WO2016090801A1 - 可降解发泡共挤出pet阻隔薄膜 - Google Patents

可降解发泡共挤出pet阻隔薄膜 Download PDF

Info

Publication number
WO2016090801A1
WO2016090801A1 PCT/CN2015/076787 CN2015076787W WO2016090801A1 WO 2016090801 A1 WO2016090801 A1 WO 2016090801A1 CN 2015076787 W CN2015076787 W CN 2015076787W WO 2016090801 A1 WO2016090801 A1 WO 2016090801A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
maleic anhydride
sodium alginate
hydrophilic
Prior art date
Application number
PCT/CN2015/076787
Other languages
English (en)
French (fr)
Inventor
夏嘉良
高学文
夏瑜
唐敏艳
俞晓琴
Original Assignee
昆山市张浦彩印厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山市张浦彩印厂 filed Critical 昆山市张浦彩印厂
Priority to JP2017549569A priority Critical patent/JP2018500215A/ja
Publication of WO2016090801A1 publication Critical patent/WO2016090801A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the invention relates to the technical field of multilayer composite films, in particular to a biodegradable degradable foaming coextruded PET barrier film.
  • the multi-layer co-extruded composite film refers to a film which is compounded by a plurality of different polymers by a co-extrusion blow molding method, a co-extrusion casting method or a co-extrusion stretching method.
  • This kind of film is widely used as a plastic packaging material in food, processed meat products, daily necessities, cosmetics, chemical products, pesticides, military products, etc., and can realize the sealing and soft packaging of products and meet various kinds of inflation or vacuuming, thermoforming, etc.
  • the packaging function has various barrier properties such as high moisture resistance, oxygen barrier, oil resistance and fragrance retention under various environments.
  • the first technical solution adopted by the present invention is: a degradable foaming coextruded PET barrier
  • the film, the structure of the composite film is as follows:
  • PET means an outer layer, the function of which is a protective layer or a display layer, the material of which is polyester, the hydrophilic group of the polyester is an ester group;
  • EAA-TIE represents the first adhesive layer, and the material thereof is maleic anhydride grafting.
  • the ethylene acrylic acid copolymer, the maleic anhydride grafted ethylene acrylic acid copolymer contains a hydrophilic group which is a carboxyl group and an acid anhydride;
  • EPO denotes a middle layer, which functions as a toughening layer, the material of which is polypropylene or polyethylene, and the polypropylene or polyethylene does not contain a hydrophilic group;
  • PO-TIE denotes a second adhesive layer whose material is a maleic anhydride grafted polyolefin copolymer, and the maleic anhydride grafted polyolefin copolymer contains a hydrophilic group which is an acid anhydride;
  • PA denotes an inner layer which functions as a coating layer, the material of which is a polyamide, and the hydrophilic group contained in the polyamide is an amide group;
  • each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a kind of additive type biodegradable activity in a garbage disposal field or composting condition.
  • the additive masterbatch is uniformly added to each layer of the material in proportion, and then the composite film is prepared by a melt coextrusion method;
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. At least one of a salt, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, and an ester group;
  • the hydrophilic group is a carboxylate, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, an ester group in order of the hydrophilic activity from high to low;
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the support in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type master batch material is polyethylene
  • the carrier in the added type master batch material is polypropylene or polyethylene
  • the second adhesive layer is selected from maleic anhydride grafted polyethylene copolymer, in the additive type master batch
  • the carrier is polyethylene; when the middle layer material is polypropylene, the second adhesive layer is selected from maleic anhydride grafted polypropylene copolymer, and the carrier in the additive type master batch is polypropylene or polyethylene;
  • the carrier in the added masterbatch is a polyamide
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (1)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (1) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the second technical solution adopted by the present invention is: a degradable foaming coextruded PET barrier film, and the structure of the composite film is as follows:
  • PET means an outer layer, the function of which is a protective layer or a display layer, the material of which is polyester, the hydrophilic group of the polyester is an ester group;
  • EAA-TIE represents the first adhesive layer, and the material thereof is maleic anhydride grafting.
  • the ethylene acrylic acid copolymer, the maleic anhydride grafted ethylene acrylic acid copolymer contains a hydrophilic group which is a carboxyl group and an acid anhydride;
  • EPO denotes a middle layer, which functions as a toughening layer, the material of which is polypropylene or polyethylene, and the polypropylene or polyethylene does not contain a hydrophilic group;
  • EAA-TIE denotes a second adhesive layer, the material of which is a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid copolymer contains a hydrophilic group which is a carboxyl group and an acid anhydride;
  • PET denotes an inner layer, the function of which is a coating layer, the material of which is polyester, and the hydrophilic group contained in the polyester is an ester group;
  • each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a kind of additive type biodegradable activity in a garbage disposal field or composting condition.
  • the additive masterbatch is uniformly added to each layer of the material in proportion, and then the composite film is prepared by a melt coextrusion method;
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. At least one of a salt, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, and an ester group;
  • the hydrophilic group is a carboxylate, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, an ester group in order of the hydrophilic activity from high to low;
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the carrier in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type master batch material is polyethylene
  • the carrier in the added type master batch material is polypropylene or polyethylene
  • the carrier in the additive type masterbatch is a polyester
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (2)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (2) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the polyester in the outer layer, is a non-crystalline polyethylene terephthalate or a polyethylene terephthalate-1,4-ring Hexane dimethanol ester, the density of the polyester is from 1.300 to 1.400 g/cm 3 .
  • a PET polyester copolymer obtained by copolymerization modification with a dicarboxylic acid is called a non-crystalline polyethylene terephthalate (APET); and is obtained by copolymerization modification with a glycol.
  • PET polyester copolymer called polyethylene terephthalate-1,4-cyclohexanedimethanol ester (PETG); its chemical elements are the same as paper, carbon, hydrogen, oxygen, genus Degradable plastic. Packaged products made from this material are discarded and eventually become water and carbon dioxide.
  • the first adhesive layer is a maleic anhydride grafted ethylene acrylic acid copolymer
  • the maleic anhydride grafted ethylene acrylic acid copolymer has a density of 0.920-0.940 g/cm. 3
  • the maleic anhydride graft ratio is 0.3% - 10% by weight; the molar ratio of acrylic acid in the ethylene acrylate copolymer is 8% - 28%.
  • the middle layer is made of polyethylene or polypropylene, and is formed by extrusion foaming using at least one of physical foaming and chemical foaming means.
  • the density of the post-foam polyethylene is from 0.600 to 0.850 g/cm 3
  • the density of the polypropylene after foaming is from 0.600 to 0.850 g/cm 3 .
  • the second adhesive layer is a maleic anhydride grafted polyolefin copolymer
  • the middle layer material is polyethylene
  • the second adhesive layer is selected from maleic anhydride grafted polyethylene.
  • the copolymer has a density of 0.910-0.950 g/cm 3 and a maleic anhydride graft ratio of 0.3% to 10% by weight; when the middle layer material is polypropylene, the second adhesive layer is selected by maleic anhydride grafted polypropylene copolymerization.
  • the density is 0.880-0.910 g/cm 3 and the maleic anhydride graft ratio is 0.3%-10% by weight.
  • the second adhesive layer is a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid copolymer has a density of 0.920-0.940 g/cm 3 .
  • the graft ratio of the anhydride is from 0.3% to 10% by weight; the molar content of acrylic acid in the ethylene acrylate copolymer is from 8% to 28%.
  • the inner layer is made of a polyamide material
  • the density of the polyamide is 1.12-1.14 g/cm 3
  • the polyamide is a PA6 homopolymer or a PA6, 66 copolymer or an amorphous polyamide.
  • the polyester in the inner layer, is amorphous polyethylene terephthalate or polyethylene terephthalate-1,4-cyclohexane
  • the methanol ester, the density of the polyester is 1.300-1.400 g/cm 3 .
  • the function of the outer layer is a protective layer or a display layer, wherein when the function is a protective layer, It plays the role of wear resistance and temperature resistance; when its function is display layer, it can be used to display related information or transparently display package contents.
  • the composite film can obtain corresponding additional functions through coating, metal evaporation, and compounding.
  • the outer layer and the inner layer are both made of a polyamide, and the film can be heat sealed on both sides.
  • the technical principle of the present invention is that the materials constituting the composite film are classified into two types: a hydrophilic material and a hydrophobic material, wherein the hydrophilic material itself contains a hydrophilic group, and has biodegradability under the garbage disposal site or composting condition;
  • the hydrophobic material does not contain a hydrophilic group.
  • the composite film is prepared by the melt co-extrusion method, and under the action of high temperature and high shear, the macromolecular chains are stably combined by hydrogen bonding and mutual bending between the macromolecular chains to form a stable
  • the macromolecular aggregates are used to add and uniformly disperse the hydrophilic groups in the active agent to the materials of the layers; in the biodegradable environment, the degradable active agent is first decomposed by microorganisms to cause molecular chain rupture, and The bond-linked carrier also undergoes molecular chain cleavage, which in turn causes the macromolecular aggregate to decompose, thereby achieving the purpose of biodegradation of the plastic composite film.
  • the biodegradation process of the present invention begins with a characteristic expansion, and the bioactive compound in the plastic makes the carbon-containing polymer more susceptible to attack by microbial bacteria.
  • the microbial bacteria engulf the biologically active compound, an acidic substance is generated, thereby causing inclusion.
  • the carbon polymer matrix expands.
  • the expansion contacts the heat and moisture, and the molecular structure of the carbon-containing polymer is expanded, and the expansion creates space in the molecular structure of the polymer, the combination of the biologically active compound and the masterbatch attracts microorganisms that can metabolize and neutralize the polymer. group.
  • This biodegradation process can be carried out in an aerobic environment or under anaerobic conditions; it can be carried out under conditions of light, heat and humidity, or in the absence of light, heat and humidity.
  • the key point of the technical solution of the present invention is that the hydrophilic activity of the hydrophilic group in the additive type masterbatch should be greater than or equal to the hydrophilic activity of the hydrophilic group in each layer of the composite film; by adding the added masterbatch, The molar ratio of the hydrophilic groups to the carbon atoms of the materials in the composite film tends to be the same, that is, the biological activity tends to be uniform, from The degradation rate of each layer of the composite film tends to be uniform.
  • an additive type masterbatch having a hydrophilic activity greater than that of the composite film material is added to each layer of the composite film to weaken the original hydrophilic activity in the composite film material, and by adding the additive type master batch,
  • the molar ratio of the hydrophilic groups to the carbon atoms of the materials in the composite film tends to be uniform, that is, the biological activity tends to be uniform, so that the degradation rate of each layer of the composite film tends to be uniform.
  • the contribution of the present invention is that by balancing the molar ratio of hydrophilic groups to carbon atoms in the materials of the layers and the hydrophilic activity, the biological activities of the materials in the composite film structure tend to be uniform, thereby degrading the materials of the layers of the composite film.
  • the rate tends to be uniform; when the addition amount is 0.3-15% of the total mass of the layer material, the appearance, function and physical and mechanical properties of the film remain unchanged before being processed by the compost.
  • Embodiment 1 (Example of the first technical solution)
  • a degradable foaming coextruded PET barrier film having the following structure:
  • PET denotes an outer layer, which functions as a protective layer or a display layer, the material of which is polyester, the monomer formula is [OCH 2 -CH 2 OCOC 6 H 4 CO], and the hydrophilic group of the polyester is an ester group - COO-;
  • EAA-TIE denotes a first adhesive layer made of a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid has a monomer molecular formula of ⁇ [CH 2 -CH 2 ] 15.5 [CH 2 - CH(COOH)] 1 ⁇ 3.7 [C 4 H 2 O 3 ] 1 , the hydrophilic group of the maleic anhydride grafted ethylene acrylic acid copolymer is carboxyl-COOH and anhydride OC-O-CO;
  • EPO denotes a middle layer, the function of which is a toughening layer, the material of which is polyethylene PE, the monomer formula is -[CH 2 -CH 2 ] n -, and the polyethylene does not contain a hydrophilic group;
  • PO-TIE denotes a second adhesive layer made of maleic anhydride grafted polyethylene copolymer PE-TIE (95% PE + 5% maleic anhydride), 95% by weight of polyethylene and 5% by weight Maleic anhydride is mixed and formed, and its monomer formula is -[CH 2 -CH 2 ] n -[C 4 H 2 O 3 ] m , and the hydrophilic group of the maleic anhydride grafted polyethylene copolymer is an acid anhydride— OC-O-CO one;
  • PA denotes an inner layer which functions as a coating layer, the material of which is polyamide PA6, the monomer formula is -[NH-(CH 2 ) 5 -CO] n -, and the hydrophilic group contained in the polyamide is an amide group. -CONH 2 -.
  • the specific structural formula of the formula (1) is PET/EAA-TIE/PE/PE-TIE/PA6.
  • the polyester is amorphous polyethylene terephthalate or polyethylene terephthalate-1,4-cyclohexane dimethanol ester, and the density of the polyester is 1.300. -1.400g/cm 3 .
  • the first adhesive layer is a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid copolymer has a density of 0.920-0.940 g/cm 3 and a maleic anhydride graft ratio mass percentage.
  • the content is from 0.3% to 10%; the molar content of acrylic acid in the ethylene acrylate copolymer is from 8% to 28%.
  • the middle layer is made of polyethylene as a raw material, and is formed by extrusion foaming using at least one of physical foaming and chemical foaming means, and the density of the polyethylene after foaming is 0.600-0.850 g/cm 3 .
  • the second adhesive layer is a maleic anhydride grafted polyolefin copolymer.
  • the middle layer material is polyethylene
  • the second adhesive layer is selected from maleic anhydride grafted polyethylene copolymer, and the density is 0.910-0.950g. /cm 3 , the maleic anhydride grafting rate is 0.3%-10% by mass
  • the middle layer material is polypropylene
  • the second adhesive layer is selected from maleic anhydride grafted polypropylene copolymer, and the density is 0.880 -0.910 g/cm 3
  • the maleic anhydride graft ratio is from 0.3% to 10% by weight.
  • the inner layer is made of a polyamide material having a density of 1.12-1.14 g/cm 3 and the polyamide is a PA6 homopolymer or a PA6, 66 copolymer or an amorphous polyamide.
  • Each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a type of additive masterbatch having biodegradability in a garbage disposal site or composting condition, the addition The masterbatch is uniformly added to the materials of each layer in proportion, and then the composite film is prepared by a melt coextrusion method;
  • a bio-based group which is a type of additive masterbatch having biodegradability in a garbage disposal site or composting condition
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. salt -COO -, at least one carboxy group -COOH, a hydroxyl group -OH, an aldehyde group -CHO, amide groups -CONH 2, -OC-O-CO- acid anhydride and the ester group -COOR.
  • the formula (1) layers of material and the additive in the masterbatch, hydrophilic group according to the order of highest to lowest hydrophilic active carboxylate -COO -, a carboxyl group -COOH, a hydroxyl group -OH, -CHO aldehyde , amide group - CONH 2 , anhydride - OC-O-CO -, ester group - COOR.
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the support in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type master batch material is polyethylene
  • the carrier in the added type master batch material is polypropylene or polyethylene
  • the second adhesive layer is selected from maleic anhydride grafted polyethylene copolymer, in the additive type master batch
  • the carrier is polyethylene; when the middle layer material is polypropylene, the second adhesive layer is selected from maleic anhydride grafted polypropylene copolymer, and the carrier in the additive type master batch is polypropylene or polyethylene;
  • the carrier in the added masterbatch is a polyamide
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (1)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (1) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the hydrophilic activity of the hydrophilic groups contained in various materials is ranked from high to low as carboxyl group>amide group>anhydride>ester group, that is, the hydrophilicity of each layer material in the formula (1).
  • the activity is ranked from high to low to maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) > polyamide
  • PA6 maleic anhydride grafted polyethylene copolymer PE-TIE ( 95% PE + 5% maleic anhydride) > polyester PET > polyethylene PE.
  • the sodium alginate having a hydrophilic activity greater than the hydrophilic activity of EAA-TIE (carboxyl) in the composite film material is selected as an additive to weaken the hydrophilic activity of the original hydrophilic group in the composite film material.
  • the monomeric formula of sodium alginate is (C 5 H 7 O 4 COONa) n .
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa) and hydroxyl group.
  • the hydrophilic activity of sodium carboxylate in sodium alginate is higher than that of maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of the carboxyl group (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material (—COOH), amide group in polyamide PA6 (—CONH 2 ), anhydride in maleic anhydride grafted polyethylene copolymer PE-TIE (95% PE + 5% maleic anhydride) (—OC-O-CO) -), the effect of the hydrophilic activity of the ester group (-COOR) in polyester PET is weakened.
  • the hydrophilic groups and carbon of EAA-TIE, PA6, PE-TIE and PET are assumed in the following calculations.
  • the atomic molar ratio is zero.
  • each layer in formula (1) is mixed with sodium alginate in a molar ratio of 99:1, and the materials of each layer are added to the sea.
  • the materials of each layer are mixed with sodium alginate in a molar ratio of 99:1, and the mixed hydrophilic groups are calculated.
  • the molar ratios of the carbon atoms are the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the amount of PE after adding sodium alginate is 1 mol, the mass of PE is m 1-3 , and the mass of sodium alginate is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-4 molecular weight of PE-TIE (g/mol) * PE-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-5 molecular weight of PA6 (g/mol) * PA6 content (%) * molar amount (mol)
  • m 2-5 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the percentage of added mass of sodium alginate from PET to EAA-TIE/PE/PE-TIE/PA6 from left to right is:
  • each layer in formula (1) was mixed with sodium alginate in a molar ratio of 97.8:2.2, and the molar ratio of hydrophilic groups to carbon atoms after adding sodium alginate to each layer material was calculated:
  • the materials of each layer are mixed with sodium alginate in a molar ratio of 97.8:2.2, and the mixed hydrophilic groups are calculated.
  • the molar ratios of the carbon atoms are the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the amount of PE after adding sodium alginate is 1 mol, the mass of PE is m 1-3 , and the mass of sodium alginate is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-4 PE-TIE molecular weight (g / mol) * PE-TIE content (%) * molar rate (mol)
  • m 2-4 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-5 molecular weight of PA6 (g/mol) * PA6 content (%) * molar amount (mol)
  • m 2-5 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the percentage of added mass of sodium alginate from PET to EAA-TIE/PE/PE-TIE/PA6 from left to right is:
  • a polymer having excellent compatibility can be selected for copolymerization.
  • a copolymer of polycaprolactone (PCL) copolymerized with sodium alginate a copolymer of polylactic acid (PLA) and sodium alginate.
  • PCL polycaprolactone
  • PLA polylactic acid
  • A copolymer of polycaprolactone (PCL) and sodium alginate copolymer
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polycaprolactone is [CH2-(CH2)4-COO] m
  • the graft ratio is 50-
  • the monomeric formula of the 80% by mass sodium alginate-grafted polycaprolactone copolymer is [CH2-(CH2)4-COO] m (C 5 H 7 O 4 COONa) n , which is known from the molecular formula of the monomer.
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polycaprolactone is ester group (—COOR).
  • the hydrophilic activity of sodium carboxylate (—COONa) is greater than the hydrophilic activity of carboxyl group (—COOH)
  • the hydrophilic activity of sodium carboxylate (—COONa) in sodium alginate is greater than that of maleic anhydride grafted ethylene acrylic acid.
  • EAA-TIE 95% EAA + 5% maleic anhydride
  • the hydrophilic activity of sodium carboxylate in the copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material -COOH), amide group (-CONH 2 ) in polyamide PA6, anhydride in maleic anhydride grafted polyethylene copolymer PE-TIE (95% PE + 5% maleic anhydride) (-OC-O-CO- The effect of the hydrophilic activity of the ester group (-COOR) in the polyester PET is weakened. To simplify the expression, the hydrophilic groups and carbon atoms of EAA-TIE, PA6, PE-TIE and PET are assumed in the following calculations. The molar ratio is zero.
  • the mass percentage of the sodium alginate-grafted polycaprolactone copolymer added in each layer of the material is calculated based on the addition amount of the 2% molar amount of the sodium alginate grafted polycaprolactone copolymer:
  • the polycaprolactone copolymer grafted with sodium alginate in each layer of the formula (1) is mixed at a molar ratio of 98:2, and the sodium alginate grafted polycaprolactone is calculated for each layer of material.
  • the polycaprolactone copolymers respectively grafted with sodium alginate are mixed at a molar ratio of 98:2.
  • the molar ratio of the hydrophilic group to the carbon atom is calculated to be the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the EAA-TIE after adding a sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of EAA-TIE is m 1-2 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the polyethylene of the sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of the PE is m 1-3 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the PE-TIE after adding the sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of the PE-TIE is m 1-4 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-4 ;
  • m 1-4 molecular weight of PE-TIE (g/mol) * PE-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the PA6 of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of the PA6 is m 1-5
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-5.
  • m 1-5 molecular weight of PA6 (g/mol) * PA6 content (%) * molar amount (mol)
  • m 2-5 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the sodium alginate grafted polycaprolactone copolymer is analogous;
  • the percentage by mass of PET/EAA-TIE/PE/PE-TIE/PA6 from left to right alginate-grafted polycaprolactone copolymer is:
  • the mechanical properties and barrier properties of the layer material are not affected. .
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polylactic acid is [H-(OCH(CH3)CO) 2 -OH] m
  • the graft ratio is The monomeric formula of the 5-20% by mass sodium alginate-grafted polylactic acid copolymer is [H-(OCH(CH 3 )CO) 2 -OH] m [C 5 H 7 O 4 COONa] n
  • the monomeric formula shows that the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polylactic acid is carboxyl group (- COOH), hydroxyl (-OH) and ester group (-COOR), wherein the hydrophilic activity of sodium carboxylate (-COONa) is greater than that of carboxyl (-COOH), sodium carboxylate in sodium alginate (-COONa)
  • the content of carboxyl group (-COOH) in EAA-TIE (95%EAA+5% maleic anhydride) of maleic anhydride grafted ethylene acrylic acid copolymer is higher than that of Malay in polylactic acid.
  • Anhydride-grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic acid) Polylactic acid copolymer) and an acid anhydride (-OC-O-CO-) hydrophilic activity the present embodiment selects a graft rate of 10% of sodium alginate is added to the mass of layers of material as the active agent.
  • the hydrophilic activity of sodium carboxylate in the sodium alginate-grafted polylactic acid copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA+) having the highest hydrophilic activity in the composite film material.
  • the molar ratio of hydrophilic group to carbon atom of sodium alginate grafted in sodium alginate-grafted polylactic acid copolymer is 2/3; the molar ratio of hydrophilic group to carbon atom of polylactic acid is 2/3, calculated :
  • the mass percentage of the sodium alginate-grafted polylactic acid copolymer added in each layer of the material is calculated according to the addition amount of the 1.5% molar amount of the sodium alginate grafted polylactic acid copolymer:
  • the polylactic acid copolymer grafted with sodium alginate in each layer of the formula (1) is mixed at a molar ratio of 98.5:1.5, and the polylactic acid copolymer grafted with sodium alginate is calculated for each layer of material.
  • each layer of material and sodium alginate grafted polylactic acid copolymer mixed in a molar ratio of 98.5: 1.5 calculated and mixed
  • the molar ratio of the hydrophilic group to the carbon atom is the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polylactic acid copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polylactic acid copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polyaluminum hydride grafted polylactic acid copolymer has an EAA-TIE of 1 mol, the EAA-TIE has a mass of m 1-2 , and the sodium alginate-grafted polylactic acid copolymer has a mass of m 2-2. ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polylactic acid copolymer grafted with sodium alginate has a PE of 1 mol, the mass of PE is m 1-3 , and the mass of the sodium alginate grafted polylactic acid copolymer is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the poly-lactic acid copolymer grafted with sodium alginate has a PE-TIE of 1 mol, the mass of PE-TIE is m 1-4 , and the mass of the sodium alginate-grafted polylactic acid copolymer is m 2-4. ;
  • m 1-4 molecular weight of PE-TIE (g/mol) * PE-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • PA6 of the sodium alginate grafted polylactic acid copolymer is 1 mol
  • the mass of PA6 is m 1-5
  • the mass of the sodium alginate grafted polylactic acid copolymer is m 2-5 ;
  • m 1-5 molecular weight of PA6 (g/mol) * PA6 content (%) * molar amount (mol)
  • m 2-5 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the polylactic acid copolymer of the shoots is analogous;
  • the percentage by mass of PET/EAA-TIE/PE/PE-TIE/PA6 from left to right sodium alginate grafted polylactic acid copolymer is:
  • the sodium alginate-grafted polylactic acid copolymer is added in an amount ranging from 0.3 to 15% of the total mass of the corresponding layer material, there is no influence on the mechanical properties and barrier properties of the layer material.
  • Embodiment 2 (Example of the first technical solution)
  • a degradable foaming coextruded PET barrier film having the following structure:
  • PET denotes an outer layer, which functions as a protective layer or a display layer, the material of which is polyester, the monomer formula is [OCH 2 -CH 2 OCOC 6 H 4 CO], and the hydrophilic group of the polyester is an ester group - COO-;
  • EAA-TIE denotes a first adhesive layer made of a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid has a monomer molecular formula of ⁇ [CH 2 -CH 2 ] 15.5 [CH 2 - CH(COOH)] 1 ⁇ 3.7 [C 4 H 2 O 3 ] 1 , the hydrophilic group of the maleic anhydride grafted ethylene acrylic acid copolymer is carboxyl-COOH and anhydride OC-O-CO;
  • EPO denotes a middle layer, the function of which is a toughening layer, the material of which is polyethylene PE, the monomer formula is -[CH 2 -CH 2 ] n -, and the polyethylene does not contain a hydrophilic group;
  • EAA-TIE denotes a second adhesive layer which is a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid has a monomer molecular formula of ⁇ [CH 2 -CH 2 ] 15.5 [CH 2 - CH(COOH)] 1 ⁇ 3.7 [C 4 H 2 O 3 ] 1 , the hydrophilic group of the maleic anhydride grafted ethylene acrylic acid copolymer is carboxyl-COOH and anhydride OC-O-CO;
  • PET denotes an inner layer which functions as a coating layer, the material of which is polyester, the monomer formula is [OCH 2 -CH 2 OCOC 6 H 4 CO], and the hydrophilic group of the polyester is ester group-COO- .
  • the specific structural formula of the formula (2) is PET/EAA-TIE/PE/EAA-TIE/PET.
  • the polyester is amorphous polyethylene terephthalate or polyethylene terephthalate-1,4-cyclohexane dimethanol ester, and the density of the polyester is 1.300. -1.400g/cm 3 .
  • the first adhesive layer is a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid copolymer has a density of 0.920-0.940 g/cm 3 and a maleic anhydride graft ratio mass percentage.
  • the content is from 0.3% to 10%; the molar content of acrylic acid in the ethylene acrylate copolymer is from 8% to 28%.
  • the middle layer is made of polyethylene as a raw material, and is formed by extrusion foaming using at least one of physical foaming and chemical foaming means, and the density of the polyethylene after foaming is 0.600-0.850 g/cm 3 .
  • the second adhesive layer is a maleic anhydride grafted ethylene acrylic acid copolymer, and the maleic anhydride grafted ethylene acrylic acid copolymer has a density of 0.920-0.940 g/cm 3 and a maleic anhydride graft ratio mass percentage.
  • the content is from 0.3% to 10%; the molar content of acrylic acid in the ethylene acrylate copolymer is from 8% to 28%.
  • the polyester is amorphous polyethylene terephthalate or polyethylene terephthalate-1,4-cyclohexane dimethanol ester, and the density of the polyester is 1.300. -1.400g/cm 3 .
  • Each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a type of additive masterbatch having biodegradability in a garbage disposal site or composting condition, the addition The masterbatch is uniformly added to the materials of each layer in proportion, and then the composite film is prepared by a melt coextrusion method;
  • a bio-based group which is a type of additive masterbatch having biodegradability in a garbage disposal site or composting condition
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. salt -COO -, at least one carboxy group -COOH, a hydroxyl group -OH, an aldehyde group -CHO, amide groups -CONH 2, -OC-O-CO- acid anhydride and the ester group -COOR.
  • the formula (1) layers of material and the additive in the masterbatch, hydrophilic group according to the order of highest to lowest hydrophilic active carboxylate -COO -, a carboxyl group -COOH, a hydroxyl group -OH, -CHO aldehyde , amide group - CONH 2 , anhydride - OC-O-CO -, ester group - COOR.
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the carrier in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type master batch material is polyethylene
  • the carrier in the added type master batch material is polypropylene or polyethylene
  • the carrier in the additive type masterbatch is a polyester
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (2)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (2) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the hydrophilic activity of the hydrophilic groups contained in the various materials is ranked from the highest to the lowest as the carboxyl group>anhydride>ester group, that is, the hydrophilic activity of each layer material in the formula (2) is high.
  • the hydrophilic activity of each layer material in the formula (2) is high.
  • polyester PET > polyethylene PE.
  • the sodium alginate having a hydrophilic activity greater than the hydrophilic activity of EAA-TIE (carboxyl) in the composite film material is selected as an additive to weaken the hydrophilic activity of the original hydrophilic group in the composite film material.
  • the monomeric formula of sodium alginate is (C 5 H 7 O 4 COONa) n .
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa) and hydroxyl group.
  • the hydrophilic activity of sodium carboxylate in sodium alginate is higher than that of maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of the carboxyl group (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material (—COOH), the effect of the hydrophilic activity of the ester group (—COOR) in polyester PET is weakened.
  • the hydrophilic group to carbon atom molar ratio of EAA-TIE and PET is 0.
  • the molar ratio of the hydrophilic group to the carbon atom of EAA-TIE, PET, and PE is zero.
  • each layer in formula (2) is mixed with sodium alginate in a molar ratio of 99:1, and the molar ratio of hydrophilic group to carbon atom after adding sodium alginate to each layer material is calculated:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the amount of PE after adding sodium alginate is 1 mol, the mass of PE is m 1-3 , and the mass of sodium alginate is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • the percentage by mass of PET/EAA-TIE/PE/EAA-TIE/PET from left to right alginate is:
  • each layer in formula (2) was mixed with sodium alginate in a molar ratio of 97.8:2.2, and the molar ratio of hydrophilic group to carbon atom after adding sodium alginate to each layer material was calculated:
  • the materials of each layer are mixed with sodium alginate in a molar ratio of 97.8:2.2, and the mixed hydrophilic groups are calculated.
  • the molar ratios of the carbon atoms are the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the amount of PE after adding sodium alginate is 1 mol, the mass of PE is m 1-3 , and the mass of sodium alginate is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • the percentage by mass of PET/EAA-TIE/PE/EAA-TIE/PET from left to right alginate is:
  • a polymer having excellent compatibility can be selected for copolymerization.
  • a copolymer of polycaprolactone (PCL) copolymerized with sodium alginate a copolymer of polylactic acid (PLA) and sodium alginate.
  • PCL polycaprolactone
  • PLA polylactic acid
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polycaprolactone is [CH2-(CH2)4-COO] m
  • the graft ratio is 50-
  • the monomeric formula of the 80% by mass sodium alginate-grafted polycaprolactone copolymer is [CH2-(CH2)4-COO] m (C 5 H 7 O 4 COONa) n , which is known from the molecular formula of the monomer.
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polycaprolactone is ester group (—COOR).
  • the hydrophilic activity of sodium carboxylate (—COONa) is greater than the hydrophilic activity of carboxyl group (—COOH)
  • the hydrophilic activity of sodium carboxylate (—COONa) in sodium alginate is greater than that of maleic anhydride grafted ethylene acrylic acid.
  • EAA-TIE 95% EAA + 5% maleic anhydride
  • the hydrophilic activity of sodium carboxylate in the copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material -COOH), the effect of the hydrophilic activity of the ester group (-COOR) in the polyester PET is weakened.
  • the hydrophilic group to carbon atom molar ratio of EAA-TIE and PET is 0. .
  • the molar ratio of the hydrophilic group to the carbon atom of EAA-TIE, PET, and PE is zero.
  • the mass percentage of the sodium alginate-grafted polycaprolactone copolymer added in each layer of the material is calculated based on the addition amount of the 2% molar amount of the sodium alginate grafted polycaprolactone copolymer:
  • the polycaprolactone copolymer grafted with sodium alginate in each layer of the formula (2) is mixed at a molar ratio of 98:2, and the sodium alginate grafted polycaprolactone is calculated for each layer of material.
  • the polycaprolactone copolymers respectively grafted with sodium alginate are mixed at a molar ratio of 98:2.
  • the molar ratio of the hydrophilic group to the carbon atom is calculated to be the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the EAA-TIE after adding a sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of EAA-TIE is m 1-2 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the polyethylene of the sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of the PE is m 1-3 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the sodium alginate grafted polycaprolactone copolymer is analogous;
  • the mass percentage of PET/EAA-TIE/PE/EAA-TIE/PET added from left to right sodium alginate grafted polycaprolactone copolymer is:
  • the mechanical properties and barrier properties of the layer material are not affected. .
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polylactic acid is [H-(OCH(CH3)CO) 2 -OH] m
  • the graft ratio is The monomeric formula of the 5-20% by mass sodium alginate-grafted polylactic acid copolymer is [H-(OCH(CH 3 )CO) 2 -OH] m [C 5 H 7 O 4 COONa] n
  • the monomeric formula shows that the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polylactic acid is carboxyl group (- COOH), hydroxyl (-OH) and ester group (-COOR), wherein the hydrophilic activity of sodium carboxylate (-COONa) is greater than that of carboxyl (-COOH), sodium carboxylate in sodium alginate (-COONa)
  • the content of carboxyl group (-COOH) in EAA-TIE (95%EAA+5% maleic anhydride) of maleic anhydride grafted ethylene acrylic acid copolymer is higher than that of Malay in polylactic acid.
  • the hydrophilic activity of the anhydride (-OC-O-CO-) in the anhydride) in this example, a sodium alginate grafted polylactic acid copolymer having a graft ratio of 10% by mass is selected as an active agent to be added to each layer of the material.
  • the hydrophilic activity of sodium carboxylate in the sodium alginate-grafted polylactic acid copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA+) having the highest hydrophilic activity in the composite film material.
  • the molar ratio of hydrophilic group to carbon atom of sodium alginate grafted in sodium alginate-grafted polylactic acid copolymer is 2/3; the molar ratio of hydrophilic group to carbon atom of polylactic acid is 2/3, calculated :
  • the molar ratio of the hydrophilic group to the carbon atom of EAA-TIE, PET, and PE is zero.
  • the mass percentage of the sodium alginate-grafted polylactic acid copolymer added in each layer of the material is calculated according to the addition amount of the 1.5% molar amount of the sodium alginate grafted polylactic acid copolymer:
  • the polylactic acid copolymer grafted with sodium alginate in each layer of the formula (2) is mixed at a molar ratio of 98.5:1.5, and the polylactic acid copolymer grafted with sodium alginate is calculated for each layer of material.
  • each layer of material and sodium alginate grafted polylactic acid copolymer mixed in a molar ratio of 98.5: 1.5 calculated mixing
  • the molar ratio of the hydrophilic group to the carbon atom is the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polylactic acid copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polylactic acid copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polyaluminum hydride grafted polylactic acid copolymer has an EAA-TIE of 1 mol, the EAA-TIE has a mass of m 1-2 , and the sodium alginate-grafted polylactic acid copolymer has a mass of m 2-2. ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polylactic acid copolymer grafted with sodium alginate has a PE of 1 mol, the mass of PE is m 1-3 , and the mass of the sodium alginate grafted polylactic acid copolymer is m 2-3 ;
  • m 1-3 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the polylactic acid copolymer of the shoots is analogous;
  • the percentage by mass of PET/EAA-TIE/PE/EAA-TIE/PET from left to right sodium alginate grafted polylactic acid copolymer is:
  • the active agent selected sodium alginate and sodium alginate grafted copolymer which are directly supported by the above examples, but in the present invention, in addition to the above-mentioned active agent, Select other polymers containing a hydrophilic group carboxylate, carboxyl group, hydroxyl group, aldehyde group, amide group, acid anhydride and ester group, such as: polycaprolactone, polycaprolactone polyol, polysaccharide polymer, algae polymerization
  • those skilled in the art can understand and predict specific polymers containing these groups, so the additive masterbatch of the present invention is not limited to the polymerizations given in the examples. Things.
  • the addition amount of the additive type masterbatch only gives some examples in numerical value, and those skilled in the art, inspired by the example, easily think that the additive type master batch can be in the range of 0.3-15%.
  • the object and effect of the present invention are achieved.
  • the same material in the same position in the structural formula may be formed by one or more layers, for example, PET/EAA-TIE/PE/EAA-TIE/PET structure.
  • the structural expression is a 5-layer structure, but the material at any position may be formed by combining two or more layers.
  • PE may be formed by combining two layers, so that the composite film is composed of 6 layers. Combine formation, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

一种可降解发泡共挤出PET阻隔薄膜,其特征在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于各层材料中亲水基团的亲水活性;通过加入添加型母料,使各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致,并保持产品的外观、功能和物理机械性能不变。

Description

可降解发泡共挤出PET阻隔薄膜 技术领域
本发明涉及多层复合薄膜技术领域,特别涉及一种可生物降解可降解发泡共挤出PET阻隔薄膜。
背景技术
多层共挤复合薄膜是指由多种不同聚合物,采用共挤出吹塑方法、共挤出流延方法或共挤出拉伸方法复合而成的薄膜。这种薄膜作为塑料包装材料广泛应用于食品、加工肉类产品、日用品、化妆品、化工产品、农药、军工产品等等,并且可以实现产品的密封软包装以及满足充气或抽真空、热成型等各种包装功能、在各种环境下具有高阻湿、阻氧、阻油、保香等各种阻隔性能。
随着大量复合薄膜在各个领域的使用,复合薄膜对环境的污染日益加剧。由于其难以降解,随着用量的与日俱增,复合薄膜所造成的污染已成为世界性的公害。目前处理复合薄膜废弃物的一些传统方法如焚烧、掩埋、回收利用等都存在缺陷,并有一定的局限性给环境带来严重的负荷,因此开发减少环境污染的可生物降解复合薄膜是解决环境污染的重要途径。
据申请人了解,目前有关具有相同降解速率的复合薄膜的生物降解技术及应用技术还是一个空白,在国内外尚未见相关报道。但从市场需求量迅速增加的现状以及保护生态平衡出发,研究具有可生物降解性能的多层共挤复合薄膜已迫在眉睫,其中,如何使多层共挤复合薄膜中的各层材料在生物降解过程中的降解速率趋于一致,同时不损失原有的机械性能以及货架期,是具有现实意义的重要研究课题。
发明内容
本发明目的是提供一种生物降解速率趋于一致的发泡共挤出PET阻隔薄膜。
为达到上述目的,本发明采用的第一技术方案是:一种可降解发泡共挤出PET阻隔 薄膜,该复合薄膜的结构如下:
PET(酯基)/EAA-TIE(羧基+酸酐)/EPO(无)/PO-TIE(酸酐)/PA(酰胺基)式(1)式(1)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
EPO表示中层,其功能为增韧层,其材料为聚丙烯或聚乙烯,聚丙烯或聚乙烯不含亲水基团;
PO-TIE表示第二粘合层,其材料为马来酸酐接枝的聚烯烃共聚物,马来酸酐接枝的聚烯烃共聚物含有的亲水基团为酸酐;
PA表示内层,其功能为涂布层,其材料为聚酰胺,聚酰胺含有的亲水基团为酰胺基;
其创新在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层材料,当中层材料为聚乙烯时,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,添加型母料中的载体为聚丙烯或聚乙烯;
对于第二粘合层的马来酸酐接枝的聚烯烃共聚物材料,当中层材料为聚乙烯时,第二粘合层选择马来酸酐接枝的聚乙烯共聚物,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,第二粘合层选择马来酸酐接枝的聚丙烯共聚物,添加型母料中的载体为聚丙烯或聚乙烯;
对于内层的聚酰胺材料,添加型母料中的载体为聚酰胺;
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(1)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(1)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
为达到上述目的,本发明采用的第二技术方案是:一种可降解发泡共挤出PET阻隔薄膜,该复合薄膜的结构如下:
PET(酯基)/EAA-TIE(羧基+酸酐)/EPO(无)/EAA-TIE(羧基+酸酐)/PET(酯基)式(2)
式(2)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
EPO表示中层,其功能为增韧层,其材料为聚丙烯或聚乙烯,聚丙烯或聚乙烯不含亲水基团;
EAA-TIE表示第二粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
PET表示内层,其功能为涂布层,其材料为聚酯,聚酯含有的亲水基团为酯基;
其创新在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
所述式(2)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层和第二粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层材料,当中层材料为聚乙烯时,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,添加型母料中的载体为聚丙烯或聚乙烯;
对于内层的聚酯材料,添加型母料中的载体为聚酯;
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(2)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(2)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
上述技术方案中的有关内容解释如下:
1、上述第一和第二技术方案中,所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3。以二元羧 酸进行共聚改性所制得的PET聚酯共聚物,称之为非结晶化聚对苯二甲酸乙二醇酯(APET);以二元醇进行共聚改性所制得的PET聚酯共聚物,称之为聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG);其所含化学元素同纸张一样为碳、氢、氧,属可降解性塑料。用这种材料制成的包装产品废弃后,最终成为水和二氧化碳。
2、上述第一和第二技术方案中,所述第一粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率为0.3%-10%重量;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
3、上述第一和第二个技术方案中,所述中层以聚乙烯或聚丙烯为原料,采用物理发泡和化学发泡手段中的至少一种通过挤出式发泡加工而成,发泡后聚乙烯的密度为0.600-0.850g/cm3,发泡后聚丙烯的密度为0.600-0.850g/cm3
4、上述第一技术方案中,所述第二粘合层采用马来酸酐接枝的聚烯烃共聚物,当中层材料为聚乙烯时,第二粘合层选择马来酸酐接枝的聚乙烯共聚物,密度为0.910-0.950g/cm3,马来酸酐接枝率为0.3%-10%重量;当中层材料为聚丙烯时,第二粘合层选择马来酸酐接枝的聚丙烯共聚物,密度为0.880-0.910g/cm3,马来酸酐接枝率为0.3%-10%重量。
5、上述第二技术方案中,所述第二粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率为0.3%-10%重量;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
6、上述第一技术方案中,所述内层采用聚酰胺材料,聚酰胺的密度为1.12-1.14g/cm3,聚酰胺为PA6均聚物或PA6,66共聚物或无定形聚酰胺。
7、上述第二技术方案中,所述内层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
8、上述方案中,所述外层的功能为保护层或展示层,其中,当其功能为保护层时, 起到的是耐磨、耐温作用;当其功能为展示层时,可用于印刷展示相关信息,或者透明展示包装内容物。
9、上述方案中,所述复合薄膜可以通过涂层、金属蒸镀、复合获得相应的附加功能。
10、上述方案中,所述外层与内层的材料均为聚酰胺,所述薄膜可双面热封。
本发明的技术原理是:构成复合薄膜的材料分为亲水材料和疏水材料两类,其中,亲水材料本身含有亲水基团,在垃圾处理场或堆肥条件下即具备生物降解性能;而疏水材料不含亲水基团,通过在疏水材料中添加亲水基团以赋予其生物降解性能,添加型母料按比例添加到各层材料中,载体与活性剂通过共混方式充分相溶,然后通过熔融共挤方法制备复合薄膜,在高温、高剪切的作用下,大分子链之间通过氢键作用以及大分子链之间的相互弯曲缠绕使其稳定的结合在一起,形成稳定的大分子聚集体,以此将活性剂中的亲水基团添加并均匀分散到各层材料中;在生物降解环境中,可降解活性剂首先被微生物分解导致分子链断裂,而与其通过氢键连接的载体亦发生分子链断裂,进而导致该大分子聚集体分解,从而达到塑料复合薄膜生物降解的目的。
本发明的生物降解过程是从特有的膨胀开始,塑料中的生物活性化合物会使含碳聚合物更容易受到微生物细菌的侵袭,当微生物细菌吞噬掉生物活性化合物后会产生酸性物质,从而使含碳聚合物基质膨胀。当膨胀接触到热及水分,能够扩张含碳聚合物的分子结构,膨胀在聚合物分子结构中创造空间后,生物活性化合物与母料的结合体就会吸引可以代谢和中和聚合物的微生物群。这些微生物群分泌酸液进一步剪断聚合物的分子长链,直至聚合物被分解成惰性腐殖质、二氧化碳和甲烷。这种生物降解过程可以在有氧环境下进行,也可以在无氧条件下进行;可以在有光照、热量及湿度的条件下进行,也可以在无光照、热量及湿度的条件下进行。本发明技术方案的关键是:所述添加型母料中亲水基团的亲水活性应大于或等于复合薄膜各层材料中亲水基团的亲水活性;通过加入添加型母料,使复合薄膜中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从 而使复合薄膜的各层材料降解速率趋于一致。添加生物基时,选择亲水活性大于复合薄膜材料中亲水活性的添加型母料添加到复合薄膜的各层材料中,弱化复合薄膜材料中原有的亲水活性,通过加入添加型母料,使复合薄膜中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
本发明的贡献在于:通过平衡各层材料中亲水基团与碳原子的摩尔比和亲水活性使得复合薄膜结构中各层材料的生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致;当添加量占该层材料总质量的0.3-15%时,可保持薄膜在被堆肥处理之前,其产品的外观、功能和物理机械性能不变。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例一:(第一技术方案的实例)
一种可降解发泡共挤出PET阻隔薄膜,该复合薄膜的结构如下:
PET/EAA-TIE/EPO/PO-TIE/PA  式(1)
式(1)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,其单体分子式为[OCH2-CH2OCOC6H4CO],聚酯含有的亲水基团为酯基-COO-;
EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸其单体分子式为{[CH2-CH2]15.5[CH2-CH(COOH)]1}3.7[C4H2O3]1,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基-COOH和酸酐OC-O-CO;
EPO表示中层,其功能为增韧层,其材料为聚乙烯PE,其单体分子式为-[CH2-CH2]n-,聚乙烯不含亲水基团;
PO-TIE表示第二粘合层,其材料为马来酸酐接枝的聚乙烯共聚物PE-TIE(95%PE+5%马来酸酐),由95%重量的聚乙烯和5%重量的马来酸酐混合形成,其单体分子式为 -[CH2-CH2]n-[C4H2O3]m,马来酸酐接枝的聚乙烯共聚物含有的亲水基团为酸酐—OC-O-CO一;
PA表示内层,其功能为涂布层,其材料为聚酰胺PA6,其单体分子式为-[NH-(CH2)5-CO]n-,聚酰胺含有的亲水基团为酰胺基-CONH2-。
即式(1)的具体结构式为PET/EAA-TIE/PE/PE-TIE/PA6。
所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
所述第一粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
所述中层以聚乙烯为原料,采用物理发泡和化学发泡手段中的至少一种通过挤出式发泡加工而成,发泡后聚乙烯的密度为0.600-0.850g/cm3
所述第二粘合层采用马来酸酐接枝的聚烯烃共聚物,当中层材料为聚乙烯时,第二粘合层选择马来酸酐接枝的聚乙烯共聚物,密度为0.910-0.950g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;当中层材料为聚丙烯时,第二粘合层选择马来酸酐接枝的聚丙烯共聚物,密度为0.880-0.910g/cm3,马来酸酐接枝率为0.3%-10%重量。
所述内层采用聚酰胺材料,聚酰胺的密度为1.12-1.14g/cm3,聚酰胺为PA6均聚物或PA6,66共聚物或无定形聚酰胺。
所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐—COO-、羧基—COOH、羟基—OH、 醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—和酯基—COOR中的至少一种。
所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐—COO-、羧基—COOH、羟基—OH、醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—、酯基—COOR。
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层材料,当中层材料为聚乙烯时,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,添加型母料中的载体为聚丙烯或聚乙烯;
对于第二粘合层的马来酸酐接枝的聚烯烃共聚物材料,当中层材料为聚乙烯时,第二粘合层选择马来酸酐接枝的聚乙烯共聚物,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,第二粘合层选择马来酸酐接枝的聚丙烯共聚物,添加型母料中的载体为聚丙烯或聚乙烯;
对于内层的聚酰胺材料,添加型母料中的载体为聚酰胺;
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(1)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(1)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
根据实施例一的复合薄膜结构中各种材料所含亲水基团的亲水活性从高到低排序为羧基>酰胺基>酸酐>酯基,即式(1)中各层材料的亲水活性从高到低排序为马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)>聚酰胺PA6>马来酸酐接枝的聚乙烯共聚物PE-TIE(95%PE+5%马来酸酐)>聚酯PET>聚乙烯PE。
选择亲水活性大于复合薄膜材料中EAA-TIE(羧基)亲水活性的海藻酸钠作为添加活性剂,弱化复合薄膜材料中原有的亲水基团的亲水活性。
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,故本实施例选择聚合物海藻酸钠作为活性剂添加到各层材料中。
2、由于海藻酸钠中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),聚酰胺PA6中酰胺基(—CONH2),马来酸酐接枝的聚乙烯共聚物PE-TIE(95%PE+5%马来酸酐)中酸酐(—OC-O-CO—),聚酯PET中酯基(—COOR)的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,PA6,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、计算得:海藻酸钠的亲水基团与碳原子摩尔比为2/3。
4、EAA-TIE、PA6、PE-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1%、2.2%摩尔量的海藻酸钠添加量为基准值分别计算各层材料中海藻酸钠添加的质量百分比:
A.1%摩尔量的海藻酸钠添加量
设式(1)中各层材料分别与海藻酸钠以摩尔量之比为99:1进行混合,计算各层材料添加海 藻酸钠之后的亲水基团与碳原子的摩尔比:
99/100*聚酯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*聚乙烯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*聚酰胺(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067。
由以上计算得到:在PET/EAA-TIE/PE/PE-TIE/PA6结构中各层材料分别与海藻酸钠以摩尔量之比为99:1进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*99%*1=190.25克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*99%*1=39.39克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PE为1摩尔,PE的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*99%*1=27.77克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*99%*1=32.34克;
m2-4=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PA6为1摩尔,PA6的质量为m1-5,海藻酸钠的质量为m2-5
m1-5=PA6的分子量(克/mol)*PA6含量(%)*摩尔量(mol)
=113.16*99%*1=112.03克;
m2-5=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:1.98/(190.25+1.98)*100%=1.03%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/PE/PE-TIE/PA6从左至右海藻酸钠的添加质量百分比为:
1.03/4.79/6.66/5.77/1.74。
B.2.2%摩尔量的海藻酸钠添加量
设式(1)中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
97.8/100*聚酯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*聚乙烯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*聚酰胺(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147。
由以上计算得到:在PET/EAA-TIE/PE/PE-TIE/PA6结构中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*97.8%*1=187.94克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*97.8%*1=36.59克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PE为1摩尔,PE的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*97.8%*1=27.43克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*97.8%*1=31.95克;
m2-4=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PA6为1摩尔,PA6的质量为m1-5,海藻酸钠的质量为m2-5
m1-5=PA6的分子量(克/mol)*PA6含量(%)*摩尔量(mol)
=113.16*97.8%*1=110.67克;
m2-5=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:4.36/(187.94+4.36)*100%=2.27%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/PE/PE-TIE/PA6从左至右海藻酸钠的添加质量百分比为:
2.27/10.65/13.72/12.01/3.79。
当海藻酸钠的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
为了提高亲水基团的加工适性和分散性,可以选择相容性十分优异的聚合物进行共聚。例如:聚己内酯(PCL)与海藻酸钠共聚的共聚物,聚乳酸(PLA)与海藻酸钠共聚的共聚物。[0044]A、聚己内酯(PCL)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚己内酯的单体分子式为[CH2-(CH2)4-COO]m,接枝率为50-80%质量的海藻酸钠接枝的聚己内酯共聚物的单体分子式为[CH2-(CH2)4-COO]m(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚己内酯中含有的亲水基团为酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,本实施例选择接枝率为60%质量的海藻酸钠接枝的聚己内酯共聚物作为活性剂添加到各层材料中。
2、由于共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸 酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),聚酰胺PA6中酰胺基(—CONH2),马来酸酐接枝的聚乙烯共聚物PE-TIE(95%PE+5%马来酸酐)中酸酐(—OC-O-CO—),聚酯PET中酯基(—COOR)的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,PA6,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚己内酯共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚己内酯的亲水基团与碳原子摩尔比为1/7,计算得:海藻酸钠接枝的聚己内酯共聚物的亲水基团与碳原子摩尔比=2/3*60%+1/7*40%=0.4571。
4、EAA-TIE、PA6、PE-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照2%摩尔量的海藻酸钠接枝的聚己内酯共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量百分比:
设式(1)中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算各层材料添加海藻酸钠接枝的聚己内酯共聚物之后的亲水基团与碳原子的摩尔比:
98/100*聚酯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*聚乙烯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n 亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*聚酰胺(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
由以上计算得到:在PET/EAA-TIE/PE/PE-TIE/PA6结构中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚己内酯共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚己内酯共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98%*1=188.33克;
m2-1=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚己内酯共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98%*1=36.66克;
m2-2=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PE为1摩尔,PE的质量为m1-3,海藻酸钠接枝的聚己内酯共聚物的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*98%*1=27.49克;
m2-3=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠接枝的聚己内酯共聚物的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*98%*1=32.02克;
m2-4=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PA6为1摩尔,PA6的质量为m1-5,海藻酸钠接枝的聚己内酯共聚物的质量为m2-5
m1-5=PA6的分子量(克/mol)*PA6含量(%)*摩尔量(mol)
=113.16*98%*1=110.90克;
m2-5=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
以外层PET为例,添加的海藻酸钠接枝的聚己内酯共聚物的质量占PET质量的百分比为:3.29/(188.33+3.29)*100%=1.72%,其余各层材料中添加的海藻酸钠接枝的聚己内酯共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/PE/PE-TIE/PA6从左至右海藻酸钠接枝的聚己内酯共聚物的添加质量百分比为:
1.72/8.24/10.69/9.32/2.88。
当海藻酸钠接枝的聚己内酯共聚物的聚己内酯共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
B、聚乳酸(PLA)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚乳酸的单体分子式为[H-(OCH(CH3)CO)2-OH]m,接枝率为5-20%质量的海藻酸钠接枝的聚乳酸共聚物的单体分子式为[H-(OCH(CH3)CO)2-OH]m[C5H7O4COONa]n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚乳酸中含有的亲水基团为羧基(-COOH)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,聚乳酸中羧基(-COOH)的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,聚乳酸中羧基(-COOH)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中酸酐(—OC-O-CO—)的亲水活性,本实施例选择接枝率为10%质量的海藻酸钠接枝的聚乳酸共聚物作为活性剂添加到各层材料中。
2、由于海藻酸钠接枝的聚乳酸共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有 最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,海藻酸钠接枝的聚乳酸共聚物中羧基的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),聚酰胺PA6中酰胺基(—CONH2),马来酸酐接枝的聚乙烯共聚物PE-TIE(95%PE+5%马来酸酐)中酸酐(—OC-O-CO—),聚酯PET中酯基(—COOR)的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,PA6,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚乳酸共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚乳酸的亲水基团与碳原子摩尔比为2/3,计算得:海藻酸钠接枝的聚乳酸共聚物的亲水基团与碳原子摩尔比=2/3*10%+2/3*90%=2/3。
4、EAA-TIE、PA6、PE-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1.5%摩尔量的海藻酸钠接枝的聚乳酸共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚乳酸共聚物添加的质量百分比:
设式(1)中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算各层材料添加海藻酸钠接枝的聚乳酸共聚物之后的亲水基团与碳原子的摩尔比:98.5/100*聚酯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*聚乙烯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)= 98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n 亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*聚酰胺(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
由以上计算得到:在PET/EAA-TIE/PE/PE-TIE/PA6结构中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚乳酸共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚乳酸共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98.5%*1=189.29克;
m2-1=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚乳酸共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98.5%*1=36.85克;
m2-2=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PE为1摩尔,PE的质量为m1-3,海藻酸钠接枝的聚乳酸共聚物的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*98.5%*1=27.63克;
m2-3=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠接枝的聚乳酸共聚物的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*98.5%*1=32.18克;
m2-4=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PA6为1摩尔,PA6的质量为m1-5,海藻酸钠接枝的聚乳酸共聚物的质量为m2-5
m1-5=PA6的分子量(克/mol)*PA6含量(%)*摩尔量(mol)
=113.16*98.5%*1=111.46克;
m2-5=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
以外层PET为例,海藻酸钠接枝的聚乳酸共聚物的质量占PET质量的百分比为:2.49/(189.29+2.49)*100%=1.30%,其余各层材料中添加的海藻酸钠接枝的聚乳酸共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/PE/PE-TIE/PA6从左至右海藻酸钠接枝的聚乳酸共聚物的添加质量百分比为:
1.30/6.33/8.27/7.18/2.19。
当海藻酸钠接枝的聚乳酸共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
实施例二:(第一技术方案的实例)
一种可降解发泡共挤出PET阻隔薄膜,该复合薄膜的结构如下:
PET(酯基)/EAA-TIE(羧基+酸酐)/EPO(无)/EAA-TIE(羧基+酸酐)/PET(酯基)式(2)
式(2)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,其单体分子式为[OCH2-CH2OCOC6H4CO],聚酯含有的亲水基团为酯基-COO-;
EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸其单体分子式为{[CH2-CH2]15.5[CH2-CH(COOH)]1}3.7[C4H2O3]1,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基-COOH和酸酐OC-O-CO;
EPO表示中层,其功能为增韧层,其材料为聚乙烯PE,其单体分子式为-[CH2-CH2]n-,聚乙烯不含亲水基团;
EAA-TIE表示第二粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸其单体分子式为{[CH2-CH2]15.5[CH2-CH(COOH)]1}3.7[C4H2O3]1,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基-COOH和酸酐OC-O-CO;
PET表示内层,其功能为涂布层,其材料为聚酯,其单体分子式为[OCH2-CH2OCOC6H4CO],聚酯含有的亲水基团为酯基-COO-。
即式(2)的具体结构式为PET/EAA-TIE/PE/EAA-TIE/PET。
所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
所述第一粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
所述中层以聚乙烯为原料,采用物理发泡和化学发泡手段中的至少一种通过挤出式发泡加工而成,发泡后聚乙烯的密度为0.600-0.850g/cm3
所述第二粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
所述内层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐—COO-、羧基—COOH、羟基—OH、 醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—和酯基—COOR中的至少一种。
所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐—COO-、羧基—COOH、羟基—OH、醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—、酯基—COOR。
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层和第二粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层材料,当中层材料为聚乙烯时,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,添加型母料中的载体为聚丙烯或聚乙烯;
对于内层的聚酯材料,添加型母料中的载体为聚酯;
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(2)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(2)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。根据实施例二的复合薄膜结构中各种材料所含亲水基团的亲水活性从高到低排序为羧基>酸酐>酯基,即式(2)中各层材料的亲水活性从高到低排序为马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)>聚酯PET>聚乙烯PE。
选择亲水活性大于复合薄膜材料中EAA-TIE(羧基)亲水活性的海藻酸钠作为添加活性剂,弱化复合薄膜材料中原有的亲水基团的亲水活性。
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(— COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,故本实施例选择聚合物海藻酸钠作为活性剂添加到各层材料中。
2、由于海藻酸钠中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),聚酯PET中酯基(—COOR)的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE和PET的亲水基团与碳原子摩尔比为0。
3、计算得:海藻酸钠的亲水基团与碳原子摩尔比为2/3。
4、EAA-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1%、2.2%摩尔量的海藻酸钠添加量为基准值分别计算各层材料中海藻酸钠添加的质量百分比:
A.1%摩尔量的海藻酸钠添加量
设式(2)中各层材料分别与海藻酸钠以摩尔量之比为99:1进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
99/100*聚酯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*聚乙烯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067。[0075]由以上计算得到:在PET/EAA-TIE/PE/EAA-TIE/PET结构中各层材料分别与海藻酸 钠以摩尔量之比为99:1进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*99%*1=190.25克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*99%*1=39.39克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PE为1摩尔,PE的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*99%*1=27.77克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:1.98/(190.25+1.98)*100%=1.03%;其余各层材料中添加的海藻酸钠的质量百分比的计算 以此类推;
PET/EAA-TIE/PE/EAA-TIE/PET从左至右海藻酸钠的添加质量百分比为:
1.03/4.79/6.66/4.79/1.03。
B.2.2%摩尔量的海藻酸钠添加量
设式(2)中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
97.8/100*聚酯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*聚乙烯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147。
由以上计算得到:在PET/EAA-TIE/PE/EAA-TIE/PET结构中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*97.8%*1=187.94克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*97.8%*1=36.59克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PE为1摩尔,PE的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*97.8%*1=27.43克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克。
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:4.36/(187.94+4.36)*100%=2.27%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/PE/EAA-TIE/PET从左至右海藻酸钠的添加质量百分比为:
2.27/10.65/13.72/10.65/2.27。
当海藻酸钠的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
为了提高亲水基团的加工适性和分散性,可以选择相容性十分优异的聚合物进行共聚。例如:聚己内酯(PCL)与海藻酸钠共聚的共聚物,聚乳酸(PLA)与海藻酸钠共聚的共聚物。
A、聚己内酯(PCL)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚己内酯的单体分子式为[CH2-(CH2)4-COO]m,接枝率为50-80%质量的海藻酸钠接枝的聚己内酯共聚物的单体分子式为[CH2-(CH2)4-COO]m(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚己内酯中含有的亲水基团为酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,本实施例选择接枝率为60%质量的海藻酸钠接枝的聚己内酯共聚物作为活性剂添加到各层材料中。
2、由于共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),聚酯PET中酯基(—COOR)的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚己内酯共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚己内酯的亲水基团与碳原子摩尔比为1/7,计算得:海藻酸钠接枝的聚己内酯共聚物的亲水基团与碳原子摩尔比=2/3*60%+1/7*40%=0.4571。
4、EAA-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照2%摩尔量的海藻酸钠接枝的聚己内酯共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量百分比:
设式(2)中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算各层材料添加海藻酸钠接枝的聚己内酯共聚物之后的亲水基团与碳原子的摩尔比:
98/100*聚酯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*聚乙烯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091。
由以上计算得到:在PET/EAA-TIE/PE/EAA-TIE/PET结构中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚己内酯共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚己内酯共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98%*1=188.33克;
m2-1=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚己内酯共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98%*1=36.66克;
m2-2=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PE为1摩尔,PE的质量为m1-3,海藻酸钠接枝的聚己内酯共聚物的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*98%*1=27.49克;
m2-3=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克。
以外层PET为例,添加的海藻酸钠接枝的聚己内酯共聚物的质量占PET质量的百分比为:3.29/(188.33+3.29)*100%=1.72%,其余各层材料中添加的海藻酸钠接枝的聚己内酯共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/PE/EAA-TIE/PET从左至右海藻酸钠接枝的聚己内酯共聚物的添加质量百分比为:
1.72/8.24/10.69/8.24/1.72。
当海藻酸钠接枝的聚己内酯共聚物的聚己内酯共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
B、聚乳酸(PLA)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚乳酸的单体分子式为 [H-(OCH(CH3)CO)2-OH]m,接枝率为5-20%质量的海藻酸钠接枝的聚乳酸共聚物的单体分子式为[H-(OCH(CH3)CO)2-OH]m[C5H7O4COONa]n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚乳酸中含有的亲水基团为羧基(-COOH)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,聚乳酸中羧基(-COOH)的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,聚乳酸中羧基(-COOH)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中酸酐(—OC-O-CO—)的亲水活性,本实施例选择接枝率为10%质量的海藻酸钠接枝的聚乳酸共聚物作为活性剂添加到各层材料中。
2、由于海藻酸钠接枝的聚乳酸共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,海藻酸钠接枝的聚乳酸共聚物中羧基的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),聚酯PET中酯基(—COOR)的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚乳酸共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚乳酸的亲水基团与碳原子摩尔比为2/3,计算得:海藻酸钠接枝的聚乳酸共聚物的亲水基团与碳原子摩尔比=2/3*10%+2/3*90%=2/3。
4、EAA-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1.5%摩尔量的海藻酸钠接枝的聚乳酸共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚乳酸共聚物添加的质量百分比:
设式(2)中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算各层材料添加海藻酸钠接枝的聚乳酸共聚物之后的亲水基团与碳原子的摩尔比:98.5/100*聚酯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*聚乙烯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
由以上计算得到:在PET/EAA-TIE/PE/EAA-TIE/PET结构中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚乳酸共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚乳酸共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98.5%*1=189.29克;
m2-1=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚乳酸共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98.5%*1=36.85克;
m2-2=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PE为1摩尔,PE的质量为m1-3,海藻酸钠接枝的聚乳酸共聚物的质量为m2-3
m1-3=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*98.5%*1=27.63克;
m2-3=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
以外层PET为例,海藻酸钠接枝的聚乳酸共聚物的质量占PET质量的百分比为:2.49/(189.29+2.49)*100%=1.30%,其余各层材料中添加的海藻酸钠接枝的聚乳酸共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/PE/EAA-TIE/PET从左至右海藻酸钠接枝的聚乳酸共聚物的添加质量百分比为:
1.30/6.33/8.27/6.33/1.30。
当海藻酸钠接枝的聚乳酸共聚物的添加量占相应层材料总质量的0.3-15%范围内 时,对该层材料的机械性能和阻隔性能没有影响。
在上述实施例中,活性剂选择了海藻酸钠以及海藻酸钠接枝的共聚物,这些均由上述实施例直接得以支持,但是,在本发明中,除了上述指出的活性剂以外,还可以选择其他含有亲水基团羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基的聚合物,如:聚己内酯、聚己内酯多元醇、多糖聚合物、藻基聚合物等,本领域技术人员在本发明实施例的启发之下,能够理解并预测含有这些基团的具体聚合物,所以本发明所述的添加型母料并非局限于实施例给出的这些聚合物。
在以上实施例中,有关添加型母料的添加量在数值上仅给出了一些实例,本领域技术人员在该实例的启发下,容易想到添加型母料在0.3-15%范围内均可以实现本发明目的和效果。
在以上实施例中,为了便于实施(适于熔融挤出),对各层材料的密度、共聚比例、共混比例、发泡倍率均限定了一个范围,并在实例中举例说明,但这些要求对本发明来说不是必须的,不能作为限定本发明保护范围的依据,换句话说,在上述范围之外的适合于熔融挤出的上述各种指标均可以实现本发明并获得相应的技术效果。
在本发明中,尽管给出了复合薄膜的结构式,但在结构式中位于同一位置的相同材料可以由一层或多层组合形成,比如,PET/EAA-TIE/PE/EAA-TIE/PET结构式中,表面上看该结构式表达的是5层结构,但任意位置上的材料均可以由两层或两层以上组合形成,例如PE可以由两层组合形成,以此使该复合薄膜由6层组合形成,以此类推。上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。本领域技术人员可在上述各实施例的基础上,在各数值范围区间内取值进行任意组合,均可达到相同效果,这里不再穷举各材料密度的取值、马来酸酐接枝率的取值及各材料所占重量百分比的取值,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种可降解发泡共挤出PET阻隔薄膜,该复合薄膜的结构如下:
    PET(酯基)/EAA-TIE(羧基+酸酐)/EPO(无)/PO-TIE(酸酐)/PA(酰胺基)   式(1)
    式(1)中,从左往右依次表示的含义是:
    PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;
    EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
    EPO表示中层,其功能为增韧层,其材料为聚丙烯或聚乙烯,聚丙烯或聚乙烯不含亲水基团;
    PO-TIE表示第二粘合层,其材料为马来酸酐接枝的聚烯烃共聚物,马来酸酐接枝的聚烯烃共聚物含有的亲水基团为酸酐;
    PA表示内层,其功能为涂布层,其材料为聚酰胺,聚酰胺含有的亲水基团为酰胺基;
    其特征在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
    所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
    所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
    所述载体针对各层材料按相似相溶原理进行选择:
    对于外层的聚酯材料,添加型母料中的载体为聚酯;
    对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙 烯酸共聚物;
    对于中层材料,当中层材料为聚乙烯时,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,添加型母料中的载体为聚丙烯或聚乙烯;
    对于第二粘合层的马来酸酐接枝的聚烯烃共聚物材料,当中层材料为聚乙烯时,第二粘合层选择马来酸酐接枝的聚乙烯共聚物,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,第二粘合层选择马来酸酐接枝的聚丙烯共聚物,添加型母料中的载体为聚丙烯或聚乙烯;
    对于内层的聚酰胺材料,添加型母料中的载体为聚酰胺;
    所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(1)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(1)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
  2. 一种可降解发泡共挤出PET阻隔薄膜,该复合薄膜的结构如下:
    PET(酯基)/EAA-TIE(羧基+酸酐)/EPO(无)/EAA-TIE(羧基+酸酐)/PET(酯基)      式(2)
    式(2)中,从左往右依次表示的含义是:
    PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;
    EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
    EPO表示中层,其功能为增韧层,其材料为聚丙烯或聚乙烯,聚丙烯或聚乙烯不含亲水基团;
    EAA-TIE表示第二粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
    PET表示内层,其功能为涂布层,其材料为聚酯,聚酯含有的亲水基团为酯基;
    其特征在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
    所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
    所述式(2)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
    所述载体针对各层材料按相似相溶原理进行选择:
    对于外层的聚酯材料,添加型母料中的载体为聚酯;
    对于第一粘合层和第二粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
    对于中层材料,当中层材料为聚乙烯时,添加型母料中的载体为聚乙烯;当中层材料为聚丙烯时,添加型母料中的载体为聚丙烯或聚乙烯;
    对于内层的聚酯材料,添加型母料中的载体为聚酯;
    所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(2)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(2)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
  3. 根据权利要求1或2所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
  4. 根据权利要求1或2所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述第一粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
  5. 根据权利要求1或2所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述中层以聚乙烯或聚丙烯为原料,采用物理发泡和化学发泡手段中的至少一种通过挤出式发泡加工而成,发泡后聚乙烯的密度为0.600-0.850g/cm3,发泡后聚丙烯的密度为0.600-0.850g/cm3
  6. 根据权利要求1所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述第二粘合层采用马来酸酐接枝的聚烯烃共聚物,当中层材料为聚乙烯时,第二粘合层选择马来酸酐接枝的聚乙烯共聚物,密度为0.910-0.950g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;当中层材料为聚丙烯时,第二粘合层选择马来酸酐接枝的聚丙烯共聚物,密度为0.880-0.910g/cm3,马来酸酐接枝率为0.3%-10%重量。
  7. 根据权利要求2所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述第二粘合层采用马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
  8. 根据权利要求1所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述内层采用聚酰胺材料,聚酰胺的密度为1.12-1.14g/cm3,聚酰胺为PA6均聚物或PA6,66共聚物或无定形聚酰胺。
  9. 根据权利要求2所述的可降解发泡共挤出阻隔薄膜,其特征在于:所述内层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
PCT/CN2015/076787 2014-12-11 2015-04-16 可降解发泡共挤出pet阻隔薄膜 WO2016090801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017549569A JP2018500215A (ja) 2014-12-11 2015-04-16 分解性発泡共押出petバリアフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410752407.X 2014-12-11
CN201410752407.XA CN104494260B (zh) 2014-12-11 2014-12-11 可降解发泡共挤出pet阻隔薄膜

Publications (1)

Publication Number Publication Date
WO2016090801A1 true WO2016090801A1 (zh) 2016-06-16

Family

ID=52935752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076787 WO2016090801A1 (zh) 2014-12-11 2015-04-16 可降解发泡共挤出pet阻隔薄膜

Country Status (3)

Country Link
JP (1) JP2018500215A (zh)
CN (1) CN104494260B (zh)
WO (1) WO2016090801A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437646A (zh) * 2022-01-24 2022-05-06 浙江华清包装材料有限公司 一种金属板用pe热粘膜
US11965107B2 (en) 2017-11-30 2024-04-23 Axalta Coating Systems Ip Co., Llc System for applying a coating composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104494261B (zh) * 2014-12-11 2016-08-17 昆山市张浦彩印厂 可降解evoh高阻隔复合薄膜
CN104494260B (zh) * 2014-12-11 2016-05-11 昆山市张浦彩印厂 可降解发泡共挤出pet阻隔薄膜
CN105365317A (zh) * 2015-12-07 2016-03-02 武汉华丽生物股份有限公司 一种生物基高阻隔复合膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267681A (zh) * 1999-03-19 2000-09-27 北京清大亚太科技研究中心 降解树脂组合物及其制造方法和应用
CN1736813A (zh) * 2004-01-09 2006-02-22 朱春英 一种食品包装膜及其制造方法
CN101016099A (zh) * 2006-12-30 2007-08-15 程慧荣 一种高阻隔可降解医用多层复合包装薄膜及其制备方法
CN102029754A (zh) * 2010-09-21 2011-04-27 昆山加浦包装材料有限公司 高阻隔共挤出拉伸薄膜
CN102627013A (zh) * 2012-04-09 2012-08-08 圣夏药品食品包装新材料(昆山)有限公司 利用同一生物基控制共挤复合薄膜中各层同步降解的方法
WO2013118882A1 (ja) * 2012-02-08 2013-08-15 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器
CN103987521A (zh) * 2011-12-20 2014-08-13 金伯利-克拉克环球有限公司 含有生物聚合物的多层膜
CN104494260A (zh) * 2014-12-11 2015-04-08 昆山市张浦彩印厂 可降解发泡共挤出pet阻隔薄膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667358A (ja) * 1992-06-19 1994-03-11 Fuji Photo Film Co Ltd 写真感光材料用包装材料及びそれを用いた遮光袋
WO2008055240A1 (en) * 2006-10-31 2008-05-08 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
CN102171036A (zh) * 2008-08-18 2011-08-31 券薛德股份有限公司 水气可渗透的可伸缩布料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267681A (zh) * 1999-03-19 2000-09-27 北京清大亚太科技研究中心 降解树脂组合物及其制造方法和应用
CN1736813A (zh) * 2004-01-09 2006-02-22 朱春英 一种食品包装膜及其制造方法
CN101016099A (zh) * 2006-12-30 2007-08-15 程慧荣 一种高阻隔可降解医用多层复合包装薄膜及其制备方法
CN102029754A (zh) * 2010-09-21 2011-04-27 昆山加浦包装材料有限公司 高阻隔共挤出拉伸薄膜
CN103987521A (zh) * 2011-12-20 2014-08-13 金伯利-克拉克环球有限公司 含有生物聚合物的多层膜
WO2013118882A1 (ja) * 2012-02-08 2013-08-15 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器
CN102627013A (zh) * 2012-04-09 2012-08-08 圣夏药品食品包装新材料(昆山)有限公司 利用同一生物基控制共挤复合薄膜中各层同步降解的方法
CN104494260A (zh) * 2014-12-11 2015-04-08 昆山市张浦彩印厂 可降解发泡共挤出pet阻隔薄膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965107B2 (en) 2017-11-30 2024-04-23 Axalta Coating Systems Ip Co., Llc System for applying a coating composition
CN114437646A (zh) * 2022-01-24 2022-05-06 浙江华清包装材料有限公司 一种金属板用pe热粘膜

Also Published As

Publication number Publication date
JP2018500215A (ja) 2018-01-11
CN104494260A (zh) 2015-04-08
CN104494260B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
US11548269B2 (en) Degradable EVOH high-barrier composite film
WO2016090801A1 (zh) 可降解发泡共挤出pet阻隔薄膜
JP4417216B2 (ja) 生分解性積層シート
WO2016090806A1 (zh) 可降解pp-evoh高阻隔复合薄膜
CN100379821C (zh) 聚酯共混物组合物和由其生产的生物可降解薄膜
CN110760169B (zh) 一种阻隔材料及其制备方法
WO2007027163A2 (en) Degradable biodegradable polypropylene film
CN112677598A (zh) 复合薄膜及其制备方法和塑料薄膜制品
CN101717537A (zh) 一种聚烯烃薄膜及其制造方法
JP2013103438A (ja) シートおよび該シートを用いた容器
CN104385698B (zh) 可降解po发泡共挤出复合薄膜
WO2016090803A1 (zh) 可降解发泡共挤出pa阻隔薄膜
JP4836194B2 (ja) ガスバリア性の改善された透明な生分解性樹脂延伸フィルム及び樹脂製品
EP3861062B1 (en) Process for producing a carbon dioxide neutral and biodegradable polymer and packaging products produced thereof
JP2005193620A (ja) 共押出多層生分解性シュリンクフィルム
KR20140016466A (ko) 농업용 반사필름 및 그 제조방법
JP5620190B2 (ja) 生分解性樹脂積層体
JP7229317B2 (ja) 生分解性組成物、生分解性ラップフィルム及びその製造方法
JP4499602B2 (ja) 生分解性熱成形用シート状物および容器
KR20230063812A (ko) 다층 생분해성 배리어 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재
KR20230063811A (ko) 다층 생분해성 배리어 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재
JP2011016244A (ja) 合成樹脂製容器及び容器成形用積層シート
JP2022144043A (ja) 積層成形体
JP2006142812A (ja) 生分解性樹脂積層シート及びその熱成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867405

Country of ref document: EP

Kind code of ref document: A1