸素吸収性多層体を容器の蓋材、トップシール等の部材として用いることで、これらの容器に酸素吸収機能を付与することができる。
〔ガスバリア性蓋材〕
 本実施形態のガスバリア性蓋材は、熱可塑性樹脂を含有する内層、およびガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも2層からなるものであり、酸素吸収性PTP包装体内にガスバリア性蓋材の外からその蓋材を透過してくる或いは侵入してくる酸素の量を低減することができる。また、本実施形態のガスバリア性成形体は、必要に応じて、これら2層以外の層を任意の位置に有していてもよい。特に、これら2層の中間に、上述した本実施形態の酸素吸収層(層A)を設けることで、蓋材にも酸素吸収機能を付与することもできる。
 本実施形態のガスバリア性蓋材の内層に用いる熱可塑性樹脂としては、特に限定されず、具体例としては、上述した酸素吸収性多層体のシーラント層(層C)において好適に用いられる熱可塑性樹脂として示したものが挙げられる。
 また、本実施形態のガスバリア性蓋材の内層は、上記の熱可塑性樹脂以外に、当業界で公知の各種添加剤を含有していてもよい。これも、具体例としては、上述した酸素吸収性多層体のシーラント層(層C)において好適に用いられる添加剤として示したものが挙げられる。
 内層中の熱可塑性樹脂の含有割合は、適宜設定でき、特に限定されないが、内層の総量に対して、70~100質量%が好ましく、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。内層の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、1~50μmが好ましく、より好ましくは5~20μmである。
 本実施形態のガスバリア性蓋材の内層に用いる熱可塑性樹脂としては、酸素吸収性PTP包装体の熱融着強度を確保する観点から、上記酸素吸収性多層体の層Cに用いる熱可塑性樹脂と同種のものが好ましい。
 本実施形態のガスバリア性蓋材のガスバリア層は、ガスバリア性物質を含有するものである。ガスバリア層の酸素透過率は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、100mL/(m・day・atm)以下であることが好ましく、より好ましくは80mL/(m・day・atm)以下、さらに好ましくは50mL/(m・day・atm)以下である。
 本実施形態のガスバリア性蓋材のガスバリア層に用いるガスバリア性物質の具体例としては、上述した酸素吸収性多層体のガスバリア層(層D)において好適に用いられるガスバリア性物質として示したものが挙げられる。特に、酸素吸収性PTP包装体においては、収納した被保存物を押し出して取り出すことから、アルミニウム箔を用いることが特に好ましい。ガスバリア性蓋材のガスバリア層の厚みは、1~100μmが好ましく、より好ましくは5~20μmである。
[酸素吸収性PTP包装体]
 本実施形態の酸素吸収性PTP包装体は、上述した酸素吸収性多層体を成形してなる酸素吸収性底材とガスバリア性蓋材とを備え、該酸素吸収性底材のシーラント層と該ガスバリア性蓋材の内層とが接合されてなるものである。本実施形態の酸素吸収性PTP包装体は、容器内の酸素を吸収して、容器外から侵入する酸素がわずかでもある場合にはこの侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。なお、PTP(プレススルーパッケージ)包装体は、外国においてはブリスターパッケージ(blister package)といわれるものである。
 本実施形態の酸素吸収性多層体および該多層体を含む酸素吸収性PTP包装体を使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 また、被保存物の収納(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法としては、上記第1の実施形態において説明したものと同じであればよい。
[被保存物]
 本実施形態の酸素吸収性PTP包装体に収納される被保存物は、特に限定されず、例えば錠剤が挙げられる。より具体的には、例えば、ビタミンC、ビタミンE等の健康食品や内服用錠剤、口腔内崩壊錠(OD錠)等の各種医薬品を収納可能である。
(第9実施形態)
 以下、本発明の第9実施形態について説明する。なお、上記第1乃至第8実施形態と同一内容については、ここでの重複する説明を省略する。
[酸素吸収性多層ボトル]
 本実施形態の酸素吸収性多層ボトルは、熱可塑性樹脂を含有する酸素透過層(層H)、上記第1実施形態の酸素吸収性樹脂組成物からなる酸素吸収層(層A)、並びにガスバリア性物質を含有するガスバリア層(層D)を、内側からこの順に積層した、少なくとも3層を有するものである。また、本実施形態の酸素吸収性多層ボトルは、必要に応じて、これら3層以外の層を任意の位置に有していてもよい。
 本実施形態の酸素吸収性多層ボトルは、層Hを内側として密封用包装容器の一部または全部に使用することにより、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入した酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
[酸素透過層(層H)]
 本実施形態の酸素吸収性多層ボトルの酸素透過層(層H)は、熱可塑性樹脂を含有するものである。この層Hは、容器内の酸素を酸素吸収層まで透過させると同時に酸素吸収層(層A)と内容物(被保存物)とを隔離する(層Aと被保存物との物理的な接触を阻害する)役割を有する。また、この層Hは、本実施形態の酸素吸収性多層ボトルとガスバリア性を有するトップフィルム(蓋材)とを熱融着して多層ボトルを密封する際に、シーラントとしての役割を有することもできる。本実施形態の酸素吸収性多層ボトルの層Hは、上記第3実施形態において、酸素吸収性多層体の酸素透過層(層H)として説明したものと同一である。
[酸素吸収層(層A)]
 本実施形態の酸素吸収性多層ボトルの酸素吸収層(A)は、上記一般式(1)で表わされる構成単位からなる群より選択される少なくとも1種のエチレンまたは置換エチレン構成単位である構成単位(a)、および、上記一般式(2)または(3)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環を有する置換エチレン構成単位である構成単位(b)を含有する共重合ポリオレフィン化合物と遷移金属触媒とを含有する酸素吸収性樹脂組成物からなる。ここで用いる酸素吸収性樹脂組成物は、上記第1実施形態において説明したものと同一である。また、酸素吸収層(層A)は、上記第3実施形態において酸素吸収性多層体の酸素吸収層(層A)として説明したものと同一である。
[ガスバリア層(層D)]
 本実施形態の酸素吸収性多層ボトルのガスバリア層(層D)は、ガスバリア性物質を含有するものである。ガスバリア層(層D)は、上記第3実施形態において酸素吸収性多層体のガスバリア層(層D)として説明したものと同一である。
[任意の層]
 なお、本実施形態の酸素吸収性多層ボトルは、層Hと層Aとの間に、層Aと層Dとの間に、または、層Hの外層に或いは層Dの外層に、樹脂層、金属箔層或いは接着剤層等の少なくとも1以上の他の層を有していてもよい。任意の層は、上記第3実施形態において酸素吸収性多層体の任意の層として説明したものと同一である。
 本実施形態の酸素吸収性多層ボトルは、各種材料の性状、加工目的、加工工程等に応じて、共押出法、各種ラミネート法、各種コーティング法などの公知の方法を利用して製造することができ、その製造方法は特に限定されない。通常の包装材料を積層する方法、例えば、ウェットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押出ラミネーション法、Tダイ共押出成形法、共押出ラミネーション法、共押出成形ブロー法、インフレーション法等を適用することができる。これらの中では、通常のボトルを成形する方法、例えば、共押出成形ブロー法が好ましく用いられる。また、例えば、フィルムやシートの成形については、Tダイ、サーキュラーダイ等が付属した押出機から溶融した樹脂組成物を押し出して製造する方法や、別途製膜した酸素吸収性フィルムもしくはシートに接着剤を塗布し、他のフィルムやシートと貼り合わせることで製造する方法が挙げられる。さらに必要に応じて、例えば、コロナ処理、オゾン処理等の前処理をフィルム等に施すことができ、また、例えば、イソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジエン系、有機チタン系等のアンカーコーティング剤、或いはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系、セルロース系、その他等の、ラミネート用接着剤等の公知のアンカーコート剤、接着剤等を使用することもできる。
 本実施形態の酸素吸収性多層ボトルの構成は特に限定されず、収納、保存する物品に応じて適宜設定することができる。例えば、共押出成形ブローにより上述した各層を備える包装容器(ボトル)の本体に成形し、これとガスバリア性物質を含有するガスバリア層を有するトップフィルム(蓋材)とを接合して密封容器を作成することができる。トップフィルム(蓋材)のガスバリア層に用いるガスバリア性物質には上述した酸素吸収性多層ボトルの層Dに用いるガスバリア性物質を用いることができる。トップフィルム(蓋材)の酸素透過率は、20μmの厚さのフィルムについて、23℃、相対湿度60%の条件下で測定したときに、100mL/(m・day・atm)以下であることが好ましく、より好ましくは80mL/(m・day・atm)以下、さらに好ましくは50mL/(m・day・atm)以下である。なお、トップフィルム(蓋材)を多層体として作製し、上述した酸素吸収性多層ボトルの層Hに用いる熱可塑性樹脂を内層に用いることで、層Hとトップフィルム(蓋材)内層とを熱融着させて密封することもできる。
 なお、フランジ部を有する熱成形容器を作製する場合には、そのフランジ部に易剥離機能を付与する特殊加工を施してもよい。また、上記の酸素吸収性多層ボトルを容器の本体の部材として用いることで、これらの容器に酸素吸収機能を付与することができる。
 本実施形態の酸素吸収性多層ボトルを使用するにあたり、エネルギー線を照射して、酸素吸収反応の開始を促進したり、酸素吸収速度を高めたりすることができる。エネルギー線としては、例えば、可視光線、紫外線、X線、電子線、γ線等を利用可能である。照射エネルギー量は、用いるエネルギー線の種類に応じて、適宜選択することができる。
 本実施形態の酸素吸収性多層ボトルは、酸素吸収に水分を必須としない、換言すれば被保存物の水分の有無によらず酸素吸収することができるため、被保存物の種類を問わず幅広い用途で使用することができる。とりわけ、酸素吸収後の臭気の発生がないので、例えば、食品、調理食品、飲料、健康食品、医薬品等において特に好適に用いることができる。すなわち、本実施形態の酸素吸収性多層ボトルは、低湿度から高湿度までの広範な湿度条件下(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。しかも、本実施形態の酸素吸収性多層ボトルは、従来の鉄粉を使用した酸素吸収性多層ボトルとは異なり、鉄の存在のため保存できない被保存物(例えばアルコール飲料や炭酸飲料等)に好適に用いることができる。
 被保存物の具体例としては、医薬品;ビタミン剤等の健康食品;化粧品、シャンプー、リンス、洗剤等の雑貨品;その他の種々の物品を挙げることができるが、これらに特に限定されない。
 なお、これらの被保存物の充填(包装)前後に、被保存物に適した形で、容器や被保存物の殺菌処理を施すことができる。殺菌方法としては、上記第1実施形態において説明したものと同じものであればよい。
 以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。
(合成例1)
 内容積1000mLの4つ口セパラブルフラスコに、メタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体(製品名;住友化学株式会社製「アクリフトWK402」)100g、6-ヒドロキシルメチル-1,2,3,4-テトラヒドロナフタレン81g、デカリン160g、エステル交換触媒としてテトラブチルチタネート0.2gを仕込み、撹拌しながら窒素雰囲気下で反応液温を210℃まで昇温し、メタノールを留去しながら、3時間反応を行った。メタノールが留去しなくなった後、減圧を徐々に行い、未反応の6-ヒドロキシルメチル-1,2,3,4-テトラヒドロナフタレン、およびデカリンを留去した。その後、常圧に戻し、冷却して固形状の反応粗生成物を得た。次いで、得られた反応粗生成物に、その濃度が3~4質量%になるようトルエンを加え、80℃に加熱し溶解させた後、この溶液を40℃程度まで冷却しメタノールを加え、再沈殿したテトラリン環含有共重合ポリオレフィン化合物Aを濾過により回収した。
 得られたテトラリン環含有共重合ポリオレフィン化合物Aの重量平均分子量と数平均分子量をGPC(ゲルパーミエーションクロマトグラフィー)により測定した結果、ポリスチレン換算の重量平均分子量は9.5×10、数平均分子量は3.1×10であった。融点をDSCにより測定を行った結果、融点は71℃であった。
(合成例2)
 合成例1の6-ヒドロキシルメチル-1,2,3,4-テトラヒドロナフタレンに代えて1,5-ジメチル-8-ヒドロキシルメチル-1,2,3,4-テトラヒドロナフタレンを用い、その質量を95.0gとした以外は、合成例1と同様にしてテトラリン環含有共重合ポリオレフィン化合物Bを合成した。このテトラリン環含有共重合ポリオレフィン化合物Bの、ポリスチレン換算の重量平均分子量は9.1×10、数平均分子量は3.0×10、融点は71℃であった。
(合成例3)
 合成例1のメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体に代えてメタクリル酸メチル含有量が5質量%のエチレン-メタクリル酸メチル共重合体(製品名;住友化学株式会社製「アクリフトWD203-1」)を用い、6-ヒドロキシルメチル-1,2,3,4-テトラヒドロナフタレンの量を81gから16.2gに変更した以外は、合成例1と同様にしてテトラリン環含有共重合ポリオレフィン化合物Cを合成した。このテトラリン環含有共重合ポリオレフィン化合物Cの、ポリスチレン換算の重量平均分子量は9.6×10、数平均分子量は3.0×10、融点は98℃であった。
(合成例4)
 合成例1のメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体に代えてメタクリル酸メチル含有量が10質量%のエチレン-メタクリル酸メチル共重合体(製品名;住友化学株式会社製「アクリフトWD201-F」)を用い、6-ヒドロキシルメチル-1,2,3,4-テトラヒドロナフタレンの量を81gから32.4gに変更した以外は、合成例1と同様にしてテトラリン環含有共重合ポリオレフィン化合物Dを合成した。このテトラリン環含有共重合ポリオレフィン化合物Dの、ポリスチレン換算の重量平均分子量は9.3×10、数平均分子量は3.1×10、融点は92℃であった。
(実施例1-1)
 テトラリン環含有共重合ポリオレフィン化合物A100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.1質量部となるようドライブレンドして得られた混合物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度220℃、スクリュー回転数60rpm、フィードスクリュー回転数16rpm、引き取り速度1.0m/minの条件下で製膜することにより、幅130mm、厚み90~100μmのフィルム状の酸素吸収性樹脂組成物である酸素吸収性フィルムを作製した。次に、アルミニウム箔積層フィルムからなるガスバリア袋を2つ用意した。そして、得られた酸素吸収性フィルムの試験片(長さ100mm×幅100mm)2枚を、空気500ccとともに2つのガスバリア袋内にそれぞれ充填し、一方の袋内の相対湿度を100%に調整し、他方の袋内の相対湿度を30%に調整した後、それぞれ密封した。このようにして得られた密封体を23℃で3日間保管して、その間に吸収した酸素の総量を測定し、開封後のフィルムの臭気を確認した。また、袋内の相対湿度を100%に調整した密封体を上記と同様に作製し、40℃、相対湿度100%で1ヶ月間保管し、1ヶ月保管後のフィルムの外観を目視で確認した。これらの結果を表1に示す。
(実施例1-2)
 コバルト量を0.1質量部に代えて0.05質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-3)
 コバルト量を0.1質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-5)
 ステアリン酸コバルト(II)をコバルト量が0.1質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.1質量部となるようにドライブレンドした以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-6)
 ステアリン酸コバルト(II)をコバルト量が0.1質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.1質量部となるようにドライブレンドした以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-8)
 ステアリン酸コバルト(II)をコバルト量が0.1質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.1質量部となるようにドライブレンドした以外は、実施例1-7と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-9)
 ステアリン酸コバルト(II)をコバルト量が0.1質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.1質量部となるようにドライブレンドした以外は、実施例1-7と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(実施例1-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
(比較例1-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてナイロンMXD6(製品名;三菱ガス化学株式会社製「MXナイロン S6011」。「N-MXD6」とも表記する。以下同様。)を用いた以外は、実施例1-1と同様にして酸素吸収性フィルムを作製し、酸素吸収量の測定、臭気の確認および外観の目視確認を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 実施例1-1~1-11から明らかなように、本発明の酸素吸収性樹脂組成物は、高湿度下、低湿度下いずれにおいても良好な酸素吸収性能を示し、臭気の発生もなく、かつ酸素吸収後もフィルムの形状が保持し崩壊することが無かった。
(実施例2-1)
 まず、直径37mmのスクリューを2本有する2軸押出機に、テトラリン環含有共重合ポリオレフィン化合物Aを100質量部と、コバルト量として0.05質量部のステアリン酸コバルト(II)とをドライブレンドして得られた混合物を供給して、押出温度220℃、スクリュー回転数100rpmの条件で混練し、酸素吸収性樹脂組成物Aを得た。
 次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分(JIS K7210に準拠して測定)、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例2-1~2-13、比較例2-1~2-3において「LLDPE1」と表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅900mmの2種2層フィルム(厚さ;酸素吸収層20μm/シーラント層20μm)を作製した。その後、60m/分で酸素吸収層の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。また、得られたフィルムを観察したところ、その外観は良好で、フィルムのHAZEは8%であった。
 次に、コロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-319/CAT-19B」)を用いて、ナイロン6フィルム(製品名;東洋紡績株式会社製「N1202」)、アルミニウム箔、およびPETフィルム(製品名;東洋紡績株式会社製「E5102」)をドライラミネートにて積層して、PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/アルミニウム箔(9μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(20μm)/LLDPE1(20μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを得た。なお、括弧内のμm単位の数字は厚さを示す。以下の実施例でも特別な断りがない限り、同様に表記する。
 次いで、得られた酸素吸収性多層フィルムを用いて、そのLLDPE1側を内面にして、10cm×20cmの三方シール袋を作製し、この三方シール袋内に水分活性0.35の粉末調味料「だしの素」を150g充填した後に、密封した。このようにして得られた密封袋を、23℃にて保存した。そして、7日保存後および1ヶ月保存後の袋内酸素濃度の測定を行った。また、1ヶ月保存後の粉末調味料の風味の確認、袋を開封後の臭気の確認を行った。さらに、保存前および1ヶ月保存後の袋のシール強度の測定を行った。これらの結果を表2に示す。なお、シール強度の測定においては、三方シール袋の短辺部分のシール強度をJIS Z0238に準拠して測定した(以下同様。)。
(実施例2-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例2-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例2-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(実施例2-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例2-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
(比較例2-1)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。その鉄系酸素吸収性樹脂組成物を用いて、実施例2-1と同様に2種2層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ40μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例2-1~2-3において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ20μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 次に、そのラミネートフィルムのコロナ処理面側に、実施例2-1と同様にドライラミネートにて積層し、PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/アルミニウム箔(9μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(20μm)/LLDPE2(40μm)の鉄系酸素吸収性多層フィルムを作製した。
 次いで、得られた鉄系酸素吸収性多層フィルムを用いて実施例2-1と同様にして三方シール袋を作製して、実施例2-1と同様に袋内酸素濃度の測定、粉末調味料の風味の確認、袋を開封後の臭気の確認、袋のシール強度の測定を行った。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 実施例2-1~2-11の結果から明らかなように、本発明の酸素吸収性多層体は、低湿度下において良好な酸素吸収性能を示し、内容物の風味低下を抑制し、酸素吸収後の臭気の発生もなく、かつ保存前のシール強度を保持していた。
(実施例2-12)
 2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からLLDPE1を、2台目の押出機から実施例2-1で得られた酸素吸収性樹脂組成物Aをそれぞれ押し出し、酸素吸収性樹脂組成物Aをコア層とし、LLDPE1をこのコア層の両面のスキン層として有する、幅800mmの2種3層フィルム(厚み;10μm/20μm/10μm)を作製し、その後、その片面を60m/分でコロナ放電処理した。得られたフィルムのコロナ処理面側に、低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLD LC604」、20μm)を用いて、押し出しラミネートにて下記各層を積層し、晒クラフト紙(坪量340g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM251/CAT-RT88」、3μm)/アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-ARH-F」、12μm)/ウレタン系アンカーコート剤(東洋モートン株式会社製「EL-557A/B」、0.5μm)/低密度ポリエチレン(20μm)/LLDPE1(10μm)/酸素吸収性樹脂組成物A(20μm)/LLDPE1(10μm)の酸素吸収性多層紙基材を得た。
 そして、得られた酸素吸収性多層紙基材を、1リットル用のゲーベルトップ型の紙容器に成形した。容器の成形性は良好であった。この紙容器内に日本酒を充填し、その後、密封した。このようにして得られた密封体を、23℃にて1ヶ月保存した。1ヶ月保存後の紙容器内の酸素濃度は0.1体積%以下であり、日本酒の風味は良好に保持されていた。
(比較例2-2)
 2種3層フィルムに代えて比較例2-1で得られたラミネートフィルムを用いた以外は実施例2-12と同様にして、晒クラフト紙(坪量340g/m)/ウレタン系ドライラミネート用接着剤(3μm)/アルミナ蒸着PETフィルム(12μm)/ウレタン系アンカーコート剤(0.5μm)/低密度ポリエチレン(20μm)/酸素吸収層(20μm)/LLDPE2(40μm)の酸素吸収性多層紙基材からなるゲーベルトップ型紙容器を作製しようとした。ところが、酸素吸収性多層紙基材が厚く、紙容器の角の部分を作製することが困難であった。そのため、容器作製速度を落として紙容器の作製を試みたところ、多くの不良品を排除してようやく紙容器を得ることができた。得られた紙容器を用いて、実施例2-12と同様に、日本酒の保存試験を行った。1ヶ月後に開封したところ、アルデヒド臭が発生しており、風味は著しく低下した。
(実施例2-13)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は実施例2-1と同様にして酸素吸収性樹脂組成物Bを作製した。次いで、酸素吸収性樹脂組成物Aに代えて酸素吸収性樹脂組成物Bを用いた以外は実施例2-12と同様にして、2種3層フィルム(厚み;10μm/20μm/10μm)を作製し、その後、その片面を60m/分でコロナ放電処理した。得られたフィルムのコロナ処理面側に、ドライラミネートにて、ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「AD-817/CAT-RT86L-60」)を用いて、ナイロン6フィルム(製品名;東洋紡績株式会社製「N1202」)、アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-ARH-F」)を積層し、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/LLDPE1(10μm)/酸素吸収性樹脂組成物B(20μm)/LLDPE1(10μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを得た。次いで、得られた酸素吸収性多層フィルムを用いて、LLDPE1層側を内面にして、側面フィルム2枚と底面フィルム1枚をヒートシールして貼り合わせることで上部開口した自立性袋(横11cm×縦17cm×底マチ3cmのスタンディングパウチ)を作製した。次に、みかん80gとフルーツシラップ液80gとをその自立性袋に充填後、ヘッドスペースの空気量が5ccとなるよう自立性袋を密封し、90℃、30分のボイル処理を行い、その後、40℃に保存した。2週間保存後の袋内の酸素濃度を測定したところ0.1体積%以下であり、また、みかんの色調を袋の外部から確認したところ良好に保持されていた。
(比較例2-3)
 酸素吸収性多層フィルムに代えて、比較例2-1と同様にして得られたラミネートフィルムを用いた以外は実施例2-13と同様にして、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(20μm)/LLDPE2(40μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを作製し、実施例2-13と同様にして自立性袋を作製し、保存試験を行った。その結果、袋内の酸素濃度は0.1体積%以下であったが、みかんの色調は袋外部から確認できなかった。
 実施例2-12および2-13の結果から明らかなように、本発明の酸素吸収性多層体は、高湿度下においても良好な酸素吸収性能を示し、さらに内容物を袋外部から視認することが可能であった。
(実施例3-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に第1~4押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、第1押出機から直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」。以下、実施例3-1~3-11、比較例3-1~3-3において「LLDPE」と表記する。)、第2押出機から酸素吸収層の材料として上記酸素吸収性樹脂組成物A、第3押出機からポリエチレン系接着性樹脂(製品名;三菱化学株式会社製「モディック M545」。以下、実施例3-1~3-11、比較例3-1~3-3において「AD」と表記する。)、第4押出機からエチレン-ビニルアルコール共重合体(製品名;株式会社クラレ製「エバールL104B」。以下、実施例3-1~3-11、比較例3-1~3-3において「EVOH」と表記する。)をそれぞれ押し出し、フィードブロックを介して幅300mmの4種4層フィルムを得た。該多層フィルムの構成は、内層より、LLDPE(20μm)/酸素吸収層(40μm)/AD(10μm)/EVOH(10μm)であった。
 次いで、得られた多層フィルムの外層側(EVOH面)に、厚みが250μmの無延伸ポリエチレンテレフタレートシート(製品名;三菱化学株式会社製「ノバクリアー」。以下、実施例3-1~3-11、比較例3-1~3-3において「PET」と表記する。)をドライラミネートにより貼り合わせ、酸素吸収性多層体を作製した。なお、ドライラミネート用接着剤としては、2液硬化型接着剤(製品名;DICグラフィックス株式会社製「LX-75A/KW-40」)を使用し、厚さは3μmとした。得られた多層体について、真空成形機を用いて、内層(LLDPE)を内側にし、カップ状の酸素吸収性多層容器(内容積70cc、口径62mm×底径52mm×深さ28mm)に熱成形加工した。得られた酸素吸収性多層容器は厚みムラがなく、外観は良好であった。
 得られた酸素吸収性多層容器内に調湿剤を10g充填し、容器内の相対湿度を100%もしくは30%に調整し、トップフィルムとしてアルミニウム箔積層フィルムを使用し、窒素置換により初期酸素濃度を5vol%にして密封した。その後、23℃・相対湿度50%に保存し、1ヶ月後の容器内酸素濃度の測定、および、トップフィルムを開封して容器内の臭気を確認した。
(実施例3-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例3-7と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例3-7と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(実施例3-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例3-1と同様にして酸素吸収性多層体を得た。その後、実施例3-1と同様にして酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(比較例3-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、合成例1で使用したメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体を用いた以外は、実施例3-1と同様にして多層体を得た。その後、実施例3-1と同様にして多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(比較例3-2)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPEとを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。次いで、酸素吸収性樹脂組成物Aに代えて上記鉄系酸素吸収性樹脂組成物を用いた以外は実施例3-1と同様にして酸素吸収性多層体を得た。得られた酸素吸収性多層体を熱成形し、カップ状容器を作製しようとしたが、ドローダウンが発生したため加工が困難であった。また、鉄粉に起因する凹凸のため外観が悪かった。及第点をかろうじて上回る外観を有する容器について、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
(比較例3-3)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、N-MXD6(製品名;三菱ガス化学株式会社製「MXナイロン S6011」)を用い、押出温度を270℃にした以外は実施例3-1と同様にして酸素吸収性樹脂組成物Lを作製した。次いで、第1~第3押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、第1押出機から直鎖状低密度ポリエチレン、第2押出機から酸素吸収層の材料として酸素吸収性樹脂組成物L、第3押出機からポリエチレン系接着性樹脂をそれぞれ押し出し、フィードブロックを介して、幅300mmの3種5層フィルムを得た。該多層フィルムの構成は、内層より、LLDPE(20μm)/AD(10μm)/酸素吸収層(40μm)/AD(10μm)/LLDPE(20μm)であった。次いで、実施例3-1と同様にして酸素吸収性多層体を得た後、酸素吸収性多層容器を作製して、実施例3-1と同様に容器内酸素濃度の測定および容器内の臭気の確認を行った。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000015
 実施例3-1~3-11から明らかなように、本発明の酸素吸収性多層容器は、低湿度から高湿度までの広範な湿度条件下において良好な酸素吸収性能を示した。
(実施例4-1)
 押出機、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、厚さ40μmのシーラントフィルム(製品名;ジェイフィルム株式会社製「VMX XB15FT」)に、酸素吸収層の材料として上記酸素吸収性樹脂組成物Aを厚さ30μmで押し出しラミネートにより積層し、その後、60m/分で酸素吸収層の表面をコロナ放電処理して、ラミネートフィルムを得た。次いで、ラミネートフィルムのコロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「AD-817/CAT-RT86L-60」)を用いて、ナイロン6フィルム(製品名;東洋紡績株式会社製「N1202」)、アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-ARH-F」)をドライラミネートにて積層し、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(30μm)/シーラントフィルム(40μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを得た。
 一方で、第1~第3押出機、フィードブロック、Tダイ、冷却ロールおよびシート引取機を備えた3種5層多層シート成形装置を用い、第1押出機からエチレン-プロピレンランダム共重合体(製品名;日本ポリプロ株式会社製「ノバテックPP EG7F」、以下実施例4-1~4-11、比較例4-1~4-3において「PP」と表記する。)、第2押出機からナイロンMXD6(製品名;三菱ガス化学株式会社製「MXナイロン S7007」)、第3押出機から無水マレイン酸変性ポリプロピレン(製品名;三井化学株式会社製「アドマー QF500」)をそれぞれ押し出し、フィードブロックを介して、内層より、PP(80μm)/無水マレイン酸変性ポリプロピレン(15μm)/ナイロンMXD6(40μm)/無水マレイン酸変性ポリプロピレン(15μm)/PP(350μm)のガスバリア性多層シートを得た。
 次いで、得られたガスバリア性多層シートを、その内層(厚さ80μmのPP)を内側にし、真空成形機を用いて、ガスバリア性成形容器としてのカップ状容器(内容積70cc、口径62mm×底径52mm×深さ28mm)に熱成形加工した。このカップ状容器に、調湿剤を10g充填し、容器内の相対湿度を100%または30%に調整した。次に、蓋材として上記酸素吸収性多層フィルムを使用し、窒素置換により初期酸素濃度を2vol%に調整しながら、熱融着による接合により密封して、酸素吸収性密封容器を得た。なお、熱融着は、エーシンパック工業株式会社製のパックシール機を用い、融着温度を240℃、融着時間を2秒、融着圧力を0.3MPaとして行った。その後、23℃、相対湿度50%の条件で保存し、1ヶ月保存後の容器内酸素濃度および1ヶ月保存後の蓋材とガスバリア性成形容器とのシール強度の測定、並びに、蓋材を開封した後の容器内の臭気を確認した。なお、シール強度の測定においては、熱融着部から15mm幅の切片を切り出し、その切片のシール強度を引張試験機にて測定した(以下同様。)。
(実施例4-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドしたこと以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドしたこと以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例4-7と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例4-7と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(実施例4-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例4-1と同様にして酸素吸収性密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(比較例4-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、メタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体(製品名;住友化学株式会社製「アクリフトWK402」)を用いること以外は、実施例4-1と同様にして密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(比較例4-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例4-1と同様にして密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
(比較例4-3)
 平均粒径30μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物と直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、以下、比較例4-3において「LLDPE」と表記する。)とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。次いで、酸素吸収性樹脂組成物Aに代えて上記鉄系酸素吸収性樹脂組成物を用いた以外は実施例4-1と同様にして密封容器を作製した。その密封容器について、実施例4-1と同様にして容器内酸素濃度およびシール強度の測定、並びに容器内の臭気確認を行った。これらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000016
 実施例4-1~4-11から明らかなように、本発明の酸素吸収性密封容器は、高湿度下、低湿度下ともに良好な酸素吸収性能を示し、シール強度を保持し、かつ酸素吸収後の臭気の発生もなかった。
(実施例5-1)
 テトラリン環含有共重合ポリオレフィン化合物A100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようドライブレンドして得られた混合物を、直径37mmのスクリューを2本有する2軸押出機に15kg/hの速度で供給し、シリンダー温度240℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングすることで、酸素吸収性樹脂組成物Cを得た。
 次に、2台の押出機、フィードブロック、Tダイ、冷却ロールおよび巻き取り機を備えた共押出装置を用い、第1の押出機から低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLD LC602A」。以下、実施例5-1~5-11、比較例5-1~5-5において「LDPE」と表記する。)、第2の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Cを押し出し、LDPE/酸素吸収層/LDPEの順となるように、フィードブロックを介して、2種3層フィルムである幅800mmの酸素吸収性多層フィルムを作製した。その後、60m/分で酸素吸収性多層フィルムCの片面をコロナ放電処理した。
 次に、得られた酸素吸収性多層フィルムCのコロナ処理面側に、LDPEによる押し出しラミネートにて多層紙基材を積層することで、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-250HV/CAT-RT86L-60」、3μm)/アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-AE」、12μm)/ウレタン系アンカーコート剤(製品名;東洋モートン株式会社製「EL-557A/B」、0.5μm)/LDPE(15μm)/LDPE(20μm)/酸素吸収層(30μm)/LDPE(20μm)という構成を有するフィルム状の酸素吸収性紙基材多層体(酸素吸収性多層体)を得た。そして、この多層体を製函することで、底部7cm角、1000mL用ゲーベルトップ型の酸素吸収性紙容器を得た。このとき、紙容器の成形性および加工性は良好であり、容易に製函することができた。
 この酸素吸収性紙容器内に、ヘッドスペースの空気量が20ccとなるよう日本酒を1000mL充填した後、ゲーベルトップ型紙容器の上部の内面(LDPE)同士を熱融着して密封した。このようにして得られた密封紙容器を35℃で1ヶ月保管した。そして、1ヶ月保管後の紙容器内の酸素濃度(ヘッドスペース酸素濃度)の測定と日本酒の風味の確認を行なった。また、1ヶ月保管後のゲーベルトップ型紙容器上部の熱融着強度を測定した。これらの結果を表5に示す。
(実施例5-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例5-1と同様にして酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例5-1と同様にして酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5-1に示す。
(実施例5-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例5-1と同様にして酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例5-1と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(II)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例5-1と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例5-1と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-8)
 ステアリン酸コバルト(II)にコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例5-7と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(II)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例5-7と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例5-1と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(実施例5-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例5-1と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(比較例5-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて合成例1で使用したメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体を用いたこと以外は、実施例5-1と同様にして、紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(比較例5-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例5-1と同様にして、紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(比較例5-3)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてN-MXD6(製品名;三菱ガス化学株式会社製「MXナイロン S6011」)を用いた以外は、実施例5-1と同様にして酸素吸収性樹脂組成物Dを作製した。次いで、第1~3押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、第1押出機からLDPE、第2押出機から酸素吸収層の材料として酸素吸収性樹脂組成物D、第3押出機からポリエチレン系接着性樹脂(製品名;三菱化学株式会社製「モディック M545」、以下、比較例5-3において「AD」と表記する。)をそれぞれ押し出し、フィードブロックを介して酸素吸収性多層フィルムDを得た。該多層フィルムの構成は、内層より、LDPE(20μm)/ポリエチレン系接着性樹脂(10μm)/酸素吸収層(30μm)/ポリエチレン系接着性樹脂(10μm)/LDPE(20μm)であった。次いで、酸素吸収性多層フィルムCに代えて上記酸素吸収性多層フィルムDを用いた以外は実施例5-1と同様にして、酸素吸収性紙容器を作製した。その後、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
(比較例5-4)
 平均粒径30μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLDPEとを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Cに代えてこの鉄系酸素吸収性樹脂組成物を用いること以外は、実施例5-1と同様にして、2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、以降の検討に耐え得る表面平滑なフィルムが得られなかった。
(比較例5-5)
 厚さ50μmのLDPEに、酸素吸収層として比較例5-4で得た鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにより積層し、酸素吸収層(30μm)/LDPE(50μm)のラミネートフィルムを作製し、その後、酸素吸収層面をコロナ放電処理した。
 2種3層構造の酸素吸収性多層フィルムCに代えてこのラミネートフィルムを用いること以外は実施例5-1と同様にして、LDPEによる押し出しラミネートにて多層紙基材と積層し、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(3μm)/アルミナ蒸着PETフィルム(12μm)/ウレタン系アンカーコート剤(0.5μm)/LDPE(15μm)/酸素吸収層(30μm)/LDPE(50μm)の酸素吸収性紙基材多層体を作製した。その後、この多層体を用いてゲーベルトップ型紙容器を製函しようとしたが、紙容器の角を作製することが困難であった。そのため、容器作製速度を落として紙容器の作製を試みたところ、多くの不良品を排除することでようやく紙容器を得ることができた。得られた紙容器を用いて、実施例5-1と同様にして、ヘッドスペース酸素濃度の測定、日本酒の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000017
 表5から明らかなように、実施例5-1~5-11の紙容器は、良好な酸素吸収性能を示し、保存後も内容物の風味および容器強度が保持されていることが確認された。
(実施例6-1)
 5台の押出機、フィードブロック、Tダイ、冷却ロール等を備えた5種6層の多層チューブ製造装置を用い、1台目の押出機から内層として高密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックHD HB420R」、以下、実施例6-1~6-11、比較例6-1~6-3において「HDPE」と表記する。)、2台目の押出機から酸素吸収層として酸素吸収性樹脂組成物A、3台目の押出機から接着層として接着性ポリエチレン(製品名;株式会社三菱化学製「モディックL502」、以下、実施例6-1~6-11、比較例6-1~6-3において「接着性PE」と表記する。)、4台目の押出機からガスバリア層としてエチレン-ビニルアルコール共重合体(製品名:株式会社クラレ製「エバールF171B」、以下、実施例6-1~6-11、比較例6-1~6-3において「EVOH」と表記する。)、5台目の押出機から低密度ポリエチレン(製品名:日本ポリエチレン株式会社製「ノバテックLD YF30」、以下、実施例6-1~6-11、比較例6-1~6-3において「LDPE」と表記する。)をそれぞれ押し出し、内層側から外層側に向けて順に、HDPE(120μm)/酸素吸収層(100μm)/接着性PE(30μm)/ガスバリア層(50μm)/接着性PE(30μm)/LDPE(120μm)の5種6層の多層チューブ体(内径35mm)を得た。
 この多層チューブ体を長さ160mmに切断してチューブ状成形体を得た後、そのチューブ状成形体の一方の端部に、ガスバリア性を有し、かつ高密度ポリエチレン(製品名:日本ポリエチレン株式会社製「ノバテックHD HJ360」)を主材とし、内容物を注出するための開口が形成された口部を接合した。そして、口部のチューブ状成形体側とは反対側に形成された開口を密封するための脱着可能なキャップを装着して、チューブ状容器を得た。なお、当該チューブ状容器は、下記の評価試験にて内容物を充填するため、この段階では、チューブ状成形体の他方の端部は閉じられておらず、開口した状態であった。
 上記実施例6-1で得られたチューブ状容器を用いて、下記の各試験を行った。
(1)酸素濃度
 チューブ状容器の開口した端部をヒートシールして密封した後、チューブ状容器に設けられた口部の開口から空気(酸素濃度20.8vol%)をチューブ状容器内部に導入して、その内部を空気で置換した後、100ccの空気を封入し、さらに、アルミニウム箔積層フィルムで口部の開口を密封して、さらにその上からキャップを閉めた。この容器を25℃、50%RHで7日間保管して、保管後の容器内の酸素濃度を測定した。また、キャップを閉めるところまで上記と同様にして得られた容器を25℃、50%RHで1ヶ月間保管して、保管後の容器内の酸素濃度を測定した。これらの結果を表6に示す。
(2)内容物保存性
 チューブ状容器の開口した端部をヒートシールして密封した後、チューブ状容器に設けられた口部の開口からビタミンC10%水溶液100mLをチューブ状容器内に充填し、アルミニウム箔積層フィルムで口部の開口を密封して、さらにその上からキャップを閉めた。この容器を25℃、50%RHの環境に2ヶ月間保存した後、アルミニウム箔積層フィルムを剥離して、容器内のヘッドスペースにおける臭気および内容物の色調を確認した。
(3)強度維持性
 上記「(2)内容物保持性」の試験において、2ヶ月間ビタミンC水溶液を保存した後のチューブ容器から内容物を抜き出し、チューブ状容器の多層体の部分を50回手で揉んだ後、手で揉んだ部分を観察し、層間剥離の有無を確認した。層間剥離が認めらないものを○、層間剥離が認められたものを×として評価した。
(実施例6-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドしたこと以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例6-7と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例6-7と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(実施例6-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(比較例6-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、メタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体(製品名;住友化学株式会社製「アクリフトWK402」)を用いた以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(比較例6-2)
 ステアリン酸コバルト(II)を使用しなかった以外は、実施例6-1と同様にしてチューブ状容器を作製し、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
(比較例6-3)
 平均粒径20μmの還元鉄粉100質量部に対して塩化カルシウム3質量部をコーティングした粒状の酸素吸収剤と、HDPEとを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。次いで、5台の押出機、フィードブロック、Tダイ、冷却ロール等を備えた5種6層の多層チューブ製造装置を用い、1台目の押出機からHDPE、2台目の押出機から上記鉄系酸素吸収性樹脂組成物、3台目の押出機から接着性PE、4台目の押出機からガスバリア層としてEVOH、5台目の押出機からLDPEをそれぞれ押し出し、内層側から外層側へ向けて順に、HDPE(60μm)/鉄系酸素吸収性樹脂組成物(60μm)/接着性PE(30μm)/ガスバリア層(50μm)/接着性PE(30μm)/LDPE(120μm)の5種6層の多層チューブ体(内径35mm)を得た。この多層チューブ体を長さ160mmに切断してチューブ状成形体を得た後、そのチューブ状成形体の一方の端部に、ガスバリア性を有し、かつ高密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックHD-HJ360」)を主材とし、内容物を注出するための開口が形成された口部を接合した。そして、口部のチューブ状成形体側とは反対側に形成された開口を密封するための脱着可能なキャップを装着して、チューブ状容器を得た。得られたチューブ状容器を用いて、実施例6-1と同様にして各試験を行った。これらの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000018
 実施例6-1~6-11から明らかなように、本発明のチューブ状容器は、低湿度下において良好な酸素吸収性能を示し、内容物の保存性を向上し、酸素吸収後の臭気の発生もなく、かつ強度を保持していた。
 以下の実施例7-1~7-4ではバイアルを例に挙げて実証しているが、本願明細書に示したとおり、アンプル、プレフィルドシリンジ、真空採血管に対する要求特性はバイアルに対するものと同様であるため、本発明は以下の実施例7-1~7-4により何ら限定されるものではない。
(実施例7-1)
 テトラリン環含有共重合ポリオレフィン化合物A100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようドライブレンドして得られた混合物を、直径37mmのスクリューを2本有する2軸押出機に30kg/hの速度で供給し、シリンダー温度220℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングすることにより、酸素吸収性樹脂組成物Eを得た。次いで、下記に示すとおり、この酸素吸収性樹脂組成物Eを用いて、多層インジェクション成形容器であるバイアルを製造した。その後、得られたバイアルの性能評価を、以下に示すとおりに行った。評価結果を表7に示す。
[バイアルの製造]
 下記の条件により、樹脂層(層B)を構成するポリエステルを射出シリンダーから射出し、次いで酸素吸収層(層A)を構成する酸素吸収性樹脂組成物Eを別の射出シリンダーから、層Bを構成するポリエステルと同時に射出し、次に層Bを構成するポリエステルを必要量射出して射出金型内キャビティーを満たすことにより、B/A/Bの3層構成の射出成形体を得た。その後、得られた射出成形体を所定の温度まで冷却し、ブロー金型へ移行し、ブロー成形を行うことで、バイアル(ボトル部)を製造した。ここで、バイアルの総質量は24gとし、層Aの質量はバイアルの総質量の30質量%とした。また、層Bを構成するポリエステルとしては、ポリエチレンテレフタレート樹脂(製品名;日本ユニペット株式会社製「RT-553C」、以下、実施例7-1~7-4、比較例7-1~7-2において「PET」とも略する。)を使用した。
(バイアルの形状)
 全長89mm、外径40mmφ、肉厚1.8mmとした。なお、バイアルの製造には、射出ブロー一体型成形機(UNILOY製、型式:IBS 85、4個取り)を使用した。
(バイアルの成形条件)
 層A用の射出シリンダー温度:220℃
 層B用の射出シリンダー温度:280℃
 射出金型内樹脂流路温度  :280℃
 ブロー温度        :150℃
 ブロー金型冷却水温度   : 15℃
[バイアルの性能評価]
 得られたバイアル内の酸素濃度の測定、内容物視認性の評価、落下試験、溶出試験について、以下の方法および基準にしたがって測定し、評価した。
(1)バイアル内の酸素濃度
 バイアルに純水50mLを充填し、ゴム栓及びアルミニウムキャップにて密封した。23℃、60%RHの雰囲気にて保存し、3日後及び1ヶ月後のヘッドスペースの酸素濃度を、酸素濃度測定装置(東レエンジニアリング株式会社製LC-750F)にて測定した。
(2)内容物視認性
 バイアルの内容物視認性を目視にて観察した。視認性に問題ないものを合格とした。
(3)落下試験
 バイアルを40℃、90%RHの雰囲気にて1ヶ月保存した後、純水50mLを満杯充填し、その後、ゴム栓およびアルミニウムキャップにて密封した。このようにして得られた密封容器を2mの高さから落下させ、そのときの容器外観を調査した。
(4)溶出試験
 バイアルを40℃、90%RHの雰囲気にて1ヶ月保存した後、純水50mLを満杯充填し、その後、ゴム栓およびアルミニウムキャップにて密封した。このようにして得られた密封容器を40℃、60%RHの雰囲気にて4カ月保存し、その後、純水中のトータルカーボン量(以下、TOC)を測定した。
(TOC測定)
 装置    :株式会社島津製作所製 TOC-VCPH
 燃焼炉温度 :720℃
 ガス・流量 :高純度空気、TOC計部150mL/min
 注入量   :150μL
 検出限界  :1μg/mL
(実施例7-2~7-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、表7に示すテトラリン環含有共重合ポリオレフィン化合物をそれぞれ用いること以外は、実施例7-1と同様に行い、酸素吸収性樹脂組成物およびバイアルをそれぞれ製造した。得られたバイアルの性能評価を実施例7-1と同様にそれぞれ行った。評価結果を表7に示す。
(比較例7-1)
 酸素吸収性樹脂組成物Eに代えてPET100質量部を用い、層A用の射出シリンダー温度を220℃から280℃に変更した以外は実施例7-1と同様にして、実施例7-1と同形状の単層のバイアルを製造した。得られたバイアルの性能評価を実施例7-1と同様に行った。評価結果を表7に示す。
(比較例7-2)
 ナイロンMXD6(製品名;三菱ガス化学株式会社製商品名「MXナイロン S7007」)100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.04質量部となるようドライブレンドして得られた混合物を、直径37mmのスクリューを2本有する2軸押出機に30kg/hの速度で供給し、シリンダー温度280℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングすることにより、酸素吸収性樹脂組成物Mを得た。酸素吸収性樹脂組成物Eに代えてこの酸素吸収性樹脂組成物Mを用い、層A用の射出シリンダー温度を220℃から280℃に変更した以外は実施例7-1と同様にして、バイアルを製造した。得られたバイアルの性能評価を実施例7-1と同様に行った。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000019
 表7から明らかなように、実施例7-1~7-4のバイアルは、良好な酸素吸収性を有し、長期保存後も良好な強度を維持し、容器から内容物への溶出量も低いことが確認された。さらに、実施例7-1~7-4のバイアルは、容器内部の視認性が確保され、透明性に優れていることが確認された。
(実施例8-1)
 下記に示すとおり、酸素吸収性樹脂組成物Eを用いて、シリンジを製造した。その後、得られたシリンジの性能評価を、以下に示すとおりに行った。評価結果を表8に示す。
[シリンジの製造]
 下記の条件により、樹脂層(層B)を構成するポリエステルを射出シリンダーから射出し、次いで、酸素吸収層(層A)を構成する酸素吸収性樹脂組成物Eを別の射出シリンダーから、層Bを構成するポリエステルと同時に射出し、次に層Bを構成するポリエステルを必要量射出して射出金型内キャビティーを満たすことにより、B/A/Bの3層構成のシリンジを製造した。ここで、シリンジの総質量は1.95gとし、層Aの質量はシリンジの総質量の30質量%とした。また、層Bを構成するポリエステルとしては、ポリエチレンテレフタレート(製品名;日本ユニペット株式会社製「RT-553C」、以下、実施例8-1~8-4、比較例8-1~8-1において「PET」とも略する。)を使用した。
(シリンジの形状)
 ISO11040-6に準拠した内容量1cc(スタンダード)とした。なお、シリンジの製造には、射出成形機(日精エー・エス・ビー機械株式会社製、型式:ASB-12N/10)を使用した。
(シリンジの成形条件)
 層A用の射出シリンダー温度:220℃
 層B用の射出シリンダー温度:280℃
 射出金型内樹脂流路温度  :280℃
 金型温度         : 18℃
[シリンジの性能評価]
 得られたシリンジ内の酸素濃度の測定、内容物視認性の評価、落下試験、溶出試験について、以下の方法および基準にしたがって測定し、評価した。
(1)シリンジ内の酸素濃度
 バイアルに純水1mLを充填し、トップキャップ及びガスケットを装着したプランジャーにて密封した。23℃、60%RHの雰囲気に保存し、3日後及び1ヶ月後のヘッドスペースの酸素濃度を、酸素濃度測定装置(東レエンジニアリング株式会社製LC-750F)にて測定した。
(2)シリンジの内容物視認性
 シリンジの内容物視認性を目視にて観察した。視認性に問題ないものを合格とした。
(3)耐衝撃試験
 シリンジを40℃、90%RHの雰囲気にて1ヶ月保存した後、50gの金属球をシリンジ胴部に2mの高さから落下させ、このときの破壊の有無を20個のサンプルに対して調査した。
(4)溶出試験
 シリンジを40℃、90%RHの雰囲気にて1ヶ月保存した後、純水1ccを充填し、トップキャップおよびガスケットを装着したプランジャーで密封した。このようにして得られたシリンジを40℃、60%RHの雰囲気にて4カ月保存し、その後、純水中のトータルカーボン量(以下、TOC)を測定した。
(TOC測定)
 装置    ;株式会社島津製作所製 TOC-VCPH
 燃焼炉温度 ;720℃
 ガス・流量 ;高純度空気、TOC計部150mL/min
 注入量   ;150μL
 検出限界  ;1μg/mL
(実施例8-2~8-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、表8に示すテトラリン環含有共重合ポリオレフィン化合物をそれぞれ用いること以外は、実施例8-1と同様に行い、酸素吸収性樹脂組成物およびシリンジをそれぞれ製造した。得られたシリンジの性能評価を実施例8-1と同様にそれぞれ行った。評価結果を表8に示す。
(比較例8-1)
 酸素吸収性樹脂組成物Eに代えてPET100質量部を用い、層A用の射出シリンダー温度を220℃から280℃に変更した以外は、実施例8-1と同様に行い、実施例8-1と同形状の単層のシリンジを製造した。得られたシリンジの性能評価を実施例8-1と同様に行った。評価結果を表8に示す。
(比較例8-2)
 酸素吸収性樹脂組成物Eに代えて酸素吸収性樹脂組成物Mを用い、層A用の射出シリンダー温度を220℃から280℃に変更した以外は、実施例8-1と同様にしてシリンジを製造した。得られたシリンジの性能評価を実施例8-1と同様に行った。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000020
 表8から明らかなように、実施例8-1~8-4のシリンジは、良好な酸素吸収性を有し、長期保存後も良好な強度を維持し、容器から内容物への溶出量も低いことが確認された。さらに、実施例8-1~8-4のシリンジは、容器内部の視認性が確保され、透明性に優れていることが確認された。
(実施例9-1)
 ポリエチレンテレフタレート樹脂として、日本ユニペット株式会社製の製品名「RT-553C」に代えて、日本ユニペット株式会社製の製品名「BK-2180」(以下、実施例9-1~9-4、比較例9-1~9-2において「PET」と略する。)を用いた以外は実施例7-1と同様にしてバイアルを製造した。その後、得られたバイアルの性能評価を、以下に示すとおりに行った。評価結果を表9に示す。
[バイアルの性能評価]
 得られたバイアルの酸素透過率の測定、成形後の外観評価、落下試験、溶出試験について、以下の方法および基準にしたがって測定し、評価した。
(1)バイアルの酸素透過率(OTR)
 23℃、成形体外部の相対湿度50%、成形体内部の相対湿度100%の雰囲気下にて、測定開始から30日目の酸素透過率を測定した。測定は、酸素透過率測定装置(MOCON社製、商品名:OX-TRAN 2-21 ML)を使用した。測定値が低いほど、酸素バリア性が良好であることを示す。なお、測定の検出下限界は酸素透過率5×10-5mL/(0.21atm・day・package)である。
(2)成形後の外観
 成形後のバイアルの白化の有無を、目視にて観察した。
(3)落下試験
 バイアルを40℃、90%RHにて1ヶ月保存した後、純水50mLを満杯充填し、その後、ゴム栓およびアルミニウムキャップにて密封した。このようにして得られた密封容器を2mの高さから落下させ、そのときの容器外観を調査した。
(4)溶出試験
 バイアルを40℃、90%RHにて1ヶ月保存した後、純水50mLを満杯充填し、その後、ゴム栓およびアルミニウムキャップにて密封した。このようにして得られた密封容器を40℃、60%RHにて4カ月保存し、その後、純水中のトータルカーボン量(以下、TOC)を測定した。
(TOC測定)
 装置    ;株式会社島津製作所製 TOC-VCPH
 燃焼炉温度 ;720℃
 ガス・流量 ;高純度空気、TOC計部150mL/min
 注入量   ;150μL
 検出限界  ;1μg/mL
(5)バイオ医薬保存試験
(結合比測定方法)
 等温滴定型熱量計を用い、5μMの抗原溶液(BIOLOGICAL Industries Ltd.社製FGF1-Mouse)をセル側に充填し、抗体溶液を10μLずつセルに滴下しながら、25℃で結合比を測定した。
(保存試験)
 バイアルに、50μMに調整した和光純薬工業株式会社製ANTI FGF1, Monoclonal Antibody (mAb1)を1cc充填し、8℃、50%RHの条件下で180日保存した。溶媒にはインビロジェン製リン酸バッファー(PBSpH7.4)を使用した。保存試験前および180日保存後の抗体溶液の結合比を上記の方法で測定し、保存前後での抗体活性保持率を次式に基づいて求めた。
 抗体活性保持率(%)
   =(180日保存後の抗体溶液の結合比/保存前の抗体溶液の結合比)×100
(実施例9-2~9-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて、表9に示すテトラリン環含有共重合ポリオレフィン化合物をそれぞれ用いること以外は、実施例9-1と同様に行い、酸素吸収性樹脂組成物およびバイアルをそれぞれ製造した。得られたバイアルの性能評価を実施例9-1と同様にそれぞれ行った。評価結果を表9に示す。
(比較例9-1)
 酸素吸収性樹脂組成物Eに代えてPET100質量部を用い、層A用の射出シリンダー温度を220℃から280℃に変更した以外は、実施例9-1と同様にして、実施例9-1と同形状の単層のバイアルを製造した。得られたバイアルの性能評価を実施例9-1と同様に行った。評価結果を表9に示す。
(比較例9-2)
 ナイロンMXD6(製品名;三菱ガス化学株式会社製「MXナイロン S7007」)100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.04質量部となるようドライブレンドして得られた混合物を、直径37mmのスクリューを2本有する2軸押出機に30kg/hの速度で供給し、シリンダー温度280℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングすることにより、酸素吸収性樹脂組成物Mを得た。酸素吸収性樹脂組成物Eに代えてこの酸素吸収性樹脂組成物Mを用い、層A用の射出シリンダー温度を220℃から280℃に変更した以外は、実施例9-1と同様にして、バイアルを製造した。得られたバイアルの性能評価を実施例9-1と同様に行った。評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000021
 表9から明らかなように、実施例9-1~9-4のバイアルにバイオ医薬を保存した場合、長期保存後も良好な強度を維持し、容器から内容物への溶出量も低く、保存後の薬効の低下が抑えられていることが確認された。
(実施例10-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例10-1~10-4、比較例10-1において「LLDPE1」とも表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅900mmの2種2層フィルム(厚さ;酸素吸収層50μm/シーラント層50μm)を作製した。その後、60m/分で酸素吸収層の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、コロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-319/CAT-19B」)を用いて、ナイロン6フィルム(製品名;東洋紡績株式会社製「N1202」)、およびアルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-ARH-F」)をドライラミネートにて積層して、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(50μm)/LLDPE1(50μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを得た。
 次いで、得られた酸素吸収性多層フィルムを用いて、そのLLDPE1層側を内面にして、10cm×20cmの三方シール袋を作製した。また、タウリンを含有した目薬15ccをブロック共重合ポリプロピレン容器に充填密封した。上記三方シール袋内に該容器を装填した後に、密封した。このようにして得られた密封袋を、23℃、60%RHにて保存した。そして、3日保存後および1ヶ月保存後の袋内酸素濃度の測定を行った。また、3ヶ月保存後のタウリンの保持率を測定した。これらの結果を表10に示す。なお、タウリンの保持率の測定においては、日本薬局方記載の定量法に基づき測定した。
(実施例10-2)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例10-1と同様にして酸素吸収性多層フィルムを得た。その後、その酸素吸収性多層フィルムを用いた以外は実施例10-1と同様にして三方シール袋を作製した。また、その三方シール袋を用い、タウリンを含有した目薬15ccを充填密封したブロック共重合ポリプロピレン容器に代えて、50質量%含有ブドウ糖液1000ccをプロピレン-エチレンブロック共重合体からなる輸液袋に充填密封し、121℃、20分間の加熱処理を行った後の該袋を用いた以外は、実施例10-1と同様にして密封袋を得た。その密封袋について、実施例10-1と同様にして袋内酸素濃度を測定し、また、ブドウ糖液の保持率を測定した。なお、ブドウ糖液の保持率の測定においては、日本薬局方記載の定量法に基づき測定した。これらの結果を表10に示す。
(実施例10-3)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例10-1と同様にして酸素吸収性多層フィルムを得た。その後、その酸素吸収性多層フィルムを用いた以外は実施例10-1と同様にして三方シール袋を作製した。また、その三方シール袋を用い、タウリンを含有した目薬15ccを充填密封したブロック共重合ポリプロピレン容器に代えて、アミノ酸10質量%含有液5ccを充填密封したプロピレン-エチレンブロック共重合体からなるアンプルを用いた以外は、実施例10-1と同様にして密封袋を得た。その密封袋について、実施例10-1と同様にして袋内酸素濃度を測定し、また、アミノ酸の保持率を測定した。なお、アミノ酸の保持率の測定においては、日本薬局方記載の定量法に基づき測定した。これらの結果を表10に示す。
(実施例10-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例10-1と同様にして酸素吸収性多層フィルムを得た。その後、その酸素吸収性多層フィルムを用いた以外は実施例10-1と同様にして三方シール袋を作製した。また、その三方シール袋を用い、タウリンを含有した目薬15ccを充填密封したブロック共重合ポリプロピレン容器に代えて、エピネフリン0.1質量%含有液1ccをプロピレン-エチレンブロック共重合体からなるプレフィルドシリンジバレルに充填し、ブチルゴムからなるゴム栓にて先端とプランジャー部を密封した後のプレフィルドシリンジを用いた以外は、実施例10-1と同様にして密封袋を得た。その密封袋について、実施例10-1と同様にして袋内酸素濃度を測定し、また、エピネフリンの保持率を測定した。なお、エピネフリンの保持率の測定においては、日本薬局方記載の定量法に基づき測定した。これらの結果を表10に示す。
(比較例10-1)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。その鉄系酸素吸収性樹脂組成物を用いて、実施例10-1と同様に2種2層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ50μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例10-1において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ50μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 次に、そのラミネートフィルムのコロナ処理面側に、実施例10-1と同様にドライラミネートにて各層を積層し、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(50μm)/LLDPE2(50μm)の鉄系酸素吸収性多層フィルムを作製した。
 次いで、得られた鉄系酸素吸収性多層フィルムを用いて、実施例10-1と同様にして三方シール袋を作製して、その三方シール袋を用いた以外は実施例10-2と同様にして密封袋を得た。その密封袋について、実施例10-2と同様にして袋内酸素濃度とブドウ糖液の保持率を測定した。これらの結果を表10に示す。
Figure JPOXMLDOC01-appb-T000022
 実施例10-1~10-4の結果から明らかなように、本発明の薬液が充填された容器の保存方法によると、容器が良好な酸素吸収性能を示し、容器に密封された薬液成分の劣化を抑制した。
(実施例11-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例11-1~11-4、比較例11-1において「LLDPE1」と表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅900mmの2種2層フィルム(厚さ;酸素吸収層30μm/シーラント層30μm)を作製した。その後、60m/分で酸素吸収層の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、得られたフィルムのコロナ処理面側に、低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLD LC604」)を用いて、押し出しラミネートにて下記各層を積層し、晒クラフト紙(坪量50g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM251/CAT-RT88」、3μm)/アルミニウム箔(7μm)/ウレタン系アンカーコート剤(東洋モートン株式会社製「EL-557A/B」、0.5μm)/低密度ポリエチレン(20μm)/酸素吸収層(30μm)/LLDPE1(30μm)の酸素吸収性多層紙基材を得た。
 次いで、得られた酸素吸収性多層紙基材を切断し、12cm×12cmの大きさの酸素吸収性多層紙基材を2枚用意した。この2枚の酸素吸収性多層紙基材を、LLDPE1側を内面にして、シール幅5mmにて3方をヒートシールすることで、酸素吸収性紙基材袋(三方シール袋)を作製した。また、薬効成分インドメタシンを0.5質量%、酢酸トコフェロールを0.3質量%、タルクを10質量%、ゴム粘着剤10gを含有する組成物を10cm×10cmの不織布からなる支持体に展着させることで、薬効成分を含有する層を作製した。さらに、薬効成分を含有する層に、エンボス加工を施した厚さ25μmの無延伸ポリプロピレンからなる離型フィルムを貼り付け、薬効成分を含有する貼付剤を作製した。貼付剤の離型フィルム側の外観は白色であった。上記三方シール袋内に該貼付剤を装填した後に、密封した。このようにして得られた密封袋を、23℃、60%RHにて保存した。そして、3日保存後および7日保存後の袋内酸素濃度の測定と、3ヶ月保存後の酢酸トコフェロールの保持率を測定した。また、密封袋を40℃、20%RHに3カ月保存し、貼付剤の離型フィルム側の色調を調査した。これらの結果を表11に示す。なお、酢酸トコフェロールの保持率の測定においては、日本薬局方記載の定量法に基づき測定した。
(実施例11-2)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例11-1と同様にして酸素吸収性多層紙基材を得た。その後、その酸素吸収性多層紙基材を用いた以外は実施例11-1と同様にして三方シール袋、密封袋を作製して、実施例11-1と同様に袋内酸素濃度と酢酸トコフェロール保持率の測定、および貼付剤の離型フィルム側の色調調査を行った。これらの結果を表11に示す。
(実施例11-3)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例11-1と同様にして酸素吸収性多層紙基材を得た。その後、その酸素吸収性多層紙基材を用いた以外は実施例11-1と同様にして三方シール袋、密封袋を作製して、実施例11-1と同様に袋内酸素濃度と酢酸トコフェロール保持率の測定、および貼付剤の離型フィルム側の色調調査を行った。これらの結果を表11に示す。
(実施例11-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例11-1と同様にして酸素吸収性多層紙基材を得た。その後、その酸素吸収性多層紙基材を用いた以外は実施例11-1と同様にして三方シール袋、密封袋を作製して、実施例11-1と同様に袋内酸素濃度の測定と酢酸トコフェロール保持率の測定、および貼付剤の離型フィルム側の色調調査を行った。これらの結果を表11に示す。
(比較例11-1)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。その鉄系酸素吸収性樹脂組成物を用いて、実施例11-1と同様に2種2層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ30μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例11-1において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 次に、そのラミネートフィルムのコロナ処理面側に、実施例11-1と同様にドライラミネートにて各層を積層し、晒クラフト紙(坪量50g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM251/CAT-RT88」、3μm)/アルミニウム箔(7μm)/ウレタン系アンカーコート剤(東洋モートン株式会社製「EL-557A/B」、0.5)/低密度ポリエチレン(20μm)/酸素吸収層(30μm)/LLDPE2(30μm)の鉄系酸素吸収性多層紙基材を作製した。
 次いで、得られた鉄系酸素吸収性多層紙基材を用いた以外は実施例11-1と同様にして三方シール袋、密封袋を作製して、実施例11-1と同様に袋内酸素濃度の測定と酢酸トコフェロール保持率の測定、および貼付剤の離型フィルム側の色調調査を行った。これらの結果を表11に示す。
Figure JPOXMLDOC01-appb-T000023
 実施例11-1~11-4の結果から明らかなように、本発明の薬効成分を含んだ貼付剤の保存によると、容器が良好な酸素吸収性能を示し、薬効成分の劣化を抑制した。
(実施例12-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例12-1~12-4、比較例12-1において「LLDPE1」とも表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅900mmの2種2層の酸素吸収性フィルム(酸素吸収層(30μm)/シーラント層(30μm))を作製した。その後、60m/分で酸素吸収層の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 一方で、1台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えたシート製造装置を用い、シクロオレフィンコポリマー(製品名;TOPAS ADVANCED POLYMERS社製「TOPAS8007-F」。以下、実施例12-1~12-4、比較例12-1において「COC」と表記する。)を10m/分で押し出し、厚さ250μmの単層シートを作製した。この単層シートの片面にコロナ放電処理を施し、コロナ放電処理面に、塩化ビニリデン樹脂(以下、実施例12-1~12-4、比較例12-1において「PVDC」と表記する。)の水分散体(製品名;旭化成株式会社製「サランラテックスL-509」)を、グラビアコーティングを用いて15μmの厚さでコーティングして、2種2層のガスバリア性シート(厚さ;ガスバリア層15μm/COC層250μm)を作製した。
 次いで、ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM251/CAT-RT88」)を用いて、上記酸素吸収性フィルムの酸素吸収層とガスバリア性シートのガスバリア層とを貼り合わせ、酸素吸収性多層体を作製した。酸素吸収性多層体の構成は、LLDPE1(30μm)/酸素吸収層(30μm)/接着剤層(3μm)/ガスバリア層(15μm)/COC層(250μm)であった。酸素吸収性多層体をシーケーディー株式会社製ブリスターパック製造装置(商品名「FBP-M2」)を用いて、LLDPE1をポケット部の内側となるように、プラグアシスト圧空成形を行い、酸素吸収性底材を作製した。成形の際のショット数は毎分50ショット/分に固定し、酸素吸収性底材の寸法は、底部10mmφ、上部(開口部)9mmφ、深さ4mmとした。
 一方で、押し出しラミネートにて下記各層を積層して、アルミニウム箔(20μm)/ウレタン系アンカーコート剤(東洋モートン株式会社製「EL-557A/B」、0.5μm)/LLDPE1(20μm)のガスバリア性蓋材を作製した。
 作製した酸素吸収性底材に、ビタミンE20mgを含有した7mmφ、厚さ3mmの錠剤を収納した後に、酸素吸収性底材及びガスバリア性蓋材のLLDPE1同士を熱融着させ、密封することで、錠剤が収納された酸素吸収性PTP包装体を作製した。酸素吸収性底材側からは、内部の錠剤を視認することができた。これを40℃、60%RHの環境に保存し、1日保存後のポケット部内の酸素濃度と、3ヶ月保存後のビタミンE保持率を測定した。ビタミンE保持率の測定は高速液体クロマトグラフィーを用いて行った。これらの結果を表12に示す。
(実施例12-2)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例12-1と同様にして酸素吸収性底材を得た。その後、実施例12-1と同様にして錠剤が収納された酸素吸収性PTP包装体を作製して、実施例12-1と同様にポケット部内の酸素濃度とビタミンE保持率の測定を行った。これらの結果を表12に示す。
(実施例12-3)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例12-1と同様にして酸素吸収性底材を得た。その後、実施例12-1と同様にして錠剤が収納された酸素吸収性PTP包装体を作製して、実施例12-1と同様にポケット部内の酸素濃度とビタミンE保持率の測定を行った。これらの結果を表12に示す。
(実施例12-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例12-1と同様にして酸素吸収性底材を得た。その後、実施例12-1と同様にして錠剤が収納された酸素吸収性PTP包装体を作製して、実施例12-1と同様にポケット部内の酸素濃度とビタミンE保持率の測定を行った。これらの結果を表12に示す。
(比較例12-1)
 平均粒径20μmの鉄粉と塩化カルシウムとを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。その鉄系酸素吸収性樹脂組成物を用い、実施例12-1と同様に2種2層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ30μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例12-1において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 次に、そのラミネートフィルムのコロナ処理面側に、実施例12-1と同様にドライラミネートにて下記各層を積層し、LLDPE2(30μm)/酸素吸収層(30μm)/接着剤層(3μm)/ガスバリア層(15μm)/COC層(250μm)の鉄系酸素吸収性底材を作製した。
 次いで、得られた鉄系酸素吸収性底材を用いて、実施例12-1と同様にして錠剤が収納された酸素吸収性PTP包装体を作製して、実施例12-1と同様にポケット部内の酸素濃度の測定とビタミンE保持率の測定を行った。これらの結果を表12に示す。
Figure JPOXMLDOC01-appb-T000024
 実施例12-1~12-4の結果から明らかなように、本発明の酸素吸収性PTP包装体は、良好な被保存物視認性、酸素吸収性能を示し、容器に密封されたビタミンEの劣化を抑制した。
(実施例13-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次いで、第1~4押出機、フィードブロック、円筒ダイ、ブロー金型等を備えた多層容器製造装置を用い、第1押出機から酸素透過層と外層として高密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックHDHB420R」、以下、実施例13-1~13-4、比較例13-1において「HDPE1」と表記する)を、第2押出機から酸素吸収層として酸素吸収性樹脂組成物Aを、第3押出機から接着剤層としてポリエチレン系接着性樹脂(製品名;三菱化学株式会社製「モディック M545」。以下、実施例13-1~13-4、比較例13-1において「AD」と表記する)を、第4押出機からガスバリア層としてエチレン-ビニルアルコール共重合体(製品名;株式会社クラレ製「エバールF101B」)をそれぞれ押し出し、フィードブロックと金型を介して300ccの4種6層の酸素吸収性多層ボトルを作製した。酸素吸収性多層ボトルの層構成は、酸素透過層(50μm)/酸素吸収層(50μm)/接着剤層(10μm)/ガスバリア層(30μm)/接着剤層(10μm)/外層(750μm)とした。
 一方で、直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、以下、実施例13-1~13-4、比較例13-1において「LLDPE1」と表記する。)を用い、押出ラミネートにて下記各層を積層して、アルミニウム箔(20μm)/ウレタン系アンカーコート剤(東洋モートン株式会社製「EL-557A/B」、0.5μm)/LLDPE1(20μm)のガスバリア性トップフィルム(蓋材)を作製した。
 作製した酸素吸収性多層ボトルに、ビタミンC2000mgを含有した7mmφ、厚さ3mmの錠剤を200錠収納した後に、酸素吸収性多層ボトルのHDPE1とガスバリア性トップフィルム(蓋材)のLLDPE1とを熱融着させ、密封することで、錠剤が収納された酸素吸収性多層ボトルを作製した。これを40℃、60%RHの環境に保存し、7日保存後の酸素吸収性多層ボトル内の酸素濃度と、6ヶ月保存後のビタミンC保持率を測定した。ビタミンC保持率の測定は日本薬局方の試験法に準拠した。これらの結果を表13に示す。
(実施例13-2)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例13-1と同様にして酸素吸収性多層ボトルを得た。その後、実施例13-1と同様にして錠剤が収納された酸素吸収性多層ボトルを作製して、実施例13-1と同様に酸素吸収性多層ボトル内の酸素濃度とビタミンC保持率の測定を行った。これらの結果を表13に示す。
(実施例13-3)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例13-1と同様にして酸素吸収性多層ボトルを得た。その後、実施例13-1と同様にして錠剤が収納された酸素吸収性多層ボトルを作製して、実施例13-1と同様に酸素吸収性多層ボトル内の酸素濃度とビタミンC保持率の測定を行った。これらの結果を表13に示す。
(実施例13-4)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例13-1と同様にして酸素吸収性多層ボトルを得た。その後、実施例13-1と同様にして錠剤が収納された酸素吸収性多層ボトルを作製して、実施例13-1と同様に酸素吸収性多層ボトル内の酸素濃度とビタミンC保持率の測定を行った。これらの結果を表13に示す。
(比較例13-1)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、LLDPE1と30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Aに代えてこの鉄系酸素吸収性樹脂組成物を用いた以外は実施例13-1と同様にして、4種6層の酸素吸収性多層ボトルを作製した。酸素吸収性多層ボトルの層構成は、酸素透過層(50μm)/酸素吸収層(50μm)/接着剤層(10μm)/酸素バリア層(30μm)/接着剤層(10μm)/外層(750μm)とした。その後、実施例13-1と同様にして錠剤が収納された酸素吸収性多層ボトルを作製して、実施例13-1と同様に酸素吸収性多層ボトル内の酸素濃度の測定とビタミンC保持率の測定を行った。これらの結果を表13に示す。
Figure JPOXMLDOC01-appb-T000025
 実施例13-1~13-4の結果から明らかなように、本発明の酸素吸収性多層ボトルは、良好な被保存物の視認性、酸素吸収性能を示し、ボトルに密封されたビタミンCの劣化を抑制した。
(実施例14-1)
 まず、直径37mmのスクリューを2本有する2軸押出機に、テトラリン環含有共重合ポリオレフィン化合物Cを100質量部と、コバルト量として0.05質量部のステアリン酸コバルト(II)とをドライブレンドして得られた混合物を供給して、押出温度220℃、スクリュー回転数100rpmの条件で混練し、酸素吸収性樹脂組成物Fを得た。
 次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例14-1~14-9、比較例14-1~14-3において「LLDPE1」と表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Fをそれぞれ押し出し、フィードブロックを介して幅900mmの2種3層フィルム(LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE1(20μm))を作製した。その後、60m/分で一方のLLDPE1の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、コロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-319/CAT-19B」)を用いて、ナイロン6フィルム(製品名;東洋紡績株式会社製「N1202」)、およびアルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-ARH-F」)をドライラミネートにて積層して、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE1(20μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを得た。
 得られた酸素吸収性多層フィルムを用いて、LLDPE1側を内面にして、側面フィルム2枚と底面フィルム1枚をヒートシールして貼り合わせることで上部開口した自立性袋(横120mm×縦200mm×底マチ40mmのスタンディングパウチ)に加工したところ、袋加工性は良好であった。
 この酸素吸収性自立性袋内に、グレープフルーツ100gとシラップ液100gの混合物を充填し、ヘッドスペース空気量が5ccになるように調整しながら自立性袋の上部開口をヒートシールして密封した。次いで、このようにして得られた密封袋に対して、90℃、40分間のボイル処理を行い、その後、30℃にて保存した。そして、7日保存後、及び1ヶ月保存後の密封袋をそれぞれ開封し、グレープフルーツの色調、及び風味評価をそれぞれ調査した。なお、グレープフルーツの色調、及び風味の評価は、テスター5人の評価の平均値とした。また、1ヶ月保存後の密封袋内の酸素濃度を測定した。これらの結果を表14に示す。
(実施例14-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-7)
 テトラリン環含有共重合ポリオレフィン化合物Cに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例14-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(実施例14-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例14-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
(比較例14-1)
 テトラリン環含有共重合ポリオレフィン化合物Cに代えて、合成例3で使用したメタクリル酸メチル含有量が5質量%のエチレン-メタクリル酸メチル共重合体を用いた以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。1ヶ月保存後の酸素濃度は5.4vol%に低下していたが、グレープフルーツの風味および色調は低下していた。自立性袋は酸素を吸収しないが、グレープフルーツ自体が酸化された為に、酸素濃度が低下したと考えられる。これらの結果を表14に示す。
(比較例14-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例14-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。1ヶ月保存後の酸素濃度は6.1vol%に低下していたが、グレープフルーツの風味および色調は低下していた。自立性袋は酸素を吸収しないが、グレープフルーツ自体が酸化された為に、酸素濃度が低下したと考えられる。これらの結果を表14に示す。
(比較例14-3)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Fに代えてその鉄系酸素吸収性樹脂組成物を用いた以外は実施例14-1と同様にして2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ50μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例14-3において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 次に、そのラミネートフィルムのコロナ処理面側に、実施例14-1と同様に下記各層をドライラミネートにて積層し、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(30μm)/LLDPE2(50μm)の鉄系酸素吸収性多層フィルムを作製した。
 次いで、得られた鉄系酸素吸収性多層フィルムを用いて、実施例14-1と同様にして自立性袋、密閉袋を作製して、実施例14-1と同様に袋内酸素濃度の測定、グレープフルーツの風味および色調の確認を行った。これらの結果を表14に示す。
Figure JPOXMLDOC01-appb-T000026
 実施例14-1~14-9の結果から明らかなように、本発明の果肉類の保存方法によると、容器が良好な酸素吸収性能を示し、内容物の風味および色調低下を抑制していた。
(実施例15-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例15-1~15-11、比較例15-1~15-3において「LLDPE1」と表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅900mmの2種3層の酸素吸収性多層フィルム(LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE1(20μm))を作製した。その後、60m/分で一方のLLDPE1の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、コロナ処理面側にLLDPE1による押し出しラミネートにて、多層紙基材を積層することで、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-250HV/CAT-RT86L-60」、3μm)/アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-AE」、12μm)/ウレタン系アンカーコート剤(製品名;東洋モートン株式会社製「EL-557A/B」、0.5μm)/LLDPE1(15μm)/LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE1(20μm)の酸素吸収性紙基材多層体(酸素吸収性多層体)を得た。
 次いで、得られた多層体を製函することで、底部7cm角、1000mL用ゲーベルトップ型の酸素吸収性紙容器を得た。このとき、紙容器の成形性および加工性は良好であり、容易に製函することができた。
 この酸素吸収性紙容器内に、ヘッドスペースの空気量が20ccとなるよう芋焼酎を1000mL充填した後、ゲーベルトップ型紙容器の上部の内面(LLDPE1)同士を熱融着して密封した。このようにして得られた密封紙容器を35℃で1ヶ月保存した。そして、7日保存後と1ヶ月保存後の密封紙容器をそれぞれ開封し、芋焼酎の風味をそれぞれ調査した。なお、芋焼酎の風味の評価は、テスター5人の評価の平均値とした。また、1ヶ月保存後の紙容器内の酸素濃度(ヘッドスペース酸素濃度)、およびゲーベルトップ型紙容器上部の熱融着強度を測定した。これらの結果を表15に示す。なお、熱融着強度の測定においては、JIS Z0238に準拠して測定した(以下同様。)。
(実施例15-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例15-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例15-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(実施例15-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(比較例15-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて合成例1で使用したメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体を用いた以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(比較例15-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例15-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例15-1と同様にして酸素吸収性紙容器、密封紙容器を作製して、実施例15-1と同様にヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、紙容器上部の熱融着強度の測定を行った。これらの結果を表15に示す。
(比較例15-3)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Aに代えてその鉄系酸素吸収性樹脂組成物を用いた以外は実施例15-1と同様にして2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ50μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例15-3において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 2種3層フィルムに代えてこのラミネートフィルムを用いた以外は、実施例15-1と同様に押し出しラミネートを行なって多層紙基材と積層し、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(3μm)/アルミナ蒸着PETフィルム(12μm)/ウレタン系アンカーコート剤(0.5μm)/LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE2(50μm)の酸素吸収性紙基材多層体を作製した。その後、この多層体を用いてゲーベルトップ型紙容器を製函しようとしたが、紙容器の角を作製することが困難であった。そのため、容器作製速度を落として紙容器の作製を試みたところ、多くの不良品を排除することでようやく紙容器を作製することができた。その後、実施例15-1と同様に密封紙容器の作製、ヘッドスペース酸素濃度の測定、芋焼酎の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表15に示す。
Figure JPOXMLDOC01-appb-T000027
 実施例15-1~15-11の結果から明らかなように、本発明のアルコール飲料の保存方法によると、容器が良好な酸素吸収性能を示し、内容物の風味低下を抑制し、かつ保存前の熱融着強度を保持していた。
(実施例16-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLD LC602A」。以下、実施例16-1~16-11、比較例16-1~16-3において「LDPE」と略する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅800mmの2種3層フィルム(LDPE(20μm)/酸素吸収層(30μm)/LDPE(20μm))を作製した。その後、60m/分で一方のLDPEの表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、得られた2種3層フィルムのコロナ処理面側に、LDPEによる押し出しラミネートにて、多層紙基材を積層することで、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-250HV/CAT-RT86L-60」、3μm)/アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-AE」、12μm)/ウレタン系アンカーコート剤(製品名;東洋モートン株式会社製「EL-557A/B」、0.5μm)/LDPE(15μm)/LDPE(20μm)/酸素吸収層(30μm)/LDPE(20μm)の酸素吸収性紙基材多層体(酸素吸収性多層体)を得た。そして、この多層体を製函することで、底部7cm角、1000mL用ゲーベルトップ型の酸素吸収性紙容器を得た。このとき、紙容器の成形性および加工性は良好であり、容易に製函することができた。
 この酸素吸収性紙容器内に、ヘッドスペースの空気量が20ccとなるよう玉露茶を1000mL充填した後、ゲーベルトップ型紙容器の上部の内面(LDPE)同士を熱融着して密封した。このようにして得られた密封紙容器を35℃で1ヶ月保存した。そして、7日保存後、及び1ヶ月保存後の玉露茶の風味の確認を行った。また、1ヶ月保存後の紙容器内の酸素濃度(ヘッドスペース酸素濃度)、およびゲーベルトップ型紙容器上部の熱融着強度を測定した。これらの結果を表16に示す。
(実施例16-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例16-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例16-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(実施例16-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例16-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(比較例16-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて合成例1で使用したメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体を用いた以外は、実施例16-1と同様にして多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(比較例16-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例16-1と同様にして多層フィルムを得た。その後、実施例16-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例16-1と同様にヘッドスペース酸素濃度の測定、玉露茶の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
(比較例16-3)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLDPEとを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Aに代えて鉄系酸素吸収性樹脂組成物を用いた以外は、実施例16-1と同様に行なって、2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ50μmのLDPEに、酸素吸収層として上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。2種3層構造の酸素吸収性多層フィルムに代えてこのラミネートフィルムを用いた以外は、実施例16-1と同様にLDPEによる押し出しラミネートを行なって多層紙基材と積層し、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(3μm)/アルミナ蒸着PETフィルム(12μm)/ウレタン系アンカーコート剤(0.5μm)/LDPE(15μm)/酸素吸収層(30μm)/LDPE(50μm)の酸素吸収性紙基材多層体を作製した。その後、この多層体を用いてゲーベルトップ型紙容器を製函しようとしたが、紙容器の角を作製することが困難であった。そのため、容器作製速度を落として紙容器の作製を試みたところ、多くの不良品を排除することでようやく紙容器を作製することができた。その後、実施例16-1と同様に密封紙容器の作製、ヘッドスペース酸素濃度の測定、玉露茶の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表16に示す。
Figure JPOXMLDOC01-appb-T000028
 実施例16-1~16-11の結果から明らかなように、本発明の液状茶又はペースト状茶の保存方法によると、容器が良好な酸素吸収性能を示し、内容物の風味低下を抑制し、かつ保存前の熱融着強度を保持していた。
(実施例17-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLD LC602A」。以下、実施例17-1~17-11、比較例17-1~17-3において「LDPE」と略する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅800mmの2種3層フィルム(LDPE(20μm)/酸素吸収層(30μm)/LDPE(20μm))を作製した。その後、60m/分で一方のLDPEの表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、得られた2種3層フィルムのコロナ処理面側に、LDPEによる押し出しラミネートにて、多層紙基材を積層することで、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-250HV/CAT-RT86L-60」、3μm)/アルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-AE」、12μm)/ウレタン系アンカーコート剤(製品名;東洋モートン株式会社製「EL-557A/B」、0.5μm)/LDPE(15μm)/LDPE(20μm)/酸素吸収層(30μm)/LDPE(20μm)の酸素吸収性紙基材多層体(酸素吸収性多層体)を得た。そして、この多層体を製函することで、底部7cm角、1000mL用ゲーベルトップ型の酸素吸収性紙容器を得た。このとき、紙容器の成形性および加工性は良好であり、容易に製函することができた。
 この酸素吸収性紙容器内に、ヘッドスペースの空気量が20ccとなるようオレンジ果汁を1000mL充填した後、ゲーベルトップ型紙容器の上部の内面(LDPE)同士を熱融着して密封した。このようにして得られた密封紙容器を35℃で1ヶ月保存した。そして、7日保存後、及び1ヶ月保存後のオレンジ果汁の風味の確認を行った。また、1ヶ月保存後の紙容器内の酸素濃度(ヘッドスペース酸素濃度)、およびゲーベルトップ型紙容器上部の熱融着強度を測定した。これらの結果を表17に示す。
(実施例17-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例17-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例17-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(実施例17-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例17-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(比較例17-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて合成例1で使用したメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体を用いた以外は、実施例17-1と同様にして多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(比較例17-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例17-1と同様にして多層フィルムを得た。その後、実施例17-1と同様にして酸素吸収性紙容器、密閉紙容器を作製して、実施例17-1と同様にヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
(比較例17-3)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLDPEとを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Aに代えて鉄系酸素吸収性樹脂組成物を用いた以外は、実施例17-1と同様に行なって、2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ50μmのLDPEに、酸素吸収層として上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。2種3層構造の酸素吸収性多層フィルムに代えてこのラミネートフィルムを用いた以外は、実施例17-1と同様にLDPEによる押し出しラミネートを行なって多層紙基材と積層し、晒クラフト紙(坪量330g/m)/ウレタン系ドライラミネート用接着剤(3μm)/アルミナ蒸着PETフィルム(12μm)/ウレタン系アンカーコート剤(0.5μm)/LDPE(15μm)/酸素吸収層(30μm)/LDPE(50μm)の酸素吸収性紙基材多層体を作製した。その後、この多層体を用いてゲーベルトップ型紙容器を製函しようとしたが、紙容器の角を作製することが困難であった。そのため、容器作製速度を落として紙容器の作製を試みたところ、多くの不良品を排除することでようやく紙容器を作製することができた。その後、実施例17-1と同様に密閉紙容器の作製、ヘッドスペース酸素濃度の測定、オレンジ果汁の風味の確認、および紙容器上部の熱融着強度の測定を行なった。これらの結果を表17に示す。
Figure JPOXMLDOC01-appb-T000029
 実施例17-1~17-11の結果から明らかなように、本発明の果汁及び/又は野菜汁の保存方法によると、容器が良好な酸素吸収性能を示し、内容物の風味低下を抑制し、かつ保存前の熱融着強度を保持していた。
(実施例18-1)
 まず、実施例2-1と同様にして、酸素吸収性樹脂組成物Aを得た。次に、2台の押出機、フィードブロック、Tダイ、冷却ロール、コロナ放電処理装置、巻き取り機等を備えた多層フィルム製造装置を用い、1台目の押出機からシーラント層の材料として直鎖状低密度ポリエチレン(製品名;日本ポリエチレン株式会社製「ノバテックLL UF641」、190℃のMFR2.1g/10分、240℃のMFR4.4g/10分、250℃のMFR5.2g/10分、以下、実施例18-1~18-11、比較例18-1~18-3において「LLDPE1」と表記する。)を、2台目の押出機から酸素吸収層の材料として酸素吸収性樹脂組成物Aをそれぞれ押し出し、フィードブロックを介して幅900mmの2種3層フィルム(LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE1(20μm))を作製した。その後、60m/分で一方のLLDPE1の表面をコロナ放電処理して、フィルムロールを作製した。得られたフィルムロールを観察したところ、コブ等の偏肉はなかった。
 次に、得られた2種3層フィルムのコロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン株式会社製「TM-319/CAT-19B」)を用いて、ナイロン6フィルム(製品名;東洋紡績株式会社製「N1202」)、およびアルミナ蒸着PETフィルム(製品名;凸版印刷株式会社製「GL-ARH-F」)をドライラミネートにて積層して、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/LLDPE1(20μm)/酸素吸収層(30μm)/LLDPE1(20μm)の酸素吸収性多層体からなる酸素吸収性多層フィルムを得た。
 次いで、得られた酸素吸収性多層フィルムを用いて、そのLLDPE1側を内面にして、10cm×20cmの三方シール袋を作製し、この三方シール袋内にビーフジャーキーを100g充填した後に、窒素置換により酸素濃度を2vol%になるように調整しながら密封した。このようにして得られた密封袋を、23℃にて保存した。そして、7日保存後および1ヶ月保存後の袋内酸素濃度の測定を行った。また、1ヶ月保存後のビーフジャーキーの風味および色調の確認を行った。さらに、保存前および6ヶ月保存後の袋のシール強度の測定を行った。これらの結果を表18に示す。なお、シール強度の測定においては、三方シール袋の短辺部分のシール強度をJIS Z0238に準拠して測定した(以下同様。)。
(実施例18-2)
 コバルト量を0.05質量部に代えて0.01質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-3)
 コバルト量を0.05質量部に代えて0.1質量部となるようステアリン酸コバルト(II)をドライブレンドした以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-4)
 ステアリン酸コバルト(II)に代えて酢酸コバルト(II)を用いた以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-5)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-6)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-7)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Bを用いた以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-8)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸マンガン(II)をマンガン量が0.05質量部となるようにドライブレンドした以外は、実施例18-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-9)
 ステアリン酸コバルト(II)をコバルト量が0.05質量部となるようにドライブレンドすることに代えてステアリン酸鉄(III)を鉄量が0.05質量部となるようにドライブレンドした以外は、実施例18-7と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-10)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Cを用いた以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(実施例18-11)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えてテトラリン環含有共重合ポリオレフィン化合物Dを用いた以外は、実施例18-1と同様にして酸素吸収性多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(比較例18-1)
 テトラリン環含有共重合ポリオレフィン化合物Aに代えて合成例1で使用したメタクリル酸メチル含有量が25質量%のエチレン-メタクリル酸メチル共重合体を用いた以外は、実施例18-1と同様にして多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(比較例18-2)
 ステアリン酸コバルト(II)を使用しなかったこと以外は、実施例18-1と同様にして多層フィルムを得た。その後、実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
(比較例18-3)
 平均粒径20μmの鉄粉と塩化カルシウムを質量比100:1の割合で混合し、この混合物とLLDPE1とを30:70の質量比で混練して、鉄系酸素吸収性樹脂組成物を得た。酸素吸収性樹脂組成物Aに代えてその鉄系酸素吸収性樹脂組成物を用いた以外は実施例18-1と同様にして2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉に由来する凹凸が発生し、以降の検討に耐え得る表面が平滑なフィルムが得られなかった。そのため、厚さ50μmの直鎖状低密度ポリエチレンフィルム(製品名;東セロ株式会社製「トーセロT.U.X HC」、以下、比較例18-3において「LLDPE2」と表記する。)に、酸素吸収層として、上記鉄系酸素吸収性樹脂組成物を厚さ30μmで押し出しラミネートにて積層し、その後、鉄系酸素吸収性樹脂組成物の層側の表面を60m/分でコロナ放電処理して、ラミネートフィルムを得た。
 次に、そのラミネートフィルムのコロナ処理面側に、実施例18-1と同様にドライラミネートにて積層し、アルミナ蒸着PETフィルム(12μm)/ウレタン系ドライラミネート用接着剤(3μm)/ナイロン6フィルム(15μm)/ウレタン系ドライラミネート用接着剤(3μm)/酸素吸収層(30μm)/LLDPE2(50μm)の鉄系酸素吸収性多層フィルムを作製した。
 次いで、酸素吸収性多層フィルムに代えて、得られた鉄系酸素吸収性多層フィルムを用いた以外は実施例18-1と同様にして三方シール袋、密封袋を作製して、実施例18-1と同様に袋内酸素濃度の測定、ビーフジャーキーの風味および色調の確認、袋のシール強度の測定を行った。これらの結果を表18に示す。
Figure JPOXMLDOC01-appb-T000030
 実施例18-1~18-11の結果から明らかなように、本発明の乾燥物品の保存方法によると、容器が良好な酸素吸収性能を示し、内容物の風味および色調低下を抑制し、かつ保存前のシール強度を保持していた。
 なお、本出願は、下記20件の特許出願に基づく優先権を主張しており、これらの内容はここに参照として取り込まれる。
 2012年2月8日に日本国特許庁に出願された特願2012-25177号
 2012年7月30日に日本国特許庁に出願された特願2012-168304号
 2013年1月18日に日本国特許庁に出願された特願2013-7769号
 2013年1月22日に日本国特許庁に出願された特願2013-9176号
 2013年1月23日に日本国特許庁に出願された特願2013-10498号
 2013年1月25日に日本国特許庁に出願された特願2013-12444号
 2013年1月29日に日本国特許庁に出願された特願2013-14493号
 2013年1月29日に日本国特許庁に出願された特願2013-14562号
 2013年1月30日に日本国特許庁に出願された特願2013-15002号
 2013年1月31日に日本国特許庁に出願された特願2013-16602号
 2013年1月31日に日本国特許庁に出願された特願2013-17248号
 2013年1月31日に日本国特許庁に出願された特願2013-17330号
 2013年1月31日に日本国特許庁に出願された特願2013-17424号
 2013年2月1日に日本国特許庁に出願された特願2013-18142号
 2013年2月1日に日本国特許庁に出願された特願2013-18203号
 2013年2月1日に日本国特許庁に出願された特願2013-18216号
 2013年2月1日に日本国特許庁に出願された特願2013-18243号
 2013年2月1日に日本国特許庁に出願された特願2013-18696号
 2013年2月4日に日本国特許庁に出願された特願2013-19543号
 2013年2月5日に日本国特許庁に出願された特願2013-20299号
 本発明の酸素吸収性樹脂組成物等は、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有するので、酸素の吸収が要求される技術分野一般において、広く且つ有効に利用可能である。また、それらの酸素吸収性樹脂組成物等は、被保存物の水分の有無によらず酸素吸収することが可能であり、さらには酸素吸収後の臭気発生がないので、例えば、食品、調理食品、飲料、医薬品、健康食品等において、殊に有効に利用可能である。しかも、金属探知機に感応しない態様を実現することもできるので、金属や金属片等を金属探知機で外部から検査する用途、例えば包装や容器等において、広く且つ有効に利用することができる。

Claims (23)

  1.  共重合ポリオレフィン化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物であって、前記共重合ポリオレフィン化合物が、下記一般式(1)で表される構成単位;
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、RおよびRは、それぞれ独立して水素原子または第1の一価の置換基を示し、前記第1の一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。)
    からなる群より選択される少なくとも1種の構成単位(a)と、
     下記一般式(2)および(3)で表される構成単位;
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、RおよびRは、それぞれ独立して水素原子または第2の一価の置換基を示し、R、R、R10およびR11は、それぞれ独立して第3の一価の置換基を示し、前記第2の一価の置換基および前記第3の一価の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよく、前記R、R、R10またはR11が複数存在する場合、複数の前記R、R、R10またはR11は、互いに同一であっても異なっていてもよい。mは0~3、nは0~7、pは0~6、qは0~4の整数をそれぞれ示し、テトラリン環のベンジル位には少なくとも1つの水素原子が結合している。Xは-(C=O)O-、-(C=O)NH-、-O(C=O)-、-NH(C=O)-および-(CHR)s-からなる群より選択される二価の基を示し、sは0~12の整数を示す。Yは-(CHR)t-であって、tは0~12の整数を示す。Rは水素原子、メチル基およびエチル基からなる群より選択される一価の化学種を示す。)
    からなる群より選択される少なくとも1種のテトラリン環を有する構成単位(b)と、を含有する共重合ポリオレフィン化合物である、酸素吸収性樹脂組成物。
  2.  前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種の遷移金属を含むものである、請求項1記載の酸素吸収性樹脂組成物。
  3.  前記遷移金属触媒が、前記共重合ポリオレフィン化合物100質量部に対し、遷移金属量として0.001~10質量部含まれる、請求項1または2に記載の酸素吸収性樹脂組成物。
  4.  前記共重合ポリオレフィン化合物に含まれる、前記構成単位(b)の含有割合に対する前記構成単位(a)の含有割合が、モル比で1/99~99/1である、請求項1~3のいずれか一項に記載の酸素吸収性樹脂組成物。
  5.  前記構成単位(a)が下記式(4)および(5)で表される構成単位;
    Figure JPOXMLDOC01-appb-C000003
    からなる群より選択される少なくとも1種の構成単位であり、
     前記構成単位(b)が下記式(6)および(7)で表される構成単位;
    Figure JPOXMLDOC01-appb-C000004
    からなる群より選択される少なくとも1種の構成単位である、請求項1~4のいずれか一項に記載の酸素吸収性樹脂組成物。
  6.  熱可塑性樹脂を含有するシーラント層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体。
  7.  請求項6に記載の酸素吸収性多層体を含む、酸素吸収性多層容器。
  8.  熱可塑性樹脂を含有する酸素透過層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体の酸素透過層を内側として熱成形してなる酸素吸収性多層容器。
  9.  請求項6記載の酸素吸収性多層体を含有する蓋材と、熱可塑性樹脂を含有する内層、ガスバリア性物質を含有するガスバリア層、および熱可塑性樹脂を含有する外層をこの順に積層した、少なくとも3層からなるガスバリア性成形容器と、を備え、前記蓋材における前記シーラント層と前記ガスバリア性成形容器における前記内層とが接合されてなる酸素吸収性密封容器。
  10.  熱可塑性樹脂を含有する隔離層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、ガスバリア性物質を含有するガスバリア層、並びに紙基材層をこの順に積層した、少なくとも4層からなる酸素吸収性多層体を製函してなる酸素吸収性紙容器。
  11.  熱可塑性樹脂を含有する内層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも3層からなる酸素吸収性多層体を備えるチューブ状容器。
  12.  ポリエステルを少なくとも含有する第1の樹脂層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにポリエステルを少なくとも含有する第2の樹脂層をこの順に積層した、少なくとも3層からなる酸素吸収性医療用多層成形容器。
  13.  予め薬剤を密封状態下に収容し、使用に際し前記密封状態を解除して前記薬剤を注出し得るようにされたプレフィルドシリンジであって、前記プレフィルドシリンジが、ポリエステルを少なくとも含有する第1の樹脂層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにポリエステルを少なくとも含有する第2の樹脂層の少なくとも3層をこの順に有する多層構造からなる、酸素吸収性プレフィルドシリンジ。
  14.  バイオ医薬を、請求項12記載の酸素吸収性医療用多層成形容器内又は請求項13記載の酸素吸収性プレフィルドシリンジ内に保存する、バイオ医薬の保存方法。
  15.  薬液が充填された容器を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、薬液が充填された容器の保存方法。
  16.  薬効成分を含んだ貼付剤を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、薬効成分を含んだ貼付剤の保存方法。
  17.  請求項6記載の酸素吸収性多層体を成形してなる酸素吸収性底材と、熱可塑性樹脂を含有する内層、およびガスバリア性物質を含有するガスバリア層をこの順に積層した、少なくとも2層からなるガスバリア性蓋材と、を備え、前記酸素吸収性底材における前記シーラント層と前記ガスバリア性蓋材における前記内層とが接合されてなる酸素吸収性PTP包装体。
  18.  熱可塑性樹脂を含有する酸素透過層、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層、並びにガスバリア性物質を含有するガスバリア層を、内側からこの順に積層した、少なくとも3層を有する酸素吸収性多層ボトル。
  19.  果肉類を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、果肉類の保存方法。
  20.  アルコール飲料を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、アルコール飲料の保存方法。
  21.  液状茶又はペースト状茶を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、液状茶又はペースト状茶の保存方法。
  22.  果汁及び/又は野菜汁を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、果汁及び/又は野菜汁の保存方法。
  23.  乾燥物品を、請求項6記載の酸素吸収性多層体を全部または一部に使用した酸素吸収性容器内に保存する、乾燥物品の保存方法。
PCT/JP2013/053121 2012-02-08 2013-02-08 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器 WO2013118882A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380018249.9A CN104379662B (zh) 2012-02-08 2013-02-08 吸氧性树脂组合物及使用其的吸氧性多层体、以及使用它们的成型体及医疗用容器
US14/376,563 US9732167B2 (en) 2012-02-08 2013-02-08 Oxygen-absorbing resin composition and oxygen-absorbing multilayer body using same, and molded article and medical container using these
KR1020147022158A KR20140132337A (ko) 2012-02-08 2013-02-08 산소 흡수성 수지 조성물 및 이를 이용한 산소 흡수성 다층체, 및 이들을 이용한 성형체 및 의료용 용기
EP13747239.5A EP2813544B1 (en) 2012-02-08 2013-02-08 Oxygen-absorbable resin composition, oxygen-absorbable multilayer body produced using said resin composition, and molded article and medical container each produced using said resin composition or said multilayer body

Applications Claiming Priority (40)

Application Number Priority Date Filing Date Title
JP2012025177 2012-02-08
JP2012-025177 2012-02-08
JP2012-168304 2012-07-30
JP2012168304 2012-07-30
JP2013-007769 2013-01-18
JP2013007769A JP5975348B2 (ja) 2012-02-08 2013-01-18 酸素吸収性樹脂組成物
JP2013009176A JP6064616B2 (ja) 2013-01-22 2013-01-22 酸素吸収性紙容器
JP2013-009176 2013-01-22
JP2013010498A JP5954194B2 (ja) 2012-07-30 2013-01-23 酸素吸収性多層体
JP2013-010498 2013-01-23
JP2013-012444 2013-01-25
JP2013012444A JP5954197B2 (ja) 2013-01-25 2013-01-25 酸素吸収性密封容器
JP2013-014493 2013-01-29
JP2013014493A JP5954201B2 (ja) 2013-01-29 2013-01-29 チューブ状容器
JP2013-014562 2013-01-29
JP2013014562A JP2014144584A (ja) 2013-01-29 2013-01-29 乾燥物品の保存方法
JP2013-015002 2013-01-30
JP2013015002A JP5971137B2 (ja) 2013-01-30 2013-01-30 酸素吸収性多層容器
JP2013-017330 2013-01-31
JP2013-017424 2013-01-31
JP2013-016602 2013-01-31
JP2013017248A JP6048175B2 (ja) 2013-01-31 2013-01-31 医療用多層容器
JP2013017424A JP2014147322A (ja) 2013-01-31 2013-01-31 果肉類の保存方法
JP2013017330A JP6060711B2 (ja) 2013-01-31 2013-01-31 プレフィルドシリンジ
JP2013016602A JP2014148566A (ja) 2013-01-31 2013-01-31 アルコール飲料の保存方法
JP2013-017248 2013-01-31
JP2013018203A JP2014147344A (ja) 2013-02-01 2013-02-01 果汁及び/又は野菜汁の保存方法
JP2013-018696 2013-02-01
JP2013018216A JP2014147346A (ja) 2013-02-01 2013-02-01 液状茶又はペースト状茶の保存方法
JP2013018696A JP6089739B2 (ja) 2013-02-01 2013-02-01 薬効成分を含んだ貼付剤の保存方法
JP2013-018203 2013-02-01
JP2013018142A JP6051896B2 (ja) 2013-02-01 2013-02-01 バイオ医薬の保存方法
JP2013018243A JP5971139B2 (ja) 2013-02-01 2013-02-01 薬液が充填された容器の保存方法
JP2013-018142 2013-02-01
JP2013-018216 2013-02-01
JP2013019543A JP6024495B2 (ja) 2013-02-04 2013-02-04 酸素吸収性ptp包装体
JP2013-019543 2013-02-04
JP2013020299A JP6051900B2 (ja) 2013-02-05 2013-02-05 酸素吸収性多層ボトル
JP2013-020299 2013-02-05
JP2013-018243 2013-08-08

Publications (1)

Publication Number Publication Date
WO2013118882A1 true WO2013118882A1 (ja) 2013-08-15

Family

ID=50820728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053121 WO2013118882A1 (ja) 2012-02-08 2013-02-08 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器

Country Status (6)

Country Link
US (1) US9732167B2 (ja)
EP (1) EP2813544B1 (ja)
KR (1) KR20140132337A (ja)
CN (1) CN104379662B (ja)
TW (1) TWI586738B (ja)
WO (1) WO2013118882A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119230A1 (ja) * 2014-02-06 2015-08-13 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物、滅菌済み酸素吸収性多層容器及びその製造方法
EP2891519A4 (en) * 2012-08-29 2016-06-15 Mitsubishi Gas Chemical Co OXYGEN ABSORBING COMPOSITION AND OXYGEN ABSORBENT PACKAGING
WO2016090801A1 (zh) * 2014-12-11 2016-06-16 昆山市张浦彩印厂 可降解发泡共挤出pet阻隔薄膜
US9428692B2 (en) 2011-09-01 2016-08-30 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbent composition and oxygen absorbent package using the same
WO2018147262A1 (ja) 2017-02-08 2018-08-16 三菱瓦斯化学株式会社 滅菌済み酸素吸収性多層体の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245457B2 (ja) 2013-03-05 2017-12-13 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物
JP6724789B2 (ja) 2014-11-20 2020-07-15 日本ゼオン株式会社 光学フィルムの製造方法
EP3609483A4 (en) 2017-04-12 2021-01-20 Urigen Pharmaceuticals, Inc. ITEM OF MANUFACTURING CONSISTING OF LOCAL ANESTHETICS, BUFFER AND GLYCOSAMINOGLYCANE IN A SYRINGE OF IMPROVED STABILITY
JP7326162B2 (ja) * 2017-05-18 2023-08-15 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 複合構造体および同複合構造体を形成する方法
WO2019087212A1 (en) * 2017-11-01 2019-05-09 Sun Pharmaceutical Industries Limited Intravenous infusion dosage form for morphine
US11406607B2 (en) 2018-05-24 2022-08-09 University Of Florida Research Foundation, Inc. Compositions, methods of treatment, and containers including compositions
KR102271310B1 (ko) * 2020-07-03 2021-06-30 주식회사 앤즈글로벌 고구마 말랭이 제조방법
USD981844S1 (en) 2020-11-25 2023-03-28 Berry Global, Inc. Beverage capsule cup

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136845A (en) 1975-05-21 1976-11-26 Saito Reisuke Method of producing oxygen absorbent provided in container for food
JPH01259870A (ja) 1987-10-12 1989-10-17 Terumo Corp 中空糸膜型人工透析器
JPH02500846A (ja) 1987-07-27 1990-03-22 カヌードメタルボックス パブリック リミテド カンパニー 包装に関する改良
JPH05115776A (ja) 1991-04-02 1993-05-14 W R Grace & Co 酸素掃去のための配合物、製品及び方法
JPH08127641A (ja) 1994-10-31 1996-05-21 Mitsubishi Rayon Co Ltd 医療用ポリエステル容器
JPH09234832A (ja) 1995-12-28 1997-09-09 Mitsubishi Gas Chem Co Inc 酸素吸収多層フィルム及びその製造方法
JP2001252560A (ja) 2000-03-14 2001-09-18 Toyobo Co Ltd 酸素吸収剤
JP2003521552A (ja) 1998-03-25 2003-07-15 シェブロン フィリップス ケミカル カンパニー エルピー プラスチックフィルムそして飲料および食品の容器で使用するための酸化生成物が減少する酸素スカベンジャー
JP2004229750A (ja) 2003-01-28 2004-08-19 Nipro Corp プレフィルドシリンジ及びそのバレルの製造方法
JP2004323058A (ja) 2003-04-24 2004-11-18 Daikyo Seiko Ltd 衛生品用容器及びその製造方法
JP2007140289A (ja) * 2005-11-21 2007-06-07 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2007164145A (ja) * 2005-11-21 2007-06-28 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2009108153A (ja) 2007-10-29 2009-05-21 Nippon Parison Kk 樹脂組成物、単層樹脂成形品、及び、多層樹脂成形品
JP2010013627A (ja) * 2008-06-03 2010-01-21 Shin-Etsu Chemical Co Ltd 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2011132502A (ja) * 2009-11-30 2011-07-07 Mitsubishi Gas Chemical Co Inc 酸素吸収樹脂組成物
JP2011136761A (ja) * 2009-12-03 2011-07-14 Mitsubishi Gas Chemical Co Inc 茶含有物品の保存方法
JP2011168674A (ja) * 2010-02-17 2011-09-01 Tokyo Institute Of Technology 1−メチレンテトラリン重合体及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3672281D1 (de) 1985-10-18 1990-08-02 Union Carbide Corp Thermoschockbestaendige beschichtungen mit hohem volumenanteil refraktaerer oxide.
US4966699A (en) 1988-05-25 1990-10-30 Terumo Kabushiki Kaisha Hollow fiber membrane fluid processor
ZA921914B (en) 1991-04-02 1993-09-16 Grace W R & Co Compositions, articles and methods for scavenging oxygen
US5211875A (en) 1991-06-27 1993-05-18 W. R. Grace & Co.-Conn. Methods and compositions for oxygen scavenging
JPH09110790A (ja) * 1995-10-16 1997-04-28 Mitsubishi Rayon Co Ltd 新規な(メタ)アクリル酸エステル
US6063503A (en) 1995-12-28 2000-05-16 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing multi-layer film and method for preparing same
US7097890B1 (en) 1998-07-31 2006-08-29 Chevron Phillips Chemical Co. Lp Polymer with pendent cyclic olefinic functions for oxygen scavenging packaging
US6254803B1 (en) 1998-03-25 2001-07-03 Cryovac, Inc. Oxygen scavengers with reduced oxidation products for use in plastic films
US6946175B2 (en) 1998-07-31 2005-09-20 Chevron Phillips Chemical Co., Lp Oxygen scavenging polymers as active barrier tie layers in multilayered structures
US20020102424A1 (en) 2000-11-30 2002-08-01 Hu Yang Oxygen scavenging polymers as active barrier tie layers in multilayered structures
KR100490710B1 (ko) * 1999-03-03 2005-05-24 가부시키가이샤 구라레 산소 흡수성 수지 조성물
US20020022144A1 (en) * 2000-05-19 2002-02-21 Hu Yang Enhanced oxygen barrier performance from modification of ethylene vinyl alcohol copolymers (EVOH)
EP1938892B1 (en) * 2005-10-21 2016-10-05 Mitsubishi Gas Chemical Company, Inc. Solid oxygen scavenger composition
JP5462681B2 (ja) * 2009-11-11 2014-04-02 東京応化工業株式会社 ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136845A (en) 1975-05-21 1976-11-26 Saito Reisuke Method of producing oxygen absorbent provided in container for food
JPH02500846A (ja) 1987-07-27 1990-03-22 カヌードメタルボックス パブリック リミテド カンパニー 包装に関する改良
JPH01259870A (ja) 1987-10-12 1989-10-17 Terumo Corp 中空糸膜型人工透析器
JPH05115776A (ja) 1991-04-02 1993-05-14 W R Grace & Co 酸素掃去のための配合物、製品及び方法
JPH08127641A (ja) 1994-10-31 1996-05-21 Mitsubishi Rayon Co Ltd 医療用ポリエステル容器
JPH09234832A (ja) 1995-12-28 1997-09-09 Mitsubishi Gas Chem Co Inc 酸素吸収多層フィルム及びその製造方法
JP2003521552A (ja) 1998-03-25 2003-07-15 シェブロン フィリップス ケミカル カンパニー エルピー プラスチックフィルムそして飲料および食品の容器で使用するための酸化生成物が減少する酸素スカベンジャー
JP2001252560A (ja) 2000-03-14 2001-09-18 Toyobo Co Ltd 酸素吸収剤
JP2004229750A (ja) 2003-01-28 2004-08-19 Nipro Corp プレフィルドシリンジ及びそのバレルの製造方法
JP2004323058A (ja) 2003-04-24 2004-11-18 Daikyo Seiko Ltd 衛生品用容器及びその製造方法
JP2007140289A (ja) * 2005-11-21 2007-06-07 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2007164145A (ja) * 2005-11-21 2007-06-28 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2009108153A (ja) 2007-10-29 2009-05-21 Nippon Parison Kk 樹脂組成物、単層樹脂成形品、及び、多層樹脂成形品
JP2010013627A (ja) * 2008-06-03 2010-01-21 Shin-Etsu Chemical Co Ltd 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2011132502A (ja) * 2009-11-30 2011-07-07 Mitsubishi Gas Chemical Co Inc 酸素吸収樹脂組成物
JP2011136761A (ja) * 2009-12-03 2011-07-14 Mitsubishi Gas Chemical Co Inc 茶含有物品の保存方法
JP2011168674A (ja) * 2010-02-17 2011-09-01 Tokyo Institute Of Technology 1−メチレンテトラリン重合体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2813544A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428692B2 (en) 2011-09-01 2016-08-30 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbent composition and oxygen absorbent package using the same
EP2891519A4 (en) * 2012-08-29 2016-06-15 Mitsubishi Gas Chemical Co OXYGEN ABSORBING COMPOSITION AND OXYGEN ABSORBENT PACKAGING
US9868579B2 (en) 2012-08-29 2018-01-16 Mitsibishi Has Chemical Company, Inc. Oxygen absorbing agent composition and oxygen absorbing agent package
WO2015119230A1 (ja) * 2014-02-06 2015-08-13 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物、滅菌済み酸素吸収性多層容器及びその製造方法
CN105960430A (zh) * 2014-02-06 2016-09-21 三菱瓦斯化学株式会社 已灭菌的吸氧性树脂组合物、已灭菌的吸氧性多层容器和其制造方法
KR20160118265A (ko) 2014-02-06 2016-10-11 미츠비시 가스 가가쿠 가부시키가이샤 멸균 완료된 산소 흡수성 수지 조성물, 멸균 완료된 산소 흡수성 다층 용기 및 그의 제조 방법
JPWO2015119230A1 (ja) * 2014-02-06 2017-03-30 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物、滅菌済み酸素吸収性多層容器及びその製造方法
US9637604B2 (en) 2014-02-06 2017-05-02 Mitsubishi Gas Chemical Company, Inc. Sterilized oxygen-absorbing resin composition, sterilized oxygen-absorbing multilayer container and method for producing the same
WO2016090801A1 (zh) * 2014-12-11 2016-06-16 昆山市张浦彩印厂 可降解发泡共挤出pet阻隔薄膜
WO2018147262A1 (ja) 2017-02-08 2018-08-16 三菱瓦斯化学株式会社 滅菌済み酸素吸収性多層体の製造方法
KR20190117509A (ko) 2017-02-08 2019-10-16 미츠비시 가스 가가쿠 가부시키가이샤 멸균필 산소 흡수성 다층체의 제조 방법
US11534508B2 (en) 2017-02-08 2022-12-27 Mitsubishi Gas Chemical Company, Inc. Method for producing sterilized oxygen-absorbing multilayer body

Also Published As

Publication number Publication date
CN104379662B (zh) 2016-06-22
KR20140132337A (ko) 2014-11-17
TWI586738B (zh) 2017-06-11
TW201410770A (zh) 2014-03-16
EP2813544A1 (en) 2014-12-17
EP2813544B1 (en) 2017-06-21
US20140373485A1 (en) 2014-12-25
CN104379662A (zh) 2015-02-25
US9732167B2 (en) 2017-08-15
EP2813544A4 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
TWI586738B (zh) 氧吸收性樹脂組成物及使用其之氧吸收性多層體、使用該等之成形體及醫療用容器
KR101880332B1 (ko) 산소 흡수성 수지 조성물 및 이를 이용한 산소 흡수성 성형체, 및 이들을 이용한 다층체, 용기, 인젝션 성형체 및 의료용 용기
CN105008128B (zh) 吸氧性多层体、吸氧性容器、吸氧性密闭容器、吸氧性ptp包装体、及使用它们的保存方法
KR20140107257A (ko) 산소 흡수성 수지 조성물, 및 이를 이용한 다층체, 용기, 인젝션 성형체 및 의료용 용기
EP2966125B1 (en) Oxygen-absorbing resin composition
JP6593709B2 (ja) 酸素吸収性多層容器及びその製造方法
WO2014010598A1 (ja) 酸素吸収性樹脂組成物
JP5975348B2 (ja) 酸素吸収性樹脂組成物
JP5954197B2 (ja) 酸素吸収性密封容器
JP5954194B2 (ja) 酸素吸収性多層体
JP5971137B2 (ja) 酸素吸収性多層容器
JP2014147344A (ja) 果汁及び/又は野菜汁の保存方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376563

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147022158

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013747239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013747239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE