WO2011065002A1 - 電源アダプタ、dc/dcコンバータの制御回路および機器側コネクタ、dc/dcコンバータ、それを用いた電源装置、ならびに電子機器 - Google Patents

電源アダプタ、dc/dcコンバータの制御回路および機器側コネクタ、dc/dcコンバータ、それを用いた電源装置、ならびに電子機器 Download PDF

Info

Publication number
WO2011065002A1
WO2011065002A1 PCT/JP2010/006890 JP2010006890W WO2011065002A1 WO 2011065002 A1 WO2011065002 A1 WO 2011065002A1 JP 2010006890 W JP2010006890 W JP 2010006890W WO 2011065002 A1 WO2011065002 A1 WO 2011065002A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electronic device
converter
signal
control circuit
Prior art date
Application number
PCT/JP2010/006890
Other languages
English (en)
French (fr)
Inventor
智 名手
林 宏
忠之 坂本
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2011543108A priority Critical patent/JP5731398B2/ja
Priority to CN201080053537.4A priority patent/CN102668350B/zh
Priority to US13/511,778 priority patent/US20120262950A1/en
Publication of WO2011065002A1 publication Critical patent/WO2011065002A1/ja
Priority to US14/984,441 priority patent/US20160118900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • H02J9/007Detection of the absence of a load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a DC / DC converter control technology.
  • Electronic devices such as laptop computers, mobile phone terminals, and PDAs (Personal Digital Assisntats) operate with power from the built-in battery, operate with power from an external power source, and operate from an external power source.
  • the built-in battery can be charged with the power of
  • FIG. 1 is a diagram illustrating a configuration of a power adapter.
  • the power adapter 200 includes an outlet plug 202 for receiving the AC voltage Vac, a device-side connector 206, a diode bridge circuit 208, a smoothing capacitor C1, and a DC / DC converter 210.
  • the outlet plug 202 receives the commercial AC voltage Vac in a state where it is inserted into the plug receptacle 201 of the wiring plug connector.
  • the diode bridge circuit 208 performs full-wave rectification on the AC voltage Vac.
  • the smoothing capacitor C1 smoothes the voltage rectified by the diode bridge circuit 208.
  • the DC / DC converter 210 converts the voltage level of the smoothed DC voltage.
  • a DC voltage Vdc stabilized at a certain voltage level by the DC / DC converter 210 is supplied to the electronic device 1 via the device-side connector 206.
  • the diode bridge circuit 208, the smoothing capacitor C1, and the DC / DC converter 210 are built in the housing 204, and the housing 204 and the outlet plug 202 are connected by cables and the housing 204 and the device side connector 206 are connected by cables. Yes.
  • An aspect of the present invention has been made in view of these problems, and one of exemplary purposes thereof is to provide a power supply with reduced power consumption.
  • FIG. 5 is a diagram showing the configuration of the power adapter examined by the present inventors.
  • the specific configuration of the power adapter 200 should not be regarded as a general technique well known to those skilled in the art.
  • the power adapter 200 includes an outlet plug 202 for receiving the AC voltage Vac, a diode bridge circuit 208, an input capacitor C1, and a DC / DC converter 210.
  • the outlet plug 202 receives the commercial AC voltage Vac in a state where it is inserted into the plug receptacle 201 of the wiring plug connector.
  • the diode bridge circuit 208 performs full-wave rectification on the AC voltage Vac.
  • the input capacitor C1 smoothes the voltage rectified by the diode bridge circuit 208.
  • the DC / DC converter 210 converts the voltage level of the smoothed DC voltage.
  • a DC voltage Vout stabilized at a certain voltage level by the DC / DC converter 210 is supplied to the electronic device.
  • the diode bridge circuit 208, the input capacitor C1, and the DC / DC converter 210 are built in the housing 204.
  • the present inventors have studied such a power adapter 200 and have come to recognize the following problems.
  • the DC / DC converter 210 mainly includes a switching transistor M1, a transformer T1, a first diode D1, a first output capacitor Co1, a control circuit 212, and a feedback circuit 214.
  • the feedback circuit 214 is a so-called photocoupler, and feeds back a feedback signal indicating the output voltage Vout to the control circuit 212.
  • the control circuit 212 controls the ON / OFF duty ratio of the switching transistor M1 using pulse modulation so that the output voltage Vout matches the target value.
  • the control circuit 212 can be operated with a power supply voltage Vcc of about 10V. However, if this is driven using a voltage (about 140V) smoothed by the input capacitor C1, the efficiency will deteriorate. Since the voltage Vout stepped down by the DC / DC converter 210 is generated on the secondary side of the transformer T1, the voltage Vout cannot be supplied to the control circuit 212 provided on the primary side.
  • an auxiliary coil L3 is provided on the primary side of the transformer T1.
  • the auxiliary coil L3, the second diode D2, and the second output capacitor Co2 function as an auxiliary DC / DC converter for generating the power supply voltage Vcc for the control circuit 212.
  • a pulsed voltage VD synchronized with the on / off of the switching transistor M1 is generated at one end N3 of the auxiliary coil L3.
  • This pulse voltage VD becomes the ground voltage (0 V) when the switching transistor M1 is on.
  • the voltage jumps to a high voltage of several tens of volts.
  • the capacitance value of the second output capacitor Co2 is sufficiently large, the influence of the jump of the one end N3 of the auxiliary coil L3 can be alleviated, and the power supply voltage Vcc becomes a stable voltage to some extent.
  • the capacitance of the second output capacitor Co2 is increased, the rising speed of the power supply voltage Vcc is slowed down, so that the capacitance value of the second output capacitor Co2 cannot be increased so much.
  • the power supply voltage Vcc is affected by the jump of the voltage VD at one end N3 of the auxiliary coil L3, and rises to several tens V (for example, about 30V).
  • the control circuit 212 is adversely affected. Specifically, there is a possibility that the overvoltage protection (OVP) of the control circuit 212 operates or the breakdown voltage of the control circuit 212 is exceeded.
  • OVP overvoltage protection
  • the jump of the voltage VD at the terminal N3 is caused by the leakage magnetic flux of the transformer T1. Therefore, by carefully designing the transformer T1, the jump of the voltage VD can be reduced, but another problem of increasing the cost of the transformer T1 occurs.
  • An aspect of the present invention has been made in view of these problems, and one of exemplary purposes thereof is to provide a power supply circuit capable of suppressing fluctuations in power supply voltage with respect to the control circuit.
  • An aspect of the present invention relates to a power adapter that receives an AC voltage, converts it to a DC voltage, and supplies the converted voltage to an electronic device.
  • the power adapter includes a plug that receives an AC voltage when inserted into the plug receiver, a rectifier circuit that rectifies the AC voltage supplied through the plug, and a smoothing capacitor that smoothes the voltage rectified by the rectifier circuit.
  • a DC / DC converter that receives the voltage smoothed by the smoothing capacitor and converts it to a DC voltage having a level to be supplied to the electronic device, and is connected to the DC / DC converter via a cable
  • a device-side connector configured to be detachable from the device and for supplying a DC voltage to the electronic device in a state of being connected to the electronic device.
  • the device-side connector includes a detection unit that detects whether or not an electronic device is connected and generates a connection detection signal indicating the presence or absence of the connection.
  • the control circuit of the DC / DC converter is connected to the detection unit of the device-side connector via a cable, and is activated when the connection detection signal indicates that the electronic device is connected, and the connection detection signal is connected to the electronic device. It is configured to be in a non-operating state when it indicates that there is no.
  • the control circuit of the DC / DC converter when the device side connector is inserted into the connector receiver of the electronic device and the connection of the electronic device is confirmed, the control circuit of the DC / DC converter is operated, and the connection of the electronic device cannot be confirmed.
  • the control circuit of the DC / DC converter can be shifted to a non-operating state (standby state), and power consumption in the standby state can be reduced.
  • the electronic device may include a built-in battery charged by a DC voltage and a signal processing unit that generates a full charge detection signal indicating whether or not the built-in battery is in a fully charged state.
  • the full charge detection signal may be input to the control circuit of the DC / DC converter via a cable in a state where the electronic device is connected to the device-side connector.
  • the control circuit may be in a non-operating state when the full charge detection signal indicates the full charge state of the internal battery.
  • the electronic device can operate with the power from the built-in battery, so there is no need to supply power from an external power adapter. Therefore, in this case, the standby power of the power adapter can be reduced by setting the control circuit to the standby state.
  • the detection unit may detect a mechanical connection between the device-side connector and the electronic device.
  • the detection unit may detect an electrical connection between the device-side connector and the electronic device.
  • the DC / DC converter is built in a power supply adapter that receives an AC voltage, converts it to a DC voltage, and supplies it to an electronic device.
  • the power adapter includes a device-side connector.
  • the device-side connector is connected to the DC / DC converter via a cable and is configured to be detachable from the electronic device.
  • a DC voltage is supplied to the electronic device via the device-side connector.
  • the device-side connector includes a detection unit that detects whether or not an electronic device is connected and generates a connection detection signal that indicates the presence or absence of the connection.
  • the control circuit is in an operating state when an enable terminal for receiving a connection detection signal from the device-side connector and the connection detection signal indicates that the electronic device is connected, and stabilizes the output voltage of the DC / DC converter by feedback.
  • a control unit is provided. When the connection detection signal indicates that the electronic device is not connected, the control unit becomes inoperative and stops controlling the DC / DC converter.
  • the power consumption of the power adapter when the electronic device is not connected can be reduced.
  • the electronic device may include a built-in battery charged by a DC voltage and a signal processing unit that generates a full charge detection signal indicating whether or not the built-in battery is in a fully charged state.
  • the control circuit may further include a second enable terminal for receiving a full charge detection signal.
  • the control unit may be in a non-operating state when the full charge detection signal indicates the full charge state of the internal battery.
  • Still another aspect of the present invention relates to a device-side connector of a power adapter that is detachably connected to an electronic device having a power supply terminal for receiving a DC voltage.
  • the device-side connector includes a power supply terminal and a detection unit.
  • the power supply terminal receives a direct current voltage from the DC / DC converter of the power adapter via a cable, and is disposed so as to face and be connected to the power terminal in a state where the device-side connector is connected to the electronic device.
  • the detection unit detects whether or not an electronic device is connected to the device-side connector, and generates a connection detection signal indicating whether or not there is a connection.
  • the device-side connector is configured such that the connection detection signal is supplied to the control circuit of the DC / DC converter via a cable.
  • the control circuit of the DC / DC converter built in the power adapter can be shifted to a non-operating state, and power consumption can be reduced.
  • the electronic device includes a built-in battery charged by a DC voltage, a signal processing unit that generates a full charge detection signal indicating whether or not the built-in battery is in a fully charged state, and a full charge detection signal for outputting the full charge detection signal to the outside. And a detection terminal.
  • the device-side connector further includes a detection signal receiving terminal that is disposed so as to face and be connected to the detection terminal in a state where the device-side connector is connected to the electronic device, and that receives a full charge detection signal from the signal processing unit. Good.
  • the device-side connector may be configured such that a full charge detection signal is supplied to the control circuit of the DC / DC converter via a cable.
  • Still another aspect of the present invention relates to an electronic device that operates by receiving an AC voltage and can switch between a normal operation mode and a standby mode.
  • An electronic device includes a plug that receives an AC voltage in a state of being inserted into the plug receiver, a rectifier circuit that rectifies the AC voltage supplied through the plug, and a smoothing capacitor that smoothes the voltage rectified by the rectifier circuit.
  • a DC / DC converter that receives a voltage smoothed by a smoothing capacitor and converts it to a DC voltage having a predetermined level, and an output voltage of the DC / DC converter that receives the smoothed voltage at its power supply terminal
  • a control circuit configured to control the DC / DC converter so that is constant, and is configured to be able to switch between an operating state and a non-operating state in accordance with a control signal input to an enable terminal thereof, and an electronic device Activation switch for receiving instructions to switch from standby mode to normal operation mode and normal operation mode of electronic devices
  • a standby switch for receiving an instruction to switch to the standby mode, and an output voltage of the DC / DC converter at its power supply terminal, the electronic device performs predetermined signal processing in the normal operation mode, monitors the standby switch, and A signal processing unit that outputs a control signal indicating whether the device is in a normal operation mode or a standby mode to the enable terminal of the control circuit.
  • the control circuit of the DC / DC converter can be deactivated to reduce the power consumption of the power supply portion of the electronic device.
  • the control circuit may include a reference voltage circuit that generates a predetermined reference voltage, and a reference voltage terminal for outputting the reference voltage to the outside.
  • the reference voltage may be supplied together with the output voltage of the DC / DC converter to the power supply terminal of the signal processing unit. According to this aspect, since the reference voltage is supplied instead of the DC voltage to the power supply terminal of the signal processing unit in the standby mode, the signal processing unit can be caused to execute the minimum signal processing in the standby mode. .
  • This DC / DC converter includes a primary coil, a secondary coil, a transformer having an auxiliary coil provided on the primary coil side, a first output capacitor having a fixed potential at one end thereof, and other than the first output capacitor.
  • a switching diode provided on the path of the primary coil, a potential of one end thereof, and a first diode provided between the end and one end of the secondary coil with the cathode facing the first output capacitor.
  • the switch includes a control circuit that receives a voltage generated in the second output capacitor at its power supply terminal and controls on and off of the switching transistor.
  • the mask switch may be turned off during a mask period from when the switching transistor is turned off until a predetermined time elapses.
  • the mask switch may be turned off during the period when the switching transistor is turned off in addition to the mask period.
  • the control circuit may have a terminal for outputting a mask signal for controlling the mask switch.
  • the control circuit may generate a mask signal by delaying a control signal for the switching transistor.
  • the power supply device may further include a feedback circuit that generates a feedback signal corresponding to a voltage generated in the first output capacitor.
  • the control circuit may adjust the on / off duty ratio of the switching transistor so that the feedback signal approaches the target value.
  • control circuit may adjust the duty ratio of the switching transistor on and off so that the feedback signal corresponding to the voltage generated in the second output capacitor approaches the target value. In this case, since it is not necessary to feed back the voltage of the first output capacitor to the control circuit, a feedback circuit such as a photocoupler becomes unnecessary.
  • the mask switch may include a P-channel MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor) or a PNP bipolar transistor.
  • MOSFET Metal / Oxide / Semiconductor / Field / Effect / Transistor
  • PNP bipolar transistor Metal / Oxide / Semiconductor / Field / Effect / Transistor
  • the control circuit includes an error amplifier that amplifies an error between the feedback signal and a target value thereof, a first comparator that generates an off signal that is asserted when the current flowing through the switching transistor reaches a level corresponding to the output signal of the error amplifier, A second comparator that generates an ON signal that is asserted when the potential of the node between the second diode and the auxiliary coil drops to a predetermined level, a flip-flop that changes its state based on the ON signal and the OFF signal, and a flip-flop A driver that drives the switching transistor based on the output signal of the flip-flop, and a mask signal generator that generates a mask signal based on the output signal of the flip-flop.
  • the power supply apparatus includes: a rectifier circuit that rectifies an AC voltage; an input capacitor that smoothes the voltage rectified by the rectifier circuit; and the DC / DC according to any one of the above aspects that converts the voltage smoothed by the input capacitor.
  • a converter that converts the voltage smoothed by the input capacitor.
  • wasteful power consumption can be reduced.
  • fluctuations in the power supply voltage with respect to the control circuit can be suppressed.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a control circuit in FIG. 6. It is a time chart which shows operation
  • the state in which the member A is connected to the member B means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. The case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 2 is a diagram illustrating a configuration of the power adapter 100 according to the first embodiment.
  • the power adapter 100 receives an AC voltage Vac such as a commercial AC voltage, converts it to a DC voltage Vdc, and supplies it to the electronic device 1.
  • Examples of the electronic device 1 include a laptop computer, a desktop computer, a mobile phone terminal, and a CD player, but are not particularly limited.
  • the power adapter 100 includes an outlet plug 10, an outlet cable 12, a rectifier circuit 14, a smoothing capacitor C1, a resistor R1, a DC / DC converter 16, a control IC 30, a connector side cable 20, and a device side connector 22.
  • the rectifier circuit 14, the smoothing capacitor C ⁇ b> 1, the DC / DC converter 16, and the control IC 30 are provided in the same housing 19.
  • the outlet plug 10 and the housing 19 are connected by the outlet cable 12, and the device-side connector 22 and the housing 19 are connected by the connector-side cable 20.
  • the outlet plug 10 is a socket that engages with the plug receptacle, and receives the AC voltage Vac when inserted into the plug receptacle.
  • the rectifier circuit 14 performs full-wave rectification on the AC voltage Vac supplied via the outlet plug 10 and the outlet cable 12.
  • the rectifier circuit 14 is, for example, a diode bridge circuit.
  • the smoothing capacitor C ⁇ b> 1 smoothes the voltage rectified by the rectifier circuit 14.
  • the DC / DC converter 16 receives the voltage smoothed by the smoothing capacitor C1, and converts it into a DC voltage Vdc having a level to be supplied to the electronic device 1.
  • the DC / DC converter 16 includes a converter unit 16a and a feedback unit 16b.
  • the topology of the converter unit 16a is not particularly limited, but FIG. 2 shows a converter using the transformer T1.
  • the converter unit 16a includes a transformer T1 including a primary coil L1 and a secondary coil L2, a switching transistor M1 provided in the path of the primary coil L1, a rectifier diode D1 connected to the secondary coil L2, and a rectifier diode.
  • An output capacitor C2 connected to the cathode side of D1 is provided.
  • the feedback unit 16b is an isolated feedback circuit in which the primary side and the secondary side are insulated, and is configured using, for example, a photocoupler.
  • the feedback unit 16b feeds back the output voltage Vdc of the DC / DC converter 16 to the control IC 30 and transmits a connection detection signal S1 generated by a device-side connector 22 described later to the control IC 30.
  • the feedback unit 16b may be configured as a non-insulating type.
  • the control IC 30 includes a feedback terminal FB, a switching signal generation unit 32, and a state monitoring unit 34.
  • the switching signal generator 32 generates the switching signal SW OUT according to the feedback signal Vfb input to the feedback terminal FB, and switches the switching transistor M1.
  • the switching transistor M1 may be built in the control IC 30.
  • the control IC 30 controls the duty ratio of the switching signal SW OUT , that is, the ON period and the OFF period of the switching transistor M1 so that the feedback signal Vfb is constant, in other words, the DC voltage Vdc is constant (PWM: Pulse Width Modulation) or the frequency of the switching signal SW OUT is controlled (PFM: Pulse Frequency Modulation).
  • the device-side connector 22 is connected to the DC / DC converter 16 via the connector-side cable 20.
  • the device-side connector 22 is detachable from the electronic device 1 directly or indirectly. Directly detachable means that the device-side connector 22 directly fits into or comes into contact with a socket or plug provided in the electronic device 1, and indirectly detachable means an extension cable or the like The case where both are connected via the.
  • the DC voltage Vdc and the ground potential Vgnd generated by the DC / DC converter 16 are output to the device-side connector 22 via the connector-side cable 20.
  • Electronic device 1 includes a power supply terminal Vdc + for receiving DC voltage Vdc from power supply adapter 100, and a power supply terminal Vdc- for receiving ground potential Vgnd.
  • the device-side connector 22 has voltage supply terminals P1 and P2 that are opposed to and electrically connected to the power supply terminal Vdc + and the power supply terminal Vdc- in a state of being connected to the electronic device 1.
  • the voltage supply terminals P1 and P2 are connected to the plus output terminal OUT + and the minus output terminal OUT ⁇ of the DC / DC converter 16 via the cable 20, respectively.
  • the device-side connector 22 includes a detection unit 24.
  • the detection unit 24 detects whether or not the electronic device 1 is connected to the device-side connector 22. Then, the detection unit 24 generates a connection detection signal S1 indicating whether or not the electronic device 1 is connected. For example, the connection detection signal S1 is at a high level (asserted) when the electronic device 1 is connected, and is at a low level (negated) when not connected.
  • the signal format of the connection detection signal S1 is not particularly limited.
  • the detection unit 24 may detect the connection between the device-side connector 22 and the electronic device 1 using a mechanical mechanism. Alternatively, the detection unit 24 may detect the connection between the device-side connector 22 and the electronic device 1 using electrical signal processing such as voltage detection, current detection, and impedance detection.
  • connection detection signal S1 is input to the enable terminal EN of the control IC 30 via the connector side cable 20 and the feedback unit 16b.
  • the control IC 30 is configured to be able to switch between an operating state and a non-operating state (standby state).
  • the switching signal generator 32 controls the switching transistor M1 based on the feedback signal Vfb.
  • the switching signal generator 32 leaves the minimum necessary circuit blocks and stops the operation of the other circuit blocks so that the power consumption becomes substantially zero in the standby state. By stopping all unnecessary circuits, the power consumption can be suppressed to 50 mW or less, which can be called substantially zero power consumption.
  • the state monitoring unit 34 switches between the operation state and the non-operation state of the switching signal generation unit 32 (control IC 30) according to the connection detection signal S1 input to the enable terminal EN. Specifically, the control IC 30 enters an operation state when the connection detection signal S1 indicates the connection of the electronic device 1. Conversely, the control IC 30 enters a standby state when the connection detection signal S1 indicates that the electronic device 1 is not connected.
  • connection detection signal S1 is asserted, and the connection of the electronic device 1 is notified to the control IC 30.
  • the state monitor 34 shifts the switching signal generator 32 from the standby state to the operating state.
  • a DC voltage Vdc is generated by the DC / DC converter 16 and supplied to the electronic device 1.
  • the device-side connector 22 is provided with a mechanism for detecting whether or not the electronic device 1 is connected, and controls the operation and non-operation states of the control IC 30 according to the detection result.
  • unnecessary power consumption can be reduced.
  • FIG. 3 is a diagram showing a configuration of a power adapter 100c according to the modification of FIG.
  • the configuration of the power adapter 100c will be described focusing on differences from the power adapter 100 of FIG.
  • the electronic device 1 c includes a built-in battery 2 and a signal processing unit 3.
  • the built-in battery 2 is charged with the DC voltage Vdc from the power adapter 100c.
  • the signal processing unit 3 is, for example, a microcomputer, and generates a full charge detection signal S2 indicating whether or not the built-in battery 2 is in a fully charged state.
  • the electronic device 1c includes a detection terminal FULL for outputting a full charge detection signal S2 to the device-side connector 22c.
  • the device-side connector 22c includes a detection signal receiving terminal P3 in addition to the voltage supply terminals P1 and P2.
  • the detection signal receiving terminal P3 is disposed so as to face and be connected to the detection terminal FULL in a state where the device-side connector 22c is connected to the electronic device 1.
  • the detection signal receiving terminal P3 receives the full charge detection signal S2 from the signal processing unit 3.
  • the detection signal receiving terminal P3 is connected to the control IC 30c via the cable 20c, and the full charge detection signal S2 is supplied to the control IC 30c.
  • the control IC 30c further includes a second enable terminal EN2 for receiving the full charge detection signal S2.
  • the inside of the control IC 30c is configured similarly to the control IC 30 in FIG.
  • the state monitoring unit 34 monitors the full charge detection signal S2 in addition to the connection detection signal S1. When the full charge detection signal S2 indicates the fully charged state of the internal battery 2, the switching signal generating unit 32 is set to the standby state.
  • the electronic device can operate with the power from the built-in battery, so there is no need to supply power from an external power adapter.
  • the control IC 30 can be in a standby state, and the standby power of the power adapter 100c can be substantially zero.
  • home appliances such as a washing machine, an air conditioner, and a television operate by receiving an AC voltage Vac.
  • these home appliances can be switched between a mode that performs its original function (referred to as a normal operation mode) and a mode that performs other processing (referred to as a standby mode).
  • a mode that performs its original function referred to as a normal operation mode
  • a standby mode a mode that performs other processing
  • the standby mode For example, in the case of a washing machine, the period for washing and drying is the normal operation mode, and the period for waiting by the reservation timer is the standby mode.
  • the technology described below can be used to reduce the power consumption of such home appliances.
  • FIG. 4 is a diagram illustrating a configuration of an electronic device according to the second embodiment.
  • the electronic device 1d includes an outlet plug 10, an outlet cable 12, a fuse F1, an input capacitor C3, a filter 11, a rectifier circuit 14, a DC / DC converter 16, a control IC 30, a microcomputer 40, an activation switch SW1, and a standby switch SW2. .
  • the electronic device 1d includes other circuit blocks (not shown), but is omitted here.
  • the fuse F1 is provided for the purpose of overvoltage or overcurrent protection.
  • the filter 11 removes a high frequency component of the AC voltage Vac.
  • the control IC 30d includes a switching signal generation unit 32, a state monitoring unit 34, and a BGR (Bandgap Regulator) 36.
  • the control IC 30d receives the voltage Vs smoothed by the rectifier circuit 14 at its power supply terminal Vcc.
  • the state monitoring unit 34 switches between the operation state and the standby state of the control IC 30d based on the control signal S2 input to the enable terminal #EN (# indicates so-called active low).
  • the control signal S3 when the control signal S3 is at a high level, the control IC 30d is in a standby state, and when it is at a low level, it is in an operating state.
  • the BGR 36 generates a predetermined reference voltage Vref regardless of whether it is in an operating state or in a standby state.
  • the reference voltage Vref is output to the outside of the control IC 30d.
  • the electronic device 1d can be switched between a normal operation mode that exhibits its original function and a standby mode that does not.
  • the normal operation mode is when warm air or cold air is being sent out.
  • the standby mode is a period of waiting by the timer control.
  • the electronic device 1d is provided with a standby switch SW2 for switching from the normal operation mode to the standby mode.
  • the standby switch SW2 is turned on when the user is pushed in and is cut off otherwise.
  • the standby switch SW2 is connected to the control terminal S4 of the microcomputer 40.
  • the microcomputer 40 monitors the state of the control terminal S4 and detects an instruction to switch to the standby mode by the user.
  • the microcomputer 40 generates a control signal S3 indicating whether the electronic device 1d is in the normal operation mode or the standby mode at that time.
  • the control signal S3 is at a low level in the normal operation mode and at a high level in the standby mode.
  • the microcomputer 40 fixes the control terminal S3 at a low level in the normal operation mode.
  • the control signal S3 is pulled up by the pull-up resistor R3 and becomes high level.
  • the coil L3, the switching transistor M1, the rectifier diode D2, and the capacitor C4 form a DC / DC converter 16c.
  • the voltage Vdc2 generated by the DC / DC converter 16c is supplied to the power supply terminal Vcc of the control IC 30d together with the smoothed voltage Vs. That is, when the switching signal generator 32 is in an operating state, the voltage Vdc generated by the DC / DC converter 16c is supplied to the power supply terminal Vcc.
  • the smoothed voltage Vs is supplied to the power supply terminal Vcc via the resistor R1.
  • the output voltage Vdc of the DC / DC converter 16 is supplied to the power supply terminal Vdd of the microcomputer 40 via the diode D3. Further, the reference voltage Vref is supplied to the power supply terminal Vdd via the diode D4. That is, the microcomputer 40 operates with the voltage Vdc from the microcomputer 40 when the DC / DC converter 16 is in the operating state, and operates with the reference voltage Vref supplied from the control IC 30d when the DC / DC converter 16 is in the operating state.
  • the activation switch SW1 is provided to shift the control IC 30d in the standby state to the operating state.
  • the activation switch SW1 is a switch that is turned on by the user at a timing at which the standby mode should be shifted to the normal operation mode.
  • the activation switch SW1 may be a power switch of the electronic device 1.
  • the control IC 30d monitors the state of the activation switch SW1 and detects a transition instruction from the user. When the control IC 30d detects the transition instruction, the control IC 30d transitions to the operation state. Specifically, the activation switch SW1 is provided between the enable terminal EN and the ground terminal of the control IC 30d. When the activation switch SW1 is turned on, the enable terminal EN is pulled down, so that the control signal S3 becomes low level. As a result, the control IC 30d enters an operating state.
  • the above is the configuration of the electronic device 1d. Next, the operation of the electronic device 1d will be described.
  • the control signal S3 becomes a low level
  • the control IC 30d enters an operating state
  • the DC voltage DC is generated by the DC / DC converter 16, and is supplied to the power supply terminal Vdd of the microcomputer 40.
  • the microcomputer 40 is activated and the microcomputer 40 fixes the control signal S3 at a low level.
  • the microcomputer 40 sets the control signal S3 to the high level. As a result, the control IC 30d makes a transition to the standby state.
  • the control IC 30 of the DC / DC converter 16 can be in a standby state during the period in which the electronic device 1 is in the standby mode, and standby power can be reduced to substantially zero.
  • the DC voltage Vdc is not supplied to the power supply terminal Vdd of the microcomputer 40, but the reference voltage Vref is continuously supplied, so that the microcomputer 40 can perform the minimum signal processing.
  • FIG. 6 is a circuit diagram showing a configuration of a power supply device 100 according to the third embodiment.
  • the power supply device 100 is a power supply adapter that receives an AC voltage Vac such as a commercial AC voltage, converts it to a DC voltage Vdc, and supplies it to an electronic device (not shown). Examples of the electronic device include a laptop computer, a desktop computer, a mobile phone terminal, and a CD player, but are not particularly limited.
  • the power supply apparatus 100 includes an outlet plug 10, an outlet cable 12, a rectifier circuit 14, an input capacitor (smoothing capacitor) C1, and a DC / DC converter 16.
  • the rectifier circuit 14, the input capacitor C1, and the DC / DC converter 16 are provided in the same casing 19.
  • the outlet plug 10 and the housing 19 are connected by an outlet cable 12.
  • the outlet plug 10 is a socket that fits into the plug receiver, and receives the AC voltage Vac when inserted into the plug receiver 101.
  • the rectifier circuit 14 performs full-wave rectification on the AC voltage Vac supplied via the outlet plug 10 and the outlet cable 12.
  • the rectifier circuit 14 is, for example, a diode bridge circuit.
  • the input capacitor C1 smoothes the voltage rectified by the rectifier circuit 14.
  • the DC / DC converter 16 receives the voltage Vdc smoothed by the input capacitor C1 and converts it to a DC voltage Vout having a level to be supplied to the electronic device.
  • the DC / DC converter 16 mainly includes a transformer T1, a first output capacitor Co1, a second output capacitor Co2, a first diode D1, a second diode D2, a switching transistor M1, a mask switch SW3, a feedback circuit 17 and a control circuit 18.
  • the transformer T1 has a primary coil L1, a secondary coil L2, and an auxiliary coil L3 provided on the primary coil side.
  • the number of turns of the primary coil L1 is NP
  • the number of turns of the secondary coil L2 is NS
  • the number of turns of the auxiliary coil L3 is ND.
  • the switching transistor M1, the primary coil L1, the secondary coil L2, the first diode D1, and the first output capacitor Co1 form a first converter (main converter).
  • the potential at one end of the first output capacitor Co1 is fixed.
  • the first diode D1 is provided between the other end of the first output capacitor Co1 and one end N2 of the secondary coil L2 in such a direction that the cathode is on the first output capacitor Co1 side.
  • the other end of the secondary coil L2 is grounded and the potential is fixed.
  • the switching transistor M1 is provided on the path of the primary coil L1.
  • a switching signal OUT from the control circuit 18 is input to the gate of the switching transistor M1 via the resistor R1.
  • the switching transistor M1, the primary coil L1, the auxiliary coil L3, the second diode D2, and the second output capacitor Co2 form a second converter (auxiliary converter).
  • the potential at one end of the second output capacitor Co2 is fixed.
  • the second diode D2 and the mask switch SW3 are provided in series between the other end of the second output capacitor Co2 and one end N3 of the auxiliary coil L3.
  • the potential at the other end of the auxiliary coil L3 is fixed.
  • the second diode D2 is arranged in such a direction that its cathode is on the second output capacitor Co2 side.
  • a second voltage Vcc corresponding to the duty ratio of the switching transistor M1 and the winding ratio of the transformer T1 is generated in the second output capacitor Co2.
  • the control circuit 18 receives the second voltage Vcc generated in the second output capacitor Co2 at the power supply terminal VCC. Note that the DC voltage Vdc is supplied to the power supply terminal VCC of the control circuit 18 through the resistor R21 before the second converter operates normally.
  • the input voltage Vdc 'divided by the resistors R5 and R6 is input to the input terminal DC of the control circuit 18. Activation and deactivation of the control circuit 18 is controlled based on the input voltage Vdc ′.
  • the control circuit 18 adjusts the duty ratio of the switching signal OUT using pulse width modulation (PWM), pulse frequency modulation (PFM), or the like so that the level of the voltage Vout generated in the first output capacitor Co1 approaches the target value.
  • PWM pulse width modulation
  • PFM pulse frequency modulation
  • the switching transistor M1 is controlled.
  • a method for generating the switching signal OUT is not particularly limited.
  • the control circuit 18 generates a mask signal MSK synchronized with the switching signal OUT, and controls the mask switch SW3.
  • the control circuit 18 turns off the mask switch SW3 for at least a predetermined period (referred to as a mask period ⁇ T) after the switching transistor M1 is turned off.
  • the control circuit 18 may turn off the mask switch SW3 during the on period Ton of the switching transistor M1.
  • the mask switch SW3 is a P-channel MOSFET, and a resistor R3 is provided between its gate and source.
  • the control circuit 18 sets the terminal MSK to high impedance (open) during the ON period Ton and the mask period ⁇ T of the switching transistor M1. Then, the gate and source of the mask switch SW3 are short-circuited by the resistor R3, and the mask switch SW3 is turned off. In the off period Toff of the switching transistor M1 after the lapse of the mask period ⁇ T, the control circuit 18 sets the mask signal MSK to the low level and turns on the mask switch SW3.
  • control circuit 18 determines the switching signal OUT and the output voltage Vout generated in the first output capacitor Co1, the current I M1 flowing through the switching transistor M1 (primary coil L1), and the voltage VD generated at one end N3 of the auxiliary coil L3.
  • a mask signal MSK is generated.
  • a feedback signal Vfb corresponding to the output voltage Vout is input to the feedback terminal FB of the control circuit 18 via the feedback circuit 17 including a photocoupler.
  • the capacitor C3 is provided for the purpose of phase compensation.
  • the detection resistor Rs is provided for detecting the current I M1 flowing through the switching transistor M1.
  • a voltage drop (detection signal) Vs generated in the detection resistor Rs is input to a current detection terminal (CS terminal) of the control circuit 18.
  • the voltage VD at one end of the auxiliary coil L3 of the control circuit 18 is input to the ZT terminal via a low pass filter including a resistor R4 and a capacitor C4.
  • FIG. 7 is a circuit diagram showing a configuration example of the control circuit of FIG.
  • the control circuit 18 includes an error amplifier 50, an off signal generation unit 52, an on signal generation unit 54, a drive unit 56, and a driver 62.
  • the error amplifier 50 amplifies an error between the feedback signal Vfb and the reference voltage Vref corresponding to the target value.
  • the off signal generation unit 52 includes a comparator that compares the detection signal Vs with the output signal of the error amplifier 50, and generates an off signal Soff that defines the timing at which the switching transistor M1 is turned off.
  • the off signal Soff generated by the off signal generation unit 52 is asserted when the current I M1 flowing through the switching transistor M1 reaches a level corresponding to the output signal of the error amplifier 50.
  • the output signal of the error amplifier 50 becomes high, the timing at which the off signal Soff is asserted is delayed, and the ON period Ton of the switching transistor M1 is lengthened.
  • the output voltage Feedback is applied in the direction in which Vout (feedback signal Vfb) increases.
  • the feedback signal Vfb becomes higher than the reference voltage Vref, the output signal of the error amplifier 50 becomes lower, the timing at which the off signal Soff is asserted becomes earlier, and the on period Ton of the switching transistor M1 becomes shorter. Feedback is applied in the direction in which the output voltage Vout (feedback signal Vfb) decreases.
  • the on signal generator 54 generates an on signal Son that is asserted after the off signal Soff is asserted.
  • 7 includes a comparator that compares the potential Vd of the node N3 on the path between the second diode D2 and the auxiliary coil L3 with a predetermined level Vth.
  • the on signal generation unit 54 asserts the on signal Son when the potential of the node N1 decreases to the predetermined level Vth.
  • the switching transistor M1 When the switching transistor M1 is turned on, a current I M1 flows through the primary coil L1, and energy is stored in the transformer T1. Thereafter, when the switching transistor M1 is turned off, the energy stored in the transformer T1 is released.
  • the on-signal generator 54 can detect that the energy of the transformer T1 has been completely released by monitoring the voltage Vd generated in the auxiliary coil L3. When detecting the release of energy, the on signal generation unit 54 asserts the on signal Son to turn on the switching transistor M1 again.
  • the driving unit 56 turns on the switching transistor M1 when the on signal Son is asserted, and turns off the switching transistor M1 when the off signal Soff is asserted.
  • the drive unit 56 includes a flip-flop 58, a pre-driver 60, and a driver 62.
  • the flip-flop 58 receives an on signal Son and an off signal Soff at a set terminal and a reset terminal, respectively.
  • the state of the flip-flop 58 changes according to the on signal Son and the off signal Soff.
  • the duty ratio of the output signal Smod of the flip-flop 58 is modulated so that the feedback signal Vfb (output voltage Vout) matches the target value Vref.
  • the high level of the drive signal Smod and the switching signal OUT is associated with the switching transistor M1 being on, and the low level is associated with the switching transistor M1 being off.
  • the pre-driver 60 drives the driver 62 according to the output signal Smod of the flip-flop 58.
  • a dead time is set for the output signals SH and SL of the pre-driver 60 so that the high-side transistor and the low-side transistor of the driver 62 are not turned on simultaneously.
  • a switching signal OUT is output from the driver 62.
  • the mask signal generation unit 70 generates a mask signal MSK synchronized with at least one of the on signal Son and the off signal Soff.
  • the mask signal generation unit 70 includes a delay circuit 72 and a logic gate 74 output transistor 76.
  • the delay circuit 72 delays the low-side drive signal SL by a mask time ⁇ T.
  • the logic gate (NOR) 74 generates a low-side drive signal SL that is not delayed and a negated logical sum of the low-side drive signal SL and outputs it to the gate of the output transistor 76.
  • the mask signal generation unit 70 is configured in an open drain format.
  • FIG. 8 is a time chart showing the operation of the power supply apparatus 100 of FIG.
  • the vertical and horizontal axes in FIG. 8 are enlarged or reduced as appropriate for easy understanding, and the waveforms shown are also simplified for easy understanding.
  • FIG. 8 shows, in order from the top, the switching signal OUT, the potential VP of one end N1 of the primary coil L1, the potential VS of one end N2 of the secondary coil L2, the potential VD of one end N3 of the auxiliary coil L3, and the mask signal MSK. It is.
  • the control signal 18 is generated by the control circuit 18, and the switching transistor M1 is alternately turned on and off. While the switching transistor M1 is on, the voltage VP is fixed near the ground voltage.
  • Vf is a forward voltage of the first diode D1.
  • the capacitance value of the first output capacitor Co1 is sufficiently large, the output voltage Vout hardly increases and is kept constant.
  • the mask signal MSK is at a high level during the mask period ⁇ T after the switching transistor M1 is turned off, and the mask switch SW3 is turned off. This mask period ⁇ T overlaps with a period during which ripple noise occurs in the voltage VS.
  • the overvoltage protection (OVP) of the control circuit 18 may work unnecessarily, making it difficult to design a threshold voltage for overvoltage protection. Or, since the withstand voltage required for the control circuit 18 is increased, the cost is increased.
  • FIG. 9 is a circuit diagram showing a configuration of a power supply device 100a according to a modification.
  • the switching signal OUT is generated based on the feedback signal Vfb corresponding to the output voltage Vout.
  • the second voltage Vcc is stabilized, so that the switching signal OUT is generated based on the second voltage Vcc. Specifically, a feedback signal Vfb corresponding to the second voltage Vcc is fed back to the feedback terminal FB of the control circuit 18.
  • the second voltage Vcc is generated on the primary side of the transformer T1, it can be electrically fed back to the control circuit 18. That is, since a photocoupler is unnecessary, the cost can be reduced.
  • both the feedback terminal FB and the power supply terminal VCC receive a signal corresponding to the second voltage Vcc, the feedback terminal FB and the power supply terminal VCC may be shared. In this case, the number of pins of the control circuit 18 can be reduced, and the chip size can be reduced.
  • the mask switch SW3 may be formed of a PNP bipolar transistor or a transfer gate.
  • the positions of the mask switch SW3 and the second diode D2 may be interchanged.
  • the mask period ⁇ T is based on any of the voltages VP, VS, and VD generated in the primary coil L1, the secondary coil L2, and the auxiliary coil L3. May be dynamically controlled.
  • the mask signal MSK may be generated by a circuit outside the control circuit 18.
  • the mask switch SW3 may be turned off or turned on.
  • a person skilled in the art can design various mask signal generation units 70 for generating the necessary mask signal MSK.
  • the mask signal generation unit 70 can generate the mask signal based on one of the ON signal Son, the OFF signal Soff, the modulation signal Smod, the high side drive signal SH, and the low side drive signal SL, or a combination thereof.
  • a one-shot circuit, a counter, or a timer may be used instead of or in addition to the delay circuit 72.
  • control circuit 18 there are various types of control circuit 18 and that the configuration is not limited in the present invention.
  • the control circuit 18 may be a commercially available general purpose one.
  • a timer circuit that measures a predetermined off time Toff may be used as the on signal generation unit 54 in FIG. It is also possible to fix the off time Toff by estimating in advance the time required for energy release. In this case, the circuit can be simplified in exchange for the deterioration of energy efficiency.
  • the technique according to the third embodiment represented by FIG. 6 can be suitably combined with the second embodiment represented by FIG. That is, the mask switch SW3 may be provided in the circuit of FIG. 4 and controlled according to the mask signal.
  • the present invention is not limited to this and can be applied to various power supply devices.
  • SYMBOLS 1 Electronic device, 2 ... Built-in battery, 3 ... Signal processing part, 10 ... Outlet plug, 12 ... Outlet cable, 14 ... Rectifier circuit, C1 ... Smoothing capacitor, R1 ... Resistance, 16 ... DC / DC converter, 16a ... Converter part, 16b ... feedback part, M1 ... switching transistor, 19 ... housing, 20 ... connector side cable, 22 ... equipment side connector, 24 ... detection part, 30 ... control IC, 32 ... switching signal generating part, 34 ... state Monitoring unit, 36 ... BGR, 40 ... microcomputer, 100 ... power adapter, S1 ... connection detection signal, S2 ... full charge detection signal, P1, P2 ... voltage supply terminal, P3 ... detection signal reception terminal, F1 ... fuse, SW1 ... Activation switch, SW2 ... Standby switch.
  • the present invention can be used for a power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

 電源アダプタ100は、交流電圧Vacを受け、直流電圧Vdcに変換して電子機器1に供給する。DC/DCコンバータ16は、平滑用キャパシタC1により平滑化された電圧Vsを直流電圧Vdcに変換する。機器側コネクタ22は、ケーブル20を介してDC/DCコンバータ16と接続されるとともに、電子機器1と着脱可能に構成される。機器側コネクタ22は、電子機器1が接続されているか否かを検出し、接続の有無を示す接続検出信号S1を生成する検出部24を含む。DC/DCコンバータ16の制御回路30はケーブル20を介して機器側コネクタ22の検出部24と接続されており、接続検出信号S1が電子機器1の接続があることを示すとき動作状態となり、接続検出信号S1が電子機器1の接続がないことを示すとき非動作状態となるよう構成される。

Description

電源アダプタ、DC/DCコンバータの制御回路および機器側コネクタ、DC/DCコンバータ、それを用いた電源装置、ならびに電子機器
 本発明は、DC/DCコンバータの制御技術に関する。
 ラップトップ型コンピュータ、携帯電話端末やPDA(Personal Digital Assisntats)をはじめとする電子機器は、内蔵の電池から電力を受けて動作するほか、外部電源からの電力を受けて動作し、また外部電源からの電力によって内蔵の電池を充電可能となっている。
 こうした電子機器に外部から電力を供給する外部電源として、商用交流電圧をAC/DC(交流/直流)変換する電源アダプタ(ACアダプタ)が用いられる。図1は、電源アダプタの構成を示す図である。電源アダプタ200は、交流電圧Vacを受けるためのコンセントプラグ202、機器側コネクタ206、ダイオードブリッジ回路208、平滑用キャパシタC1、DC/DCコンバータ210を備える。
 コンセントプラグ202は配線用差込接続器のプラグ受け201に差し込まれた状態において、商用交流電圧Vacを受ける。ダイオードブリッジ回路208は、交流電圧Vacを全波整流する。平滑用キャパシタC1は、ダイオードブリッジ回路208により整流された電圧を平滑化する。DC/DCコンバータ210は、平滑化された直流電圧の電圧レベルを変換する。DC/DCコンバータ210によってある電圧レベルに安定化された直流電圧Vdcが、機器側コネクタ206を介して電子機器1へと供給される。ダイオードブリッジ回路208、平滑用キャパシタC1、DC/DCコンバータ210は、筐体204に内蔵され、筐体204とコンセントプラグ202間、筐体204と機器側コネクタ206間はそれぞれ、ケーブルで接続されている。
特開平9-098571号公報 特開平2-211055号公報
1. 従来の電源アダプタでは、コンセントプラグ202がプラグ受け201に差し込まれた状態では、常時DC/DCコンバータ210が動作して直流電圧Vdcを発生するため、無駄な電力(待機電力)を消費することになる。
 本発明のある態様はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、消費電力を低減した電源の提供にある。
2. 図5は、本発明者が検討した電源アダプタの構成を示す図である。この電源アダプタ200の具体的構成を当業者によく知られた一般的な技術とみなしてはならない。
 電源アダプタ200は、交流電圧Vacを受けるためのコンセントプラグ202、ダイオードブリッジ回路208、入力キャパシタC1、DC/DCコンバータ210を備える。
 コンセントプラグ202は配線用差込接続器のプラグ受け201に差し込まれた状態において、商用交流電圧Vacを受ける。ダイオードブリッジ回路208は、交流電圧Vacを全波整流する。入力キャパシタC1は、ダイオードブリッジ回路208により整流された電圧を平滑化する。DC/DCコンバータ210は、平滑化された直流電圧の電圧レベルを変換する。DC/DCコンバータ210によってある電圧レベルに安定化された直流電圧Voutが、電子機器へと供給される。ダイオードブリッジ回路208、入力キャパシタC1、DC/DCコンバータ210は、筐体204に内蔵される。
 本発明者らは、このような電源アダプタ200について検討し、以下の課題を認識するに至った。
 DC/DCコンバータ210は、主としてスイッチングトランジスタM1、トランスT1、第1ダイオードD1、第1出力キャパシタCo1、制御回路212、フィードバック回路214を備える。電源アダプタ200は、トランスT1の1次側領域と2次側領域が電気的に絶縁されていなければならない。フィードバック回路214は、いわゆるフォトカプラであり、出力電圧Voutを示すフィードバック信号を制御回路212にフィードバックする。制御回路212は、出力電圧Voutが目標値と一致するようにスイッチングトランジスタM1のオン、オフのデューティ比をパルス変調を用いて制御する。
 制御回路212は、10V程度の電源電圧Vccで動作可能であるところ、これを入力キャパシタC1によって平滑化された電圧(140V程度)を用いて駆動すると、効率が悪くなる。DC/DCコンバータ210によって降圧された電圧VoutはトランスT1の2次側に発生することから、この電圧Voutを1次側に設けられた制御回路212に供給することはできない。
 そこでトランスT1の1次側には、補助コイルL3が設けられる。補助コイルL3、第2ダイオードD2および第2出力キャパシタCo2は、制御回路212に対する電源電圧Vccを生成するための補助的なDC/DCコンバータとして機能する。
 補助コイルL3の一端N3には、スイッチングトランジスタM1のオン、オフと同期したパルス状の電圧VDが発生する。このパルス電圧VDは、スイッチングトランジスタM1がオンしているとき接地電圧(0V)となる。そしてスイッチングトランジスタM1がオンからオフに切りかわった直後には、数十Vの高い電圧に跳ね上がる。
 ここで第2出力キャパシタCo2の容量値が十分に大きければ、補助コイルL3の一端N3の跳ね上がりの影響を緩和することができ、電源電圧Vccはある程度安定した電圧となる。しかしながら第2出力キャパシタCo2の容量を大きくすると、電源電圧Vccの立ち上がり速度が遅くなることから、第2出力キャパシタCo2の容量値はそれほど大きくできない。
 第2出力キャパシタCo2として現実的な容量値を選択すると、電源電圧Vccは、補助コイルL3の一端N3の電圧VDの跳ね上がりの影響を受け、数十V(たとえば30V程度)まで上昇する。その結果、制御回路212に好ましくない影響を及ぼす。具体的には制御回路212の過電圧保護(OVP)が動作したり、制御回路212の耐圧を超えるおそれがある。
 端子N3の電圧VDの跳ね上がりは、トランスT1の漏れ磁束などに起因するものである。したがってトランスT1を注意深く設計することにより、電圧VDの跳ね上がりは小さくできるが、トランスT1のコストが高くなるという別の問題が発生する。
 本発明のある態様はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、制御回路に対する電源電圧の変動を抑制可能な電源回路の提供にある。
1. 本発明のある態様は、交流電圧を受け、それを直流電圧に変換して電子機器に供給する電源アダプタに関する。電源アダプタは、プラグ受けに差し込まれた状態において交流電圧を受けるプラグと、プラグを介して供給された交流電圧を整流する整流回路と、整流回路によって整流された電圧を平滑化する平滑用キャパシタと、平滑用キャパシタにより平滑化された電圧を受け、それを電子機器に供給すべきレベルを有する直流電圧に変換するDC/DCコンバータと、ケーブルを介してDC/DCコンバータと接続されるとともに、電子機器と着脱可能に構成され、電子機器と接続された状態で直流電圧を電子機器に供給するための機器側コネクタと、を備える。機器側コネクタは、電子機器が接続されているか否かを検出し、接続の有無を示す接続検出信号を生成する検出部を含む。DC/DCコンバータの制御回路はケーブルを介して機器側コネクタの検出部と接続されており、接続検出信号が電子機器の接続があることを示すとき動作状態となり、接続検出信号が電子機器の接続がないことを示すとき非動作状態となるよう構成される。
 この態様によると、機器側コネクタが、電子機器のコネクタ受けに挿入されて電子機器の接続が確認されたときにDC/DCコンバータの制御回路を動作させ、電子機器の接続が確認できない場合には、DC/DCコンバータの制御回路を非動作状態(スタンバイ状態)に移行することができ、スタンバイ状態の消費電力を低減することができる。
 電子機器は、直流電圧によって充電される内蔵電池と、内蔵電池が満充電状態であるか否かを示す満充電検出信号を発生する信号処理部と、を含んでもよい。満充電検出信号は、機器側コネクタに電子機器が接続された状態で、ケーブルを介してDC/DCコンバータの制御回路へと入力されてもよい。制御回路は、満充電検出信号が内蔵電池の満充電状態を示すとき、非動作状態となってもよい。
 電子機器側の内蔵電池が満充電状態である場合は、電子機器は内蔵電池からの電力で動作できるため、外部の電源アダプタから電力を供給する必要がない。したがってこの場合には、制御回路をスタンバイ状態とすることにより、電源アダプタの待機電力を低減できる。
 検出部は、機器側コネクタと電子機器の機械的な接続を検出してもよい。検出部は、機器側コネクタと電子機器の電気的な接続を検出してもよい。
 本発明の別の態様は、DC/DCコンバータの制御回路に関する。DC/DCコンバータは、交流電圧を受け、それを直流電圧に変換して電子機器に供給する電源アダプタに内蔵される。電源アダプタは、機器側コネクタを備える。この機器側コネクタは、ケーブルを介してDC/DCコンバータと接続されるとともに、電子機器と着脱可能に構成され、電子機器と接続された状態において、この機器側コネクタを介して直流電圧が電子機器に供給される。この機器側コネクタは、電子機器が接続されているか否かを検出し、接続の有無を示す接続検出信号を生成する検出部を含む。
 制御回路は、機器側コネクタから接続検出信号を受けるためのイネーブル端子と、接続検出信号が電子機器の接続があることを示すとき動作状態となり、DC/DCコンバータの出力電圧をフィードバックにより安定化する制御部を備える。この制御部は、接続検出信号が電子機器の接続がないことを示すとき非動作状態となり、DC/DCコンバータの制御を停止する。
 この態様によると、電子機器が接続されていない場合の電源アダプタの消費電力を低減できる。
 電子機器は、直流電圧によって充電される内蔵電池と、内蔵電池が満充電状態であるか否かを示す満充電検出信号を発生する信号処理部と、を含んでもよい。制御回路は、満充電検出信号を受けるための第2イネーブル端子をさらに備えてもよい。制御部は、満充電検出信号が内蔵電池の満充電状態を示すとき、非動作状態となってもよい。
 本発明のさらに別の態様は、直流電圧を受けるための電源端子を有する電子機器と着脱可能に接続される電源アダプタの機器側コネクタに関する。機器側コネクタは、電源供給端子と、検出部とを備える。電源供給端子は、ケーブルを介して電源アダプタのDC/DCコンバータからの直流電圧を受け、かつ機器側コネクタが電子機器と接続された状態において電源端子と対向し、接続されるように配置される。検出部は、機器側コネクタに電子機器が接続されているか否かを検出し、接続の有無を示す接続検出信号を生成する。この機器側コネクタは、接続検出信号がケーブルを介してDC/DCコンバータの制御回路へと供給されるように構成される。
 この態様によると、この機器側コネクタに電子機器が接続されていないときに、電源アダプタに内蔵されるDC/DCコンバータの制御回路を非動作状態に遷移させることができ、消費電力を低減できる。
 電子機器は、直流電圧によって充電される内蔵電池と、内蔵電池が満充電状態であるか否かを示す満充電検出信号を発生する信号処理部と、満充電検出信号を外部に出力するための検出端子と、を含んでもよい。機器側コネクタは、機器側コネクタが電子機器と接続された状態において検出端子と対向し、接続されるように配置され、満充電検出信号を信号処理部から受ける検出信号受信端子をさらに備えてもよい。この機器側コネクタは、満充電検出信号がケーブルを介して前記DC/DCコンバータの制御回路へと供給されるように構成されてもよい。
 本発明のさらに別の態様は、交流電圧を受けて動作し、通常動作モードと待機モードが切りかえ可能な電子機器に関する。電子機器は、プラグ受けに差し込まれた状態において交流電圧を受けるプラグと、プラグを介して供給された交流電圧を整流する整流回路と、整流回路によって整流された電圧を平滑化する平滑用キャパシタと、平滑用キャパシタにより平滑化された電圧を受け、それを所定のレベルを有する直流電圧に変換するDC/DCコンバータと、その電源端子に平滑化された電圧を受け、DC/DCコンバータの出力電圧が一定となるようにDC/DCコンバータを制御する制御回路であって、そのイネーブル端子に入力された制御信号に応じて動作状態と非動作状態が切りかえ可能に構成された制御回路と、電子機器の待機モードから通常動作モードへの切りかえ指示を受けるためのアクティベーションスイッチと、電子機器の通常動作モードから待機モードへの切りかえ指示を受けるためのスタンバイスイッチと、その電源端子にDC/DCコンバータの出力電圧を受け、電子機器が通常動作モードにおいて所定の信号処理を行うとともに、スタンバイスイッチを監視し、電子機器が通常動作モードであるか待機モードであるかを示す制御信号を制御回路の前記イネーブル端子へと出力する信号処理部と、を備える。
 この態様によれば、待機モードにおいてDC/DCコンバータの制御回路を非動作状態として電子機器の電源部分の消費電力を低減できる。
 制御回路は、所定の基準電圧を発生する基準電圧回路と、基準電圧を外部に出力するための基準電圧端子と、を含んでもよい。基準電圧は、信号処理部の電源端子にDC/DCコンバータの出力電圧とともに供給されてもよい。
 この態様によれば、待機モードにおいて信号処理部の電源端子には直流電圧に代えて基準電圧が供給されるため、待機モードにおいてなお、信号処理部に最低限度の信号処理を実行させることができる。
 本発明のある態様は、DC/DCコンバータに関する。このDC/DCコンバータは、1次コイル、2次コイルおよび1次コイル側に設けられた補助コイルを有するトランスと、その一端の電位が固定された第1出力キャパシタと、第1出力キャパシタの他端と2次コイルの一端との間に、そのカソードが第1出力キャパシタ側となる向きで設けられた第1ダイオードと、1次コイルの経路上に設けられたスイッチングトランジスタと、その一端の電位が固定された第2出力キャパシタと、第2出力キャパシタの他端と補助コイルの一端との間に直列に設けられた、そのカソードが第2出力キャパシタ側となる向きの第2ダイオードおよびマスク用スイッチと、その電源端子に第2出力キャパシタに生ずる電圧を受け、スイッチングトランジスタのオン、オフを制御する制御回路と、を備える。
 この態様によると、マスク用スイッチをオフすることにより、補助コイルに発生する電圧の跳ね上がりが第2出力キャパシタに生ずる電圧に伝搬するのを抑制できる。
 マスク用スイッチは、スイッチングトランジスタがオフしてから所定時間経過するまでのマスク期間の間、オフしてもよい。
 さらにマスク用スイッチは、マスク期間に加えて、スイッチングトランジスタがオフする期間、オフしてもよい。
 制御回路は、マスク用スイッチを制御するためのマスク信号を出力するための端子を有してもよい。
 制御回路は、スイッチングトランジスタに対する制御信号を遅延させることにより、マスク信号を生成してもよい。
 ある態様の電源装置は、第1出力キャパシタに生ずる電圧に応じたフィードバック信号を生成するフィードバック回路をさらに備えてもよい。制御回路は、フィードバック信号が目標値に近づくように、スイッチングトランジスタのオン、オフのデューティ比を調節してもよい。
 ある態様の電源装置において、制御回路は、第2出力キャパシタに生ずる電圧に応じたフィードバック信号が目標値に近づくように、スイッチングトランジスタのオン、オフのデューティ比を調節してもよい。この場合、第1出力キャパシタの電圧を制御回路にフィードバックする必要がなくなるため、フォトカプラなどのフィードバック回路が不要となる。
 マスク用スイッチは、PチャンネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはPNP型バイポーラトランジスタを含んでもよい。
 制御回路は、フィードバック信号とその目標値の誤差を増幅する誤差増幅器と、スイッチングトランジスタに流れる電流が、誤差増幅器の出力信号に応じたレベルに達するとアサートされるオフ信号を発生する第1コンパレータと、第2ダイオードと補助コイルの間のノードの電位が所定レベルまで低下するとアサートされるオン信号を発生する第2コンパレータと、オン信号およびオフ信号にもとづいてその状態が遷移するフリップフロップと、フリップフロップの出力信号にもとづいてスイッチングトランジスタを駆動するドライバと、フリップフロップの出力信号にもとづいてマスク信号を生成するマスク信号生成部と、を含んでもよい。
 本発明の別の態様は、交流電圧を受け、それを直流電圧に変換して電子機器に供給する電源装置に関する。電源装置は、交流電圧を整流する整流回路と、整流回路によって整流された電圧を平滑化する入力キャパシタと、入力キャパシタによって平滑化された電圧を変換する、上述のいずれかの態様のDC/DCコンバータと、を備える。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、無駄な消費電力を低減できる。また本発明の別の態様によれば、制御回路に対する電源電圧の変動を抑制できる。
一般的な電源アダプタの構成を示す図である。 第1の実施の形態に係る電源アダプタの構成を示す図である。 図2の変形例に係る電源アダプタの構成を示す図である。 第2の実施の形態に係る電子機器の構成を示す図である。 本発明者が検討した電源アダプタの構成を示す図である。 第3の実施の形態に係る電源装置の構成を示す回路図である。 図6の制御回路の構成例を示す回路図である。 図6の電源装置の動作を示すタイムチャートである。 変形例に係る電源装置の構成を示す回路図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 (第1の実施の形態)
 図2は、第1の実施の形態に係る電源アダプタ100の構成を示す図である。電源アダプタ100は、商用交流電圧などの交流電圧Vacを受け、それを直流電圧Vdcに変換して電子機器1に供給する。電子機器1は、ラップトップ型コンピュータ、デスクトップ型コンピュータ、携帯電話端末、CDプレイヤなどが例示されるが、特に限定されない。
 電源アダプタ100は、コンセントプラグ10、コンセントケーブル12、整流回路14、平滑用キャパシタC1、抵抗R1、DC/DCコンバータ16、制御IC30、コネクタ側ケーブル20、機器側コネクタ22を備える。
 整流回路14、平滑用キャパシタC1、DC/DCコンバータ16、制御IC30は、同じ筐体19内に設けられている。コンセントプラグ10と筐体19の間は、コンセントケーブル12で接続され、機器側コネクタ22と筐体19の間はコネクタ側ケーブル20で接続されている。
 コンセントプラグ10は、プラグ受けと勘合するソケットであり、プラグ受けに差し込まれた状態において交流電圧Vacを受ける。整流回路14は、コンセントプラグ10およびコンセントケーブル12を介して供給された交流電圧Vacを全波整流する。整流回路14はたとえばダイオードブリッジ回路である。平滑用キャパシタC1は、整流回路14によって整流された電圧を平滑化する。
 DC/DCコンバータ16は、平滑用キャパシタC1により平滑化された電圧を受け、それを電子機器1に供給すべきレベルを有する直流電圧Vdcに変換する。DC/DCコンバータ16は、コンバータ部16a、フィードバック部16bを含む。コンバータ部16aのトポロジーは特に限定されないが、図2には、トランスT1を用いたコンバータが示される。コンバータ部16aは、1次コイルL1および2次コイルL2を含むトランスT1と、1次コイルL1の経路に設けられたスイッチングトランジスタM1と、2次コイルL2に接続された整流ダイオードD1と、整流ダイオードD1のカソード側に接続された出力キャパシタC2を備える。
 フィードバック部16bは、1次側と2次側が絶縁された絶縁型のフィードバック回路であり、たとえばフォトカプラを用いて構成される。フィードバック部16bは、DC/DCコンバータ16の出力電圧Vdcを制御IC30へとフィードバックするとともに、後述する機器側コネクタ22により生成される接続検出信号S1を制御IC30へと伝達する。なおフィードバック部16bは非絶縁型で構成されてもよい。
 制御IC30は、フィードバック端子FB、スイッチング信号発生部32、状態監視部34を備える。スイッチング信号発生部32は、フィードバック端子FBに入力されたフィードバック信号Vfbに応じてスイッチング信号SWOUTを生成し、スイッチングトランジスタM1をスイッチングする。スイッチングトランジスタM1は制御IC30に内蔵されてもよい。制御IC30は、フィードバック信号Vfbが一定となるように、言い換えれば直流電圧Vdcが一定となるように、スイッチング信号SWOUTのデューティ比、つまりスイッチングトランジスタM1のオン期間とオフ期間を制御し(PWM:Pulse Width Modulation)、あるいはスイッチング信号SWOUTの周波数を制御する(PFM:Pulse Frequency Modulation)。
 機器側コネクタ22は、コネクタ側ケーブル20を介してDC/DCコンバータ16と接続される。また機器側コネクタ22は電子機器1に対して直接的にもしくは間接的に着脱可能となっている。直接的に着脱可能とは、機器側コネクタ22が直接的に、電子機器1に設けられたソケットもしくはプラグに嵌合、もしくは接触する場合を意味し、間接的に着脱可能とは、延長ケーブルなどを介して両者が接続される場合をいう。
 DC/DCコンバータ16により生成された直流電圧Vdcおよびグランド電位Vgndは、コネクタ側ケーブル20を介して機器側コネクタ22へと出力される。電子機器1は、電源アダプタ100から直流電圧Vdcを受けるための電源端子Vdc+と、グランド電位Vgndを受けるための電源端子Vdc-を備える。機器側コネクタ22は、電子機器1に接続された状態で、電源端子Vdc+、電源端子Vdc-それぞれと対向し、電気的に接続される電圧供給端子P1、P2を有する。電圧供給端子P1、P2はそれぞれ、ケーブル20を介してDC/DCコンバータ16のプラス出力端子OUT+とマイナス出力端子OUT-に接続される。
 機器側コネクタ22は、検出部24を備える。検出部24は、機器側コネクタ22に電子機器1が接続されているか否かを検出する。そして検出部24は、電子機器1の接続の有無を示す接続検出信号S1を生成する。たとえば接続検出信号S1は、電子機器1が接続されているときにハイレベル(アサート)、非接続のときにローレベル(ネゲート)となる。この接続検出信号S1の信号形式は特に限定されない。
 検出部24は、機器側コネクタ22と電子機器1との接続を、機械的な機構を用いて検出してもよい。あるいは検出部24は、機器側コネクタ22と電子機器1との接続を、電圧検出や電流検出、インピーダンス検出などの電気的な信号処理を用いて検出してもよい。
 接続検出信号S1は、コネクタ側ケーブル20およびフィードバック部16bを介して制御IC30のイネーブル端子ENに入力される。
 制御IC30は、動作状態と非動作状態(スタンバイ状態)とが切りかえ可能に構成されている。スイッチング信号発生部32は動作状態において、フィードバック信号VfbにもとづいてスイッチングトランジスタM1を制御する。反対にスイッチング信号発生部32はスタンバイ状態において、消費電力が実質的にゼロとなるように、必要最小限の回路ブロックを残し、その他の回路ブロックの動作を停止する。不要な回路をすべて停止することで、その消費電力は50mW以下に抑制でき、これは実質的に、消費電力ゼロと称することができる。
 状態監視部34は、イネーブル端子ENに入力された接続検出信号S1に応じて、スイッチング信号発生部32(制御IC30)の動作状態と非動作状態を切りかえる。具体的には制御IC30は、接続検出信号S1が電子機器1の接続を示すときに、動作状態となる。反対に制御IC30は、接続検出信号S1が電子機器1の非接続を示すとき、スタンバイ状態となる。
 以上が電源アダプタ100の構成である。続いてその動作を説明する。
(a) ユーザがコンセントプラグ10を差込プラグに挿入すると、電源アダプタ100には交流電圧Vacが供給される。このとき電子機器1は機器側コネクタ22と接続されていないものとする。そうすると制御IC30には、電子機器1の非接続を示す接続検出信号S1が入力される。その結果、制御IC30はスタンバイ状態に移行し、電源アダプタ100の消費電力が非常に小さくなる。
(b) 続いて機器側コネクタ22に電子機器1が接続されると、接続検出信号S1がアサートされ、制御IC30に電子機器1の接続が通知される。これを受けて状態監視部34は、スイッチング信号発生部32をスタンバイ状態から動作状態へと移行させる。その結果、DC/DCコンバータ16によって直流電圧Vdcが生成され、電子機器1へと供給される。
(c) 続いて電子機器1から機器側コネクタ22を取り外すと、機器側コネクタ22は接続検出信号S1をネゲートする。その結果、状態監視部34はスイッチング信号発生部32をスタンバイ状態に切りかえ、消費電力が低減される。
(d) また、はじめから電子機器1に機器側コネクタ22が接続された状態で、コンセントプラグ10を差込プラグに挿入すると、ただちにスイッチング信号発生部32が動作状態となり、直流電圧Vdcが電子機器1へと供給される。
 このように図2の電源アダプタ100によれば、機器側コネクタ22に、電子機器1の接続の有無を検出する機構を設け、制御IC30の動作、非動作状態を、検出結果に応じて制御することにより、不要な消費電力を低減することができる。
 図3は、図2の変形例に係る電源アダプタ100cの構成を示す図である。以下、電源アダプタ100cの構成を、図2の電源アダプタ100との相違点を中心に説明する。
 電子機器1cは、内蔵電池2および信号処理部3を備える。内蔵電池2は、電源アダプタ100cからの直流電圧Vdcによって充電される。信号処理部3は、たとえばマイコンであり、内蔵電池2が満充電状態であるか否かを示す満充電検出信号S2を発生する。電子機器1cは、満充電検出信号S2を機器側コネクタ22cに対して出力するための検出端子FULLを備える。
 機器側コネクタ22cは、電圧供給端子P1、P2に加えて検出信号受信端子P3を備える。検出信号受信端子P3は、機器側コネクタ22cが電子機器1と接続された状態において、検出端子FULLと対向し、接続されるように配置される。検出信号受信端子P3は、信号処理部3からの満充電検出信号S2を受ける。検出信号受信端子P3は、ケーブル20cを介して制御IC30cと接続され、満充電検出信号S2が制御IC30cへと供給される。
 制御IC30cは、満充電検出信号S2を受けるための第2イネーブル端子EN2をさらに備える。制御IC30cの内部は、図2の制御IC30と同様に構成される。状態監視部34は、接続検出信号S1に加えて満充電検出信号S2を監視する。そして満充電検出信号S2が内蔵電池2の満充電状態を示すときには、スイッチング信号発生部32をスタンバイ状態へセットする。
 一般に、電子機器側の内蔵電池が満充電状態である場合は、電子機器は内蔵電池からの電力で動作できるため、外部の電源アダプタから電力を供給する必要がない。図2の電源アダプタ100cによれば、内蔵電池2の満充電状態においても、制御IC30をスタンバイ状態とすることができ、電源アダプタ100cの待機電力を実質的にゼロとすることができる。
(第2の実施の形態)
 第1の実施の形態では、電源アダプタの省電力化に関する技術を説明した。これに対して第2の実施の形態では、電源回路を内蔵する電子機器の省電力化に関する技術を説明する。
 一般的に、洗濯機、エアコン、テレビなどの家電製品(電化製品)は、交流電圧Vacを受けて動作する。そしてそれらの家電製品は、それ本来の機能を発揮するモード(通常動作モードという)と、それ以外の処理を行うモード(待機モードという)が切りかえられる場合が多い。たとえば洗濯機であれば、洗濯や乾燥をする期間が通常動作モードであり、予約タイマーによって待機する期間が待機モードとなる。以下で説明する技術は、このような家電製品の消費電力を低減するために利用できる。
 図4は、第2の実施の形態に係る電子機器の構成を示す図である。
 電子機器1dは、コンセントプラグ10、コンセントケーブル12、ヒューズF1、入力キャパシタC3、フィルタ11、整流回路14、DC/DCコンバータ16、制御IC30、マイコン40、アクティベーションスイッチSW1、スタンバイスイッチSW2、を備える。電子機器1dは、図示しないその他の回路ブロックを含むがここでは省略している。
 ヒューズF1は、過電圧あるいは過電流の保護を目的として設けられる。フィルタ11は、交流電圧Vacの高周波成分を除去する。
 制御IC30dは、スイッチング信号発生部32、状態監視部34およびBGR(Bandgap Regulator)36を備える。制御IC30dは、その電源端子Vccに、整流回路14により平滑化された電圧Vsを受ける。状態監視部34は、イネーブル端子#EN(#はいわゆるアクティブローを示す)に入力された制御信号S2にもとづいて、制御IC30dの動作状態とスタンバイ状態を切りかえる。図4では、制御信号S3がハイレベルのとき、制御IC30dはスタンバイ状態となり、ローレベルのとき動作状態となる。BGR36は、動作状態であるとスタンバイ状態であるとを問わずに、所定の基準電圧Vrefを発生する。基準電圧Vrefは、制御IC30dの外部に出力される。
 電子機器1dは、本来の機能を発揮する通常動作モードと、そうでない待機(スリープ)モードが切りかえられる。たとえば電子機器1dがエアコンである場合、温風や冷風を送出しているときが通常動作モードである。一方、タイマー制御によって待機している期間は待機モードである。
 電子機器1dには、通常動作モードから待機モードへと切りかえるためのスタンバイスイッチSW2が設けられる。スタンバイスイッチSW2は、ユーザが押し込んだ状態において導通し、それ以外で遮断する。スタンバイスイッチSW2は、マイコン40の制御端子S4と接続される。マイコン40は制御端子S4の状態を監視し、ユーザによる待機モードへの切りかえ指示を検出する。
 マイコン40は、電子機器1dがそのとき通常動作モードであるか待機モードであるかを示す制御信号S3を発生する。制御信号S3は、通常動作モードにおいてローレベル、待機モードにおいてハイレベルである。マイコン40は、通常動作モードにおいて制御端子S3をローレベルに固定する。反対に待機モードにおいてマイコン40が端子S3をオープン(ハイインピーダンス)状態とすると、制御信号S3はプルアップ抵抗R3によってプルアップされ、ハイレベルとなる。
 コイルL3、スイッチングトランジスタM1、整流ダイオードD2およびキャパシタC4は、DC/DCコンバータ16cを形成する。DC/DCコンバータ16cによって生成された電圧Vdc2は、平滑化された電圧Vsとともに制御IC30dの電源端子Vccに供給される。つまり、スイッチング信号発生部32が動作状態となると、DC/DCコンバータ16cにより生成された電圧Vdcが電源端子Vccに供給される。スイッチング信号発生部32がスタンバイ状態となると、電源端子Vccには、平滑化された電圧Vsが抵抗R1を介して供給される。
 マイコン40の電源端子Vddには、ダイオードD3を介してDC/DCコンバータ16の出力電圧Vdcが供給される。また電源端子Vddには、ダイオードD4を介して基準電圧Vrefが供給される。つまりマイコン40は、DC/DCコンバータ16が動作状態のときマイコン40からの電圧Vdcによって動作し、非動作状態のとき制御IC30dから供給される基準電圧Vrefによって動作する。
 アクティベーションスイッチSW1は、スタンバイ状態の制御IC30dを、動作状態に移行させるために設けられている。アクティベーションスイッチSW1は、待機モードから通常動作モードへと移行すべきタイミングでユーザによってオンされるスイッチである。たとえばアクティベーションスイッチSW1は、電子機器1の電源スイッチであってもよい。
 制御IC30dはアクティベーションスイッチSW1の状態を監視し、ユーザからの移行指示を検出する。制御IC30dは移行指示を検出すると、動作状態へと遷移する。具体的には、アクティベーションスイッチSW1は、制御IC30dのイネーブル端子ENと接地端子間に設けられる。アクティベーションスイッチSW1がオンすると、イネーブル端子ENがプルダウンされるため、制御信号S3がローレベルとなる。その結果、制御IC30dが動作状態となる。
 以上が電子機器1dの構成である。続いて電子機器1dの動作を説明する。
 1. コンセントプラグ10が差し込み口に挿入されると、平滑化された電圧Vsが発生する。この電圧Vsを受けて、制御IC30dが起動し、BGR36によって基準電圧Vrefが生成される。基準電圧Vrefが生成されると、プルアップ抵抗R3によってイネーブル端子#ENに入力される制御信号S3がハイレベルとなり、制御IC30dは非動作状態となる。
 2. 続いてユーザがアクティベーションスイッチSW1を押す。その結果、制御信号S3がローレベルとなり、制御IC30dが動作状態となり、DC/DCコンバータ16によって直流電圧Vdcが生成され、マイコン40の電源端子Vddへと供給される。直流電圧Vdcが供給されるとマイコン40が起動し、マイコン40によって制御信号S3がローレベルに固定される。
 3. それ以降、電子機器1dは通常動作モードとなる。
 4. 通常動作モードにおいて、スタンバイスイッチSW2がオンすると、マイコン40は制御信号S3をハイレベルとする。その結果、制御IC30dはスタンバイ状態へと遷移する。
 以上が電子機器1dの動作である。この電子機器1dによれば、電子機器1が待機モードとなる期間、DC/DCコンバータ16の制御IC30をスタンバイ状態とすることができ、待機電力を実質的にゼロに低減することができる。
 また待機モードにおいて、マイコン40の電源端子Vddには、直流電圧Vdcは供給されなくなるが、基準電圧Vrefは供給され続けるため、マイコン40は最低限度の信号処理を行うことができる。
(第3の実施の形態)
 図6は、第3の実施の形態に係る電源装置100の構成を示す回路図である。
 電源装置100は、商用交流電圧などの交流電圧Vacを受け、それを直流電圧Vdcに変換して電子機器(不図示)に供給する電源アダプタである。電子機器は、ラップトップ型コンピュータ、デスクトップ型コンピュータ、携帯電話端末、CDプレイヤなどが例示されるが、特に限定されない。
 電源装置100は、コンセントプラグ10、コンセントケーブル12、整流回路14、入力キャパシタ(平滑用キャパシタ)C1およびDC/DCコンバータ16を備える。整流回路14、入力キャパシタC1、DC/DCコンバータ16は同じ筐体19内に設けられている。コンセントプラグ10と筐体19の間は、コンセントケーブル12で接続される。
 コンセントプラグ10は、プラグ受けと嵌合するソケットであり、プラグ受け101に差し込まれた状態において交流電圧Vacを受ける。整流回路14は、コンセントプラグ10およびコンセントケーブル12を介して供給された交流電圧Vacを全波整流する。整流回路14はたとえばダイオードブリッジ回路である。入力キャパシタC1は、整流回路14によって整流された電圧を平滑化する。
 本実施の形態に係るDC/DCコンバータ16は、入力キャパシタC1により平滑化された電圧Vdcを受け、それを電子機器に供給すべきレベルを有する直流電圧Voutに変換する。
 DC/DCコンバータ16は主として、トランスT1、第1出力キャパシタCo1、第2出力キャパシタCo2、第1ダイオードD1、第2ダイオードD2、スイッチングトランジスタM1、マスク用スイッチSW3、フィードバック回路17および制御回路18を備える。
 トランスT1は、1次コイルL1、2次コイルL2および1次コイル側に設けられた補助コイルL3を有する。1次コイルL1の巻き数をNP、2次コイルL2の巻き数をNS、補助コイルL3の巻き数をNDとする。
 スイッチングトランジスタM1、1次コイルL1、2次コイルL2、第1ダイオードD1、第1出力キャパシタCo1は、第1のコンバータ(メインコンバータ)を形成する。第1出力キャパシタCo1の一端の電位は固定されている。第1ダイオードD1は、第1出力キャパシタCo1の他端と2次コイルL2の一端N2との間に、そのカソードが第1出力キャパシタCo1側となる向きで設けられる。2次コイルL2の他端は接地されて電位が固定されている。
 スイッチングトランジスタM1は、1次コイルL1の経路上に設けられる。スイッチングトランジスタM1のゲートには、抵抗R1を介して制御回路18からのスイッチング信号OUTが入力される。
 スイッチングトランジスタM1、1次コイルL1、補助コイルL3、第2ダイオードD2、第2出力キャパシタCo2は、第2のコンバータ(補助コンバータ)を形成する。
 第2出力キャパシタCo2の一端の電位は固定される。第2ダイオードD2およびマスク用スイッチSW3は、第2出力キャパシタCo2の他端と補助コイルL3の一端N3の間に直列に設けられる。補助コイルL3の他端の電位は固定されている。第2ダイオードD2は、そのカソードが第2出力キャパシタCo2側となる向きで配置される。第2出力キャパシタCo2には、スイッチングトランジスタM1のデューティ比およびトランスT1の巻き線比に応じた第2電圧Vccが発生する。
 制御回路18は、その電源端子VCCに、第2出力キャパシタCo2に生ずる第2電圧Vccを受ける。なお、第2のコンバータが正常に動作する前の期間、制御回路18の電源端子VCCには、抵抗R21を介して直流電圧Vdcが供給される。
 制御回路18の入力端子DCには、抵抗R5、R6によって分圧された入力電圧Vdc’が入力される。制御回路18の起動や停止は、入力電圧Vdc’にもとづいて制御される。
 制御回路18は、第1出力キャパシタCo1に生ずる電圧Voutのレベルが目標値に近づくようにスイッチング信号OUTのデューティ比をパルス幅変調(PWM)、パルス周波数変調(PFM)などを利用して調節し、スイッチングトランジスタM1を制御する。スイッチング信号OUTの生成方法は特に限定されない。
 また制御回路18は、スイッチング信号OUTと同期したマスク信号MSKを発生し、マスク用スイッチSW3を制御する。制御回路18は、少なくとも、スイッチングトランジスタM1がオフしてから所定期間(マスク期間ΔTという)の間、マスク用スイッチSW3をオフする。制御回路18は、マスク期間ΔTに加えて、スイッチングトランジスタM1のオン期間Tonの間、マスク用スイッチSW3をオフしてもよい。
 たとえばマスク用スイッチSW3はPチャンネルMOSFETであり、そのゲートソース間には、抵抗R3が設けられる。制御回路18はスイッチングトランジスタM1のオン期間Tonおよびマスク期間ΔTにおいて、端子MSKをハイインピーダンス(オープン)とする。そうするとマスク用スイッチSW3のゲートソース間が抵抗R3によってショートされ、マスク用スイッチSW3はオフとなる。マスク期間ΔTが経過した後のスイッチングトランジスタM1のオフ期間Toffにおいて、制御回路18はマスク信号MSKをローレベルとし、マスク用スイッチSW3をオンさせる。
 たとえば制御回路18は、第1出力キャパシタCo1に生ずる出力電圧Vout、スイッチングトランジスタM1(1次コイルL1)に流れる電流IM1および補助コイルL3の一端N3に生ずる電圧VDに応じて、スイッチング信号OUTおよびマスク信号MSKを発生する。
 制御回路18のフィードバック端子FBには、フォトカプラを含むフィードバック回路17を介して、出力電圧Voutに応じたフィードバック信号Vfbが入力される。キャパシタC3は、位相補償を目的として設けられる。また、検出抵抗Rsは、スイッチングトランジスタM1に流れる電流IM1を検出するために設けられる。検出抵抗Rsに生ずる電圧降下(検出信号)Vsは、制御回路18の電流検出端子(CS端子)に入力される。また、制御回路18の補助コイルL3の一端の電圧VDは、抵抗R4およびキャパシタC4を含むローパスフィルタを介して、ZT端子に入力される。
 図7は、図6の制御回路の構成例を示す回路図である。制御回路18は、誤差増幅器50、オフ信号生成部52、オン信号生成部54、駆動部56およびドライバ62を備える。
 誤差増幅器50は、フィードバック信号Vfbと、その目標値に応じた基準電圧Vrefとの誤差を増幅する。オフ信号生成部52は、検出信号Vsを誤差増幅器50の出力信号と比較するコンパレータを含み、スイッチングトランジスタM1がオフするタイミングを規定するオフ信号Soffを生成する。オフ信号生成部52よって生成されるオフ信号Soffは、スイッチングトランジスタM1に流れる電流IM1が、誤差増幅器50の出力信号に応じたレベルに達するとアサートされる。
 たとえばフィードバック信号Vfbが基準電圧Vrefより低くなると、誤差増幅器50の出力信号は高くなり、オフ信号Soffがアサートされるタイミングが遅くなって、スイッチングトランジスタM1のオン期間Tonが長くなり、その結果出力電圧Vout(フィードバック信号Vfb)が上昇する方向にフィードバックがかかる。反対にフィードバック信号Vfbが基準電圧Vrefより高くなると、誤差増幅器50の出力信号は低くなり、オフ信号Soffがアサートされるタイミングが早くなって、スイッチングトランジスタM1のオン期間Tonが短くなり、その結果、出力電圧Vout(フィードバック信号Vfb)が低下する方向にフィードバックがかかる。
 オン信号生成部54は、オフ信号Soffがアサートされた後アサートされるオン信号Sonを発生する。図7のオン信号生成部54は、第2ダイオードD2と補助コイルL3の間の経路上のノードN3の電位Vdを、所定レベルVthと比較するコンパレータを含む。オン信号生成部54は、ノードN1の電位が所定レベルVthまで低下すると、オン信号Sonをアサートする。
 スイッチングトランジスタM1がオンすると、1次コイルL1に電流IM1が流れ、トランスT1にエネルギーが蓄えられる。その後、スイッチングトランジスタM1がオフすると、トランスT1に蓄えられたエネルギーが放出される。オン信号生成部54は、補助コイルL3に発生する電圧Vdを監視することにより、トランスT1のエネルギーが完全に放出されたことを検出できる。オン信号生成部54は、エネルギーの放出を検出すると、再びスイッチングトランジスタM1をオンすべく、オン信号Sonをアサートする。
 駆動部56は、オン信号SonがアサートされるとスイッチングトランジスタM1をオンし、オフ信号SoffがアサートされるとスイッチングトランジスタM1をオフする。駆動部56は、フリップフロップ58、プリドライバ60、ドライバ62を含む。フリップフロップ58は、セット端子およびリセット端子それぞれにオン信号Sonおよびオフ信号Soffを受ける。フリップフロップ58は、オン信号Sonおよびオフ信号Soffに応じて状態が遷移する。その結果、フリップフロップ58の出力信号Smodのデューティ比は、フィードバック信号Vfb(出力電圧Vout)が目標値Vrefと一致するように変調される。図7では、駆動信号Smodおよびスイッチング信号OUTのハイレベルは、スイッチングトランジスタM1のオンに対応付けられ、それらのローレベルはスイッチングトランジスタM1のオフに対応付けられる。
 プリドライバ60は、フリップフロップ58の出力信号Smodに応じてドライバ62を駆動する。ドライバ62のハイサイドトランジスタとローサイドトランジスタが同時にオンしないように、プリドライバ60の出力信号SH、SLにはデッドタイムが設定される。ドライバ62からは、スイッチング信号OUTが出力される。
 マスク信号生成部70は、オン信号Sonおよびオフ信号Soffの少なくとも一方と同期したマスク信号MSKを発生する。具体的にはマスク信号生成部70は、遅延回路72、論理ゲート74出力トランジスタ76を備える。遅延回路72は、ローサイド駆動信号SLを、マスク時間ΔT遅延させる。論理ゲート(NOR)74は、遅延されないローサイド駆動信号SLと遅延されたそれの否定論理和を生成し、出力トランジスタ76のゲートに出力する。マスク信号生成部70はオープンドレイン形式で構成される。
 以上が電源装置100の構成である。続いてその動作を説明する。
 図8は、図6の電源装置100の動作を示すタイムチャートである。図8の縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化されている。図8には、上から順に、スイッチング信号OUT、1次コイルL1の一端N1の電位VP、2次コイルL2の一端N2の電位VS、補助コイルL3の一端N3の電位VD、マスク信号MSKが示される。
 まず、メインコンバータに着目する。制御回路18によって、スイッチング信号OUTが生成され、スイッチングトランジスタM1はオンとオフを交互に繰り返す。スイッチングトランジスタM1がオンの期間、電圧VPは接地電圧付近に固定される。
 スイッチングトランジスタM1がオフすると、1次コイルL1に逆起電力が発生し、電圧VPが大きく跳ね上がる。Vdc=140Vのとき、ピーク電圧はその2倍の280V程度に達する場合もある。スイッチングトランジスタM1がオフすると、1次コイルL1に蓄えられたエネルギーが、電流として第1ダイオードD1を介して第1出力キャパシタCo1に転送される。
 2次コイルL2の一端には、1次コイルL1の電圧VPに比例した、つまり急峻なピークを有する電圧VSが発生する。2次コイルL2の一端と第1出力キャパシタCo1は、第1ダイオードD1を介してカップリングされる。したがって第1出力キャパシタCo1の容量値が小さければ、出力電圧Voutは電圧VPに追従し、Vout=VP-Vfを満たすように上昇するはずである。ここでVfは第1ダイオードD1の順方向電圧である。ところが、第1出力キャパシタCo1の容量値は十分に大きいため、出力電圧Voutの上昇はほとんど発生せず、一定に保たれる。
 続いて、補助コンバータに着目する。補助コイルL3の電圧VDにも、電圧VPと同様のリップルノイズが生ずる。マスク信号MSKは、図8に示すように、スイッチングトランジスタM1がオフした後のマスク期間ΔTの間、ハイレベルとなり、マスク用スイッチSW3がオフする。このマスク期間ΔTは、電圧VSにリップルノイズが発生する期間とオーバーラップしている。
 マスク期間ΔTの間、マスク用スイッチSW3がオフするため、電圧VDのリップルノイズは第2出力キャパシタCo2には印加されないため、第2出力キャパシタCo2の容量が小さい場合であっても第2電圧Vccの上昇を抑制することができる。
 図6の電源装置100の利点は図5の回路との比較によって明確となる。もし図5に示すように補助コイルL3、第2ダイオードD2、第2出力キャパシタCo2が直接接続されていると、電圧VPのリップルノイズが第2電圧Vccにも現れる。なぜなら第2出力キャパシタCo2の容量値はそれほど大きくないからである。
 第2電圧Vccにリップルノイズが発生する場合、制御回路18の過電圧保護(OVP)が不要に働くおそれがあるため、過電圧保護のしきい値電圧の設計が難しくなる。あるいは、制御回路18に必要とされる耐圧が高くなるため、コストが高くなる要因となっていた。
 図6の電源装置100によれば、第2電圧Vccが大きく上昇するという問題を解決できるため、制御回路18の設計が容易となり、あるいはコストを下げることができる。
 第2電圧Vccにリップルノイズが発生しないという利点によって、以下の非常に有用な変形例がもたらされる。
 図9は、変形例に係る電源装置100aの構成を示す回路図である。
 図5では、第2電圧Vccに大きなリップルノイズが載っているため、第2電圧Vccにもとづいてフィードバックを行うことができない。それゆえ出力電圧Voutに応じたフィードバック信号Vfbにもとづいてスイッチング信号OUTを発生していた。
 これに対して、変形例に係る電源装置100aでは、第2電圧Vccが安定化されているため、第2電圧Vccにもとづいてスイッチング信号OUTを発生する。具体的には制御回路18のフィードバック端子FBには、第2電圧Vccに応じたフィードバック信号Vfbがフィードバックされる。
 第2電圧Vccは、トランスT1の1次側に発生するため、制御回路18に電気的にフィードバックすることができる。つまりフォトカプラが不要となるため、コストを下げることができる。
 また、フィードバック端子FBと電源端子VCCには、いずれも第2電圧Vccに応じた信号が入力されることから、フィードバック端子FBと電源端子VCCを共有してもよい。この場合、制御回路18のピン数を削減でき、チップサイズを小さくできる。
 以上、本発明のある態様について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
 マスク用スイッチSW3に関しては、以下の変形例が例示される。
 たとえばマスク用スイッチSW3は、PNP型バイポーラトランジスタで構成してもよいし、トランスファゲートで構成してもよい。またマスク用スイッチSW3と第2ダイオードD2の位置は、入れ替えてもよい。
 実施の形態では、マスク期間ΔTが固定される場合を説明したが、1次コイルL1、2次コイルL2、補助コイルL3に発生する電圧VP、VS、VDのいずれかにもとづいて、マスク期間ΔTの長さを動的に制御してもよい。
 マスク信号MSKは、制御回路18の外部の回路によって生成されてもよい。
 さらに、スイッチングトランジスタM1のオン期間Tonにおいて、補助コイルL3から第2出力キャパシタCo2には電流が流れないため、マスク用スイッチSW3はオフしてもよいし、オンしてもよい。当業者であれば、必要なマスク信号MSKを発生するためのさまざまなマスク信号生成部70を設計することができる。たとえばマスク信号生成部70は、オン信号Son、オフ信号Soff、変調信号Smod、ハイサイド駆動信号SH、ローサイド駆動信号SLのいずれか、あるいはそれらの組み合わせにもとづいて生成できる。また、遅延回路72に代えて、あるいはそれに加えて、ワンショット回路やカウンタ、タイマを利用してもよい。
 当業者であれば、制御回路18にはさまざまなタイプが存在すること、またその構成が本発明において限定されるものでないことは理解される。制御回路18は市販される汎用的なものを用いてもよい。
 たとえば図7のオン信号生成部54として、コンパレータに代えて、所定のオフ時間Toffを測定するタイマ回路を用いてもよい。エネルギーの放出に要する時間をあらかじめ見積もることにより、オフ時間Toffを固定することも可能である。この場合、エネルギー効率の悪化と引き替えに、回路を簡略化できる。
 さらに、図6に代表される第3の実施の形態に係る技術は、図4に代表される第2の実施の形態と好適に組み合わせることができる。つまり、図4の回路に、マスク用スイッチSW3を設け、これをマスク信号に応じて制御してもよい。
 本実施の形態では、DC/DCコンバータ16を電源アダプタに搭載する場合を説明したが、本発明はそれに限定されず、さまざまな電源装置に適用することができる。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
1…電子機器、2…内蔵電池、3…信号処理部、10…コンセントプラグ、12…コンセントケーブル、14…整流回路、C1…平滑用キャパシタ、R1…抵抗、16…DC/DCコンバータ、16a…コンバータ部、16b…フィードバック部、M1…スイッチングトランジスタ、19…筐体、20…コネクタ側ケーブル、22…機器側コネクタ、24…検出部、30…制御IC、32…スイッチング信号発生部、34…状態監視部、36…BGR、40…マイコン、100…電源アダプタ、S1…接続検出信号、S2…満充電検出信号、P1,P2…電圧供給端子、P3…検出信号受信端子、F1…ヒューズ、SW1…アクティベーションスイッチ、SW2…スタンバイスイッチ。
 本発明は、電源装置に利用できる。

Claims (23)

  1.  交流電圧を受け、それを直流電圧に変換して電子機器に供給する電源アダプタであって、
     プラグ受けに差し込まれた状態において交流電圧を受けるプラグと、
     前記プラグを介して供給された交流電圧を整流する整流回路と、
     前記整流回路によって整流された電圧を平滑化する平滑用キャパシタと、
     前記平滑用キャパシタにより平滑化された電圧を受け、それを前記電子機器に供給すべきレベルを有する直流電圧に変換するDC/DCコンバータと、
     ケーブルを介して前記DC/DCコンバータと接続されるとともに、前記電子機器と着脱可能に構成され、前記電子機器と接続された状態で前記直流電圧を前記電子機器に供給するための機器側コネクタと、
     を備え、
     前記機器側コネクタは、前記電子機器が接続されているか否かを検出し、接続の有無を示す接続検出信号を生成する検出部を含み、
     前記DC/DCコンバータの制御回路は前記ケーブルを介して前記機器側コネクタの前記検出部と接続されており、前記接続検出信号が前記電子機器の接続があることを示すとき動作状態となり、前記接続検出信号が前記電子機器の接続がないことを示すとき非動作状態となるよう構成されることを特徴とする電源アダプタ。
  2.  前記電子機器は前記直流電圧によって充電される内蔵電池と、前記内蔵電池が満充電状態であるか否かを示す満充電検出信号を発生する信号処理部と、を含み、
     前記満充電検出信号は、前記機器側コネクタに前記電子機器が接続された状態で、前記ケーブルを介して前記DC/DCコンバータの制御回路へと入力され、
     前記制御回路は、前記満充電検出信号が前記内蔵電池の満充電状態を示すとき、非動作状態となることを特徴とする請求項1に記載の電源アダプタ。
  3.  前記検出部は、前記機器側コネクタと前記電子機器の機械的な接続を検出することを特徴とする請求項1または2に記載の電源アダプタ。
  4.  前記検出部は、前記機器側コネクタと前記電子機器の電気的な接続を検出することを特徴とする請求項1または2に記載の電源アダプタ。
  5.  交流電圧を受け、それを直流電圧に変換して電子機器に供給する電源アダプタに内蔵されるDC/DCコンバータの制御回路であって、
     ケーブルを介して前記DC/DCコンバータと接続されるとともに、前記電子機器と着脱可能に構成され、前記電子機器と接続された状態で前記直流電圧を前記電子機器に供給するための機器側コネクタであって、前記電子機器が接続されているか否かを検出し、接続の有無を示す接続検出信号を生成する検出部を含む機器側コネクタから、前記接続検出信号を受けるためのイネーブル端子と、
     前記接続検出信号が前記電子機器の接続があることを示すとき動作状態となり、前記DC/DCコンバータの出力電圧をフィードバックにより安定化するとともに、前記接続検出信号が前記電子機器の接続がないことを示すとき非動作状態となり、前記DC/DCコンバータの制御を停止する制御部と、
     を備えることを特徴とする制御回路。
  6.  前記電子機器は、前記直流電圧によって充電される内蔵電池と、前記内蔵電池が満充電状態であるか否かを示す満充電検出信号を発生する信号処理部と、を含み、
     本制御回路は、前記満充電検出信号を受けるための第2イネーブル端子をさらに備え、
     前記制御部は、前記満充電検出信号が前記内蔵電池の満充電状態を示すとき、非動作状態となることを特徴とする請求項5に記載の制御回路。
  7.  直流電圧を受けるための電源端子を有する電子機器と着脱可能に接続される電源アダプタの機器側コネクタであって、
     かつケーブルを介して前記電源アダプタのDC/DCコンバータからの直流電圧を受け、かつ本機器側コネクタが前記電子機器と接続された状態において前記電源端子と対向し、接続されるように配置された電源供給端子と、
     本機器側コネクタに前記電子機器が接続されているか否かを検出し、接続の有無を示す接続検出信号を生成する検出部と、
     を備え、前記接続検出信号が前記ケーブルを介して前記DC/DCコンバータの制御回路へと供給されるように構成されたことを特徴とする機器側コネクタ。
  8.  前記電子機器は、前記直流電圧によって充電される内蔵電池と、前記内蔵電池が満充電状態であるか否かを示す満充電検出信号を発生する信号処理部と、前記満充電検出信号を外部に出力するための検出端子を含み、
     本機器側コネクタは、
     本機器側コネクタが前記電子機器と接続された状態において前記検出端子と対向し、接続されるように配置され、前記満充電検出信号を前記信号処理部から受ける検出信号受信端子をさらに備え、
     前記満充電検出信号がケーブルを介して前記DC/DCコンバータの制御回路へと供給されるように構成されたことを特徴とする請求項7に記載の機器側コネクタ。
  9.  前記検出部は、前記機器側コネクタと前記電子機器の機械的な接続を検出することを特徴とする請求項7または8に記載の機器側コネクタ。
  10.  前記検出部は、前記機器側コネクタと前記電子機器の電気的な接続を検出することを特徴とする請求項7または8に記載の機器側コネクタ。
  11.  交流電圧を受けて動作し、通常動作モードと待機モードが切りかえ可能な電子機器であって、
     プラグ受けに差し込まれた状態において交流電圧を受けるプラグと、
     前記プラグを介して供給された交流電圧を整流する整流回路と、
     前記整流回路によって整流された電圧を平滑化する平滑用キャパシタと、
     前記平滑用キャパシタにより平滑化された電圧を受け、それを所定のレベルを有する直流電圧に変換するDC/DCコンバータと、
     その電源端子に前記平滑化された電圧を受け、前記DC/DCコンバータの出力電圧が一定となるように前記DC/DCコンバータを制御する制御回路であって、そのイネーブル端子に入力された制御信号に応じて動作状態と非動作状態が切りかえ可能に構成された制御回路と、
     前記電子機器の待機モードから通常動作モードへの切りかえ指示を受けるためのアクティベーションスイッチと、
     前記電子機器の通常動作モードから待機モードへの切りかえ指示を受けるためのスタンバイスイッチと、
     その電源端子に前記DC/DCコンバータの出力電圧を受け、前記電子機器が通常動作モードにおいて所定の信号処理を行うとともに、前記スタンバイスイッチを監視し、前記電子機器が通常動作モードであるか待機モードであるかを示す制御信号を前記制御回路の前記イネーブル端子へと出力する信号処理部と、
     を備えることを特徴とする電子機器。
  12.  前記制御回路は、
     所定の基準電圧を発生する基準電圧回路と、
     前記基準電圧を外部に出力するための基準電圧端子と、
     を含み、
     前記基準電圧は、前記信号処理部の電源端子に前記DC/DCコンバータの出力電圧とともに供給されることを特徴とする請求項11に記載の電子機器。
  13.  1次コイル、2次コイルおよび前記1次コイル側に設けられた補助コイルを有するトランスと、
     その一端の電位が固定された第1出力キャパシタと、
     前記第1出力キャパシタの他端と前記2次コイルの一端との間に、そのカソードが前記第1出力キャパシタ側となる向きで設けられた第1ダイオードと、
     前記1次コイルの経路上に設けられたスイッチングトランジスタと、
     その一端の電位が固定された第2出力キャパシタと、
     前記第2出力キャパシタの他端と前記補助コイルの一端との間に直列に設けられた、そのカソードが前記第2出力キャパシタ側となる向きの第2ダイオードおよびマスク用スイッチと、
     その電源端子に前記第2出力キャパシタに生ずる電圧を受け、前記スイッチングトランジスタのオン、オフを制御する制御回路と、
     を備えることを特徴とするDC/DCコンバータ。
  14.  前記マスク用スイッチは、前記スイッチングトランジスタのオンからオフへの切りかわりから所定時間経過するまでのマスク期間の間、オフすることを特徴とする請求項13に記載のDC/DCコンバータ。
  15.  前記マスク用スイッチは、前記マスク期間に加えて、前記スイッチングトランジスタがオフする期間、オフすることを特徴とする請求項14に記載のDC/DCコンバータ。
  16.  前記制御回路は、前記マスク用スイッチを制御するためのマスク信号を出力するための端子を有することを特徴とする請求項13から15のいずれかに記載のDC/DCコンバータ。
  17.  前記制御回路は、前記スイッチングトランジスタに対する制御信号を遅延させることにより、前記マスク信号を生成することを特徴とする請求項16に記載のDC/DCコンバータ。
  18.  前記第1出力キャパシタに生ずる電圧に応じたフィードバック信号を生成するフィードバック回路をさらに備え、
     前記制御回路は、前記フィードバック信号が目標値に近づくように、前記スイッチングトランジスタのオン、オフのデューティ比を調節することを特徴とする請求項13から17のいずれかに記載のDC/DCコンバータ。
  19.  前記制御回路は、前記第2出力キャパシタに生ずる電圧に応じたフィードバック信号が目標値に近づくように、前記スイッチングトランジスタのオン、オフのデューティ比を調節することを特徴とする請求項13から17のいずれかに記載のDC/DCコンバータ。
  20.  前記マスク用スイッチは、PチャンネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはPNP型バイポーラトランジスタを含むことを特徴とする請求項13から19のいずれかに記載のDC/DCコンバータ。
  21.  前記制御回路は、
     前記フィードバック信号とその目標値の誤差を増幅する誤差増幅器と、
     前記スイッチングトランジスタに流れる電流が前記誤差増幅器の出力信号に応じたレベルに達するとアサートされるオフ信号を生成するオフ信号生成部と、
     前記オフ信号がアサートされた後アサートされるオン信号を発生するオン信号生成部と、
     前記オン信号がアサートされると前記スイッチングトランジスタがオンするレベルを有し、前記オフ信号がアサートされると前記スイッチングトランジスタがオフするレベルを有するスイッチング信号を生成する駆動部と、
     前記オン信号および前記オフ信号の少なくとも一方と同期したマスク信号を生成するマスク信号生成部と、
     を含むことを特徴とする請求項18または19に記載のDC/DCコンバータ。
  22.  前記オン信号生成部は、前記第2ダイオードと前記補助コイルの間のノードの電位が所定レベルまで低下するとアサートされるオン信号を発生する第2コンパレータを含むことを特徴とする請求項21に記載のDC/DCコンバータ。
  23.  交流電圧を受け、それを直流電圧に変換して電子機器に供給する電源装置であって、
     前記交流電圧を整流する整流回路と、
     前記整流回路によって整流された電圧を平滑化する入力キャパシタと、
     前記入力キャパシタによって平滑化された電圧を変換する請求項13から22のいずれかに記載のDC/DCコンバータと、
     を備えることを特徴とする電源装置。
PCT/JP2010/006890 2009-11-25 2010-11-25 電源アダプタ、dc/dcコンバータの制御回路および機器側コネクタ、dc/dcコンバータ、それを用いた電源装置、ならびに電子機器 WO2011065002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011543108A JP5731398B2 (ja) 2009-11-25 2010-11-25 電源アダプタおよびdc/dcコンバータの制御回路
CN201080053537.4A CN102668350B (zh) 2009-11-25 2010-11-25 电源适配器、dc/dc转换器的控制电路及设备侧连接器、dc/dc转换器、利用其的电源装置、以及电子设备
US13/511,778 US20120262950A1 (en) 2009-11-25 2010-11-25 Power supply adaptor
US14/984,441 US20160118900A1 (en) 2009-11-25 2015-12-30 Power supply adaptor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009268130 2009-11-25
JP2009-268130 2009-11-25
JP2010015665 2010-01-27
JP2010-015665 2010-01-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/511,778 A-371-Of-International US20120262950A1 (en) 2009-11-25 2010-11-25 Power supply adaptor
US14/984,441 Division US20160118900A1 (en) 2009-11-25 2015-12-30 Power supply adaptor

Publications (1)

Publication Number Publication Date
WO2011065002A1 true WO2011065002A1 (ja) 2011-06-03

Family

ID=44066108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006890 WO2011065002A1 (ja) 2009-11-25 2010-11-25 電源アダプタ、dc/dcコンバータの制御回路および機器側コネクタ、dc/dcコンバータ、それを用いた電源装置、ならびに電子機器

Country Status (4)

Country Link
US (2) US20120262950A1 (ja)
JP (2) JP5731398B2 (ja)
CN (1) CN102668350B (ja)
WO (1) WO2011065002A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516233A (zh) * 2012-06-19 2014-01-15 纬创资通股份有限公司 电源转接器
KR20140055096A (ko) * 2012-10-30 2014-05-09 엘지이노텍 주식회사 시비율 가변 제어가 가능한 전류 평형 회로 및 이를 포함하는 직류-직류 변환기
CN103983894A (zh) * 2013-02-13 2014-08-13 快捷韩国半导体有限公司 插头检测器及插头检测方法
JP2015095928A (ja) * 2013-11-11 2015-05-18 ローム株式会社 スイッチングコンバータおよびその制御回路、電流検出方法、ac/dcコンバータ、電源アダプタおよび電子機器
WO2016059750A1 (ja) * 2014-10-14 2016-04-21 パナソニックIpマネジメント株式会社 スイッチング電源装置
CN113574746A (zh) * 2019-03-11 2021-10-29 计划X51有限公司 发光充电连接器或设备及可根据包装状态运作的电子设备或系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299527A (zh) * 2012-01-11 2013-09-11 松下电器产业株式会社 开关电源电路
TWI495226B (zh) * 2012-11-30 2015-08-01 Hon Hai Prec Ind Co Ltd 充電器及電子裝置
CN104184200A (zh) * 2013-05-24 2014-12-03 台达电子工业股份有限公司 电源适配器、电源适配器的控制方法及笔记本
JP6585874B2 (ja) * 2013-08-26 2019-10-02 ローム株式会社 電力供給装置、acアダプタ、および電子機器
JP6619546B2 (ja) * 2014-04-25 2019-12-11 ローム株式会社 電力供給装置、acアダプタ、acチャージャ、電子機器および電力供給システム
US10381829B2 (en) * 2014-05-08 2019-08-13 Astronics Advanced Electronic Systems Corp. Direct current power distribution and fault protection
TWI542122B (zh) * 2014-06-19 2016-07-11 立錡科技股份有限公司 電源供應系統與用於其中的短路及/或不良連接偵測方法、及電源轉換器
US9743474B2 (en) * 2014-11-14 2017-08-22 General Electric Company Method and system for lighting interface messaging with reduced power consumption
JP6554308B2 (ja) * 2015-04-17 2019-07-31 ローム株式会社 バスコントローラおよび電源装置、電源アダプタ
TWI603177B (zh) * 2015-09-16 2017-10-21 台達電子工業股份有限公司 埋入式電源轉換裝置及其適用之電源轉換系統
CN106549590A (zh) * 2015-09-16 2017-03-29 台达电子工业股份有限公司 埋入式电源转换装置及其适用的电源供应系统
US10345338B2 (en) * 2015-09-21 2019-07-09 Biosense Webster (Israel ) LTD. Test cap for a cable
JP6120117B2 (ja) * 2015-10-02 2017-04-26 パナソニックIpマネジメント株式会社 無線電力伝送システム
DE102015116802B3 (de) * 2015-10-02 2016-12-29 Beckhoff Automation Gmbh Bussystem
US10411494B2 (en) 2016-02-05 2019-09-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and method for charging control
EP3229336B1 (en) * 2016-02-05 2020-09-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and adapter
US10110058B2 (en) * 2016-05-24 2018-10-23 Chicony Power Technology Co., Ltd. Power conversion device and method for preventing abnormal shutdown thereof
EP3723231B1 (en) * 2016-07-26 2021-10-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
EP3276811B1 (en) 2016-07-26 2019-03-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
US9935552B2 (en) * 2016-08-18 2018-04-03 Lg Chem, Ltd. Control system for controlling operational modes of a DC-DC voltage converter
KR102707430B1 (ko) * 2017-01-25 2024-09-20 삼성전자주식회사 전력 공급 장치 및 그 전력 공급 장치를 포함하는 전력 공급 시스템
KR102001934B1 (ko) * 2017-06-20 2019-07-19 엘지전자 주식회사 대기 전력 기능을 가지는 전원 장치 및 이를 포함하는 공기 조화기
WO2019016990A1 (ja) 2017-07-20 2019-01-24 パナソニックIpマネジメント株式会社 電源装置および制御方法
US10353015B2 (en) 2017-07-24 2019-07-16 Lg Chem, Ltd. Diagnostic system for a DC-DC voltage converter
US10714928B2 (en) 2017-07-31 2020-07-14 Lg Chem, Ltd. Diagnostic system for a vehicle electrical system having a DC-DC voltage converter and a voltage regulator
JP2019194762A (ja) * 2018-05-01 2019-11-07 レノボ・シンガポール・プライベート・リミテッド 情報処理装置及び制御方法
JP7305162B2 (ja) * 2019-06-19 2023-07-10 株式会社オーディオテクニカ 音電気変換装置
US20230402930A1 (en) * 2022-05-27 2023-12-14 Texas Instruments Incorporated Isolated power converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299355A (ja) * 2002-04-03 2003-10-17 Seiko Epson Corp Acアダプタ及び充電器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159076A1 (en) * 1996-07-19 2003-08-21 Compaq Information Technologies Group, L.P. Keyboard controller providing power management for a portable computer system
US6195271B1 (en) * 1999-04-21 2001-02-27 International Business Machines Corporation AC adaptor with power consumption reduction in unused state
JP3397242B2 (ja) * 1999-12-09 2003-04-14 サンケン電気株式会社 Dc−dcコンバータ
KR100376131B1 (ko) * 2000-09-22 2003-03-15 삼성전자주식회사 대기전원 절전형 전원장치 및 그 제어방법
JP4363777B2 (ja) * 2000-12-22 2009-11-11 新電元工業株式会社 電源回路
WO2004068686A1 (ja) * 2003-01-28 2004-08-12 Sanken Electric Co., Ltd. 電源装置
US6788557B2 (en) * 2003-02-10 2004-09-07 Astec International Limited Single conversion power converter with hold-up time
JP2005278376A (ja) * 2004-03-26 2005-10-06 Shindengen Electric Mfg Co Ltd スイッチング電源装置
US20080247203A1 (en) * 2007-04-09 2008-10-09 Tim Cassidy Energy Efficient Power Converter
US8169196B2 (en) * 2007-06-27 2012-05-01 Sony Mobile Communications Ab Charging device
CN101471609B (zh) * 2007-12-28 2011-08-10 尼克森微电子股份有限公司 三端子集成化同步整流器及反激式同步整流电路
CN101471605B (zh) * 2007-12-29 2011-12-07 群康科技(深圳)有限公司 电源电路
CN101557169A (zh) * 2008-04-09 2009-10-14 群康科技(深圳)有限公司 开关电源电路
US7911817B2 (en) * 2008-09-18 2011-03-22 Dell Products L.P. Systems and methods for controlling energy consumption of AC-DC adapters
US7956591B2 (en) * 2008-09-26 2011-06-07 Apple Inc. Power supply with zero power consumption capability
US8164932B2 (en) * 2009-02-12 2012-04-24 Apple Inc. Power converter with automatic mode switching
US8589713B2 (en) * 2009-03-23 2013-11-19 Dell Products L.P. Power management methods and systems using an external power supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299355A (ja) * 2002-04-03 2003-10-17 Seiko Epson Corp Acアダプタ及び充電器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516233A (zh) * 2012-06-19 2014-01-15 纬创资通股份有限公司 电源转接器
US9231489B2 (en) 2012-06-19 2016-01-05 Wistron Corp. Power adaptor
KR20140055096A (ko) * 2012-10-30 2014-05-09 엘지이노텍 주식회사 시비율 가변 제어가 가능한 전류 평형 회로 및 이를 포함하는 직류-직류 변환기
KR102108503B1 (ko) 2012-10-30 2020-05-08 엘지이노텍 주식회사 시비율 가변 제어가 가능한 전류 평형 회로 및 이를 포함하는 직류-직류 변환기
CN103983894A (zh) * 2013-02-13 2014-08-13 快捷韩国半导体有限公司 插头检测器及插头检测方法
JP2015095928A (ja) * 2013-11-11 2015-05-18 ローム株式会社 スイッチングコンバータおよびその制御回路、電流検出方法、ac/dcコンバータ、電源アダプタおよび電子機器
WO2016059750A1 (ja) * 2014-10-14 2016-04-21 パナソニックIpマネジメント株式会社 スイッチング電源装置
JPWO2016059750A1 (ja) * 2014-10-14 2017-07-27 パナソニックIpマネジメント株式会社 スイッチング電源装置
CN113574746A (zh) * 2019-03-11 2021-10-29 计划X51有限公司 发光充电连接器或设备及可根据包装状态运作的电子设备或系统

Also Published As

Publication number Publication date
US20160118900A1 (en) 2016-04-28
CN102668350A (zh) 2012-09-12
JPWO2011065002A1 (ja) 2013-04-11
CN102668350B (zh) 2015-02-18
JP5984999B2 (ja) 2016-09-06
JP5731398B2 (ja) 2015-06-10
US20120262950A1 (en) 2012-10-18
JP2015133907A (ja) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5984999B2 (ja) Dc/dcコンバータ、それを用いた電源装置
TWI539732B (zh) DC / DC converter and the use of its power supply devices and electronic equipment
TWI497275B (zh) 具有低功率消耗突衝待命操作的電源供應器
JP5785710B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
JP6122257B2 (ja) Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器
JP6563651B2 (ja) 絶縁同期整流型dc/dcコンバータ、同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
TW541780B (en) Power converter circuit and method for controlling
CN101908822B (zh) 升压型开关电源装置
US20180351470A1 (en) Isolated synchronous rectification-type dc/dc converter
CN107231091B (zh) 直流/直流转换器、整流电路、电源适配器、控制方法
JP6374261B2 (ja) 絶縁同期整流型dc/dcコンバータおよびその同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
US20110025289A1 (en) Two-stage switching power supply
JP5952809B2 (ja) 非絶縁降圧スイッチングレギュレータおよびその制御回路、電子機器、acアダプタ
JP5905689B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
US9742299B2 (en) Insulated synchronous rectification DC/DC converter
US20160181935A1 (en) Isolated dc/dc converter, power supply, power supply adaptor, electronic device using the same, and primary side controller
JP2016059255A (ja) 絶縁同期整流型dc/dcコンバータおよびその同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
JP2014017907A (ja) Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器
JP2010213559A (ja) 直流電源装置およびdc−dcコンバータ
JP2016116414A (ja) 絶縁型のdc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器、フィードバックアンプ集積回路
US10811972B2 (en) Buck-boost converter power supply with drive circuit
JP2010098875A (ja) 電源装置
JP6072881B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
US20130257162A1 (en) Power supply device and electronic device system
CN112054586A (zh) 用于使电源的输出电容器放电的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053537.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543108

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13511778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832851

Country of ref document: EP

Kind code of ref document: A1