WO2013114981A1 - 光学部材、その製造方法および該光学部材を備えた物品 - Google Patents

光学部材、その製造方法および該光学部材を備えた物品 Download PDF

Info

Publication number
WO2013114981A1
WO2013114981A1 PCT/JP2013/050983 JP2013050983W WO2013114981A1 WO 2013114981 A1 WO2013114981 A1 WO 2013114981A1 JP 2013050983 W JP2013050983 W JP 2013050983W WO 2013114981 A1 WO2013114981 A1 WO 2013114981A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
optical member
etfe
polymerization
ethylene
Prior art date
Application number
PCT/JP2013/050983
Other languages
English (en)
French (fr)
Inventor
大輔 田口
真和 安宅
一夫 浜崎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013556311A priority Critical patent/JP6003905B2/ja
Priority to EP13744182.0A priority patent/EP2810980B1/en
Priority to CN201380007072.2A priority patent/CN104093772A/zh
Priority to KR1020147019495A priority patent/KR101950055B1/ko
Priority to ES13744182.0T priority patent/ES2594353T3/es
Publication of WO2013114981A1 publication Critical patent/WO2013114981A1/ja
Priority to US14/304,062 priority patent/US9194982B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to an optical member, a manufacturing method thereof, and an article provided with the optical member.
  • Electronic parts, electronic devices, and the like may include optical members (optical films, optical lenses, light emitting diode sealing materials, and the like).
  • the optical member may be required to use a resin material for the following reason (i).
  • a resin material is preferable because the optical member can be easily processed in a small size.
  • the optical member may be required to have heat resistance and light resistance for the following reasons (ii) and (iii).
  • the optical member may be mounted on the circuit board by a solder reflow method. In the solder reflow method, it is desired to use lead-free solder from the viewpoint of dealing with environmental problems. Therefore, the optical member is required to have heat resistance capable of maintaining its shape without melting even at a reflow temperature (about 260 ° C.) of lead-free solder.
  • the sealing material is required to have further heat resistance and light resistance.
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ETFE tetrafluoroethylene
  • E ethylene
  • C CH 2 ⁇ CHC n F 2n + 1 (where n is 2 to 10)
  • TFE tetrafluoroethylene
  • E ethylene
  • C CH 2 ⁇ CHC n F 2n + 1 (where n is 2 to 10)
  • C CH 2 ⁇ CHC n F 2n + 1 (where n is 2 to 10)
  • C CH 2 ⁇ CHC n F 2n + 1 (where n is 2 to 10.
  • the present invention provides an optical member that is superior in transparency, heat resistance and light resistance as compared with a conventional molded body made of ETFE, a manufacturing method thereof, and an article provided with the optical member.
  • the optical member of the present invention is characterized by comprising a molded body containing the following crosslinked ETFE.
  • ETFE crosslinked ETFE
  • a unit (A) based on TFE, a unit (B) based on E, and a unit (C) based on CH 2 CHC n F 2n + 1 (where n is an integer of 2 to 10)
  • the molar ratio (A) / (B) between A) and the unit (B) is 50/50 to 66/34
  • the (C) / ⁇ (A) + (B) ⁇ is preferably 4.0 / 100 to 7.5 / 100.
  • the optical transmittance of the optical member of the present invention at a wavelength of 400 nm is preferably 90.0% or more in an optical member having a thickness of 220 ⁇ m.
  • the shrinkage rate when the optical member of the present invention is heated at 280 ° C. for 5 minutes is preferably within 5% in both the vertical direction and the horizontal direction in the optical member having a thickness of 500 ⁇ m.
  • the method for producing an optical member of the present invention is a method for producing the optical member of the present invention, wherein the ETFE is cross-linked by irradiating a molded body of a resin material containing the ETFE with radiation. .
  • the radiation dose is preferably 1 to 10 Mrad.
  • the radiation is preferably an electron beam.
  • the article of the present invention is provided with the optical member of the present invention.
  • the optical member of the present invention is superior in transparency and heat resistance and has good light resistance as compared with a conventional molded body made of ETFE. According to the method for producing an optical member of the present invention, it is possible to produce an optical member having improved transparency as compared with conventional ETFE and having excellent heat resistance and light resistance.
  • the article of the present invention is provided with an optical member having improved transparency as compared with conventional ETFE and excellent in heat resistance and light resistance.
  • the “unit” in the present specification means a repeating unit derived from the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by polymerization, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • the “monomer” in the present specification means a compound having a polymerizable unsaturated group.
  • (meth) acrylate” in the present specification means acrylate or methacrylate.
  • radiation in the present invention means ionizing radiation such as ⁇ -rays, electron beams, and X-rays.
  • the optical member of the present invention comprises a molded product containing a specific ETFE cross-linked product.
  • the crosslinked product of ETFE is formed by irradiating ETFE with radiation to crosslink ETFE.
  • the molar ratio of unit (A) to unit (B) is 50/50 to 66/34, preferably 53/47 to 65/35, 56/44 to 60 / 40 is more preferable. If (A) / (B) is within this range, the balance of transparency, heat resistance, light resistance, weather resistance, chemical resistance, gas barrier properties, fuel barrier, mechanical strength, moldability, etc. will be good. .
  • the molar ratio ((C) / ⁇ (A) + (B) ⁇ ) between the unit (C) and the sum of the units (A) and (B) is 4.0 / 100 to 10/100, 0.0 / 100 to 7.5 / 100 is preferable, 4.5 / 100 to 7.5 / 100 is more preferable, and 4.6 / 100 to 7.5 / 100 is even more preferable.
  • (C) / ⁇ (A) + (B) ⁇ is 4.0 / 100 or more, transparency is increased. If (C) / ⁇ (A) + (B) ⁇ is 10/100 or less, the production of ETFE is easy.
  • N in CH 2 ⁇ CHC n F 2n + 1 is an integer of 2 to 10, preferably 2 to 8, and more preferably 2 to 6.
  • n is 2 or more, the obtained ETFE is excellent in physical properties such as stress crack resistance.
  • CH 2 ⁇ CH (CF 2 ) 2 F, CH 2 ⁇ CH (CF 2 ) 3 F, CH 2 ⁇ CH (CF 2 ) 4 F, CH 2 ⁇ CH (CF 2 ) 5 F, or CH 2 ⁇ CH (CF 2 ) 6 F is more preferable.
  • ETFE in the present invention may have a unit (D) based on another monomer in addition to the unit (A), the unit (B) and the unit (C).
  • Other monomers include hydrocarbon olefins (propylene, butene, etc.), fluoroolefins having hydrogen atoms in unsaturated groups (vinylidene fluoride, vinyl fluoride, trifluoroethylene, etc.), hydrogen atoms in unsaturated groups Fluoroolefin (hexafluoropropylene, chlorotrifluoroethylene, etc., excluding TFE), perfluoro (alkyl vinyl ether) (perfluoro (propyl vinyl ether), etc.), vinyl ether (alkyl vinyl ether, (fluoroalkyl) vinyl ether, glycidyl Vinyl ether, hydroxybutyl vinyl ether, methylvinyloxybutyl carbonate, etc.), vinyl esters (vinyl acetate, vinyl chloroacetate, vinyl but
  • the ETFE in the present invention has the unit (D)
  • the proportion of the unit (D) is preferably 0.01 to 20 mol%, preferably 0.01 to 10 mol, of all units (100 mol%) in ETFE. % Is more preferable, 0.05 to 5 mol% is more preferable, and 0.1 to 3 mol% is particularly preferable.
  • ETFE in the present invention ETFE composed only of the unit (A), the unit (B) and the unit (C) is preferable from the viewpoint of excellent physical properties such as heat resistance and easy production.
  • volume flow rate of the ETFE in the present invention Is preferably 1 ⁇ 1000 mm 3 / sec, more preferably 5 ⁇ 500 mm 3 / sec, more preferably 5 ⁇ 200 mm 3 / sec.
  • the Q value is an index representing the melt fluidity of ETFE and is a measure of molecular weight. A large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight.
  • the Q value of ETFE in the present invention is the value of ETFE when extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a temperature of 297 ° C., a load of 7 kg, using a flow tester manufactured by Shimadzu Corporation. Extrusion speed.
  • ETFE can be produced, for example, by the method described in JP-A-2004-238405.
  • the manufacturing method of ETFE is not limited to this method.
  • a polymerization method using a normal radical polymerization initiator is used.
  • Polymerization methods include bulk polymerization methods, solution polymerization methods using organic solvents (fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols, hydrocarbons, etc.), aqueous media, and appropriate organic solvents as necessary.
  • suspension polymerization using an aqueous medium, and emulsion polymerization using an aqueous medium and an emulsifier A solution polymerization method or a suspension polymerization method is preferable because impurities such as an emulsifier do not remain in ETFE.
  • the radical polymerization initiator is preferably one having a half-life of 10 hours from 0 ° C. to 100 ° C., more preferably 20 to 90 ° C. from the viewpoint of polymerization temperature.
  • radical polymerization initiators include azo compounds (azobisisobutyronitrile, etc.), non-fluorinated diacyl peroxides (diisobutyryl peroxide, dioctanoyl peroxide, dibenzoyl peroxide, dilauroyl peroxide, etc.), peroxydi Carbonate (diisopropylperoxydicarbonate, etc.), peroxyester (tert-butylperoxypivalate, tert-butylperoxyisobutyrate, tert-butylperoxyacetate, etc.), fluorine-containing diacyl peroxide ((Z (CF 2 ) p COO) 2 (Wherein Z is a hydrogen atom, a fluorine atom or flu
  • Chain transfer agents include alcohol (methanol, ethanol, etc.), chlorofluorohydrocarbon (1,3-dichloro-1,1,2,2,3-pentafluoropropane, 3,3-dichloro-1,1,1 , 2,2-pentafluoropropane, 1,1-dichloro-1-fluoroethane, etc.), hydrocarbons (pentane, hexane, cyclopentane, cyclohexane, etc.).
  • a chain transfer having a functional group (ester group, carbonate group, hydroxyl group, carboxyl group, carbonyl fluoride group, etc.)
  • An agent may be used.
  • the chain transfer agent include acetic acid, methyl acetate, ethylene glycol, propylene glycol and the like.
  • the polymerization temperature is preferably from 0 ° C to 100 ° C, more preferably from 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours, more preferably 2 to 20 hours, and even more preferably 2 to 10 hours.
  • too much radical polymerization initiator is added, it has been confirmed that the radical polymerization initiator remaining in ETFE foams during thermoforming, and it is necessary to set the polymerization time within a range where foaming does not occur.
  • the optical member of the present invention may contain a thermal stabilizer from the viewpoint of excellent thermal stability.
  • the heat stabilizer is preferably one or more selected from the group consisting of copper compounds, tin compounds, iron compounds, lead compounds, titanium compounds and aluminum compounds. Specific examples include copper oxide, copper iodide, alumina, tin sulfate, germanium sulfate, basic lead sulfate, tin sulfite, barium phosphate, tin pyrophosphate and the like, and copper oxide or copper iodide is preferred.
  • the content of the heat stabilizer in the optical member is preferably 1 ⁇ 10 ⁇ 8 to 5 mass%, more preferably 1 ⁇ 10 ⁇ 7 to 2 mass%, and further preferably 5 ⁇ 10 ⁇ 7 to 1 mass%.
  • the optical member of the present invention may contain other compounding agents depending on applications and purposes.
  • other compounding agents include various additives, fillers, and other synthetic resins. 80 mass% or less is preferable, as for the total content of a heat stabilizer and another compounding agent, 50 mass% or less is more preferable, and 20 mass% or less is more preferable.
  • the light transmittance at a wavelength of 400 nm of the optical member of the present invention is preferably 90.0% or more, more preferably 90.5% or more, and further preferably 90.9% or more at a thickness of 220 ⁇ m.
  • the light transmittance is measured as follows. A resin material containing ETFE is press-molded in the range of melting point + 50 ° C. ⁇ 20 ° C. (for example, 280 ° C. to 320 ° C. when the melting point is 250 ° C.) to obtain an ETFE film having a thickness of 220 ⁇ m. A sample is obtained by irradiating the ETFE film with radiation. About this sample, the light transmittance in wavelength 400nm is measured using a spectrophotometer.
  • the shrinkage ratio when the optical member of the present invention is heated at 280 ° C. for 5 minutes is preferably within 5% in both the vertical and horizontal directions, more preferably within 3%, and even more preferably within 2%.
  • the shrinkage rate is measured after a 500 ⁇ m-thick film prepared by press-forming ETFE is cut into 50 mm ⁇ 50 mm and heated at 280 ° C. for 5 minutes.
  • the optical member of the present invention is produced by irradiating a molded body of a resin material containing specific ETFE with radiation to crosslink the ETFE.
  • the resin material may contain the heat stabilizer and other compounding agents in addition to ETFE.
  • the molded body is obtained by molding a resin material. Examples of the molding method include known molding methods (extrusion molding method, injection molding method, press molding method, etc.).
  • the crosslinking conditions of ETFE are appropriately set according to the shape, thickness, etc. of the molded body.
  • the optical member can be obtained by irradiating the molded body with ionizing radiation such as ⁇ -ray, electron beam, X-ray or the like.
  • the crosslinking conditions depend on the shape, thickness, etc. of the molded product, and thus cannot be generally stated.
  • the radiation is preferably an electron beam from the viewpoint of equipment.
  • the electron beam irradiation is performed at least once in a temperature atmosphere below the melting point of the fluororesin, preferably a temperature atmosphere below the glass transition point, and at least once in a temperature atmosphere above the melting point of the fluororesin.
  • the cross-linked product refers to a product in which the Q value of the fluororesin is 0 mm 3 / sec and the melt moldability is lost.
  • the radiation dose is usually 1 to 20 Mrad, preferably 3 to 10 Mrad.
  • a cross-linked ETFE containing unit (C) based on CH 2 CHC n F 2n + 1 (where n is an integer of 2 to 10) in a specific ratio. Therefore, it is excellent in transparency as compared with a conventional uncrosslinked molded body made of ETFE. It has been conventionally known that the transparency of the molded body is improved by increasing the proportion of the unit (C) in ETFE. In the present invention, however, radiation is added to ETFE having a relatively large proportion of the unit (C). Is irradiated to cross-link ETFE to further improve the transparency of the molded body.
  • the optical member of the present invention described above is formed of a molded body containing a crosslinked product of ETFE, it is superior in heat resistance as compared to a conventional uncrosslinked molded body of ETFE. Moreover, in the optical member of the present invention described above, ETFE having good light resistance is originally used, so that the light resistance is good.
  • the optical member of the present invention has high transparency that can be applied to an optical member while maintaining the properties of conventional ETFE such as light resistance, weather resistance, chemical resistance, and gas barrier properties.
  • the optical member of the present invention has high heat resistance that can be applied to solder reflow using lead-free solder.
  • the article of the present invention comprises the optical member of the present invention.
  • the optical member of the present invention is an optical film (light guide plate, light diffusion sheet, light collecting sheet, etc.), optical lens (pickup lens, camera lens, microarray lens, projector lens, Fresnel lens, etc.), etc.
  • electronic devices such as mobile phones, notebook computers, digital cameras, and liquid crystal televisions mounted as above, and light-emitting diodes that include the optical member of the present invention as a sealing material.
  • the melting point of ETFE was determined from an endothermic peak when ETFE was heated at 10 ° C./min using a differential scanning calorimeter (manufactured by SII, EXSTAR DSC7020).
  • ETFE Light transmittance before cross-linking ETFE
  • the ETFE film was measured for light transmittance at a wavelength of 400 nm using UV-3600 manufactured by Shimadzu Corporation.
  • ETFE Light transmittance after cross-linking ETFE
  • ETFE was press molded in the range of melting point + 50 ° C. ⁇ 20 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • the ETFE film was irradiated with radiation to obtain a sample.
  • the sample was measured for light transmittance at a wavelength of 400 nm using UV-3600 manufactured by Shimadzu Corporation.
  • the shrinkage was measured after a 500 ⁇ m thick film produced by press molding was cut into 50 mm ⁇ 50 mm and heated at 280 ° C. for 5 minutes. A case where the shrinkage rate was within 5% in both the vertical direction and the horizontal direction was evaluated as ⁇ (good), and a case where the shrinkage rate was greater than 5% in either the vertical direction or the horizontal direction was evaluated as x (bad). .
  • AK225cb 1-hydrotridecafluorohexane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • a mixed gas of TFE / E 60/40 (molar ratio) so that the pressure becomes 1.5 MPaG and an amount of CH 2 ⁇ CH (CF equivalent to 7.0 mol% with respect to the mixed gas. 2 ) 4 F was continuously added, and 7.19 kg of a TFE / E mixed gas was charged, then the autoclave was cooled, the residual gas was purged, and the polymerization was terminated. The time required for the polymerization was 333 minutes.
  • ETFE1 The obtained ETFE slurry was transferred to a 220 L granulation tank, and 77 L of water was added and heated while stirring to remove the polymerization solvent and residual monomers, thereby obtaining 7.2 kg of ETFE1.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE1 was press-molded at 250 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 2 A polymerization tank equipped with a stirrer with an internal volume of 1.3 L was degassed, and 118.2 g of 1-hydrotridecafluorohexane, 104.2 g of AK225cb, and 32.8 g of CH 2 ⁇ CH (CF 2 ) 4 F were obtained. First, 182.7 g of TFE and 6.3 g of E were injected, the inside of the polymerization tank was heated to 66 ° C., and 2.5% by mass of tert-butyl peroxypivalate 1-hydrotrivalent was used as a radical polymerization initiator. 15.4 mL of decafluorohexane solution was charged to initiate polymerization.
  • a mixed gas of TFE / E 60/40 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 5.0 mol% with respect to the mixed gas. (CF 2 ) 4 F was continuously charged. 239 minutes after the start of polymerization, when 100 g of the mixed gas was charged, the inside of the polymerization tank was cooled to room temperature and purged to normal pressure.
  • ETFE2 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 107 g of ETFE2.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE2 was press-molded at 270 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 3 A polymerization tank equipped with a stirrer with an internal volume of 1.3 L was degassed, and 1156.5 g of 1-hydrotridecafluorohexane, 142.9 g of AK225cb, and 22.7 g of CH 2 ⁇ CH (CF 2 ) 4 F were added. First, 187.6 g of TFE and 6.5 g of E were injected, the temperature in the polymerization tank was raised to 66 ° C., and 2.5% by mass of tert-butyl peroxypivalate 1-hydrotrivalent was used as a radical polymerization initiator. 10.6 mL of decafluorohexane solution was charged and polymerization was started.
  • a mixed gas of TFE / E 60/40 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 4.0 mol% with respect to the mixed gas. (CF 2 ) 4 F was continuously charged. 196 minutes after the start of polymerization, when 100 g of the mixed gas was charged, the temperature in the polymerization tank was lowered to room temperature and purged to normal pressure.
  • ETFE3 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 96 g of ETFE3.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE3 was press-molded at 270 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 4 A polymerization tank equipped with a stirrer with an internal volume of 1.3 L was degassed, and 1179.4 g of 1-hydrotridecafluorohexane, 167.4 g of AK225cb, and 15.5 g of CH 2 ⁇ CH (CF 2 ) 2 F were added. First, 187.6 g of TFE and 6.5 g of E were injected, the temperature in the polymerization tank was raised to 66 ° C., and 2.5% by mass of tert-butyl peroxypivalate 1-hydrotrivalent was used as a radical polymerization initiator. 10.6 mL of decafluorohexane solution was charged and polymerization was started.
  • a mixed gas of TFE / E 60/40 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 4.0 mol% with respect to the mixed gas. (CF 2 ) 2 F was continuously charged. 200 minutes after the start of polymerization, when 100 g of the mixed gas was charged, the temperature in the polymerization tank was lowered to room temperature and purged to normal pressure.
  • ETFE4 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 98 g of ETFE4.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE4 was press-molded at 270 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 5 A polymerization tank equipped with a stirrer with an internal volume of 1.3 L was degassed, and 1194.5 g of 1-hydrotridecafluorohexane, 153.4 g of AK225cb, and 33.0 g of CH 2 ⁇ CH (CF 2 ) 6 F were obtained. First, 187.6 g of TFE and 6.5 g of E were injected, the temperature in the polymerization tank was raised to 66 ° C., and 2.5% by mass of tert-butyl peroxypivalate 1-hydrotrivalent was used as a radical polymerization initiator. 10.6 mL of decafluorohexane solution was charged and polymerization was started.
  • a mixed gas of TFE / E 60/40 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 4.0 mol% with respect to the mixed gas. (CF 2 ) 6 F was continuously charged. 193 minutes after the start of polymerization, when 100 g of the mixed gas was charged, the temperature in the polymerization tank was lowered to room temperature and purged to normal pressure.
  • ETFE5 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 99 g of ETFE5.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE5 was press-molded at 270 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 6 A polymerization tank equipped with a stirrer with an internal volume of 1.3 L was degassed, and 118.8 g of 1-hydrotridecafluorohexane, 168.7 g of AK225cb, and 20.2 g of CH 2 ⁇ CH (CF 2 ) 4 F were added. First, 187.6 g of TFE and 6.5 g of E were injected, the temperature in the polymerization tank was raised to 66 ° C., and 2.5% by mass of tert-butyl peroxypivalate 1-hydrotrivalent was used as a radical polymerization initiator. 10.6 mL of decafluorohexane solution was charged and polymerization was started.
  • a mixed gas of TFE / E 60/40 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 4.0 mol% with respect to the mixed gas. (CF 2 ) 4 F was continuously charged. 175 minutes after the start of polymerization, when 100 g of the mixed gas was charged, the temperature in the polymerization tank was lowered to room temperature and purged to normal pressure.
  • ETFE6 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 98 g of ETFE6.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE6 was press-molded at 270 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 7 Degas the polymerization tank equipped with a stirrer with an internal volume of 1.3 L, and add 1217.0 g of 1-hydrotridecafluorohexane, 12.3 g of methanol, and 24.5 g of CH 2 ⁇ CH (CF 2 ) 4 F. First, 209.1 g of TFE and 7.4 g of E were injected, the temperature in the polymerization tank was raised to 35 ° C., and 30% by mass of 1-hydrotrideca diisopropylpyperoxydicarbonate as a radical polymerization initiator. 30.8 mL of a fluorohexane solution was charged to initiate polymerization.
  • a mixed gas of TFE / E 60/40 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 4.0 mol% with respect to the mixed gas. (CF 2 ) 4 F was continuously charged. 187 minutes after the start of polymerization, when 100 g of the mixed gas was charged, the temperature in the polymerization tank was lowered to room temperature and purged to normal pressure.
  • ETFE7 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 93.8 g of ETFE7.
  • Table 1 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE7 was press-molded at 270 ° C. to obtain an ETFE film having a thickness of 220 ⁇ m.
  • a sample was obtained by irradiating the ETFE film with radiation (electron beam) so that the dose was 5 Mrad.
  • the light transmittance of the sample at a wavelength of 400 nm is shown in Table 1. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed. There was no problem with light resistance.
  • Example 8 The light transmittance of the uncrosslinked ETFE film of Example 1 is shown in Table 2. Moreover, when the heat resistance in 280 degreeC was evaluated about this film, it melted.
  • Example 9 The light transmittance of the uncrosslinked ETFE film of Example 4 is shown in Table 2. Moreover, when the heat resistance in 280 degreeC was evaluated about this film, it melted.
  • Example 10 The light transmittance of the uncrosslinked ETFE film of Example 5 is shown in Table 2. Moreover, when the heat resistance in 280 degreeC was evaluated about this film, it melted.
  • Example 11 The light transmittance of the uncrosslinked ETFE film of Example 7 is shown in Table 2. Moreover, when the heat resistance in 280 degreeC was evaluated about this film, it melted.
  • Example 12 Degas the polymerization tank equipped with a stirrer with an internal volume of 1.3 L, and add 1274.3 g of 1-hydrotridecafluorohexane, 23.4 g of methanol, and 8.1 g of CH 2 ⁇ CH (CF 2 ) 4 F. First, 183.5 g of TFE and 11.0 g of E were injected, the inside of the polymerization tank was heated to 35 ° C., and 1-hydrotrideca of 15% by mass of diisopropyl-peroxydicarbonate as a radical polymerization initiator. 15.4 mL of a fluorohexane solution was charged to initiate polymerization.
  • a mixed gas of TFE / E 54/46 (molar ratio) is continuously charged so that the pressure is constant, and CH 2 ⁇ CH so as to be 1.4 mol% with respect to the mixed gas. (CF 2 ) 4 F was continuously charged. 300 minutes after the start of polymerization, when 90 g of the mixed gas was charged, the inside of the polymerization tank was cooled to room temperature and purged to normal pressure.
  • ETFE8 The obtained ETFE slurry was suction filtered with a glass filter and dried at 150 ° C. for 15 hours to obtain 95.8 g of ETFE8.
  • Table 2 shows (A) / (B), (C) / ⁇ (A) + (B) ⁇ , melting point, and Q value.
  • ETFE8 was press-molded at 310 ° C. to obtain a 220 ⁇ m thick ETFE film.
  • the light transmittance of the film is shown in Table 2. Moreover, when the heat resistance in 280 degreeC was evaluated about this film, it fuse
  • Example 13 A sample was obtained by irradiating the ETFE film of Example 12 with radiation (electron beam) so that the dose was 5 Mrad.
  • Table 2 shows the light transmittance of the sample at a wavelength of 400 nm. Further, when the heat resistance of the sample at 280 ° C. was evaluated, no deformation was observed.
  • the optical member of the present invention is excellent in transparency, it is suitably used for an optical film, an optical lens, a light emitting diode sealing material, and the like. Since the optical member of the present invention is excellent in transparency and heat resistance, it can be applied to mounting applications by a solder reflow method using lead-free solder on a circuit board or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 従来のエチレン/テトラフルオロエチレン共重合体からなる成形体に比べ透明性、耐熱性に優れ、かつ耐光性が良好である光学部材、その製造方法および該光学部材を備えた物品を提供する。 テトラフルオロエチレンに基づく単位(A)、エチレンに基づく単位(B)およびCH=CHC2n+1(ただし、nは2~10の整数である。)に基づく単位(C)を有し、前記単位(A)と前記単位(B)とのモル比((A)/(B))が、50/50~66/34であり、前記単位(C)と前記単位(A)および前記単位(B)の合計とのモル比((C)/{(A)+(B)})が、4.0/100~10/100であるエチレン/テトラフルオロエチレン共重合体の架橋物を含む成形体からなる光学部材。

Description

光学部材、その製造方法および該光学部材を備えた物品
 本発明は、光学部材、その製造方法および該光学部材を備えた物品に関する。
 電子部品、電子機器等は、光学部材(光学フィルム、光学レンズ、発光ダイオードの封止材等)を備えている場合がある。
 該光学部材には、下記(i)の理由等から、樹脂材料を用いることが求められることがある。
 (i)電子部品、電子機器等の小型化、高集積化、高性能化等に伴い、光学部材にも小型化が求められている。該光学部材の材料としては、光学部材を小型に加工しやすい点から、樹脂材料が好適である。
 また、該光学部材には、下記(ii)、(iii)の理由等から、耐熱性、耐光性が求められることがある。
 (ii)ハンダリフロー法によって光学部材を回路基板に実装することがある。ハンダリフロー法においては、環境問題への対応の点から、鉛フリーハンダを用いることが望まれている。そのため、光学部材には、鉛フリーハンダのリフロー温度(約260℃)でも溶融せずに形状を維持できる耐熱性が求められる。
 (iii)発光ダイオードの高輝度化に伴い、封止材には、さらなる耐熱性、耐光性が求められる。
 耐熱性、耐光性に優れる樹脂材料としては、エチレン/テトラフルオロエチレン共重合体(以下、ETFEと記す。)が知られている。しかし、通常のETFEは、結晶性が高いため、透明性が低く、光学部材用の樹脂材料には適さない。
 透明性が改善されたETFEとしては、下記のETFEが提案されている。
 テトラフルオロエチレン(以下、TFEと記す。)に基づく単位(A)、エチレン(以下、Eと記す。)に基づく単位(B)およびCH=CHC2n+1(ただし、nは2~10の整数である。)に基づく単位(C)からなり、単位(A)と単位(B)とのモル比((A)/(B))が、50/50~60/40であり、単位(C)の含有量が、2~7モル%であるETFE(特許文献1)。
日本特許第3424270号公報
 光学部材の樹脂材料としては、透明性はできるだけ高いことが望ましい。よって、特許文献1に記載のETFEよりもさらに透明性の高いETFEが求められている。
 本発明は、従来のETFEからなる成形体に比べ透明性、耐熱性に優れ、かつ耐光性が良好である光学部材、その製造方法および該光学部材を備えた物品を提供する。
 本発明の光学部材は、下記ETFEの架橋物を含む成形体からなることを特徴とする。
 (ETFE)
 TFEに基づく単位(A)、Eに基づく単位(B)およびCH=CHC2n+1(ただし、nは2~10の整数である。)に基づく単位(C)を有し、前記単位(A)と前記単位(B)とのモル比((A)/(B))が、50/50~66/34であり、前記単位(C)と前記単位(A)および前記単位(B)の合計とのモル比((C)/{(A)+(B)})が、4.0/100~10/100であるETFE。
 前記(C)/{(A)+(B)}は、4.0/100~7.5/100であることが好ましい。
 本発明の光学部材の波長400nmにおける光線透過率は、厚さ220μmの光学部材において90.0%以上であることが好ましい。
 本発明の光学部材を、280℃で5分間加熱した際の収縮率は、厚さ500μmの光学部材において縦方向および横方向のいずれも5%以内であることが好ましい。
 本発明の光学部材の製造方法は、本発明の光学部材を製造する方法であって、前記ETFEを含む樹脂材料の成形体に放射線を照射することによって、前記ETFEを架橋させることを特徴とする。
 本発明の光学部材の製造方法は、放射線の線量が1~10Mradであることが好ましい。
 本発明の光学部材の製造方法は、放射線が電子線であることが好ましい。
 本発明の物品は、本発明の光学部材を備えたものであることを特徴とする。
 本発明の光学部材は、従来のETFEからなる成形体に比べ透明性、耐熱性に優れ、かつ耐光性が良好である。
 本発明の光学部材の製造方法によれば、従来のETFEに比べ透明性が改善され、かつ耐熱性、耐光性に優れる光学部材を製造できる。
 本発明の物品は、従来のETFEに比べ透明性が改善され、かつ耐熱性、耐光性に優れる光学部材を備えたものとなる。
 本明細書における「単位」は、単量体が重合することによって形成された該単量体に由来する繰返し単位を意味する。単位は、重合によって直接形成された単位であってもよく、重合体を処理することによって該単位の一部が別の構造に変換された単位であってもよい。
 また、本明細書における「単量体」は、重合性不飽和基を有する化合物を意味する。
 また、本明細書における「(メタ)アクリレート」は、アクリレートまたはメタクリレートを意味する。
 また、本発明における「放射線」は、γ線、電子線、X線等の電離性放射線を意味する。
<光学部材>
 本発明の光学部材は、特定のETFEの架橋物を含む成形体からなるものである。ETFEの架橋物は、ETFEに放射線を照射してETFEを架橋させることによって形成されたものである。
(ETFE)
 本発明におけるETFEは、TFEに基づく単位(A)、Eに基づく単位(B)およびCH=CHC2n+1(ただし、nは2~10の整数である。)に基づく単位(C)を有する。
 単位(A)と単位(B)とのモル比((A)/(B))は、50/50~66/34であり、53/47~65/35が好ましく、56/44~60/40がより好ましい。(A)/(B)が該範囲内であれば、透明性、耐熱性、耐光性、耐候性、耐薬品性、ガスバリア性、燃料バリア、機械的強度、成形性等のバランスが良好となる。
 単位(C)と単位(A)および単位(B)の合計とのモル比((C)/{(A)+(B)})は、4.0/100~10/100であり、4.0/100~7.5/100が好ましく、4.5/100~7.5/100がより好ましく、4.6/100~7.5/100がさらに好ましい。(C)/{(A)+(B)}が4.0/100以上であれば、透明性が高くなる。(C)/{(A)+(B)}が10/100以下であれば、ETFEの製造が容易である。
 CH=CHC2n+1におけるnは、2~10の整数であり、2~8が好ましく、2~6がより好ましい。nが2以上であれば、得られるETFEが耐ストレスクラック等の物性に優れる。nが10以下であれば、CH=CHC2n+1の製造が容易で、重合性に優れる。
 CH=CHC2n+1の具体例としては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CF10F等が挙げられる。
 CH=CHC2n+1としては、重合性に優れ、ETFEが物性に優れることから、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、またはCH=CH(CFF、CH=CH(CFFが好ましく、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、またはCH=CH(CFFがより好ましい。
 CH=CHC2n+1は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明におけるETFEは、単位(A)、単位(B)および単位(C)以外に、その他の単量体に基づく単位(D)を有していてもよい。
 その他の単量体としては、炭化水素系オレフィン(プロピレン、ブテン等)、不飽和基に水素原子を有するフルオロオレフィン(フッ化ビニリデン、フッ化ビニル、トリフルオロエチレン等)、不飽和基に水素原子を有しないフルオロオレフィン(ヘキサフルオロプロピレン、クロロトリフルオロエチレン等。ただし、TFEを除く。)、ペルフルオロ(アルキルビニルエーテル)(ペルフルオロ(プロピルビニルエーテル)等)、ビニルエーテル(アルキルビニルエーテル、(フルオロアルキル)ビニルエーテル、グリシジルビニルエーテル、ヒドロキシブチルビニルエーテル、メチルビニロキシブチルカーボネート等)、ビニルエステル(酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニル等)、(メタ)アクリレート((ポリフルオロアルキル)アクリレート、(ポリフルオロアルキル)メタクリレート等)、酸無水物(無水マレイン酸、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物等)等が挙げられる。
 その他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明におけるETFEが単位(D)を有する場合、単位(D)の割合は、ETFE中の全単位(100モル%)のうち、0.01~20モル%が好ましく、0.01~10モル%がより好ましく、0.05~5モル%がさらに好ましく、0.1~3モル%が特に好ましい。
 本発明におけるETFEとしては、耐熱性等の物性に優れ、製造が容易である点から、単位(A)、単位(B)および単位(C)のみからなるETFEが好ましい。
 本発明におけるETFEの容量流速(以下、Q値と記す。)は、1~1000mm/秒が好ましく、5~500mm/秒がより好ましく、5~200mm/秒がさらに好ましい。Q値は、ETFEの溶融流動性を表す指標であり、分子量の目安となる。Q値が大きいと分子量が低く、小さいと分子量が高いことを示す。本発明におけるETFEのQ値は、島津製作所社製のフローテスタを用いて、温度:297℃、荷重:7kg下に直径:2.1mm、長さ:8mmのオリフィス中に押出すときのETFEの押出し速度である。
(ETFEの製造方法)
 ETFEは、たとえば、特開2004-238405号公報に記載された方法等によって製造できる。ETFEの製造方法は、該方法に限定されない。
 ETFEの製造方法においては、通常のラジカル重合開始剤を用いる重合法が用いられる。重合法としては、塊状重合法、有機溶媒(フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等)を用いる溶液重合法、水性媒体および必要に応じて適当な有機溶媒を用いる懸濁重合法、水性媒体および乳化剤を用いる乳化重合法が挙げられる。ETFE中に乳化剤等の不純物が残留しないことから、溶液重合法または懸濁重合法が好ましい。
 ラジカル重合開始剤としては、重合温度の観点から、半減期が10時間となる温度が0℃~100℃のものが好ましく、20~90℃のものがより好ましい。
 ラジカル重合開始剤の具体例としては、アゾ化合物(アゾビスイソブチロニトリル等)、非フッ素系ジアシルペルオキシド(ジイソブチリルペルオキシド、ジオクタノイルペルオキシド、ジベンゾイルペルオキシド、ジラウロイルペルオキシド等)、ペルオキシジカーボネート(ジイソプロピルペルオキシジカーボネート等)、ペルオキシエステル(tert-ブチルペルオキシピバレート、tert-ブチルペルオキシイソブチレート、tert-ブチルペルオキシアセテート等)、含フッ素ジアシルペルオキシド((Z(CFCOO)(ただし、Zは水素原子、フッ素原子または塩素原子であり、pは1~10の整数である。)で表される化合物等)、無機過酸化物(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)等が挙げられる。
 溶液重合法においては、ETFEの容量流速を制御するために、連鎖移動剤を用いることが好ましい。連鎖移動剤としては、アルコール(メタノール、エタノール等)、クロロフルオロハイドロカーボン(1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等)、ハイドロカーボン(ペンタン、ヘキサン、シクロペンタン、シクロヘキサン等)等が挙げられる。また、基材(ポリアミド等)との接着性に優れる官能基をETFEの末端に導入するために、官能基(エステル基、カーボネート基、水酸基、カルボキシル基、カルボニルフルオリド基等)を有する連鎖移動剤を用いてもよい。該連鎖移動剤としては、酢酸、酢酸メチル、エチレングリコール、プロピレングリコール等が挙げられる。
 重合温度は、0℃~100℃が好ましく、20~90℃がより好ましい。
 重合圧力は、0.1~10MPaが好ましく、0.5~3MPaがより好ましい。
 重合時間は、1~30時間が好ましく、2~20時間がより好ましく、2~10時間がさらに好ましい。なお、ラジカル重合開始剤を多く入れすぎると、ETFE中に残存するラジカル重合開始剤が加熱成形時に発泡することが確認されており、発泡しない範囲での重合時間とする必要がある。
(他の成分)
 本発明の光学部材は、熱安定性に優れる点から、熱安定剤を含んでいてもよい。熱安定剤としては、銅化合物、錫化合物、鉄化合物、鉛化合物、チタン化合物およびアルミニウム化合物からなる群から選ばれる1種以上が好ましい。具体例としては、酸化銅、ヨウ化銅、アルミナ、硫酸錫、硫酸ゲルマニウム、塩基性硫酸鉛、亜硫酸錫、燐酸バリウム、ピロリン酸錫等が挙げられ、酸化銅、またはヨウ化銅が好ましい。熱安定剤の含有量は、光学部材中、1×10-8~5質量%が好ましく、1×10-7~2質量%がより好ましく、5×10-7~1質量%がさらに好ましい。
 本発明の光学部材は、用途、目的に応じて、その他の配合剤を含んでいてもよい。その他の配合剤としては、各種の添加剤、フィラー、他の合成樹脂等が挙げられる。熱安定剤およびその他の配合剤の合計の含有量は、80質量%以下が好ましく、50質量%以下がより好ましく、20質量%以下がさらに好ましい。
(透明性)
 本発明の光学部材の波長400nmにおける光線透過率は、厚さ220μmにおいて90.0%以上が好ましく、90.5%以上がより好ましく、90.9%以上がさらに好ましい。
 光線透過率は、以下のようにして測定する。
 ETFEを含む樹脂材料を融点+50℃±20℃の範囲(たとえば、融点250℃の場合は280℃~320℃)でプレス成形して厚さ220μmのETFEフィルムを得る。該ETFEフィルムに放射線を照射してサンプルを得る。該サンプルについて、分光光度計を用いて波長400nmにおける光線透過率を測定する。
(耐熱性)
 本発明の光学部材の280℃で5分間加熱した際の収縮率は、縦方向および横方向のいずれも5%以内が好ましく、3%以内がより好ましく、2%以内がさらに好ましい。
 収縮率は、ETFEをプレス成形して作製した厚さ500μmのフィルムを50mm×50mmに切り出し、280℃で5分間加熱した後、測定する。
(耐光性)
 通常、サンシャインウェザーメーター(スガ試験機)を使用し、ブラックパネル温度は63℃で100時間照射後の透明性を評価し、透明性に変化がないことを確認する。
(光学部材の製造方法)
 本発明の光学部材は、特定のETFEを含む樹脂材料の成形体に放射線を照射し、該ETFEを架橋させることによって製造される。
 樹脂材料は、ETFEの他に、前記熱安定剤、その他の配合剤を含んでいてもよい。
 成形体は、樹脂材料を成形することによって得られる。成形法としては、公知の成形法(押出成形法、射出成形法、プレス成形法等)が挙げられる。
 ETFEの架橋条件は、成形体の形状、厚さ等に応じて適宜設定される。
 光学部材は、前記成形体にγ線、電子線、X線等の電離性放射線を照射することによって得られる。架橋条件は、成形体の形状、厚さ等にもよるため一概には言えないが、放射線としては、設備の点から電子線が好ましい。
 電子線の照射は、フッ素樹脂の融点未満の温度雰囲気、好ましくはガラス転移点以下の温度雰囲気で少なくとも1回以上、及び、フッ素樹脂の融点以上の温度雰囲気で少なくとも1回以上行われる。フッ素樹脂の融点未満の温度雰囲気で電子線が照射され架橋が施されることで、成形体を、2回目の照射を行う際にフッ素樹脂の融点以上に加熱しても、溶融や変形が見られず成形体の形状が維持される。このように、架橋物とは、フッ素樹脂のQ値が0mm/秒で、溶融成形性を失ったものをいう。
 放射線の線量は、通常、1~20Mradであり、3~10Mradが好ましい。
(作用効果)
 以上説明した本発明の光学部材にあっては、CH=CHC2n+1(ただし、nは2~10の整数である。)に基づく単位(C)を特定の割合で含むETFEの架橋物を含む成形体からなるため、従来のETFEからなる未架橋の成形体に比べ透明性に優れる。ETFEにおける単位(C)の割合を増やすことによって、成形体の透明性が改善されることは従来から知られていたが、本発明においては、単位(C)の割合が比較的多いETFEに放射線を照射し、ETFEを架橋させることによって、成形体の透明性をさらに改善している。
 また、以上説明した本発明の光学部材にあっては、ETFEの架橋物を含む成形体からなるため、従来のETFEからなる未架橋の成形体に比べ耐熱性に優れる。
 また、以上説明した本発明の光学部材にあっては、もともと耐光性のよいETFEを用いているため、耐光性が良好である。
 本発明の光学部材は、従来のETFEの耐光性、耐候性、耐薬品性、ガスバリア性等の特性を維持しつつ、光学部材に適用し得る高い透明性を有する。
 また、本発明の光学部材は、鉛フリーハンダを用いたハンダリフローに適用し得る高い耐熱性を有する。
<光学部材を備えた物品>
 本発明の物品は、本発明の光学部材を備えたものである。
 本発明の物品としては、本発明の光学部材を光学フィルム(導光板、光拡散シート、集光シート等)、光学レンズ(ピックアップレンズ、カメラレンズ、マイクロアレーレンズ、プロジェクターレンズ、フレネルレンズ等)等として実装した電子機器(携帯電話機、ノートパソコン、デジタルカメラ、液晶テレビ等)、本発明の光学部材を封止材として備えた発光ダイオード等が挙げられる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されない。
 例1~7は実施例であり、例8~13は比較例である。
(各単位の割合)
 ETFEにおける各単位の割合は、全フッ素量測定および溶融19F-NMR測定の結果から算出した。
(融点)
 ETFEの融点は、示差走査熱量計(SII社製、EXSTAR DSC7020)を用いて、ETFEを10℃/分で加熱した際の吸熱ピークから求めた。
(Q値)
 島津製作所社製のフローテスタを用いて、温度:297℃、荷重:7kg下に直径:2.1mm、長さ:8mmのオリフィス中に押出すときのETFEの押出し速度(mm/秒)をQ値とした。
(ETFEを架橋する前の光線透過率)
 ETFEを融点+50℃±20℃の範囲でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムについて、島津製作所社製、UV-3600を用いて波長400nmにおける光線透過率を測定した。
(ETFEを架橋した後の光線透過率)
 ETFEを融点+50℃±20℃の範囲でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線を照射してサンプルを得た。該サンプルについて、島津製作所社製、UV-3600を用いて波長400nmにおける光線透過率を測定した。
(耐熱性)
 収縮率は、プレス成形して作製した厚さ500μmのフィルムを50mm×50mmに切り出し、280℃で5分間加熱した後、測定した。収縮率が縦方向および横方向のいずれも5%以内の場合を○(良)、収縮率が縦方向および横方向のいずれか一方または両方が5%を超える場合を×(不良)と評価した。
〔例1〕
 真空脱気した94Lのステンレス鋼製オートクレーブに、1-ヒドロトリデカフルオロヘキサンの87.3kg、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(旭硝子社製、AK225cb。以下、AK225cbと記す。)の4.21kg、CH=CH(CFFの2.13kgを仕込み、撹拌しながら66℃まで昇温し、TFE/E=89/11(モル比)の混合ガスを1.5MPaGになるまで導入し、50質量%のtert-ブチルペルオキシピバレートのAK225cb溶液の60.4gを仕込んで重合を開始した。重合中は、圧力が1.5MPaGとなるようにTFE/E=60/40(モル比)の混合ガスおよび該混合ガスに対して7.0モル%に相当する量のCH=CH(CFFを連続的に添加し、TFE/E混合ガスの7.19kgを仕込んだ後にオートクレーブを冷却し、残留ガスをパージし、重合を終了させた。重合に要した時間は333分であった。
 得られたETFEのスラリを220Lの造粒槽へ移し、77Lの水を加えて撹拌しながら加熱し、重合溶媒および残留モノマーを除去し、7.2kgのETFE1を得た。ETFE1における各単位の割合は、単位(A)/単位(B)/単位(C)=54.5/39.0/6.5(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE1を250℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例2〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1198.2g、AK225cbの104.2g、CH=CH(CFFの32.8gを仕込み、TFEの182.7g、Eの6.3gを圧入し、重合槽内を66℃に昇温し、ラジカル重合開始剤として2.5質量%のtert-ブチルペルオキシピバレートの1-ヒドロトリデカフルオロヘキサン溶液の15.4mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=60/40(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して5.0モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から239分後、混合ガスの100gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、107gのETFE2を得た。ETFE2における各単位の割合は、単位(A)/単位(B)/単位(C)=53.0/41.4/5.6(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE2を270℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例3〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1156.5g、AK225cbの142.9g、CH=CH(CFFの22.7gを仕込み、TFEの187.6g、Eの6.5gを圧入し、重合槽内を66℃に昇温し、ラジカル重合開始剤として2.5質量%のtert-ブチルペルオキシピバレートの1-ヒドロトリデカフルオロヘキサン溶液の10.6mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=60/40(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して4.0モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から196分後、混合ガスの100gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、96gのETFE3を得た。ETFE3における各単位の割合は、単位(A)/単位(B)/単位(C)=54.3/41.3/4.4(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE3を270℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例4〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1179.4g、AK225cbの167.4g、CH=CH(CFFの15.5gを仕込み、TFEの187.6g、Eの6.5gを圧入し、重合槽内を66℃に昇温し、ラジカル重合開始剤として2.5質量%のtert-ブチルペルオキシピバレートの1-ヒドロトリデカフルオロヘキサン溶液の10.6mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=60/40(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して4.0モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から200分後、混合ガスの100gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、98gのETFE4を得た。ETFE4における各単位の割合は、単位(A)/単位(B)/単位(C)=54.2/41.3/4.5(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE4を270℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例5〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1194.5g、AK225cbの153.4g、CH=CH(CFFの33.0gを仕込み、TFEの187.6g、Eの6.5gを圧入し、重合槽内を66℃に昇温し、ラジカル重合開始剤として2.5質量%のtert-ブチルペルオキシピバレートの1-ヒドロトリデカフルオロヘキサン溶液の10.6mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=60/40(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して4.0モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から193分後、混合ガスの100gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、99gのETFE5を得た。ETFE5における各単位の割合は、単位(A)/単位(B)/単位(C)=54.4/41.3/4.3(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE5を270℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例6〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1128.8g、AK225cbの168.7g、CH=CH(CFFの20.2gを仕込み、TFEの187.6g、Eの6.5gを圧入し、重合槽内を66℃に昇温し、ラジカル重合開始剤として2.5質量%のtert-ブチルペルオキシピバレートの1-ヒドロトリデカフルオロヘキサン溶液の10.6mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=60/40(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して4.0モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から175分後、混合ガスの100gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、98gのETFE6を得た。ETFE6における各単位の割合は、単位(A)/単位(B)/単位(C)=56.4/39.6/4.0(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE6を270℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例7〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1217.0g、メタノールの12.3g、CH=CH(CFFの24.5gを仕込み、TFEの209.1g、Eの7.4gを圧入し、重合槽内を35℃に昇温し、ラジカル重合開始剤として30質量%のジイソピロピルペルオキシジカーボネートの1-ヒドロトリデカフルオロヘキサン溶液の30.8mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=60/40(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して4.0モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から187分後、混合ガスの100gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、93.8gのETFE7を得た。ETFE7における各単位の割合は、単位(A)/単位(B)/単位(C)=54.3/41.6/4.1(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表1に示す。
 ETFE7を270℃でプレス成形して厚さ220μmのETFEフィルムを得た。該ETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表1に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。耐光性も問題がなかった。
〔例8〕
 例1の未架橋のETFEフィルムの光線透過率を表2に示す。また、該フィルムについて280℃における耐熱性を評価したところ、溶融してしまった。
〔例9〕
 例4の未架橋のETFEフィルムの光線透過率を表2に示す。また、該フィルムについて280℃における耐熱性を評価したところ、溶融してしまった。
〔例10〕
 例5の未架橋のETFEフィルムの光線透過率を表2に示す。また、該フィルムについて280℃における耐熱性を評価したところ、溶融してしまった。
〔例11〕
 例7の未架橋のETFEフィルムの光線透過率を表2に示す。また、該フィルムについて280℃における耐熱性を評価したところ、溶融してしまった。
〔例12〕
 内容積が1.3Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの1274.3g、メタノールの23.4g、CH=CH(CFFの8.1gを仕込み、TFEの183.5g、Eの11.0gを圧入し、重合槽内を35℃に昇温し、ラジカル重合開始剤として15質量%のジイソピロピルペルオキシジカーボネートの1-ヒドロトリデカフルオロヘキサン溶液の15.4mLを仕込み、重合を開始した。重合中は、圧力が一定になるようにTFE/E=54/46(モル比)の混合ガスを連続的に仕込み、該混合ガスに対して1.4モル%となるようにCH=CH(CFFを連続的に仕込んだ。重合開始から300分後、混合ガスの90gを仕込んだ時点で、重合槽内を室温まで降温するとともに常圧までパージした。
 得られたETFEのスラリをガラスフィルタで吸引ろ過し、150℃で15時間乾燥することによって、95.8gのETFE8を得た。ETFE8における各単位の割合は、単位(A)/単位(B)/単位(C)=52.2/46.3/1.5(モル比)であった。(A)/(B)、(C)/{(A)+(B)}、融点、Q値を表2に示す。
 ETFE8を310℃でプレス成形して厚さ220μmのETFEフィルムを得た。フィルムの光線透過率を表2に示す。また、該フィルムについて280℃における耐熱性を評価したところ、溶融した。
〔例13〕
 例12のETFEフィルムに放射線(電子線)を、線量が5Mradとなるように照射してサンプルを得た。該サンプルの波長400nmにおける光線透過率を表2に示す。また、該サンプルについて280℃における耐熱性を評価したところ、変形は見られなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の光学部材は、透明性に優れることから、光学フィルム、光学レンズ、発光ダイオードの封止材等に好適に用いられる。本発明の光学部材は、透明性に優れ、かつ耐熱性にも優れることから、回路基板等へ鉛フリーハンダを用いたハンダリフロー法による実装用途等に適用できる。
 なお、2012年1月30日に出願された日本特許出願2012-016477号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (8)

  1.  下記エチレン/テトラフルオロエチレン共重合体の架橋物を含む成形体からなることを特徴とする光学部材。
     (エチレン/テトラフルオロエチレン共重合体)
     テトラフルオロエチレンに基づく単位(A)、エチレンに基づく単位(B)およびCH=CHC2n+1(ただし、nは2~10の整数である。)に基づく単位(C)を有し、前記単位(A)と前記単位(B)とのモル比((A)/(B))が、50/50~66/34であり、前記単位(C)と前記単位(A)および前記単位(B)の合計とのモル比((C)/{(A)+(B)})が、4.0/100~10/100であるエチレン/テトラフルオロエチレン共重合体。
  2.  前記(C)/{(A)+(B)}が、4.0/100~7.5/100である、請求項1に記載の光学部材。
  3.  波長400nmにおける光線透過率が、厚さ220μmの光学部材において90.0%以上である、請求項1または2に記載の光学部材。
  4.  280℃で5分間加熱した際の収縮率が、厚さ500μmの光学部材において、縦方向および横方向のいずれも5%以内である請求項1~3のいずれか一項に記載の光学部材。
  5.  請求項1~4のいずれか一項に記載の光学部材を製造する方法であって、
     前記エチレン/テトラフルオロエチレン共重合体を含む樹脂材料の成形体に放射線を照射することによって、前記エチレン/テトラフルオロエチレン共重合体を架橋させる、光学部材の製造方法。
  6.  放射線の線量が1~10Mradである請求項5に記載の製造方法。
  7.  放射線が電子線である請求項5または6に記載の製造方法。
  8.  請求項1~4のいずれか一項に記載の光学部材を備えた、物品。
PCT/JP2013/050983 2012-01-30 2013-01-18 光学部材、その製造方法および該光学部材を備えた物品 WO2013114981A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013556311A JP6003905B2 (ja) 2012-01-30 2013-01-18 光学部材、その製造方法および該光学部材を備えた物品
EP13744182.0A EP2810980B1 (en) 2012-01-30 2013-01-18 Optical member, method for producing same, and article provided with optical member
CN201380007072.2A CN104093772A (zh) 2012-01-30 2013-01-18 光学构件、其制造方法以及具备该光学构件的物品
KR1020147019495A KR101950055B1 (ko) 2012-01-30 2013-01-18 광학 부재, 그 제조 방법 및 그 광학 부재를 구비한 물품
ES13744182.0T ES2594353T3 (es) 2012-01-30 2013-01-18 Elemento óptico, método para fabricar el mismo, y artículo provisto con el elemento óptico
US14/304,062 US9194982B2 (en) 2012-01-30 2014-06-13 Optical member, process for producing same, and article provided with optical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016477 2012-01-30
JP2012-016477 2012-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/304,062 Continuation US9194982B2 (en) 2012-01-30 2014-06-13 Optical member, process for producing same, and article provided with optical member

Publications (1)

Publication Number Publication Date
WO2013114981A1 true WO2013114981A1 (ja) 2013-08-08

Family

ID=48905023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050983 WO2013114981A1 (ja) 2012-01-30 2013-01-18 光学部材、その製造方法および該光学部材を備えた物品

Country Status (8)

Country Link
US (1) US9194982B2 (ja)
EP (1) EP2810980B1 (ja)
JP (1) JP6003905B2 (ja)
KR (1) KR101950055B1 (ja)
CN (1) CN104093772A (ja)
ES (1) ES2594353T3 (ja)
TW (1) TWI592431B (ja)
WO (1) WO2013114981A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015129762A1 (ja) * 2014-02-26 2017-03-30 旭硝子株式会社 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法
JP2020191440A (ja) * 2019-05-16 2020-11-26 住友化学株式会社 電子部品及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400362B2 (ja) * 2014-07-18 2018-10-03 デクセリアルズ株式会社 光学部材
CN106046232B (zh) * 2016-06-28 2018-06-01 山东东岳未来氢能材料有限公司 一种可交联乙烯-四氟乙烯共聚物及其合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164609A (ja) * 1982-03-25 1983-09-29 Daikin Ind Ltd 光学繊維用鞘材
JPH0741522A (ja) * 1993-07-30 1995-02-10 Asahi Glass Co Ltd エチレン/テトラフルオロエチレン系共重合体
JPH0741563A (ja) * 1993-07-30 1995-02-10 Asahi Glass Co Ltd 架橋エチレン−テトラフルオロエチレン系共重合体の製造方法
JPH07292199A (ja) * 1994-04-28 1995-11-07 Asahi Glass Co Ltd フッ素系ポリマー組成物およびその架橋方法
JPH11349711A (ja) * 1998-06-10 1999-12-21 Reitec:Kk 改質フッ素樹脂の製造方法
JP2000287559A (ja) * 1999-04-08 2000-10-17 Asahi Glass Green Tekku Kk 防曇持続性と耐久性に優れた農業用被覆資材
JP2004238405A (ja) 2002-02-22 2004-08-26 Asahi Glass Co Ltd 含フッ素共重合体
JP2010037475A (ja) * 2008-08-07 2010-02-18 Sumitomo Electric Fine Polymer Inc 透明樹脂成形体及び光学レンズ
JP2010222540A (ja) * 2009-03-25 2010-10-07 Sumitomo Electric Ind Ltd 耐熱性を有する透明樹脂成形体
WO2011024610A1 (ja) * 2009-08-31 2011-03-03 住友電気工業株式会社 透明樹脂成形体及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252366A (ja) * 1994-03-15 1995-10-03 Asahi Glass Co Ltd テトラフルオロエチレン−エチレン系共重合体の架橋方法
EP1090955A1 (en) * 1998-06-23 2001-04-11 Asahi Glass Company Ltd. Agricultural covering material
JP4327933B2 (ja) 1999-03-26 2009-09-09 オリンパス株式会社 電子カメラ
JP4120527B2 (ja) * 2002-10-04 2008-07-16 旭硝子株式会社 テトラフルオロエチレン/エチレン系共重合体組成物
CN101547945B (zh) * 2006-12-08 2011-07-06 旭硝子株式会社 乙烯/四氟乙烯类共聚物及其制造方法
KR101616145B1 (ko) * 2008-10-16 2016-04-27 아사히 가라스 가부시키가이샤 함불소 공중합체 조성물 및 그 제조 방법
JP5673532B2 (ja) * 2009-07-01 2015-02-18 旭硝子株式会社 含フッ素共重合体組成物およびその製造方法
WO2011007705A1 (ja) 2009-07-13 2011-01-20 旭硝子株式会社 エチレン/テトラフルオロエチレン系共重合体
JP5416629B2 (ja) * 2010-03-19 2014-02-12 住友電気工業株式会社 白色樹脂成形体及びled用リフレクタ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164609A (ja) * 1982-03-25 1983-09-29 Daikin Ind Ltd 光学繊維用鞘材
JPH0741522A (ja) * 1993-07-30 1995-02-10 Asahi Glass Co Ltd エチレン/テトラフルオロエチレン系共重合体
JPH0741563A (ja) * 1993-07-30 1995-02-10 Asahi Glass Co Ltd 架橋エチレン−テトラフルオロエチレン系共重合体の製造方法
JP3424270B2 (ja) 1993-07-30 2003-07-07 旭硝子株式会社 エチレン/テトラフルオロエチレン系共重合体
JPH07292199A (ja) * 1994-04-28 1995-11-07 Asahi Glass Co Ltd フッ素系ポリマー組成物およびその架橋方法
JPH11349711A (ja) * 1998-06-10 1999-12-21 Reitec:Kk 改質フッ素樹脂の製造方法
JP2000287559A (ja) * 1999-04-08 2000-10-17 Asahi Glass Green Tekku Kk 防曇持続性と耐久性に優れた農業用被覆資材
JP2004238405A (ja) 2002-02-22 2004-08-26 Asahi Glass Co Ltd 含フッ素共重合体
JP2010037475A (ja) * 2008-08-07 2010-02-18 Sumitomo Electric Fine Polymer Inc 透明樹脂成形体及び光学レンズ
JP2010222540A (ja) * 2009-03-25 2010-10-07 Sumitomo Electric Ind Ltd 耐熱性を有する透明樹脂成形体
WO2011024610A1 (ja) * 2009-08-31 2011-03-03 住友電気工業株式会社 透明樹脂成形体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2810980A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015129762A1 (ja) * 2014-02-26 2017-03-30 旭硝子株式会社 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法
EP3113193A4 (en) * 2014-02-26 2017-10-25 Asahi Glass Company, Limited Method for manufacturing electrical wire, method for manufacturing molded article, and method for manufacturing resin material that contains modified fluororesin
US10144792B2 (en) 2014-02-26 2018-12-04 AGC Inc. Method for producing electric wire, method for producing molded artile, and method for producing resin material containing modified fluororesin
JP2020191440A (ja) * 2019-05-16 2020-11-26 住友化学株式会社 電子部品及びその製造方法
JP6998362B2 (ja) 2019-05-16 2022-01-18 住友化学株式会社 電子部品及びその製造方法

Also Published As

Publication number Publication date
KR20140122227A (ko) 2014-10-17
TWI592431B (zh) 2017-07-21
TW201335199A (zh) 2013-09-01
EP2810980B1 (en) 2016-07-13
ES2594353T3 (es) 2016-12-19
CN104093772A (zh) 2014-10-08
EP2810980A4 (en) 2015-09-16
US20140296367A1 (en) 2014-10-02
KR101950055B1 (ko) 2019-02-19
JPWO2013114981A1 (ja) 2015-05-11
US9194982B2 (en) 2015-11-24
JP6003905B2 (ja) 2016-10-05
EP2810980A1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
CN111836835B (zh) 含氟聚合物的制造方法
US9574020B2 (en) Production method for fluoropolymer aqueous dispersion
US6927265B2 (en) Melt-processible thermoplastic fluoropolymers having improved processing characteristics and method of producing same
JP6003905B2 (ja) 光学部材、その製造方法および該光学部材を備えた物品
JP2017537208A (ja) 1,3,3,3−テトラフルオロプロペンのコポリマー
KR20180121884A (ko) 불소 수지 조성물, 성형 재료 및 성형체
EP2241581B1 (en) Thermoplastic fluororesin and method for producing the same
US20170096504A1 (en) Method for producing fluoropolymer aqueous dispersion liquid
US10839980B2 (en) Covered electric wire
JP2021169635A (ja) 樹脂組成物及び成形体
JP7152726B2 (ja) 含フッ素樹脂組成物およびその製造方法
JP2016124909A (ja) 含フッ素樹脂架橋体の製造方法、成形体の製造方法および含フッ素樹脂組成物
CN116940604A (zh) 含氟聚合物水性分散液的制造方法
JP4415458B2 (ja) 含フッ素共重合体及び成形体
JP2012503677A (ja) エチレン/テトラフルオロエチレンコポリマーの応用
US20160333135A1 (en) Curable composition
JP7156309B2 (ja) 含フッ素弾性共重合体及び含フッ素弾性共重合体の製造方法
KR20240048563A (ko) 불화비닐리덴 중합체 용액
CN117500848A (zh) 含氟聚合物组合物的制造方法和含氟聚合物组合物
JP2017198317A (ja) ガスケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556311

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013744182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013744182

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147019495

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE