WO2013089026A1 - 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法 - Google Patents

炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法 Download PDF

Info

Publication number
WO2013089026A1
WO2013089026A1 PCT/JP2012/081751 JP2012081751W WO2013089026A1 WO 2013089026 A1 WO2013089026 A1 WO 2013089026A1 JP 2012081751 W JP2012081751 W JP 2012081751W WO 2013089026 A1 WO2013089026 A1 WO 2013089026A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
based material
metal
electrode
atom
Prior art date
Application number
PCT/JP2012/081751
Other languages
English (en)
French (fr)
Inventor
周次 中西
亮 釜井
雄也 鈴木
橋本 和仁
和秀 神谷
Original Assignee
パナソニック株式会社
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 独立行政法人科学技術振興機構 filed Critical パナソニック株式会社
Priority to EP12857394.6A priority Critical patent/EP2792639B1/en
Priority to US14/361,538 priority patent/US20140353144A1/en
Priority to JP2013549232A priority patent/JP5677589B2/ja
Priority to CN201280059186.7A priority patent/CN103974900B/zh
Publication of WO2013089026A1 publication Critical patent/WO2013089026A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon-based material suitable as a catalyst, an electrode catalyst and an oxygen reduction electrode catalyst containing the carbon-based material, a gas diffusion electrode including the catalyst, and a method for producing the carbon-based material.
  • the oxygen reduction reaction shown below is a cathode reaction in H 2 / O 2 fuel cells, salt electrolysis, etc., and is important in energy conversion electrochemical devices and the like.
  • Non-Patent Document 1 contains iron and nitrogen by heating a mixture of iron phthalocyanine and a phenol resin in an inert gas under conditions of a heating temperature of 700 to 900 ° C. and a heating time of 2 to 3 hours. It is disclosed that a carbon-based crystal is obtained, which functions as a catalyst for promoting oxygen reduction. Further, it is disclosed that in this catalyst formation process, iron also has a catalytic function for promoting crystallization of carbon-based crystals.
  • Non-Patent Document 2 discloses that graphene oxide in a mixture of graphene oxide, iron chloride, and graphite-like carbon nitride (g-C 3 N 4 ) is chemically reduced using a reducing agent, so that graphene And further heating the mixture under an argon gas atmosphere at a heating temperature of 800 ° C. and a heating time of 2 hours to obtain a carbon-based crystal containing iron and nitrogen. . It is also disclosed that this carbon-based crystal functions as a catalyst that promotes oxygen reduction.
  • the number of reaction active centers can be increased sufficiently by increasing the area per graphene sheet constituting the carbon-based crystal sufficiently, It is necessary to dope more iron and nitrogen per graphene sheet constituting the system crystal. Therefore, conventionally, the heating temperature in the inert gas during the production of the carbon-based crystal has been increased or the heating time has been lengthened.
  • the present invention has been made in view of the above reasons, and includes a carbon-based material having high catalytic activity, an electrode catalyst and an oxygen reduction electrode catalyst including the carbon-based material, a gas diffusion electrode including the catalyst, and the gas diffusion electrode.
  • An object of the present invention is to provide an aqueous electrolytic device and a method for producing the carbon-based material.
  • the carbon-based material according to the present invention is composed of graphene doped with a metal atom and at least one nonmetal atom selected from a nitrogen atom, a boron atom, a sulfur atom, and a phosphorus atom. Furthermore, the maximum peak derived from an inert metal compound and a metal crystal with respect to the intensity of the peak on the (002) plane in the diffraction intensity curve obtained by X-ray diffraction measurement of this carbon-based material using CuK ⁇ rays The intensity ratio is 0.1 or less.
  • the method for producing a carbon-based material according to the present invention includes a mixture containing graphene oxide, a metal compound, and a non-metal-containing compound containing at least one non-metal selected from nitrogen, boron, sulfur, and phosphorus.
  • the step of preparing, the step of reducing graphene oxide in the mixture to produce graphene, the metal atom derived from the metal compound, and the nonmetal atom derived from the nonmetal-containing compound are doped into the graphene And the molecular weight of the nonmetal-containing compound is 800 or less.
  • FIG. 9A is a graph showing a diffraction intensity curve obtained by X-ray diffraction measurement of graphite
  • FIG. 9B is a graph showing the diffraction intensity curve shown in FIG. 9A extended in the vertical axis direction.
  • 4 is a graph showing a diffraction intensity curve obtained by X-ray diffraction measurement of the carbon-based material obtained in Example 2.
  • 4 is a graph showing a diffraction intensity curve obtained by X-ray diffraction measurement of the carbon-based material obtained in Reference Example 1.
  • It is a graph which overlaps and shows the diffraction intensity curve obtained by the X-ray-diffraction measurement of the graphite, the graphene oxide, the carbonaceous material obtained in Example 2, and the carbonaceous material obtained in Reference Example 1.
  • 3 is an electron micrograph of a carbon-based material according to Example 2.
  • 6 is a graph showing voltammograms obtained by rotating disk electrode voltammetry for carbon-based materials according to Examples 1 to 3, Comparative Example 1, and Reference Example 1.
  • the carbon-based material according to the first aspect of the present invention is composed of graphene doped with a metal atom and at least one non-metal atom selected from a nitrogen atom, a boron atom, a sulfur atom, and a phosphorus atom. Furthermore, the maximum peak derived from an inert metal compound and a metal crystal with respect to the intensity of the peak on the (002) plane in the diffraction intensity curve obtained by X-ray diffraction measurement of this carbon-based material using CuK ⁇ rays The intensity ratio is 0.1 or less.
  • the nonmetallic atom is a nitrogen atom.
  • the carbon-based material according to the second aspect of the present invention is made of graphene doped with metal atoms and nitrogen atoms. Furthermore, the maximum peak derived from an inert metal compound and a metal crystal with respect to the intensity of the peak on the (002) plane in the diffraction intensity curve obtained by X-ray diffraction measurement of this carbon-based material using CuK ⁇ rays The intensity ratio is 0.1 or less.
  • the peak intensity of the (002) plane in the diffraction intensity curve obtained by X-ray diffraction measurement of the carbon-based material using CuK ⁇ rays Is 0.002 or less of the peak intensity of the (002) plane in the diffraction intensity curve obtained by X-ray diffraction measurement of graphite using CuK ⁇ rays.
  • the ratio of the metal atom to the carbon atom in the carbon-based material is in the range of 0.5% by mass to 10% by mass. It is. This ratio can be evaluated by XPS measurement.
  • the ratio of the amount of the nonmetallic atom to the carbon atom in the carbon-based material is in the range of 1% by mass or more. This ratio can be evaluated by XPS measurement.
  • the metal atom contains an iron atom.
  • the electrode catalyst according to the seventh aspect of the present invention includes the carbon-based material according to any one of the first to sixth aspects.
  • the oxygen reduction electrode catalyst according to the eighth aspect of the present invention includes the carbon-based material according to any one of the first to sixth aspects.
  • the gas diffusion electrode according to the ninth aspect of the present invention includes the catalyst according to the seventh or eighth aspect.
  • An aqueous solution electrolysis device includes a container to which an aqueous alkali halide solution is supplied, a first electrode and a second electrode for electrolyzing electrolytic water stored in the container, A power source for applying a voltage so that the first electrode serves as a cathode and the second electrode serves as an anode, and a positive electrode positioned between the first electrode and the second electrode in the container.
  • the first electrode is a gas diffusion electrode according to a ninth aspect.
  • a method for producing a carbon-based material according to an eleventh aspect of the present invention includes graphene oxide, a metal compound, and a nonmetal-containing compound containing at least one nonmetal selected from nitrogen, boron, sulfur, and phosphorus.
  • the non-metal-containing compound has a molecular weight of 800 or less.
  • the mixture is heated to reduce the graphene oxide, and the metal atom and the nonmetal atom to the graphene. And doping.
  • the heating temperature is in the range of 700 ° C. to 1000 ° C., and the heating time is 10 seconds to 10 seconds. The range is less than a minute.
  • the nonmetal-containing compound is pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylene. It contains at least one selected from ethylenetetramine and ethylenediamine.
  • the nonmetallic atom contains a nitrogen atom.
  • the carbon-based material manufacturing method includes a step of preparing a mixture containing graphene oxide, a metal compound, and a nitrogen-containing compound, and reducing graphene oxide in the mixture to graphene And a step of doping the graphene with a metal atom derived from the metal compound and a nitrogen atom derived from the nitrogen-containing compound, and the molecular weight of the nitrogen-containing compound is 800 or less.
  • the heating temperature is preferably in the range of 700 ° C. or higher and 1000 ° C. or lower, and the heating time is preferably in the range of 10 seconds or longer and less than 10 minutes.
  • the method for producing a carbon-based material according to the sixteenth aspect of the present invention in the fifteenth aspect, by heating the mixture, the reduction of the graphene oxide, the metal atom to the graphene, and the nitrogen Causing atomic doping.
  • the heating temperature when the mixture is heated in the sixteenth aspect, is in the range of 700 ° C. to 1000 ° C., and the heating time is 10 seconds. The range is less than 10 minutes.
  • the nitrogen-containing compound is pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, or triethylene. It contains at least one selected from tetramine and ethylenediamine.
  • the carbon-based material is composed of graphene doped with a metal atom and at least one nonmetal atom selected from a nitrogen atom, a boron atom, a sulfur atom, and a phosphorus atom.
  • the nonmetallic atom is a nitrogen atom.
  • the carbon-based material according to the present embodiment is obtained by doping graphene with metal atoms and nitrogen atoms. That is, the carbon-based material is composed of graphene doped with metal atoms and nitrogen atoms.
  • Graphene is a material composed of a graphene sheet.
  • a graphene sheet is a structure formed by sp 2 bonding of a plurality of carbon atoms.
  • the graphene is preferably made of a material composed of a plurality of graphene sheets.
  • the number of graphene sheets stacked in a material composed of a plurality of graphene sheets is preferably in the range of 10 or less.
  • this carbon-based material is measured by an X-ray diffraction measurement method using CuK ⁇ rays, the maximum derived from an inert metal compound and a metal crystal with respect to the intensity of the (002) plane peak in the obtained diffraction intensity curve.
  • the peak intensity ratio is 0.1 or less. That is, the ratio of the inert metal compound and the metal crystal in the carbon-based material is very low.
  • the peak of the (002) plane appears at a position where 2 ⁇ is around 26 °. ⁇ represents an incident angle of X-rays to the sample at the time of X-ray diffraction measurement.
  • the inert metal compound in this case is a compound in which a metal atom that is not doped with graphene is a constituent element in a carbon-based material, such as a metal carbide, a metal nitride, and a metal sulfide. is there.
  • the metal crystal is a crystal composed of metal atoms that are not doped in graphene. The smaller the ratio of peak intensities, the better. The peak derived from the inert metal compound and the metal crystal in the diffraction intensity curve is particularly preferable.
  • the baseline of the diffraction intensity curve is determined by the Shirley method, and the peak intensity of the diffraction intensity curve is determined based on this baseline.
  • the metal atom doped in graphene is not particularly limited, but titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) , Copper (Cu), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), hafnium (Hf), tantalum (Ta) , Tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au) and the like, and preferably one or more metal atoms.
  • the carbon-based material exhibits excellent performance, particularly as a catalyst for promoting the oxygen reduction reaction.
  • the amount of metal atoms doped into the graphene may be set as appropriate so that the carbon-based material exhibits excellent catalytic performance.
  • the mass ratio of metal atoms to carbon atoms in the carbon-based material is preferably in the range of 0.5% by mass to 10% by mass.
  • the amount of nitrogen atoms doped in graphene may be set as appropriate so that the carbon-based material exhibits excellent catalytic performance, but the mass ratio of nitrogen atoms to carbon atoms in the carbon-based material is particularly high.
  • the range is preferably 1% by mass or more, and more preferably 2% by mass or more and 10% by mass or less.
  • the amount of the nonmetallic atom doped in the graphene is excellent in the catalytic performance of the carbon-based material.
  • the mass ratio of the nonmetallic atom to the carbon atom in the carbon-based material is preferably in the range of 1% by mass or more, and preferably 2% by mass or more and 10% by mass or less. If it is the range, it is still more preferable.
  • the carbon-based material when performing X-ray diffraction measurement of the carbon-based material according to the present embodiment, only the carbon-based material is the object of measurement, and the substance mixed in the carbon-based material or attached to the carbon-based material. Substances that exist independently of the carbonaceous material, such as substances that are present, are excluded from the measurement target. For this reason, in the X-ray diffraction measurement of the carbon-based material, the carbon-based material is washed with an acidic aqueous solution in advance to sufficiently reduce the amount of substances existing independently of the carbon-based material. It is necessary to keep.
  • the carbon-based material according to this embodiment exhibits particularly excellent performance as an oxygen reduction catalyst. This is considered to be because the carbon-based material is made of graphene and exhibits high conductivity. Furthermore, since the ratio of the inert metal compound and the metal crystal in the carbon-based material is very low, the function of the metal atom doped in graphene as the active center is hindered by the inert metal compound and the metal crystal. It is thought that this is because it is fully demonstrated without any problems. Conventionally, the reason why carbon-based crystals containing iron and nitrogen could not exhibit sufficiently high catalytic activity is that inactive metal compounds and metal crystals are produced in the process of producing carbon-based crystals, It is thought that these are because they hindered the catalytic activity. On the other hand, the carbon-based material according to the present embodiment exhibits high catalytic activity because the content of the inert metal compound and the metal crystal is very small.
  • the number of graphene sheets stacked in the carbon-based material is sufficiently small.
  • the catalytic activity of the carbon-based material is further improved. This is considered to be because the specific surface area of the carbon-based material increases as the number of graphene sheets stacked decreases.
  • the distance between the graphene sheets in the carbon-based material is sufficiently large.
  • the catalytic activity of the carbon-based material is further improved. This is considered to be because the catalytic activity also occurs in the region between adjacent graphene sheets in the carbon-based material.
  • the number of graphene sheets stacked in the carbon-based material and the distance between the graphene sheets in the carbon-based material can be evaluated from the intensity of the peak on the (002) plane in the diffraction intensity curve. That is, the smaller the number of graphene sheets stacked in the carbon-based material, the smaller the intensity of the (002) plane peak. Further, when the distance between the graphene sheets in the carbon-based material is increased, the variation in the distance between the graphene sheets in the carbon-based material is increased accordingly, and thereby the intensity of the (002) plane peak is decreased.
  • the intensity of the (002) plane peak in the obtained diffraction intensity curve is small.
  • the intensity of the peak on the (002) plane in the diffraction intensity curve obtained by X-ray diffraction measurement of a carbon-based material using CuK ⁇ rays is that the graphite is measured by X-ray diffraction using CuK ⁇ rays. It is preferable that it is 0.002 or less of the intensity of the peak on the (002) plane in the diffraction intensity curve obtained in (1).
  • the carbon-based material is produced by reducing graphene oxide after mixing graphene oxide with a metal compound and a nonmetal-containing compound containing at least one nonmetal selected from nitrogen, boron, sulfur, and phosphorus. Is done.
  • the nonmetal-containing compound is a nitrogen-containing compound. That is, in this embodiment, the carbonaceous material is manufactured by reducing graphene oxide after mixing the metal compound and the nitrogen-containing compound with graphene oxide.
  • the ratio of the inert metal compound and the metal crystal is very low and the conductivity is high.
  • a carbon-based material can be obtained.
  • the number of graphene sheets stacked in the carbon-based material tends to be reduced. That is, a carbon-based material having a thin sheet shape is easily formed. For this reason, the specific surface area of a carbonaceous material becomes large, and, thereby, the catalytic activity of a carbonaceous material becomes high.
  • the molecular weight of the nitrogen-containing compound used for producing the carbonaceous material is 800 or less.
  • the nitrogen atom derived from a nitrogen-containing compound is easily doped into graphene. This is because the nitrogen-containing compound is thermally decomposed in a short time because the molecular weight of the nitrogen-containing compound is small, and the generated nitrogen atoms are easily inserted between the graphene sheets. It is thought that this is because there are more opportunities to join.
  • the molecular weight of the nonmetal-containing compound is 800 or less.
  • the nonmetallic atom derived from a nonmetallic containing compound is easily doped to graphene. This is because the non-metal-containing compound has a low molecular weight, so the non-metal-containing compound is thermally decomposed in a short time, and the non-metal atoms generated thereby are easily inserted between the graphene sheets. This is thought to be because there are more opportunities for bonding to non-metal atoms.
  • the thermal decomposition of the metal compound and the nitrogen-containing compound and the reduction of the graphene oxide proceed in a mixture containing the graphene oxide, the metal compound, and the nitrogen-containing compound.
  • the thermal decomposition of the metal compound and the nitrogen-containing compound and the reduction of the graphene oxide proceed in parallel.
  • the doping of graphene with metal atoms and nitrogen atoms is promoted. This is presumably because the graphene oxide before being reduced has high hydrophilicity, so that the nitrogen-containing compound and the metal compound easily enter between the sheet structure layers in the graphene oxide in the course of the reaction.
  • the nitrogen-containing compound is stabilized by hydrogen bonding with the hydrophilic functional group in graphene oxide, and the metal is more easily coordinated to the nitrogen-containing compound. Therefore, it is considered that the concentration of nitrogen atoms and metal atoms is increased, and therefore nitrogen atoms and metal atoms are easily doped into graphene.
  • a nonmetal-containing compound containing at least one nonmetal selected from nitrogen, boron, sulfur and phosphorus is used.
  • the thermal decomposition of the metal compound and the nitrogen-containing compound and the reduction of the graphene oxide proceed by heating the mixture containing the graphene oxide, the metal compound, and the nitrogen-containing compound. Furthermore, it is preferable to shorten the heating time in this case.
  • a carbon-based material having a high ratio of metal atoms and nitrogen atoms can be easily obtained even when the heating time is short. can get. Therefore, a carbonaceous material is manufactured efficiently.
  • the heating time is short, the catalytic activity of the carbon-based material is further improved.
  • the heating time is long, the distance between the graphene sheets tends to be short (the graphene sheets are likely to be stacked), whereas when the heating time is short, the distance between the graphene sheets is suppressed from being shortened.
  • the catalytic activity of the carbon-based material is easily improved in the region between adjacent graphene sheets in the carbon-based material.
  • the heating rate during heating is fast. In this case, the catalytic activity of the carbon-based material is further improved.
  • the distance between the graphene sheets in the carbon-based material is likely to increase, and therefore, the catalytic activity is more likely to develop in the region between adjacent graphene sheets in the carbon-based material. It is believed that there is.
  • the reason why the distance between the graphene sheets is likely to increase is considered to be that gas such as CO 2 gas is generated between the graphene sheets by heating. When the rate of temperature increase is slow, even if gas is generated, the gas escapes between the graphene sheets before the pressure between the graphene sheets increases.
  • Graphene oxide is produced by a known method.
  • a modified Hummers method can be given.
  • a preferred embodiment of the method for producing graphene oxide will be described.
  • graphite and concentrated sulfuric acid are mixed, and further, if necessary, potassium nitrate is mixed to prepare a mixture.
  • the amount of concentrated sulfuric acid is preferably in the range of 50 mL to 200 mL with respect to 3 g of graphite, and more preferably in the range of 100 mL to 150 mL.
  • the amount of potassium nitrate is preferably 5 g or less with respect to 3 g of graphite, and more preferably 3 g or more and 4 g or less.
  • potassium permanganate While slowly cooling the container containing the mixture, preferably with an ice bath, etc., potassium permanganate is slowly added to the mixture.
  • the amount of potassium permanganate added is preferably in the range of 3 g to 18 g and more preferably in the range of 11 g to 15 g with respect to 3 g of graphite.
  • the reaction is allowed to proceed while stirring the mixture.
  • the reaction temperature at this time is preferably in the range of 30 ° C. to 55 ° C., more preferably in the range of 30 ° C. to 40 ° C.
  • the reaction time is preferably in the range of 30 minutes to 90 minutes.
  • ion exchange water is added to the mixture.
  • the amount of ion-exchanged water is preferably in the range of 30 mL to 350 mL with respect to 3 g of graphite, and more preferably in the range of 170 mL to 260 mL.
  • reaction temperature at this time is preferably in the range of 80 ° C. or higher and 100 ° C. or lower.
  • the reaction time is preferably longer than 20 minutes.
  • the temperature of the mixture is sufficiently lowered by adding ion exchange water to the mixture, and the reaction is terminated by adding hydrogen peroxide.
  • the amount of ion-exchanged water is not particularly limited as long as the temperature of the mixture can be sufficiently lowered.
  • the amount of the hydrogen peroxide solution is not particularly limited, but for example, 10 mL or more of 30% hydrogen peroxide is preferably used with respect to 3 g of graphite, and more preferably 15 mL or more.
  • the mixture is washed with hydrochloric acid and water, and ions are removed from the mixture by dialysis. Furthermore, the graphene oxide is peeled off by applying ultrasonic waves to the mixture. Thereby, graphene oxide is obtained.
  • a mixture containing graphene oxide, a metal compound, and a nitrogen-containing compound is prepared.
  • the molecular weight of the nitrogen-containing compound used for producing the carbonaceous material is 800 or less.
  • the molecular weight of the nitrogen-containing compound is more preferably 50 or more and 800 or less, and particularly preferably 100 or more and 300 or less.
  • the nitrogen-containing compound is a compound that can form a complex with a metal atom doped in graphene.
  • the catalytic activity of the carbon-based material is further improved.
  • the reason is assumed to be as follows.
  • the metal atom it is considered that the metal atom and the nitrogen atom are easily doped after the nitrogen-containing compound temporarily forms a complex.
  • the distance between the metal atom doped in graphene and the nitrogen atom tends to be close.
  • the catalytic activity in the carbon-based material is expressed at a position where the nitrogen atom and the metal atom in the carbon-based material are close to each other.
  • the catalytic activity of the carbon-based material is further improved by using a nitrogen-containing compound capable of forming a complex with a metal atom.
  • the nitrogen-containing compound contains at least one selected from pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, and ethylenediamine
  • the catalytic activity of the carbonaceous material is particularly high.
  • an aqueous solution of a metal compound and non-shared electrons such as pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, and ethylenediamine are added to the graphene oxide.
  • a solvent solution of a nitrogen-containing compound having a pair eg ethanol solution
  • the metal compound is not particularly limited as long as it is a metal compound doped with graphene, but for example, inorganic such as chloride salt, nitrate salt, sulfate salt, bromide salt, iodide salt, fluoride salt of each metal.
  • Examples thereof include organic metal salts such as metal salts and acetates, and hydrates thereof.
  • iron (III) chloride is preferably used as the metal compound.
  • the amount of the metal compound used is appropriately set according to the amount of metal atoms doped into graphene.
  • the amount of Fe is preferably in the range of 5% by mass to 30% by mass, more preferably in the range of 5% by mass to 20% by mass with respect to graphene.
  • the amount of the nitrogen-containing compound used is appropriately set according to the doping amount of the nitrogen atom into the graphene.
  • the mole of the former versus the latter is preferably in the range of 1: 1 to 1: 2, more preferably in the range of 1: 1.5 to 1: 1.8.
  • a solvent such as ethanol is added to the resulting mixture to adjust the total amount, and this mixture is further dispersed by an ultrasonic dispersion method. Subsequently, the mixture is dried by heating at an appropriate temperature (for example, 60 ° C.). Thereby, a mixture containing a metal compound, a nitrogen-containing compound, and graphene oxide is obtained.
  • graphene is generated by reducing graphene oxide, and the metal atom and nitrogen atom derived from the metal compound and the nitrogen-containing compound are further added to the graphene.
  • a carbon-based material obtained by doping graphene with metal atoms and nitrogen atoms can be obtained.
  • Reduction and subsequent doping of metal atoms and nitrogen atoms are performed by an appropriate method. For example, by heating a mixture containing a metal compound, a nitrogen-containing compound, and graphene oxide in a reducing atmosphere or an inert gas atmosphere, the graphene oxide is reduced, and a metal atom is added to the graphene generated thereby.
  • the thermal decomposition of the metal compound and the nitrogen-containing compound and the reduction of the graphene oxide can proceed in parallel.
  • the heating conditions during the heat treatment are appropriately set, but the heating temperature is preferably in the range of 700 ° C. to 1000 ° C., more preferably in the range of 800 ° C. to 950 ° C.
  • the heating time is preferably 30 seconds or longer and 120 seconds or shorter. Thus, if heating time is short, a carbonaceous material will be manufactured efficiently and the catalytic activity of a carbonaceous material will become still higher.
  • the heating time is more preferably 30 seconds or more and 60 seconds or less. Moreover, it is preferable that the temperature increase rate of the mixture at the time of a heating start in this heat processing is 50 degrees C / s or more. When the mixture is rapidly heated in this way, the catalytic activity of the carbon-based material is further increased.
  • the carbon-based material thus obtained may be further subjected to acid cleaning.
  • acid cleaning for example, a carbon-based material is immersed in 2M sulfuric acid at 80 ° C. for 3 hours.
  • the overvoltage is not greatly changed, but the current gradient and the limit current are improved during oxygen reduction. .
  • this carbon-based material has high catalytic activity and high conductivity, it is particularly suitable as a catalyst (electrode catalyst) used for advancing a chemical reaction on an electrode by an electrochemical method. Furthermore, it is suitable as a catalyst (oxygen reduction electrode catalyst) used to advance the oxygen reduction reaction on the electrode. Further, it is particularly suitable as a catalyst applied to a gas diffusion electrode for reducing oxygen in the gas phase.
  • the fuel cells referred to in this specification include hydrogen fuel cells such as polymer electrolyte fuel cells (PEFCs) and phosphoric acid fuel cells (PAFCs), and microbial fuel cells (MFCs). : Microbial Fuel Cell).
  • PEFCs polymer electrolyte fuel cells
  • PAFCs phosphoric acid fuel cells
  • MFCs microbial fuel cells
  • the gas diffusion electrode includes a carbon-based material as an electrode catalyst and a conductive carrier that supports the carbon-based material.
  • the gas diffusion electrode may further include a support as necessary.
  • the carbon-based material may be at least partially disposed on the surface of the gas diffusion electrode so that a redox reaction involving reaction gas, electron donating microorganisms, and the like can proceed on the gas diffusion electrode.
  • the conductive carrier means a substance that has conductivity and can carry a carbon-based material that is a catalyst. As long as it has such characteristics, the material of the conductive carrier is not particularly limited. Examples of the material of the conductive carrier include carbon-based substances, conductive polymers, semiconductors, metals, and the like.
  • Carbon material means a material containing carbon as a component.
  • Examples of carbon-based materials include graphite, activated carbon, carbon powder (including carbon black, Vulcan XC-72R, acetylene black, furnace black, Denka black), carbon fiber (graphite felt, carbon wool, carbon woven fabric). Carbon plate, carbon paper, carbon disk, and the like.
  • examples of the carbon-based material include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters.
  • Conductive polymer is a general term for conductive polymer compounds.
  • the conductive polymer include aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer of two or more monomers having a structural unit as a constituent unit. Can be mentioned.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene.
  • a suitable conductive support is a carbon-based material, but is not limited thereto.
  • the carrier may be composed of a single species or a combination of two or more species.
  • a support configured by combining a carbon-based material and a conductive polymer, a support configured by combining a carbon powder, which is a carbon-based material, and carbon paper may be used.
  • the shape of the carrier is not particularly limited as long as the carbon-based material as a catalyst can be supported on the surface.
  • the shape of the support is preferably a powder shape or a fiber shape having a large specific surface area per unit mass.
  • the larger the specific surface area of the support the larger the support area can be secured, the dispersibility of the catalyst component on the support surface can be improved, and more catalyst components can be supported on the surface.
  • a fine particle shape such as carbon powder and a fine fiber shape such as carbon fiber are suitable as the carrier shape.
  • a fine powder having an average particle diameter of 1 nm to 1 ⁇ m is particularly preferable.
  • carbon black having an average particle size of about 10 nm to 300 ⁇ m is suitable as a carrier.
  • the carrier has a connection terminal for a lead wire connecting the fuel cell electrode and an external circuit in a part thereof.
  • the support is a substance that itself has rigidity and can give a certain shape to the gas diffusion electrode.
  • the conductive carrier is in the form of powder or the like, it is not possible to maintain a certain shape as a gas diffusion electrode only with the conductive carrier carrying the carbon-based material. Further, when the conductive carrier is in a thin layer state, the carrier itself does not have rigidity. In such a case, a certain shape and rigidity are imparted as an electrode by disposing a conductive carrier carrying a carbon-based material on the support surface.
  • the gas diffusion electrode may be provided with a support as necessary.
  • a support for example, when the conductive carrier itself has a certain shape and rigidity, such as a carbon disk, it is possible to maintain a certain shape as a gas diffusion electrode with only the conductive carrier carrying a carbon-based material.
  • the electrolyte material itself may give a certain shape and rigidity to the gas diffusion electrode.
  • thin layer electrodes are bonded to both surfaces of a solid polymer electrolyte membrane. In such a case, the support is not necessarily required.
  • the material of the support is not particularly limited as long as the electrode is rigid enough to maintain a certain shape.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, water- or water-repellent treated paper and plant pieces (eg, wood pieces), animal pieces (eg, bone pieces) , Shells and sponges).
  • a porous structure support is more preferred because it increases the specific surface area for joining the conductive support carrying the carbon-based material and can increase the mass activity of the electrode.
  • Examples of the support having a porous structure include porous ceramics, porous plastics, animal pieces, and the like.
  • the support When the support is a conductor, examples of the support include carbon-based materials (including carbon paper, carbon fibers, carbon rods), metals, conductive polymers, and the like.
  • the support When the support is a conductor, the support can also function as a current collector by disposing a conductive carrier carrying a carbon-based material on the surface of the support.
  • the shape of the support usually reflects the shape of the gas diffusion electrode.
  • the shape of the support is not particularly limited as long as it can serve as an electrode. What is necessary is just to determine suitably according to the shape etc. of a fuel cell. For example, (substantially) flat (including thin layer), (substantially) columnar, (substantially) spherical, or a combination thereof may be mentioned.
  • a method for supporting a carbon-based material as a catalyst on a conductive support a method known in the art can be used.
  • a method of fixing the carbon-based material on the surface of the conductive support using an appropriate fixing agent can be mentioned.
  • the fixing agent is preferably conductive, but is not limited.
  • a conductive polymer solution in which the conductive polymer is dissolved in an appropriate solvent, a polytetrafluoroethylene (PTFE) dispersion, or the like can be used as the fixing agent.
  • PTFE polytetrafluoroethylene
  • a method for forming the gas diffusion electrode a method known in the art can be used.
  • a conductive support carrying a carbon-based material as a catalyst is mixed with a PTFE dispersion (for example, Nafion (trademark registered; Du Pont) solution) or the like to prepare a mixed solution.
  • a gas diffusion electrode can be formed by performing heat treatment after forming into a shape.
  • an electrode sheet is formed by forming the mixed solution into a sheet shape, and the membrane of this electrode sheet
  • a fluorine resin ion exchange membrane may be bonded to the electrode sheet by applying or impregnating a fluorine conductive ion exchange membrane solution or the like having proton conductivity to the bonding surface, followed by hot pressing.
  • the fluororesin ion exchange membrane having proton conductivity include Nafion and Fileion (registered trademark; Asahi Glass Co., Ltd.).
  • the gas diffusion electrode may be formed by applying a mixed slurry made of the above mixed solution on the surface of a conductive support such as carbon paper and then performing heat treatment.
  • a mixed ink or a mixed slurry of a proton conductive ion exchange membrane solution (for example, a Nafion solution) and a conductive carrier carrying an electrode catalyst is applied to the surface of a support, a solid polymer electrolyte membrane, an electrolyte matrix layer, or the like.
  • a gas diffusion electrode may be formed.
  • a fuel cell including a gas diffusion electrode including a carbon-based material as a catalyst will be described. This fuel cell can be suitably applied to a hydrogen fuel cell, MFC, and the like.
  • a hydrogen fuel cell is a fuel cell that obtains electric energy from hydrogen and oxygen based on the reverse operation of water electrolysis, and is a PEFC, PAFC, alkaline fuel cell (AFC), molten carbonate fuel cell. (MCFC; Molten Carbonate Fuel Cell), solid oxide fuel cell (SOFC), and the like are known.
  • the fuel cell according to the present embodiment is preferably PEFC or PAFC.
  • PEFC is a proton conductive ion exchange membrane
  • PAFC is a fuel cell using phosphoric acid (H 3 PO 4 ) impregnated in a matrix layer as an electrolyte material.
  • the fuel cell may have a known configuration in each fuel cell except that the fuel cell includes a gas diffusion electrode including an electrode catalyst (oxygen reduction electrode catalyst) including a carbon-based material.
  • the fuel cell is “Fuel Cell Technology”, edited by the IEEJ Fuel Cell Power Generation Next Generation System Technology Investigation Special Committee, Ohmsha, H17, Watanabe, K., J. Biosci. Bioeng., 2008, .106. : 528-536.
  • a gas diffusion electrode including an electrode catalyst containing a carbon-based material can be used for either an anode (fuel electrode) or a cathode (air electrode).
  • the electrode catalyst of the present invention included in the electrode is H 2 ⁇ 2H + + 2e ⁇ of hydrogen gas as a fuel. Catalyze the reaction and donate electrons to the anode.
  • the electrode catalyst catalyzes a reaction of 1/2 O 2 + 2H + + 2e ⁇ ⁇ H 2 O of oxygen gas as an oxidizing agent.
  • the gas diffusion electrode according to the present embodiment is mainly used as a cathode that causes the same electrode reaction as that of the hydrogen fuel cell.
  • gas diffusion electrode including the electrode catalyst including the carbon-based material according to the present embodiment is expected to be applied to various uses other than the fuel cell as described above. For example, it can be applied to a cathode in a carbon dioxide permeation device, a salt electrolysis device, or the like.
  • Embodiment of the aqueous solution electrolysis apparatus 1 provided with a gas diffusion electrode is described.
  • FIG. 1 shows an example of an aqueous solution electrolysis apparatus 1 according to the present embodiment.
  • the aqueous solution electrolysis apparatus 1 includes a container 2, a first electrode 3 and a second electrode 4 for electrolyzing an electrolytic solution 15 stored in the container 2, a cation exchange membrane 5, a gas supply / discharge chamber. 11 and a power source 16.
  • the container 2 is divided into two chambers by a cation exchange membrane 5.
  • a cation exchange membrane 5 one chamber is referred to as an anode chamber 13 and the other chamber is referred to as a cathode chamber 14.
  • the container 2 includes an alkali halide aqueous solution supply port 7 that communicates with the anode chamber 13, a halogen compound aqueous solution outlet port 6 that communicates with the anode chamber 13, a halogen gas outlet port 8 that communicates with the anode chamber 13, and A water supply port 9 communicating with the cathode chamber 14 and an alkaline aqueous solution outlet port 10 communicating with the cathode chamber 14 are formed.
  • the alkaline halide aqueous solution is supplied from the alkaline halide aqueous solution supply port 7 to the anode chamber 13, and water is supplied from the water supply port 9 to the cathode chamber 14, whereby the electrolyte solution 15 is stored in the container 2. .
  • the cation exchange membrane 5 is not particularly limited, but is preferably a membrane that is resistant to chlorine generated in the anode chamber 13 and has a large transport number of sodium ions.
  • the cation exchange group provided in the cation exchange membrane 5 may be a general cation exchange group such as a sulfonic acid group, a phosphoric acid group, a sulfonamide group, or a hydroxyl group.
  • the cation exchange membrane 5 is preferably a fluorocarbon-based membrane having high chlorine resistance.
  • the gas supply / discharge chamber 11 is provided adjacent to the cathode chamber 14 of the container 2.
  • An oxygen-containing gas supply port 12 that communicates with the gas supply / discharge chamber 11 is formed in the gas supply / discharge chamber 11.
  • the material of the second electrode 4 examples include metal materials such as iron, copper, and nickel, and carbon materials.
  • the shape of the second electrode 4 is not particularly limited, but when the material of the second electrode 4 is a metal material, an expanded metal shape, a wire mesh shape, a punching metal shape, a coil shape, and the like can be given.
  • the material of the second electrode 4 is a carbon material, a sheet shape, a cloth shape, a paper shape, a rod shape, and the like can be given.
  • the second electrode 4 is disposed in the anode chamber 13. When the electrolytic solution 15 is stored in the container 2, the second electrode 4 comes into contact with the electrolytic solution 15 by being immersed in the electrolytic solution 15 in the anode chamber 13.
  • the first electrode 3 is a gas diffusion electrode according to the present embodiment.
  • the first electrode 3 is provided so as to be interposed between the cathode chamber 14 and the gas supply / discharge chamber 11 and is in contact with the space inside the cathode chamber 14 on the cathode chamber 14 side, and on the gas supply / discharge chamber 11 side. In contact with the space inside the gas supply / discharge chamber 11.
  • the electrolytic solution 15 is stored in the container 2, the first electrode 3 comes into contact with the electrolytic solution 15 in the cathode chamber 14. Inside the first electrode 3, a three-phase interface of an electrode (solid phase), an electrolytic solution 15 (liquid phase or solid phase), and a gas containing oxygen (gas phase) is formed. Electrode reaction with the electrolyte solution 15 may occur.
  • the first electrode 3 that is a gas diffusion electrode includes a gas diffusion layer and a catalyst layer.
  • the first electrode 3 is made of, for example, a porous conductor. In this porous conductor, the region where the catalyst is supported is the catalyst layer, and the region where the catalyst is not supported is the gas diffusion layer.
  • the porous conductor preferably has a large specific surface area in order to increase the reaction area.
  • the specific surface area of the porous conductor is 1 m 2 / g or more, more preferably 100 m 2 / g or more, and further preferably 500 m 2 / g or more in the BET adsorption measurement.
  • the specific surface area of the porous conductor is smaller than 1 m 2 / g in the BET adsorption measurement, the reaction amount becomes small because the area of the three-phase interface is small.
  • the surface resistance of the porous conductor is preferably as low as possible, but the surface resistance is preferably 1 k ⁇ / sq. Or less, more preferably 200 ⁇ / sq. It is as follows.
  • the porous conductor include a carbon sheet, carbon cloth, carbon paper and the like.
  • the catalyst layer is configured by supporting the catalyst with a cation conductive resin or the like in a region on one surface side (surface side in contact with the electrolytic solution 15) of the porous conductor.
  • the catalyst layer is provided in order to reduce the overvoltage of the oxidation-reduction reaction in the first electrode 3.
  • the larger the surface area of the catalyst the more active sites in the catalyst. Therefore, the specific surface area of the catalyst is preferably large. For that purpose, the smaller the particle size of the catalyst, the better.
  • the supported amount of catalyst is larger, and it is particularly preferable that the supported amount is 0.05 mg / cm 2 or more.
  • the gas diffusion layer is preferably subjected to water repellent treatment in order to prevent flooding that inhibits gas diffusion due to excessive moisture in the vicinity of the catalyst layer.
  • This water repellent process is performed by coating the gas diffusion layer with, for example, polytetrafluoroethylene (PTFE). Since such a water-repellent process is performed, the first electrode 3 has a property that gas can pass but water cannot pass, and the first electrode 3 has a catalyst layer. Gas can diffuse.
  • PTFE polytetrafluoroethylene
  • the catalyst supported on the catalyst layer of the first electrode 3 that is the cathode includes the carbon-based material according to the present embodiment. Since this carbon material is excellent in electroconductivity and has high oxygen reduction catalytic activity, the efficiency of electrolysis is improved.
  • a method for electrolyzing an alkali halide using the aqueous solution electrolysis apparatus 1 configured as described above will be described.
  • the case where sodium chloride is electrolyzed as an alkali halide will be described as an example.
  • an aqueous solution in which sodium chloride is dissolved is supplied from the alkali halide aqueous solution supply port 7 to the anode chamber 13 of the container 2.
  • the aqueous solution include saturated saline, but seawater or the like may be used.
  • water is supplied from the water supply port 9 to the cathode chamber 14.
  • a gas containing oxygen is supplied from the oxygen-containing gas supply port 12 into the gas supply / discharge chamber 11.
  • the oxygen reduction reaction described above occurs very efficiently at the first electrode 3 which is a gas diffusion electrode carrying a carbon-based material. For this reason, the voltage applied between the first electrode 3 and the second electrode 4 can be reduced to about 2 V, the power consumption can be greatly reduced, and the electrolytic efficiency is extremely high. To be high.
  • aqueous solution electrolysis apparatus 1 When the aqueous solution electrolysis apparatus 1 according to the present embodiment is used, by electrolyzing an alkali halide such as sodium chloride, a halogen gas such as chlorine gas, an alkali halide such as sodium hydroxide, a halogen such as hydrochloric acid and hypochlorous acid. Compounds and the like can be produced efficiently.
  • an alkali halide such as sodium chloride
  • a halogen gas such as chlorine gas
  • an alkali halide such as sodium hydroxide
  • a halogen such as hydrochloric acid and hypochlorous acid
  • the aqueous solution electrolysis apparatus 1 can be used to kill microorganisms in an aqueous solution containing sodium chloride.
  • Such treatment is particularly suitable for killing microorganisms in seawater used as ballast water or the like.
  • Ballast water is loaded on air-loaded ships for stability, but in recent years, ballast water is drained in areas that are separate from the area where the water was taken. There are concerns that health damage will occur. Therefore, when the chlorine compound is generated by electrolyzing sodium chloride in the ballast water using the aqueous solution electrolysis apparatus 1 according to the present embodiment, the microorganisms in the ballast water are killed by the chlorine compound, and the problem caused by the microorganisms in the ballast water is solved. be able to.
  • ballast water is taken from the sea by the power of the pump, and further, the ballast water is circulated in the ship as follows by the power of the pump.
  • the ballast water is supplied to the anode chamber 13 of the aqueous solution electrolysis apparatus 1 according to the present embodiment and electrolyzed, thereby generating a chlorine compound in the ballast water.
  • ballast water is supplied from the aqueous solution electrolysis device 1 to the ballast tank and stored.
  • the ballast water in the ballast tank is drained, returned to the aqueous solution electrolysis apparatus 1, and further electrolyzed to produce a chlorine compound in the ballast water.
  • the microorganisms in ballast water can be killed by chlorine compounds such as hypochlorous acid.
  • chlorine compounds such as hypochlorous acid.
  • sodium hydroxide produced by the aqueous solution electrolysis apparatus 1 can be used.
  • ballast water is treated in this way, microorganisms in the ballast water can be killed with high efficiency.
  • Example 1 In the container, 3 g of graphite (Wako 40 mm), 138 mL of concentrated sulfuric acid, and 3.47 g of potassium nitrate were mixed to obtain a mixed solution. With this container in an ice bath, 12 g of potassium permanganate was further slowly added to the container. Subsequently, the mixed liquid in the container was stirred at 40 ° C. for 30 minutes, and subsequently 240 mL of ion-exchanged water was added to the container, and then the mixed liquid was heated to 90 ° C. and stirred for 1 hour. Subsequently, the reaction was terminated by adding 600 mL of ion exchange water and 18 mL of 30% hydrogen peroxide water into the container. Subsequently, the mixture was washed with hydrochloric acid and water, and then ions were removed by dialysis. Furthermore, the graphene oxide was peeled off by applying an ultrasonic wave to the mixed solution.
  • the graphene oxide thus obtained was dried, and a mixed solution was prepared by adding a 0.1 M iron (III) chloride aqueous solution and a 0.15 M pentaethylenehexamine ethanol solution to 200 mg of graphene oxide.
  • the amount of 0.1 M iron (III) chloride aqueous solution used was adjusted so that the ratio of Fe atoms to graphene was 10% by mass.
  • the total amount was adjusted to 9 mL by further adding ethanol to the mixture.
  • the mixture was ultrasonically dispersed and then dried at 60 ° C. with a dryer.
  • the sample thus obtained was packed into one end of a quartz tube, and then the inside of the quartz tube was replaced with argon.
  • the quartz tube was pulled out 45 seconds after being placed in a furnace at 900 ° C.
  • the quartz tube was inserted into the furnace over 3 seconds to adjust the rate of temperature rise of the sample at the start of heating to 300 ° C./s.
  • the sample was cooled by flowing argon gas through the quartz tube. As a result, a carbon-based material was obtained.
  • Example 2 The amount of 0.1M iron (III) chloride aqueous solution used was such that in Example 2, the ratio of Fe atoms to graphene was 17% by mass, and in Example 3, the ratio of Fe atoms to graphene was 30% by mass. Respectively. Otherwise, a carbon-based material was obtained in the same manner and under the same conditions as in Example 1.
  • Example 1 A carbon-based material was obtained by the same method and under the same conditions as in Example 2 except that a 0.1 M iron (III) chloride aqueous solution was not used.
  • the ratio (Id / Ig) between the intensity (Id) of the peak of the D band and the intensity (Ig) of the peak of the G band is 0.89 in the case of graphite, and 0.96 in the case of graphene oxide. 1.14 for the carbon-based material obtained in Example 2, 1.15 for the carbon-based material obtained in Comparative Example 1, 1.02 for the carbon-based material obtained in Comparative Example 2 there were. This intensity ratio (Id / Ig) is increased by doping with a different element.
  • X-ray photoelectron spectroscopy measurement X-ray photoelectron spectroscopy (XPS measurement) was performed on graphene oxide, the carbon-based material obtained in Example 2, the carbon-based material obtained in Comparative Example 1, and the carbon-based material obtained in Comparative Example 2. .
  • the XPS spectra obtained thereby are shown in FIGS.
  • FIG. 4 shows peaks derived from C1s of the carbon-based material and graphene oxide obtained in Example 2.
  • A represents the XPS spectrum in the case of the carbon-based material obtained in Example 2
  • B represents the XPS spectrum in the case of graphene oxide.
  • the peak corresponding to the binding energy of 287 eV in the graphene oxide spectrum is derived from the CO bond, but such a peak does not appear in the spectrum of the carbon-based material obtained in Example 2. For this reason, it can confirm that the carbonaceous material obtained in Example 2 is reduced.
  • FIG. 7 shows the peaks derived from Fe2p of the carbon-based material obtained in Comparative Example 2 and the carbon-based material obtained in Example 2.
  • A shows the XPS spectrum for the carbon-based material obtained in Example 2
  • B shows the XPS spectrum for the carbon-based material obtained in Comparative Example 2.
  • a peak derived from Fe2p appears. For this reason, it can be confirmed that these carbon-based materials are doped with iron atoms.
  • the carbon-based material obtained in Example 2 has a basic structure of graphene and is doped with iron atoms and nitrogen atoms. Can be confirmed.
  • the doping amounts of nitrogen atoms in the carbon-based materials obtained in Examples 1, 2, and 3 were 4.7% by mass and 6.9% by mass, respectively. %, And 12.3% by mass.
  • the doping amount of iron atoms with respect to the amount of carbon atoms was 2.0% by mass, 3.9% by mass, and 5.3% by mass, respectively. It was.
  • the doping amount of nitrogen atoms relative to the amount of carbon atoms in the carbon-based material obtained in Comparative Example 1 was 4.1% by mass.
  • the doping amount of iron atoms relative to the amount of carbon atoms was 3.8% by mass.
  • FIG. 8 shows, as Reference Example 2, the results of X-ray diffraction measurement of the carbon-based material obtained in Example 2 without acid cleaning.
  • A shows the diffraction intensity curve for the carbon-based material obtained in Example 2
  • B shows the diffraction intensity curve for the carbon-based material obtained in Reference Example 2.
  • Example 2 it was confirmed that a carbon-based material having a remarkably low content of inert metal compound and metal crystal was obtained.
  • 9A shows the overall shape of the diffraction intensity curve for graphite.
  • 9B is obtained by extending the diffraction intensity curve shown in FIG. 9A in the vertical axis direction.
  • FIG. 13 shows the four types of diffraction intensity curves in an overlapping manner.
  • the peak of the (002) plane in the diffraction intensity curve for the carbon-based material obtained in Example 2 is much more difficult than the peak of the (002) plane in the diffraction intensity curve for graphite.
  • the intensity ratio of the former to the latter was 0.00093.
  • the baseline was determined by the Shirley method in the range of 2 ⁇ from 18 ° to 35 °, and the peak intensity was determined based on this baseline.
  • the (002) plane peak in the diffraction intensity curve for the carbon-based material obtained in Reference Example 1 is the (002) plane peak in the diffraction intensity curve for the carbon-based material obtained in Example 2. It is larger than In Reference Example 1, it is determined that the distance between the graphene sheets in the carbon-based material is shortened (the graphene sheets are stacked) because the heating time during the heat treatment is long.
  • FIG. A is the result of Example 1
  • B is the result of Example 2
  • C is the result of Example 3
  • D is the result of Comparative Example 1
  • E is the reference example.
  • the results for 1 are shown respectively.
  • no oxygen reduction reaction was observed in Comparative Example 1
  • the oxygen reduction reaction proceeds from around the electrode potential of 0.7 V (vs. Ag / AgCl). Is recognized.
  • a platinum catalyst is used, this is in the range of about plus 150 mV in terms of overvoltage.
  • the catalytic activity of the carbon-based material according to Examples 1 to 3 is at the highest level as a non-platinum-based oxygen reduction catalyst.
  • Reference Example 1 the reference voltage in Reference Example 1 is increased by about 70 mV compared to Example 2. This is because, in Reference Example 1, since the firing time is long, metal atoms serving as active centers are detached from the graphene sheet, and impurities such as metal crystals and iron carbide are generated between the graphene sheets. In No. 1, it is considered that the catalyst activity was low.
  • the carbon-based material according to the present invention is suitable as a catalyst, and particularly suitable as an electrode catalyst used for reducing oxygen on an electrode.
  • the electrode catalyst and oxygen reduction electrode catalyst according to the present invention are not particularly limited, but are suitable as a catalyst for a gas diffusion electrode.
  • the gas diffusion electrode according to the present invention is not particularly limited, but is suitable as an electrode for a fuel cell, a carbon dioxide permeation device, an aqueous solution electrolysis device, a salt electrolysis device and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 本発明は、触媒活性の高い炭素系材料を提供する。本発明に係る炭素系材料は、金属原子と、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子とがドープされているグラフェンから成る。炭素系材料の、CuKα線を用いるX線回折測定により得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である。

Description

炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
 本発明は、触媒として好適な炭素系材料、前記炭素系材料を含む電極触媒及び酸素還元電極触媒、前記触媒を備えるガス拡散電極、並びに前記炭素系材料の製造方法に関する。
 下記に示す酸素還元反応は、H2/O2燃料電池、食塩電解等におけるカソード反応であり、エネルギー変換電気化学デバイスなどにおいて重要である。
 O2+4H++4e- → 2H2
 各種デバイスにおいて酸素還元反応を進行させる場合、通常は触媒として白金が広く使用されている。
 しかし、白金は稀少で高価であり、且つ価格が不安定であるので、白金を使用することには、省資源化の観点、入手安定性を確保する観点、低コスト化の観点などから、問題がある。
 そこで、近年、金属と窒素がドープされた炭素系材料からなる触媒が開発され、白金に代わる触媒として有力視されている。例えば非特許文献1には、鉄フタロシアニンとフェノール樹脂との混合物を、不活性ガス中で、加熱温度700~900℃、加熱時間2~3時間の条件で加熱することで、鉄と窒素を含有する炭素系結晶が得られ、それが酸素還元を促進させる触媒として機能することが、開示されている。また、この触媒形成過程において、鉄は炭素系結晶の結晶化を促進させる触媒機能も併せ持つことが、開示されている。
 また、非特許文献2には、酸化グラフェンと塩化鉄とグラファイト状窒化炭素(g-C34)との混合物中の酸化グラフェンを、還元剤を用いて化学的に還元することで、グラフェンを生成し、更にこの混合物を、アルゴンガス雰囲気下で、加熱温度800℃、加熱時間2時間の条件で加熱することで、鉄と窒素を含有する炭素系結晶を得ることが、開示されている。また、この炭素系結晶が、酸素還元を促進させる触媒として機能することが、開示されている。
 このような触媒が充分な触媒活性を発揮するためには、炭素系結晶を構成するグラフェンシートの1枚当たりの面積を充分に広くすることで反応活性中心の数を充分に多くしたり、炭素系結晶を構成するグラフェンシート1枚あたりにより多くの鉄と窒素をドープさせたりする必要がある。そのために、従来は、炭素系結晶の製造時における不活性ガス中での加熱温度を高くしたり、加熱時間を長くしたりしていた。
Carbon,Vol. 48, No. 9. (02 August 2010), p. 2613-2624 Chem.Mater 2011. 23, 3421-3428
 しかし、炭素系結晶の製造時における不活性ガス中での加熱温度を高くしたり、加熱時間を長くしたりすると、触媒性能が却って低下してしまうという問題がある。
 本発明は上記事由に鑑みてなされたものであり、触媒活性の高い炭素系材料、前記炭素系材料を含む電極触媒及び酸素還元電極触媒、前記触媒を備えるガス拡散電極、前記ガス拡散電極を備える水溶液電解装置、並びに前記炭素系材料の製造方法を提供することを目的とする。
 本発明に係る炭素系材料は、金属原子と、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子とがドープされているグラフェンから成る。更に、この炭素系材料がCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である。
 また、本発明に係る炭素系材料の製造方法は、酸化グラフェンと、金属化合物と、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物とを含有する混合物を準備する工程と、前記混合物中の酸化グラフェンを還元してグラフェンを生成する工程と、前記金属化合物に由来する金属原子、及び前記非金属含有化合物に由来する非金属原子を、前記グラフェンにドープする工程とを含み、前記非金属含有化合物の分子量が800以下である。
 本発明によれば、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する炭素系材料が得られる。
本発明の実施の形態の一例に係る水溶液電解装置を示す概略図である。 前記水溶液電解装置を利用したバラスト水の処理フローを示す図である。 グラファイト、酸化グラフェン、実施例2で得られた炭素系材料、比較例1で得られた炭素系材料、及び比較例2で得られた炭素系材料の、ラマンスペクトルを示すグラフである。 実施例2で得られた炭素系材料及び酸化グラフェンのXPSスペクトルにおける、C1sに由来するピークを示すグラフである。 比較例1で得られた炭素系材料のXPSスペクトルにおける、N1sに由来するピークを示すグラフである。 実施例2で得られた炭素系材料のXPSスペクトルにおける、N1sに由来するピークを示すグラフである。 比較例2で得られた炭素系材料及び実施例2で得られた炭素系材料のXPSスペクトルにおける、Fe2pに由来するピークを示すグラフである。 実施例2及び参考例2による炭素系材料のX線回折測定により得られた回折強度曲線を示すグラフである。 図9AはグラファイトのX線回折測定により得られた回折強度曲線を示すグラフであり、図9Bは図9Aに示される回折強度曲線を縦軸方向に引き延ばして示すグラフである。 酸化グラフェンのX線回折測定により得られた回折強度曲線を示すグラフである。 実施例2で得られた炭素系材料のX線回折測定により得られた回折強度曲線を示すグラフである。 参考例1で得られた炭素系材料のX線回折測定により得られた回折強度曲線を示すグラフである。 グラファイト、酸化グラフェン、実施例2で得られた炭素系材料、及び参考例1で得られた炭素系材料のX線回折測定により得られた回折強度曲線を重ねて示すグラフである。 実施例2による炭素系材料の電子顕微鏡写真である。 実施例1~3、比較例1、及び参考例1による炭素系材料について、回転円盤電極ボルタンメトリーにより得られたボルタモグラムを示すグラフである。
 本発明の第1の態様に係る炭素系材料は、金属原子と、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子とがドープされているグラフェンから成る。更に、この炭素系材料がCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である。
 本発明の第2の態様では、非金属原子が窒素原子から成る。
 すなわち、本発明の第2の態様に係る炭素系材料は、金属原子及び窒素原子がドープされているグラフェンから成る。更に、この炭素系材料がCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である。
 本発明の第3の態様では、第1又は第2の態様において、炭素系材料がCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度が、グラファイトがCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度の、0.002以下である。
 本発明の第4の態様では、第1乃至第3のいずれか一の態様において、炭素系材料中の、炭素原子に対する前記金属原子の割合が、0.5質量%以上10質量%以下の範囲である。この割合は、XPS測定により評価されうる。
 本発明の第5の態様では、第1乃至第4のいずれか一の態様において、炭素系材料中の、炭素原子に対する前記非金属原子の量の割合が、1質量%以上の範囲である。この割合は、XPS測定により評価されうる。
 本発明の第6の態様では、第1乃至第5のいずれか一の態様において、前記金属原子が鉄原子を含有する。
 本発明の第7の態様に係る電極触媒は、第1乃至第6のいずれか一の態様に係る炭素系材料を含む。
 本発明の第8の態様に係る酸素還元電極触媒は、第1乃至第6のいずれか一の態様に係る炭素系材料を含む。
 本発明の第9の態様に係るガス拡散電極は、第7又は第8の態様に係る触媒を備える。
 本発明の第10の態様に係る水溶液電解装置は、アルカリハロゲン化物水溶液が供給される容器と、前記容器内に貯留される電解水を電解するための第1の電極及び第2の電極と、前記第1の電極がカソードとなると共に前記第2の電極がアノードとなるように電圧を印加する電源と、前記容器内において前記第1の電極と前記第2の電極との間に位置する陽イオン交換膜とを備える。前記第1の電極が、第9の態様に係るガス拡散電極からなる。
 本発明の第11の態様に係る炭素系材料の製造方法は、酸化グラフェンと、金属化合物と、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物とを含有する混合物を準備する工程と、前記混合物中の酸化グラフェンを還元してグラフェンを生成する工程と、前記金属化合物に由来する金属原子、及び前記非金属含有化合物に由来する非金属原子を、前記グラフェンにドープする工程とを含み、前記非金属含有化合物の分子量が800以下である。
 本発明の第12の態様に係る炭素系材料の製造方法では、第11の態様において、前記混合物を加熱することで、前記酸化グラフェンの還元と、前記グラフェンへの前記金属原子及び前記非金属原子のドーピングとを生じさせる。
 本発明の第13の態様に係る炭素系材料の製造方法では、第12の態様において、前記混合物を加熱する際に、加熱温度を700℃以上1000℃以下の範囲、加熱時間を10秒以上10分未満の範囲とする。
 本発明の第14の態様に係る炭素系材料の製造方法においては、第11乃至第13のいずれか一の態様において、前記非金属含有化合物が、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、及びエチレンジアミンから選ばれる少なくとも一種を含む。
 本発明の第15の態様では、第11の態様において、非金属原子が窒素原子を含む。
 すなわち、本発明の第15の態様に係る炭素系材料の製造方法は、酸化グラフェンと金属化合物と窒素含有化合物とを含有する混合物を準備する工程と、前記混合物中の酸化グラフェンを還元してグラフェンを生成する工程と、前記金属化合物に由来する金属原子、及び前記窒素含有化合物に由来する窒素原子を、前記グラフェンにドープする工程とを含み、前記窒素含有化合物の分子量が800以下である。
 本発明に係る炭素系材料の製造方法においては、前記混合物を加熱することで、前記酸化グラフェンの還元と、前記グラフェンへの前記金属原子及び前記窒素原子のドーピングとを生じさせることが、好ましい。また、この場合の加熱温度を700℃以上1000℃以下の範囲、加熱時間を10秒以上10分未満の範囲とすることが好ましい。
 すなわち、本発明の第16の態様に係る炭素系材料の製造方法では、第15の態様において、前記混合物を加熱することで、前記酸化グラフェンの還元と、前記グラフェンへの前記金属原子及び前記窒素原子のドーピングとを生じさせる。また、本発明の第17の態様に係る炭素系材料の製造方法では、第16の態様において、前記混合物を加熱する際に、加熱温度を700℃以上1000℃以下の範囲、加熱時間を10秒以上10分未満の範囲とする。
 本発明の第17の態様に係る炭素系材料の製造方法においては、第15乃至第16のいずれか一の態様において、前記窒素含有化合物が、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、及びエチレンジアミンから選ばれる少なくとも一種を含む。
 以下、本発明に係る炭素系材料、及び本発明に係る炭素系材料の製造方法の、具体的な実施形態について説明する。
 まず、炭素系材料の実施形態について、説明する。
 上記の通り、炭素系材料は、金属原子と、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子とがドープされているグラフェンから成る。本実施形態では、非金属原子が窒素原子からなる。本実施形態による炭素系材料は、グラフェンに金属原子及び窒素原子がドープされてなる。すなわち、炭素系材料は、金属原子及び窒素原子がドープされているグラフェンから成る。
 尚、グラフェンとは、グラフェンシートから構成される材料である。グラフェンシートとは、複数の炭素原子がsp2結合することで構成される構造体である。グラフェンは、複数枚のグラフェンシートから構成される材料から成ることが、好ましい。複数枚のグラフェンシートから構成される材料におけるグラフェンシートの積層枚数は、10枚以下の範囲であることが、好ましい。
 また、この炭素系材料を、CuKα線を用いるX線回折測定法により測定した場合、得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である。すなわち、この炭素系材料中の不活性金属化合物及び金属結晶の割合は非常に低い。(002)面のピークは、2θが26°付近の位置に現れる。θは、X線回折測定時の、サンプルに対するX線の入射角を示す。尚、この場合の不活性金属化合物とは、炭素系材料内における、グラフェンにドープされていない金属原子が構成要素となっている化合物であり、例えば金属炭化物、金属窒化物、及び金属硫化物である。また金属結晶とは、グラフェンにドープされていない金属原子からなる結晶である。このピークの強度の比は小さいほど好ましく、回折強度曲線に不活性金属化合物及び金属結晶に由来するピークが認められなければ特に好ましい。
 尚、回折強度曲線のベースラインは、Shirley法によって決定され、このベースラインを基準にして、回折強度曲線のピーク強度が決定される。
 グラフェンにドープされている金属原子としては、特に限定されないが、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)等から選択される、一種以上の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として、優れた性能を発揮する。グラフェンにドープされる金属原子の量は、炭素系材料が優れた触媒性能を発揮するように適宜設定されればよい。特に炭素系材料中の炭素原子に対する金属原子の質量割合が、0.5質量%以上10質量%以下の範囲であることが好ましい。
 また、グラフェンにドープされている窒素原子の量も、炭素系材料が優れた触媒性能を発揮するように適宜設定されればよいが、特に炭素系材料中の炭素原子に対する窒素原子の質量割合が、1質量%以上の範囲であることが好ましく、2質量%以上10質量%以下の範囲であれば更に好ましい。
 尚、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子が用いられる場合、グラフェンにドープされている非金属原子の量は、炭素系材料が優れた触媒性能を発揮するように適宜設定されればよいが、特に炭素系材料中の炭素原子に対する非金属原子の質量割合が、1質量%以上の範囲であることが好ましく、2質量%以上10質量%以下の範囲であれば更に好ましい。
 尚、本実施形態による炭素系材料のX線回折測定をおこなう場合、測定の対象となるのは炭素系材料のみであり、炭素系材料に混入している物質や、炭素系材料に付着している物質などのように、炭素系材料とは独立して存在している物質は、測定の対象からは除外される。このため、炭素系材料のX線回折測定にあたっては、予め酸性水溶液により炭素系材料を洗浄するなどして、炭素系材料とは独立して存在している物質の混入量を充分に低減しておく必要がある。
 本実施形態による炭素系材料は、特に酸素還元触媒として優れた性能を発揮する。これは、炭素系材料がグラフェンから構成されていることで高い導電性を発揮するためであると、考えられる。更に、炭素系材料中の不活性金属化合物及び金属結晶の割合が非常に低いことから、グラフェンにドープされている金属原子の、活性中心としての機能が、不活性金属化合物及び金属結晶によって阻害されることなく充分に発揮されるためであると、考えられる。従来、鉄と窒素を含有する炭素系結晶が充分に高い触媒活性を発揮し得なかったことの一因は、炭素系結晶を製造する過程において不活性金属化合物及び金属結晶が生成してしまい、これらが触媒活性を妨げていたことにあると、考えられる。それに対して、本実施形態に係る炭素系材料は、その不活性金属化合物及び金属結晶の含有量が非常に少ないことで、高い触媒活性を発揮するものである。
 また、炭素系材料におけるグラフェンシートの積層数が充分に少ないことが好ましい。この場合、炭素系材料の触媒活性が、より向上する。これは、グラフェンシートの積層数が少なくなると炭素系材料の比表面積が大きくなるためであると、考えられる。また、炭素系材料におけるグラフェンシート間の距離が、充分に大きいことも好ましい。この場合も、炭素系材料の触媒活性が、より向上する。これは、炭素系材料内の隣合うグラフェンシート間の領域でも触媒活性が生じるためであると、考えられる。炭素系材料におけるグラフェンシートの積層数、並びに炭素系材料におけるグラフェンシート間の距離は、回折強度曲線における、(002)面のピークの強度から評価できる。すなわち、炭素系材料におけるグラフェンシートの積層数が少ないほど、(002)面のピークの強度が小さくなる。また、炭素系材料におけるグラフェンシート間の距離が大きくなると、それに伴って炭素系材料におけるグラフェンシート間の距離のバラツキが大きくなり、それにより(002)面のピークの強度が小さくなる。このため、炭素系材料を、X線回折測定法により測定した場合、得られる回折強度曲線における、(002)面のピークの強度が小さいことが、好ましい。特に、炭素系材料がCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度が、グラファイトがCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度の、0.002以下であることが、好ましい。
 次に、炭素系材料の製造方法の実施形態について、説明する。炭素系材料は、酸化グラフェンに金属化合物と、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物とを混合させた後に、酸化グラフェンを還元することによって、製造される。本実施形態では、非金属含有化合物が、窒素含有化合物からなる。すなわち、本実施形態では、炭素系材料は、酸化グラフェンに金属化合物と窒素含有化合物とを混合させた後に、酸化グラフェンを還元することによって、製造される。この場合、金属原子と窒素原子とがドープされる前に酸化グラフェン中にグラフェンの基本構造が形成されるため、金属原子をドープする処理時には、グラフェンシートを成長させるための高温長時間の加熱処理を施す必要がなくなる。このため、炭素系材料中で金属原子がグラフェンにドープされずに不活性金属化合物や金属結晶を生成してしまうことが、抑制される。その結果、不活性金属化合物及び金属結晶の割合が非常に低く、且つ導電性の高い炭素系材料を得ることが可能となる。窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物が用いられる場合も、同様に、不活性金属化合物及び金属結晶の割合が非常に低く、且つ導電性の高い炭素系材料を得ることが可能となる。
 また、出発物質として酸化グラフェンを用いることで、炭素系材料におけるグラフェンシートの積層数が少なくなりやすい。すなわち、厚みの薄いシート状の形状を有する炭素系材料が形成されやすい。このため、炭素系材料の比表面積が大きくなり、これにより炭素系材料の触媒活性が高くなる。
 また、炭素系材料を製造するために用いられる窒素含有化合物の分子量は、800以下である。このため、窒素含有化合物に由来する窒素原子が、グラフェンに容易にドープされる。これは、窒素含有化合物の分子量が小さいために、窒素含有化合物が短時間で熱分解し、それにより生成する窒素原子がグラフェンシート間に挿入されやすくなり、そのためにグラフェンシート上の炭素と窒素原子とが結合する機会が増えるからであると、考えられる。
 尚、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物が用いられる場合も、非金属含有化合物の分子量は、800以下である。このため、非金属含有化合物に由来する非金属原子が、グラフェンに容易にドープされる。これは、非金属含有化合物の分子量が小さいために、非金属含有化合物が短時間で熱分解し、それにより生成する非金属原子がグラフェンシート間に挿入されやすくなり、そのためにグラフェンシート上の炭素と非金属原子とが結合する機会が増えるからであると、考えられる。
 尚、本実施形態のような分子量800以下の窒素含有化合物を使用せずに、分子量の大きい窒素含有化合物を使用する場合には、窒素含有化合物が分解しにくくなるため、グラフェンに窒素原子がドープされにくくなってしまう。このため、不活性金属化合物等が生成しやすくなってしまう。また、グラフェンに充分に窒素原子をドープさせるためには、高温長時間の加熱処理が必要となってしまい、そのため不活性金属化合物及び金属結晶の成長が促進されてしまうと共に、グラフェン中のグラフェンシート間の距離が短くなりやすい(グラフェンシートがスタックしやすい)。そのため、炭素系材料の触媒活性が、充分に向上しなくなってしまう。
 また、本実施形態では、酸化グラフェンと金属化合物と窒素含有化合物とを含有する混合物中で、金属化合物及び窒素含有化合物の熱分解と、酸化グラフェンの還元とを、進行させることが好ましい。特に、金属化合物及び窒素含有化合物の熱分解と、酸化グラフェンの還元とを、並行させて進行させることが、好ましい。この場合、グラフェンへの金属原子及び窒素原子のドーピングが促進される。これは、還元される前の酸化グラフェンは親水性が高いため、反応の過程で酸化グラフェン中のシート構造の層間に窒素含有化合物および金属化合物が浸入しやすくなるからであると考えられる。すなわち、酸化グラフェン中のシート構造の層間で、窒素含有化合物が酸化グラフェンにおける親水性の官能基と水素結合して安定化され、更にこの窒素含有化合物に金属が配位しやすくなることで、局所的に窒素原子および金属原子の濃度が高くなり、そのために窒素原子及び金属原子がグラフェンにドープされやすくなると考えられる。尚、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物が用いられる場合も、同様である。
 このようにグラフェンへの金属原子及び窒素原子のドーピングが促進されるため、炭素系材料が製造される過程において、不活性金属化合物及び金属結晶が、生成しにくくなる。このため、不活性金属化合物及び金属結晶の含有量が非常に少ない炭素系材料が、得られる。
 また、酸化グラフェンと金属化合物と窒素含有化合物とを含有する混合物を加熱することで、金属化合物及び窒素含有化合物の熱分解と、酸化グラフェンの還元とを、進行させることが好ましい。更に、この場合の加熱時間を短時間にすることが好ましい。前記の通り、本実施形態では、グラフェンへの金属原子及び窒素原子のドーピングが促進されるため、加熱時間が短時間であっても、金属原子及び窒素原子の割合が高い炭素系材料が容易に得られる。そのため、炭素系材料が、効率良く製造される。また、加熱時間が短いと、炭素系材料の触媒活性が、より向上する。これは、不活性金属化合物及び金属結晶が、更に生じにくくなるためである。また、加熱時間が長くなると、グラフェンシート間の距離が短くなりやすい(グラフェンシートがスタックしやすい)のに対して、加熱時間が短いと、グラフェンシート間の距離が短くなることが抑制される。これによって炭素系材料内の隣合うグラフェンシート間の領域で触媒活性が発現しやすくなることも、炭素系材料の触媒活性が向上する一因であると考えられる。更に、加熱時の昇温速度が速いことが好ましい。この場合、炭素系材料の触媒活性が、より向上する。これは、昇温速度が速いと炭素系材料におけるグラフェンシート間の距離が拡大しやすくなり、このため、炭素系材料内の隣合うグラフェンシート間の領域で触媒活性が更に発現しやすくなるためであると、考えられる。グラフェンシート間の距離が拡大しやすくなるのは、加熱によってグラフェンシート間でCO2ガスなどのガスが発生するためのであると考えられる。昇温速度が遅い場合には、ガスが発生してもグラフェンシート間の圧力が高くなる前にグラフェンシート間からガスが抜けてしまう。一方、昇温速度が速いと、急激にガスが発生することで、グラフェンシート間からガスが抜ける前にグラフェンシート間の圧力が高くなり、このためにグラフェンシート間の距離が拡大するものと、考えられる。尚、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物が用いられる場合も、同様である。
 本実施形態による炭素系材料の製造方法について,更に具体的に説明する。
 酸化グラフェンは、公知の手法により製造される。酸化グラフェンの製造方法の代表例としては、modified Hummers法が挙げられる。
 酸化グラフェンの製造方法の好ましい一態様について説明する。本態様では、まずグラファイトと、濃硫酸とを混合し、更に必要により硝酸カリウムとを混合することで、混合物を調製する。濃硫酸の量は、グラファイト3gに対して、50mL以上200mL以下の範囲であることが好ましく、100mL以上150mL以下の範囲であれば更に好ましい。また、硝酸カリウムの量は、グラファイト3gに対して5g以下であることが好ましく、3g以上4g以下の範囲であれば更に好ましい。
 この混合物を入れた容器を好ましくは氷浴などで冷却しながら、この混合物中に過マンガン酸カリウムをゆっくりと添加する。過マンガン酸カリウムの添加量は、グラファイト3gに対して3g以上18g以下の範囲であることが好ましく、11g以上15g以下の範囲であれば更に好ましい。続いて、この混合物を攪拌しながら反応を進行させる。このときの反応温度は、30℃以上55℃以下の範囲であることが好ましく、30℃以上40℃以下の範囲であれば更に好ましい。また反応時間は30分間以上90分間以下の範囲であることが好ましい。
 続いて、この混合物にイオン交換水を加える。イオン交換水の量は、グラファイト3gに対して30mL以上350mL以下の範囲であることが好ましく、170mL以上260mL以下の範囲であれば更に好ましい。
 続いて、この混合物を加熱すると共に攪拌しながら、反応を更に進行させる。このときの反応温度は、80℃以上100℃以下の範囲であることが好ましい。また、反応時間は、20分間よりも長いことが好ましい。
 続いて、混合物中にイオン交換水を加えるなどして混合物の温度を充分に下げると共に、過酸化水素水を加えることで、反応を終了させる。イオン交換水の量は、混合物の温度を充分に下げることができるのであれば、特に制限されない。また、過酸化水素水の量も特に制限されないが、例えばグラファイト3gに対して30%過酸化水素を10mL以上使用することが好ましく、15mL以上であれば更に好ましい。
 続いて、この混合物を塩酸及び水で洗浄し、更に透析によってこの混合物からイオンを除去する。更に、この混合物に超音波を印加することで、酸化グラフェンを剥離させる。これにより、酸化グラフェンが得られる。
 次に、グラフェンに金属及び窒素をドープする方法について説明する。尚、以下の方法は、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物を用いることでグラフェンに非金属原子をドープする場合にも、同様に採用されうる。
 まず、酸化グラフェンと金属化合物と窒素含有化合物とを含有する混合物を準備する。前記の通り、炭素系材料を製造するために用いられる窒素含有化合物の分子量は、800以下である。この窒素含有化合物の分子量は、50以上800以下であれば更に好ましく、100以上300以下であれば特に好ましい。
 また、窒素含有化合物が、グラフェンにドープされる金属原子と錯体を形成可能な化合物であることが、好ましい。この場合、炭素系材料の触媒活性が更に向上する。その理由は、次の通りであると推察される。金属原子と錯体を形成可能な窒素含有化合物が用いられると、金属含有化合物と窒素含有化合物とが熱分解されてこれらに由来する金属原子と窒素原子とがグラフェンにドープされる過程において、金属原子と窒素含有化合物とが一時的に錯体を形成してから金属原子と窒素原子とがドープされやすくなると考えられる。このため、グラフェンにドープされている金属原子と窒素原子と間の距離が近くなりやすいと、考えられる。ここで、炭素系材料における触媒活性は、炭素系材料における窒素原子と金属原子とが近接している位置で発現すると考えられる。このために、金属原子と錯体を形成可能な窒素含有化合物が用いられることで、炭素系材料の触媒活性が更に向上すると、考えられる。
 特に、窒素含有化合物が、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、及びエチレンジアミンから選ばれる少なくとも一種を含む場合には、炭素系材料の触媒活性が特に高くなる。
 混合物を準備するにあたっては、例えば酸化グラフェンを充分に乾燥してから、この酸化グラフェンに、金属化合物の水溶液と、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン等の非共有電子対をもつ窒素含有化合物の溶媒溶液(例えばエタノール溶液)とを加える。金属化合物としては、グラフェンにドープされる金属の化合物であれば特に制限されないが、例えばそれぞれの金属の塩化物塩、硝酸塩、硫酸塩、臭化物塩、よう化物塩、フッ化物塩などのような無機金属塩、酢酸塩などの有機金属塩およびそれらの水和物などが、挙げられる。例えばグラフェンにFeをドープする場合には、金属化合物として、好ましくは塩化鉄(III)が用いられる。金属化合物の使用量は、グラフェンへの金属原子のドープ量に応じて適宜設定される。例えば塩化鉄(III)が使用される場合、その使用量は、グラフェンに対するFe原子の割合が好ましくは5質量%以上30質量%以下の範囲、更に好ましくは5質量%以上20質量%以下の範囲となるように設定される。また、窒素含有化合物の使用量も、グラフェンへの窒素原子のドープ量に応じて適宜設定されるが、例えば塩化鉄(III)とペンタエチレンヘキサミンとが使用される場合は、前者対後者のモル比が1:1~1:2の範囲であることが好ましく、1:1.5~1:1.8の範囲であれば更に好ましい。これにより得られた混合物に、必要に応じてエタノール等の溶媒を加えて全量を調整し、更にこの混合物を超音波分散法により分散させる。続いて、この混合物を適宜の温度(例えば60℃)で加熱乾燥する。これにより、金属化合物、窒素含有化合物、及び酸化グラフェンを含有する混合物が得られる。
 このように金属化合物及び窒素含有化合物が混入している状態で、酸化グラフェンを還元することでグラフェンを生成し、更にこのグラフェンに前記の金属化合物及び窒素含有化合物に由来する金属原子及び窒素原子をドープすることで、グラフェンに金属原子及び窒素原子がドープされてなる炭素系材料が得られる。還元、並びにそれに続く金属原子及び窒素原子のドープは、適宜の手法でなされる。例えば、還元性雰囲気下、又は不活性ガス雰囲気下において、金属化合物、窒素含有化合物、及び酸化グラフェンを含有する混合物を加熱することで、酸化グラフェンを還元し、更にこれにより生成するグラフェンに金属原子及び窒素原子をドープすることができる。この場合、金属化合物及び窒素含有化合物の熱分解と、酸化グラフェンの還元とを、並行させて進行させることができる。この加熱処理時には、グラフェンに金属原子及び窒素原子をドープさせたりするための過剰な条件での熱処理を施す必要はない。この加熱処理時の加熱条件は適宜設定されるが、加熱温度は700℃以上1000℃の範囲であることが好ましく、800℃以上950℃以下の範囲であれば更に好ましい。また、加熱時間は30秒間以上120秒間以下であることが好ましい。このように加熱時間が短時間であれば、炭素系材料が効率良く製造され、しかも炭素系材料の触媒活性が更に高くなる。この加熱時間は、30秒間以上60秒間以下であれば更に好ましい。また、この加熱処理にあたっての、加熱開始時の混合物の昇温速度は、50℃/s以上であることが好ましい。このように混合物が急速加熱されると、炭素系材料の触媒活性が更に高くなる。
 また、このようにして得られた炭素系材料に対して、更に酸洗浄を施してもよい。酸洗浄にあたっては、例えば炭素系材料を2M硫酸中に、80℃で3時間処理浸漬する。このような酸洗浄がなされた炭素系材料の触媒としての性能に関しては、酸洗浄が施されない場合と比べると、過電圧に大きな変化はみられないが、酸素還元時に電流勾配と限界電流が改善する。
 このような製造方法により、不活性金属化合物及び金属結晶の含有量が著しく低い炭素系材料が得られる。
 この炭素系材料は、高い触媒活性を有すると共に高い導電性を有することから、特に、電気化学的手法により電極上で化学反応を進行させるために使用される触媒(電極触媒)として好適である。更に、電極上で酸素還元反応を進行させるために使用される触媒(酸素還元電極触媒)として、好適である。また、気相中の酸素を還元させるためのガス拡散電極に適用される触媒として、特に好適である。
 本実施形態に係る炭素系材料を、燃料電池用のガス拡散電極における触媒に適用する場合の、ガス拡散電極及び燃料電池の構成の例について、説明する。
 本明細書でいう燃料電池は、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)及びリン酸型燃料電池(PAFC:Phosphoric Acid Fuel Cell)のような水素燃料電池、並びに微生物燃料電池(MFC:Microbial Fuel Cell)を含む。
 ガス拡散電極は、電極触媒としての炭素系材料と、この炭素系材料を担持する導電性担体とを備える。ガス拡散電極は、必要に応じ、さらに支持体を備えてもよい。
 炭素系材料は、ガス拡散電極上において反応ガス、電子供与微生物等が関与する酸化還元反応が進行し得るように、少なくともその一部がガス拡散電極の表面上に配置されていればよい。
 導電性担体とは、導電性を有し、かつ触媒である炭素系材料を担持し得る物質をいう。このような特性を有するのであれば、導電性担体の材質は特に制限されない。導電性担体の材質の例としては、炭素系物質、導電性ポリマー、半導体、金属等が挙げられる。
 炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質としては、例えば、グラファイト、活性炭、カーボンパウダ(例えば、カーボンブラック、バルカンXC-72R、アセチレンブラック、ファーネスブラック、デンカブラックを含む)、カーボンファイバ(グラファイトフェルト、カーボンウール、カーボン織布を含む)、カーボンプレート、カーボンペーパー、カーボンディスク等が挙げられる。また、炭素系物質としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような、微細構造物質も挙げられる。
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は2種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。
 入手の容易性、コスト、耐食性、耐久性等を考慮した場合、好適な導電性担体は、炭素系物質であるが、これに限定はされない。
 担体は、単一種で構成されていてもよいし、2種以上を組み合わせたものであってもよい。例えば、炭素系物質と導電性ポリマーとが組み合わされて構成される担体、炭素系物質であるカーボンパウダとカーボンペーパーとが組み合わされて構成される担体などが、使用されてもよい。
 担体の形状は、その表面に触媒である炭素系材料が担持され得る形状であれば、特に限定されない。ガス拡散電極における単位質量あたりの触媒活性(質量活性)をより高くする観点からは、担体の形状は、単位質量当たりの比表面積が大きい粉末形状又は繊維形状であることが好ましい。担体は、一般に比表面積が大きいほど広い担持面積を確保することができ、触媒成分の担体表面上での分散性を高め、さらにより多くの触媒成分をその表面に担持することが可能となるからである。したがって、カーボンパウダのような微粒子形状やカーボンファイバのような微細繊維形状は、担体形状として好適である。平均粒径が1nm以上1μm以下の微小粉末は特に好ましい。例えば、平均粒径が10nm以上300μm以下程度のカーボンブラックは、担体として好適である。
 また、担体は、燃料電池電極と外部回路とを連絡する導線との接続端子をその一部に有する。
 支持体は、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる物質をいう。導電性担体が粉末形状等の場合、炭素系材料を担持した導電性担体のみではガス拡散電極として一定の形状を保持することができない。また、導電性担体が薄層状態の場合には、担体自体が剛性を有していない。このような場合、炭素系材料を担持した導電性担体を支持体表面に配置することで、電極として一定の形状及び剛性が付与される。
 ガス拡散電極は、必要に応じて支持体を備えればよい。例えば、カーボンディスクのように導電性担体自身が一定の形状と剛性を有する場合には、炭素系材料を担持した導電性担体のみでガス拡散電極として一定の形状を保持することができる。また、電解質材自体がガス拡散電極に一定の形状と剛性を付与する場合もある。例えば、PEFCでは固体高分子電解質膜の両面に薄層電極が接合されている。このような場合には、必ずしも支持体は必要とされない。
 支持体の材質は、電極が一定の形状を保持できる程度の剛性を有していれば、特に制限されない。また、支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、又は耐水若しくは撥水処理した紙や植物片(例えば、木片を含む)、動物片(例えば、骨片、貝殻、スポンジを含む)等が挙げられる。多孔質構造の支持体は、炭素系材料を担持した導電性担体を接合する比表面積が増加し、電極の質量活性を増大できることから、より好ましい。多孔質構造の支持体としては、例えば、多孔質セラミック、多孔質プラスチック、動物片等が挙げられる。支持体が導電体である場合、支持体としては、炭素系物質(例えば、カーボンペーパー、カーボンファイバ、炭素棒を含む)、金属、導電性ポリマー等が挙げられる。支持体が導電体の場合には、炭素系材料を担持した導電性担体を支持体の表面上に配置されることで、支持体が集電体としても機能し得る。
 ガス拡散電極が支持体を含む場合、通常、支持体の形状がガス拡散電極の形状を反映する。支持体の形状は、電極としての機能を果たすことができる形状であれば、特に限定はしない。燃料電池の形状等に応じて適宜定めればよい。例えば、(略)平板状(薄層状を含む)、(略)柱状、(略)球状又はそれらの組み合わせが挙げられる。
 触媒である炭素系材料を導電性担体に担持する方法としては、当該分野で公知の方法を用いることができる。例えば、適当な固着剤を用いて導電性担体表面に炭素系材料を固定させる方法が挙げられる。固着剤は導電性があれば好ましいが、限定はしない。例えば、前記導電性ポリマーを適当な溶剤に溶解した導電性ポリマー溶液やポリテトラフルオロエチレン(PTFE)の分散液等を固着剤として用いることができる。そのような固着剤を、導電性担体表面及び/又は電極触媒表面に塗布して又は吹き付けて両者を混合するか、又は固着剤の溶液中に含侵した後、乾燥させることで、炭素系材料を導電性担体に担持させることができる。
 ガス拡散電極を形成する方法としては、当該分野で公知の方法を用いることができる。例えば、触媒である炭素系材料を担持した導電性担体をPTFEの分散液(例えば、Nafion(商標登録;Du Pont社)溶液)等と混合して混合液を調製し、この混合液を適当な形状に成形してから、熱処理を施すことで、ガス拡散電極を形成することができる。PEFCやPAFCのように、固体高分子電解質膜や電解質マトリクス層の表面に電極を形成する場合には、例えば前記混合液をシート状に成形することで電極シートを形成し、この電極シートの膜接合面にプロトン伝導性を有するフッ素樹脂系イオン交換膜の溶液等を塗布又は含侵した後、ホットプレスすることにより、電極シートにフッ素樹脂系イオン交換膜を接合すればよい。プロトン伝導性を有するフッ素樹脂系イオン交換膜には、例えば、Nafion、Filemion(登録商標;旭硝子社)等が挙げられる。
 また、前記混合液からなる混合スラリーをカーボンペーパー等の導電性の支持体表面上に塗布した後、熱処理を施すことで、ガス拡散電極を形成してもよい。
 また、プロトン伝導性イオン交換膜の溶液(例えば、Nafion溶液)と電極触媒を担持した導電性担体との混合インク又は混合スラリーを支持体、固体高分子電解質膜又は電解質マトリクス層等の表面に塗布することで、ガス拡散電極を形成してもよい。
 触媒である炭素系材料を備えるガス拡散電極を備える燃料電池について説明する。この燃料電池は、水素燃料電池、MFC等に、好適に適用され得る。
 水素燃料電池は、水の電気分解の逆動作に基づいて水素と酸素から電気エネルギーを得る燃料電池であり、PEFC、PAFC、アルカリ型燃料電池(AFC; Alcaline Fuell Cell)、溶融炭酸塩型燃料電池(MCFC;Molten Cabonate Fuell Cell)、固体電解質型燃料電池(SOFC; Solid Oxide Fuell Cell)等が知られている。本実施形態による燃料電池は、PEFC又はPAFCであることが好ましい。PEFCはプロトン伝導性イオン交換膜を、またPAFCはマトリクス層に含侵されたリン酸(H3PO4)を、それぞれ電解質材とする燃料電池である。
 燃料電池は、炭素系材料を含む電極触媒(酸素還元電極触媒)を備えるガス拡散電極を備えること以外は、各燃料電池で公知の構成を有していればよい。例えば、燃料電池は、「燃料電池の技術」,電気学会燃料電池発電次世代システム技術調査専門委員会編,オーム社,H17や、Watanabe, K., J. Biosci. Bioeng.,2008,.106:528-536に記載の構成を有することができる。
 燃料電池において、炭素系材料を含む電極触媒を備えるガス拡散電極は、アノード(燃料極)、カソード(空気極)のいずれにも用いることができる。水素燃料電池において、炭素系材料を含む電極触媒を備えるガス拡散電極がアノードとして用いられる場合、電極に包含される本発明の電極触媒が、燃料である水素ガスのH2 → 2H++2e-の反応を触媒して、アノードに電子を供与する。炭素系材料を含む電極触媒を備えるガス拡散電極がカソードとして用いられる場合、電極触媒は酸化剤である酸素ガスの1/2O2+2H++2e- → H2Oの反応を触媒する。一方、MFCにおいて、アノードが電子供与微生物から直接電子を受容するため、本実施形態によるガス拡散電極は、主として水素燃料電池と同じ電極反応を起こすカソードとして用いられる。
 また、本実施形態による炭素系材料を含む電極触媒を備えるガス拡散電極は、上記のような燃料電池以外にも、種々の用途への適用が期待される。例えば二酸化炭素透過装置、食塩電解装置等におけるカソードへの適用も可能である。
 ガス拡散電極を備える水溶液電解装置1の実施形態について説明する。
 図1に、本実施形態による水溶液電解装置1の一例を示す。この水溶液電解装置1は、容器2と、容器2内に貯留される電解液15を電解するための第1の電極3及び第2の電極4と、陽イオン交換膜5と、ガス供給排出室11と、電源16とを備える。
 容器2は、陽イオン交換膜5によって、二つの室に仕切られる。以下、一方の室をアノード室13といい、他方の室をカソード室14という。
 容器2には、アノード室13内に連通するアルカリハロゲン化物水溶液供給口7と、アノード室13内に連通するハロゲン化合物水溶液導出口6と、アノード室13内に連通するハロゲンガス導出口8と、カソード室14内に連通する水供給口9と、カソード室14内に連通するアルカリ水溶液導出口10とが、形成されている。アルカリハロゲン化物水溶液供給口7からアノード室13へアルカリハロゲン化物水溶液が供給されると共に、水供給口9からカソード室14へ水が供給されることで、容器2内に電解液15が貯留される。
 陽イオン交換膜5としては、特に制限されないが、アノード室13で発生する塩素に耐性があり、ナトリウムイオンの輸率の大きな膜であることが好ましい。陽イオン交換膜5が備える陽イオン交換基は、スルホン酸基、リン酸基、スルホンアミド基、水酸基等の一般的な陽イオン交換基でよい。陽イオン交換膜5としては、具体的には、塩素耐性の高いフロロカーボン系の膜が望ましい。
 ガス供給排出室11は、容器2のカソード室14に隣接して設けられる。ガス供給排出室11には、このガス供給排出室11内に連通する酸素含有ガス供給口12が形成されている。
 第2の電極4の材質としては、鉄、銅、ニッケル等の金属材料や炭素材料等が挙げられる。また、第2の電極4の形状としては、特に制限されないが、第2の電極4の材質が金属材料の場合にはエクスパンデッドメタル状、金網状、パンチングメタル状、コイル状等が挙げられ、第2の電極4の材質が炭素材料である場合にはシート状、クロス状、ペーパー状、棒状等が挙げられる。この第2の電極4は、アノード室13内に配置される。容器2に電解液15が貯留されると、第2の電極4は、アノード室13内で電解液15に浸漬されることで、この電解液15に接触する。
 第1の電極3は、本実施形態によるガス拡散電極である。この第1の電極3はカソード室14とガス供給排出室11との間に介在するように設けられ、且つカソード室14側でカソード室14の内部の空間に接すると共に、ガス供給排出室11側でガス供給排出室11の内部の空間に接している。容器2に電解液15が貯留されると、第1の電極3は、カソード室14内の電解液15に接触する。この第1の電極3の内部には、電極(固相)、電解液15(液相または固相)、並びに酸素を含有するガス(気相)の三相界面が形成され、これにより、ガスと電解液15とによる電極反応が生じ得る。
 ガス拡散電極である第1の電極3は、ガス拡散層と触媒層とを備える。第1の電極3は、例えば多孔質の導電体から構成される。この多孔質の導電体における、触媒が担持されている領域が触媒層であり、触媒が担持されていない領域がガス拡散層である。
 多孔質の導電体は、反応面積を増大させるために、比表面積が大きいことが好ましい。好ましくは、多孔質の導電体の比表面積はBET吸着測定において1m2/g以上、より好ましくは100m2/g以上、さらに好ましくは500m2/g以上である。多孔質の導電体の比表面積がBET吸着測定において1m2/gより小さい場合には、三相界面の面積が小さいために、反応量が小さくなってしまう。また、前記多孔質の導電体の表面抵抗による電圧損失を低減させるために、多孔質の導電体の表面抵抗は低いほどよいが、好ましくは表面抵抗は1kΩ/sq.以下、より好ましくは200Ω/sq.以下である。前記多孔質の導電体の好ましい例としては、カーボンシート、カーボンクロス、カーボンペーパーなどが挙げられる。
 触媒層は、多孔質の導電体の一つの表面側(電解液15と接する面側)の領域に、触媒がカチオン伝導性の樹脂などによって担持されることで構成される。触媒層は、第1の電極3における酸化還元反応の過電圧を小さくするために設けられる。触媒の表面積が大きいほどこの触媒における活性点が増えるため、触媒の比表面積は大きいことが好ましく、そのためには触媒の粒径は小さいほど好ましい。また、反応量を増大させるためには、触媒の担持量は多いほど好ましく、特に担持量が0.05mg/cm2以上であることが好ましい。
 ガス拡散層には、触媒層付近での水分が過多となることでガスの拡散を阻害するフラッディングを防止するために、撥水加工が施されることが好ましい。この撥水加工は、ガス拡散層に例えばポリテトラフルオロエチレン(PTFE)をコートするなどして施される。このような撥水加工が施されるため、第1の電極3は、気体を通過させることができるが、水は通過させ得ないという性状を有し、また第1の電極3においては触媒層まで気体が拡散され得る。
 カソードである第1の電極3の触媒層に担持される触媒は、本実施形態による炭素系材料を含む。この炭素系材料は、導電性に優れると共に酸素還元触媒活性が高いため、電気分解の効率が向上する。
 このように構成される水溶液電解装置1を用いて、アルカリハロゲン化物を電解する方法について、説明する。ここでは、特にアルカリハロゲン化物として、塩化ナトリウムを電解する場合を例に挙げて、説明する。
 まず、アルカリハロゲン化物水溶液供給口7から容器2のアノード室13へ塩化ナトリウムを溶解している水溶液を供給する。この水溶液は、例えば飽和食塩水が挙げられるが、海水等であってもよい。また、水供給口9からはカソード室14へ水を供給する。これにより、容器2内に電解液15が貯留される。また、酸素含有ガス供給口12からガス供給排出室11内へ、酸素を含むガスを供給する。
 この状態で、電源16により第1の電極3と第2の電極4との間に、第1の電極3がカソードとなると共に第2の電極4がアノードとなるように、電圧を印加する。そうすると、第1の電極3上では次に示す還元反応(酸素還元反応)が起こると共に、第2の電極4上では次に示す酸化反応が起こる。
 (還元反応)O2+4H++4e- → 2H2
 (酸化反応)2Cl- → Cl2+2e-
 これにより、アノード室13で塩素ガスが生成する。またアノード室13で生成した塩素ガスがアノード室13内で電解液15に溶解することで、次亜塩素酸が生成する。塩素ガスはハロゲンガス導出口8を通じて容器2外へ導出され、次亜塩素酸を含有する水溶液はハロゲン化合物水溶液導出口6を通じて容器2外へ導出される。
 また、上記の反応によりアノード室13とカソード室14との間に電荷のアンバランスが生じるが、このアンバランスは、アノード室13内のナトリウムイオンが陽イオン交換膜5を通じてカソード室14へ移動することで、補償される。これにより、カソード室14内では水酸化ナトリウムが生成する。水酸化ナトリウムを含有する水溶液は、アルカリ水溶液導出口10を通じて容器2外へ導出される。
 このような電解反応において、炭素系材料を担持するガス拡散電極である第1の電極3では、上記の酸素還元反応が非常に効率良くおこる。このため第1の電極3と第2の電極4との間に印加する電圧を約2Vまで低減することが可能となって、電力消費量を大いに低減することが可能となり、更に電解効率が非常に高くなる。
 本実施形態による水溶液電解装置1を用いると、塩化ナトリウム等のアルカリハロゲン化物を電解することで、塩素ガス等のハロゲンガス、水酸化ナトリウム等のアルカリハロゲン化物、塩酸、次亜塩素酸等のハロゲン化合物などを、効率良く生産することができる。
 また、本実施形態による水溶液電解装置1を用いて、塩化ナトリウムを含有する水溶液中の微生物を殺滅させることもできる。このような処理は、特にバラスト水等として用いられる海水中の微生物を殺滅させるために好適である。空積荷の船舶には、安定のためにバラスト水が積み込まれるが、近年、バラスト水を、取水した海域とは離れた海域で排水することで、バラスト水中の微生物による生態系撹乱、漁業被害、健康被害などが生じることが、懸念されている。そこで、本実施形態による水溶液電解装置1を用いてバラスト水中の塩化ナトリウムを電解することで塩素化合物を生成すると、バラスト水中の微生物を塩素化合物により殺滅し、バラスト水中の微生物による問題を解消することができる。
 水溶液電解装置1を用いるバラスト水の処理フローの一例を、図2に示す。このバラスト水の処理には、本実施形態による水溶液電解装置1と、バラスト水の取水、循環、及び排水のための動力を供給するポンプと、バラスト水を貯留するバラストタンクとが、用いられる。この処理フローによれば、まずポンプの動力により海からバラスト水を取水し、更にポンプの動力によって、バラスト水を船舶内で次のように循環させる。まずバラスト水が本実施形態による水溶液電解装置1のアノード室13へ供給されて電解されることで、バラスト水中に塩素化合物が生成する。更にこのバラスト水は、水溶液電解装置1からバラストタンクへ供給されて貯留される。バラストタンク内のバラスト水は排水されて水溶液電解装置1へ返送され、更に電解されることで、バラスト水中に塩素化合物が生成する。これにより、バラスト水中の微生物を次亜塩素酸等の塩素化合物により殺滅することができる。船舶からバラスト水を海へ排水する際には、バラスト水に中和処理を施してから排水する。中和処理にあたっては、水溶液電解装置1で生成する水酸化ナトリウムを利用することができる。このようにしてバラスト水を処理すると、バラスト水中の微生物を高効率で殺滅することができる。
 [実施例1]
 容器内で、グラファイト(Wako40mm)3g、濃硫酸138mL、及び硝酸カリウム3.47gを混合することで、混合液を得た。この容器を氷浴につけた状態で、容器内に更に過マンガン酸カリウム12gをゆっくり添加した。続いて、容器内の混合液を40℃で30分攪拌し、続いて容器内にイオン交換水240mLを加え、続いて混合液を90℃に昇温すると共に1時間攪拌した。続いて、容器内にイオン交換水600mL、及び30%過酸化水素水18mLを加えることで、反応を終了させた。続いて、混合液を塩酸及び水で洗浄後してから、透析によってイオンを除去した。更に、混合液に超音波を印加することで、酸化グラフェンを剥離させた。
 このようにして得られた酸化グラフェンを乾燥し、200mgの酸化グラフェンに0.1M塩化鉄(III)水溶液及び0.15Mペンタエチレンヘキサミンのエタノール溶液を加えることで混合液を調製した。0.1M塩化鉄(III)水溶液の使用量は、グラフェンに対するFe原子の割合が10質量%になるように調整した。この混合液に更にエタノールを加えることで全量を9mLに調製した。この混合液を超音波分散してから乾燥機で60℃の温度で乾燥させた。
 これにより得られたサンプルを、石英管の一端部内に詰め入れ、続いてこの石英管内をアルゴンで置換した。この石英管を、900℃の炉に入れてから45秒で引き抜いた。石英管を炉に挿入する際には、石英管を炉に3秒間かけて挿入することで、加熱開始時のサンプルの昇温速度を300℃/sに調整した。続いて、石英管内にアルゴンガスを流通させることでサンプルを冷却させた。これにより、炭素系材料を得た。
 [実施例2,3]
 0.1M塩化鉄(III)水溶液の使用量を、実施例2ではグラフェンに対するFe原子の割合が17質量%になるように、実施例3ではグラフェンに対するFe原子の割合が30質量%になるように、それぞれ調整した。それ以外は実施例1と同じ方法及び同じ条件で、炭素系材料を得た。
 [比較例1]
 0.1M塩化鉄(III)水溶液を使用しなかったこと以外は、実施例2と同じ方法及び同じ条件で、炭素系材料を得た。
 [比較例2]
 0.15Mペンタエチレンヘキサミンのエタノール溶液を使用しなかったこと以外は、実施例2と同じ方法及び同じ条件で、炭素系材料を得た。
 [参考例1]
 酸化グラフェン、塩化鉄(III)、及びペンタエチレンヘキサミンを含有するサンプルを加熱する際の加熱時間を、2時間とした。それ以外は、実施例2と同じ方法及び同じ条件で、炭素系材料を得た。
 [ラマン分光測定]
 グラファイト(Wako40mm)、このグラファイトを原料として上記方法で得られた酸化グラフェン、実施例2で得られた炭素系材料、比較例1で得られた炭素系材料、及び比較例2で得られた炭素系材料の、ラマン分光測定をおこなった。それにより得られたラマンスペクトルを、図3に示す。図3中のAはグラファイトについてのラマンスペクトルを、Bは酸化グラフェンについてのラマンスペクトルを、Cは実施例2で得られた炭素系材料についてのラマンスペクトルを、Dは比較例1で得られた炭素系材料についてのラマンスペクトルを、Eは比較例2で得られた炭素系材料についてのラマンスペクトルを、それぞれ示す。
 この結果、図3に示される通り、いずれのラマンスペクトルにも、炭素のsp2結合に由来するGバンドのピーク(右側のピーク)と、グラフェンの欠陥に由来するDバンドのピーク(左側のピーク)が、確認された。
 また、Dバンドのピークの強度(Id)と、Gバンドのピークの強度(Ig)との比(Id/Ig)は、グラファイトの場合に0.89、酸化グラフェンの場合に0.96、実施例2で得られた炭素系材料の場合に1.14、比較例1で得られた炭素系材料の場合に1.15、比較例2で得られた炭素系材料の場合に1.02であった。この強度比(Id/Ig)は、異種元素がドープされることで大きくなる。グラファイトの場合と比較して、実施例2で得られた炭素系材料の場合、比較例1で得られた炭素系材料の場合、及び比較例2で得られた炭素系材料の場合に、強度比(Id/Ig)が大きく、このため、これらの場合に異種元素がドープされていることが、確認できる。
 [X線光電子分光測定]
 酸化グラフェン、実施例2で得られた炭素系材料、比較例1で得られた炭素系材料、及び比較例2で得られた炭素系材料の、X線光電子分光測定(XPS測定)をおこなった。それにより得られたXPSスペクトルを、図4~7に示す。
 図4には、実施例2で得られた炭素系材料及び酸化グラフェンの、C1sに由来するピークが示されている。尚、図4において、Aは実施例2で得られた炭素系材料の場合のXPSスペクトルを、Bは酸化グラフェンの場合のXPSスペクトルを、それぞれ示す。酸化グラフェンのスペクトルにおける、結合エネルギー287eVに対応するピークは、CO結合に由来するが、このようなピークは実施例2で得られた炭素系材料のスペクトルには現れていない。このため、実施例2で得られた炭素系材料は還元されていることが確認できる。
 図5及び図6には、比較例1で得られた炭素系材料のN1sに由来するピーク及び実施例2で得られた炭素系材料のN1sに由来するピークが、それぞれ示されている。いずれの場合にも、N1sに由来するピークが現れている。このため、これらの炭素系材料には、窒素原子がドープされていることが、確認できる。
 図7には、比較例2で得られた炭素系材料及び実施例2で得られた炭素系材料の、Fe2pに由来するピークが、示されている。尚、図7において、Aは実施例2で得られた炭素系材料の場合のXPSスペクトルを、Bは比較例2で得られた炭素系材料の場合のXPSスペクトルを、それぞれ示す。いずれの場合にも、Fe2pに由来するピークが現れている。このため、これらの炭素系材料には、鉄原子がドープされていることが、確認できる。
 このX線光電子分光測定の結果、並びに前記のラマン分光測定の結果に基づけば、実施例2で得られた炭素系材料は、グラフェンの基本構造を有し、且つ鉄原子及び窒素原子がドープされていることが、確認できる。
 また、このX線光電子分光測定の結果、実施例1,2,及び3で得られた炭素系材料中の、炭素原子量に対する窒素原子のドープ量は、それぞれ4.7質量%、6.9質量%、及び12.3質量%であった。また実施例1,2,及び3で得られた炭素系材料中の、炭素原子量に対する鉄原子のドープ量は、それぞれ2.0質量%、3.9質量%、及び5.3質量%であった。一方、比較例1で得られた炭素系材料中の、炭素原子量に対する窒素原子のドープ量は、4.1質量%であった。また比較例2で得られた炭素系材料中の、炭素原子量に対する鉄原子のドープ量は3.8質量%であった。
 [X線回折測定]
 (炭素系材料の測定)
 実施例2で得られた炭素系材料を酸洗浄してから、この炭素系材料の、CuKα線を用いるX線回折測定をおこなった。その結果、得られた回折強度曲線を図8に示す。図8には、参考例2として、実施例2で得られた炭素系材料を酸洗浄することなく、この炭素系材料のX線回折測定をおこなった結果も、併せて示す。尚、図8において、Aは実施例2で得られた炭素系材料の場合の回折強度曲線を、Bは参考例2で得られた炭素系材料の場合の回折強度曲線を、それぞれ示す。
 図8に示されるように、実施例2による回折強度曲線には、2θが約26.4°の位置に、(002)面のシャープなピークが認められる。また、この回折強度曲線には、前記(002)面のピークの強度に対する比率が0.1を超えるような不純物のピークは認められない。
 従って、実施例2では、不活性金属化合物及び金属結晶の含有量が著しく少ない炭素系材料が得られたことが、確認された。
 (構造の対比)
 グラファイト(Wako40mm)、このグラファイトを原料として上記方法で得られた酸化グラフェン、実施例2で得られた炭素系材料、及び参考例1で得られた炭素系材料の、CuKα線を用いるX線回折測定を、同じ条件でおこなった。測定にあたっては、予め各材料を酸洗浄した。これにより得られた回折強度曲線を、図9~12に示す。図9はグラファイトについての回折強度曲線を、図10は酸化グラフェンについての回折強度曲線を、図11は実施例2で得られた炭素系材料についての回折強度曲線を、図12は参考例1で得られた炭素系材料についての回折強度曲線を、それぞれ示す。尚、図9Aは、グラファイトについての回折強度曲線の全体の形状を示す。また、図9Bに示される回折強度曲線は、図9Aに示される回折強度曲線を縦軸方向に引き延ばしたものである。また、図13に、前記四種の回折強度曲線を重ねて示す。
 この結果によれば、実施例2で得られた炭素系材料についての回折強度曲線における、(002)面のピークは、グラファイトについての回折強度曲線における、(002)面のピークと比べて、非常に小さく、後者に対する前者の強度比は0.00093であった。尚、この強度比を導出するにあたり、2θが18°から35°までの範囲において、Shirley法によってベースラインを決定し、このベースラインを基準にしてピークの強度を決定した。
 また、酸化グラフェンについての回折強度曲線には、2θが約10°の位置にピークが現れているが、そのようなピークは、実施例2で得られた炭素系材料についての回折強度曲線には現れていない。このため、実施例2で得られた炭素系材料が、充分に還元されていることが、確認できる。
 また、参考例1で得られた炭素系材料についての回折強度曲線における、(002)面のピークは、実施例2で得られた炭素系材料についての回折強度曲線における、(002)面のピークと比べると、大きくなっている。これは、参考例1では、加熱処理の際の加熱時間が長いために、炭素系材料中のグラフェンシート間の距離が短くなった(グラフェンシートがスタックした)ためであると、判断される。
 また、参考例1で得られた炭素系材料についての回折強度曲線には、2θが約43°の位置に、不純物に起因するピークが現れている。このため、参考例1では、加熱処理の際の加熱時間が長いために、不活性金属化合物及び金属結晶の成長が促進されたと、判断される。
 [外観評価]
 実施例2で得られた炭素系材料の、電子顕微鏡写真を、図14に示す。これによると、炭素系材料は非常に厚みの薄いシート状の形状を有していることが、確認できる。
 [酸素還元活性評価]
 実施例1~3、及び比較例1で得られた炭素系材料を触媒として用いた場合の酸素還元活性を、次のようにして評価した。
 まず、炭素系材料5mg、エタノール175mL、及び5%Nafion分散液47.5mLを混合し、これにより得られた混合液を超音波分散した。
 この混合液7mLを、0.196cm2のGC(glassy carbon)回転円盤電極上に滴下してから乾燥した。これにより、回転円盤電極上に炭素系材料を約800mg/cm2の付着量で付着させた。この回転円盤電極を用い、電解液として0.5MのH2SO4水溶液を用いて、回転速度1500rpm、掃引速度10mV/sの条件で、回転円盤電極ボルタンメトリーをおこなった。
 これにより得られたボルタモグラムを、図15に示す。尚、Aは実施例1の場合の結果を、Bは実施例2の場合の結果を、Cは実施例3の場合の結果を、Dは比較例1の場合の結果を、Eは参考例1の場合の結果を、それぞれ示す。この結果に示されるとおり、比較例1では酸素還元反応は認められなかったのに対し、各実施例では、電極電位0.7V(vs.Ag/AgCl)付近から、酸素還元反応が進行することが認められる。これは、白金触媒が使用される場合と比べると、過電圧にしてプラス150mV程度の範囲にとどまっている。このような実施例1~3による炭素系材料の触媒活性は、非白金系の酸素還元触媒としては最高水準にある。また、実施例2に対して、参考例1は、過電圧が約70mV増大していることが認められる。これは、参考例1では、焼成時間が長いため、活性中心となる金属原子がグラフェンシートから脱離してグラフェンシート間に金属結晶、炭化鉄等の不純物が生成してしまい、これにより、参考例1では触媒活性が低くなったためであると、考えられる。
 本発明に係る炭素系材料は、触媒として好適であり、特に電極上で酸素を還元させるためなどに使用される電極触媒として好適である。
 本発明に係る電極触媒及び酸素還元電極触媒は、特に制限されないが、ガス拡散電極のための触媒として好適である。
 本発明に係るガス拡散電極は、特に制限されるものではないが、燃料電池、二酸化炭素透過装置、水溶液電解装置、食塩電解装置等のための電極として好適である。

Claims (13)

  1. 金属原子と、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子とがドープされているグラフェンから成り、
    CuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である炭素系材料。
  2. CuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度が、グラファイトがCuKα線を用いてX線回折測定されることで得られる回折強度曲線における、(002)面のピークの強度の、0.002以下である請求項1に記載の炭素系材料。
  3. XPS測定により評価される炭素原子に対する前記金属原子の割合が、0.5質量%以上10質量%以下の範囲である請求項1又は2に記載の炭素系材料。
  4. XPS測定により評価される炭素原子に対する前記非金属原子の割合が、1質量%以上の範囲である請求項1乃至3のいずれか一項に記載の炭素系材料。
  5. 前記金属原子が鉄原子を含有する請求項1乃至4のいずれか一項に記載の炭素系材料。
  6. 請求項1乃至5のいずれか一項に記載の炭素系材料を含む電極触媒。
  7. 請求項1乃至5のいずれか一項に記載の炭素系材料を含む酸素還元電極触媒。
  8. 請求項6又は7に記載の触媒を備えるガス拡散電極。
  9. アルカリハロゲン化物水溶液が供給される容器と、
    前記容器内に貯留される電解水を電解するための第1の電極及び第2の電極と、
    前記第1の電極がカソードとなると共に前記第2の電極がアノードとなるように電圧を印加する電源と、
    前記容器内において前記第1の電極と前記第2の電極との間に位置する陽イオン交換膜とを備え、
    前記第1の電極が請求項8に記載のガス拡散電極からなる水溶液電解装置。
  10. 酸化グラフェンと、金属化合物と、窒素、ホウ素、硫黄及びリンから選択される少なくとも一種の非金属を含む非金属含有化合物とを含有する混合物を準備する工程と、
    前記混合物中の酸化グラフェンを還元してグラフェンを生成する工程と、
    前記金属化合物に由来する金属原子、及び前記非金属含有化合物に由来する非金属原子を、前記グラフェンにドープする工程とを含み、
    前記非金属含有化合物の分子量が800以下である炭素系材料の製造方法。
  11. 前記混合物を加熱することで、前記酸化グラフェンの還元と、前記グラフェンへの前記金属原子及び前記非金属原子のドーピングとを生じさせる請求項10に記載の炭素系材料の製造方法。
  12. 前記混合物を加熱する際に、加熱温度を700℃以上1000℃以下の範囲、加熱時間を10秒以上10分未満の範囲とする請求項11に記載の炭素系材料の製造方法。
  13. 前記非金属含有化合物が、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、及びエチレンジアミンから選ばれる少なくとも一種を含む請求項10乃至12のいずれか一項に記載の炭素系材料の製造方法。
PCT/JP2012/081751 2011-12-12 2012-12-07 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法 WO2013089026A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12857394.6A EP2792639B1 (en) 2011-12-12 2012-12-07 Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method of preparing carbon-based material
US14/361,538 US20140353144A1 (en) 2011-12-12 2012-12-07 Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method of preparing carbon-based material
JP2013549232A JP5677589B2 (ja) 2011-12-12 2012-12-07 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
CN201280059186.7A CN103974900B (zh) 2011-12-12 2012-12-07 碳系材料、电极催化剂、氧还原电极催化剂、气体扩散电极、水溶液电解装置和制备碳系材料的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-271728 2011-12-12
JP2011271728 2011-12-12
JP2011-274379 2011-12-15
JP2011274379 2011-12-15
JP2012-072265 2012-03-27
JP2012072265 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013089026A1 true WO2013089026A1 (ja) 2013-06-20

Family

ID=48612478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081751 WO2013089026A1 (ja) 2011-12-12 2012-12-07 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法

Country Status (5)

Country Link
US (1) US20140353144A1 (ja)
EP (1) EP2792639B1 (ja)
JP (1) JP5677589B2 (ja)
CN (1) CN103974900B (ja)
WO (1) WO2013089026A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985884A (zh) * 2014-05-21 2014-08-13 华中科技大学 一种氮掺杂碳纳米材料、其制备方法及应用
WO2015016700A1 (en) * 2013-07-30 2015-02-05 Universiti Putra Malaysia Method for preparing catalysst-assisted polypyrrole nanoparticles decorated graphene film for high-performance supercapacitor
WO2015045217A1 (ja) * 2013-09-24 2015-04-02 パナソニック株式会社 炭素系材料、電極、燃料電池、及び炭素系材料の製造方法
WO2015176220A1 (zh) * 2014-05-20 2015-11-26 中国科学院上海微系统与信息技术研究所 一种对石墨烯进行硫掺杂的方法
EP2871154A4 (en) * 2012-07-06 2015-12-23 Panasonic Ip Man Co Ltd CARBON MATERIAL, ELECTRODE CATALYST, ELECTRODE, GAS DIFFUSION ELECTRODE, ELECTROCHEMICAL DEVICE, FUEL BATTERY, AND PROCESS FOR PRODUCING CARBON MATERIAL
CN105322185A (zh) * 2014-07-29 2016-02-10 中国科学院大连化学物理研究所 一种二氧化碳电化学还原反应用气体扩散电极及其制备
CN106463735A (zh) * 2014-06-20 2017-02-22 松下电器产业株式会社 碳系材料、电极催化剂、电极、电化学装置、燃料电池以及碳系材料的制造方法
JP2017041372A (ja) * 2015-08-20 2017-02-23 パナソニック株式会社 微生物燃料電池及び廃液処理装置
JP2017048094A (ja) * 2015-09-04 2017-03-09 パナソニック株式会社 炭素系材料、並びにそれを備える電極及び微生物燃料電池
JP2017226595A (ja) * 2016-06-15 2017-12-28 国立大学法人東北大学 炭素材料及びその製造方法
WO2019013050A1 (ja) * 2017-07-13 2019-01-17 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
KR101948384B1 (ko) 2016-08-29 2019-02-15 한양대학교 에리카산학협력단 복합 구조체를 포함하는 촉매 및 그 제조 방법
CN110052281A (zh) * 2019-03-10 2019-07-26 天津大学 一种氧空位富集氮掺杂氧化锡及其制备方法和应用
JP2020180338A (ja) * 2019-04-25 2020-11-05 国立大学法人 熊本大学 二酸化炭素還元用電極及びその製造方法
JP2020534436A (ja) * 2017-07-26 2020-11-26 フェラデイ オーツー インコーポレイテッド 電気化学的酸素発生装置
JP2021042477A (ja) * 2014-09-12 2021-03-18 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag カーボンナノチューブを含有する酸素消費電極およびその製造方法
JP2021509474A (ja) * 2017-12-26 2021-03-25 韓国原子力研究院Korea Atomic Energy Research Institute 還元された酸化グラフェン、還元された酸化グラフェン−機能性物質複合体、及びそれらの製造方法
US20220205114A1 (en) * 2020-08-06 2022-06-30 Briotech, Inc. Deployable, remotely-controlled, pure hypochlorous acid manufacturing system and method
JP2022547289A (ja) * 2019-09-06 2022-11-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング プロトン交換膜燃料電池のガス拡散層およびその作製方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822895A4 (en) * 2012-03-09 2015-10-07 Basf Se AEROGEL BASED ON DOPED GRAPHENE
WO2014019089A1 (en) * 2012-07-30 2014-02-06 Zhongwei Chen Low cost synthesis of single material bifunctional nonprecious catalyst for electrochemical devices
CN106102883B (zh) * 2014-03-07 2019-05-17 汉阳大学校产学协力团 用于气体分离的氧化石墨烯纳米复合膜、还原的氧化石墨烯纳米复合膜及其制备方法
WO2016086234A1 (en) * 2014-11-30 2016-06-02 The Texas A&M University System Non-noble element catalysts and methods for making
KR102335973B1 (ko) * 2015-02-27 2021-12-07 서울대학교산학협력단 헤테로원자로 도핑된 그래핀 제조 방법
EP3302791A1 (en) * 2015-05-26 2018-04-11 Council of Scientific & Industrial Research Magnetically separable iron-based heterogeneous catalysts for dehydrogenation of alcohols and amines
US9795930B2 (en) 2015-10-22 2017-10-24 Industrial Technology Research Institute Water separation composite membrane
CN105731437B (zh) * 2016-01-26 2019-01-08 苏州大学 一种异原子掺杂石墨烯及其制备方法与应用
JP6857878B2 (ja) * 2016-12-06 2021-04-14 日清紡ホールディングス株式会社 炭素触媒並びにこれを含む電極及び電池
CN106744794B (zh) * 2016-12-07 2018-11-30 温州大学 一种片状氮磷共掺杂多孔碳材料及其制备方法与用途
CN106694007B (zh) * 2016-12-19 2019-09-10 中国科学院山西煤炭化学研究所 一种单分散金属原子/石墨烯复合催化剂及其制备方法和应用
US10777808B2 (en) * 2017-01-30 2020-09-15 Global Graphene Group, Inc. Exfoliated graphite worm-protected metal fluoride and metal chloride cathode active materials for lithium batteries
CN109382106B (zh) * 2017-08-03 2021-09-21 中国科学院大连化学物理研究所 一种电还原二氧化碳催化材料及其制备和应用
US10010866B1 (en) 2017-09-19 2018-07-03 King Saud University Nitrogen and phosphorus co-doped crystalline carbon materials
JP7036448B2 (ja) * 2017-09-29 2022-03-15 国立研究開発法人科学技術振興機構 ヘテロ元素含有グラフェン
AT520548B1 (de) * 2018-05-02 2019-05-15 Univ Linz Elektrode zur elektrokatalytischen Wasserstoffentwicklungsreaktion
CN109136983B (zh) * 2018-09-26 2020-03-27 太原理工大学 一种Mo/Ni/Co/P/C复合材料及其制备方法和应用
IT201800010540A1 (it) * 2018-11-23 2020-05-23 Torino Politecnico Ossido di grafene ridotto e drogato, e suo metodo di produzione
CN111686806B (zh) * 2020-05-29 2022-09-30 黑龙江大学 一种聚[2-(3-噻吩基)乙醇]/石墨相氮化碳复合可见光催化剂的制备方法及应用
CN114426268B (zh) * 2020-09-24 2023-08-08 中国石油化工股份有限公司 硫磷掺杂碳材料、铂碳催化剂及其制备方法和应用
CN114430047B (zh) * 2020-09-24 2024-04-02 中国石油化工股份有限公司 碳材料、铂碳催化剂及其制备方法和应用
CN114497598A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 硫氮磷掺杂碳材料、铂碳催化剂及其制备方法和应用
CN113173570B (zh) * 2021-04-21 2022-12-09 国网黑龙江省电力有限公司电力科学研究院 一种类石墨烯片状氮掺杂多孔碳材料的制备方法及应用
CN113174601B (zh) * 2021-04-27 2022-12-20 陕西科技大学 基于氮和硫共掺杂还原氧化石墨烯上原位生长的硫化镍电催化剂、制备方法及应用
CN113846341B (zh) * 2021-09-18 2022-05-17 广东工业大学 黑磷-石墨烯异质结负载氮化镍的制备方法及其制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272491A (ja) * 2005-03-28 2006-10-12 Toyota Motor Corp カーボンナノウォールの処理方法、カーボンナノウォール、カーボンナノウォールデバイス
WO2009148115A1 (ja) * 2008-06-04 2009-12-10 国立大学法人群馬大学 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
WO2010064556A1 (ja) * 2008-12-02 2010-06-10 日清紡ホールディングス株式会社 炭素触媒及びその製造方法、これを用いた電極及び電池
WO2011016837A1 (en) * 2009-08-07 2011-02-10 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219694A (ja) * 2005-02-08 2006-08-24 Permelec Electrode Ltd ガス拡散電極
KR101141104B1 (ko) * 2010-05-11 2012-05-02 한국과학기술원 연료 전지의 전극에 사용되는 금속-포르피린 탄소 나노 튜브
CN102034975A (zh) * 2010-11-15 2011-04-27 中国科学院青岛生物能源与过程研究所 用作锂离子电池负极材料的氮掺杂石墨碳及制法和应用
CN102185139B (zh) * 2011-03-31 2014-06-04 中国科学院过程工程研究所 一种纳米金属氧化物/石墨烯掺杂磷酸铁锂电极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272491A (ja) * 2005-03-28 2006-10-12 Toyota Motor Corp カーボンナノウォールの処理方法、カーボンナノウォール、カーボンナノウォールデバイス
WO2009148115A1 (ja) * 2008-06-04 2009-12-10 国立大学法人群馬大学 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
WO2010064556A1 (ja) * 2008-12-02 2010-06-10 日清紡ホールディングス株式会社 炭素触媒及びその製造方法、これを用いた電極及び電池
WO2011016837A1 (en) * 2009-08-07 2011-02-10 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Nenryoudenchi no gijutsu", INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN
CARBON, vol. 48, no. 9, 2 August 2010 (2010-08-02), pages 2613 - 2624
CHEM. MATER, vol. 23, 2011, pages 3421 - 3428
HSIEH, C.-T. ET AL.: "High reversibility of Li intercalation and de-intercalation in MnO- attached graphene anodes for Li-ion batteries", ELECTROCHIM. ACTA, vol. 56, no. 24, 1 October 2011 (2011-10-01), pages 8861 - 8867, XP028289280 *
IMRAN JAFRI, R. ET AL.: "Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell", J. MATER. CHEM., vol. 20, no. 34, 4 September 2010 (2010-09-04), pages 7114 - 7117, XP055135636 *
See also references of EP2792639A4 *
WATANABE, K., J. BIOSCI. BIOENG., vol. 106, 2008, pages 528 - 536
WEN, Z. ET AL.: "Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst", ADV. MATER., vol. 23, no. 45, 1 December 2011 (2011-12-01), pages 5445 - 5450, XP055083484 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929411B2 (en) 2012-07-06 2018-03-27 Panasonic Intellectual Property Management Co., Ltd. Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
EP2871154A4 (en) * 2012-07-06 2015-12-23 Panasonic Ip Man Co Ltd CARBON MATERIAL, ELECTRODE CATALYST, ELECTRODE, GAS DIFFUSION ELECTRODE, ELECTROCHEMICAL DEVICE, FUEL BATTERY, AND PROCESS FOR PRODUCING CARBON MATERIAL
WO2015016700A1 (en) * 2013-07-30 2015-02-05 Universiti Putra Malaysia Method for preparing catalysst-assisted polypyrrole nanoparticles decorated graphene film for high-performance supercapacitor
WO2015045217A1 (ja) * 2013-09-24 2015-04-02 パナソニック株式会社 炭素系材料、電極、燃料電池、及び炭素系材料の製造方法
US9741568B2 (en) 2014-05-20 2017-08-22 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Sulfur doping method for graphene
WO2015176220A1 (zh) * 2014-05-20 2015-11-26 中国科学院上海微系统与信息技术研究所 一种对石墨烯进行硫掺杂的方法
CN103985884A (zh) * 2014-05-21 2014-08-13 华中科技大学 一种氮掺杂碳纳米材料、其制备方法及应用
EP3159958A4 (en) * 2014-06-20 2017-10-11 Panasonic Corporation Carbon-based material, electrode catalyst, electrode, electrochemical device, fuel cell, and method for manufacturing carbon-based material
CN106463735A (zh) * 2014-06-20 2017-02-22 松下电器产业株式会社 碳系材料、电极催化剂、电极、电化学装置、燃料电池以及碳系材料的制造方法
CN105322185A (zh) * 2014-07-29 2016-02-10 中国科学院大连化学物理研究所 一种二氧化碳电化学还原反应用气体扩散电极及其制备
CN105322185B (zh) * 2014-07-29 2019-02-26 中国科学院大连化学物理研究所 一种二氧化碳电化学还原反应用气体扩散电极及其制备
JP7045439B2 (ja) 2014-09-12 2022-03-31 コベストロ、ドイチュラント、アクチエンゲゼルシャフト カーボンナノチューブを含有する酸素消費電極およびその製造方法
JP2021042477A (ja) * 2014-09-12 2021-03-18 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag カーボンナノチューブを含有する酸素消費電極およびその製造方法
JP2017041372A (ja) * 2015-08-20 2017-02-23 パナソニック株式会社 微生物燃料電池及び廃液処理装置
JP2017048094A (ja) * 2015-09-04 2017-03-09 パナソニック株式会社 炭素系材料、並びにそれを備える電極及び微生物燃料電池
JP2017226595A (ja) * 2016-06-15 2017-12-28 国立大学法人東北大学 炭素材料及びその製造方法
JP7092296B2 (ja) 2016-06-15 2022-06-28 国立大学法人東北大学 炭素材料及びその製造方法
KR101948384B1 (ko) 2016-08-29 2019-02-15 한양대학교 에리카산학협력단 복합 구조체를 포함하는 촉매 및 그 제조 방법
US11344867B2 (en) 2017-07-13 2022-05-31 Nisshinbo Holdings Inc. Carbon catalyst, battery electrode and battery
JP7175890B2 (ja) 2017-07-13 2022-11-21 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
WO2019013050A1 (ja) * 2017-07-13 2019-01-17 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
JPWO2019013050A1 (ja) * 2017-07-13 2020-07-27 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
JP2020534436A (ja) * 2017-07-26 2020-11-26 フェラデイ オーツー インコーポレイテッド 電気化学的酸素発生装置
JP7263344B2 (ja) 2017-07-26 2023-04-24 フェラデイ オーツー インコーポレイテッド 電気化学的酸素発生装置
JP2021509474A (ja) * 2017-12-26 2021-03-25 韓国原子力研究院Korea Atomic Energy Research Institute 還元された酸化グラフェン、還元された酸化グラフェン−機能性物質複合体、及びそれらの製造方法
JP7203850B2 (ja) 2017-12-26 2023-01-13 韓国原子力研究院 還元された酸化グラフェン、還元された酸化グラフェン-機能性物質複合体、及びそれらの製造方法
CN110052281B (zh) * 2019-03-10 2021-11-05 天津大学 一种氧空位富集氮掺杂氧化锡及其制备方法和应用
CN110052281A (zh) * 2019-03-10 2019-07-26 天津大学 一种氧空位富集氮掺杂氧化锡及其制备方法和应用
JP2020180338A (ja) * 2019-04-25 2020-11-05 国立大学法人 熊本大学 二酸化炭素還元用電極及びその製造方法
JP7212228B2 (ja) 2019-04-25 2023-01-25 国立大学法人 熊本大学 二酸化炭素還元用電極及びその製造方法
JP2022547289A (ja) * 2019-09-06 2022-11-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング プロトン交換膜燃料電池のガス拡散層およびその作製方法
JP7483866B2 (ja) 2019-09-06 2024-05-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング プロトン交換膜燃料電池のガス拡散層およびその作製方法
US20220205114A1 (en) * 2020-08-06 2022-06-30 Briotech, Inc. Deployable, remotely-controlled, pure hypochlorous acid manufacturing system and method

Also Published As

Publication number Publication date
JP5677589B2 (ja) 2015-02-25
EP2792639B1 (en) 2019-03-20
EP2792639A1 (en) 2014-10-22
CN103974900A (zh) 2014-08-06
US20140353144A1 (en) 2014-12-04
EP2792639A4 (en) 2015-08-12
JPWO2013089026A1 (ja) 2015-04-27
CN103974900B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5677589B2 (ja) 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
Cao et al. Durable and selective electrochemical H2O2 synthesis under a large current enabled by the cathode with highly hydrophobic three-phase architecture
Garino et al. Microwave-assisted synthesis of reduced graphene oxide/SnO2 nanocomposite for oxygen reduction reaction in microbial fuel cells
Tang et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting
Chung et al. Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications
JP5942277B2 (ja) 炭素系材料、電極触媒、電極、ガス拡散電極、電気化学装置、燃料電池、並びに炭素系材料の製造方法
Zhou et al. A review of graphene‐based nanostructural materials for both catalyst supports and metal‐free catalysts in PEM fuel cell oxygen reduction reactions
Zhao et al. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions
Centi et al. The role of nanostructure in improving the performance of electrodes for energy storage and conversion
JP6329263B2 (ja) 炭素系材料、電極触媒、電極、電気化学装置、燃料電池、及び炭素系材料の製造方法
Jeon et al. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers
Kang et al. Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis
JP2022003642A (ja) 触媒、その製造方法、これを含む電極、膜−電極アセンブリー及び燃料電池
JP6758628B2 (ja) 有機ハイドライド製造装置及び有機ハイドライドの製造方法
Li et al. In situ synthesis of molybdenum carbide/N-doped carbon hybrids as an efficient hydrogen-evolution electrocatalyst
WO2015122125A1 (ja) 微生物燃料電池、微生物燃料電池システム、及び微生物燃料電池の使用方法
Sayed et al. Enhancing the performance of direct urea fuel cells using Co dendrites
Wang et al. Direct conversion of biomass into compact air electrode with atomically dispersed oxygen and nitrogen coordinated copper species for flexible zinc–air batteries
Hayat et al. Electrocatalytic activity of Cu MOF and its g-C3N4-based composites for oxygen reduction and evolution reaction in metal-air batteries
Sun et al. Improving CO2 electroreduction activity by creating an oxygen vacancy-rich surface with one-dimensional in–SnO2 hollow nanofiber architecture
Toh et al. Facile preparation of ultra-low Pt loading graphene-immobilized electrode for methanol oxidation reaction
Dhillon et al. Copper nanoparticles embedded in polyaniline derived nitrogen-doped carbon as electrocatalyst for bio-energy generation in microbial fuel cells
Maiyalagan et al. Electro-catalytic performance of Pt-supported poly (o-phenylenediamine) microrods for methanol oxidation reaction
Pei et al. Gas Diffusion Electrode Design and Conditioning with a Manganese (III/IV) Oxide Catalyst for Reversible Oxygen Reduction/Evolution Reactions
WO2015045217A1 (ja) 炭素系材料、電極、燃料電池、及び炭素系材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549232

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14361538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE