WO2013105150A1 - スイッチング電源回路 - Google Patents

スイッチング電源回路 Download PDF

Info

Publication number
WO2013105150A1
WO2013105150A1 PCT/JP2012/004453 JP2012004453W WO2013105150A1 WO 2013105150 A1 WO2013105150 A1 WO 2013105150A1 JP 2012004453 W JP2012004453 W JP 2012004453W WO 2013105150 A1 WO2013105150 A1 WO 2013105150A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
power
power supply
mode
supply circuit
Prior art date
Application number
PCT/JP2012/004453
Other languages
English (en)
French (fr)
Inventor
岳史 田澤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/824,744 priority Critical patent/US8923020B2/en
Priority to CN2012800029545A priority patent/CN103299527A/zh
Priority to EP12840850.7A priority patent/EP2804303B1/en
Priority to JP2012555982A priority patent/JP6083668B2/ja
Publication of WO2013105150A1 publication Critical patent/WO2013105150A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply circuit used in an audio system or the like, and more particularly to a switching power supply circuit having a standby mode.
  • the conventional switching power supply circuit when the switching power supply circuit is in the standby mode, the beat of the transformer can be suppressed.
  • the switching frequency of the switching element when the power supply on mode is entered, the switching frequency of the switching element enters the audible frequency band. That is, the conventional switching power supply circuit has a problem that beats are generated in the power-on mode.
  • an object of the present invention is to suppress the occurrence of the switching power supply circuit in the power-on mode in addition to the switching power supply circuit in the standby mode.
  • a switching power supply circuit that converts AC power into DC power is configured to be switchable between a standby mode and a power-on mode, the first rectifier circuit that rectifies the AC power and converts it into DC, and A switching operation unit that switches the current rectified by the first rectifier circuit, a primary winding to which the current switched by the switching operation unit is supplied, and a current that is supplied to the primary winding
  • a switching transformer having a secondary winding for inducing electric power; a second rectifier circuit for rectifying electric power induced in the secondary winding of the switching transformer to output the DC power; and according to a flowing current
  • a photocoupler that feeds back a signal from the secondary side to the primary side, so that a predetermined voltage is output from the second rectifier circuit;
  • a control circuit for feedback controlling the switching operation.
  • the control circuit is configured to suppress the sound of the switching transformer when the switching power supply circuit is in the standby mode and the power-on mode, in the standby mode and the power-on mode.
  • the ratio of the current flowing through the photocoupler to the output voltage from the rectifier circuit is changed.
  • the switching power supply circuit converts AC power into DC and outputs it, and is configured to be switchable between a standby mode and a power-on mode.
  • the switching operation is controlled by feeding back a signal from the secondary side to the primary side via a photocoupler.
  • the control circuit is a photocoupler for the output voltage from the second rectifier circuit in the standby mode and the power-on mode so as to suppress the sound of the switching transformer when the switching power circuit is in the standby mode and the power-on mode.
  • the ratio of the current flowing through is set to different values. Thereby, regardless of the operation mode of the switching power supply circuit, the noise of the switching transformer can be suppressed.
  • the switching power supply circuit in addition to the case where the switching power supply circuit is in the standby mode, it is possible to suppress further occurrences in the case of the power supply on mode.
  • FIG. 1 is a configuration diagram of a switching power supply circuit according to an embodiment.
  • FIG. 2 is a diagram illustrating a relationship between an operation mode and a switching frequency of the switching power supply circuit according to the embodiment.
  • FIG. 3 is a diagram for comparing the effects of the configuration of FIG. 1 and the conventional configuration.
  • FIG. 1 is a configuration diagram of a switching power supply circuit according to an embodiment of the present invention.
  • the switching power supply circuit 101 includes a first rectifier circuit 102, a switching transformer 103, a switching operation unit 20, a second rectifier circuit 30, and a control circuit 40. Output power DC is generated.
  • the switching power supply circuit 101 is configured to be able to switch the operation mode between a standby mode and a power-on mode.
  • the first rectifier circuit 102 rectifies input power AC, which is, for example, a commercial power supply input, converts it into direct current, and outputs it.
  • input power AC which is, for example, a commercial power supply input
  • the switching transformer 103 includes a primary winding 103a and a secondary winding 103b.
  • the primary winding 103 a is connected between the first rectifier circuit 102 and the switching operation unit 20.
  • the secondary winding 103 b is connected to the second rectifier circuit 30.
  • the switching operation unit 20 includes a switching power supply element 104, capacitors 105 and 106, and a resistance element 120.
  • the switching power supply element 104 switches the current rectified by the first rectifier circuit 102, whereby a switching current is supplied to the primary winding 103a. Then, power corresponding to the switching current is induced in the secondary winding 103b.
  • the switching power supply element 104 performs a switching operation based on a feedback voltage Vfb that changes according to a current flowing on the primary side of a photocoupler 107 described later.
  • the second rectifier circuit 30 includes a diode 118 and a capacitor 119.
  • the electric power generated in the secondary winding 103b is rectified and smoothed by the diode 118 and the capacitor 119 to become direct current.
  • the DC power is supplied as output power DC to a load connected to an amplifier of the audio system.
  • the control circuit 40 feedback-controls the switching operation unit 20 by feeding back a signal from the secondary side to the primary side so that the voltage output from the second rectifier circuit 30 becomes a predetermined voltage.
  • the control circuit 40 includes a photocoupler 107, a shunt regulator 110, and a gain switching circuit 50.
  • the photocoupler 107 is composed of a secondary side diode and a primary side transistor. Resistive elements 108 and 109 are connected between the secondary side of the photocoupler 107 and a terminal from which output power DC is output. The current flowing through the photocoupler 107 and the feedback voltage Vfb change according to the load to which the output power DC is supplied, and thereby the switching frequency of the switching power supply element 104 changes.
  • the anode of the shunt regulator 110 is connected to the diode of the photocoupler 107, and the cathode is connected to the ground. Further, a voltage obtained by dividing the output voltage of the second rectifier circuit 30 by the resistance elements 116 and 117 is supplied to the reference terminal of the shunt regulator 110.
  • the gain switching circuit 50 includes a capacitor 111, a resistance element 112, a switch 113, a capacitor 114, and a resistance element 115.
  • the switch 113 is on / off controlled by a control signal from an external microcomputer (not shown). Specifically, the switch 113 is turned off when the switching power supply circuit 101 is in the power-on mode, and the switch 113 is turned on when it is in the standby mode. When the switch 113 is off, the capacitor 111 and the resistance element 112 are connected to the shunt regulator 110. On the other hand, when switch 113 is on, capacitor 111 and resistor element 112, and capacitor 114 and resistor element 115 are connected to shunt regulator 110.
  • the ratio of the current flowing through the photocoupler 107 to the output voltage of the second rectifier circuit 30 is switched between the standby mode and the power-on mode. Specifically, when the switch 113 is turned off, the ratio of the current flowing through the photocoupler 107 to the output voltage of the second rectifier circuit 30 decreases. That is, the gain of the shunt regulator 110 is increased and the current flowing through the photocoupler 107 is reduced. On the other hand, when the switch 113 is turned on, the ratio of the current flowing through the photocoupler 107 to the output voltage of the second rectifier circuit 30 increases. That is, the gain of the shunt regulator 110 decreases and the current flowing through the photocoupler 107 increases.
  • the current flowing through the photocoupler 107 changes as the gain of the shunt regulator 110 is switched between the standby mode and the power-on mode. Then, the feedback voltage Vfb changes according to the current flowing through the photocoupler 107, and the switching frequency of the switching power supply element 104 is feedback-controlled.
  • FIG. 2 is a diagram illustrating the relationship between the operation mode and the switching frequency of the switching power supply circuit according to the present embodiment.
  • the horizontal axis represents time, and the vertical axis represents the voltage Vds supplied to the primary winding 103a.
  • the switch 113 When the switching power supply circuit 101 is in the standby mode, the switch 113 is turned on by receiving a control signal notifying that it is in the standby mode. When the switch 113 is turned on, the gain of the shunt regulator 110 decreases and the current flowing through the photocoupler 107 increases. As a result, the feedback voltage Vfb of the switching power supply element 104 decreases, so that the switching power supply element 104 is controlled at a switching frequency as shown in FIG.
  • the switch 113 does not conduct because it receives a signal to notify the power-on. Since the switch 113 does not conduct, the gain of the shunt regulator 110 increases and the current flowing through the photocoupler 107 decreases. As a result, the feedback voltage Vfb rises and is controlled at a switching frequency as shown in FIG.
  • the switching frequency in the standby mode is controlled to be 20 Hz or less which is the lower limit value of the audible frequency band (20 Hz to 20 kHz).
  • the switching frequency in the power-on mode is controlled to be 20 kHz or more, which is the upper limit value of the audible frequency band.
  • an IC (Integrated Circuit) of model number STR2A155 is used as the switching power supply element 104
  • an IC of model number PC123X2YUP0F is used as the photocoupler 107
  • an IC of model number MM1431CURE is used as the shunt regulator 110.
  • the capacitance value of the capacitor 111 may be set to 0.1 ⁇ F
  • the resistance value of the resistance element 112 may be set to 390 k ⁇
  • the capacitance value of the capacitor 114 may be set to 0.1 ⁇ F
  • the resistance value of the resistance element 115 may be set to 3.3 k ⁇ .
  • FIG. 3 is a diagram for comparing the effects of the switching power supply circuit according to the present embodiment and the conventional switching power supply circuit.
  • the horizontal axis indicates power consumption, and the vertical axis indicates the switching frequency.
  • P_on indicates a state when the switching power supply circuit is turned on and corresponds to the power-on mode.
  • the power consumption in the standby mode is 0.05 W and the switching frequency is 20 Hz or less.
  • the power consumption Is 3.2 W and the switching frequency is 10 kHz. Therefore, when the power is turned on, the switching frequency is included in the audible frequency band, so that sound is generated.
  • the power consumption in the standby mode is 0.05 W, and the switching cycle is 20 Hz or less.
  • the power consumption is 3.2 W and the switching frequency is 25 kHz. Therefore, regardless of whether the switching power supply circuit 101 is in the standby mode or the power-on mode, the switching frequency is outside the audible frequency band, so that the switching transformer 103 does not sound even during standby and when the power is on.
  • control that removes the switching frequency from the audible frequency band is possible, so that the sound of the transformer is suppressed regardless of the operation mode. can do.
  • the switching power supply circuit according to the present invention can suppress the sound of the transformer in the standby mode and the power-on mode while reducing the power consumption. Therefore, the power supply for an audio system or the like that is required to be used in a quiet environment Useful for circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 スイッチング電源回路(101)は、交流を直流に変換する第1の整流回路(102)と、スイッチング動作部(20)と、スイッチングされた電流が供給される1次巻き線と、その電流に応じた電力を誘起する2次巻き線とを有するスイッチングトランス(103)と、2次巻き線に誘起される電力を整流する第2の整流回路(30)と、スタンバイモードおよび電源オンモードであるときにスイッチングトランスの音鳴りを抑制するように、各モードで、第2の整流回路(30)からの出力電圧に対するフォトカプラ(107)に流れる電流の比率を変更する制御回路(40)とを備えている。 

Description

スイッチング電源回路
 本発明は、オーディオシステム等に用いられるスイッチング電源回路に関し、特に、スタンバイモードを有するスイッチング電源回路に関する。
 近年、電子機器の低消費電力化が求められている。電子機器の電源として用いられるスイッチング電源回路において、スイッチング素子のスイッチング動作を制御することで低消費電力化を実現することができる。従来のスイッチング電源回路として、スタンバイモード時に、スイッチング素子のスイッチング周波数を低下させることで、消費電力を小さくしつつ、耳障りなトランスの異音(うなり)を抑制する構成が開示されている(例えば、特許文献1参照)。
登録実用新案第3095238号公報
 しかしながら、従来の構成では、スイッチング電源回路がスタンバイモードであるときはトランスのうなりを抑制できるものの、電源オンモードになると、スイッチング素子のスイッチング周波数が可聴周波数帯域に入ってしまう。つまり、従来のスイッチング電源回路は、電源オンモードのときにうなりが発生するという課題を有している。
 かかる点に鑑みて、本発明は、スイッチング電源回路がスタンバイモードである場合に加えて、電源オンモードである場合でもうなりを抑制することを課題とする。
 上記課題を解決するため本発明によって次のような解決手段を講じた。例えば、交流電力を直流電力に変換するスイッチング電源回路は、スタンバイモードと電源オンモードとに切替可能に構成されており、前記交流電力を整流して直流に変換する第1の整流回路と、前記第1の整流回路で整流された電流をスイッチングするスイッチング動作部と、前記スイッチング動作部でスイッチングされた電流が供給される1次巻き線と、当該1次巻き線に供給される電流に応じた電力を誘起する2次巻き線とを有するスイッチングトランスと、前記スイッチングトランスの2次巻き線に誘起される電力を整流して前記直流電力を出力する第2の整流回路と、流れる電流に応じて2次側から1次側に信号を帰還するフォトカプラを有し、前記第2の整流回路から所定の電圧が出力されるように、前記スイッチング動作部のスイッチング動作をフィードバック制御する制御回路とを備えている。そして、前記制御回路は、当該スイッチング電源回路が前記スタンバイモードおよび前記電源オンモードであるときに前記スイッチングトランスの音鳴りを抑制するように、前記スタンバイモードと前記電源オンモードとで、前記第2の整流回路からの出力電圧に対する前記フォトカプラに流れる電流の比率を変更する。
 これによると、スイッチング電源回路は、交流電源を直流に変換して出力するものであり、スタンバイモードと電源オンモードとに切替可能に構成されている。スイッチング電源回路では、フォトカプラを介して2次側から1次側へ信号をフィードバックすることで、スイッチング動作が制御される。制御回路は、スイッチング電源回路がスタンバイモードおよび電源オンモードであるときにスイッチングトランスの音鳴りを抑制するように、スタンバイモードと電源オンモードとで、第2の整流回路からの出力電圧に対するフォトカプラに流れる電流の比率を異なる値にする。これにより、スイッチング電源回路の動作モードにかかわらず、スイッチングトランスの音鳴りを抑制することができる。
 本発明によると、スイッチング電源回路がスタンバイモードである場合に加えて、電源オンモードである場合でもうなりを抑制することができる。
図1は、一実施形態に係るスイッチング電源回路の構成図である。 図2は、一実施形態に係るスイッチング電源回路の動作モードとスイッチング周波数との関係を示す図である。 図3は、図1の構成および従来の構成による効果を比較するための図である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。
 図1は、本発明の一実施形態に係るスイッチング電源回路の構成図である。スイッチング電源回路101は、第1の整流回路102と、スイッチングトランス103と、スイッチング動作部20と、第2の整流回路30と、制御回路40とを有しており、交流の入力電力ACから直流の出力電力DCを生成する。また、スイッチング電源回路101は、動作モードをスタンバイモードと電源オンモードとに切替可能に構成されている。
 第1の整流回路102は、例えば商用の電源入力である入力電力ACを整流して、直流に変換して出力する。
 スイッチングトランス103は、1次巻き線103aと2次巻き線103bとを備えている。1次巻き線103aは、第1の整流回路102とスイッチング動作部20との間に接続されている。2次巻き線103bは、第2の整流回路30に接続されている。
 スイッチング動作部20は、スイッチング電源素子104と、コンデンサ105,106と、抵抗素子120とを有している。スイッチング電源素子104が第1の整流回路102で整流された電流をスイッチングすることで、1次巻き線103aにスイッチング電流が供給される。そして、スイッチング電流に応じた電力が2次巻き線103bに誘起される。スイッチング電源素子104は、後述するフォトカプラ107の1次側に流れる電流に応じて変化するフィードバック電圧Vfbに基づいてスイッチング動作を行う。
 第2の整流回路30は、ダイオード118とコンデンサ119とで構成される。2次巻き線103bに生じた電力は、ダイオード118およびコンデンサ119によって整流、平滑化されて直流となる。直流となった電力は、出力電力DCとしてオーディオシステムのアンプなどに接続される負荷に供給される。
 制御回路40は、第2の整流回路30から出力される電圧が所定の電圧となるように、2次側から1次側へ信号を帰還することで、スイッチング動作部20をフィードバック制御する。制御回路40は、フォトカプラ107と、シャントレギュレータ110と、ゲイン切替回路50とを有している。
 フォトカプラ107は、2次側のダイオードと1次側のトランジスタとで構成される。フォトカプラ107の2次側と出力電力DCが出力される端子との間には抵抗素子108,109が接続されている。出力電力DCが供給される負荷に応じて、フォトカプラ107に流れる電流、およびフィードバック電圧Vfbが変化し、これによりスイッチング電源素子104のスイッチング周波数が変化する。
 シャントレギュレータ110のアノードは、フォトカプラ107のダイオードに接続され、カソードはグランドに接続されている。また、シャントレギュレータ110のリファレンス端子には、第2の整流回路30の出力電圧を抵抗素子116,117によって分圧した電圧が供給される。
 ゲイン切替回路50は、コンデンサ111と、抵抗素子112と、スイッチ113と、コンデンサ114と、抵抗素子115とで構成される。スイッチ113は、外部の図示しないマイコン等からの制御信号によってオンオフ制御される。具体的に、スイッチング電源回路101が電源オンモードであるときスイッチ113はオフし、スタンバイモードであるときスイッチ113はオンする。スイッチ113がオフのとき、シャントレギュレータ110にはコンデンサ111と抵抗素子112とが接続される。一方、スイッチ113がオンのとき、シャントレギュレータ110には、コンデンサ111と抵抗素子112、ならびにコンデンサ114と抵抗素子115が接続される。
 これにより、スタンバイモードと電源オンモードとで、第2の整流回路30の出力電圧に対するフォトカプラ107に流れる電流の比率が切り替わる。具体的に、スイッチ113がオフすると、第2の整流回路30の出力電圧に対するフォトカプラ107に流れる電流の比率が下がる。つまり、シャントレギュレータ110の利得は上がり、フォトカプラ107に流れる電流が低減する。一方、スイッチ113がオンすると、第2の整流回路30の出力電圧に対するフォトカプラ107に流れる電流の比率が上がる。つまり、シャントレギュレータ110の利得は下がり、フォトカプラ107に流れる電流が増加する。
 以上のように、スタンバイモードと電源オンモードとでシャントレギュレータ110の利得が切り替わることで、フォトカプラ107に流れる電流が変化する。そして、フォトカプラ107に流れる電流に応じてフィードバック電圧Vfbが変化し、スイッチング電源素子104のスイッチング周波数がフィードバック制御される。
 次に、図1および図2を用いて本実施形態に係るスイッチング電源回路の動作について説明する。図2は、本実施形態に係るスイッチング電源回路の動作モードとスイッチング周波数との関係を示す図である。なお、横軸は時間、縦軸は1次巻き線103aに供給される電圧Vdsを示す。
 スイッチング電源回路101がスタンバイモードであるとき、スイッチ113はスタンバイであることを通知する制御信号を受けて導通する。スイッチ113が導通することで、シャントレギュレータ110の利得が下がり、フォトカプラ107に流れる電流が増える。その結果、スイッチング電源素子104のフィードバック電圧Vfbが低下するため、スイッチング電源素子104は、図2(a)に示すようなスイッチング周波数で制御される。
 一方、電源オンモードであるとき、スイッチ113は電源オンを通知する信号を受けるため導通しない。スイッチ113が導通しないため、シャントレギュレータ110の利得は上がり、フォトカプラ107に流れる電流が減る。その結果、フィードバック電圧Vfbが上昇するため、図2(b)に示すようなスイッチング周波数で制御される。
 ここで、スタンバイモードにおけるスイッチング周波数は、可聴周波数帯域(20Hz~20kHz)の下限値である20Hz以下となるように制御される。また、電源オンモードにおけるスイッチング周波数は、可聴周波数帯域の上限値である20kHz以上となるように制御される。
 本実施形態では、上述したスイッチング周波数を実現するために、例えば、スイッチング電源素子104として型番STR2A155のIC(Integrated Circuit)、フォトカプラ107として型番PC123X2YUP0FのIC、およびシャントレギュレータ110として型番MM1431CUREのICを用いることとする。この場合、例えば、コンデンサ111の容量値を0.1μF、抵抗素子112の抵抗値を390kΩ、コンデンサ114の容量値を0.1μF、抵抗素子115の抵抗値を3.3kΩに設定すればよい。
 図3は、本実施形態に係るスイッチング電源回路および従来のスイッチング電源回路による効果を比較するための図である。なお、横軸は消費電力、縦軸はスイッチング周波数を示している。また、P_onは、スイッチング電源回路の電源を投入したときの状態を示しており、電源オンモードに対応している。
 従来のスイッチング電源回路では、スタンバイモードにおける消費電力は0.05Wであり、スイッチング周波数は20Hz以下であるものの、電源投入時、つまりスイッチング電源回路がスタンバイモードから電源オンモードに遷移した時には、消費電力は3.2Wであり、スイッチング周波数は10kHzである。したがって、電源投入時にはスイッチング周波数が可聴周波数帯域に含まれるため、音鳴りが発生する。
 これに対して、本実施形態に係るスイッチング電源回路101では、スタンバイモードにおける消費電力は0.05Wであり、スイッチング周期は20Hz以下である。そして、電源投入時には、消費電力は3.2Wであり、スイッチング周波数は25kHzである。したがって、スイッチング電源回路101がスタンバイモードであっても電源オンモードであっても、スイッチング周波数が可聴周波数帯域外となるため、スタンバイ時および電源オン時でもスイッチングトランス103の音鳴りが発生しなくなる。
 以上、本実施形態によれば、スイッチング電源回路のスタンバイモードと電源オンモードとにおいて、スイッチング周波数を可聴周波数帯域から外すような制御が可能となるため、動作モードにかかわらずトランスの音鳴りを抑制することができる。
 本発明に係るスイッチング電源回路は、低消費電力化を図りつつ、スタンバイモードおよび電源オンモードにおけるトランスの音鳴りを抑制することができるため、静かな環境での使用が求められるオーディオシステム等の電源回路に有用である。
 20  スイッチング動作部
 30  第2の整流回路
 40  制御回路
 50  ゲイン切替回路
 101 スイッチング電源回路
 102 第1の整流回路
 103 スイッチングトランス
 104 スイッチング素子
 105,106,111,114,119 コンデンサ
 108,109,112,115,116,117,120 抵抗素子
 107 フォトカプラ
 110 シャントレギュレータ
 113 スイッチ
 118 ダイオード

Claims (4)

  1.  交流電力を直流電力に変換するスイッチング電源回路であって、
     当該スイッチング電源回路は、スタンバイモードと電源オンモードとに切替可能に構成されており、
     前記交流電力を整流して直流に変換する第1の整流回路と、
     前記第1の整流回路で整流された電流をスイッチングするスイッチング動作部と、
     前記スイッチング動作部でスイッチングされた電流が供給される1次巻き線と、当該1次巻き線に供給される電流に応じた電力を誘起する2次巻き線とを有するスイッチングトランスと、
     前記スイッチングトランスの2次巻き線に誘起される電力を整流して前記直流電力を出力する第2の整流回路と、
     流れる電流に応じて2次側から1次側に信号を帰還するフォトカプラを有し、前記第2の整流回路から所定の電圧が出力されるように、前記スイッチング動作部のスイッチング動作をフィードバック制御する制御回路とを備え、
     前記制御回路は、
      当該スイッチング電源回路が前記スタンバイモードおよび前記電源オンモードであるときに前記スイッチングトランスの音鳴りを抑制するように、前記スタンバイモードと前記電源オンモードとで、前記第2の整流回路からの出力電圧に対する前記フォトカプラに流れる電流の比率を変更する
    ことを特徴とするスイッチング電源回路。
  2.  請求項1のスイッチング電源回路において、
     前記制御回路は、
      前記第2の整流回路からの出力電圧を分圧した電圧に基づいて、前記フォトカプラに流れる電流を規定するシャントレギュレータと、
      前記スタンバイモードと前記電源オンモードとで、前記シャントレギュレータの利得を切り替えることによって、前記第2の整流回路からの出力電圧に対する前記フォトカプラに流れる電流の比率を変更するゲイン切替回路とを有している
    ことを特徴とするスイッチング電源回路。
  3.  請求項1のスイッチング電源回路において、
     前記第2の整流回路からの出力電圧に対する前記フォトカプラに流れる電流の比率は、前記スタンバイモードであるときの方が、前記電源オンモードであるときよりも大きい
    ことを特徴とするスイッチング電源回路。
  4.  請求項1のスイッチング電源回路において、
     前記制御回路は、
      前記スタンバイモードであるときは、前記スイッチング動作部のスイッチング周波数が20Hz以下となり、かつ前記電源オンモードであるときは、前記スイッチング周波数が20kHz以上となるように、前記スイッチング動作部を制御する
    ことを特徴とするスイッチング電源回路。
PCT/JP2012/004453 2012-01-11 2012-07-10 スイッチング電源回路 WO2013105150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/824,744 US8923020B2 (en) 2012-01-11 2012-07-10 Switching power supply circuit having shunt regulator with switchable gain
CN2012800029545A CN103299527A (zh) 2012-01-11 2012-07-10 开关电源电路
EP12840850.7A EP2804303B1 (en) 2012-01-11 2012-07-10 Switching power supply circuit
JP2012555982A JP6083668B2 (ja) 2012-01-11 2012-07-10 スイッチング電源回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012002728 2012-01-11
JP2012-002728 2012-01-11

Publications (1)

Publication Number Publication Date
WO2013105150A1 true WO2013105150A1 (ja) 2013-07-18

Family

ID=48781129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004453 WO2013105150A1 (ja) 2012-01-11 2012-07-10 スイッチング電源回路

Country Status (5)

Country Link
US (1) US8923020B2 (ja)
EP (1) EP2804303B1 (ja)
JP (1) JP6083668B2 (ja)
CN (1) CN103299527A (ja)
WO (1) WO2013105150A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3068026B1 (en) * 2015-03-13 2021-12-22 Nxp B.V. A control arrangement for a switched mode power supply
CN105978364B (zh) * 2015-12-31 2018-11-30 小米科技有限责任公司 电源控制系统
CN108668402B (zh) * 2017-03-31 2021-06-08 朗德万斯公司 用于led灯的灯驱动器和用于布置在荧光灯灯具中的led灯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395238A (ja) 1989-09-07 1991-04-19 Sumitomo Chem Co Ltd 発泡体
JPH07163143A (ja) * 1993-11-30 1995-06-23 Sanyo Electric Co Ltd 電源装置
JP2000184709A (ja) * 1998-12-11 2000-06-30 Sanken Electric Co Ltd スイッチング電源装置
JP2000209524A (ja) * 1999-01-13 2000-07-28 Mitsubishi Electric Corp 電源制御装置
JP2002084751A (ja) * 2000-09-01 2002-03-22 Uinzu:Kk 共振型電源及びその電源を用いた電力変換方法
JP3095238U (ja) * 2003-01-14 2003-07-25 船井電機株式会社 待機モード機能を有するスイッチング電源回路
JP2006050760A (ja) * 2004-08-04 2006-02-16 New Japan Radio Co Ltd スイッチング電源回路およびその制御方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133272A (ja) 1987-11-18 1989-05-25 Mitsubishi Electric Corp 磁気デイスク装置
JP3198944B2 (ja) * 1995-11-17 2001-08-13 株式会社村田製作所 スイッチング電源装置
KR0174724B1 (ko) * 1996-03-29 1999-04-01 김광호 역률 보정 회로를 갖는 디스플레이 모니터 전원 공급 장치
EP0875983B1 (en) * 1997-04-30 2004-09-15 Fidelix Y.K. A power supply apparatus
KR19990012879A (ko) * 1997-07-31 1999-02-25 이형도 전원공급장치의 역률개선회로
JPH11235036A (ja) * 1998-02-09 1999-08-27 Murata Mfg Co Ltd 自励発振型スイッチング電源装置
JP2000116027A (ja) * 1998-03-10 2000-04-21 Fiderikkusu:Kk 電源装置
JP3386016B2 (ja) * 1999-01-18 2003-03-10 株式会社村田製作所 スイッチング電源装置
US6295217B1 (en) * 1999-03-26 2001-09-25 Sarnoff Corporation Low power dissipation power supply and controller
KR100379057B1 (ko) * 1999-04-10 2003-04-08 페어차일드코리아반도체 주식회사 버스트 모드 스위칭 모드 파워 서플라이
JP3475888B2 (ja) * 2000-01-11 2003-12-10 株式会社村田製作所 スイッチング電源装置
JP3409287B2 (ja) 2000-08-02 2003-05-26 Smk株式会社 自励式スイッチング電源回路
KR100376131B1 (ko) * 2000-09-22 2003-03-15 삼성전자주식회사 대기전원 절전형 전원장치 및 그 제어방법
KR100438695B1 (ko) * 2001-03-09 2004-07-05 삼성전자주식회사 전원 공급 제어 장치 및 방법
US6510062B2 (en) * 2001-06-25 2003-01-21 Switch Power, Inc. Method and circuit to bias output-side width modulation control in an isolating voltage converter system
JP3578124B2 (ja) * 2001-08-31 2004-10-20 ソニー株式会社 スイッチング電源装置
KR100426696B1 (ko) * 2001-10-20 2004-04-14 삼성전자주식회사 디스플레이장치
JP3494223B2 (ja) * 2001-12-03 2004-02-09 サンケン電気株式会社 Dc−dcコンバ−タ
JP3496673B2 (ja) * 2002-01-11 2004-02-16 サンケン電気株式会社 直流電源装置
US6952355B2 (en) * 2002-07-22 2005-10-04 Ops Power Llc Two-stage converter using low permeability magnetics
KR100750906B1 (ko) * 2002-10-21 2007-08-22 페어차일드코리아반도체 주식회사 저전력 구동을 위한 스위칭 모드 파워 서플라이
US6839247B1 (en) * 2003-07-10 2005-01-04 System General Corp. PFC-PWM controller having a power saving means
EP1884014A2 (en) * 2005-05-10 2008-02-06 Nxp B.V. Feedback communication technique for switched mode power supply
JP2007295761A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd スイッチング電源装置
TW200847602A (en) * 2007-05-29 2008-12-01 Richtek Techohnology Corp Apparatus and method of improving flyback transformer light-loading efficacy
US8031496B2 (en) * 2007-11-07 2011-10-04 Panasonic Corporation Driving circuit for power switching device, driving method thereof, and switching power supply apparatus
TWI390378B (zh) * 2008-05-14 2013-03-21 Richtek Technology Corp Control circuit and method of Chi - back power converter
JP2010022121A (ja) * 2008-07-10 2010-01-28 Panasonic Corp スイッチング電源装置、およびスイッチング電源用半導体装置
US8654113B2 (en) * 2008-09-19 2014-02-18 Mstar Semiconductor, Inc. Ultra-low-power display control circuit and associated method
JP5268615B2 (ja) * 2008-12-15 2013-08-21 キヤノン株式会社 電源装置および画像形成装置
CN102342007B (zh) * 2009-01-19 2015-01-07 伟创力国际美国公司 用于功率转换器的控制器
JP2010206982A (ja) 2009-03-04 2010-09-16 Nichicon Corp スイッチング電源装置
JP2010220293A (ja) * 2009-03-13 2010-09-30 Canon Inc スイッチング電源装置
JP5341627B2 (ja) * 2009-06-11 2013-11-13 パナソニック株式会社 半導体装置およびスイッチング電源装置
CN102474186A (zh) * 2009-07-24 2012-05-23 Nec显示器解决方案株式会社 开关电源以及使用其的电子设备
TWI387194B (zh) * 2009-08-14 2013-02-21 Richpower Microelectronics 減少返馳式電源轉換器之待機功耗的裝置及方法
WO2011065002A1 (ja) * 2009-11-25 2011-06-03 ローム株式会社 電源アダプタ、dc/dcコンバータの制御回路および機器側コネクタ、dc/dcコンバータ、それを用いた電源装置、ならびに電子機器
JP5574846B2 (ja) * 2010-06-22 2014-08-20 キヤノン株式会社 スイッチング電源
JP5587051B2 (ja) * 2010-06-22 2014-09-10 キヤノン株式会社 スイッチング電源
JP5488274B2 (ja) * 2010-07-08 2014-05-14 富士電機株式会社 半導体集積回路およびスイッチング電源装置
JP5099183B2 (ja) * 2010-07-13 2012-12-12 サンケン電気株式会社 起動回路
JP5683241B2 (ja) * 2010-12-06 2015-03-11 キヤノン株式会社 スイッチング電源装置及び画像形成装置
CN102291000B (zh) * 2011-08-29 2014-09-10 上海新进半导体制造有限公司 开关电源集成电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395238A (ja) 1989-09-07 1991-04-19 Sumitomo Chem Co Ltd 発泡体
JPH07163143A (ja) * 1993-11-30 1995-06-23 Sanyo Electric Co Ltd 電源装置
JP2000184709A (ja) * 1998-12-11 2000-06-30 Sanken Electric Co Ltd スイッチング電源装置
JP2000209524A (ja) * 1999-01-13 2000-07-28 Mitsubishi Electric Corp 電源制御装置
JP2002084751A (ja) * 2000-09-01 2002-03-22 Uinzu:Kk 共振型電源及びその電源を用いた電力変換方法
JP3095238U (ja) * 2003-01-14 2003-07-25 船井電機株式会社 待機モード機能を有するスイッチング電源回路
JP2006050760A (ja) * 2004-08-04 2006-02-16 New Japan Radio Co Ltd スイッチング電源回路およびその制御方法

Also Published As

Publication number Publication date
EP2804303A4 (en) 2015-07-01
US20140185332A1 (en) 2014-07-03
JPWO2013105150A1 (ja) 2015-05-11
EP2804303B1 (en) 2018-11-28
EP2804303A1 (en) 2014-11-19
US8923020B2 (en) 2014-12-30
JP6083668B2 (ja) 2017-02-22
CN103299527A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP6563651B2 (ja) 絶縁同期整流型dc/dcコンバータ、同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
JP5494009B2 (ja) スイッチング制御回路及びスイッチング電源装置
JP5341627B2 (ja) 半導体装置およびスイッチング電源装置
WO2017072940A1 (ja) 出力電圧の設定を切り替えるスイッチング電源装置及びスイッチング電源装置用集積回路
JP2011514137A5 (ja) Acを調整されたdc出力電流に変換するための環境にやさしい電力供給装置
JP2006094696A (ja) 力率補正回路及びその出力電圧制御方法
JP5905689B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
JP2014524226A (ja) スイッチドモード電源ユニット、スイッチドモード電源ユニットの動作方法、及びコンピュータにおけるスイッチドモード電源ユニットの使用
JP2010068631A (ja) 減電圧検出回路及びスイッチング電源システム
JP6356545B2 (ja) スイッチング電源装置
JP2010110148A (ja) 電源装置
JP6083668B2 (ja) スイッチング電源回路
JP2008141895A (ja) スイッチング電源回路及び空気調和器
US7541691B2 (en) Standby power supply apparatus
JP6514910B2 (ja) 絶縁同期整流型dc/dcコンバータ、同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
JP6513546B2 (ja) Led電源装置
JP2008245444A (ja) スイッチング電源装置
KR100636550B1 (ko) 프리 볼테이지 방식 스위칭모드 전원공급장치
JP7051666B2 (ja) スイッチング電源装置
JP5915471B2 (ja) スイッチング電源
TW201705666A (zh) 多輸出交換式電源轉換器
WO2018043227A1 (ja) スイッチング電源装置および半導体装置
JP2006157988A (ja) スイッチング電源装置
TWI469493B (zh) 電源轉換器的控制電路及控制方法
JP2012205365A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012555982

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13824744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012840850

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE