WO2013111291A1 - 非水電解質二次電池およびその製造方法 - Google Patents

非水電解質二次電池およびその製造方法 Download PDF

Info

Publication number
WO2013111291A1
WO2013111291A1 PCT/JP2012/051577 JP2012051577W WO2013111291A1 WO 2013111291 A1 WO2013111291 A1 WO 2013111291A1 JP 2012051577 W JP2012051577 W JP 2012051577W WO 2013111291 A1 WO2013111291 A1 WO 2013111291A1
Authority
WO
WIPO (PCT)
Prior art keywords
overcharge
positive electrode
secondary battery
reactive compound
aqueous electrolyte
Prior art date
Application number
PCT/JP2012/051577
Other languages
English (en)
French (fr)
Inventor
森田 昌宏
小山 裕
行広 岡田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/051577 priority Critical patent/WO2013111291A1/ja
Priority to DE112012005743.0T priority patent/DE112012005743B4/de
Priority to CN201280067858.9A priority patent/CN104081578B/zh
Priority to KR1020147023054A priority patent/KR20140116940A/ko
Priority to US14/374,343 priority patent/US9780377B2/en
Priority to JP2013555053A priority patent/JP5930331B2/ja
Publication of WO2013111291A1 publication Critical patent/WO2013111291A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a battery sealed battery having a sealed structure in which positive and negative electrodes are sealed in a case can be given.
  • a current interruption mechanism that detects an overcharge state based on battery temperature, battery internal pressure, etc., and interrupts the current when an overcharge state is detected.
  • some of the compounds such as CHB and BP may be denatured or decomposed while the battery is used for a long period of time or depending on how the battery is used (for example, how to store at a high potential). It can happen. In such a case, there is a possibility that the amount of gas originally planned when the overcharged state is not generated and the current interrupting mechanism does not operate normally. In consideration of this, increasing the amount of the compound added and adjusting the design tolerance of the current interrupt mechanism (for example, setting the tolerance of the gas pressure at which the current interrupt mechanism operates) has been performed. However, other performance (for example, input / output characteristics) may be deteriorated, which is disadvantageous in terms of cost. There is a need to stably generate a necessary amount of gas without such inconvenience.
  • overcharge-reactive compounds such as CHB and BP are not only used as gas generating agents for current interrupting mechanisms as described above, but are also used for other purposes.
  • the compound reacts in an overcharged state to generate a gas, and at the same time, it is polymerized.
  • the polymer produced thereby functions as a resistor in the battery.
  • a polymer formed from the above compound is deposited on the surface of the positive electrode to form a film, thereby preventing further overcharge and improving safety in an overcharged state. Also in such a usage method, it is calculated
  • the present invention was created to solve the conventional problems as described above, and its purpose is to achieve a desired effect obtained by the reaction of the overcharge-reactive compound (for example, necessary in an overcharged state). It is an object of the present invention to provide a non-aqueous electrolyte secondary battery capable of generating a large amount of gas and producing a polymer from the above compound with high accuracy and stability. Another object of the present invention is to provide a method for producing a nonaqueous electrolyte secondary battery having such performance.
  • a nonaqueous electrolyte secondary battery is provided by the present invention.
  • an overcharge-reactive multimer that is a dimer or more obtained by polymerizing an overcharge-reactive compound is unpolymerized in the vicinity of the positive electrode constituting the non-aqueous electrolyte secondary battery. It exists more on a molar basis than the overcharge reactive compound.
  • the present inventors have examined the improvement in accuracy and stability of a polymerization reaction (for example, a reaction for gas generation or polymer generation) of an overcharge-reactive compound in a nonaqueous electrolyte secondary battery. It was discovered that the reaction can be broadly divided into two steps. That is, in the first step (hereinafter also referred to as STEP 1), the overcharge-reactive compound reacts (polymerizes), and an overcharge-reactive multimer of dimers or more of the overcharge-reactive compound serves as an intermediate. Generate. Next, in the second step (hereinafter also referred to as STEP 2), the generated overcharge reactive multimer further reacts (polymerizes) to form a polymer.
  • a polymerization reaction for example, a reaction for gas generation or polymer generation
  • an overcharge reactive multimer of a dimer or more obtained by polymerizing an overcharge reactive compound is an unpolymerized overcharge reactive compound.
  • the unpolymerized overcharge-reactive compound is an overcharge-reactive compound that does not undergo STEP 1 reaction (polymerization).
  • STEP 1 reaction polymerization
  • the overcharge reactive multimer mainly includes a dimer to a 10mer of the overcharge reactive compound. That is, by performing the above STEP 1 reaction in advance, a considerable amount of the overcharge-reactive compound dimer to demer are present in the vicinity of the positive electrode as an intermediate at the start of battery use. This suitably prevents denaturation or decomposition of the overcharge-reactive compound. Moreover, the reaction of STEP2 proceeds more easily when the battery is overcharged.
  • the positive electrode includes a polymerization initiator.
  • the polymerization reaction of the overcharge reactive compound typically the reaction of STEP 1 is suitably performed on the positive electrode surface.
  • the polymerization initiator is an azo polymerization initiator.
  • the overcharge-reactive compound is preferably at least one selected from the group consisting of branched alkylbenzenes, cycloalkylbenzenes, biphenyls, terphenyls, diphenyl ethers and dibenzofurans.
  • the nonaqueous electrolyte secondary battery includes the positive electrode, the negative electrode, and a case that accommodates these electrodes, and at least one of the electrodes and the case
  • the battery is configured as a sealed battery in which a conductive path that conducts to an external terminal exposed to the outside is formed, and includes a current interrupting mechanism configured to cut off the conductive path when the internal pressure of the case increases.
  • the non-aqueous electrolyte secondary battery is used in a state where the battery is used (for example, a state in which the battery has been used for a long period of time) or usage (for example, a case where the battery is stored at a high potential) by the reaction of the overcharge reactive compound Regardless of), the required amount of gas is stably generated with high accuracy when overcharged.
  • the internal pressure of the battery case increases as expected.
  • the current interrupting mechanism can be stably operated with high accuracy when the overcharge state occurs. Therefore, it can be preferably applied to a sealed battery provided with the current interrupt mechanism.
  • a method for manufacturing a non-aqueous electrolyte secondary battery includes preparing a positive electrode containing a polymerization initiator, preparing a nonaqueous electrolyte containing an overcharge reactive compound, supplying the nonaqueous electrolyte to the positive electrode, and adding the overcharge reactive compound to the positive electrode. It includes generating an overcharge reactive multimer of a dimer or more in the vicinity of the positive electrode by polymerization. In this way, by allowing the reaction of the overcharge reactive compound to proceed to STEP 1 in advance using the polymerization initiator, modification or decomposition of the overcharge reactive compound is prevented. In addition, when the battery is overcharged, the reaction of STEP2 easily proceeds. Therefore, according to the production method of the present invention, it is possible to provide a non-aqueous electrolyte secondary battery capable of stably expressing the desired effect obtained by the reaction of the overcharge reactive compound with high accuracy.
  • the overcharge reactive multimer mainly contains a dimer to a 10mer of the overcharge reactive compound. If the degree of polymerization of the overcharge reactive multimer generated by the reaction (polymerization) becomes too large, there is a concern that the overcharge reactive multimer acts as a resistor in the battery. Therefore, it is preferable to keep the degree of polymerization low. That is, it is preferable to carry out the reaction of STEP 1 so that the overcharge-reactive multimer mainly contains 2 to 10-mers of the overcharge-reactive compound. This prevents denaturation or decomposition of the overcharge-reactive compound without deteriorating battery characteristics, and the STEP2 reaction proceeds more easily when the overcharge state is reached.
  • the overcharge reaction is performed by heating the supplied nonaqueous electrolyte at a temperature of 50 ° C. to 100 ° C. after supplying the nonaqueous electrolyte to the positive electrode.
  • the active compound As a result, the reaction of STEP 1 can be suitably advanced, and a desired overcharge-reactive multimer is easily generated.
  • an azo polymerization initiator is used as the polymerization initiator.
  • the overcharge-reactive compound is preferably at least one selected from the group consisting of branched alkylbenzenes, cycloalkylbenzenes, biphenyls, terphenyls, diphenyl ethers and dibenzofurans.
  • the present invention can be preferably applied to a method for manufacturing a secondary battery including a current interruption mechanism that operates by increasing the internal pressure of the case as described above.
  • a vehicle including any of the nonaqueous electrolyte secondary batteries disclosed herein. Since the vehicle drive power supply varies in charge / discharge rate and, in some cases, high rate input / output may occur locally, the decomposition of the overcharge reactive compound may occur at that time. Therefore, such a non-aqueous electrolyte secondary battery can be particularly suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.
  • a motor electric motor mounted on a vehicle such as an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.
  • a lithium ion secondary battery As a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, a lithium ion secondary battery will be described as an example. However, the application target of the present invention is not intended to be limited to such a battery. Absent.
  • the present invention can be applied to a non-aqueous electrolyte secondary battery using a metal ion other than lithium ion (for example, sodium ion) as a charge carrier.
  • “secondary battery” generally refers to a battery that can be repeatedly charged and discharged.
  • a capacitor such as an electric double layer capacitor (ie, a physical battery) Battery).
  • the “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • a lithium ion secondary battery 100 has a configuration in which a wound electrode body 80 is accommodated in a flat rectangular parallelepiped case 50 together with a non-aqueous electrolyte (not shown).
  • the wound electrode body 80 includes a positive electrode (positive electrode sheet 10) and a negative electrode (negative electrode sheet 20), and has a configuration in which the positive electrode sheet 10 and the negative electrode sheet 20 are wound flatly via separators 40A and 40B.
  • the electrode body is not limited to a wound electrode body. Appropriate shapes and configurations can be appropriately employed depending on the shape and purpose of the battery.
  • the case 50 includes a flat box-shaped case main body 52 having an opening on the upper surface, and a lid 54 that closes the opening.
  • a positive electrode terminal 70 and a negative electrode terminal 72 are provided on the upper surface (cover body 54) of the case 50.
  • the positive electrode terminal 70 is electrically connected to a positive electrode current collector plate 74 attached to an end in the width direction of the positive electrode (positive electrode sheet) 10.
  • the negative electrode terminal 72 is electrically connected to a negative electrode current collector plate 76 attached to the end of the negative electrode (negative electrode sheet) 20 in the width direction.
  • a current interruption mechanism 30 that operates when the internal pressure of the case 50 increases is provided inside the case 50.
  • the current interruption mechanism 30 is provided between the positive electrode terminal 70 fixed to the lid body 54 and the electrode body 80, and electrically disconnects the conductive path from the positive electrode terminal 70 to the positive electrode 10 when the internal pressure of the case 50 increases. Is configured to do.
  • the current interrupt mechanism 30 may include a first member 32 and a second member 34, for example.
  • the first member 32 is a deformed metal plate
  • the second member 34 is a connection metal plate joined to the deformed metal plate 32.
  • the deformed metal plate (first member) 32 has an arch-shaped curved portion 33 having a central portion curved downward. The peripheral portion of the curved portion 33 is connected to the lower surface of the positive electrode terminal 70 via the current collecting lead terminal 35.
  • a part (tip) of the curved portion 33 of the deformed metal plate 32 is joined to the upper surface of the connection metal plate 34 at a joint point 36.
  • a positive electrode current collector plate 74 is joined to the lower surface (back surface) of the connection metal plate 34, and the positive electrode current collector plate 74 is connected to the positive electrode 10 of the wound electrode body 80. In this way, a conductive path from the positive electrode terminal 70 to the positive electrode 10 is formed.
  • the current interrupt mechanism 30 includes an insulating case 38 formed of plastic.
  • the material of the insulating case is not limited to plastic, and any material having insulating properties and airtightness may be used.
  • the insulating case 38 is provided so as to surround the deformed metal plate 32, and hermetically seals the upper surface of the deformed metal plate 32.
  • An opening for fitting the curved portion 33 of the deformed metal plate 32 is formed in the insulating case 38, and the curved portion 33 of the deformed metal plate 32 is fitted into the opening to seal the opening. is doing.
  • the inside of the insulating case 38 is kept in a sealed state, so that the internal pressure of the case 50 does not act on the upper surface side of the sealed curved portion 33.
  • the internal pressure of the case 50 acts on the lower surface of the curved portion 33 exposed outside the insulating case 38, that is, inside the case 50.
  • the internal pressure of the case 50 acts to push the curved portion 33 curved downward.
  • This action increases as the internal pressure of the case 50 increases.
  • the curved portion 33 is turned upside down and deformed so as to bend upward. Due to the deformation of the curved portion 33, the joint point 36 between the deformed metal plate 32 and the connection metal plate 34 is cut. As a result, the conductive path is electrically disconnected and the current is interrupted.
  • the current interrupting mechanism is not limited to the positive terminal side but may be provided on the negative terminal side. Further, when the internal pressure of the case increases, a conductive path (for example, a charging path) that electrically connects at least one of the positive and negative electrodes and an external terminal (positive electrode terminal or negative electrode terminal) exposed to the outside of the case is electrically disconnected. As long as it is configured, it is not limited to a specific shape and structure. Further, the current interruption mechanism is not limited to the mechanical cutting accompanied by the deformation of the first member described above. For example, an external circuit that detects the internal pressure of the case with a sensor and interrupts the charging current when the internal pressure detected by the sensor exceeds a set pressure may be provided as a current interrupt mechanism. In addition, when using the overcharge reactive compound mentioned later for the purpose other than gas generation, the said electric current interruption mechanism may not be.
  • FIG. 2 is a diagram schematically showing the configuration of the wound electrode body of FIG. 1, and shows a long sheet structure (electrode sheet) in a stage before the wound electrode body 80 is assembled.
  • the wound electrode body 80 includes a long positive electrode sheet 10 and a long negative electrode sheet 20.
  • the positive electrode sheet 10 includes a long positive electrode current collector 12 and a positive electrode mixture layer 14 formed on at least one surface (typically both surfaces) of the positive electrode current collector 12 along the longitudinal direction.
  • the negative electrode sheet 20 includes a long negative electrode current collector 22 and a negative electrode mixture layer 24 formed on at least one surface (typically both surfaces) of the negative electrode current collector 22 along the longitudinal direction. .
  • the positive electrode sheet 10 and the negative electrode sheet 20 are overlapped via two long separators 40A and 40B, thereby forming a laminate.
  • the laminate is laminated in the order of the positive electrode sheet 10, the separator 40B, the negative electrode sheet 20, and the separator 40A.
  • a wound electrode body is formed, and further, the flat wound electrode body 80 is obtained by crushing the rolled electrode body from the side surface direction.
  • the obtained wound electrode body 80 is accommodated in the case 50 and sealed by closing the opening of the case body 52 with the lid 54.
  • a nonaqueous electrolyte is also injected (injected) into the case 50.
  • a so-called sealed lithium ion secondary battery 100 having a structure in which the inside of the case 50 is sealed is constructed.
  • a positive electrode current collector constituting a positive electrode (typically a positive electrode sheet) of a lithium ion secondary battery a conductive member made of a metal having good conductivity is preferably used.
  • a conductive member made of a metal having good conductivity is preferably used.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector can be different depending on the shape of the battery and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the thickness of the positive electrode current collector is not particularly limited, and can be, for example, 5 ⁇ m to 30 ⁇ m.
  • the positive electrode mixture layer can contain additives such as a conductive material and a binder (binder) as necessary.
  • the positive electrode mixture layer may contain a polymerization initiator, which will be described later.
  • the positive electrode active material examples include a composite oxide containing lithium and at least one transition metal element (preferably at least one of nickel, cobalt, and manganese).
  • the composite oxide examples include a so-called binary lithium-containing composite oxide containing one kind of the transition metal element, a so-called binary lithium-containing composite oxide containing two kinds of the transition metal element, nickel as the transition metal element, Examples thereof include ternary lithium-containing composite oxides containing cobalt and manganese as constituent elements, and solid solution lithium-excess transition metal oxides. These can be used alone or in combination of two or more.
  • Examples of the unitary lithium-containing composite oxide include cobalt lithium composite oxide (LiCoO 2 ), nickel lithium composite oxide (LiNiO 2 ), and manganese lithium composite oxide (LiMn 2 O 4 ).
  • Examples of the binary lithium-containing composite oxide include nickel-cobalt-based LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 1) and cobalt-manganese-based LiCo x Mn 1-x O 2 (0 ⁇ x ⁇ 1), nickel / manganese-based LiNi x Mn 1-x O 2 (0 ⁇ x ⁇ 1) and LiNi x Mn 2-x O 4 (0 ⁇ x ⁇ 2) A composite oxide is mentioned.
  • Examples of the solid solution type lithium-excess transition metal oxide include a general formula: xLi [Li 1/3 Mn 2/3 ] O 2. (1-x) LiMeO 2 (Wherein, Me is one or more transition metals, and x is 0 ⁇ x ⁇ 1), a solid solution lithium-excess transition metal oxide. Of these, a ternary lithium-containing composite oxide containing nickel, cobalt and manganese as transition metal elements is preferred.
  • the general formula is LiMAO 4 (where M is at least one metal element selected from the group consisting of Fe, Co, Ni and Mn, and A is P, Si, S and A polyanionic compound represented by the following formula is also preferably used: an element selected from the group consisting of V.
  • A is P and / or Si (for example, LiFePO 4 , LiFeSiO 4 , LiCoPO 4 , LiCoSiO 4 , LiFe 0.5 Co 0.5 PO 4 , LiFe 0.5 Co 0.5 SiO 4 , LiMnPO 4, LiMnSiO 4, LiNiPO 4, LiNiSiO 4) are suitable examples of the polyanionic compound.
  • the proportion of the positive electrode active material in the positive electrode mixture layer is preferably more than about 50% by mass and about 70% to 95% by mass (for example, 75% to 90% by mass).
  • a conductive powder material such as carbon powder or carbon fiber is preferably used.
  • carbon powder various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable.
  • conductive fibers such as carbon fibers and metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives may be included singly or as a mixture of two or more. it can.
  • the binder include various polymer materials. For example, when a positive electrode mixture layer is formed using an aqueous composition (a composition using water or a mixed solvent containing water as a main component as a dispersion medium for active material particles), water is used as a binder.
  • Polymer materials that dissolve or disperse can be preferably employed.
  • the water-soluble (water-soluble) polymer material include cellulose polymers such as carboxymethyl cellulose (CMC); polyvinyl alcohol (PVA);
  • examples of polymer materials that can be dispersed in water (water-dispersible) include fluorine resins such as polytetrafluoroethylene (PTFE); vinyl acetate polymers; styrene butadiene rubber (SBR), acrylic acid-modified SBR resins (SBR type).
  • Rubbers such as latex Rubbers such as latex);
  • a solvent-based composition a composition in which the dispersion medium of active material particles is mainly an organic solvent
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • vinyl halide resins such as polyethylene oxide, polyalkylene oxide such as polyethylene oxide (PEO), and the like
  • PEO polyethylene oxide
  • a binder may be used alone or in combination of two or more.
  • the polymer material illustrated above may be used as a thickener and other additives in the composition for forming a positive electrode mixture layer, in addition to being used as a binder.
  • the ratio of these additives in the positive electrode mixture layer is not particularly limited, but the ratio of the conductive material is preferably about 4% by mass to 20% by mass (for example, 4% by mass to 18% by mass). The ratio of the material is preferably about 1% by mass to 10% by mass (eg, 1% by mass to 7% by mass).
  • the method for producing the positive electrode as described above is not particularly limited, and a conventional method can be appropriately employed. For example, it can be produced by the following method. First, a positive electrode active material, a polymerization initiator described later, and a conductive material, a binder, etc., if necessary, are mixed with an appropriate solvent (aqueous solvent, non-aqueous solvent or a mixed solvent thereof) to form a paste or slurry. A positive electrode mixture layer forming composition (hereinafter also referred to as a paste-like composition) is prepared. The mixing operation can be performed using, for example, an appropriate kneader (planetary mixer, homodisper, clear mix, fill mix, etc.).
  • an appropriate kneader planetary mixer, homodisper, clear mix, fill mix, etc.
  • both an aqueous solvent and a non-aqueous solvent can be used.
  • the aqueous solvent only needs to be water-based as a whole, and water or a mixed solvent mainly composed of water can be preferably used.
  • preferable examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone, toluene and the like.
  • NMP N-methyl-2-pyrrolidone
  • the paste-like composition thus prepared is applied to the positive electrode current collector, the solvent is volatilized and dried, and then compressed (pressed).
  • a technique similar to a conventionally known method can be appropriately employed.
  • the composition can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • it can dry favorably by using natural drying, a hot air, low-humidity air, a vacuum, infrared rays, far infrared rays, and an electron beam individually or in combination.
  • a compression method a conventionally known compression method such as a roll press method or a flat plate press method can be employed.
  • the thickness may be measured with a film thickness measuring instrument, and the compression may be performed a plurality of times until the desired thickness is obtained by adjusting the press pressure. In this way, a positive electrode in which the positive electrode mixture layer is formed on the positive electrode current collector is obtained.
  • the basis weight per unit area of the positive electrode mixture layer on the positive electrode current collector (the coating amount in terms of solid content of the positive electrode mixture layer forming composition) is:
  • the total of both surfaces of the positive electrode current collector is 6 mg / cm 2 or more (for example, 12 mg / cm 2 or more, typically 15 mg).
  • the negative electrode current collector constituting the negative electrode typically, the negative electrode sheet
  • a conductive member made of a highly conductive metal is preferably used as in the case of a conventional lithium ion secondary battery.
  • copper or an alloy containing copper as a main component can be used.
  • the shape of the negative electrode current collector can be different depending on the shape of the battery and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the thickness of the negative electrode current collector is not particularly limited, and can be, for example, 5 ⁇ m to 30 ⁇ m.
  • the negative electrode mixture layer includes a negative electrode active material capable of inserting and extracting lithium ions serving as charge carriers.
  • a negative electrode active material capable of inserting and extracting lithium ions serving as charge carriers.
  • the 1 type (s) or 2 or more types of the material conventionally used for a lithium ion secondary battery can be used.
  • the negative electrode active material include carbon materials used in typical lithium ion secondary batteries.
  • Representative examples of the carbon material used as the negative electrode active material include graphite carbon (graphite) and amorphous carbon. Among these, a particulate carbon material (carbon particles) including a graphite structure (layered structure) at least partially is preferably used.
  • any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), a graphitizable carbonaceous material (soft carbon), or a combination of these is suitable.
  • natural graphite or artificial graphite
  • Such natural graphite (or artificial graphite) may be obtained by spheroidizing graphite.
  • the median diameter (average particle diameter D 50 : 50% volume average particle diameter) that can be derived from the particle size distribution measured based on the particle size distribution measuring apparatus based on the laser scattering / diffraction method is used. Those within a range of about 5 ⁇ m to 30 ⁇ m can be preferably used. Further, a carbonaceous powder in which the surface of the graphite is coated with amorphous carbon may be used.
  • the negative electrode active material it is also possible to use oxides such as lithium titanate, simple substances such as silicon materials and tin materials, alloys, compounds, and composite materials using the above materials in combination. The proportion of the negative electrode active material in the negative electrode mixture layer exceeds approximately 50% by mass, and is approximately 90% to 99% by mass (eg, 95% to 99% by mass, typically 97% to 99% by mass). It is preferable that
  • the negative electrode mixture layer needs one or more binders, thickeners, and other additives that can be blended in the negative electrode mixture layer of a general lithium ion secondary battery.
  • the binder include various polymer materials.
  • a negative electrode mixture layer is formed using an aqueous composition (a composition using water or a mixed solvent containing water as a main component as a dispersion medium of active material particles), water is used as a binder.
  • Polymer materials that dissolve or disperse can be preferably employed.
  • water-soluble (water-soluble) polymer material examples include cellulose such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), and hydroxypropylmethylcellulose phthalate (HPMCP).
  • System polymer polyvinyl alcohol (PVA); Polymer materials that can be dispersed in water (water dispersible) include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • tetrafluoroethylene-hexafluoropropylene copolymer examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluor
  • Fluorine resins such as polymer (FEP) and ethylene-tetrafluoroethylene copolymer (ETFE); vinyl acetate polymer; styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), rubber such as gum arabic
  • FEP polymer
  • EFE ethylene-tetrafluoroethylene copolymer
  • SBR styrene butadiene rubber
  • SBR latex acrylic acid-modified SBR resin
  • rubber such as gum arabic
  • a solvent-based composition a composition in which the dispersion medium of active material particles is mainly an organic solvent
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • Polymer materials such as polyethylene oxide (PEO), polypropylene oxide (PPO), and polyethylene oxide-propylene oxide copolymer (PEO-PPO) can be used.
  • the polymer material illustrated above may be used as a thickener or other additive in the composition for forming a negative electrode mixture layer, in addition to being used as a binder.
  • the proportion of these additives in the negative electrode composite layer is not particularly limited, but is about 1% by mass to 10% by mass (eg, about 1% by mass to 5% by mass, typically 1% by mass to 3% by mass). Preferably there is.
  • the method for producing the negative electrode as described above is not particularly limited, and a conventional method can be adopted.
  • a negative electrode active material is mixed with a binder or the like in the appropriate solvent (aqueous solvent, organic solvent or a mixed solvent thereof) to form a paste-like or slurry-like negative electrode mixture layer forming composition (hereinafter, (Also referred to as a paste-like composition).
  • a paste-like composition is applied to the negative electrode current collector, the solvent is volatilized and dried, and then compressed (pressed).
  • a negative electrode provided with a negative electrode mixture layer formed using the paste-like composition on the negative electrode current collector is obtained.
  • conventionally well-known means can be used for the mixing, application
  • the basis weight per unit area of the negative electrode mixture layer on the negative electrode current collector (the coating amount in terms of solid content of the negative electrode mixture layer forming composition) is:
  • the total of both surfaces of the negative electrode current collector is 2.5 mg / cm 2 or more (for example, 6 mg / cm 2 or more, typically Is 10 mg / cm 2 or more) and is preferably 45 mg / cm 2 or less (for example, 22 mg / cm 2 or less, typically 15 mg / cm 2 or less).
  • the separator (separator sheet) disposed so as to separate the positive electrode and the negative electrode may be a member that insulates the positive electrode mixture layer and the negative electrode mixture layer and allows the electrolyte to move.
  • the separator include those made of a porous polyolefin resin.
  • a porous separator sheet made of a synthetic resin for example, made of polyethylene, polypropylene, or a polyolefin having a structure of two or more layers combining these
  • This separator sheet may be provided with a heat-resistant layer.
  • the heat-resistant layer may be composed of a layer of insulating particles formed on the surface of the positive electrode mixture layer or the negative electrode mixture layer.
  • the particles having insulating properties are inorganic fillers having insulating properties (for example, fillers such as metal oxides and metal hydroxides) or resin particles having insulating properties (for example, particles such as polyethylene and polypropylene). Also good.
  • the electrolyte when a solid (gel) electrolyte in which a polymer is added to the above electrolyte is used instead of the liquid electrolyte, the electrolyte itself can function as a separator, so that a separator is not necessary. There can be.
  • nonaqueous solvent and the supporting salt constituting the nonaqueous electrolyte injected into the lithium ion secondary battery those conventionally used for lithium ion secondary batteries can be used without any particular limitation.
  • a non-aqueous electrolyte is typically an electrolytic solution having a composition in which a supporting salt is contained in a suitable non-aqueous solvent.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2- Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone
  • a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) is preferable.
  • the supporting salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3.
  • lithium compounds lithium salts
  • the concentration of the supporting salt is not particularly limited, but is about 0.1 mol / L to 5 mol / L (for example, 0.5 mol / L to 3 mol / L, typically 0.8 mol / L to 1.5 mol / L). Concentration.
  • the non-aqueous electrolyte contains an overcharge reactive compound.
  • the overcharge-reactive compound is a compound that can be dissolved or dispersed in the non-aqueous electrolyte, and means a compound that can react (polymerize) with each other when the battery is overcharged.
  • Such an overcharge reactive compound is not oxidized at the operating voltage of the battery, but reacts (oxidizes) prior to the oxidative decomposition of the nonaqueous solvent of the nonaqueous electrolyte when the battery is overcharged. Therefore, the oxidation potential (oxidation start potential) of the overcharge reactive compound is higher than the upper limit potential of the positive electrode corresponding to the maximum value of the operating voltage.
  • the oxidation potential (vsLi / Li + ) of the overcharge reactive compound is 0.1 V or higher (for example, 0.2 V or higher, typically 0.3 V) from the upper limit potential (vsLi / Li + ) of the positive electrode. Above) High is preferable. Moreover, it is preferable that it is 0.1 V or more (for example, 0.2 V or more, typically 0.3 V or more) lower than the oxidation potential (vsLi / Li + ) of the nonaqueous solvent.
  • the preferable range of the oxidation potential of the overcharge reactive compound is 4.3 V or more (for example, it is 4.4 V or higher, typically 4.5 V or higher), and 5.0 V or lower (for example, 4.9 V or lower, typically 4.8 V or lower).
  • the overcharge-reactive compound is preferably a compound having a benzene ring and a tertiary carbon bonded to at least one of carbons constituting the benzene ring. Since such tertiary carbon has high activity, the overcharge-reactive compound having the tertiary carbon is likely to react in an overcharged state.
  • the number of tertiary carbons bonded to the carbon constituting the benzene ring is preferably 1 to 3 (eg 1 to 2, typically 1).
  • the group having a tertiary carbon is preferably a phenyl group, a cycloalkyl group having 3 to 6 carbon atoms (carbon atoms), or a branched alkyl group having 3 to 6 carbon atoms.
  • the molecular weight of the overcharge-reactive compound is not particularly limited, but is 100 to 400 (eg, 120 to 250, typically 150 to 200) from the viewpoint of solubility (dispersibility) in the nonaqueous electrolyte. preferable.
  • the overcharge reactive compound include branched alkylbenzenes, cycloalkylbenzenes, biphenyls, terphenyls, diphenyl ethers, and dibenzofurans. These can be used alone or in combination of two or more. Of these, branched alkylbenzenes, cycloalkylbenzenes, biphenyls, and diphenyl ethers are preferred, and cycloalkylbenzenes and biphenyls are more preferred because of their high reactivity in an overcharged state and easy control of the polymerization reaction. .
  • branched alkylbenzenes examples include branched alkylbenzenes having a branched alkyl group having 3 to 6 carbon atoms and halides (typically fluorides) of branched alkylbenzenes.
  • the number of branched alkyl groups having 3 to 6 carbon atoms is preferably 1 or 2.
  • a branched alkylbenzene halide (typically fluoride) is a compound in which at least one hydrogen atom bonded to a carbon atom constituting a branched alkylbenzene is substituted with a halogen atom (typically a fluorine atom). Refers to a compound.
  • gas typically hydrogen gas
  • it is a partial fluoride of a branched alkylbenzene in which one or two hydrogen atoms bonded to the carbon atoms constituting the branched alkylbenzene are substituted with fluorine atoms. It is preferable.
  • branched alkylbenzenes include branched alkylbenzenes such as cumene, diisopropylbenzene, t-butylbenzene, t-dibutylbenzene, t-amylbenzene, and t-diamilbenzene. These can be used alone or in combination of two or more.
  • cycloalkylbenzenes include cycloalkylbenzene having a cycloalkyl group having 3 to 6 carbon atoms, and at least one hydrogen atom bonded to the carbon atom constituting the cycloalkylbenzene is a linear or branched alkyl group.
  • examples thereof include alkylated cycloalkylbenzene substituted with a group and / or a halogen atom (typically a fluorine atom), and a halide (typically a fluoride) of cycloalkylbenzene.
  • the number of carbon atoms of the linear or branched alkyl group is preferably 1 to 6 (for example, 3 or 4).
  • a cycloalkylbenzene halide (typically a fluoride) is a partial fluoride of cycloalkylbenzene in which one or two hydrogen atoms bonded to the carbon atoms constituting the cycloalkylbenzene are substituted with fluorine atoms. It is preferable that
  • cycloalkylbenzenes include cycloalkylbenzenes such as cyclopentylbenzene and cyclohexylbenzene (CHB), alkylated cycloalkylbenzenes such as t-butylcyclohexylbenzene, and partial fluorides of cycloalkylbenzenes such as cyclohexylfluorobenzene. These can be used alone or in combination of two or more.
  • cycloalkylbenzenes such as cyclopentylbenzene and cyclohexylbenzene (CHB)
  • alkylated cycloalkylbenzenes such as t-butylcyclohexylbenzene
  • partial fluorides of cycloalkylbenzenes such as cyclohexylfluorobenzene.
  • Biphenyls include biphenyl (BP) and at least one of hydrogen atoms bonded to carbon atoms constituting BP is a linear or branched alkyl group and / or halogen atom (typically a fluorine atom). And alkylbiphenyl substituted with a halide of biphenyl (typically fluoride).
  • the number of carbon atoms of the linear or branched alkyl group is preferably 1 to 6 (for example, 3 or 4). From the viewpoint of generating gas (typically hydrogen gas), it is preferable that one or two of hydrogen atoms bonded to carbon atoms constituting biphenyl are substituted with alkyl groups in alkylbiphenyl.
  • the biphenyl halide is preferably a biphenyl partial fluoride in which one or two hydrogen atoms bonded to the carbon atoms constituting the biphenyl are substituted with fluorine atoms.
  • biphenyls include BP, alkyl biphenyls such as propyl biphenyl and t-butyl biphenyl, partial phenyls such as 2-fluorobiphenyl, 2,2′-difluorobiphenyl, and 4,4′-difluorobiphenyl.
  • alkyl biphenyls such as propyl biphenyl and t-butyl biphenyl
  • partial phenyls such as 2-fluorobiphenyl, 2,2′-difluorobiphenyl, and 4,4′-difluorobiphenyl.
  • a compound can be used alone or in combination of two or more.
  • Terphenyls, diphenyl ethers, dibenzofurans include terphenyl, diphenyl ether, dibenzofuran, and each of which at least one hydrogen atom bonded to the carbon atom constituting them is substituted with a linear or branched alkyl group Alkylates (alkylated terphenyls, alkylated diphenyl ethers, alkylated dibenzofurans) and / or terphenyl, diphenyl ether, dibenzofuran halides (typically fluorides) substituted with halogen atoms (typically fluorine atoms) Is mentioned.
  • the number of carbon atoms of the linear or branched alkyl group is preferably 1 to 6 (for example, 3 or 4).
  • alkylated terphenyl, alkylated diphenyl ether, and alkylated dibenzofuran have one or two hydrogen atoms bonded to the carbon atoms constituting them substituted with alkyl groups. It is preferable.
  • terphenyl, diphenyl ether, and dibenzofuran halides are terphenyls in which one or two hydrogen atoms bonded to the carbon atoms constituting them are substituted with fluorine atoms.
  • Diphenyl ether and dibenzofuran are preferably partial fluorides.
  • Terphenyl may be a partial hydride of terphenyl in which a hydrogen atom is added to a part thereof.
  • the use amount (addition amount) of the overcharge reactive compound is about 0.01 to 10% by mass (for example, 0.1 to 5% by mass, typically 1 to 3% by mass) in the non-aqueous electrolyte. Is preferred.
  • the content of the overcharge reactive compound in the non-aqueous electrolyte after the overcharge reactive multimer is generated by the reaction of the overcharge reactive compound described later is consumed by the reaction, for example, 1% by mass. It can be about the following (for example, 0.5% by mass or less, typically 0.001 to 0.3% by mass).
  • overcharge-reactive multimers formed by polymerizing the overcharge-reactive compound is present in the vicinity of the positive electrode of the lithium ion secondary battery. This point will be described later. To do.
  • Such a method for producing a secondary battery includes, for example, constructing a positive electrode, constructing a negative electrode, and constructing a nonaqueous electrolyte secondary battery using the positive electrode and the negative electrode, as in the past.
  • the above-described methods can be appropriately employed.
  • a method for producing a lithium ion secondary battery will be described.
  • the method for producing a lithium ion secondary battery disclosed herein includes reacting an overcharge-reactive compound with a polymerization initiator in the vicinity of the positive electrode. That is, the reaction of the overcharge reactive compound is performed in the production stage, not after the production of the lithium ion secondary battery. Thereby, an overcharge reactive multimer of a dimer or more is generated in the vicinity of the positive electrode. Since this overcharge-reactive multimer is less denatured or decomposed than the overcharge-reactive compound, as a result, modification or decomposition of components derived from the overcharge-reactive compound is prevented. The mechanism of action will be described in detail. The polymerization reaction of the overcharge reactive compound is roughly divided into two steps.
  • the overcharge-reactive compound reacts (polymerizes), and an overcharge-reactive multimer of dimers or more of the overcharge-reactive compound is generated as an intermediate.
  • the produced overcharge reactive multimer further reacts (polymerizes) to produce a polymer.
  • a large amount of gas is generated by desorption of atoms as gas components from the overcharge reactive multimer simultaneously with polymerization.
  • a part of the overcharge-reactive compound may be denatured or decomposed.
  • the overcharge-reactive compound reacts (polymerizes), and an overcharge-reactive multimer that is relatively difficult to denature or decompose is generated.
  • the modification or decomposition of the component derived from the overcharge-reactive compound is prevented. It is prevented.
  • the reaction of STEP 2 easily proceeds when an overcharged state is reached.
  • a desired effect obtained by the reaction of the overcharge reactive compound such as generation of a required amount of gas or generation of a polymer can be expressed with high accuracy and stability. Specifically, the amount of gas generated and the amount of polymer produced are less likely to change over time, and the stability of the reaction is improved.
  • generates the overcharge-reactive multimer more than the dimer of an overcharge-reactive compound is the overcharge-reactive compound to be used.
  • the polymerization initiator it can be carried out by appropriately selecting the type and amount of the polymerization initiator described later and, if necessary, appropriately adjusting the conditions of the heat treatment described later.
  • the manufacturing method of the lithium ion secondary battery includes the following steps.
  • the steps include preparing a positive electrode containing a polymerization initiator, preparing a non-aqueous electrolyte containing an overcharge-reactive compound, supplying the non-aqueous electrolyte to the positive electrode, and the overcharge-reactive compound.
  • an overcharge reactive multimer of a dimer or more is generated in the vicinity of the positive electrode.
  • the reaction of the overcharge-reactive compound can be advanced to STEP 1 in advance using the polymerization initiator.
  • a positive electrode containing a polymerization initiator gas generation or polymer formation (film formation) resulting from the reaction (polymerization) of the overcharge-reactive compound is performed in the vicinity (typically the surface) of the positive electrode. Therefore, by including a polymerization initiator for initiating the reaction (polymerization) of the overcharge-reactive compound in the positive electrode (typically, the positive electrode mixture layer), the above-described vicinity of the positive electrode (typically on the surface) A polymer of an overcharge-reactive compound can be efficiently generated.
  • the polymerization initiator is preferably added to the composition for forming a positive electrode mixture layer when a positive electrode (typically a positive electrode mixture layer) is prepared. As a result, the reaction of the overcharge reactive compound can be advanced to STEP 1 in advance.
  • the polymerization initiator is not particularly limited, but a radical polymerization initiator is preferable because it is easy to control the reaction of the overcharge reactive compound (typically, the reaction of STEP 1).
  • examples of the radical polymerization initiator include azo polymerization initiators, peroxide polymerization initiators, and persulfate polymerization initiators. Of these, azo polymerization initiators are preferred.
  • Examples of the azo polymerization initiator include 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] hydrate, 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile, 2,2′-azobis (2-methylpropionamidine) disulfate, 2,2′-azobis [2 -(5-Methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis (N, N'-dimethyleneisobutylamidine) dihydrochloride. These can be used individually by 1 type or in mixture of 2 or more types. Of these, 2,2'-azobisisobutyronitrile and 2,2'-azobis-2-methylbutyronitrile are preferable.
  • peroxide polymerization initiator examples include persulfates such as potassium persulfate and ammonium persulfate; benzoyl peroxide, acetyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, cumene hydroperoxide, t-butyl hydroperoxide Hydrogen peroxide, di-tert-butyl peroxide, dicumyl peroxide, and dilauroyl peroxide. These can be used individually by 1 type or in mixture of 2 or more types. Of these, benzoyl peroxide, t-butyl hydroperoxide, hydrogen peroxide, and dicumyl peroxide are preferable.
  • persulfates such as potassium persulfate and ammonium persulfate
  • benzoyl peroxide acetyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, cum
  • persulfate polymerization initiator examples include ammonium persulfate, sodium persulfate, and potassium persulfate. These can be used individually by 1 type or in mixture of 2 or more types.
  • the amount of polymerization initiator used is not particularly limited. An appropriate amount can be set according to the purpose of use of the overcharge-reactive compound, the type of overcharge-reactive compound, the amount used, the polymerization conditions, and the like.
  • a polymerization initiator in order to generate an overcharge reactive multimer in the vicinity of the positive electrode, in the positive electrode mixture layer (solid content of the positive electrode mixture layer forming composition) It is preferable to add about 10 ppm to 5000 ppm (for example, 50 ppm to 3000 ppm, typically 100 ppm to 1000 ppm) on a mass basis.
  • the overcharge-reactive compound When cyclohexylbenzenes and / or biphenyls are used as the overcharge-reactive compound and an azo polymerization initiator is used as the polymerization initiator, it is particularly preferably 100 ppm to 1000 ppm. Note that the polymerization initiator is not consumed in its entirety by the reaction of the overcharge reactive compound, and those that have not contributed to the reaction can remain in the positive electrode (typically, the positive electrode mixture layer). Therefore, the positive electrode after the reaction can contain a polymerization initiator.
  • a nonaqueous electrolyte containing an overcharge reactive compound As the overcharge reactive compound and the nonaqueous electrolyte, those described above can be appropriately selected and used.
  • the amount (addition amount) of the overcharge-reactive compound is also preferably within the above-mentioned range.
  • an electrode body including a positive electrode and a negative electrode is produced by the above-described method, and after the electrode body is accommodated in the case, a nonaqueous electrolyte containing an overcharge reactive compound is injected into the case. Thereby, a polymerization initiator and an overcharge reactive compound contact in the vicinity of a positive electrode.
  • an overcharge reactive compound is reacted (polymerized).
  • an overcharge reactive multimer of a dimer or more is generated in the vicinity of the positive electrode.
  • An overcharge-reactive multimer of a dimer or higher is typically an intermediate produced in the state where it has progressed to the above-mentioned reaction of STEP1, but has not progressed to STEP2. Therefore, the degree of polymerization of the overcharge-reactive multimer is relatively low, and has a relatively high activity (reactivity) such that the polymerization proceeds when the overcharge state is reached.
  • a dimer such as 2,2′-dicyclohexylbiphenyl, 4,4′-dicyclohexylbiphenyl, etc. as an overcharge-reactive multimer is obtained by the reaction of STEP1.
  • a multimer containing is produced.
  • cyclohexylbenzenes typically CHB
  • biphenyls typically BP
  • the current interruption mechanism usually does not operate.
  • the above reaction is performed with the valve (the valve that opens and closes the passage communicating between the inside and outside of the battery) opened (typically before the battery is sealed).
  • the above reaction is performed with the valve (the valve that opens and closes the passage communicating between the inside and outside of the battery) opened (typically before the battery is sealed).
  • the above reaction is performed with the valve (the valve that opens and closes the passage communicating between the inside and outside of the battery) opened (typically before the battery is sealed).
  • the valve the valve that opens and closes the passage communicating between the inside and outside of the battery
  • the degree of polymerization of the polymer produced when the battery is overcharged is about 100 or more. Therefore, the degree of polymerization (average degree of polymerization) of the overcharge reactive multimer is preferably suppressed to about 50 or less (for example, 30 or less, typically 2 to 10). At this time, the degree of polymerization is counted by taking the overcharge reactive compound, which is a starting material (substance added to the nonaqueous electrolyte), as one unit.
  • the overcharge-reactive multimer is preferably a 50-mer or less (eg, 30-mer or less, typically 2 to 15-mer) of an overcharge-reactive compound.
  • the proportion of the 2-10 mer (more preferably 2-5 mer) of the overcharge reactive compound is 50% by mass or more (for example, 70% by mass or more, typically in the overcharge reactive multimer). Specifically, it is preferably 95% by mass or more).
  • the degree of polymerization of the overcharge-reactive multimer is adjusted by appropriately selecting the type and amount of the polymerization initiator according to the type and amount of the overcharge-reactive compound to be used. It can carry out by adjusting appropriately the conditions of the heat processing to perform. The degree of polymerization can be measured based on a molecular weight determined by a known method such as gas chromatography mass spectrometry (GC / MS method) or gel permeation chromatography (GPC).
  • GC / MS method gas chromatography mass spectrometry
  • GPC gel permeation
  • the reaction (polymerization) of the overcharge-reactive compound can be suitably controlled.
  • the reaction proceeds to STEP 1 but does not proceed to STEP 2.
  • the heating temperature can be set in an appropriate range depending on the type and amount of the overcharge reactive compound and polymerization initiator to be used.
  • the heating temperature is preferably 50 ° C. to 100 ° C. (eg, 60 ° C. to 90 ° C., typically 70 ° C. to 80 ° C.).
  • the above temperature range can be suitably employed.
  • the heating time can be appropriately selected according to the heating temperature and the like. For example, it is preferably about 2 hours to 20 hours (for example, 3 hours to 15 hours, typically 5 hours to 12 hours). Note that the heat treatment is also referred to as an aging treatment.
  • the overcharge reactive compound by reacting (polymerizing) the overcharge reactive compound, the overcharge reactivity of the dimer or more obtained by polymerizing the overcharge reactive compound in the vicinity of the positive electrode constituting the lithium ion secondary battery.
  • a structure in which the multimer is present on a molar basis more than the unpolymerized overcharge reactive compound is obtained.
  • the unpolymerized overcharge-reactive compound is an overcharge-reactive compound that does not undergo STEP 1 reaction (polymerization).
  • the configuration in which the overcharge-reactive multimer is present in a larger amount on a molar basis than the unpolymerized overcharge-reactive compound means that the overcharge-reactive multimer and the overcharge-reactive compound are in the vicinity of the positive electrode.
  • the overcharge-reactive multimer may include a state on a molar basis over the overcharge-reactive compound.
  • Lithium ion secondary batteries constructed in this way, that is, lithium ion secondary batteries in which overcharge-reactive multimers are present in a molar basis more than unpolymerized overcharge-reactive compounds in the vicinity of the positive electrode, Used as a battery for applications.
  • Such a lithium ion secondary battery as described above, can generate a sufficient amount of gas accurately when overcharged, so that when used as a battery having a current interruption mechanism, the current interruption mechanism Can be controlled more suitably. Further, since a sufficient amount of the polymer derived from the overcharge-reactive compound can be deposited on the surface of the positive electrode, further overcharge is prevented and the safety in the overcharge state is improved.
  • the lithium ion secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 3, the present invention provides a vehicle 1 (typically an automobile) including such a lithium ion secondary battery 100 (typically a battery pack formed by connecting a plurality of series batteries) as a power source.
  • a vehicle including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle is provided.
  • Example 1 to Example 8 (1) Production of positive electrode sheet Lithium nickel manganese cobaltate (Li [Ni 1/3 Mn 1/3 Co 1/3 O 2 ) powder as a positive electrode active material, acetylene black as a conductive material, and polyfluoride as a binder Vinylidene was mixed with N-methyl-2-pyrrolidone so that the mass ratio of these materials was 91: 6: 3. Further, 2,2′-azobisisobutyronitrile (AIBN) as a polymerization initiator was added so as to have the amount shown in Table 1, and mixed to obtain a paste-like positive electrode having a solid content concentration of about 50% by mass. A composition for forming a composite layer was prepared. This composition is uniformly applied to one side of a long sheet-like aluminum foil (thickness 15 ⁇ m), and dried to form a positive electrode mixture layer on the positive electrode current collector. Sheet).
  • AIBN 2,2′-azobisisobutyronitrile
  • a 3: 3: 4 (volume ratio) mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) was used, and about 1 mol / L LiPF 6 as a supporting salt.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • an electrolyte solution containing cyclohexylbenzene (CHB) at a concentration of about 2% by mass was used.
  • lithium ion secondary battery For this lithium ion secondary battery, an appropriate conditioning treatment (an operation of performing a constant current charge for 3 hours at a charge rate of 1/10 C and then charging at a constant current constant voltage to 4.1 V at a charge rate of 1/3 C; Then, an initial charge / discharge treatment in which the operation of constant current discharge to 3.0 V at a discharge rate of 1/3 C was repeated 2 to 3 times, followed by aging treatment at 80 ° C. for 10 hours. In this way, lithium ion secondary batteries according to Examples 1 to 8 were obtained.
  • IV resistance test The lithium ion secondary batteries according to Examples 1 to 8 were subjected to IV resistance tests. Specifically, CC charging was performed at a constant current of 1 C to 3.5 V in a room temperature (about 25 ° C.) environment atmosphere, and then CV charging was performed at the same voltage until the total time was 2 hours. Thereafter, discharging was performed at 25 ° C. with a current value of 10 C for 10 seconds, and IV resistance was calculated from a voltage drop amount 10 seconds after the start of discharging. The IV resistance was shown as a relative value with the resistance value of Example 1 being 1.00. The larger the value, the higher the IV resistance. The results are shown in Table 1 and FIG.
  • the battery resistance increased as the addition amount of the polymerization initiator increased.
  • the addition amount of the polymerization initiator was set to 100 ppm to 1000 ppm
  • the gas generation amount when overcharged was increased. This is presumably because the production of CHB multimers was suitably performed, and many CHB dimer to 10-mers were present near or on the surface of the positive electrode sheet.
  • the addition amount of the polymerization initiator was 1200 ppm or more
  • the gas generation amount was lower than that in Example 1 in which the polymerization initiator was not used.
  • the cause is unknown, but if a large amount of polymerization initiator is used, the polymerization initiator elutes in the non-aqueous electrolyte and forms overcharge-reactive multimers outside the vicinity of the positive electrode.
  • One of the reasons is that it did not contribute to gas generation. Since CHB can be converted to BP in a non-aqueous electrolyte, the same effect is expected to be obtained for biphenyls. From the above, it can be seen that in the configuration in which CHB is used as the overcharge-reactive compound, AIBN is used as the polymerization initiator, and the predetermined aging treatment is performed, the added amount of AIBN is preferably 100 ppm to 1000 ppm.
  • the range of the addition amount of a polymerization initiator since the range of the addition amount of a polymerization initiator can change, it is in the addition amount of the said Example. Without being limited, an appropriate addition amount can be selected. Moreover, when performing an aging process, the suitable range of the addition amount of a polymerization initiator may change also with the conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明により提供される非水電解質二次電池は、前記非水電解質二次電池を構成する正極の近傍において、過充電反応性化合物が重合されてなる2量体以上の過充電反応性多量体が、未重合の前記過充電反応性化合物よりもモル基準で多く存在する。

Description

非水電解質二次電池およびその製造方法
 本発明は、非水電解質二次電池に関する。
 近年、リチウムイオン二次電池やニッケル水素電池その他の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコンおよび携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。このような二次電池の構造の一つとして、例えば正負の電極をケース内に密閉してなる密閉構造の電池(密閉型電池)が挙げられる。この種の電池では、充電処理を行う際に、例えば充電対象電池が不良電池であった場合や、充電装置が故障し、誤作動を起こした場合に、電池に通常以上の電流が供給されて過充電状態に陥り、不具合が生じる虞がある。そこで、かかる不具合を未然に防止するため、過充電状態を電池温度、電池内圧等により検知し、過充電状態を検知した場合に電流を遮断する機構(電流遮断機構)を設けた電池が採用されている。
 このような電流遮断機構を設けた電池では、電解液の非水溶媒よりも酸化電位の低いシクロヘキシルベンゼン(CHB)、ビフェニル(BP)等の過充電反応性化合物を電解液中に含有させる手法が知られている。上記化合物は、電池が過充電状態になると電解液が分解する前に反応し、ガスを発生する。これを利用して、過充電状態になったときの電池内圧の上昇量や上昇速度を引き上げ、電流遮断機構の作動を制御している。この種の従来技術に係る文献として特許文献1が挙げられる。
日本国特許公開公報第2006-324235号
 しかし、例えば電池を長期間に亘って使用しているうちに、あるいは電池の使い方(例えば高電位で保存するような使い方)によっては、CHBやBP等の化合物の一部が変性または分解してしまうことが起こり得る。かかる場合、過充電状態になったときに当初予定した量のガスが発生せず、電流遮断機構が正常に作動しない虞がある。このようなことを考慮して、上記化合物の添加量を増やすことや、電流遮断機構の設計公差(例えば電流遮断機構が作動するガス圧の公差の設定)を調整することが行われている。しかし、他の性能(例えば入出力特性)の低下を招く虞があり、コスト面でも不利である。このような不都合なく必要量のガスを安定して発生させることが求められている。
 ところで、CHB、BP等の過充電反応性化合物は、上述したように電流遮断機構のガス発生剤として用いられるだけでなく、他の目的でも使用されている。例えば、上記化合物は過充電状態で反応してガスを発生すると同時に、自身が重合する。これによって生成した重合体は電池内において抵抗体として機能する。これを利用して、上記化合物から生成する重合体を正極表面に析出させて膜を形成することで、さらなる過充電を防止し、過充電状態における安全性を高めることが行われている。このような使用方法においても、上記化合物の重合が安定して行われることが求められている。
 本発明は、上述したような従来の問題を解決するために創出されたものであり、その目的は、上記過充電反応性化合物の反応によって得られる所望の作用効果(例えば、過充電状態における必要量のガス発生や上記化合物からの重合体の生成)を高い精度でかつ安定して発現させることが可能な非水電解質二次電池を提供することである。また、そのような性能を有する非水電解質二次電池の製造方法を提供することを他の目的とする。
 上記目的を実現するべく、本発明により非水電解質二次電池が提供される。この非水電解質二次電池では、前記非水電解質二次電池を構成する正極の近傍において、過充電反応性化合物が重合されてなる2量体以上の過充電反応性多量体が、未重合の前記過充電反応性化合物よりもモル基準で多く存在する。
 本発明者らは、非水電解質二次電池内における過充電反応性化合物の重合反応(例えばガス発生または重合体生成のための反応)の精度および安定性の向上について検討していたところ、かかる反応は、大きく2つのステップに分けられることを発見した。すなわち、その第1ステップ(以下、STEP1ともいう。)では、過充電反応性化合物が反応(重合)して、過充電反応性化合物の2量体以上の過充電反応性多量体が中間体として生成する。次いで、第2ステップ(以下、STEP2ともいう。)では、生成した過充電反応性多量体がさらに反応(重合)して重合体が生成する。このSTEP2において、重合とともに、過充電反応性多量体からガス成分となる原子が脱離することで大量のガスが発生する。しかし、例えば電池を長期間使用した場合や高電位で保存した場合には、過充電反応性化合物の一部が変性または分解してしまうことによりSTEP1の反応が充分に行われないことが想定される。その場合、STEP2でのガス発生や重合体生成が不充分となる。このような考察に基づき、さらに検討を進めた結果、過充電反応性化合物の反応を予めSTEP1まで進めておくことで、過充電反応性化合物の変性または分解を防ぎ、上記過充電反応性化合物の反応によって得られる所望の作用効果を高い精度でかつ安定して発現させ得ることを見出し、本発明を完成するに至った。本発明によって提供される非水電解質二次電池では、正極の近傍において、過充電反応性化合物が重合されてなる2量体以上の過充電反応性多量体が、未重合の過充電反応性化合物よりもモル基準で多く存在する。なお、未重合の過充電反応性化合物とは、過充電反応性化合物であって、STEP1の反応(重合)が行われていない化合物をいう。このように、過充電反応性化合物の反応を予めSTEP1まで進めておくことで、電池の使用開始時点において相当量の過充電反応性多量体が正極の近傍に存在する。これによって、過充電反応性化合物の変性または分解が防がれる。また過充電状態になったときに、上記STEP2の反応が容易に進行する。したがって、本発明によると、上記過充電反応性化合物の反応によって得られる所望の作用効果を高い精度でかつ安定して発現させることができる。
 ここで開示される非水電解質二次電池の好適な一態様では、前記過充電反応性多量体が、前記過充電反応性化合物の2量体から10量体を主として含む。すなわち、上述したSTEP1の反応を予め行うことによって、電池の使用開始時点において、相当量の過充電反応性化合物の2~10量体が中間体として正極の近傍に存在している。これによって、過充電反応性化合物の変性または分解が好適に防がれる。また過充電状態になったときにSTEP2の反応がより容易に進行する。
 ここで開示される非水電解質二次電池の好適な一態様では、前記正極が重合開始剤を含む。正極に重合開始剤を含ませることで、正極表面において過充電反応性化合物の重合反応(典型的にはSTEP1の反応)が好適に行われる。
 ここで開示される非水電解質二次電池の好適な一態様では、前記重合開始剤がアゾ系重合開始剤である。また、前記過充電反応性化合物が、分岐鎖状アルキルベンゼン類、シクロアルキルベンゼン類、ビフェニル類、ターフェニル類、ジフェニルエーテル類およびジベンゾフラン類からなる群から選ばれる少なくとも1種であることが好ましい。
 ここで開示される非水電解質二次電池の好適な一態様では、前記非水電解質二次電池が、前記正極と負極とこれら電極を収容するケースとを備え、該電極の少なくとも一方と該ケース外部に露出する外部端子とを導通する導電経路が形成された密閉型電池として構成されており、前記ケース内圧が上昇することによって前記導電経路が分断されるように構成された電流遮断機構を備える。上記非水電解質二次電池は、上記過充電反応性化合物の反応によって、電池の使用状態(例えば電池を長期間に亘って使用したような状態)や使い方(例えば高電位で保存するような使い方)にかかわらず、過充電状態になったときに必要量のガスが高い精度で安定して発生する。これによって電池のケース内圧も想定どおりに上昇する。そのため、上述のようなケース内圧の上昇によって作動する電流遮断機構を備える構成において、過充電状態になったときに電流遮断機構を高い精度でかつ安定して作動させることができる。したがって、上記電流遮断機構を備える密閉型電池に好ましく適用することができる。
 また、本発明によると、非水電解質二次電池を製造する方法が提供される。この製造方法は、重合開始剤を含む正極を用意すること、過充電反応性化合物を含む非水電解質を用意すること、前記非水電解質を前記正極に供給すること、前記過充電反応性化合物を重合することによって、2量体以上の過充電反応性多量体を前記正極の近傍に生成させること、を包含する。このように、重合開始剤を用いて過充電反応性化合物の反応をSTEP1まで予め進めておくことにより、過充電反応性化合物の変性または分解が防がれる。また過充電状態になったときに、STEP2の反応が容易に進行する。したがって、本発明の製造方法によると、上記過充電反応性化合物の反応によって得られる所望の作用効果を高い精度でかつ安定して発現させ得る非水電解質二次電池を提供することができる。
 ここで開示される製造方法の好適な一態様では、前記過充電反応性多量体が、前記過充電反応性化合物の2量体から10量体を主として含む。反応(重合)によって生成する過充電反応性多量体の重合度が大きくなりすぎると、過充電反応性多量体は電池内において抵抗体として作用することが懸念される。そのため、重合度を低く抑えることが好ましい。すなわち、過充電反応性多量体が過充電反応性化合物の2~10量体を主として含むようにSTEP1の反応を行うことが好ましい。これによって、電池特性を低下させることなく、過充電反応性化合物の変性または分解を防ぐとともに、過充電状態になったときにSTEP2の反応がより容易に進行する。
 ここで開示される製造方法の好適な一態様では、前記非水電解質を前記正極に供給した後、前記供給された非水電解質を温度50℃~100℃で加熱することによって、前記過充電反応性化合物を重合する。これによって、STEP1の反応を好適に進めることができ、所望の過充電反応性多量体を生成させやすい。
 ここで開示される製造方法の好適な一態様では、前記重合開始剤として、アゾ系重合開始剤を用いる。また、前記過充電反応性化合物として、分岐鎖状アルキルベンゼン類、シクロアルキルベンゼン類、ビフェニル類、ターフェニル類、ジフェニルエーテル類およびジベンゾフラン類からなる群から選ばれる少なくとも1種を用いることが好ましい。
 ここで開示される製造方法の好適な一態様では、前記正極と負極とを収容したケース内圧が上昇したときに該正極と該負極の少なくとも一方と該ケース外部に露出する外部端子とを導通する導電経路を分断する電流遮断機構を構築すること、を包含する。上記非水電解質二次電池は、上記過充電反応性化合物の反応によって、過充電状態になったときに必要量のガスが高い精度で安定して発生するため、ケース内圧も想定どおりに上昇する。したがって、上述のようなケース内圧の上昇によって作動する電流遮断機構を備える二次電池の製造方法に好ましく適用することができる。
 また、本発明によると、ここで開示されるいずれかの非水電解質二次電池を備える車両が提供される。車両駆動電源は、充放電レートが変動し、場合によっては局所的に高いレートの入出力が発生することがあるため、その際に過充電反応性化合物の分解が起こるような状態となり得る。したがって、かかる非水電解質二次電池は、ハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車等の車両に搭載されるモーター(電動機)用の電源として特に好適に使用され得る。
一実施形態に係るリチウムイオン二次電池の構成を模式的に示す図である。 図1の捲回電極体の構成を模式的に示す図である。 一実施形態に係るリチウムイオン二次電池を備えた車両(自動車)を模式的に示す側面図である。 正極合材層中の重合開始剤添加量(ppm)と、過充電時ガス発生量および電池抵抗との関係を示すグラフである。
 以下、図面を参照しながら、本発明による一実施形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解液の構成および製法、電池(ケース)の形状等、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
 ここで開示される非水電解質二次電池に係る好適な一実施形態として、リチウムイオン二次電池を例にして説明するが、本発明の適用対象をかかる電池に限定することを意図したものではない。例えば、リチウムイオン以外の金属イオン(例えばナトリウムイオン)を電荷担体とする非水電解質二次電池に本発明を適用することも可能である。また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等の蓄電池(すなわち化学電池)のほか、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。さらに、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
 図1に示すように、一実施形態に係るリチウムイオン二次電池100は、捲回電極体80が、非水電解液(図示せず)とともに、扁平な直方体形状のケース50に収容された構成を有する。捲回電極体80は、正極(正極シート10)と負極(負極シート20)とを備えており、正極シート10と負極シート20とがセパレータ40A,40Bを介して扁平に捲回された構成を有する。なお、電極体は捲回電極体に限定されない。電池の形状や目的に応じて適切な形状、構成を適宜採用することができる。
 ケース50は、上面に開口部を有する扁平箱形状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。ケース50の上面(蓋体54)には、正極端子70および負極端子72が設けられている。正極端子70は正極(正極シート)10の幅方向の端部に付設された正極集電板74と電気的に接続されている。また、負極端子72は負極(負極シート)20の幅方向の端部に付設された負極集電板76と電気的に接続されている。
 ケース50の内部には、ケース50の内圧上昇により作動する電流遮断機構30が設けられている。電流遮断機構30は、蓋体54に固定した正極端子70と電極体80との間に設けられ、ケース50の内圧が上昇したときに正極端子70から正極10に至る導電経路を電気的に分断するように構成されている。
 電流遮断機構30は、例えば第一部材32と第二部材34とを含み得る。そして、ケース50の内圧が上昇したときに第一部材32および第二部材34の少なくとも一方が変形して他方から離隔することにより上記導電経路を電気的に分断するように構成されている。この実施形態では、第一部材32は変形金属板であり、第二部材34は上記変形金属板32に接合された接続金属板である。変形金属板(第一部材)32は、中央部分が下方へ湾曲したアーチ形状の湾曲部分33を有する。湾曲部分33の周縁部分は、集電リード端子35を介して正極端子70の下面に接続されている。また、変形金属板32の湾曲部分33の一部(先端)は、接続金属板34の上面と接合点36にて接合されている。接続金属板34の下面(裏面)には正極集電板74が接合されており、正極集電板74は捲回電極体80の正極10に接続されている。このようにして、正極端子70から正極10に至る導電経路が形成されている。
 電流遮断機構30は、プラスチックにより形成された絶縁ケース38を備えている。なお、絶縁ケースの材質はプラスチックに限定されるものではなく、絶縁性を有し、気密性を有するものであればよい。絶縁ケース38は、変形金属板32を囲むように設けられ、変形金属板32の上面を気密に密閉している。絶縁ケース38には、変形金属板32の湾曲部分33を嵌入する開口部が形成されており、変形金属板32の湾曲部分33は、該開口部に嵌入されることで該開口部を封止している。これによって、絶縁ケース38内は密封状態に保持されるため、密閉された湾曲部分33の上面側には、ケース50の内圧は作用しない。これに対して、絶縁ケース38外、すなわちケース50の内部に露出した湾曲部分33の下面には、ケース50の内圧が作用する。かかる構成の電流遮断機構30において、ケース50の内圧が高まると、該内圧は、下方へ湾曲した湾曲部分33を上方へ押し上げるように作用する。この作用(力)は、ケース50の内圧が上昇するにつれて増大する。そして、ケース50の内圧が設定圧力を超えると、湾曲部分33が上下反転し、上方へ湾曲するように変形する。かかる湾曲部分33の変形によって、変形金属板32と接続金属板34との接合点36が切断される。これによって導電経路は電気的に分断され、電流は遮断される。
 上記電流遮断機構は、正極端子側に限らず、負極端子側に設けてもよい。また、ケースの内圧が上昇したときに、正負の電極の少なくとも一方とケース外部に露出する外部端子(正極端子または負極端子)とを導通する導電経路(例えば充電経路)を電気的に分断するように構成されていればよく、特定の形状、構造に限定されない。また、電流遮断機構は、上述した第一部材の変形を伴う機械的な切断に限定されない。例えば、ケースの内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。なお、後述する過充電反応性化合物をガス発生以外の目的で使用する場合には、上記電流遮断機構はなくてもよい。
 図2は、図1の捲回電極体の構成を模式的に示す図であり、捲回電極体80を組み立てる前段階における長尺状のシート構造(電極シート)を示している。図2に示すように、捲回電極体80は、長尺状の正極シート10と長尺状の負極シート20とを備える。正極シート10は、長尺状の正極集電体12と、正極集電体12の少なくとも一方の表面(典型的には両面)に長手方向に沿って形成された正極合材層14とを備える。負極シート20は、長尺状の負極集電体22と、負極集電体22の少なくとも一方の表面(典型的には両面)に長手方向に沿って形成された負極合材層24とを備える。これら正極シート10と負極シート20とは、2枚の長尺状セパレータ40A,40Bを介して重ね合わせられており、これによって積層体が形成されている。言い換えると、上記積層体は、正極シート10、セパレータ40B、負極シート20、セパレータ40Aの順に積層されている。この積層体を長尺方向に捲回することによって捲回電極体を形成し、さらに該捲回電極体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体80が得られる。
 得られた捲回電極体80は、ケース50内に収容され、ケース本体52の開口部を蓋体54で塞ぐことによって封止される。非水電解質もケース50内に注入(注液)される。このようにして、ケース50内部が密閉された構造を有する、いわゆる密閉型のリチウムイオン二次電池100が構築される。
 次に、上述のリチウムイオン二次電池を構成する各構成要素について説明する。リチウムイオン二次電池の正極(典型的には正極シート)を構成する正極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体の形状は、電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。正極集電体の厚さも特に限定されず、例えば5μm~30μmとすることができる。正極合材層は、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材を含有し得る。また、正極合材層は、重合開始剤を含有し得るが、この点については後述する。
 正極活物質としては、リチウムおよび少なくとも1種の遷移金属元素(好ましくはニッケル、コバルトおよびマンガンのうちの少なくとも1種)を含む複合酸化物が挙げられる。上記複合酸化物としては、例えば、上記遷移金属元素を1種含むいわゆる一元系リチウム含有複合酸化物、上記遷移金属元素を2種含むいわゆる二元系リチウム含有複合酸化物、遷移金属元素としてニッケル、コバルトおよびマンガンを構成元素として含む三元系リチウム含有複合酸化物、固溶型のリチウム過剰遷移金属酸化物が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。上記一元系リチウム含有複合酸化物としては、例えばコバルトリチウム複合酸化物(LiCoO)、ニッケルリチウム複合酸化物(LiNiO)、マンガンリチウム複合酸化物(LiMn)が挙げられる。上記二元系リチウム含有複合酸化物としては、例えばニッケル・コバルト系のLiNiCo1-x(0<x<1)、コバルト・マンガン系のLiCoMn1-x(0<x<1)、ニッケル・マンガン系のLiNiMn1-x(0<x<1)やLiNiMn2-x(0<x<2)で表される二元系リチウム含有複合酸化物が挙げられる。上記三元系リチウム含有複合酸化物としては、例えば一般式:
Li(LiMnCoNi)O
(前式中のa、x、y、zはa+x+y+z=1を満足する実数)で表される三元系リチウム含有複合酸化物が挙げられる。上記固溶型のリチウム過剰遷移金属酸化物としては、例えば、一般式:
xLi[Li1/3Mn2/3]O・(1-x)LiMeO
(前式中、Meは1種または2種以上の遷移金属であり、xは0<x≦1を満たす)で表される固溶型のリチウム過剰遷移金属酸化物が挙げられる。なかでも、遷移金属元素としてニッケル、コバルトおよびマンガンを構成元素として含む三元系リチウム含有複合酸化物が好ましい。
 また、正極活物質として、一般式がLiMAO(ここでMは、Fe,Co,NiおよびMnからなる群から選択される少なくとも1種の金属元素であり、Aは、P,Si,SおよびVからなる群から選択される元素である。)で表されるポリアニオン型化合物も好ましく用いられる。上記一般式においてAがPおよび/またはSiであるもの(例えば、LiFePO、LiFeSiO、LiCoPO、LiCoSiO、LiFe0.5Co0.5PO、LiFe0.5Co0.5SiO、LiMnPO、LiMnSiO、LiNiPO、LiNiSiO)は、上記ポリアニオン型化合物の好適例である。
 正極合材層に占める正極活物質の割合は、凡そ50質量%を超え、凡そ70質量%~95質量%(例えば75質量%~90質量%)であることが好ましい。
 導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。また、炭素繊維、金属繊維等の導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体等の有機導電性材料等を、1種を単独でまたは2種以上の混合物として含ませることができる。結着材としては、各種のポリマー材料が挙げられる。例えば、水系の組成物(活物質粒子の分散媒として水または水を主成分とする混合溶媒を用いた組成物)を用いて正極合材層を形成する場合には、結着材として水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;酢酸ビニル重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類;が例示される。あるいは、溶剤系の組成物(活物質粒子の分散媒が主として有機溶媒である組成物)を用いて正極合材層を形成する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のハロゲン化ビニル樹脂;ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド;等のポリマー材料を用いることができる。このような結着材は、1種を単独でまたは2種以上を組み合わせて用いてもよい。なお、上記で例示したポリマー材料は、結着材として用いられる他に、正極合材層形成用組成物の増粘材その他の添加材として使用されることもあり得る。
 正極合材層に占めるこれら添加材の割合は、特に限定されないが、導電材の割合は、凡そ4質量%~20質量%(例えば4質量%~18質量%)とすることが好ましく、結着材の割合は、凡そ1質量%~10質量%(例えば1質量%~7質量%)とすることが好ましい。
 上述したような正極の作製方法は特に限定されず、従来の方法を適宜採用することができる。例えば以下の方法によって作製することができる。まず、正極活物質、後述する重合開始剤、必要に応じて導電材、結着材等を適当な溶媒(水系溶媒、非水系溶媒またはこれらの混合溶媒)で混合して、ペースト状またはスラリー状の正極合材層形成用組成物(以下、ペースト状組成物ともいう)を調製する。混合操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記ペースト状組成物を調製するために用いられる溶媒としては、水系溶媒および非水系溶媒のいずれも使用可能である。水系溶媒は、全体として水性を示すものであればよく、水または水を主体とする混合溶媒を好ましく用いることができる。また、非水系溶媒の好適例としては、N-メチル-2-ピロリドン(NMP)、メチルエチルケトン、トルエン等が例示される。こうして調製したペースト状組成物を正極集電体に塗付し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。正極集電体に上記ペースト状組成物を塗付する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター、コンマコーター等の適当な塗付装置を使用することにより、正極集電体に該組成物を好適に塗付することができる。また、溶媒を乾燥するにあたっては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線および電子線を、単独でまたは組み合わせて用いることにより良好に乾燥し得る。さらに、圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。かかる厚さを調整するにあたり、膜厚測定器で該厚さを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。このようにして正極合材層が正極集電体上に形成された正極が得られる。
 例えば上記のようにして作製される正極において、正極集電体上への正極合材層の単位面積当たりの目付量(正極合材層形成用組成物の固形分換算の塗付量)は、特に限定されるものではないが、充分な導電経路(導電パス)を確保する観点から、正極集電体の両面の合計で6mg/cm以上(例えば12mg/cm以上、典型的には15mg/cm以上)であり、90mg/cm以下(例えば45mg/cm以下、典型的には35mg/cm以下)とすることが好ましい。
 負極(典型的には負極シート)を構成する負極集電体としては、従来のリチウムイオン二次電池と同様に、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅または銅を主成分とする合金を用いることができる。負極集電体の形状は、電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。負極集電体の厚さも特に限定されず、例えば5μm~30μmとすることができる。
 負極合材層には、電荷担体となるリチウムイオンを吸蔵および放出可能な負極活物質が含まれる。負極活物質としては、その組成や形状に特に制限はなく、従来からリチウムイオン二次電池に用いられる物質の1種または2種以上を使用することができる。かかる負極活物質としては、例えば、典型的なリチウムイオン二次電池に用いられる炭素材料が挙げられる。負極活物質として用いられる炭素材料の代表例としては、グラファイトカーボン(黒鉛)、アモルファスカーボン等が挙げられる。なかでも、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。また、いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。そのなかでも天然黒鉛(もしくは人造黒鉛)を主成分とする炭素材料の使用が好ましい。かかる天然黒鉛(もしくは人造黒鉛)は鱗片状の黒鉛を球形化したものであり得る。上記球形化した黒鉛を含む黒鉛粒子として、例えば、レーザー散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(平均粒径D50:50%体積平均粒径)が凡そ5μm~30μmの範囲内にあるものを好ましく用いることができる。また、該黒鉛の表面にアモルファスカーボンがコートされた炭素質粉末を用いてもよい。その他、負極活物質として、チタン酸リチウム等の酸化物、ケイ素材料、スズ材料等の単体、合金、化合物、上記材料を併用した複合材料を用いることも可能である。負極合材層に占める負極活物質の割合は、凡そ50質量%を超え、凡そ90質量%~99質量%(例えば95質量%~99質量%、典型的には97質量%~99質量%)であることが好ましい。
 負極合材層は、負極活物質の他に、一般的なリチウムイオン二次電池の負極合材層に配合され得る1種または2種以上の結着材や増粘材その他の添加材を必要に応じて含有することができる。結着材としては、各種のポリマー材料が挙げられる。例えば、水系の組成物(活物質粒子の分散媒として水または水を主成分とする混合溶媒を用いた組成物)を用いて負極合材層を形成する場合には、結着材として水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース系ポリマー;ポリビニルアルコール(PVA);が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂;酢酸ビニル重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類;が例示される。あるいは、溶剤系の組成物(活物質粒子の分散媒が主として有機溶媒である組成物)を用いて負極合材層を形成する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等のポリマー材料を用いることができる。なお、上記で例示したポリマー材料は、結着材として用いられる他に、負極合材層形成用組成物の増粘材その他の添加材として使用されることもあり得る。負極合材層に占めるこれら添加材の割合は、特に限定されないが、凡そ1質量%~10質量%(例えば凡そ1質量%~5質量%、典型的には1質量%~3質量%)であることが好ましい。
 上述したような負極の作製方法は特に限定されず、従来の方法を採用することができる。例えば以下の方法によって作製することができる。まず、負極活物質を、結着材等と共に上記適当な溶媒(水系溶媒、有機溶媒またはこれらの混合溶媒)で混合して、ペースト状またはスラリー状の負極合材層形成用組成物(以下、ペースト状組成物ともいう)を調製する。こうして調製したペースト状組成物を負極集電体に塗付し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。これによって該ペースト状組成物を用いて形成された負極合材層を負極集電体上に備える負極が得られる。なお、混合、塗付、乾燥および圧縮方法は、上述の正極の製造方法と同様に従来公知の手段を用いることができる。
 例えば上記のようにして作製される負極において、負極集電体上への負極合材層の単位面積当たりの目付量(負極合材層形成用組成物の固形分換算の塗付量)は、特に限定されるものではないが、充分な導電経路(導電パス)を確保する観点から、負極集電体の両面の合計で2.5mg/cm以上(例えば6mg/cm以上、典型的には10mg/cm以上)であり、45mg/cm以下(例えば22mg/cm以下、典型的には15mg/cm以下)とすることが好ましい。
 正極と負極とを隔てるように配置されるセパレータ(セパレータシート)は、正極合材層と負極合材層とを絶縁するとともに、電解質の移動を許容する部材であればよい。セパレータの好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、厚さ5μm~30μm程度の合成樹脂製(例えばポリエチレン、ポリプロピレン、またはこれらを組み合わせた二層以上の構造を有するポリオレフィン製)多孔質セパレータシートを好適に使用し得る。このセパレータシートには耐熱層が設けられていてもよい。あるいは例えば、正極合材層または負極合材層の表面に形成された絶縁性を有する粒子の層で耐熱層を構成してもよい。ここで、絶縁性を有する粒子は、絶縁性を有する無機フィラー(例えば金属酸化物、金属水酸化物等のフィラー)、または絶縁性を有する樹脂粒子(例えばポリエチレン、ポリプロピレン等の粒子)であってもよい。なお、液状の電解質に代えて、例えば上記電解質にポリマーが添加されたような固体状(ゲル状)電解質を使用する場合には、電解質自体がセパレータとして機能し得るため、セパレータが不要になることがあり得る。
 リチウムイオン二次電池に注入される非水電解質を構成する非水溶媒と支持塩は、従来からリチウムイオン二次電池に用いられるものを特に限定なく使用することができる。かかる非水電解質は、典型的には適当な非水溶媒に支持塩を含有させた組成を有する電解液である。上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトンが挙げられ、これらは単独でまたは2種以上を混合して用いることができる。なかでも、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)の混合溶媒が好ましい。
 また、上記支持塩としては、例えばLiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。なお、支持塩の濃度は特に限定されないが、凡そ0.1mol/L~5mol/L(例えば0.5mol/L~3mol/L、典型的には0.8mol/L~1.5mol/L)の濃度とすることができる。
 また、非水電解質は過充電反応性化合物を含む。ここで、過充電反応性化合物とは、非水電解質中に溶解または分散し得る化合物であり、電池が過充電状態になったときに相互に反応(重合)し得る化合物をいう。かかる過充電反応性化合物は、電池の稼働電圧では酸化されないが、過充電状態になったときに非水電解質の非水溶媒の酸化分解よりも先に反応(酸化)する。したがって、過充電反応性化合物の酸化電位(酸化開始電位)は、稼働電圧の最大値に対応した正極の上限電位より高い。また、非水電解質の非水溶媒の酸化電位(酸化開始電位)より低い。上記の観点から、過充電反応性化合物の酸化電位(vsLi/Li)は、正極の上限電位(vsLi/Li)より0.1V以上(例えば0.2V以上、典型的には0.3V以上)高いことが好ましい。また、非水溶媒の酸化電位(vsLi/Li)より0.1V以上(例えば0.2V以上、典型的には0.3V以上)低いことが好ましい。例えば、正極の上限電位が4.2V以下(典型的には4.0V~4.2V)の二次電池の場合、過充電反応性化合物の酸化電位の好適な範囲は、4.3V以上(例えば4.4V以上、典型的には4.5V以上)であり、また5.0V以下(例えば4.9V以下、典型的には4.8V以下)である。
 また、過充電反応性化合物は、ベンゼン環を有し、該ベンゼン環を構成する炭素の少なくとも1つに第3級炭素が結合した化合物であることが好ましい。かかる第3級炭素は活性が高いため、上記第3級炭素を有する過充電反応性化合物は、過充電状態において反応しやすい。ベンゼン環を構成する炭素に結合する第3級炭素の数は、好ましくは1~3個(例えば1~2個、典型的には1個)である。また、上記第3級炭素を有する基は、フェニル基、炭素数(炭素原子数)3~6のシクロアルキル基、炭素数3~6の分岐鎖状アルキル基であることが好ましい。
 過充電反応性化合物の分子量は特に限定されないが、非水電解質への溶解性(分散性)等の観点から、100~400(例えば120~250、典型的には150~200)であることが好ましい。
 過充電反応性化合物の好適例としては、例えば分岐鎖状アルキルベンゼン類、シクロアルキルベンゼン類、ビフェニル類、ターフェニル類、ジフェニルエーテル類、ジベンゾフラン類が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。なかでも、過充電状態における反応性が高く、また重合反応を制御しやすいという理由から、分岐鎖状アルキルベンゼン類、シクロアルキルベンゼン類、ビフェニル類、ジフェニルエーテル類が好ましく、シクロアルキルベンゼン類、ビフェニル類がさらに好ましい。
 分岐鎖状アルキルベンゼン類としては、例えば、炭素数3~6の分岐鎖状のアルキル基を有する分岐鎖状アルキルベンゼンと、分岐鎖状アルキルベンゼンのハロゲン化物(典型的にはフッ化物)が挙げられる。炭素数3~6の分岐鎖状のアルキル基の数は好ましくは1個または2個である。分岐鎖状アルキルベンゼンのハロゲン化物(典型的にはフッ化物)とは、分岐鎖状アルキルベンゼンを構成する炭素原子に結合する水素原子の少なくとも1個がハロゲン原子(典型的にはフッ素原子)に置換した化合物のことをいう。ガス(典型的には水素ガス)発生の観点から、分岐鎖状アルキルベンゼンを構成する炭素原子に結合する水素原子の1個または2個がフッ素原子に置換した分岐鎖状アルキルベンゼンの部分フッ化物であることが好ましい。
 分岐鎖状アルキルベンゼン類の具体例としては、例えばクメン、ジイソプロピルベンゼン、t-ブチルベンゼン、t-ジブチルベンゼン、t-アミルベンゼン、t-ジアミルベンゼン等の分岐鎖状アルキルベンゼンが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 シクロアルキルベンゼン類としては、例えば、炭素数3~6のシクロアルキル基を有するシクロアルキルベンゼンや、該シクロアルキルベンゼンを構成する炭素原子に結合する水素原子の少なくとも1個が直鎖状もしくは分岐鎖状のアルキル基および/またはハロゲン原子(典型的にはフッ素原子)に置換したアルキル化シクロアルキルベンゼン、シクロアルキルベンゼンのハロゲン化物(典型的にはフッ化物)が挙げられる。直鎖状または分岐鎖状のアルキル基の炭素数は、1~6個(例えば3個または4個)が好ましい。ガス(典型的には水素ガス)発生の観点から、アルキル化シクロアルキルベンゼンは、シクロアルキルベンゼンを構成する炭素原子に結合する水素原子の1個または2個がアルキル基に置換していることが好ましい。同様の理由から、シクロアルキルベンゼンのハロゲン化物(典型的にはフッ化物)は、シクロアルキルベンゼンを構成する炭素原子に結合する水素原子の1個または2個がフッ素原子に置換したシクロアルキルベンゼンの部分フッ化物であることが好ましい。
 シクロアルキルベンゼン類の具体例としては、例えばシクロペンチルベンゼン、シクロヘキシルベンゼン(CHB)等のシクロアルキルベンゼン、t-ブチルシクロヘキシルベンゼン等のアルキル化シクロアルキルベンゼン、シクロヘキシルフルオロベンゼン等のシクロアルキルベンゼンの部分フッ化物が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 ビフェニル類としては、ビフェニル(BP)や、BPを構成する炭素原子に結合する水素原子の少なくとも1個が直鎖状もしくは分岐鎖状のアルキル基および/またはハロゲン原子(典型的にはフッ素原子)に置換したアルキルビフェニル、ビフェニルのハロゲン化物(典型的にはフッ化物)が挙げられる。直鎖状または分岐鎖状のアルキル基の炭素数は、1~6個(例えば3個または4個)が好ましい。ガス(典型的には水素ガス)発生の観点から、アルキルビフェニルは、ビフェニルを構成する炭素原子に結合する水素原子の1個または2個がアルキル基に置換していることが好ましい。同様の理由から、ビフェニルのハロゲン化物(フッ化物)は、ビフェニルを構成する炭素原子に結合する水素原子の1個または2個がフッ素原子に置換したビフェニルの部分フッ化物であることが好ましい。
 ビフェニル類の具体例としては、BPのほか、プロピルビフェニル、t-ブチルビフェニル等のアルキルビフェニル、2-フルオロビフェニル、2,2’-ジフルオロビフェニル、4,4’-ジフルオロビフェニル等のビフェニルの部分フッ化物が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 ターフェニル類、ジフェニルエーテル類、ジベンゾフラン類としては、ターフェニル、ジフェニルエーテル、ジベンゾフランや、それらを構成する炭素原子に結合する水素原子の少なくとも1個が直鎖状もしくは分岐鎖状のアルキル基に置換した各アルキル化物(アルキル化ターフェニル、アルキル化ジフェニルエーテル、アルキル化ジベンゾフラン)および/またはハロゲン原子(典型的にはフッ素原子)に置換したターフェニル、ジフェニルエーテル、ジベンゾフランの各ハロゲン化物(典型的にはフッ化物)が挙げられる。直鎖状または分岐鎖状のアルキル基の炭素数は、1~6個(例えば3個または4個)が好ましい。ガス(典型的には水素ガス)発生の観点から、アルキル化ターフェニル、アルキル化ジフェニルエーテル、アルキル化ジベンゾフランは、それらを構成する炭素原子に結合する水素原子の1個または2個がアルキル基に置換していることが好ましい。同様の理由から、ターフェニル、ジフェニルエーテル、ジベンゾフランの各ハロゲン化物(典型的にはフッ化物)は、それらを構成する炭素原子に結合する水素原子の1個または2個がフッ素原子に置換したターフェニル、ジフェニルエーテル、ジベンゾフランの各部分フッ化物であることが好ましい。ターフェニルは、その一部に水素原子が付加されたターフェニルの部分水素化物であってもよい。
 過充電反応性化合物の使用量(添加量)は、非水電解質中において凡そ0.01~10質量%(例えば0.1~5質量%、典型的には1~3質量%)であることが好ましい。なお、後述する過充電反応性化合物の反応により過充電反応性多量体が生成した後の非水電解質中における過充電反応性化合物の含有量は、反応によって消費されることから、例えば1質量%以下(例えば0.5質量%以下、典型的には0.001~0.3質量%)程度となり得る。
 また、リチウムイオン二次電池の正極の近傍には、上記過充電反応性化合物が重合されてなる2量体以上の過充電反応性多量体が相当量存在しているが、この点については後述する。
 次に、非水電解質二次電池の製造方法について説明する。かかる二次電池の製造方法は、従来と同様に、例えば正極を構築すること、負極を構築すること、上記正極および上記負極を用いて非水電解質二次電池を構築することを包含する。正極、負極の構築および非水電解質二次電池の構築は、上述した手法を適宜採用することができる。以下、好適例としてリチウムイオン二次電池の製造方法について説明する。
 ここで開示されるリチウムイオン二次電池の製造方法は、正極の近傍にて、重合開始剤を用いて過充電反応性化合物を反応させることを包含する。つまり、リチウムイオン二次電池の製造後ではなく、製造段階において、過充電反応性化合物の反応を行う。これによって、2量体以上の過充電反応性多量体を正極の近傍に生成させる。この過充電反応性多量体は、過充電反応性化合物よりも変性または分解しにくいため、結果的に過充電反応性化合物に由来する成分の変性または分解は防がれる。その作用機序について詳述する。上記過充電反応性化合物の重合反応は、大きく2つのステップに分けられる。すなわち、その第1ステップ(STEP1)では、過充電反応性化合物が反応(重合)して、過充電反応性化合物の2量体以上の過充電反応性多量体が中間体として生成する。次いで、第2ステップ(STEP2)では、生成した過充電反応性多量体がさらに反応(重合)して重合体が生成する。このSTEP2において、重合と同時に、過充電反応性多量体からガス成分となる原子が脱離することで大量のガスが発生する。しかし、例えば電池を長期間使用した場合や高電位で保存した場合には、過充電反応性化合物の一部が変性または分解してしまうことが起こり得る。なお、かかる変性または分解においてもガスが発生するが、反応が緩やかなため、電流遮断機構を作動させるには至らない。この変性または分解によって、過充電状態になったときにガスの発生量が低下したり、重合体の生成量が低下することが想定される。より詳しくは、この変性または分解は、特にSTEP1の反応に影響を及ぼすと考えられる。STEP1の反応が充分に行われない場合、それに続くSTEP2の反応量も低下するため、ガス発生や重合体生成が不充分となる。上記製造方法では、STEP1の反応を確実に行うため、重合開始剤を用いて過充電反応性化合物の反応を予めSTEP1まで進めるという手法を採用する。これによって、過充電反応性化合物は反応(重合)し、比較的変性または分解しにくい過充電反応性多量体が生成するため、結果的に過充電反応性化合物に由来する成分の変性または分解は防がれる。また、予めSTEP1まで反応を進めておくことで、過充電状態になったときにSTEP2の反応が容易に進行する。その結果、必要量のガス発生や重合体の生成といった上記過充電反応性化合物の反応によって得られる所望の作用効果を高い精度でかつ安定して発現させることができる。具体的には、ガス発生量や重合体の生成量が経時的に変化しにくくなり、上記反応の安定性が向上する。これによって、電池を長期間に亘って使用した場合でも、初期と同等量のガス発生や重合体の生成が期待できる。なお、過充電反応性化合物の2量体以上の過充電反応性多量体を生成させる反応(典型的には、STEP2まで進行させず、STEP1のみを行う反応)は、使用する過充電反応性化合物の種類や量に応じて、後述する重合開始剤の種類や量を適切に選定することにより、また必要であれば後述する加熱処理の条件等を適切に調整することにより行うことができる。
 上記リチウムイオン二次電池の製造方法は、以下の工程を包含することが好適である。その工程とは、重合開始剤を含む正極を用意すること、過充電反応性化合物を含む非水電解質を用意すること、前記非水電解質を前記正極に供給すること、前記過充電反応性化合物を重合することによって、2量体以上の過充電反応性多量体を前記正極の近傍に生成させることである。これによって、重合開始剤を用いて過充電反応性化合物の反応をSTEP1まで予め進めておくことができる。
 上記製造方法では、重合開始剤を含む正極を用意することが好ましい。過充電反応性化合物の反応(重合)に起因するガス発生や重合体生成(皮膜形成)は、正極の近傍(典型的には表面)で行われる。そこで、過充電反応性化合物の反応(重合)を開始するための重合開始剤を正極(典型的には正極合材層)に含ませることで、正極の近傍(典型的には表面)に上記過充電反応性化合物の重合体を効率的に生成させることができる。具体的には、重合開始剤は、正極(典型的には正極合材層)を作成する際に、正極合材層形成用組成物に添加することが好ましい。これによって、過充電反応性化合物の反応をSTEP1まで予め進めておくことができる。
 重合開始剤は、特に限定されるものではないが、過充電反応性化合物の反応(典型的にはSTEP1の反応)を制御しやすいという理由から、ラジカル重合開始剤が好ましい。ラジカル重合開始剤としては、例えばアゾ系重合開始剤、過酸化物系重合開始剤、過硫酸塩系重合開始剤が挙げられる。なかでも、アゾ系重合開始剤が好ましい。
 アゾ系重合開始剤としては、例えば2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]ハイドレート、2,2’-アゾビスイソブチロニトリル、2,2′-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)ジヒドロクロライドが挙げられる。これらは1種を単独でまたは2種以上を混合して用いることができる。なかでも、2,2’-アゾビスイソブチロニトリル、2,2′-アゾビス-2-メチルブチロニトリルが好ましい。
 過酸化物系重合開始剤としては、例えば過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ベンゾイルパーオキサイド、アセチルパーオキサイド、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイドが挙げられる。これらは1種を単独でまたは2種以上を混合して用いることができる。なかでも、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素、ジクミルパーオキサイドが好ましい。
 過硫酸塩系重合開始剤としては、例えば過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムが挙げられる。これらは1種を単独でまたは2種以上を混合して用いることができる。
 重合開始剤の使用量は、特に限定されない。過充電反応性化合物の使用目的や、過充電反応性化合物の種類、使用量、重合条件等に応じて適切な量を設定することができる。正極合材層に重合開始剤を添加する場合には、過充電反応性多量体を正極の近傍に生成させるために、正極合材層(正極合材層形成用組成物の固形分)中に質量基準で10ppm~5000ppm(例えば50ppm~3000ppm、典型的には100ppm~1000ppm)程度添加することが好ましい。過充電反応性化合物としてシクロヘキシルベンゼン類および/またはビフェニル類を用い、重合開始剤としてアゾ系重合開始剤を用いる場合、100ppm~1000ppmとすることが特に好ましい。なお、上記重合開始剤は、過充電反応性化合物の反応によって全量は消費されず、反応に寄与しなかったものは、正極(典型的には正極合材層)中に残存し得る。したがって、上記反応後の正極は、重合開始剤を含有し得る。
 また、上記製造方法では、過充電反応性化合物を含む非水電解質を用意することが好ましい。過充電反応性化合物および非水電解質は、上述したものを適宜選択して用いることができる。過充電反応性化合物の使用量(添加量)も上述した範囲内とすることが好ましい。
 次いで、上記非水電解質を上記正極に供給することが好ましい。好適例としては、上述した手法によって正極と負極とを備える電極体を作製し、この電極体をケース内に収容した後、ケース内に過充電反応性化合物を含む非水電解質を注入する。これによって、正極の近傍において重合開始剤と過充電反応性化合物とが接触する。
 上記非水電解質を上記正極に供給した後、過充電反応性化合物を反応(重合)させる。この反応(重合)によって、2量体以上の過充電反応性多量体を前記正極の近傍に生成させる。2量体以上の過充電反応性多量体とは、典型的には、上述したSTEP1の反応まで進んでいるが、STEP2までは進んでいない状態で生成している中間体のことである。したがって、過充電反応性多量体の重合度は比較的低く、過充電状態になったときに重合が進行する程度の比較的高い活性(反応性)を有している。例えば過充電反応性化合物としてCHBおよび/またはBPを用いた場合、STEP1の反応によって、過充電反応性多量体として、2,2’-ジシクロヘキシルビフェニル、4,4’-ジシクロヘキシルビフェニル等の2量体を含む多量体が生成する。なお、シクロヘキシルベンゼン類(典型的にはCHB)とビフェニル類(典型的にはBP)とは、電池の使用中において非水溶媒中で相互に転換され得る。かかる生成反応が起こると、少量のガスが発生するが、電流遮断機構を備える密閉型電池において、通常は電流遮断機構を作動させるには至らない。しかし、上記作動を確実に回避するため、上記反応を、密閉型電池を構成する弁(電池内外を連通する通路を開閉する弁)を開放した状態で(典型的には電池を密閉する前に)行うことが好ましい。
 2量体以上の過充電反応性多量体は、重合度が大きすぎると、通常の使用状態において電池内で抵抗体となる。また、STEP2の反応において充分量のガスが発生しにくくなることも懸念される。例えば、過充電状態になったときに生成する重合体の重合度は、凡そ100以上であると考えられる。そこで、上記過充電反応性多量体の重合度(平均重合度)は、凡そ50以下(例えば30以下、典型的には2~10)に抑えることが好ましい。このとき、上記重合度は、出発物質(非水電解質に添加する物質)である過充電反応性化合物を1単位としてカウントする。言い換えると、上記過充電反応性多量体は、好ましくは過充電反応性化合物の50量体以下(例えば30量体以下、典型的には2~15量体)であることが好ましい。また、上記過充電反応性化合物の2~10量体(より好適には2~5量体)の割合が、上記過充電反応性多量体中に50質量%以上(例えば70質量%以上、典型的には95質量%以上)であることが好ましい。上記過充電反応性多量体の重合度の調整は、使用する過充電反応性化合物の種類や量に応じて、重合開始剤の種類や量を適切に選定することにより、また必要であれば後述する加熱処理の条件等を適切に調整することにより行うことができる。なお、重合度は、ガスクロマトグラフ質量分析法(GC/MS法)、ゲルパーミエーションクロマトグラフィー(GPC)等の公知の手法により求めた分子量に基づいて測定することができる。
 また、上記非水電解質を上記正極に供給した後、供給された非水電解質を加熱することが好ましい。これによって、上記過充電反応性化合物の反応(重合)を好適に制御することができる。典型的には、上記反応をSTEP1まで進行させてSTEP2までは進行させないような制御をより好適に行うことができる。加熱温度は、使用する過充電反応性化合物や重合開始剤の種類や量に応じて適当な範囲を設定することができる。例えば、加熱温度は、50℃~100℃(例えば60℃~90℃、典型的には70℃~80℃)とすることが好ましい。特に、重合開始剤としてアゾ系重合開始剤を用いる場合、上記の温度範囲を好適に採用することができる。また、加熱時間は、加熱温度等に応じて適宜選定することができる。例えば、凡そ2時間以上20時間以下(例えば3時間以上15時間以下、典型的には5時間以上12時間以下)とすることが好ましい。なお、上記加熱処理は、エージング処理ともいう。
 このように、過充電反応性化合物を反応(重合)させることによって、リチウムイオン二次電池を構成する正極の近傍において、過充電反応性化合物が重合されてなる2量体以上の過充電反応性多量体が、未重合の過充電反応性化合物よりもモル基準で多く存在する構成が得られる。具体的には、上記過充電反応性多量体が正極の近傍に溶解している構成、または正極の表面に析出している構成が得られる。なお、未重合の過充電反応性化合物とは、過充電反応性化合物であって、STEP1の反応(重合)が行われていない化合物のことをいう。したがって、上記過充電反応性多量体が、未重合の過充電反応性化合物よりもモル基準で多く存在する構成とは、正極の近傍において、上記過充電反応性多量体と過充電反応性化合物とが併存しており、上記過充電反応性多量体が過充電反応性化合物よりもモル基準で優勢である状態を含み得る。この構成を有することによって、過充電反応性化合物の変性または分解が防がれる。また過充電状態になったときに、上記STEP2の反応が容易に進行する。
 このようにして構築されたリチウムイオン二次電池、すなわち、過充電反応性多量体が正極の近傍において未重合の過充電反応性化合物よりもモル基準で多く存在するリチウムイオン二次電池は、各種用途の電池として使用に供される。かかるリチウムイオン二次電池は、上述したように、過充電状態になったときに、充分量のガスを精度よく発生することができるため、電流遮断機構を備える電池として用いた場合、電流遮断機構の作動をより好適に制御することができる。また、過充電反応性化合物に由来する重合体を正極の表面に充分量析出させることができるため、さらなる過充電を防止し、過充電状態における安全性が向上する。そのため、かかるリチウムイオン二次電池は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって、本発明は、図3に模式的に示すように、かかるリチウムイオン二次電池100(典型的には複数直列接続してなる組電池)を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
 次に、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
<例1~例8>
(1)正極シートの作製
 正極活物質としてニッケルマンガンコバルト酸リチウム(Li[Ni1/3Mn1/3Co1/3)粉末と、導電材としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、これらの材料の質量比が91:6:3となるようにN-メチル-2-ピロリドンで混合した。さらに重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)を表1に示す量となるように添加し、混合することによって、固形分濃度が凡そ50質量%のペースト状の正極合材層形成用組成物を調製した。この組成物を、長尺シート状のアルミニウム箔(厚さ15μm)の片面に均一に塗付し、乾燥することで正極集電体上に正極合材層を形成し、シート状の正極(正極シート)を作製した。
(2)負極シートの作製
 負極活物質として天然黒鉛粉末と、結着材としてスチレン-ブタジエン共重合体と、増粘材としてカルボキシメチルセルロースとを、これらの材料の質量比が98:1:1となるようにイオン交換水で混合して、固形分濃度が凡そ50質量%のペースト状の負極合材層形成用組成物を調製した。この組成物を、長尺シート状の銅箔(厚さ10μm)の片面に均一に塗付し、乾燥することで負極集電体上に負極合材層を形成し、シート状の負極(負極シート)を作製した。
(3)リチウムイオン二次電池の構築
 作製した正極シートと負極シートとを70mm×30mmのサイズに切断し、セパレータを介して合材層が対面するように積層し、電極体を作製した。セパレータとしては、厚さが25μmの多孔質ポリエチレンシートを用いた。この電極体を非水電解液とともにラミネートシートに収容した後、封止(密封)して、ラミネート型リチウムイオン二次電池を作製した。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:3:4(体積比)混合溶媒に、支持塩として約1mol/LのLiPFを溶解し、さらにシクロヘキシルベンゼン(CHB)を凡そ2質量%の濃度で含有させた電解液を用いた。このリチウムイオン二次電池につき、適当なコンディショニング処理(1/10Cの充電レートで3時間の定電流充電を行い、次いで1/3Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2~3回繰り返す初期充放電処理)を行った後、80℃で10時間エージング処理を行った。このようにして、例1~例8に係るリチウムイオン二次電池を得た。
[電池セル内のガス発生量測定]
 例1~例8に係る各リチウムイオン二次電池について、アルキメデス法にてセルの体積を測定した。なお、アルキメデス法とは、測定対象物(本例では、ラミネート型のリチウムイオン二次電池)を、媒液(例えば、蒸留水やアルコール等)に浸漬し、測定対象物が受ける浮力を測定することにより、該測定対象物の体積を求める方法である。上記測定後、上記リチウムイオン二次電池を過充電状態(本例では、4.9V)まで充電し、再びアルキメデス法にてセルの体積を測定した。過充電後のセルの体積から、過充電前のセルの体積を差し引いて、過充電時におけるガス発生量を算出した。過充電時のガス発生量は、例1のガス発生量を1.00として相対値で示した。値が大きいほどガス発生量が大きい。結果を表1および図4に示す。
[IV抵抗試験]
 例1~例8に係るリチウムイオン二次電池につき、IV抵抗試験を行った。具体的には、室温(約25℃)環境雰囲気下において、1Cの定電流で3.5VまでCC充電した後、同電圧で合計時間が2時間になるまでCV充電した。その後、25℃にて、10Cの電流値で10秒間の放電を行い、放電開始から10秒後の電圧降下量からIV抵抗を算出した。IV抵抗は、例1の抵抗値を1.00として相対値で示した。値が大きいほどIV抵抗が高い。結果を表1および図4に示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図4に示されるように、重合開始剤の添加量が増加するにつれて電池抵抗が上昇した。また、重合開始剤の添加量を100ppm~1000ppmとした例2~例6に係るリチウムイオン二次電池では、過充電状態にしたときのガス発生量が増大したことがわかる。これは、CHBの多量体の生成が好適になされ、正極シートの近傍または表面に、CHBの2~10量体が多く存在していたためと考えられる。一方、重合開始剤の添加量が1200ppm以上であった例7,例8では、ガス発生量は、重合開始剤を用いなかった例1よりも低下した。その原因は不明であるが、重合開始剤を多用すると、重合開始剤が非水電解液中に溶出し、正極の近傍以外で過充電反応性多量体を形成してしまい、これらの多量体がガス発生に寄与しなかったことが一因として推察される。なお、CHBは非水電解液中でBPに転換し得るため、ビフェニル類についても同じ効果が得られると予想される。以上より、過充電反応性化合物としてCHBを用い、重合開始剤としてAIBNを用い、所定のエージング処理を行う構成においては、AIBNの添加量を100ppm~1000ppmとすることが望ましいことがわかる。なお、過充電反応性化合物としてCHB以外のものを用い、または重合開始剤としてAIBN以外のものを用いる構成については、重合開始剤の添加量の範囲は変わり得るため、上記実施例の添加量に限定されることなく、適切な添加量を選定することができる。また、エージング処理を行う場合には、その条件によっても重合開始剤の添加量の好適な範囲は変わり得る。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれ得る。

Claims (13)

  1.  非水電解質二次電池であって、
     前記非水電解質二次電池を構成する正極の近傍において、過充電反応性化合物が重合されてなる2量体以上の過充電反応性多量体が、未重合の前記過充電反応性化合物よりもモル基準で多く存在する、非水電解質二次電池。
  2.  前記過充電反応性多量体が、前記過充電反応性化合物の2量体から10量体を主として含む、請求項1に記載の非水電解質二次電池。
  3.  前記正極が重合開始剤を含む、請求項1または2に記載の非水電解質二次電池。
  4.  前記重合開始剤がアゾ系重合開始剤である、請求項3に記載の非水電解質二次電池。
  5.  前記過充電反応性化合物が、分岐鎖状アルキルベンゼン類、シクロアルキルベンゼン類、ビフェニル類、ターフェニル類、ジフェニルエーテル類およびジベンゾフラン類からなる群から選ばれる少なくとも1種である、請求項1から4のいずれかに記載の非水電解質二次電池。
  6.  前記非水電解質二次電池が、前記正極と負極とこれら電極を収容するケースとを備え、該電極の少なくとも一方と該ケース外部に露出する外部端子とを導通する導電経路が形成された密閉型電池として構成されており、
     前記ケースの内圧が上昇することによって前記導電経路が分断されるように構成された電流遮断機構を備える、請求項1から5のいずれかに記載の非水電解質二次電池。
  7.  非水電解質二次電池を製造する方法であって、
     重合開始剤を含む正極を用意すること、
     過充電反応性化合物を含む非水電解質を用意すること、
     前記非水電解質を前記正極に供給すること、
     前記過充電反応性化合物を重合することによって、2量体以上の過充電反応性多量体を前記正極の近傍に生成させること、
    を包含する、非水電解質二次電池の製造方法。
  8.  前記過充電反応性多量体が、前記過充電反応性化合物の2量体から10量体を主として含む、請求項7に記載の製造方法。
  9.  前記非水電解質を前記正極に供給した後、前記供給された非水電解質を温度50℃~100℃で加熱することによって、前記過充電反応性化合物を重合する、請求項7または8に記載の製造方法。
  10.  前記重合開始剤として、アゾ系重合開始剤を用いる、請求項7から9のいずれかに記載の製造方法。
  11.  前記過充電反応性化合物として、分岐鎖状アルキルベンゼン類、シクロアルキルベンゼン類、ビフェニル類、ターフェニル類、ジフェニルエーテル類およびジベンゾフラン類からなる群から選ばれる少なくとも1種を用いる、請求項7から10のいずれかに記載の製造方法。
  12.  前記正極と負極とを収容したケースの内圧が上昇したときに該正極と該負極の少なくとも一方と該ケース外部に露出する外部端子とを導通する導電経路を分断する電流遮断機構を構築すること、を包含する、請求項7から11のいずれかに記載の製造方法。
  13.  請求項1から6のいずれかに記載の非水電解質二次電池を備える車両。
PCT/JP2012/051577 2012-01-25 2012-01-25 非水電解質二次電池およびその製造方法 WO2013111291A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/051577 WO2013111291A1 (ja) 2012-01-25 2012-01-25 非水電解質二次電池およびその製造方法
DE112012005743.0T DE112012005743B4 (de) 2012-01-25 2012-01-25 Nichtwässrige Elektrolytsekundärbatterie und Verfahren zum Herstellen derselben
CN201280067858.9A CN104081578B (zh) 2012-01-25 2012-01-25 非水电解质二次电池及其制造方法
KR1020147023054A KR20140116940A (ko) 2012-01-25 2012-01-25 비수전해질 이차 전지 및 그 제조 방법
US14/374,343 US9780377B2 (en) 2012-01-25 2012-01-25 Non-aqueous electrolyte secondary battery and method for producing same
JP2013555053A JP5930331B2 (ja) 2012-01-25 2012-01-25 非水電解質二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051577 WO2013111291A1 (ja) 2012-01-25 2012-01-25 非水電解質二次電池およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013111291A1 true WO2013111291A1 (ja) 2013-08-01

Family

ID=48873062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051577 WO2013111291A1 (ja) 2012-01-25 2012-01-25 非水電解質二次電池およびその製造方法

Country Status (6)

Country Link
US (1) US9780377B2 (ja)
JP (1) JP5930331B2 (ja)
KR (1) KR20140116940A (ja)
CN (1) CN104081578B (ja)
DE (1) DE112012005743B4 (ja)
WO (1) WO2013111291A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216007A (ja) * 2014-05-09 2015-12-03 凸版印刷株式会社 リチウムイオン二次電池用正極、リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池
WO2017006760A1 (ja) * 2015-07-09 2017-01-12 住友精化株式会社 リチウムイオン二次電池正極用バインダー
JP2020522101A (ja) * 2017-11-24 2020-07-27 エルジー・ケム・リミテッド 二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627722B1 (en) 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
JP6851307B2 (ja) 2014-11-25 2021-03-31 アメリカン・リシアム・エナジー・コーポレイションAmerican Lithium Energy Corporation 内部電流リミッタと内部電流インターラプタを備えた充電式電池
JP6641842B2 (ja) * 2015-09-29 2020-02-05 三洋電機株式会社 角形二次電池
CN106876656B (zh) * 2015-12-14 2020-01-14 微宏动力系统(湖州)有限公司 一种负极浆料的制备方法和负极浆料
WO2019023683A1 (en) * 2017-07-28 2019-01-31 American Lithium Energy Corporation ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR
JP7234969B2 (ja) * 2020-02-17 2023-03-08 トヨタ自動車株式会社 電池システムおよび電池の異常判定方法
CN116979129A (zh) 2022-04-22 2023-10-31 通用汽车环球科技运作有限责任公司 无钴高功率电化学电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260738A (ja) * 2001-02-28 2002-09-13 Sanyo Electric Co Ltd 非水電解質電池
JP2004039642A (ja) * 2002-07-15 2004-02-05 Samsung Sdi Co Ltd リチウム二次電池及びその製造方法
JP2006073308A (ja) * 2004-09-01 2006-03-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2006173000A (ja) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd リチウムポリマー電池の製造およびそれにより得られた電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952034B2 (ja) 2005-04-20 2012-06-13 パナソニック株式会社 非水電解質二次電池
CN101622750A (zh) 2007-05-15 2010-01-06 株式会社Lg化学 二次电池及其制造方法
JP5154590B2 (ja) 2010-02-03 2013-02-27 株式会社日立製作所 過充電抑制剤並びにこれを用いた非水電解液及び二次電池
JP5546435B2 (ja) * 2010-12-07 2014-07-09 株式会社日立製作所 リチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260738A (ja) * 2001-02-28 2002-09-13 Sanyo Electric Co Ltd 非水電解質電池
JP2004039642A (ja) * 2002-07-15 2004-02-05 Samsung Sdi Co Ltd リチウム二次電池及びその製造方法
JP2006073308A (ja) * 2004-09-01 2006-03-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2006173000A (ja) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd リチウムポリマー電池の製造およびそれにより得られた電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216007A (ja) * 2014-05-09 2015-12-03 凸版印刷株式会社 リチウムイオン二次電池用正極、リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池
WO2017006760A1 (ja) * 2015-07-09 2017-01-12 住友精化株式会社 リチウムイオン二次電池正極用バインダー
JPWO2017006760A1 (ja) * 2015-07-09 2018-05-24 住友精化株式会社 リチウムイオン二次電池正極用バインダー
US10541416B2 (en) 2015-07-09 2020-01-21 Sumitomo Seika Chemicals Co., Ltd. Binder for lithium ion secondary battery positive electrodes
JP6999416B2 (ja) 2015-07-09 2022-02-04 住友精化株式会社 リチウムイオン二次電池正極用バインダー
JP2020522101A (ja) * 2017-11-24 2020-07-27 エルジー・ケム・リミテッド 二次電池
JP7045579B2 (ja) 2017-11-24 2022-04-01 エルジー エナジー ソリューション リミテッド 二次電池
US11404755B2 (en) 2017-11-24 2022-08-02 Lg Energy Solution, Ltd. Secondary battery

Also Published As

Publication number Publication date
CN104081578B (zh) 2017-03-22
DE112012005743T5 (de) 2014-10-09
US9780377B2 (en) 2017-10-03
CN104081578A (zh) 2014-10-01
DE112012005743B4 (de) 2022-02-17
KR20140116940A (ko) 2014-10-06
JP5930331B2 (ja) 2016-06-08
US20150004448A1 (en) 2015-01-01
JPWO2013111291A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5930331B2 (ja) 非水電解質二次電池の製造方法
JP4636341B2 (ja) リチウム二次電池およびその製造方法
JP5822089B2 (ja) 密閉型リチウム二次電池
JP5963022B2 (ja) 非水電解質二次電池およびその製造方法
WO2013125305A1 (ja) 密閉型非水電解質二次電池
JP6536563B2 (ja) 非水電解質二次電池
JP6210301B2 (ja) 非水電解質二次電池用のセパレータ及び該セパレータを備えた電池
JP6152825B2 (ja) 非水電解液二次電池
JP2010034024A (ja) リチウムイオン二次電池
CN110832678B (zh) 二次电池、电池包、电动车辆、电力储存系统、电动工具及电子设备
WO2013057826A1 (ja) 非水電解液二次電池およびその利用
CN112563497B (zh) 非水电解液二次电池
JP5488899B2 (ja) リチウム二次電池
JP2014049390A (ja) 非水電解液二次電池
JP5704409B2 (ja) 密閉型リチウム二次電池
CN114342148A (zh) 制造二次电池的方法
KR102143976B1 (ko) 리튬 이온 이차 전지 및 그 제조 방법
JP5835617B2 (ja) 密閉型リチウム二次電池
JP5618156B2 (ja) 密閉型リチウム二次電池の製造方法
KR101858334B1 (ko) 비수 전해질 이차 전지
JP2013239374A (ja) リチウムイオン二次電池およびその製造方法
JP2013239375A (ja) リチウムイオン二次電池およびその製造方法
JP2013157219A (ja) 非水電解質二次電池
JP5904366B2 (ja) 非水電解質二次電池およびその製造方法
JP7380898B2 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120057430

Country of ref document: DE

Ref document number: 112012005743

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147023054

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14374343

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12866585

Country of ref document: EP

Kind code of ref document: A1