WO2013115089A1 - ブレーキ装置及び鞍乗型車両 - Google Patents

ブレーキ装置及び鞍乗型車両 Download PDF

Info

Publication number
WO2013115089A1
WO2013115089A1 PCT/JP2013/051559 JP2013051559W WO2013115089A1 WO 2013115089 A1 WO2013115089 A1 WO 2013115089A1 JP 2013051559 W JP2013051559 W JP 2013051559W WO 2013115089 A1 WO2013115089 A1 WO 2013115089A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
brake
wheel brake
relationship
ratio
Prior art date
Application number
PCT/JP2013/051559
Other languages
English (en)
French (fr)
Inventor
政哉 西村
水谷 卓明
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2013556371A priority Critical patent/JP5697183B2/ja
Priority to EP13742908.0A priority patent/EP2810836B1/en
Priority to US14/375,191 priority patent/US8989980B2/en
Publication of WO2013115089A1 publication Critical patent/WO2013115089A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/261Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels specially adapted for use in motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/08Mechanisms specially adapted for braking more than one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17554Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for enhancing stability around the vehicles longitudinal axle, i.e. roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/241Lateral vehicle inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/03Overturn, rollover

Definitions

  • the present invention relates to a brake device and a straddle-type vehicle, and more particularly to a brake device in which a front brake and a rear-wheel brake are operated in conjunction with one brake operator and a straddle-type vehicle including the brake device. .
  • a motorcycle is known as a kind of saddle riding type vehicle.
  • the motorcycle is provided with a brake for braking the rotation of the front wheels and the rear wheels.
  • the interlocking brake is a device that can operate the brake for the front wheel and the brake for the rear wheel of the motorcycle with one lever.
  • the braking force distribution characteristic curve is changed based on traveling information such as vehicle speed and wheel slip state. Based on this braking force distribution characteristic curve, the braking force of the front wheel brake and the braking force of the rear wheel brake are controlled.
  • the occupant controls the front wheel brake between the ideal braking force distribution characteristic curve in a single-seater state and the ideal braking force distribution characteristic curve in a two-seater state.
  • the ratio between the power and the braking force of the rear wheel brake can be adjusted to your liking.
  • the ratio of the braking force of the front wheel brake and the braking force of the rear wheel brake is an ideal ratio in accordance with the reduction ratio in order to maintain safety and operational comfort.
  • the ratio is changed to a ratio based on the braking force distribution characteristic curve or a predetermined ratio.
  • Prior art documents include a configuration in which the ratio of the braking force of the front wheel brake and the braking force of the rear wheel brake is set by changing the braking force distribution characteristic curve according to the slip condition, the vehicle speed, etc. And a configuration that can adjust the ratio of the braking force of the rear wheel brake.
  • FIG. 11 shows a state in which the motorcycle is inclined at an inclination angle ⁇ .
  • a motorcycle may turn in a posture in which the vehicle body is inclined as shown in FIG.
  • the motorcycle is turning with the vehicle body tilted, if the front wheel brake acts strongly, the vehicle body will rise. That is, the inclination angle ⁇ is reduced. Therefore, it is difficult for a motorcycle to turn while operating the brake device with the vehicle body tilted.
  • An object of the present invention is to provide a configuration that can maintain a tilted state of a vehicle body when a brake is operated while turning while the vehicle body is tilted.
  • a brake device is a brake device provided in a saddle-ride type vehicle, and includes a front wheel brake, a rear wheel brake, a brake operation unit, an inclination angle detection sensor, a detection result input unit, and a storage unit. , A target braking force setting unit, a ratio setting unit, and a braking force calculation unit.
  • the front wheel brake applies a braking force to the front wheel.
  • the rear wheel brake applies a braking force to the rear wheel.
  • the brake operation unit operates the front wheel brake and the rear wheel brake with one operator.
  • the tilt angle detection sensor detects the tilt angle of the vehicle body of the saddle riding type vehicle.
  • the detection result input unit inputs a detection result from the tilt angle detection sensor.
  • the storage unit includes a first relationship indicating a relationship between an operation amount of the brake operation unit and a target braking force, a second relationship indicating a ratio of the braking force of the front wheel brake determined for each inclination angle to the target braking force, and / or Alternatively, the third relationship indicating the ratio of the braking force of the rear wheel brake determined for each inclination angle to the target braking force is stored.
  • the target braking force setting unit sets the target braking force based on the operation amount of the brake operation unit by referring to the first relationship.
  • the ratio setting unit determines which of the plurality of second relationships stored in the storage unit and / or which of the plurality of third relationships is to be referred to from the detection result input to the detection result input unit.
  • the ratio between the braking force of the front wheel brake and the braking force of the rear wheel brake is set.
  • the braking force calculation unit calculates the braking force of the front wheel brake and the braking force of the rear wheel brake based on the target braking force set by the target braking force setting unit and the ratio set by the ratio setting unit.
  • the ratio between the braking force of the front wheel brake and the braking force of the rear wheel brake is controlled according to the inclination angle of the vehicle body. For this reason, when the inclination angle of the vehicle body is large, it is possible to control so as to reduce the ratio of the braking force of the front wheels. By reducing the braking force of the front wheel brake, even if the brake is operated with the vehicle body tilted, the vehicle can turn while maintaining the vehicle body tilted, making it easier to turn the motorcycle.
  • the vehicle body inclination angle can be reduced, that is, the vehicle body can be raised. You can turn in a posture that suits the passenger's preference.
  • FIG. 1 is a schematic overall view of a motorcycle equipped with a brake device according to the present invention.
  • FIG. 2 is a schematic configuration diagram of the brake device.
  • FIG. 3 is an overall block diagram of the brake device.
  • FIG. 4 is a diagram illustrating the relationship between the target braking force and the brake lever operation amount.
  • FIG. 5 is a diagram showing a ratio relationship between the target braking force and the braking force of the front wheels.
  • FIG. 6 is a diagram showing a ratio relationship between the target braking force and the braking force of the rear wheels.
  • FIG. 7 is an overall block diagram of a brake device according to another embodiment.
  • FIG. 8 is a diagram showing a ratio relationship between the target braking force and the braking force of the front wheels at a low speed.
  • FIG. 8 is a diagram showing a ratio relationship between the target braking force and the braking force of the front wheels at a low speed.
  • FIG. 9 is a diagram showing a ratio relationship between the target braking force and the braking force of the rear wheels at a low speed.
  • FIG. 10 is a flowchart showing the operation of the brake device according to the second embodiment.
  • FIG. 11 is a rear view of the motorcycle and the occupant in a state where the vehicle body is inclined at a predetermined inclination angle.
  • FIG. 1 shows a schematic overall view of a motorcycle 1 provided with a brake device 5 according to the present invention.
  • the front, rear, left, and right directions indicate the front, rear, left, and right directions as viewed from the occupant seated on the seat of the motorcycle 1.
  • An arrow F in FIG. 1 indicates the forward direction of the motorcycle 1, and an arrow U indicates the upward direction of the motorcycle 1.
  • the motorcycle 1 includes a vehicle body 2, a front wheel 3, a rear wheel 4, and a brake device 5.
  • the vehicle body 2 is composed of a vehicle body frame, a vehicle body cover, a headlight, a seat, and the like.
  • the front wheel 3 is provided at the front portion of the vehicle body 2 so as to be steerable via a front fork (not shown).
  • the front wheel 3 is connected to the brake device 5.
  • a front disc plate 31 is provided on the front wheel 3.
  • the front disc plate 31 is an annular member.
  • the undone disc plate 31 is disposed on the side of the front wheel 3.
  • the rear wheel 4 is disposed on the rear part of the vehicle body 2 via a rear arm (not shown).
  • the rear wheel 4 is connected to the brake device 5.
  • the rear wheel 4 is provided at the rear part of the vehicle body 2.
  • a rear disk plate 41 is provided on the rear wheel 4.
  • the rear disk plate 41 is disposed on the side of the rear wheel 4.
  • the rear disk plate 41 is an annular member.
  • the brake device 5 includes a front wheel brake 51, a rear wheel brake 52, a brake lever 53, an inclination angle detection sensor 54, a stroke sensor 53a, and a brake control device 55.
  • the front wheel brake 51 is attached to a front fork that supports the front wheel 3.
  • the front wheel brake 51 is a device for braking the rotation of the front wheel 3.
  • the rear wheel brake 52 is attached to a rear arm that supports the rear wheel 4.
  • the rear wheel brake 52 is a device for braking the rotation of the rear wheel 4.
  • the brake lever 53 operates the front wheel brake 51 and the rear wheel brake 52.
  • a pair of brake levers 53 are attached to the left and right handles, respectively.
  • FIG. 1 shows only the brake lever 53 attached to the left handle.
  • the front wheel brake 51 and the rear wheel brake 52 operate in conjunction with each other by a brake lever 53 attached to the left handle.
  • the tilt angle detection sensor 54 is a sensor for detecting the tilt angle of the vehicle body.
  • the inclination angle detection sensor 54 has a gyro sensor.
  • the inclination angle detection sensor 54 detects the inclination angle of the vehicle body based on the angular velocity of the motorcycle body detected by the gyro sensor.
  • the stroke sensor 53a detects the amount by which the brake lever 53 is operated.
  • the brake control device 55 is a device that controls the front wheel brake 51 and the rear wheel brake 52.
  • the brake control device 55 is connected to the stroke sensor 53 a, the tilt angle detection sensor 54, the front wheel brake 51 and the rear wheel brake 52.
  • FIG. 2 is a schematic diagram of the overall configuration of the brake lever 53, the tilt angle detection sensor 54, the brake control device 55, the front wheel brake 51, and the rear wheel brake 52.
  • the brake lever 53 is a part that can be operated by the occupant when the motorcycle 1 is braked.
  • a stroke sensor 53 a is attached to the brake lever 53.
  • the brake control device 55 determines the braking force for the front wheel 3 of the front wheel brake 51 and the braking force for the rear wheel 4 of the rear wheel brake 52.
  • the brake control device 55 includes an ECU (Electronic Control Unit) 55a and a hydraulic control unit 55b.
  • the ECU 55a is connected to the stroke sensor 53a and the tilt angle detection sensor 54.
  • the ECU 55a receives signals related to detection results from the stroke sensor 53a and the tilt angle detection sensor 54.
  • the ECU 55a calculates the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 based on the operation amount of the brake lever 53 and the inclination angle of the vehicle body.
  • the ECU 55a controls the hydraulic control unit 55b based on the calculation result.
  • the hydraulic control unit 55b receives a signal from the ECU 55a and operates the front wheel brake 51 and the rear wheel brake 52.
  • the hydraulic control unit 55b is connected to the front wheel brake 51 via a front brake hydraulic pipe 55c.
  • the hydraulic control unit 55b is connected to the rear wheel brake 52 via a rear brake hydraulic pipe 55d.
  • the front wheel brake 51 is a device that brakes the rotation of the front disc plate 31.
  • the front wheel brake 51 includes a caliper body 511, a brake piston 512, and a pair of brake pads 513.
  • the caliper body 511 is connected to one end of the front brake hydraulic pipe 55c.
  • the caliper body 511 has a space A in which the brake piston 512 is accommodated.
  • the space A is connected to the front brake hydraulic pipe 55c.
  • Brake oil can flow into the space A from the front brake hydraulic pipe 55c.
  • the caliper body 511 has a groove B in which a part of the front disk plate 31 can be arranged.
  • the caliper body 511 supports the brake pad 513 on the side wall C that forms the groove B.
  • the brake piston 512 is in contact with one of the brake pads 513. Brake oil is supplied to the space A via the front brake hydraulic pipe 55c, and the brake piston 512 presses the brake pad 513 against the front disc plate 31 side.
  • the pair of brake pads 513 includes a first brake pad 513a and a second brake pad 513b.
  • the first brake pad 513a and the second brake pad 513b are disposed with the front disc plate 31 interposed therebetween.
  • the first brake pad 513 a is disposed between the front disc plate 31 and the side wall C of the caliper body 511.
  • the second brake pad 513 b is disposed between the brake piston 512 and the front disc plate 31.
  • the rear wheel brake 52 is a device that brakes the rotation of the rear disc plate 41. Since the rear wheel brake 52 has the same configuration as that of the front wheel brake 51, the description of the configuration is omitted. The same number is attached
  • FIG. 3 is a block diagram showing a configuration of the brake device 5. The configuration of the brake device 5 will be described with reference to FIG.
  • the brake device 5 includes a front wheel brake 51, a rear wheel brake 52, a brake lever 53, an inclination angle detection sensor 54, a stroke sensor 53a, and a brake control device 55.
  • the brake control device 55 is a device that controls the front wheel brake 51 and the rear wheel brake 52 as described above, and includes an ECU 55a and a hydraulic control unit 55b.
  • the ECU 55a includes a storage unit 551, a detection result input unit 552, a target braking force setting unit 553, a ratio setting unit 554, and a braking force calculation unit 555.
  • the storage unit 551 stores data on the first relationship, the second relationship, and the third relationship.
  • the first relationship is a relationship between the operation amount of the brake lever 53 and the target braking force.
  • the second relationship is a relationship indicating the ratio between the target braking force and the braking force of the front wheel brake 51.
  • the third relationship is a relationship indicating the ratio between the target braking force and the braking force of the rear wheel brake 52.
  • the detection result input unit 552 inputs the detection result detected by the tilt angle detection sensor 54.
  • the target braking force setting unit 553 sets the target braking force from the detection result of the stroke sensor 53a.
  • the target braking force means a braking force corresponding to the operation amount of the brake lever 53.
  • the ratio setting unit 554 is a part for setting a ratio between the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52.
  • the ratio setting unit 554 determines which second relationship and third relationship to be described later to be referred to based on the inclination angle of the vehicle body.
  • the ratio setting unit 554 sets the ratio between the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 based on the second relationship and the third relationship.
  • the braking force calculation unit 555 calculates the braking force of the front wheel brake 51 based on the ratio between the target braking force and the braking force of the front wheel brake 51.
  • the braking force calculation unit 555 calculates the braking force of the rear wheel brake 52 based on the ratio between the target braking force and the braking force of the rear wheel brake 52.
  • FIG. 4 shows the first relationship
  • Target braking force (Brake lever operation amount) * A (1)
  • a in the above formula (1) means a predetermined constant.
  • the target braking force setting unit 553 calculates the target braking force from the operation amount of the brake lever 53 with reference to the first relationship.
  • Target braking force (braking force of front wheel brake) + (braking force of rear wheel brake) (2)
  • FIG. 5 shows the second relationship.
  • the ideal braking force distribution characteristic curve indicates the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 when the front wheel 3 and the rear wheel 4 simultaneously stop rotating (wheel lock) in a state where the inclination angle of the vehicle body is small. It is a curve regarding a ratio.
  • the ideal braking force distribution characteristic curve in FIG. 5 indicates the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 when the front wheel 3 and the rear wheel 4 simultaneously stop rotating (wheel lock) in a state where the inclination angle of the vehicle body is small. It is a curve regarding a ratio.
  • FIG. 5 shows the relationship between the braking force of the front wheel brake 51 and the target braking force, but the above described braking force between the front wheel brake 51 and the braking force of the rear wheel brake 52 Therefore, the ratio of the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 can be calculated from the relationship of FIG. 5 and the equation (2).
  • a two-dot chain line in FIG. 5 a plurality of second relationships different for each inclination angle are stored for a case where the inclination angle is large.
  • a plurality of second relations are shown by solid lines and two-dot chain lines, but the second relation shown in FIG. 5 is an example, and the storage unit 551 actually has a larger number that differs for each inclination angle.
  • the second relationship is stored.
  • FIG. 5 shows two second relationships according to the inclination angle of the motorcycle 1 by solid lines.
  • the ratio of the braking force of the front wheel brake 51 to the entire target braking force is smaller than when the inclination angle of the motorcycle 1 is small.
  • FIG. 6 shows the third relationship.
  • a third relationship when the tilt angle is small (ideal braking force distribution characteristic curve) and an example of the third relationship when the tilt angle is large are shown by solid lines.
  • a two-dot chain line in FIG. 6 a plurality of third relationships different for each inclination angle are stored when the inclination angle is large.
  • a plurality of third relations are shown by solid lines and two-dot chain lines, but the third relation shown in FIG. 6 is an example, and the storage unit 551 actually has a larger number that differs for each inclination angle.
  • the third relationship is stored.
  • FIG. 6 shows the two third relationships according to the inclination angle of the motorcycle 1 by solid lines.
  • the ratio of the braking force of the rear wheel brake 52 to the entire target braking force is larger than when the inclination angle of the motorcycle 1 is small.
  • the ratio of the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 is determined based on the ideal braking force distribution characteristic curve. As the inclination angle increases, the ratio of the braking force of the front wheel brake 51 to the entire target braking force is reduced and the ratio of the braking force of the rear wheel brake 52 to the entire target braking force is increased.
  • the ratio setting unit 554 determines which of the plurality of second relationships stored in the storage unit 551 is to be referred to from the inclination angle of the vehicle body.
  • the ratio setting unit 554 refers to the second relationship and detects the ratio of the braking force of the front wheel brake 51 in the entire target braking force from the target braking force.
  • the ratio setting unit 554 determines which of the plurality of second relationships stored in the storage unit 551 is to be referred to based on the inclination angle of the vehicle body.
  • the ratio setting unit 554 detects the ratio of the rear wheel brake 52 in the entire target braking force from the target braking force with reference to the third relationship.
  • the braking force calculation unit 555 calculates the braking force of the front wheel brake 51 from the ratio of the braking force of the front wheel brake 51 to the entire target braking force and the target braking force.
  • the braking force calculation unit 555 calculates the braking force of the rear wheel brake 52 from the ratio of the braking force of the rear wheel brake 52 to the entire target braking force and the target braking force.
  • the ECU 55a transmits a signal to the hydraulic control unit 55b so that the front wheel brake 51 applies the braking force of the front wheel brake 51 calculated by the braking force calculation unit 555 to the front wheel 3.
  • the hydraulic control unit 55b supplies brake oil to the front wheel brake 51 through the front brake hydraulic pipe 55c.
  • the brake piston 512 is pressed against the second brake pad 513b by the brake oil.
  • the second brake pad 513b is pressed against the front disc plate 31.
  • the ECU 55a transmits a signal to the hydraulic control unit 55b so that the braking force of the rear wheel brake 52 calculated by the braking force calculation unit 555 is applied to the rear wheel 4.
  • the hydraulic control unit 55b supplies brake oil to the rear wheel brake 52 via the rear brake hydraulic pipe 55d.
  • the brake piston 512 is pressed against the second brake pad 513b by the brake oil.
  • the brake pad 513 of the rear wheel brake 52 is pressed against the rear disc plate 41.
  • the ratio of the braking force of the rear wheel brake 52 to the entire target braking force increases as compared with the case where the vehicle body inclination angle is small and the overall target braking force is increased.
  • the ratio of the braking force of the front wheel brake 51 is reduced. Therefore, compared to the case where the ratio of the braking force of the rear wheel brake 52 in the entire target braking force and the ratio of the braking force of the front wheel brake 51 in the entire target braking force are not changed according to the inclination angle, the braking force of the front wheel brake is reduced. Power can be reduced.
  • the brake can be operated with the vehicle body of the motorcycle 1 tilted.
  • the motorcycle 1 is turning with the vehicle body being greatly inclined, even if the brake is operated, the phenomenon that the vehicle body rises is suppressed, and the vehicle can turn while maintaining the vehicle body being inclined. .
  • the brake device 7 according to the second embodiment differs from the first embodiment in the following points.
  • the brake device 7 when the vehicle speed of the motorcycle is equal to or less than a predetermined threshold, the ratio of the braking force of the front wheel brake to the entire target braking force is reduced and the target braking force is reduced.
  • the front wheel brake and the rear wheel brake are controlled so that the ratio of the braking force of the rear wheel brake to the whole increases.
  • the brake device 7 when the brake lever is operated while the motorcycle body is tilted, the braking force acts on the front wheels, so that the vehicle body rises and the inclination angle decreases.
  • the brake device 7 maintains the actual tilt angle of the vehicle body so that the current tilt angle of the vehicle body is maintained even when the front wheel brake is operated.
  • the braking force of the front wheel brake and the braking force of the rear wheel brake are determined using a correction value obtained by adding a decrease in the inclination angle associated with the operation of the front wheel brake.
  • the motorcycle according to the second embodiment is the same as the first embodiment in the configuration other than the brake device 7. For this reason, description about structures other than the brake device 7 is abbreviate
  • the same configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • FIG. 7 is an overall block diagram showing the configuration of the brake device 7.
  • the brake device 7 includes a brake lever 53, a stroke sensor 53a, an inclination angle detection sensor 54, a vehicle speed detection sensor 71, a front wheel brake 51, a rear wheel brake 52, and a brake control device 72. Since the configuration other than the vehicle speed detection sensor 71 and the brake control device 72 is the same as the configuration of the brake device 5 described in the first embodiment, only the vehicle speed detection sensor 71 and the brake control device 72 will be described in detail.
  • the vehicle speed detection sensor 71 is a sensor that detects the vehicle speed of the motorcycle 1.
  • the vehicle speed detection sensor 71 has a sensor that detects the rotational speed of the wheel.
  • the vehicle speed detection sensor 71 calculates the speed of the motorcycle 1 based on the wheel rotation speed detected by the sensor that detects the wheel rotation speed.
  • the brake control device 72 has an ECU 55a and a hydraulic control unit 55b.
  • the ECU 55a includes a storage unit 721, a detection result input unit 725, a target braking force setting unit 553, a ratio setting unit 722, a braking force calculation unit 555, an inclination angle correction value calculation unit 723, and a threshold determination unit 724. Since the target braking force setting unit 553 and the braking force calculation unit 555 are the same as those in the first embodiment, description of these configurations will be omitted.
  • the storage unit 721 stores data of the fourth relationship and the fifth relationship in addition to the first relationship, the second relationship, and the third relationship described in the first embodiment. Since the first relationship, the second relationship, and the third relationship are the same as those in the first embodiment, the description thereof is omitted.
  • the fourth relationship is a relationship indicating the ratio between the target braking force and the braking force of the front wheel brake 51 when the vehicle speed of the motorcycle 1 is smaller than the threshold value.
  • the fifth relationship is a relationship indicating the ratio between the target braking force and the braking force of the rear wheel brake 52 when the vehicle speed of the motorcycle 1 is smaller than the threshold value.
  • the detection result input unit 725 inputs the detection result detected by the tilt angle detection sensor 54.
  • the detection result input unit 725 inputs data on the vehicle speed detected by the vehicle speed detection sensor 71.
  • the tilt angle correction value calculation unit 723 calculates a tilt angle that decreases when the front wheel brake 51 is operated, and calculates a correction value according to the decrease in the tilt angle.
  • the storage unit 721 stores a table indicating the relationship between the braking force of the front wheel brake 51 and the amount of decrease in the tilt angle.
  • the inclination angle correction calculation unit 723 calculates an amount of decrease in inclination angle from the braking force of the front wheel brake 51 with reference to this table.
  • the tilt angle correction value calculation unit 723 calculates the tilt angle correction value by adding the decrease of the tilt angle to the angle detected by the tilt angle detection sensor 54 in advance.
  • the threshold judgment unit 724 is a part that judges whether or not the vehicle speed of the motorcycle 1 detected by the vehicle speed detection sensor 71 is equal to or higher than a predetermined threshold.
  • the predetermined threshold is set to about 6 to 10 km / h, for example.
  • the ratio setting unit 722 is a part for setting a ratio between the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52.
  • the ratio setting unit 722 occupies the braking force of the front wheel brake 51 and the entire target braking force based on the fourth relationship and the fifth relationship when the vehicle speed of the motorcycle 1 is equal to or less than a predetermined threshold.
  • the ratio of the braking force of the wheel brake 52 is set.
  • the ratio setting unit 722 controls the braking force of the front wheel brake 51 and the control of the rear wheel brake 52 based on the inclination angle correction value and the second relationship and the third relationship. Set the ratio with the power.
  • FIG. 8 is a diagram showing the fourth relationship.
  • the braking force of the front wheel brake 51 is set based on the fourth relationship. In a range where the target braking force is smaller than the predetermined value X, the braking force of the front wheel brake 51 is smaller than the extension line Y of the braking force distribution characteristic curve Z.
  • FIG. 9 is a diagram illustrating the fifth relationship.
  • the braking force of the rear wheel brake 52 is set based on the fifth relationship. In a range where the target braking force is smaller than the predetermined value S, the braking force of the rear wheel brake 52 becomes larger than the extension line U of the braking force distribution characteristic curve T.
  • FIG. 10 is a flowchart showing the operation of the brake device 7.
  • step S1 When the brake lever 53 is operated, the operation amount of the brake lever 53 is detected by the stroke sensor 53a (step S1).
  • the target braking force setting unit 553 detects the target braking force from the operation amount of the brake lever 53 with reference to the first relationship (step S2).
  • the vehicle speed of the motorcycle 1 is detected by the vehicle speed detection sensor 71 (step S3).
  • the threshold determination unit 724 determines whether the vehicle speed of the motorcycle 1 is equal to or higher than a predetermined threshold (step S4).
  • the tilt angle correction value calculation unit 723 calculates the tilt angle correction value from the operation amount of the brake lever 53 according to the procedure described in paragraph 0073. Calculate (step S5).
  • the ratio setting unit 554 determines which of the plurality of second relationships stored in the storage unit 551 is to be referred to from the tilt angle correction value. With reference to the second relationship, the target braking force setting unit 553 detects the ratio of the braking force of the front wheel brake 51 to the entire target braking force from the target braking force. Here, the tilt angle correction value is used as the tilt angle in the second relationship. The ratio setting unit 554 determines which third relationship is referred to from the tilt angle correction value among the plurality of third relationships stored in the storage unit 551. The ratio setting unit 554 refers to the third relationship and sets the ratio of the braking force of the rear wheel brake 52 that occupies the entire target braking force from the target braking force (step S6).
  • the braking force calculation unit 555 calculates the braking force of the front wheel brake 51 from the ratio between the target braking force and the braking force of the front wheel brake 51.
  • the braking force calculation unit 555 calculates the braking force of the rear wheel brake from the ratio between the target braking force and the braking force of the rear wheel brake 52 (step S7).
  • the ECU 55a transmits a signal to the hydraulic control unit 55b so that the front wheel brake 51 applies the braking force of the front wheel brake 51 calculated by the braking force calculation unit 555 to the front wheel 3.
  • the hydraulic control unit 55b supplies brake oil to the front wheel brake 51 through the front brake hydraulic pipe 55c.
  • the brake piston 512 is pressed against the second brake pad 513b by the brake oil.
  • the second brake pad 513b is pressed against the front disc plate 31.
  • the ECU 55a sends a signal to the hydraulic control unit 55b so that the rear wheel brake 52 causes the braking force of the rear wheel brake 52 calculated by the braking force calculation unit 555 to act on the rear wheel 4.
  • the hydraulic control unit 55b supplies brake oil to the rear wheel brake 52 via the rear brake hydraulic pipe 55d.
  • the brake piston 512 is pressed against the second brake pad 513b by the brake oil.
  • the brake pad 513 of the rear wheel brake 52 is pressed against the rear disc plate 41 (step S8).
  • the ratio setting unit 554 refers to the fourth relationship, and the braking force of the front wheel brake 51 that occupies the target braking force from the target braking force. Set the percentage.
  • the ratio setting unit 554 refers to the fifth relationship, and sets the ratio of the braking force of the rear wheel brake 52 that occupies the target braking force from the target braking force (step S9).
  • the braking force calculation unit 555 calculates the braking force of the front wheel brake 51 from the ratio of the braking force of the front wheel brake 51 to the entire target braking force.
  • the braking force calculation unit 555 calculates the braking force of the rear wheel brake 52 from the ratio of the braking force of the rear wheel brake 52 to the entire target braking force (step S7).
  • the ECU 55a transmits a signal to the hydraulic control unit 55b so that the front wheel brake 51 applies the braking force of the front wheel brake 51 calculated by the braking force calculation unit 555 to the front wheel 3.
  • the hydraulic control unit 55b supplies brake oil to the front wheel brake 51 through the front brake hydraulic pipe 55c.
  • the brake piston 512 is pressed against the second brake pad 513b by the brake oil.
  • the second brake pad 513b is pressed against the front disc plate 31.
  • the rear wheel brake 52 transmits a signal to the hydraulic control unit 55b so that the braking force of the rear wheel brake 52 calculated by the braking force calculation unit 555 is applied to the rear wheel 4.
  • the hydraulic control unit 55b supplies brake oil to the rear wheel brake 52 via the rear brake hydraulic pipe 55d.
  • the brake piston 512 is pressed against the second brake pad 513b by the brake oil.
  • the brake pad 513 of the rear wheel brake 52 is pressed against the rear disc plate 41 (step S8).
  • the features of the second embodiment will be described below.
  • the second embodiment has the following features in addition to the features of the first embodiment.
  • the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52 are set based on the fourth relationship and the fifth relationship. For this reason, in the motorcycle according to the second embodiment, it is easy to turn at a reduced vehicle speed with the vehicle body tilted.
  • the inclination angle decreases when the front wheel brake 51 is operated. For this reason, in the motorcycle according to the second embodiment, it becomes easier to turn while maintaining the inclination angle of the vehicle body than the motorcycle 1 of the first embodiment.
  • the present invention is not limited to this, and for example, the following two examples: As described above, the braking force of the front wheel brake and the braking force of the rear wheel brake may be calculated.
  • the storage unit does not store the third relationship.
  • the ratio setting unit sets the ratio of the braking force of the front wheel brake to the entire target braking force from the second relationship.
  • the braking force calculation unit calculates the braking force of the front wheel brake from the ratio of the braking force of the front wheel brake to the entire target braking force.
  • the braking force calculation unit calculates the braking force of the rear wheel brake by subtracting the braking force of the front wheel brake from the target braking force.
  • the second relationship is not stored in the storage unit.
  • the ratio setting unit sets the ratio of the braking force of the rear wheel brake to the entire target braking force from the target braking force and the third relationship.
  • the braking force calculation unit calculates the braking force of the rear wheel brake from the ratio of the braking force of the rear wheel brake to the entire target braking force.
  • the braking force calculation unit calculates the braking force of the front wheel brake by subtracting the braking force of the rear wheel brake from the target braking force.
  • the fifth relationship is not stored in the storage unit.
  • the ratio setting unit sets the ratio of the braking force of the front wheel brake to the entire target braking force from the target braking force and the fourth relationship.
  • the braking force calculation unit calculates the braking force of the front wheel brake from the ratio of the braking force of the front wheel brake to the entire target braking force.
  • the braking force calculation unit calculates the braking force of the rear wheel brake by subtracting the braking force of the front wheel brake from the target braking force.
  • the fourth relationship is not stored in the storage unit.
  • the ratio setting unit sets the ratio of the braking force of the rear wheel brake to the entire target braking force based on the target braking force and the fifth relationship.
  • the braking force calculation unit calculates the braking force of the rear wheel brake from the ratio of the braking force of the rear wheel brake to the entire target braking force.
  • the braking force calculation unit calculates the braking force of the front wheel brake by subtracting the braking force of the rear wheel brake from the target braking force.
  • the inclination angle correction value of the second embodiment is not used and the inclination is corrected.
  • the tilt angle detected by the angle detection sensor 54 is used, the tilt angle correction value may be used in the first embodiment as in the second embodiment. In this case, when the brake is operated as in the second embodiment, the amount of change in the inclination angle is small, so that the operability is further improved.
  • the vehicle speed is not taken into account when calculating the braking force of the front wheel brake 51 and the braking force of the rear wheel brake 52.
  • the vehicle speed detection sensor 71 may be attached, and the second relation and the third relation may be distinguished from the fourth relation and the fifth relation depending on whether or not the vehicle speed is equal to or less than a threshold value.
  • the brake disc type brake device has been described.
  • the present invention is not limited to this, and a drum brake type brake device may be used.
  • the gyro sensor is used to detect the tilt angle of the vehicle body.
  • the present invention is not limited to this, and the vehicle body is not limited to this.
  • the tilt angle may be detected.
  • the tilt angle of the vehicle body may be calculated from the detection result of the yaw rate sensor and the detection result of the vehicle speed sensor, or may be calculated from GPS data.
  • the wheel speed detection sensor attached to the wheel is used to detect the vehicle speed, but the present invention is not limited to this, and other sensors or
  • the vehicle speed may be detected by a method.
  • the vehicle speed can also be detected from GPS data.
  • the speed can also be calculated by integrating the acceleration of the motorcycle using an acceleration sensor. In this case, the vehicle speed can be detected even when the wheel is locked, that is, when the rotation of the wheel is stopped.
  • the brake lever 53 is used as an example of the brake operator, but the present invention is not limited to this, and other configurations may be used.
  • a foot pedal may be used.
  • a brake device having a configuration in which only the second brake pad 513b is pressed against the front disc plate 31 as the front wheel brake 51 and the rear wheel brake 52 is used.
  • the brake device may be configured such that both the first brake pad 513a and the second brake pad 513b are pressed against the front disc brake 31 side.
  • the stroke sensor 53a is used as a sensor for detecting the operation amount of the brake lever 53.
  • the present invention is not limited to this, and the operation amount of the brake lever 53 is determined by other sensors or methods. It can also be detected.
  • a rotary potentiometer can be used as the stroke sensor.
  • the operation amount can be detected from the load acting on the brake lever using a load cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

車体を傾斜させた状態で旋回しながらブレーキを作動させた場合に、車体の姿勢が傾斜した状態が維持できる構成を提供することにある。傾斜角検出センサ(54)は、自動二輪車1の車体の傾斜角を検出する。記憶部(551)は、傾斜角毎の前輪ブレーキ(51)の制動力の目標制動力に占める割合を示す第2関係及び/又は傾斜角毎の後輪ブレーキ(52)の制動力の目標制動力に占める割合との関係を示す第3関係を記憶している。割合設定部(554)は、検出結果入力部(552)に入力した検出結果に基づいて、記憶部(551)に記憶された複数の第2関係のいずれを参照するか及び/又は複数の第3関係のいずれを参照するかを決定し、第2関係及び/又は第3関係に基づいて、前輪ブレーキ(51)の制動力と後輪ブレーキ(52)の制動力との割合を設定する。

Description

ブレーキ装置及び鞍乗型車両
 本発明は、ブレーキ装置及び鞍乗型車両に関し、さらに詳しくは、1つのブレーキ操作子によって前輪ブレーキと後輪ブレーキとが連動して作動するブレーキ装置及びそのブレーキ装置を備えた鞍乗型車両に関する。
 鞍乗型車両の一種として、自動二輪車が知られている。自動二輪車には、前輪及び後輪の回転を制動させるブレーキが設けられている。自動二輪車においては、連動ブレーキを備えたものが既に実用化されている。連動ブレーキは、自動二輪車の前輪用のブレーキ及び後輪用のブレーキを1つのレバーで操作できるようにした装置である。
 例えば、特許4526135号公報に記載の連動ブレーキ装置では、制動力配分特性曲線が車速や車輪スリップ状態等の走行情報に基づいて変更される。この制動力配分特性曲線に基づいて、前輪ブレーキの制動力及び後輪ブレーキの制動力が制御される。
 また、特許3329851号公報に記載の連動ブレーキ装置では、1人乗りの状態の理想制動力配分特性曲線と2人乗りの状態の理想制動力配分特性曲線との間で、乗員が前輪ブレーキの制動力と後輪ブレーキの制動力の割合を好みに合わせて調整することができる。
 特表2005-535513号公報に記載のブレーキ装置では、安全性と操作の快適性を保持するために、減速比に応じて、前輪ブレーキの制動力と後輪ブレーキの制動力の割合が、理想制動力配分特性曲線に基づいた割合又は予め定められた割合に変更される。
 先行技術文献には、スリップ状況や車速等に応じて制動力配分特性曲線を変更して前輪ブレーキの制動力と後輪ブレーキの制動力の割合を設定する構成や、乗員が前輪ブレーキの制動力と後輪ブレーキの制動力の割合を調整できる構成等が記載されている。
 図11は自動二輪車を傾斜角θで傾斜させた状態を示す。自動二輪車では、図11で示すように車体を傾斜させた姿勢で旋回する場合がある。自動二輪車が車体を傾斜させて旋回をしている際に、前輪ブレーキが強く作用すると、車体は起き上がる現象を示す。すなわち、傾斜角θが小さくなる。したがって、自動二輪車においては、車体を傾けた状態でブレーキ装置を作動させながら、旋回することは難しい。しかしながら、一般的に、自動二輪車を旋回させる際には、車体を傾斜させた方が操作しやすく、かつ速度が小さいほうが旋回させやすい。
 本発明の課題は、車体を傾斜させた状態で旋回しながらブレーキを作動させた場合に、車体の姿勢が傾斜した状態を維持できる構成を提供することにある。
 本発明に係るブレーキ装置は、鞍乗型車両に設けられるブレーキ装置であって、前輪ブレーキと、後輪ブレーキと、ブレーキ操作部と、傾斜角検出センサと、検出結果入力部と、記憶部と、目標制動力設定部と、割合設定部と、制動力算出部とを備えている。前輪ブレーキは、前輪に制動力を作用させる。後輪ブレーキは、後輪に制動力を作用させる。ブレーキ操作部は、前輪ブレーキと後輪ブレーキとを1つの操作子で操作する。傾斜角検出センサは、鞍乗型車両の車体の傾斜角を検出する。検出結果入力部は、傾斜角検出センサからの検出結果を入力する。記憶部は、ブレーキ操作部の操作量と目標制動力との関係を示す第1関係と、傾斜角毎に定められた前輪ブレーキの制動力の目標制動力に占める割合を示す第2関係及び/又は傾斜角毎に定められた後輪ブレーキの制動力の目標制動力に占める割合を示す第3関係とを記憶する。目標制動力設定部は、第1関係を参照することによりブレーキ操作部の操作量に基づいて、目標制動力を設定する。割合設定部は、検出結果入力部に入力した検出結果から、記憶部に記憶された複数の第2関係のいずれを参照するか及び/又は複数の第3関係のいずれを参照するかを決定し、第2関係及び/又は第3関係に基づいて、前輪ブレーキの制動力と後輪ブレーキの制動力との割合を設定する。制動力算出部は、目標制動力設定部によって設定された目標制動力及び割合設定部によって設定された割合に基づいて、前輪ブレーキの制動力及び後輪ブレーキの制動力を算出する。
 ここでは、車体の傾斜角に応じて前輪ブレーキの制動力と後輪ブレーキの制動力との割合を制御している。このため、車体の傾斜角が大きい場合に、前輪の制動力の割合を減少させるように制御することができる。前輪ブレーキの制動力を減少させることで、車体を傾斜させた状態でブレーキを作動させたとしても、車体を傾斜させた状態を維持しながら旋回することができ、自動二輪車を旋回させやすくなる。
 前輪ブレーキの制動力と後輪ブレーキの制動力の割合によって、車体を傾けてブレーキを作動させた場合に、車体の傾斜角を減らす、すなわち車体を起こすようにすることもできる。乗員の好みに合わせた姿勢で旋回することができる。
図1は、本発明に係るブレーキ装置を備えた自動二輪車の概略全体図である。 図2は、ブレーキ装置の構成概略図である。 図3は、ブレーキ装置の全体ブロック図である。 図4は、目標制動力とブレーキレバーの操作量との関係を示す図である。 図5は、目標制動力と前輪の制動力との割合関係を示す図である。 図6は、目標制動力と後輪の制動力との割合関係を示す図である。 図7は、他の実施形態に係るブレーキ装置の全体ブロック図である。 図8は、低速時における目標制動力と前輪の制動力との割合関係を示す図である。 図9は、低速時における目標制動力と後輪の制動力との割合関係を示す図である。 図10は、第2の実施形態に係るブレーキ装置の動作を示すフローチャートである。 図11は、所定の傾斜角で車体を傾斜させた状態の自動二輪車及び乗員の背面図である。
[第1の実施形態]
 以下、図面を参照し、本発明の一実施形態に係るブレーキ装置5を備えた自動二輪車1について説明する。図中同一又は相当部分には同一符号を付してその部材についての説明は繰り返さない。
〈全体構成〉
 図1は、本発明に係るブレーキ装置5を備えた自動二輪車1の概略全体図を示す。なお、以下の説明において前後左右と方向を示す場合、自動二輪車1のシートに着座した乗員から見た前後左右の方向を意味するものとする。図1中の矢印Fは、自動二輪車1の前方向を、矢印Uは、自動二輪車1の上方向を示す。
 自動二輪車1は、車体本体2、前輪3、後輪4及びブレーキ装置5を備えている。
 車体本体2は、車体フレーム、車体カバー、ヘッドライト及びシート等から構成されている。
 前輪3は、車体本体2の前部にフロントフォーク(不図示)を介して操舵自在に設けられている。前輪3は、ブレーキ装置5に接続されている。前輪3には、フロントディスクプレート31が設けられている。フロントディスクプレート31は環状の部材である。フントディスクプレート31は、前輪3の側方に配置されている。
 後輪4は、車体本体2の後部にリヤアーム(不図示)を介して配置されている。後輪4は、ブレーキ装置5に接続されている。後輪4は、車体本体2の後部に設けられている。後輪4には、リアディスクプレート41が設けられている。リアディスクプレート41は、後輪4の側方に配置されている。リアディスクプレート41は、環状の部材である。
 ブレーキ装置5は、前輪ブレーキ51、後輪ブレーキ52、ブレーキレバー53、傾斜角検出センサ54、ストロークセンサ53a及びブレーキ制御装置55を有している。
 前輪ブレーキ51は、前輪3を支持するフロントフォークに取り付けられている。前輪ブレーキ51は、前輪3の回転を制動させるための装置である。
 後輪ブレーキ52は、後輪4を支持するリヤアームに取り付けられている。後輪ブレーキ52は、後輪4の回転を制動させるための装置である。
 ブレーキレバー53は、前輪ブレーキ51及び後輪ブレーキ52を操作する。ブレーキレバー53は、左右のハンドルにそれぞれ一対取り付けられている。図1では、左のハンドルに取り付けられたブレーキレバー53のみを記載している。右のハンドルに取り付けられたブレーキレバー53が操作されると、前輪ブレーキ51のみが作動する。左のハンドルに取り付けられたブレーキレバー53によって、前輪ブレーキ51及び後輪ブレーキ52が連動して作動する。
 傾斜角検出センサ54は、車体の傾斜角を検出するためのセンサである。傾斜角検出センサ54は、ジャイロセンサを有している。傾斜角検出センサ54は、ジャイロセンサによって検出した自動二輪車の車体の角速度に基づいて車体の傾斜角を検出する。
 ストロークセンサ53aは、ブレーキレバー53が操作された量を検出する。
 ブレーキ制御装置55は、前輪ブレーキ51及び後輪ブレーキ52を制御する装置である。ブレーキ制御装置55は、ストロークセンサ53a、傾斜角検出センサ54、前輪ブレーキ51及び後輪ブレーキ52に接続されている。
 図2は、ブレーキレバー53、傾斜角検出センサ54、ブレーキ制御装置55、前輪ブレーキ51及び後輪ブレーキ52の構成全体概略図である。
 ブレーキレバー53は、自動二輪車1を制動させる際に乗員が操作可能な部分である。ブレーキレバー53には、ストロークセンサ53aが取り付けられている。
 ブレーキ制御装置55は、前輪ブレーキ51の前輪3に対する制動力及び後輪ブレーキ52の後輪4に対する制動力を決定する。ブレーキ制御装置55は、ECU(エレクトロニック・コントロール・ユニット)55a及び油圧制御ユニット55bを有している。
 ECU55aは、ストロークセンサ53a及び傾斜角検出センサ54に接続されている。ECU55aは、ストロークセンサ53a及び傾斜角検出センサ54から検出結果に関する信号を受信する。ECU55aは、ブレーキレバー53の操作量及び車体の傾斜角に基づいて前輪ブレーキ51の制動力及び後輪ブレーキ52の制動力を算出する。ECU55aは、算出結果に基づいて、油圧制御ユニット55bを制御する。
 油圧制御ユニット55bは、ECU55aから信号を受信し、前輪ブレーキ51及び後輪ブレーキ52を作動させる。油圧制御ユニット55bは、フロントブレーキ油圧配管55cを介して前輪ブレーキ51に接続されている。油圧制御ユニット55bは、リアブレーキ油圧配管55dを介して後輪ブレーキ52に接続されている。
 前輪ブレーキ51は、フロントディスクプレート31の回転を制動させる装置である。前輪ブレーキ51は、キャリパーボディ511、ブレーキピストン512及び1対のブレーキパッド513を有している。
 キャリパーボディ511は、フロントブレーキ油圧配管55cの一端に接続されている。キャリパーボディ511には、ブレーキピストン512が収納される空間Aが形成されている。空間Aは、フロントブレーキ油圧配管55cに接続されている。空間Aには、フロントブレーキ油圧配管55cからブレーキオイルが流入可能である。キャリパーボディ511は、フロントディスクプレート31の一部が配置可能な溝Bを有している。キャリパーボディ511は、溝Bを形成する側壁Cでブレーキパッド513を支持している。
 ブレーキピストン512は、ブレーキパッド513の一方と接触している。フロントブレーキ油圧配管55cを介してブレーキオイルが空間Aに供給され、ブレーキピストン512は、ブレーキパッド513をフロントディスクプレート31側に押し付ける。
 1対のブレーキパッド513は、第1ブレーキパッド513a及び第2ブレーキパッド513bを有している。第1ブレーキパッド513a及び第2ブレーキパッド513bは、フロントディスクプレート31を挟んで配置されている。第1ブレーキパッド513aは、フロントディスクプレート31とキャリパーボディ511の側壁Cとの間に配置されている。第2ブレーキパッド513bは、ブレーキピストン512とフロントディスクプレート31との間に配置されている。
 後輪ブレーキ52は、リアディスクプレート41の回転を制動させる装置である。後輪ブレーキ52は、前輪ブレーキ51と同様の構成であるため、構成の説明は省略する。前輪ブレーキ51の構成に対応する構成には同じ番号を付している。
 図3は、ブレーキ装置5の構成を示すブロック図である。図3を参照して、ブレーキ装置5の構成について説明する。
 ブレーキ装置5は、前輪ブレーキ51、後輪ブレーキ52、ブレーキレバー53、傾斜角検出センサ54、ストロークセンサ53a及びブレーキ制御装置55を有している。
 ブレーキ制御装置55は、前述のように前輪ブレーキ51及び後輪ブレーキ52を制御する装置であり、ECU55aと油圧制御ユニット55bを有する。ECU55aは、記憶部551、検出結果入力部552、目標制動力設定部553、割合設定部554及び制動力算出部555を有している。
 記憶部551は、第1関係、第2関係及び第3関係のデータを記憶している。ここで、第1関係は、ブレーキレバー53の操作量と目標制動力との関係である。第2関係は目標制動力と前輪ブレーキ51の制動力との割合を示す関係である。第3関係は、目標制動力と後輪ブレーキ52の制動力との割合を示す関係である。
 検出結果入力部552は、傾斜角検出センサ54によって検出された検出結果を入力する。
 目標制動力設定部553は、ストロークセンサ53aの検出結果から目標制動力を設定する。目標制動力とは、ブレーキレバー53の操作量に応じた制動力を意味している。
 割合設定部554は、前輪ブレーキ51の制動力と後輪ブレーキ52の制動力との割合を設定する部分である。割合設定部554は、車体の傾斜角に基づいて後述するいずれの第2関係及び第3関係を参照するかを決定する。割合設定部554は、第2関係及び第3関係とに基づいて、前輪ブレーキ51の制動力と後輪ブレーキ52の制動力との割合を設定する。
 制動力算出部555は、目標制動力と前輪ブレーキ51の制動力との割合に基づいて前輪ブレーキ51の制動力を算出する。制動力算出部555は、目標制動力と後輪ブレーキ52の制動力との割合に基づいて後輪ブレーキ52の制動力を算出する。
 図4は、第1関係を示している。
 図4に示すように、ブレーキレバー53の操作量と目標制動力との関係は、次の式(1)で表される。
    目標制動力 = (ブレーキレバーの操作量) * A・・・(1)
 上記の式(1)におけるAは所定の定数を意味している。
 ブレーキレバー53が操作されると、ストロークセンサ53aによってブレーキレバー53の操作量が検出される。ストロークセンサ53aによってブレーキレバー53の操作量が検出されると、目標制動力設定部553は、第1関係を参照してブレーキレバー53の操作量から目標制動力を算出する。
 ここで、目標制動力と前輪ブレーキ51の制動力及び後輪ブレーキ52の制動力との間には次の式(2)の関係がある。
     目標制動力=(前輪ブレーキの制動力)+(後輪ブレーキの制動力)・・・(2)
 図5は、第2関係を示している。なお、図5においては、傾斜角が小さい場合(理想制動力配分特性曲線)の第2関係と、傾斜角が大きい場合の第2関係の一例のみを実線で示している。理想制動力配分特性曲線とは、車体の傾斜角が小さい状態で前輪3と後輪4とが同時に回転停止(ホイールロック)する場合の前輪ブレーキ51の制動力と後輪ブレーキ52の制動力の割合に関する曲線である。図5の理想制動力配分特性曲線は、前輪ブレーキ51の制動力と目標制動力との関係を示しているが、前輪ブレーキ51の制動力と後輪ブレーキ52の制動力との間には上記の式(2)の関係があるため、図5の関係と式(2)から前輪ブレーキ51の制動力と後輪ブレーキ52の制動力の割合を算出することができる。図5において2点鎖線によって例示しているように、傾斜角の大きい場合について傾斜角毎に異なる複数の第2関係を記憶している。図5では、実線及び2点鎖線によって複数の第2関係を示しているが、図5に示している第2関係は一例であり、記憶部551は実際には傾斜角毎に異なるさらに多数の第2関係を記憶している。
 図5は、自動二輪車1の傾斜角に応じた2つの第2関係を実線で示している。自動二輪車1の傾斜角が大きい場合の方が、自動二輪車1の傾斜角が小さい場合に比べて、目標制動力全体に占める前輪ブレーキ51の制動力の割合が小さい。
 図6は、第3関係を示している。なお、図6においては、傾斜角が小さい場合(理想制動力配分特性曲線)の第3関係と傾斜角が大きい場合の第3関係の一例のみを実線で示している。図6において2点鎖線によって示しているように、傾斜角の大きい場合について傾斜角毎に異なる複数の第3関係を記憶している。図6では、実線及び2点鎖線によって複数の第3関係を示しているが、図6に示している第3関係は一例であり、記憶部551は実際には傾斜角毎に異なるさらに多数の第3関係を記憶している。
 図6は、自動二輪車1の傾斜角に応じた2つの第3関係を実線で示している。自動二輪車1の傾斜角が大きい場合の方が、自動二輪車1の傾斜角が小さい場合に比べて、目標制動力全体に占める後輪ブレーキ52の制動力の割合が大きい。
 図5及び図6に示すように、傾斜角が小さい場合には、理想制動力配分特性曲線に基づいて、前輪ブレーキ51の制動力及び後輪ブレーキ52の制動力の割合が定められる。傾斜角が大きくなると、目標制動力全体に占める前輪ブレーキ51の制動力の割合を減少させるとともに、目標制動力全体に占める後輪ブレーキ52の制動力の割合を増加させる。
<車体を傾斜させた状態でブレーキを作動させた場合の動作>
 ブレーキレバー53が乗員によって操作されると、ストロークセンサ53aによってブレーキレバー53の操作量が検出される。目標制動力設定部は、第1関係を参照して、ブレーキレバー53の操作量から目標制動力を設定する。傾斜角検出センサ54によって車体の傾斜角が検出される。傾斜角検出センサ54によって検出された傾斜角は検出結果入力部に入力される。
 割合設定部554は、車体の傾斜角から記憶部551に記憶されている複数の第2関係のうちのいずれの第2関係を参照するかを決定する。割合設定部554は、第2関係を参照して、目標制動力から目標制動力全体に占める前輪ブレーキ51の制動力の割合を検出する。割合設定部554は、車体の傾斜角から、記憶部551に記憶されている複数の第2関係のうちのいずれの第3関係を参照するかを決定する。割合設定部554は、第3関係を参照して、目標制動力から目標制動力全体に占める後輪ブレーキ52の割合を検出する。
 その後、制動力算出部555は、目標制動力全体に占める前輪ブレーキ51の制動力の割合と目標制動力から、前輪ブレーキ51の制動力を算出する。制動力算出部555は、目標制動力全体に占める後輪ブレーキ52の制動力の割合と目標制動力から、後輪ブレーキ52の制動力を算出する。
 ECU55aは、前輪ブレーキ51が制動力算出部555によって算出された前輪ブレーキ51の制動力を前輪3に作用させるように、油圧制御ユニット55bに信号を発信する。油圧制御ユニット55bは、フロントブレーキ油圧配管55cを介して、前輪ブレーキ51にブレーキオイルを供給する。ブレーキピストン512は、ブレーキオイルによって第2ブレーキパッド513b側に押し付けられる。第2ブレーキパッド513bがフロントディスクプレート31に押し付けられる。
 ECU55aは、制動力算出部555によって算出された後輪ブレーキ52の制動力を後輪ブレーキ52が後輪4に作用させるように、油圧制御ユニット55bに信号を発信する。油圧制御ユニット55bは、リアブレーキ油圧配管55dを介して、後輪ブレーキ52にブレーキオイルを供給する。ブレーキピストン512は、ブレーキオイルによって第2ブレーキパッド513b側に押し付けられる。後輪ブレーキ52のブレーキパッド513がリアディスクプレート41に押し付けられる。
<本実施形態の特徴>
 以下に本実施形態の特徴を説明する。
 上記の実施形態では、車体の傾斜角が大きい場合には、車体の傾斜角の小さい場合に比べて目標制動力全体に占める後輪ブレーキ52の制動力の割合が増加するとともに目標制動力全体に占める前輪ブレーキ51の制動力の割合が減少する。このため、目標制動力全体に占める後輪ブレーキ52の制動力の割合及び目標制動力全体に占める前輪ブレーキ51の制動力の割合を傾斜角に応じて変化させない場合に比べて、前輪ブレーキの制動力を減少させることができる。
 従って、自動二輪車1の車体を傾斜させた状態でブレーキを作動させることができる。例えば、自動二輪車1が車体を大きく傾けた状態で旋回している際に、ブレーキを作動させても、車体が起き上がる現象が抑制され、車体を傾斜させた状態を維持しながら旋回することができる。
 上記の実施形態では、車体の傾斜角が大きい場合には、前輪ブレーキ51の制動力を理想制動力配分特性曲線よりも減少させるとともに、後輪ブレーキ52の制度力を理想制動力配分特性曲線よりも増加させている。このため、前輪3の回転が後輪4の回転よりも先に停止(ホイールロック)するのを防止できる。
[第2の実施形態]
 図面を参照し、第2の実施形態に係るブレーキ装置7を備えた自動二輪車について以下に説明する。
 第2の実施形態に係るブレーキ装置7では、以下の点で第1の実施形態とは異なっている。
 例えば、自動二輪車では所定の閾値以下の低速度で旋回する場合、前輪ブレーキ52の作動により車体の傾斜角が変化すると操縦しにくい。このため、第2の実施形態に係るブレーキ装置7では、自動二輪車の車速が所定の閾値以下の場合には、目標制動力全体に占める前輪ブレーキの制動力の割合を減少させるとともに、目標制動力全体に占める後輪ブレーキの制動力の割合が増加するように前輪ブレーキ及び後輪ブレーキが制御される。
 前述の本発明の課題の項でも説明したように、自動二輪車の車体が傾斜した状態でブレーキレバーが操作されると、前輪に制動力が作用するために車体が起き上がり、傾斜角が減少する。この傾斜角の減少分を考慮し、前輪ブレーキを作動させた場合であっても現在の車体の傾斜角を維持するよう、第2の実施形態に係るブレーキ装置7では、実際の車体の傾斜角に前輪ブレーキが作動することに伴う傾斜角の減少分を加えた補正値を用いて、前輪ブレーキの制動力及び後輪ブレーキの制動力が定められる。
<構成>
 第2の実施形態に係る自動二輪車は、ブレーキ装置7以外の構成については、第1の実施の形態と同様である。このため、ブレーキ装置7以外の構成についての説明を省略する。また、第1の実施形態と同様の構成については、第1の実施形態と同じ番号を付し、説明を省略する。
 図7は、ブレーキ装置7の構成を示す全体ブロック図である。
 ブレーキ装置7は、ブレーキレバー53、ストロークセンサ53a、傾斜角検出センサ54、車速検出センサ71、前輪ブレーキ51、後輪ブレーキ52及びブレーキ制御装置72を有している。車速検出センサ71及びブレーキ制御装置72以外の構成は第1の実施形態に記載のブレーキ装置5の構成と同様であるため、車速検出センサ71及びブレーキ制御装置72についてのみ詳細に説明する。
 車速検出センサ71は、自動二輪車1の車速を検出するセンサである。車速検出センサ71は、車輪の回転速度を検出するセンサを有している。車速検出センサ71は、車輪の回転速度を検出するセンサによって検出された車輪の回転速度に基づいて自動二輪車1の速度を算出する。
 ブレーキ制御装置72は、ECU55a及び油圧制御ユニット55bを有している。ECU55aは、記憶部721、検出結果入力部725、目標制動力設定部553、割合設定部722、制動力算出部555、傾斜角補正値算出部723及び閾値判断部724を有している。目標制動力設定部553及び制動力算出部555は、第1の実施形態と同様であるため、これらの構成については説明を省略する。
 記憶部721は、第1の実施形態に記載の第1関係、第2関係及び第3関係に加えて、第4関係及び第5関係のデータを記憶している。第1関係、第2関係及び第3関係は、第1の実施形態と同様の内容であるため、説明を省略する。第4関係は、自動二輪車1の車速が閾値よりも小さい場合における、目標制動力と前輪ブレーキ51の制動力との割合を示す関係である。第5関係は、自動二輪車1の車速が閾値よりも小さい場合における、目標制動力と後輪ブレーキ52の制動力との割合を示す関係である。
 検出結果入力部725は、傾斜角検出センサ54によって検出された検出結果を入力する。検出結果入力部725は、車速検出センサ71によって検出された車速についてのデータを入力する。
 傾斜角補正値算出部723は、前輪ブレーキ51が作動することによって減少する傾斜角を算出し、傾斜角の減少分に応じた補正値を算出する。記憶部721には、前輪ブレーキ51の制動力と傾斜角の減少量との関係を示すテーブルが記憶されている。傾斜角補正算出部723は、このテーブルを参照して、前輪ブレーキ51の制動力から傾斜角の減少量を算出する。傾斜角補正値算出部723は、予め傾斜角の減少分を傾斜角検出センサ54によって検出された角度に加算して傾斜角補正値を算出する。
 閾値判断部724は、車速検出センサ71によって検出された自動二輪車1の車速が所定の閾値以上か否かを判断する部分である。ここで、所定の閾値は、例えば時速6~10キロ程度に設定されている。
 割合設定部722は、前輪ブレーキ51の制動力と後輪ブレーキ52の制動力との割合を設定する部分である。割合設定部722は、自動二輪車1の車速が所定の閾値以下の場合には第4関係及び第5関係に基づいて目標制動力全体に占める前輪ブレーキ51の制動力及び目標制動力全体に占める後輪ブレーキ52の制動力の割合を設定する。割合設定部722は、自動二輪車1の車速が所定の閾値以上の場合には、傾斜角補正値と第2関係及び第3関係とに基づいて前輪ブレーキ51の制動力と後輪ブレーキ52の制動力との割合を設定する。
 図8は、第4関係を示す図である。自動二輪車1の車速が閾値よりも小さい場合には、第4関係に基づいて、前輪ブレーキ51の制動力が設定される。目標制動力が所定の値Xよりも小さい範囲では、制動力配分特性曲線Zの延長線Yよりも、前輪ブレーキ51の制動力が小さくなる。
 図9は、第5関係を示す図である。自動二輪車1の車速が閾値よりも小さい場合には、第5関係に基づいて、後輪ブレーキ52の制動力が設定される。目標制動力が所定の値Sよりも小さい範囲では、制動力配分特性曲線Tの延長線Uよりも、後輪ブレーキ52の制
動力が大きくなる。
<ブレーキ装置の動作>
 図10はブレーキ装置7の動作を示すフローチャートである。
 ブレーキレバー53が操作されると、ストロークセンサ53aによってブレーキレバー53の操作量が検出される(ステップS1)。目標制動力設定部553は、第1関係を参照して、ブレーキレバー53の操作量から目標制動力を検出する(ステップS2)。車速検出センサ71によって自動二輪車1の車速が検出される(ステップS3)。閾値判断部724は、自動二輪車1の車速が所定の閾値以上か否かを判断する(ステップS4)。
 自動二輪車1の車速が所定の閾値以上である場合(ステップS4のYES)には、傾斜角補正値算出部723は、ブレーキレバー53の操作量から段落0073で説明した手順で傾斜角補正値を算出する(ステップS5)。
 割合設定部554は、記憶部551に記憶された複数の第2関係のうち、傾斜角補正値からいずれの第2関係を参照するかを決定する。第2関係を参照して、目標制動力設定部553は、目標制動力から目標制動力全体に占める前輪ブレーキ51の制動力の割合を検出する。ここでは、第2関係における傾斜角として、傾斜角補正値が用いられる。割合設定部554は、記憶部551に記憶された複数の第3関係のうち、傾斜角補正値からいずれの第3関係を参照するかを決定する。割合設定部554は、第3関係を参照して、目標制動力から目標制動力全体に占める後輪ブレーキ52の制動力の割合を設定する(ステップS6)。
 制動力算出部555は、目標制動力と前輪ブレーキ51の制動力との割合とから前輪ブレーキ51の制動力を算出する。制動力算出部555は、目標制動力と後輪ブレーキ52の制動力との割合とから後輪ブレーキの制動力を算出する(ステップS7)。
 ECU55aは、前輪ブレーキ51が制動力算出部555によって算出された前輪ブレーキ51の制動力を前輪3に作用させるように、油圧制御ユニット55bに信号を発信する。油圧制御ユニット55bは、フロントブレーキ油圧配管55cを介して、前輪ブレーキ51にブレーキオイルを供給する。ブレーキピストン512は、ブレーキオイルによって第2ブレーキパッド513b側に押し付けられる。第2ブレーキパッド513bがフロントディスクプレート31に押し付けられる。
 ECU55aは、後輪ブレーキ52が制動力算出部555によって算出された後輪ブレーキ52の制動力を後輪4に作用させるように、油圧制御ユニット55bに信号を発信する。油圧制御ユニット55bは、リアブレーキ油圧配管55dを介して、後輪ブレーキ52にブレーキオイルを供給する。ブレーキピストン512は、ブレーキオイルによって第2ブレーキパッド513b側に押し付けられる。後輪ブレーキ52のブレーキパッド513がリアディスクプレート41に押し付けられる(ステップS8)。
 自動二輪車1の車速が所定の閾値以下の場合(ステップS4のNO)には、割合設定部554は、第4関係を参照して、目標制動力から目標制動力に占める前輪ブレーキ51の制動力の割合を設定する。割合設定部554は、第5関係を参照して、目標制動力から目標制動力に占める後輪ブレーキ52の制動力の割合を設定する(ステップS9)。
 制動力算出部555は、目標制動力全体に占める前輪ブレーキ51の制動力の割合から前輪ブレーキ51の制動力を算出する。制動力算出部555は、目標制動力全体に占める後輪ブレーキ52の制動力の割合とから後輪ブレーキ52の制動力を算出する(ステップS7)。
 ECU55aは、前輪ブレーキ51が制動力算出部555によって算出された前輪ブレーキ51の制動力を前輪3に作用させるように、油圧制御ユニット55bに信号を発信する。油圧制御ユニット55bは、フロントブレーキ油圧配管55cを介して、前輪ブレーキ51にブレーキオイルを供給する。ブレーキピストン512は、ブレーキオイルによって第2ブレーキパッド513b側に押し付けられる。ECU55aは、第2ブレーキパッド513bがフロントディスクプレート31に押し付けられる。後輪ブレーキ52が制動力算出部555によって算出された後輪ブレーキ52の制動力を後輪4に作用させるように、油圧制御ユニット55bに信号を発信する。油圧制御ユニット55bは、リアブレーキ油圧配管55dを介して、後輪ブレーキ52にブレーキオイルを供給する。ブレーキピストン512がブレーキオイルによって第2ブレーキパッド513b側に押し付けられる。後輪ブレーキ52のブレーキパッド513がリアディスクプレート41に押し付けられる(ステップS8)。
<第2の実施形態の特徴>
 以下に第2の実施形態の特徴を説明する。第2の実施形態では、第1の実施形態の特徴に加えて、以下の特徴がある。
 第2の実施形態では、車速が所定の閾値以下の場合には、第4関係及び第5関係に基づいて、前輪ブレーキ51の制動力及び後輪ブレーキ52の制動力が設定される。このため、第2の実施形態に係る自動二輪車では、車体を傾斜させた状態で、車速を落として旋回しやすくなる。
 第2の実施形態では、前輪ブレーキ51が作動した場合に、傾斜角が減少することが考慮されている。このため、第2の実施形態に係る自動二輪車では、第1の実施形態の自動二輪車1よりもさらに、車体の傾斜角を維持した状態で旋回させやすくなる。
[他の実施形態]
 (1)上記の実施形態では、自動二輪車1について説明したが、本発明はこれに限らず、3又は4輪の鞍乗型車両等であっても適用できる。
 (2)上記の第1の実施形態及び第2の実施形態では、第2関係と第3関係の両方を用いた例について説明したが、本発明はこれに限らず、例えば、次の二例のように前輪ブレーキの制動力及び後輪ブレーキの制動力を算出するようにしてもよい。
 一つ目は上記の第1の実施形態及び第2の実施形態とは異なり、記憶部には第3関係が記憶されていない。車体の傾斜角に基づいて、割合設定部は第2関係から目標制動力全体に占める前輪ブレーキの制動力の割合を設定する。制動力算出部は、目標制動力全体に占める前輪ブレーキの制動力の割合から前輪ブレーキの制動力を算出する。制動力算出部は、目標制動力から前輪ブレーキの制動力を差し引くことで、後輪ブレーキの制動力を算出する。
 二つ目は上記の第1の実施形態及び第2の実施形態とは異なり、記憶部には第2関係が記憶されていない。車体の傾斜角に基づいて、割合設定部は目標制動力と第3関係から目標制動力全体に占める後輪ブレーキの制動力の割合を設定する。制動力算出部は、目標制動力全体に占める後輪ブレーキの制動力の割合から後輪ブレーキの制動力を算出する。制動力算出部は、目標制動力から後輪ブレーキの制動力を差し引くことで、前輪ブレーキの制動力を算出する。
 (3)上記の第2の実施形態では、第4関係と第5関係の両方を用いた例について説明したが、本発明はこれに限らず、例えば、次の二例のように前輪ブレーキの制動力及び後輪ブレーキの制動力を算出するようにしてもよい。
 一つ目は上記の第2の実施形態とは異なり、記憶部には第5関係が記憶されていない。割合設定部は、目標制動力と第4関係から目標制動力全体に占める前輪ブレーキの制動力の割合を設定する。制動力算出部は、目標制動力全体に占める前輪ブレーキの制動力の割合から、前輪ブレーキの制動力を算出する。制動力算出部は、目標制動力から前輪ブレーキの制動力を差し引くことで、後輪ブレーキの制動力を算出する。
 二つ目は上記の第2の実施形態とは異なり、記憶部には第4関係が記憶されていない。割合設定部は、目標制動力と第5関係から目標制動力全体に占める後輪ブレーキの制動力の割合を設定する。制動力算出部は、目標制動力全体に占める後輪ブレーキの制動力の割合とから、後輪ブレーキの制動力を算出する。制動力算出部は、目標制動力から後輪ブレーキの制動力を差し引くことで、前輪ブレーキの制動力を算出する。
 (4)上記の第1実施形態の自動二輪車1では、前輪ブレーキ51の制動力及び後輪ブレーキ52の制動力を算出する際に、第2の実施形態の傾斜角補正値を用いず、傾斜角検出センサ54によって検出された傾斜角を用いたが、第1の実施形態において、第2の実施形態と同様に傾斜角補正値を用いてもよい。この場合には、第2の実施の形態と同様にブレーキを作動させる際に、傾斜角の変化量が小さくなるため、さらに操作性がよくなる。
 (5)上記の第1実施形態の自動二輪車1では、前輪ブレーキ51の制動力及び後輪ブレーキ52の制動力を算出する際に、車速を考慮していないが、第1の実施形態において、第2の実施形態と同様に、車速検出センサ71を取り付け、車速が閾値以下か否かによって、第2関係及び第3関係と第4関係及び第5関係とを区別して用いてもよい。
 (6)上記の第1の実施形態及び第2の実施形態では、ブレーキディスク方式のブレーキ装置について説明したが、本発明はこれに限らず、ドラムブレーキ方式のブレーキ装置であってもよい。
 (7)上記の第1の実施形態及び第2の実施形態では、車体の傾斜角を検出するために、ジャイロセンサを用いたが、本発明はこれに限らず、他のセンサ又は方法で車体の傾斜角を検出してもよい。例えば、ヨーレートセンサの検出結果と車速センサの検出結果から車体の傾斜角を算出してもよく、GPSデータから算出してもよい。
 (8)上記の第1の実施形態及び第2の実施形態では、車速を検出するために、車輪に取り付けた車輪速度検出センサを用いたが、本発明はこれに限らず、他のセンサ又は方法で車速を検出してもよい。例えば、GPSデータから車速を検出することもできる。加速度センサを用いて、自動二輪車の加速度を積分することで速度を算出することもできる。この場合には、車輪がロック、すなわち車輪の回転が停止している場合であっても、車速を検出することができる。
 (9)上記の第1の実施形態及び第2の実施形態では、ブレーキ操作子の例として、ブレーキレバー53を用いたが、本発明はこれに限らず、他の構成であってもよい。例えば、フットペダルであってもよい。
 (10)上記の第1の実施形態では、前輪ブレーキ51及び後輪ブレーキ52として第2ブレーキパッド513bのみがフロントディスクプレート31側に押し付けられる構成のブレーキ装置を用いたが、本発明はこれに限らず、第1ブレーキパッド513a及び第2ブレーキパッド513bの両方がフロントディスクブレーキ31側に押し付けられる構成のブレーキ装置であってもよい。
 (11)上記の実施形態では、ブレーキレバー53の操作量を検出するセンサとして、ストロークセンサ53aを用いたが、本発明はこれに限らず、他のセンサ又は方法でブレーキレバー53の操作量を検出することもできる。ストロークセンサとしては、リニアポテンショメータの他にロータリーポテンショメータを用いることができる。さらに、ストロークセンサを用いる代わりに、ロードセルを用いて、ブレーキレバーに作用する荷重から操作量を検出することもできる。
 
 

Claims (8)

  1.  鞍乗型車両に設けられるブレーキ装置であって、
     前輪に制動力を作用させる前輪ブレーキと、
     後輪に制動力を作用させる後輪ブレーキと、
     前記前輪ブレーキと前記後輪ブレーキとを1つの操作子で操作するブレーキ操作部と、
     前記鞍乗型車両の車体の傾斜角を検出する傾斜角検出センサと、
     前記傾斜角検出センサからの検出結果を入力する検出結果入力部と、
     前記ブレーキ操作部の操作量と目標制動力との関係を示す第1関係と、傾斜角毎に定められた前記前輪ブレーキの制動力の前記目標制動力に占める割合を示す第2関係及び/又は傾斜角毎に定められた前記後輪ブレーキの制動力の前記目標制動力に占める割合を示す第3関係とを記憶する記憶部と、
     前記第1関係を参照することにより前記ブレーキ操作部の操作量に基づいて、目標制動力を設定する目標制動力設定部と、
     前記検出結果入力部に入力した検出結果から、前記記憶部に記憶された複数の第2関係のいずれを参照するか及び/又は複数の第3関係のいずれを参照するかを決定し、第2関係及び/又は第3関係に基づいて、前記前輪ブレーキの制動力と前記後輪ブレーキの制動力との割合を設定する割合設定部と、
     前記目標制動力設定部によって設定された目標制動力及び前記割合設定部によって設定された割合に基づいて、前記前輪ブレーキの制動力及び前記後輪ブレーキの制動力を算出する制動力算出部と、
    を備えたブレーキ装置。
  2.  請求項1に記載のブレーキ装置であって、
     前記第2関係は、車体の傾斜角が大きくなるほど前記前輪ブレーキの制動力の前記目標制動力に占める割合が低下する関係であり、
     前記第3関係は、車体の傾斜角が大きくなるほど前記後輪ブレーキの制動力の前記目標制動力に占める割合が大きくなる関係である、
    ブレーキ装置。
  3.  請求項1又は2に記載のブレーキ装置であって、
     前記検出結果入力部に入力された検出結果から傾斜角補正値を算出する傾斜角補正値算出部をさらに有し、
     前記傾斜角補正値算出部は、
     前記ブレーキ操作部が操作されることにより減少すると想定される傾斜角の減少分を前記検出結果に加えることで傾斜角補正値を算出し、
     前記割合設定部は、前記傾斜角補正値と第2関係及び/又は第3関係に基づいて、前記前輪ブレーキの制動力と前記後輪ブレーキの制動力との割合を設定する、
    ブレーキ装置。
  4.  請求項1から3のいずれかに記載のブレーキ装置であって、
     前輪と後輪とが同時に回転停止(ホイールロック)する場合の前輪ブレーキの制動力と後輪ブレーキの制動力の割合に関する曲線を理想制動配分曲線とすると、
     前記割合設定部は、前記理想制動配分曲線よりも、前輪ブレーキの制動力を減少させるとともに後輪ブレーキの制動力の割合が増加させる、
    ブレーキ装置。
  5.  請求項1から4のいずれかに記載のブレーキ装置であって、
     前記ブレーキ装置は、
     前記鞍乗型車両の速度を検出する速度検出部と、
     前記鞍乗型車両の速度が所定の閾値以下か否かを判断する閾値判断部と、
    をさらに備え、
     前記検出結果入力部は、前記速度検出部によって検出された速度についてのデータを入力可能であり、
     前記割合設定部は、前記閾値判断部が前記鞍乗型車両の速度が前記所定の閾値以下であると判断した場合には、前記閾値判断部が前記鞍乗型車両の速度が前記所定の閾値よりも大きいと判断した場合よりも、前記後輪ブレーキの制動力の前記目標制動力に占める割合を増大させる、
    ブレーキ装置。
  6.  請求項1から5のいずれかに記載のブレーキ装置であって、
     前記傾斜角検出センサは、ジャイロセンサを有しており、前記ジャイロセンサによって検出された値に基づいて車体の傾斜角を算出する、
    ブレーキ装置。
  7.  請求項1から6のいずれかに記載のブレーキ装置であって、
     前記速度検出部は、前記鞍乗型車両の加速度を検出する加速度センサを有し、前記加速度センサの検出結果に基づいて速度を算出する、
    ブレーキ装置。
  8.  請求項1から7のいずれかに記載のブレーキ装置を備えた鞍乗型車両。
     
PCT/JP2013/051559 2012-01-31 2013-01-25 ブレーキ装置及び鞍乗型車両 WO2013115089A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013556371A JP5697183B2 (ja) 2012-01-31 2013-01-25 ブレーキ装置及び鞍乗型車両
EP13742908.0A EP2810836B1 (en) 2012-01-31 2013-01-25 Brake device and method for a straddle-type vehicle
US14/375,191 US8989980B2 (en) 2012-01-31 2013-01-25 Brake device and saddle riding type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012018939 2012-01-31
JP2012-018939 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013115089A1 true WO2013115089A1 (ja) 2013-08-08

Family

ID=48905129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051559 WO2013115089A1 (ja) 2012-01-31 2013-01-25 ブレーキ装置及び鞍乗型車両

Country Status (4)

Country Link
US (1) US8989980B2 (ja)
EP (1) EP2810836B1 (ja)
JP (1) JP5697183B2 (ja)
WO (1) WO2013115089A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133397A1 (ja) * 2014-03-03 2015-09-11 ボッシュ株式会社 二輪車用ブレーキ装置の制動力制御方法及び制動力制御装置
JP2018114832A (ja) * 2017-01-18 2018-07-26 本田技研工業株式会社 鞍乗型車両のブレーキ制御装置
JPWO2018185578A1 (ja) * 2017-04-05 2019-12-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 制御装置、制御方法及びブレーキシステム
KR102233150B1 (ko) * 2020-08-19 2021-03-29 (주)한국원자력 엔지니어링 이륜차의 유압식 제동장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945572B2 (ja) * 2014-09-03 2016-07-05 ヤマハ発動機株式会社 駆動力制御システムおよび鞍乗り型車両
DE102015202115A1 (de) * 2015-02-06 2016-08-11 Robert Bosch Gmbh Verfahren zur Bestimmung des Schräglagenwinkels eines Zweirads
US9840239B2 (en) * 2015-10-13 2017-12-12 Robert Bosch Gmbh Cornering brake control
TWI603870B (zh) * 2016-04-21 2017-11-01 Variable speed brake control system for motorcycle speed control
TWI586568B (zh) * 2016-05-03 2017-06-11 Motorcycle inclination control of the variable linkage brake system
EP3378716B1 (en) * 2016-06-29 2021-08-04 Yamaha Hatsudoki Kabushiki Kaisha Saddle-type vehicle
JP2018154272A (ja) * 2017-03-21 2018-10-04 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 制御装置及び制御方法
JP2020029176A (ja) * 2018-08-23 2020-02-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 制御装置及び制御方法
WO2020227348A1 (en) * 2019-05-07 2020-11-12 Kerschbaumer Michael Robert Braking or accelerating methods and apparatuses
TWI712525B (zh) * 2019-07-04 2020-12-11 品睿綠能科技股份有限公司 電動機車之可變式連動煞車系統
CN117157215A (zh) * 2020-12-28 2023-12-01 乐姆宝公开有限公司 摩托车的一体式线控制动型制动系统、摩托车的一体式制动系统的控制方法及相关的摩托车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357755A (ja) * 1989-07-27 1991-03-13 Honda Motor Co Ltd 車輌の電動ブレーキ装置
JPH072077A (ja) * 1992-12-24 1995-01-06 Bayerische Motoren Werke Ag 自動二輪車の滑り防止制御システム
JP3329851B2 (ja) 1992-05-20 2002-09-30 本田技研工業株式会社 自動二輪車用制動装置
JP2005535513A (ja) 2002-08-13 2005-11-24 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト オートバイ用のインテグラルブレーキ装置
JP2010012903A (ja) * 2008-07-02 2010-01-21 Toshio Asaumi 自動二輪車のブレーキ制御装置
JP4526135B2 (ja) 1999-03-17 2010-08-18 本田技研工業株式会社 自動二輪車の前後輪連動ブレーキ装置
JP2011507744A (ja) * 2007-12-19 2011-03-10 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング カーブ走行における自動二輪車のドライバの支援装置および方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372408A (en) 1992-03-06 1994-12-13 Honda Giken Kogyo Kabushiki Kaisha Motorcycle brake system having dual master cylinder proportioning
TW561262B (en) * 2001-10-19 2003-11-11 Yamaha Motor Co Ltd Tipping detecting device for a motorcycle
US7006901B2 (en) * 2002-11-18 2006-02-28 Wang Everett X Computerized automated dynamic control system for single-track vehicles
DE102008011577A1 (de) * 2007-03-16 2008-09-18 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Stabilisierung eines einspurigen Kraftfahrzeugs
DE102008011575A1 (de) * 2007-03-16 2008-09-18 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Stabilisierung eines einspurigen Kraftfahrzeugs
DE102008021523A1 (de) * 2007-06-11 2008-12-18 Continental Teves Ag & Co. Ohg Verfahren zur Regelung eines elektronisch gesteuerten Regelungssystems und elektronisches Regelungssystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357755A (ja) * 1989-07-27 1991-03-13 Honda Motor Co Ltd 車輌の電動ブレーキ装置
JP3329851B2 (ja) 1992-05-20 2002-09-30 本田技研工業株式会社 自動二輪車用制動装置
JPH072077A (ja) * 1992-12-24 1995-01-06 Bayerische Motoren Werke Ag 自動二輪車の滑り防止制御システム
JP4526135B2 (ja) 1999-03-17 2010-08-18 本田技研工業株式会社 自動二輪車の前後輪連動ブレーキ装置
JP2005535513A (ja) 2002-08-13 2005-11-24 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト オートバイ用のインテグラルブレーキ装置
JP2011507744A (ja) * 2007-12-19 2011-03-10 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング カーブ走行における自動二輪車のドライバの支援装置および方法
JP2010012903A (ja) * 2008-07-02 2010-01-21 Toshio Asaumi 自動二輪車のブレーキ制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133397A1 (ja) * 2014-03-03 2015-09-11 ボッシュ株式会社 二輪車用ブレーキ装置の制動力制御方法及び制動力制御装置
CN106061811A (zh) * 2014-03-03 2016-10-26 罗伯特·博世有限公司 二轮车用制动装置的制动力控制方法及制动力控制装置
KR20160141708A (ko) * 2014-03-03 2016-12-09 봇슈 가부시키가이샤 이륜차용 브레이크 장치의 제동력 제어 방법 및 제동력 제어 장치
JPWO2015133397A1 (ja) * 2014-03-03 2017-04-06 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 二輪車用ブレーキ装置の制動力制御方法及び制動力制御装置
US9963133B2 (en) 2014-03-03 2018-05-08 Robert Bosch Gmbh Method for controlling braking force of brake devices for two-wheeled vehicle, and device for controlling braking force
KR102301272B1 (ko) * 2014-03-03 2021-09-14 로베르트 보쉬 게엠베하 이륜차용 브레이크 장치의 제동력 제어 방법 및 제동력 제어 장치
DE112015000654B4 (de) 2014-03-03 2022-01-20 Bosch Corporation Verfahren zur Steuerung der Bremskraft einer Bremsanlage für ein Zweirad und Vorrichtung zur Steuerung der Bremskraft
JP2018114832A (ja) * 2017-01-18 2018-07-26 本田技研工業株式会社 鞍乗型車両のブレーキ制御装置
US10632984B2 (en) 2017-01-18 2020-04-28 Honda Motor Co., Ltd. Brake control device for saddle riding vehicle
JPWO2018185578A1 (ja) * 2017-04-05 2019-12-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 制御装置、制御方法及びブレーキシステム
US11273807B2 (en) 2017-04-05 2022-03-15 Robert Bosch Gmbh Controller, control method, and brake system
KR102233150B1 (ko) * 2020-08-19 2021-03-29 (주)한국원자력 엔지니어링 이륜차의 유압식 제동장치

Also Published As

Publication number Publication date
JP5697183B2 (ja) 2015-04-08
EP2810836A1 (en) 2014-12-10
US8989980B2 (en) 2015-03-24
JPWO2013115089A1 (ja) 2015-05-11
EP2810836A4 (en) 2015-06-17
US20150057904A1 (en) 2015-02-26
EP2810836B1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP5697183B2 (ja) ブレーキ装置及び鞍乗型車両
JP5905955B2 (ja) ブレーキ装置及び鞍乗型車両
JP5693727B2 (ja) 傾斜走行時の二輪車のブレーキトルクを調整する方法
US8620525B2 (en) Posture control device of motorcycle and motorcycle
US6223116B1 (en) Wheel slip angle detecting system for vehicle
JP6572586B2 (ja) 電動二輪車の走行制御装置およびその走行制御方法
JP5122653B2 (ja) 自動二輪車用ブレーキ装置
US11358574B2 (en) Brake control device for motorcycle
JP6648181B2 (ja) 制御装置
JP6646683B2 (ja) リーン車両
CN110949508B (zh) 四轮转向车辆
JP7168684B2 (ja) 制御装置及び制御方法
JP7014760B2 (ja) 鞍乗り型車両の操舵アシスト装置
WO2017090669A1 (ja) リーン車両
JP2009065793A (ja) 電動車両
WO2018003894A1 (ja) リーン車両
JP2019147397A (ja) 車両
JP5949362B2 (ja) 車両用フリクション検出装置及び車両用フリクション検出方法
EP4227170A1 (en) Control device and control method
JP2019147401A (ja) 鞍乗り型車両
JP2022062850A (ja) 制御装置及び制御方法
WO2017130982A1 (ja) リーン車両
JP2019147399A (ja) 鞍乗り型車両
JP2019147400A (ja) 鞍乗り型車両
JP2001001877A (ja) ダンプトラックのブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556371

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14375191

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013742908

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE