WO2013081437A1 - 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지 - Google Patents

술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지 Download PDF

Info

Publication number
WO2013081437A1
WO2013081437A1 PCT/KR2012/010385 KR2012010385W WO2013081437A1 WO 2013081437 A1 WO2013081437 A1 WO 2013081437A1 KR 2012010385 W KR2012010385 W KR 2012010385W WO 2013081437 A1 WO2013081437 A1 WO 2013081437A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
integer
electrolyte membrane
Prior art date
Application number
PCT/KR2012/010385
Other languages
English (en)
French (fr)
Inventor
권혜진
최성호
이민종
얼야크힌세르게이
신정규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12853234.8A priority Critical patent/EP2786999B1/en
Priority to CN201280022563.XA priority patent/CN103517912B/zh
Priority to JP2014511311A priority patent/JP5796813B2/ja
Priority to US14/111,399 priority patent/US9136551B2/en
Publication of WO2013081437A1 publication Critical patent/WO2013081437A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/09Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing etherified hydroxy groups bound to the carbon skeleton
    • C07C309/10Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing etherified hydroxy groups bound to the carbon skeleton with the oxygen atom of at least one of the etherified hydroxy groups further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/24Polysulfonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to novel compounds and methods for their preparation. Specifically, the present invention relates to sulfonate compounds and methods for their preparation.
  • the present invention also relates to a polymer electrolyte membrane and a fuel cell including the same. Specifically, the present invention relates to a polymer electrolyte membrane including a sulfonate compound and a fuel cell including the same.
  • the fuel cell is particularly attracting attention due to its advantages such as high efficiency, no pollutants such as NOx and SOx, and abundant fuel.
  • a fuel cell is a power generation system that converts chemical reaction energy of a fuel and an oxidant into electrical energy.
  • Hydrogen, a hydrocarbon such as methanol, butane, and the like are typically used as an oxidant.
  • Fuel cells include polymer electrolyte fuel cells (PEMFC), direct methanol fuel cells (DMFC), phosphoric acid fuel cells (PAFC), alkaline fuel cells (AFC), molten carbonate fuel cells (MCFC), and solid oxide fuels. Batteries (SOFC) and the like.
  • PEMFC polymer electrolyte fuel cells
  • DMFC direct methanol fuel cells
  • PAFC phosphoric acid fuel cells
  • AFC alkaline fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuels.
  • polymer electrolyte fuel cells have been researched most actively because of their high energy density and high output.
  • the polymer electrolyte fuel cell differs from other fuel cells in that it uses a solid polymer electrolyte membrane instead of a liquid as an electrolyte.
  • the present invention provides a novel sulfonate compound and its preparation method.
  • the present invention provides a polymer electrolyte membrane and a fuel cell including the same.
  • One embodiment of the present invention provides a compound of Formula 1.
  • X, Y and R are each independently hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a group convertible to a reactive group or a reactive group, n is an integer of 1 to 3, and when n is 2 or more, R is mutually May be the same or different, and they may together form an aliphatic or aromatic monocyclic or polycyclic ring,
  • L is a linking group containing at least one fluorine atom
  • s is an integer of 1 to 3, when s is 2 or more, L is the same or different,
  • M is a group 1 element of the periodic table
  • t is an integer of 1 to 3, and when t is 2 or more, the substituents in parentheses are the same or different from each other, and n + t is an integer of 2 to 4.
  • R ' is the same as or different from each other, and each is hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a reactive group, or a group convertible to a reactive group, m is an integer of 1 to 5, and when m is 2 or more, R' May be the same or different from each other, and they may together form an aliphatic or aromatic monocyclic or polycyclic ring,
  • A is a halogen group
  • v is an integer of 1 to 3, when v is 2 or more, A is the same or different from each other,
  • n + v is an integer of 2 or more and 6 or less
  • E is a halogen group
  • Method for producing a compound of Formula 1 may further comprise the step of d) converting at least one of the R 'group to a reactive group.
  • Another exemplary embodiment of the present invention also provides a polymer electrolyte membrane including the compound of Formula 1 above.
  • Another embodiment of the present invention is an anode electrode; Cathode electrode; And it is provided between the anode and the cathode, and provides a membrane electrode assembly comprising a polymer electrolyte membrane comprising the compound of formula (1).
  • a stack comprising a membrane electrode assembly and a separator provided between the membrane electrode assemblies according to the present invention
  • a fuel supply unit supplying fuel to the stack
  • a fuel cell comprising an oxidant supply for supplying an oxidant to a stack.
  • the compounds according to the invention are novel and have great potential for use as various materials or raw materials thereof.
  • the compound according to the present invention may be used as a monomer constituting the polymer.
  • the compound of Formula 1 described herein is a monomer that can more efficiently induce phase separation of the hydrocarbon-based polymer, which may be used to prepare a polymer that is a material of the fuel cell polymer electrolyte membrane, and is an additive to the fuel cell polymer electrolyte membrane. It may also be included as. In particular, it is suitable for use as a basic monomer of an electrolyte membrane in which hydrophilicity and hydrophobic phase separation are important. Therefore, the polymer electrolyte membrane may be used as an ion exchange membrane of a fuel cell.
  • FIG. 1 is a schematic diagram illustrating a principle of electricity generation of a fuel cell.
  • FIG. 2 is a view schematically showing the structure of a membrane electrode assembly for a fuel cell.
  • FIG 3 is a view schematically showing an embodiment of a fuel cell.
  • Compound according to an exemplary embodiment of the present invention has a structure as shown in formula (1).
  • X, Y and R are each independently hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a group convertible to a reactive group or a reactive group, n is an integer of 1 to 3, and when n is 2 or more, R is mutually May be the same or different, and they may together form an aliphatic or aromatic monocyclic or polycyclic ring,
  • L is a linking group containing at least one fluorine atom
  • s is an integer of 1 to 3, when s is 2 or more, L is the same or different from each other,
  • M is a group 1 element of the periodic table
  • t is an integer of 1 to 3, and when t is 2 or more, the substituents in parentheses are the same or different from each other, and n + t is an integer of 2 to 4.
  • the bond of SO 3 and M is an ionic bond.
  • the ionic bond is not active during the synthesis reaction of the compound of Formula 1.
  • the aliphatic hydrocarbon group is not particularly limited by the carbon number.
  • the aliphatic hydrocarbon may have, for example, 1 to 20 carbon atoms.
  • the aliphatic hydrocarbon may include straight chain, branched chain, monocyclic or polycyclic.
  • Examples of the aliphatic hydrocarbons include straight or branched chain alkyl groups having 1 to 20 carbon atoms, straight or branched chain alkoxy groups having 2 to 20 carbon atoms, straight or branched chain alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, and carbon atoms.
  • a cycloalkyl group having 3 to 20 carbon atoms and a cycloalkenyl group having 3 to 20 carbon atoms are referred to.
  • the substituent bonded to the benzene structure which is the core structure of the formula (1) is an aliphatic hydrocarbon, it is interpreted to be included in the range of the aliphatic hydrocarbon even when a substituent other than the aliphatic hydrocarbon is substituted or condensed thereto.
  • the aromatic hydrocarbon group is not particularly limited by the carbon number.
  • the aromatic hydrocarbon may have, for example, 6 to 40 carbon atoms.
  • the aromatic hydrocarbon may include a monocyclic or polycyclic ring.
  • Examples of the aromatic hydrocarbon may be phenyl, naphthyl, anthracenyl, pyrenyl, and the like, which may further have a substituent.
  • the substituent bonded to the benzene structure which is the core structure of the formula (1) is an aromatic hydrocarbon, it is interpreted to be included in the range of the aromatic hydrocarbon even when a substituent other than the aromatic hydrocarbon is substituted or condensed thereto.
  • the heterocyclic group is a ring group containing at least one of O, S and N as a heteroatom.
  • the heterocyclic group is an aliphatic ring group or an aromatic ring group.
  • the heterocyclic group is not particularly limited by carbon number.
  • the heterocyclic group may have, for example, 2 to 40 carbon atoms.
  • the heterocyclic group may include a monocyclic or polycyclic ring. Examples of the heterocyclic group include imidazole, thiazole, pyridyl, pyrimidyl, oxazole and the like.
  • the substituent bonded to the benzene structure which is the core structure of the general formula (1), is a heterocyclic group, it is interpreted to be included in the heterocyclic group even when a substituent other than the heterocyclic group is substituted or condensed thereto. .
  • the reactive group is a group that can further react with other compounds.
  • the reactive group means a group capable of reacting with another compound under reaction conditions known in the art.
  • the kind of the reactive group is not particularly limited, and examples thereof include -OH group, -SH, and -NR a R b .
  • R a and R b may each be hydrogen, alkyl, alkenyl, alkynyl, alkoxy, aryl, or the like.
  • the group convertible to the reactive group is a group in which the reactive group as described above may be further substituted or replaced with a reactive group.
  • the group convertible to the reactive group means a group that can be substituted or replaced with a group capable of reacting with another compound under reaction conditions known in the art.
  • the kind of the group which can be converted into the reactive group is not particularly limited, and examples thereof include an amine group and the like.
  • the amine group includes an amine group having a -NH 2 group or a substituent such as alkyl or aryl.
  • At least X of the X, Y and R is a reactive group or a group convertible to a reactive group.
  • At least X and Y of the X, Y and R is a reactive group or a group convertible to a reactive group.
  • X and Y are a reactive group or a group convertible to a reactive group, which are located in a meta or para position.
  • X and Y are reactive groups or groups convertible to reactive groups, which are located in the para position.
  • X and Y are reactive groups, which are located in the para position.
  • the linking group including at least one fluorine atom is a divalent group capable of connecting a benzene ring and a sulfonate group (-SO 3- ), and is a group containing one or more fluorine atoms.
  • S which is a repeating unit of L, may be 1, or may be 2 or 3.
  • L includes an alkylene group substituted with at least one fluorine.
  • L may include one or two or more alkylene groups substituted with at least one fluorine, and may further include additional divalent groups.
  • L includes an alkylene group having 1 to 10 carbon atoms substituted with at least one fluorine.
  • all of the alkylene groups may be saturated with fluorine.
  • Chemical Formula 1 is represented by the following Chemical Formula 5.
  • X, Y, R, n, t and M are as defined in Formula 1,
  • At least one of R 1 to R 4 is a fluorine atom, R 1 is one to R 4 is not a fluorine atom and a fluorine substitution of hydrogen, C 1 to C 6 alkyl or C 1 to C 6 alkyl, p is an integer from 1 to 10 R is an integer from 0 to 10,
  • Z is divalent and q is 0 or 1.
  • Non-fluorine atoms in R 1 to R 4 include, for example, hydrogen, -CH 3 , -CF 3 and the like.
  • Z is bivalent, The kind is not specifically limited.
  • Z can be -O- or -S-.
  • p is an integer of 1 to 5
  • q is 0 or 1
  • r is an integer of 0 to 5.
  • R One To R 4 It may be all fluorine.
  • M is a Group 1 element on the periodic table.
  • Examples of M include potassium (K), sodium (Na), hydrogen (H) and the like.
  • M is potassium (K) or sodium (Na).
  • X and Y is a reactive group
  • M is a potassium (K) or sodium (Na)
  • M is SO 3 - SO 3 by ionic bonding with the - lower the reactivity of the present invention
  • M may be ion-exchanged to H through a post-treatment step as needed.
  • the group may be located in the ortho, meta or para position relative to X.
  • the The group may be located in the ortho position relative to X.
  • X and Y are located in a para position with each other, When positioned in the ortho position with respect to X
  • Formula 1 may be represented as shown in the following formula (6).
  • Another embodiment of the present invention provides a method for preparing the compound of Formula 1.
  • the method for preparing the compound of Formula 1 includes the following steps a) to c).
  • R ' is the same as or different from each other, and each is hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a reactive group, or a group convertible to a reactive group, m is an integer of 1 to 5, and when m is 2 or more, R' May be the same or different from each other, and they may together form an aliphatic or aromatic monocyclic or polycyclic ring,
  • A is a halogen group
  • v is an integer of 1 to 3, when v is 2 or more, A is the same or different from each other,
  • n + v is an integer of 2 or more and 6 or less
  • E is a halogen group
  • R ′ may be the same as X, Y or R in Formula 1, or may be a group convertible to X, Y or R.
  • 'switchable group' means a group that can be converted to X, Y or R under reaction conditions known in the art.
  • the R ' is preferably a group that does not react under the reaction conditions of the steps a), b) and c).
  • At least one of the R ' may be a group convertible to a reactive group.
  • the method of preparing the compound of Formula 1 may further comprise the step of d) converting at least one of the R 'group to the reactive group after step c).
  • the R 'group is a -OAc group, it can be converted to -OH group by the step d).
  • the method for preparing a compound of Formula 1 according to an exemplary embodiment of the present invention may further include preparing the compound of Formula 3 using the compound of Formula 7 before step b).
  • E and G are each halogen groups.
  • A, E and G as the halogen group, fluorine, chlorine, bromine, iodine and the like may be used.
  • a used is a compound substituted with bromine, E with iodine, and G with fluorine, but is not limited thereto.
  • the types of A, E and G may vary depending on the reaction sequence or reaction conditions. For example, when converting Chemical Formula 7 into Chemical Formula 3 including -SO 3 M, a compound in which E is iodine and a compound in which A is bromine or iodine may be used.
  • E and G may be different halogen groups from each other so as to react under different reaction conditions.
  • the present invention is not limited thereto and may be adjusted according to the reaction order or the reaction conditions.
  • the compound of Formula 1 may be prepared by a method including five steps as follows.
  • 1,4-benzoquinone was reacted at 100 ° C. for 3 hours in the presence of ZnBr 2 and Ac 2 O.
  • reaction conditions such as reaction time and reaction temperature, can be adjusted.
  • 1,4-benzoquinone was used as a starting material, but the position of the substituent can be changed by using a substance having a different ketone position in benzoquinone or by controlling the substitution position of bromine of the compound obtained in the first step.
  • It is also possible to change the type of substituents by replacing the substituents substituted in the starting materials or other materials used during the reaction, such as ZnBr 2 , Ac 2 O.
  • 84% means conversion or yield.
  • the second step may proceed in any order in relation to the first step.
  • a starting material in which an iodine group and a fluorine group were bonded to both ends of a compound including a linking group-(CF 2 ) 2 -O- (CF 2 ) 2 -group and -SO 2 -group, respectively was used.
  • the starting material was reacted at room temperature for 4 days in the presence of dichloromethane (DCM), H 2 O, 2,6-lutidine and Bu 4 N + F ⁇ (1M). Subsequently, it was reacted for 10 hours at room temperature in the presence of THF (tetrahydrofuran) and K 2 CO 3 .
  • reaction conditions such as reaction time and reaction temperature, can be adjusted.
  • a starting material having a-(CF 2 ) 2 -O- (CF 2 ) 2 -group was used as the linking group L, but by changing the type of the linking group L in the starting material, a compound having a different type of linking group L was obtained. It can manufacture.
  • the starting material used a compound having an iodine (I) group and a fluorine (F) group respectively bonded at both ends, but this may be replaced with another halogen group depending on the reaction conditions.
  • the halogen groups at both ends of the starting material are preferably different from each other so that they can react under different conditions.
  • 78% means conversion or yield.
  • reaction product obtained in the first step and the reaction product obtained in the second step were reacted for 62 hours at 110 ° C. under Ar atmosphere in the presence of dimethyl sulfoxide (DMSO) and Cu.
  • DMSO dimethyl sulfoxide
  • reaction conditions such as reaction time and reaction temperature, can be adjusted.
  • 27% means conversion or yield.
  • the compound according to the present invention may be used as a material of various materials, or may be used as a raw material for preparing other materials.
  • Another embodiment of the present invention provides a polymer electrolyte membrane including the compound of Formula 1.
  • the electrolyte membrane may be a block polymer because hydrophilic and hydrophobic phase separation is important, but in a hydrocarbon-based block polymer, phase separation is difficult when the distance between the main chain and the sulfone group is close.
  • the compound of Formula 1 may provide an electrolyte membrane having improved phase separation because a linking group including fluorine, particularly an aliphatic group including fluorine, exists between the phenyl group and the sulfone group, which are aromatic groups.
  • the compound of Formula 1 may be included as a polymerized monomer in the polymer constituting the electrolyte membrane, or may be included as an additive.
  • the polymer including the compound of Formula 1 may be a homopolymer of the compound of Formula 1, or may include additional comonomers.
  • additional comonomers those known in the art can be used. At this time, one type or two or more types of comonomers may be used.
  • Examples of the comonomer include perfluorosulfonic acid polymer, hydrocarbon-based polymer, polyimide, polyvinylidene fluoride, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyphosphazine, polyethylene naphthalate, polyester, doping Polybenzimidazoles, polyetherketones, polysulfones, monomers thereof, or bases thereof.
  • the polymer may further include other sulfonate compounds, in addition to the compound of Formula 1.
  • the polymer is a 4,4'-difluorobenzophenone and 3,5-bis (4-fluorobenzoyl) phenyl (4- Fluorophenyl) methanone (3,5-bis (4-fluorobenzoyl) phenyl (4-fluorophenyl) methanone) may be a polymer polymerized.
  • sulfonate-based compounds such as hydroquinone sulfonic acid potassium salt may be further included.
  • the polymer together with the compound of Formula 1, 4,4'-difluorobenzophenone (4,4'-difluorobenzophenone) and 3,5-bis (4-fluorobenzoyl) phenyl ( 4,4'-difluorobenzophenone (4,4) to the hydrophilic oligomer polymerized with 4-fluorophenyl) methanone (3,5-bis (4-fluorobenzoyl) phenyl (4-fluorophenyl) methanone) '-Difluorobenzophenone), 9,9-bis (hydroxyphenyl) fluorine and 9,9-bis (hydroxyphenyl) fluorine and 3,5-bis (4-fluorobenzoyl) phenyl (4-fluorophenyl)- It may be a multi-block copolymer obtained by adding and reacting methanone (3,5-bis (4-fluorobenzoyl) phenyl (4-fluorophenyl) -methanone).
  • the content of the additional comonomer in the polymer may be greater than 0 wt% and less than 95 wt%.
  • the content of the compound of Formula 1 and the additional comonomer in the polymer may be adjusted according to an appropriate IEC (ion exchange capacity) value required for the electrolyte membrane for the fuel cell to be applied.
  • IEC ion exchange capacity
  • the monomer content in the polymer can be selected to be within the range of 0.5 ⁇ IEC ⁇ 3.
  • the compound of Formula 1 may be used to design an electrolyte membrane having a low IEC value while showing the same ion conductivity value.
  • the polymer including the compound of Formula 1 may have a weight average molecular weight of tens of thousands to millions. Specifically, the weight-molecular weight molecular weight of the polymer may be selected within 100,000 to 1 million.
  • the polymer containing the compound of Formula 1 is a block copolymer.
  • the polymer including the compound of Formula 1 may be synthesized by a condensation polymerization method in which an OH group and a halogen element, such as F or Cl, of the monomer react with each other as HF or HCl is released by using a monomer including a halogen element. Can be.
  • the polymer electrolyte membrane When the polymer electrolyte membrane is manufactured using the polymer including the compound of Formula 1, the polymer electrolyte membrane may be prepared by adding a solvent to the polymer to form a polymer solution and then forming a polymer solution using a solvent casting method. If necessary, an acid treatment can be used to convert the SO 3 M group to an SO 3 H group.
  • the content range in the electrolyte membrane is not particularly limited, but may be, for example, greater than 0 to 95 wt%.
  • the polymer electrolyte membrane is a perfluorosulfonic acid polymer, a hydrocarbon-based polymer, polyimide, polyvinylidene fluoride, polyether sulfone, polyphenylene sulfide, polyphenylene One or more polymers of oxides, polyphosphazines, polyethylenenaphthalates, polyesters, doped polybenzimidazoles, polyetherketones, polysulfones, acids or bases thereof.
  • a material added to the polymer electrolyte membrane for example, a monomer or an additive included in the polymer electrolyte membrane, depending on the fuel cell to which the ion conductivity and the IEC (ion exchange capacity) of the polymer electrolyte are finally applied. It may be designed to an appropriate value depending on the type of. For example, when applied to a fuel cell, 0.5 ⁇ IEC ⁇ 3, 0.5 ⁇ IEC ⁇ 2.5 may be designed, but the scope of the present invention is not limited thereto, and may be selected to an appropriate value as necessary.
  • the polymer electrolyte membrane according to the present invention may have a low IEC value while exhibiting an ion conductivity value equivalent or superior to that of the conventional one.
  • the polymer electrolyte membrane according to the present invention may be prepared using materials or methods in the art, except for including the compound of Formula 1.
  • the polymer electrolyte membrane may have a thickness of several microns to several hundred microns.
  • the present invention is an anode electrode; Cathode electrode; And it is provided between the anode and the cathode, and provides a membrane electrode assembly comprising a polymer electrolyte membrane comprising the compound of formula (1).
  • the anode electrode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may again include an anode microporous layer and an anode electrode substrate.
  • the cathode electrode may include a cathode catalyst layer and a cathode gas diffusion layer.
  • the cathode gas diffusion layer may further include a cathode microporous layer and a cathode electrode substrate.
  • FIG. 1 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane (M) and the electrolyte membrane (M). It consists of an anode (A) and a cathode (C) electrode formed on both sides of the.
  • MEA membrane electrode assembly
  • an oxidation reaction of hydrogen or a fuel F such as hydrocarbons such as methanol and butane occurs at an anode A to generate hydrogen ions H + and electrons e-.
  • hydrogen ions move to the cathode (C) electrode through the electrolyte membrane (M).
  • water (W) is generated by the reaction of hydrogen ions transferred through the electrolyte membrane (M) with an oxidant (O) such as oxygen and electrons. This reaction causes the movement of electrons in the external circuit.
  • FIG. 2 schematically illustrates the structure of a fuel cell membrane electrode assembly, wherein the fuel cell membrane electrode assembly is an anode electrode and a cathode electrode which are positioned to face each other with the electrolyte membrane 10 interposed therebetween. It is provided.
  • the anode electrode is composed of the anode catalyst layer 20 and the anode gas diffusion layer 50
  • the anode gas diffusion layer 50 is composed of the anode microporous layer 30 and the anode electrode substrate 40 again.
  • the anode gas diffusion layer is provided between the anode catalyst layer and the electrolyte membrane.
  • the cathode electrode is composed of the cathode catalyst layer 21 and the cathode gas diffusion layer 51, and the cathode gas diffusion layer 51 is composed of the cathode microporous layer 31 and the cathode electrode substrate 41.
  • the cathode gas diffusion layer is provided between the cathode catalyst layer and the electrolyte membrane.
  • the catalyst layer of the anode electrode is where the oxidation reaction of the fuel occurs, the catalyst is selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy. Can be used.
  • the catalyst layer of the cathode electrode is where the reduction reaction of the oxidant occurs, platinum or platinum-transition metal alloy may be preferably used as a catalyst.
  • the catalysts can be used on their own as well as supported on a carbon-based carrier.
  • the process of introducing the catalyst layer may be carried out by conventional methods known in the art, for example, the catalyst ink may be directly coated on the electrolyte membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the coating method of the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • Catalytic inks can typically consist of a catalyst, a polymer ionomer, and a solvent.
  • the gas diffusion layer acts as a current conductor and serves as a passage for the reaction gas and water, and has a porous structure. Therefore, the gas diffusion layer may include a conductive substrate. As the conductive substrate, carbon paper, carbon cloth, or carbon felt may be preferably used. The gas diffusion layer may further include a microporous layer between the catalyst layer and the conductive substrate. The microporous layer may be used to improve the performance of the fuel cell in low-humidity conditions, and serves to reduce the amount of water flowing out of the gas diffusion layer so that the electrolyte membrane is in a sufficient wet state.
  • a stack comprising a membrane electrode assembly and a separator provided between the membrane electrode assemblies according to the present invention
  • a fuel supply unit supplying fuel to the stack
  • a fuel cell comprising an oxidant supply for supplying an oxidant to a stack.
  • FIG. 3 schematically illustrates the structure of a fuel cell.
  • the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and includes two or more separators interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidizing agent, and may be used by injecting oxygen or air into the pump 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the compound according to the present invention may be used as a material of various materials, or may be used as a raw material for preparing other materials.
  • 1,4-benzoquinone (0.052 mol, 5.65 g) was added to the suspension of anhydrous zinc bromide (0.065 mol, 14.7 g) in 15 ml of acetic anhydride with stirring. The mixture was kept at 100 ° C. for 3 hours, then cooled to room temperature and poured into 40 ml of water. The precipitate was filtered off, washed with water (20 ml, 3 times) and recrystallized from water-ethanol mixture (50% of ethanol). Product yield was 84%. Melting point was 76 °C to 77 °C.
  • 1,1,2,2-tetrafluoro-2- (1,1,2,2-tetrafluoro-2-iodineethoxy) ethanesulfofluoride (0.268 mol, 114 g in 40 g methylene chloride) ) Solution, 38 ml of water, 2,6-lutidine (0.34 mol, 40 ml) and tetrabutylammonium in THF 0.8 ml of fluoride 1M solution was added. The reaction mixture was stirred for 4 days at room temperature, followed by extraction with methylene chloride (200 ml, 3 times). Na extract 2 SO 4 Dry in, It was dissolved in 80 ml of THF.
  • Membrane-prepared copper powder (0.71 mol, 45.5 g) was placed in a reaction flask, heated to 150 ° C. in argon, held for 5 minutes under these conditions and then cooled to room temperature.
  • Compound I (0.143 mol, 39 g)
  • Compound II 0.171 mol, 79 g
  • 130 ml of dimethylsulphoxide (DMSO) were then added under inert atmosphere.
  • the reaction mixture was stirred at 110 ° C. for 62 hours under argon atmosphere.
  • the mixture was cooled to room temperature, dissolved in 200 ml of isopropyl alcohol and the excess catalyst and inorganics were removed using zeolite.
  • Isopropyl alcohol was removed using a rotary evaporator. 300 ml of ethyl acetate was added to the remaining compound, and the organic layer was washed with a saturated solution of potassium chloride and then dried over Na 2 SO 4 . The remaining solvent was further removed under reduced pressure. The oil obtained was treated with toluene and decantation was applied using diethyl ether to further remove excess impurities. The resulting light beige material was washed with an additional amount of ester on the filter. Product yield was 19 g (27%). Melting point was 170 °C-173 °C. .
  • reaction mixtures were stirred at an oil bath at 140 ° C. for 4 hours to remove the azeotrope adsorbed to molecular sieves of the Dean-Stark apparatus while benzene was refluxed, and then the reaction temperature was 180 ° C. It heated up to and condensation-polymerized for 20 hours. After the reaction was completed, the temperature of the reactant was reduced to 60 ° C., and then 4,4′-difluorobenzophenone (5.49 g) and 9,9-bis (hydride) were added to the same flask.
  • the reaction mixture was again stirred at an oil bath at 140 ° C. for 4 hours to remove the azeotrope by adsorption of the azeotrope to the molecular sieves of the Dean-Stark apparatus while the benzene was refluxed, followed by a reaction temperature of 180 °. It heated up at ° C and carried out polycondensation reaction for 20 hours. Thereafter, the temperature of the reaction was reduced to room temperature and the product was diluted by further DMSO, and then the diluted product was poured into excess methanol to separate the copolymer from the solvent.
  • the multiblock copolymer synthesized above was prepared with a 5-10 wt% polymer solution using DMSO (dimethyl sulfoxide) as a solvent, and the horizontal plate of the applicator in a clean bench set at 40 ° C. using the prepared polymer solution. After casting the polymer film on the substrate using a doctor blade from above, after 2 hours of soft baking, the polymer film was placed in an oven set at 100 ° C. and dried for one day to prepare a polymer electrolyte membrane to which a hydrophilic carbonaceous material was added.
  • DMSO dimethyl sulfoxide
  • the IEC value of the polymer electrolyte membrane prepared as described above was 1.2 to 1.6, and the hydrogen ion conductivity was room temperature (2.5E-02), 40 ° C (3.1E-02), 60 ° C (4.2E-02), and 80 ° C (5.2). E-02) and 100 ° C. (6.8E-02).
  • the polymer electrolyte membrane prepared above can be used as an excellent fuel cell polymer electrolyte membrane because of its low IEC value and high hydrogen ion conductivity. When such a polymer electrolyte membrane is applied to a fuel cell, the performance of the fuel cell can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 신규한 술포네이트계 화합물, 이의 제조방법, 상기 술포네이트계 화합물을 포함하는 고분자 전해질막, 이를 포함하는 막전극 접합체 및 이를 포함하는 연료전지에 관한 것이다.

Description

술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
본 출원은 2011년 12월 2일에 한국특허청에 제출된 한국 특허 출원 제10-2011-0128662호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 신규한 화합물 및 이의 제조방법에 관한 것이다. 구체적으로, 본 발명은 술포네이트계 화합물 및 이의 제조방법에 관한 것이다.
또한, 본 발명은 고분자 전해질막 및 이를 포함하는 연료전지에 관한 것이다. 구체적으로, 본 발명은 술포네이트계 화합물을 포함하는 고분자 전해질막 및 이를 포함하는 연료전지에 관한 것이다.
최근 다양한 기술분야에서 다양한 소재의 개발들이 많이 이루어지고 있다. 또한, 다양한 소재의 개발에 사용되는 원료 물질들의 개발도 함께 이루어지고 있다. 예컨대, 고분자 소재의 경우에는, 공지된 단량체들을 이용한 중합방법, 고분자 내의 단량체들의 조합, 조성비 또는 분포 상태, 고분자의 입체 구조, 측쇄 길이나 종류 등을 조절함으로써, 원하는 물성을 갖는 고분자 자체의 개발이 이루어지고 있다. 또한, 고분자 중합에 사용되는 신규 단량체들에 대한 개발도 함께 이루어지고 있다.
한편, 최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 수 있는 에너지에 대한 관심이 높아지고 있다. 이러한 대체에너지의 하나로서 연료전지는 고효율이고, NOx 및 SOx 등의 공해 물질을 배출하지 않으며, 사용되는 연료가 풍부하다는 등의 장점으로 인해 특히 주목 받고 있다.
연료전지는 연료와 산화제의 화학 반응 에너지를 전기 에너지로 변환시키는 발전 시스템으로서, 연료로는 수소와 메탄올, 부탄 등과 같은 탄화수소가, 산화제로는 산소가 대표적으로 사용된다.
연료전지에는 고분자 전해질형 연료전지(PEMFC), 직접메탄올형 연료전지(DMFC), 인산형 연료전지(PAFC), 알칼리형 연료전지(AFC), 용융탄산염형 연료전지(MCFC), 고체산화물형 연료전지(SOFC) 등이 있다. 그 중에서 고분자전해질형 연료전지는 에너지 밀도가 크고 출력이 높아 가장 활발하게 연구되고 있다. 이러한 고분자전해질형 연료전지는 전해질로서 액체가 아닌 고체 고분자 전해질막을 사용한다는 점에서 다른 연료전지와 차이가 있다.
본 발명은 신규한 술포네이트계 화합물 및 이의 제조방법을 제공한다.
또한, 본 발명은 고분자 전해질막 및 이를 포함하는 연료전지를 제공한다.
본 발명의 일 실시상태는 하기 화학식 1의 화합물을 제공한다.
화학식 1
Figure PCTKR2012010385-appb-C000001
상기 화학식 1에 있어서,
X, Y 및 R은 각각 독립적으로 수소, 지방족 탄화수소기, 방향족 탄화수소기, 헤테로고리기, 반응성기 또는 반응성기로 전환가능한 기이고, n은 1 내지 3의 정수이며, n이 2 이상인 경우 R들은 서로 같거나 상이할 수 있고, 이들은 함께 지방족 또는 방향족 단환 또는 다환 고리를 형성할 수 있으며,
L은 적어도 하나의 불소원자를 포함하는 연결기이고,
s는 1 내지 3의 정수이며, s가 2 이상인 경우 L은 동일하거나 상이하고,
M은 주기율표의 1족 원소이고,
t는 1 내지 3의 정수이며, t가 2 이상인 경우 괄호안의 치환기들은 서로 동일하거나 상이하고, n+t은 2 내지 4의 정수이다.
본 발명의 또 하나의 실시상태는
a) 하기 화학식 2의 화합물을 준비하는 단계;
화학식 2
Figure PCTKR2012010385-appb-C000002
상기 화학식 2에 있어서,
R'는 서로 같거나 상이하고, 각각 수소, 지방족 탄화수소기, 방향족 탄화수소기, 헤테로고리기, 반응성기 또는 반응성기로 전환가능한 기이고, m은 1 내지 5의 정수이며, m이 2 이상인 경우 R'들은 서로 같거나 상이할 수 있고, 이들은 함께 지방족 또는 방향족 단환 또는 다환 고리를 형성할 수 있으며,
A는 할로겐 기이고, v는 1 내지 3의 정수이며, v가 2 이상인 경우 A는 서로 동일하거나 상이하고,
m+v는 2 이상 6 이하의 정수이고,
b) 하기 화학식 3의 화합물을 준비하는 단계;
화학식 3
Figure PCTKR2012010385-appb-C000003
상기 화학식 3에 있어서,
L 및 M은 상기 화학식 1에서 정의한 바와 같고,
E는 할로겐 기이며,
c) 상기 화학식 2의 화합물 및 상기 화학식 3의 화합물을 반응시켜 상기 화학식 1의 화합물을 얻는 단계
를 포함하는 화학식 1의 화합물의 제조방법을 제공한다.
상기 화학식 1의 화합물의 제조방법은 d) R' 기 중 적어도 하나를 반응성기로 전환하는 단계를 추가로 포함할 수 있다.
본 발명의 또 하나의 실시상태는 또한 상기 화학식 1의 화합물을 포함하는 고분자 전해질막을 제공한다.
본 발명의 또 하나의 실시상태는 애노드 전극; 캐소드 전극; 및 애노드와 캐소드 사이에 구비되고, 상기 화학식 1의 화합물을 포함하는 고분자 전해질막을 포함하는 막 전극 접합체를 제공한다.
본 발명의 또 하나의 실시상태는
2 이상의 본 발명에 따른 막 전극 접합체와 막 전극 접합체들 사이에 구비된 세퍼레이터를 포함하는 스택;
연료를 스택으로 공급하는 연료공급부; 및
산화제를 스택으로 공급하는 산화제 공급부를 포함하는 연료전지를 제공한다.
본 발명에 따른 화합물은 신규한 것으로서, 다양한 소재 또는 그 원료 물질로서의 활용 가능성이 매우 크다. 예컨대, 본 발명에 따른 화합물은 고분자를 구성하는 단량체로 사용될 수도 있다.
또한, 본 명세서에 기재된 화학식 1의 화합물은 탄화수소계 고분자의 상분리를 보다 효율적으로 유발할 수 있는 단량체로서, 이는 연료전지 고분자 전해질막의 재료인 고분자를 제조하기 위하여 사용될 수도 있고, 연료전지 고분자 전해질막에 첨가제로서 포함될 수도 있다. 특히, 친수성과 소수성의 상분리가 중요한 전해질막의 기본 단량체로서 사용이 적합하다. 따라서, 상기 고분자 전해질막은 연료전지의 이온 교환막으로 이용될 수 있다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 연료전지용 막전극 접합체의 구조를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
이하에서 본 발명에 대하여 상세히 설명한다.
본 발명의 일 실시상태에 따른 화합물은 하기 화학식 1과 같은 구조를 갖는다.
[화학식 1]
Figure PCTKR2012010385-appb-I000001
상기 화학식 1에 있어서,
X, Y 및 R은 각각 독립적으로 수소, 지방족 탄화수소기, 방향족 탄화수소기, 헤테로고리기, 반응성기 또는 반응성기로 전환가능한 기이고, n은 1 내지 3의 정수이며, n이 2 이상인 경우 R들은 서로 같거나 상이할 수 있고, 이들은 함께 지방족 또는 방향족 단환 또는 다환 고리를 형성할 수 있으며,
L은 적어도 하나의 불소원자를 포함하는 연결기이고,
s는 1 내지 3의 정수이며, s가 2 이상인 경우 L은 서로 동일하거나 상이하고,
M은 주기율표의 1족 원소이고,
t는 1 내지 3의 정수이며 t가 2 이상인 경우 괄호안의 치환기들은 서로 동일하거나 상이하고, n+t는 2 내지 4의 정수이다.
상기 화학식 1에 있어서, SO3와 M의 결합은 이온결합이다. 상기 이온결합은 상기 화학식 1의 화합물의 합성 반응시에는 활성을 띄지 아니한다.
상기 X, Y 및 R의 정의에 있어서, 지방족 탄화수소기는 탄소수에 의하여 특별히 한정되지 않는다. 상기 지방족 탄화수소는 예컨대 탄소수 1 내지 20을 가질 수 있다. 상기 지방족 탄화수소는 직쇄, 분지쇄, 단환 또는 다환을 포함할 수 있다. 상기 지방족 탄화수소의 예로는 탄소수 1 내지 20의 직쇄 또는 분지쇄 알킬기, 탄소수 2 내지 20의 직쇄 또는 분지쇄 알콕시기, 탄소수 2 내지 20의 직쇄 또는 분지쇄 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 3 내지 20의 시클로알케닐기 등이 있다. 본 명세서에 있어서, 상기 화학식 1의 코어 구조인 벤젠 구조에 결합되는 치환기가 지방족 탄화수소라면 이것에 지방족 탄화수소 이외의 다른 치환기가 치환되거나 축합된 경우도 지방족 탄화수소의 범위에 포함되는 것으로 해석된다.
상기 X, Y 및 R의 정의에 있어서, 방향족 탄화수소기는 탄소수에 의하여 특별히 한정되지 않는다. 상기 방향족 탄화수소는 예컨대 탄소수 6 내지 40를 가질 수 있다. 상기 방향족 탄화수소는 단환 또는 다환을 포함할 수 있다. 상기 방향족 탄화수소의 예로는 페닐, 나프틸, 안트라세닐, 파이레닐 등일 수 있으며, 이들은 추가로 치환기를 가질 수 있다. 본 명세서에 있어서, 상기 화학식 1의 코어 구조인 벤젠 구조에 결합되는 치환기가 방향족 탄화수소라면 이것에 방향족 탄화수소 이외의 다른 치환기가 치환되거나 축합된 경우도 방향족 탄화수소의 범위에 포함되는 것으로 해석된다.
상기 X, Y 및 R의 정의에 있어서, 상기 헤테로고리기는 헤테로원자로서 O, S 및 N 중 적어도 하나를 포함하는 고리기이다. 상기 헤테로고리기는 지방족 고리기 또는 방향족 고리기이다. 상기 헤테로고리기는 탄소수에 의하여 특별히 한정되지 않는다. 상기 헤테로고리기는 예컨대 탄소수 2 내지 40를 가질 수 있다. 상기 헤테로고리기는 단환 또는 다환을 포함할 수 있다. 상기 헤테로고리기의 예로는 이미다졸, 티아졸, 피리딜, 피리미딜, 옥사졸 등이 있다. 본 명세서에 있어서, 상기 화학식 1의 코어 구조인 벤젠 구조에 결합되는 치환기가 헤테로고리기라면 이것에 헤테로고리기 이외의 다른 치환기가 치환되거나 축합된 경우도 헤테로고리기의 범위에 포함되는 것으로 해석된다.
상기 X, Y 및 R의 정의에 있어서, 상기 반응성기는 추가로 다른 화합물과 반응이 가능한 기이다. 구체적으로, 상기 반응성기는 당기술분야에 알려져 있는 반응 조건하에서 다른 화합물과 반응을 할 수 있는 기를 의미한다. 상기 반응성기의 종류로는 특별히 한정되지 않으며, 예컨대 -OH기, -SH, -NRaRb 등이 있다. 여기서, Ra 및 Rb는 각각 수소, 알킬, 알케닐, 알키닐, 알콕시, 아릴 등일 수 있다.
상기 X, Y 및 R의 정의에 있어서, 상기 반응성기로 전환가능한 기는 전술한 바와 같은 반응성기가 추가로 치환될 수 있거나 반응성기로 대체될 수 있는 기이다. 구체적으로, 상기 반응성기로 전환가능한 기는 당기술분야에 알려져 있는 반응조건하에서 다른 화합물과 반응을 할 수 있는 기로 치환되거나 대체될 수 있는 기를 의미한다. 상기 반응성기로 전환가능한 기의 종류로는 특별히 한정되지 않으며, 예컨대 아민기 등이 있다. 상기 아민기는 -NH2기 또는 알킬이나 아릴 등의 치환기를 갖는 아민기를 포함한다.
본 발명의 일 실시상태에 따르면, 상기 X, Y 및 R 중 적어도 X는 반응성기 또는 반응성기로 전환가능한 기이다.
본 발명의 일 실시상태에 따르면, 상기 X, Y 및 R 중 적어도 X 및 Y는 반응성기 또는 반응성기로 전환가능한 기이다.
본 발명의 일 실시상태에 따르면, X 및 Y가 반응성기 또는 반응성기로 전환가능한 기이고, 이들은 메타 또는 파라 위치에 위치한다.
본 발명의 일 실시상태에 따르면, X 및 Y가 반응성기 또는 반응성기로 전환가능한 기이고, 이들은 파라 위치에 위치한다.
X 및 Y가 파라 위치에 위치하는 경우 하기 화학식 4와 같이 표시될 수 있다.
화학식 4
Figure PCTKR2012010385-appb-C000004
상기 화학식 4에 있어서, X, Y, R, n, L, s, t 및 M은 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, X 및 Y가 반응성기이고, 이들은 파라 위치에 위치한다.
상기 L의 정의에 있어서, 적어도 하나의 불소원자를 포함하는 연결기는 벤젠고리와 술포네이트기(-SO3-)를 연결할 수 있는 2가기로서, 불소원자를 하나 이상 포함하는 기이다. L의 반복단위인 s는 1 일 수도 있으나, 2 또는 3일 수도 있다.
본 발명의 일 실시상태에 따르면, L은 적어도 하나의 불소로 치환된 알킬렌기를 포함한다.
본 발명의 일 실시상태에 따르면, L은 적어도 하나의 불소로 치환된 알킬렌기를 1개 또는 2개 이상 포함하고, 추가의 2가기를 더 포함할 수도 있다.
본 발명의 일 실시상태에 따르면, L은 적어도 하나의 불소로 치환된 탄소수 1 내지 10의 알킬렌기를 포함한다. 여기서, 상기 알킬렌기는 모두 불소로 포화될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 5로 표시된다.
화학식 5
Figure PCTKR2012010385-appb-C000005
상기 화학식 5에 있어서,
X, Y, R, n, t 및 M은 화학식 1에서 정의한 바와 같고,
R1 내지 R4 중 적어도 하나는 불소원자이고, R1 내지 R4 중 불소원자가 아닌 것은 수소, C1 내지 C6 알킬 또는 C1 내지 C6의 불소치환 알킬이며, p는 1 내지 10의 정수이며, r은 0 내지 10의 정수이고,
Z는 2가기이며, q는 0 또는 1이다.
R1 내지 R4 중 불소원자가 아닌 것은 예컨대 수소, -CH3, -CF3 등이 있다.
Z는 2가기로서, 그 종류는 특별히 한정되지 아니한다. 예컨대, Z는 -O- 또는 -S-일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5에 있어서, p는 1 내지 5의 정수이고, q는 0 또는 1이며, r은 0 내지 5의 정수이다.
본 발명의 또 하나의 실시상태에 따르면, 상기 화학식 5에 있어서, R1 내지 R4는 모두 불소일 수 있다.
상기 M은 주기율표 상의 1족 원소이다. M의 예로는 칼륨(K), 나트륨(Na), 수소(H) 등이 있다.
본 발명의 일 실시상태에 따르면, 상기 M은 칼륨(K) 또는 나트륨(Na)이다. 본 발명의 일 실시상태에 있어서, X 및 Y가 반응성기이고, M이 칼륨(K) 또는 나트륨(Na)인 경우, M은 SO3 -와의 이온결합으로 SO3 -의 반응성을 낮추어 본 발명에 따른 화학식 1의 화합물 중 X와 Y만을 통한 반응이 진행되도록 할 수 있다. 이 경우, 필요에 따라 추후 후처리 공정을 통하여 M을 H로 이온 교환할 수 있다.
상기
Figure PCTKR2012010385-appb-I000002
기는 상기 X에 대하여 오르토, 메타 또는 파라 위치에 위치할 수 있다. 본 발명의 일 실시상태에 따르면, 상기
Figure PCTKR2012010385-appb-I000003
기는 상기 X에 대하여 오르토 위치에 위치할 수 있다. 예컨대, X 및 Y가 서로 파라 위치에 위치하고, 상기
Figure PCTKR2012010385-appb-I000004
이 X에 대하여 오르토 위치에 위치하는 경우 상기 화학식 1은 하기 화학식 6과 같이 표시될 수 있다.
화학식 6
Figure PCTKR2012010385-appb-C000006
상기 화학식 6에 있어서, X, Y, R, n, L, s, t 및 M은 화학식 1에서 정의한 바와 같다.
본 발명의 또 하나의 실시상태는 상기 화학식 1의 화합물의 제조방법을 제공한다. 상기 화학식 1의 화합물의 제조방법은 하기 a) 내지 c) 단계를 포함한다.
a) 하기 화학식 2의 화합물을 준비하는 단계;
[화학식 2]
Figure PCTKR2012010385-appb-I000005
상기 화학식 2에 있어서,
R'는 서로 같거나 상이하고, 각각 수소, 지방족 탄화수소기, 방향족 탄화수소기, 헤테로고리기, 반응성기 또는 반응성기로 전환가능한 기이고, m은 1 내지 5의 정수이며, m이 2 이상인 경우 R'들은 서로 같거나 상이할 수 있고, 이들은 함께 지방족 또는 방향족 단환 또는 다환 고리를 형성할 수 있으며,
A는 할로겐 기이고, v는 1 내지 3의 정수이며, v가 2 이상인 경우 A는 서로 동일하거나 상이하고,
m+v는 2 이상 6 이하의 정수이고,
b) 하기 화학식 3의 화합물을 준비하는 단계;
[화학식 3]
Figure PCTKR2012010385-appb-I000006
상기 화학식 3에 있어서,
L 및 M은 상기 화학식 1에서 정의한 바와 같고,
E는 할로겐 기이며, 및
c) 상기 화학식 2의 화합물 및 상기 화학식 3의 화합물을 반응시켜 상기 화학식 1의 화합물을 얻는 단계.
상기 R'는 상기 화학식 1의 X, Y 또는 R과 동일할 수도 있으나, X, Y 또는 R로 전환가능한 기일 수도 있다. 여기서, '전환가능한 기'는 당기술분야에 알려져 있는 반응조건하에서 X, Y 또는 R로 전환될 수 있는 기를 의미한다. 상기 R'는 상기 a), b) 및 c) 단계의 반응 조건하에서 반응하지 않는 기인 것이 바람직하다.
본 발명의 일 실시상태에 있어서, 상기 R' 중 적어도 하나는 반응성기로 전환가능한 기일 수 있다. 이 때, 상기 화학식 1의 화합물의 제조방법은 c) 단계 이후에 d) 상기 R' 기 중 적어도 하나를 반응성기로 전환하는 단계를 추가로 포함할 수 있다. 예컨대, 상기 R' 기는 -OAc기이고, 상기 d) 단계에 의하여 -OH기로 전환될 수 있다.
본 발명의 일 실시상태에 따른 화학식 1의 화합물의 제조방법은 상기 b) 단계 이전에 하기 화학식 7의 화합물을 이용하여 상기 화학식 3의 화합물을 제조하는 단계를 추가로 포함할 수 있다.
화학식 7
Figure PCTKR2012010385-appb-C000007
상기 화학식 7에 있어서,
L 및 M은 상기 화학식 1에서 정의한 바와 같고,
E 및 G는 각각 할로겐 기이다.
상기 A, E 및 G의 정의에 있어서, 할로겐 기로는 불소, 염소, 브롬, 요오드 등이 사용될 수 있다. 이하, 화합물의 제조예에서는 A는 브롬, E는 요오드, G는 불소로 치환된 화합물을 사용하였으나, 이에 한정되는 것은 아니다. A, E 및 G의 종류는 반응순서나 반응조건에 따라 달라질 수 있다. 예컨대, 상기 화학식 7을 먼저 -SO3M를 포함하는 화학식 3으로 전환하는 경우, E가 요오드인 화합물 및 A가 브롬 또는 요오드인 화합물을 사용할 수 있다. 다만, 상기 E 및 G는 서로 다른 반응 조건하에서 반응할 수 있도록, 서로 상이한 할로겐 기일 수 있다. 그러나, 이에 한정되는 것은 아니며 반응순서나 반응 조건에 따라 조정될 수 있다.
이하에서, 구체적인 화합물을 기초로 상기 화학식 1의 화합물의 제조방법을 예시한다. 당 기술분야의 기술자는, 후술하는 예시를 기초로, 출발물질의 치환기의 종류나 치환기의 위치를 변경함으로써, 상기 화학식 1의 범위 내의 화합물들을 제조할 수 있다. 또한, 후술하는 반응 조건들은 출발물질이나 중간물질의 종류에 따라 조절될 수 있다.
구체적인 예로서, 상기 화학식 1의 화합물은 하기와 같이 5단계를 포함하는 방법으로 제조될 수 있다.
<제1 단계>
Figure PCTKR2012010385-appb-I000007
상기 제1 단계에서는 1,4-벤조퀴논을 ZnBr2, Ac2O의 존재하에 100℃에서 3시간 동안 반응시켰다. 화합물의 치환기의 종류에 따라 반응시간이나 반응온도 등의 반응 조건을 조절할 수 있다. 본 예시에서는 출발물질로서 1,4-벤조퀴논을 사용하였으나, 벤조퀴논 중의 케톤의 위치가 상이한 물질을 사용하거나, 제1 단계에서 얻어지는 화합물의 브롬의 치환 위치를 제어함으로써 치환기의 위치를 변경할 수 있다. 또한, 출발물질에 치환된 치환기 또는 반응 도중 사용된 물질, 예컨대 ZnBr2, Ac2O를 다른 물질로 대체함으로써 치환기의 종류를 변경할 수 있다. 여기서, 84%는 전환율 또는 수율을 의미한다.
<제 2 단계>
Figure PCTKR2012010385-appb-I000008
상기 제2 단계는 상기 제1 단계와의 관계에서 순서와 상관없이 진행될 수 있다. 상기 제2 단계에서는 연결기 L인 -(CF2)2-O-(CF2)2-기 및 -SO2-기를 포함하는 화합물의 양끝에 각각 요오드기와 불소기가 결합된 출발물질을 이용하였다. 먼저, 상기 출발물질을 DCM(dichloromethane), H2O, 2,6-루티딘 및 Bu4N+F-(1M)의 존재하에 실온에서 4일간 반응시켰다. 이어서, THF(tetrahydrofuran), K2CO3의 존재하에 실온에서 10시간 반응시켰다. 화합물의 치환기의 종류에 따라 반응시간이나 반응온도 등의 반응 조건을 조절할 수 있다.
본 예시에서는 연결기 L로서 -(CF2)2-O-(CF2)2-기를 갖는 출발물질을 사용하였으나, 출발물질에서의 연결기 L의 종류를 변경함으로써, 다른 종류의 연결기 L을 갖는 화합물을 제조할 수 있다. 또한, 출발 물질은 양 끝에 각각 요오드(I)기 및 불소(F)기가 결합된 화합물을 사용하였으나, 이는 반응 조건에 따라 다른 할로겐 기로 대체될 수 있다. 다만, 출발 물질의 양 끝의 할로겐 기는 상이한 조건에서 반응할 수 있도록 서로 상이한 것이 바람직하다. 여기서, 78%는 전환율 또는 수율을 의미한다.
<제3 단계>
Figure PCTKR2012010385-appb-I000009
상기 제3 단계에서는, 상기 제1 단계에서 얻은 반응 생성물과 상기 제2 단계에서 얻은 반응 생성물을 DMSO(dimethyl sulfoxide) 및 Cu의 존재 하에, Ar 분위기 하에서 110℃에서 62시간 반응시켰다. 화합물의 치환기의 종류에 따라 반응시간이나 반응온도 등의 반응 조건을 조절할 수 있다. 여기서, 27%는 전환율 또는 수율을 의미한다.
<제4 단계 및 제5 단계>
Figure PCTKR2012010385-appb-I000010
상기 제4 단계에서는 4N(normal concentration, 4 몰 농도)의 HCl를 첨가하고 50℃에서 2시간 반응시켰다. 이어서, 제5 단계에서는 10 중량% KHCO3 수용액을를 첨가하고, 실온에서 반응시켜, 반응기로서 -OH기를 갖는 화합물을 제조하였다. 화합물의 치환기의 종류에 따라 반응시간이나 반응온도 등의 반응 조건을 조절할 수 있다. 본 예시에서는 반응기로서 -OH기를 갖는 화합물을 제조하였으나, 출발물질의 치환기의 종류 또는 반응 도중 첨가된 물질을 변경함으로써, 최종 얻어진 화합물의 치환기를 조절할 수 있다. 여기서, 83%는 전환율 또는 수율을 의미한다.
본 발명에 따른 화합물은 다양한 소재의 재료 자체로 사용될 수도 있으며, 다른 소재를 제조하기 위한 원료 물질로 사용될 수 있다.
본 발명의 또 하나의 실시상태는 상기 화학식 1의 화합물을 포함하는 고분자 전해질막을 제공한다.
연료전지용 전해질막 중 기존의 불소계 전해질막은 가격이 비싸서 상대적으로 저렴한 탄화수소계 전해질막 개발이 시도되고 있다. 전해질막은 친수성과 소수성의 상분리가 중요하기 때문에 블록 고분자가 사용될 수 있으나, 탄화수소계 블록 고분자에 있어서, 주사슬과 술폰기 사이의 거리가 가까운 경우 상분리가 어렵다. 그러나, 상기 화학식 1의 화합물은 방향족기인 페닐기와 술폰기 사이에 불소를 포함하는 연결기, 특히 불소를 포함하는 지방족기가 존재하기 때문에 향상된 상분리성을 갖는 전해질막을 제공할 수 있다.
상기 화학식 1의 화합물은 전해질막을 구성하는 고분자 내에 중합된 단량체로서 포함되거나, 첨가제로서 포함될 수 있다.
상기 화학식 1의 화합물이 고분자 내에 중합된 단량체인 경우, 상기 화학식 1의 화합물을 포함하는 고분자는 화학식 1의 화합물의 호모 중합체일 수도 있고, 그외 추가의 공단량체를 포함할 수도 있다. 추가의 공단량체로는 당기술분야에 알려져 있는 것들이 사용될 수 있다. 이 때, 공단량체는 1종류 또는 2종류 이상이 사용될 수 있다.
상기 공단량체의 예로는 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰, 이들의 산 또는 이들의 염기를 구성하는 단량체가 사용될 수 있다.
상기 고분자는 상기 화학식 1의 화합물 이외에, 다른 술포네이트계 화합물을 더 포함할 수 있다.
구체적인 예로서, 상기 고분자는 상기 화학식 1의 화합물과 함께, 4,4'-디플루오로벤조페논(4,4'-difluorobenzophenone) 및 3,5-비스(4-플루오로벤조일)페닐(4-플루오로페닐)메타논 (3,5-bis(4-fluorobenzoyl)phenyl(4-fluorophenyl)methanone)이 중합된 고분자일 수 있다. 여기에, 하이드로퀴논 술폰산 칼륨염과 같은 술포네이트계 화합물이 추가로 포함될 수 있다.
또 하나의 예로서, 상기 고분자는 상기 화학식 1의 화합물과 함께, 4,4'-디플루오로벤조페논(4,4'-difluorobenzophenone) 및 3,5-비스(4-플루오로벤조일)페닐(4-플루오로페닐)메타논 (3,5-bis(4-fluorobenzoyl)phenyl(4-fluorophenyl)methanone)이 중합된 하이드로필릭 올리고머에, 다시 4,4'-디플루오로벤조페논(4,4'-Difluorobenzophenone), 9,9-비스(히드록시페닐)플루오린(9,9-bis(hydroxyphenyl)fluorine) 및 3,5-비스(4-플루오로벤조일)페닐(4-플루오로페닐)-메타논(3,5-bis(4-fluorobenzoyl)phenyl(4-fluorophenyl)-methanone)을 넣고 반응시켜 얻은 멀티 블록 공중합체일 수 있다.
상기 고분자가 상기 화학식 1의 화합물 이외에 추가의 공단량체를 사용하는 경우, 예컨대 상기 고분자 중 상기 추가의 공단량체의 함량은 0 중량% 초과 95 중량% 이하일 수 있다.
고분자 내의 상기 화학식 1의 화합물과 추가의 공단량체의 함량은 적용하고자 하는 연료전지용 전해질 막에 요구되는 적정한 IEC (ion exchange capacity) 값에 따라 조절될 수 있다. 연료전지용 분리막 제조를 위한 고분자 합성의 경우, IEC (ion exchange capacity) meq./g = mmol/g의 값을 계산하여 고분자를 디자인 할 수 있다. 필요에 따라 다르지만, 0.5 ≤ IEC ≤ 3 의 범위 내가 되도록 고분자 내의 단량체 함량을 선택할 수 있다. 상기 화학식 1의 화합물은 동일한 이온전도도 수치를 나타내면서 낮은 IEC 값을 갖는 전해질막을 디자인하는데 사용될 수 있다.
상기 화학식 1의 화합물을 포함하는 고분자는 중량평균분자량이 수만에서 수백만일 수 있다. 구체적으로, 상기 고분자의 중량편균분자량은 10만에서 100만 내에서 선택될 수 있다.
상기 화학식 1의 화합물을 포함하는 고분자는 블록 공중합체인 것이 바람직하다. 상기 화학식 1의 화합물을 포함하는 고분자는 예컨대 할로겐 원소를 포함하는 단량체를 사용하여 상기 단량체의 OH기와 할로겐 원소, 예컨대 F 또는 Cl이 반응하여 HF 또는 HCl이 빠져나오면서 결합하게 되는 축중합 방법으로 합성될 수 있다.
상기 화학식 1의 화합물을 포함하는 고분자를 이용하여 고분자 전해질막을 제조하는 경우, 상기 고분자에 용매를 가하여 고분자 용액을 만든 후, 용매 캐스팅 방법을 이용하여 제막함으로써 고분자 전해질막을 제조할 수 있다. 필요에 따라, 산처리를 하여 SO3M 기를 SO3H기로 전환시킬 수 있다.
상기 화학식 1의 화합물이 고분자 전해질막에 첨가제로서 첨가되는 경우, 전해질막 내의 함량 범위는 특별히 한정되지 않으나, 예컨대 0 초과 95 중량%일 수 있다.
상기 화학식 1의 화합물이 고분자 전해질막에 첨가제로서 첨가되는 경우, 상기 고분자 전해질막은 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰, 이들의 산 또는 이들의 염기 중 1 이상의 고분자를 추가로 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온전도도 및 IEC(ion exchange capacity)가 최종 적용되는 연료전지의 용도에 따라, 또한 고분자 전해질막에 첨가되는 재료, 예컨대 고분자에 포함되는 단량체 또는 첨가제의 종류에 따라 적절한 값으로 설계될 수 있다. 예컨대, 연료전지에 적용시, 0.5 ≤ IEC ≤ 3, 0.5 ≤ IEC ≤ 2.5로 설계될 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니며, 필요에 따라 적절한 값으로 선택될 수 있다. 본 발명에 따른 고분자 전해질막은 종래의 것과 동등 또는 우수한 이온전도도 수치를 나타내면서, 낮은 IEC 값을 가질 수 있다.
본 발명에 따른 고분자 전해질막은 상기 화학식 1의 화합물을 포함하는 것을 제외하고는 당기술분야의 재료 또는 방법이 이용되어 제조될 수 있다.
예컨대, 상기 고분자 전해질막은 두께가 수 마이크론에서 수백 마이크론으로 제작될 수 있다.
본 발명은 애노드 전극; 캐소드 전극; 및 애노드와 캐소드 사이에 구비되고, 상기 화학식 1의 화합물을 포함하는 고분자 전해질막을 포함하는 막 전극 접합체를 제공한다.
애노드 전극은 애노드 촉매층과 애노드 기체확산층을 포함할 수 있다. 애노드 기체확산층은 다시 애노드 미세 기공층과 애노드 전극 기재를 포함할 수 있다.
캐소드 전극은 캐소드 촉매층과 캐소드 기체확산층을 포함할 수 있다. 캐소드 기체확산층은 다시 캐소드 미세 기공층과 캐소드 전극 기재를 포함할 수 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(M)과 이 전해질막(M)의 양면에 형성되는 애노드(A) 및 캐소드(C) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(A) 전극에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료(F)의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(M)을 통해 캐소드(C) 전극으로 이동한다. 캐소드(C) 전극에서는 전해질막(M)을 통해 전달된 수소 이온과, 산소와 같은 산화제(O)및 전자가 반응하여 물(W)이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 도시한 것으로, 연료전지용 막 전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 애노드 전극 및 캐소드 전극을 구비한다.
애노드 전극은 애노드 촉매층(20)과 애노드 기체확산층(50)으로 구성되고, 애노드 기체확산층(50)은 다시 애노드 미세 기공층(30)과 애노드 전극 기재(40)로 구성된다. 여기서, 애노드 기체확산층은 애노드 촉매층과 전해질막 사이에 구비된다.
캐소드 전극은 캐소드 촉매층(21)과 캐소드 기체확산층(51)으로 구성되고, 캐소드 기체확산층(51)은 다시 캐소드 미세 기공층(31)과 캐소드 전극 기재(41)로 구성된다. 여기서, 캐소드 기체확산층은 캐소드 촉매층과 전해질막 사이에 구비된다.
상기 애노드 전극의 촉매층은 연료의 산화 반응이 일어나는 곳으로, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다. 상기 캐소드 전극의 촉매층은 산화제의 환원 반응이 일어나는 곳으로, 백금 또는 백금-전이금속 합금이 촉매로 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
촉매층을 도입하는 과정은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 전해질막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(Carbon paper), 탄소 천(Carbon cloth) 또는 탄소 펠트(Carbon felt)가 바람직하게 사용될 수 있다. 상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게 하여 전해질막이 충분한 습윤 상태에 있도록 하는 역할을 한다.
본 발명의 또 하나의 실시상태는
2 이상의 본 발명에 따른 막 전극 접합체와 막 전극 접합체들 사이에 구비된 세퍼레이터를 포함하는 스택;
연료를 스택으로 공급하는 연료공급부; 및
산화제를 스택으로 공급하는 산화제 공급부를 포함하는 연료전지를 제공한다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
본 발명에 따른 화합물은 다양한 소재의 재료 자체로 사용될 수도 있으며, 다른 소재를 제조하기 위한 원료 물질로 사용될 수 있다.
이하에서, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명을 한정하기 위한 것은 아니다.
제조예
1,1,2,2-테트라플루오로-(1,1,2,2-테트라플루오로-(2,5-디히드록시페닐)에톡시)에탄 술포네이트 칼륨 (1,1,2,2-tetrafluro-(1,1,2,2-tetrafluro-(2,5-dihydroxyphenyl)ethoxy)ethanesulfonate of potassium)의 합성 방법 (다른 명칭 5-(2,5-디히드록시페닐)옥타플루오로-3-옥사펜탄술포네이트 칼륨 (5-(2,5-dihydroxyphenyl)octafluro-3-oxapentanesulfonate of potassium))
1. 2-브로모하이드로퀴논 디아세테이트 (2-bromohydroquinone diacetate) [1] (화합물 I)
1,4-벤조퀴논 (0.052 mol, 5.65 g)을 15 ml의 무수 아세트산 중의 무수 아연브롬화물(0.065 mol, 14.7 g) 의 현탁액(suspension)에 교반하면서 첨가하였다. 상기 혼합물을 100℃에서 3시간 유지한 후, 실온으로 냉각시키고 40 ml의 물에 부었다. 침전물을 여과하고, 물(20 ml, 3 회)로 세척하고, 물-에탄올 혼합물(50% of ethanol)로부터 재결정화하였다. 생성물 수율은 84%이었다. 녹는점은 76℃ 내지 77℃이었다. 1H NMR (300 MHz, DMSO-d6),δ: 2.27 (s, 3H); 2.33 (s, 3H); 7.23 (dd, J = 2.4, 8.7, 1H); 7.34 (d, J = 8.7, 1H); 7,59 (d, J = 2.4, 1H).
2. 1,1,2,2-테트라플루오로-2-(1,1,2,2-테트라플루오로-2-아이오딘에톡시) 에탄술포네이트 칼륨 (1,1,2,2-Tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodineethoxy)ethanesulfonate of potassium) [2] (화합물 II)
40 g의 메틸렌 클로라이드 중의 1,1,2,2-테트라플루오로-2-(1,1,2,2-테트라플루오로-2-아이오딘에톡시) 에탄술포플루오라이드(0.268 mol, 114 g) 용액에, 38 ml의 물, 2,6-루티딘(2,6-lutidine) (0.34 mol, 40ml) 및 THF 중의 테트라부틸암모늄 플루오라이드 1M 용액 0.8 ml를 첨가하였다. 반응 혼합물을 실온에서 4일간 교반한 후, 메틸렌 클로라이드(200 ml, 3 회)에 의한 추출을 수행하였다. 추출물을 Na2SO4 에서 건조하고, 80 ml의 THF에 녹였다. 칼륨 카보네이트 (0.155 mol, 21.4 g)를 상기에서 얻어진 용액에 첨가한 후, 혼합물을 실온에서 10 시간 교반하였다. 과량의 칼륨 카보네이트를 여과에 의하여 제거한 후, 용매를 감압하에서 증발시켰다. 얻어진 고체 화합물을 THF:톨루엔 1:1 혼합물로부터 재결정하였다. 생성물의 수율은 96.2g(78%)이었다.
3. 1,1,2,2-테트라플루오로-2-(1,1,2,2-테트라플루오로-(2,5-디아세톡시페닐) 에톡시)에탄술포네이트 칼륨 (화합물 III).
막 준비된 구리 파우더 (0.71 mol, 45.5 g)를 반응 플라스크에 놓고, 아르곤 내에서 150℃까지 가열하고, 이러한 조건 하에서 5분간 유지한 후 실온으로 냉각하였다. 이어서, 화합물 I (0.143 mol, 39 g), 화합물 II (0.171 mol, 79 g) 및 130 ml의 디메틸술폭사이드(dimethylsulphoxide, DMSO)를 불활성 분위기하에서 첨가하였다. 플라스크를 밀봉한 후, 반응 혼합물을 아르곤 분위기하에서 110℃에서 62시간 교반하였다. 혼합물을 실온까지 냉각하고, 200 ml의 이소프로필 알코올에 용해하고 제올라이트를 이용하여 과량의 촉매와 무기물을 제거하였다. 이소프로필 알코올을 회전 증발기를 이용하여 제거하였다. 300 ml의 에틸아세테이트를 남아있는 화합물에 첨가하여, 유기층을 염화칼륨의 포화 용액으로 세척한 후, Na2SO4 상에서 건조하였다. 남아있는 용매를 더 감압하여 제거하였다. 얻어진 오일을 톨루엔으로 처리하고, 디에틸에테르를 이용하여 경사법(decantation)을 적용하여 여분의 불순물을 추가로 제거하였다. 생성된 밝은 베이지색(light beige) 물질을 필터 상에서 추가량의 에스테르로 세척하였다. 생성물 수율은 19 g(27 %)이었다. 녹는점은 170℃ - 173℃이었다. . 1H NMR (300 MHz, DMSO-d6),δ: 2.27 (s, 3H); 2.29 (s, 3H); 7.42 (dd, J = 2.4, 8.7, 1H); 7.50 (d, J = 8.7, 1H); 7,52 (d, J = 8.7, 1H). [M-K]- : calculated - 488.9885; experimental value - 488.9863.
4. 1,1,2,2-테트라플루오로-2-(1,1,2,2-테트라플루오로-(2,5-디히드록시 페닐)에톡시)에탄술폰산 (1,1,2,2-tetrafluro-2-(1,1,2,2-tetrafluro-(2,5-dihydroxyphenyl)ethoxy)ethanesulphonic acid) (화합물 IV).
화합물 III (0.025 mol, 13 g)를 650 ml의 아세톤에 용해시켰다. 650 ml의 4N HCl 용액을 상기 용액에 첨가한 후, 이어서 혼합물을 50℃에서 2시간 교반하였다. 회전 증발기를 이용하여 2회 첨가된 물로 용매를 제거하여, 아세트산의 완전한 제거를 확보하였다. 생성된 생성물은 9.1g의 오일 (90%)이었다. 1H NMR (300 MHz, DMSO-d6), δ: 6,75 (narrow d, 1H); 6,82 (m,H); 9,46 (broad. s,1H).
5. 1,1,2,2-테트라플루오로-2-(1,1,2,2-테트라플루오로-(2,5-디히드록시페닐) 에톡시)에탄술포네이트 칼륨염 (1,1,2,2-tetrafluro-2-(1,1,2,2-tetrafluro-(2,5-dihydroxyphenyl)ethoxy)ethanesulphonate of potassium) (화합물 V).
물 중의 칼륨 하이드로카보네이트 (22.5ml의 10% 용액)를 첨가하였다. 혼합물을 실온에서 20 분간 유지한 후, 용매를 낮은 압력하에서 증발시켰다. 증발 도중 50 ml의 아세톤을 3회 첨가하여 물이 완전히 제거되도록 하였다. 얻어진 생성물은 오일이었으며, 1 mm Hg에서 2시간 건조 후 고형화되었다. 수율 - 9.16 g (92%). 1H NMR (300 MHz, DMSO-d6), δ: 6,75 (narrow d, 1H); 6,82 (m,H); 9,13 (s,1H); 9,46 (s,1H). [M-K]- : calculated - 404.9567; experimental value - 404.9545.
실험예
1. 고분자 합성
딘-스탁 트랩(Dean-Stark trap)과 콘덴서가 장착된 둥근 바닥 플라스크에 상기 제조예에서 제조된 화합물(57.96g), 4,4'-디플루오로벤조페논(4,4'-difluorobenzophenone)(23.40g)과 3,5-비스(4-플루오로벤조일)페닐(4-플루오로페닐)메타논 (3,5-bis(4-fluorobenzoyl)phenyl(4-fluorophenyl)methanone)(0.98g)을 넣고 DMSO(dimethyl sulfoxide) 150 mL와 벤젠(benzene) 200 mL 및 K2CO3 29.03g을 촉매로 사용하여 질소 분위기 내에서 준비하였다(하이드로필릭 올리고머 합성).
상기 반응 혼합물들을 140℃의 온도로 오일 바스(oil bath)에서 4 시간 동안 교반하여 벤젠이 역류하면서 딘-스탁 장치의 분자체(molecular sieves)에 공비혼합물을 흡착시켜 제거한 후, 반응온도를 180℃로 승온시키고 20 시간 동안 축중합 반응시켰다. 상기 반응 종료 후, 상기 반응물의 온도를 60℃로 감온시킨 후, 동일 플라스크에 4,4'-디플루오로벤조페논(4,4'-Difluorobenzophenone)(5.49g), 9,9-비스(히드록시페닐)플루오린(9,9-bis(hydroxyphenyl)fluorine)(11.04g) 및 3,5-비스(4-플루오로벤조일)페닐(4-플루오로페닐)-메타논(3,5-bis(4-fluorobenzoyl)phenyl(4-fluorophenyl)-methanone)(0.24g)을 넣고, DMSO 100 mL와 벤젠 200mL을 이용하여 질소 분위기에서 K2CO3(8.71g)를 촉매로 사용하여 반응을 다시 개시하였다.
상기 반응 혼합물을 다시 140℃의 온도로 오일 바스(oil bath)에서 4 시간 동안 교반하여 벤젠이 역류하면서 딘-스탁 장치의 분자체(molecular sieves)에 공비혼합물을 흡착시켜 제거한 후, 반응 온도를 180℃로 승온시키고, 20 시간 동안 축중합 반응시켰다. 그 후, 반응물의 온도를 실온으로 감온시키고 DMSO를 더 가하여 생성물을 희석시킨 후, 희석된 생성물을 과량의 메탄올에 부어 용매로부터 공중합체를 분리하였다.
그 후, 물을 이용하여 과량의 칼륨탄산염(potassium carbonate)를 제거한 뒤, 여과하여 얻은 공중합체를 80℃의 진공 오븐에서 12 시간 이상 건조하여 소수 블록과 친수 블록이 교대로 화학결합으로 이어진 브랜치된 술폰화 멀티 블록 공중합체를 제조하였다.
2. 필름 캐스팅(Film casting)
상기에서 합성된 멀티블록 공중합체를 DMSO(dimethyl sulfoxide)를 용매로 5~10 wt%의 고분자 용액을 제조하고, 준비된 고분자 용액을 이용하여 40℃로 설정된 세정 벤치(clean bench) 내 applicator의 수평판 위에서 닥터 블레이드를 이용하여 기판에 고분자 필름을 캐스팅한 뒤, 2시간 유지 후(soft baking), 100℃로 설정된 오븐 안에 집어넣고 하루 동안 건조하여 친수성 탄소계 물질이 첨가된 고분자 전해질막을 제조하였다.
상기와 같이 제조된 고분자 전해질막의 IEC 값은 1.2~1.6이었고, 수소이온전도도는 상온(2.5E-02), 40℃(3.1E-02), 60℃(4.2E-02), 80℃(5.2E-02), 100℃(6.8E-02)이었다. 요컨대, 상기에서 제조된 고분자 전해질막은 IEC 값이 낮고 수소이온전도도는 높아서 우수한 연료전지용 고분자 전해질막으로 사용될 수 있다. 이와 같은 고분자 전해질막을 연료전지에 적용하는 경우, 연료전지의 성능은 크게 향상될 수 있다.
[부호의 설명]
10: 전해질막
20, 21: 촉매층
30, 31: 미세 기공층
40, 41: 전극 기재
50, 51: 기체확산층
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프

Claims (20)

  1. 하기 화학식 1의 화합물:
    [화학식 1]
    Figure PCTKR2012010385-appb-I000011
    상기 화학식 1에 있어서,
    X, Y 및 R은 각각 독립적으로 수소, 지방족 탄화수소기, 방향족 탄화수소기, 헤테로고리기, 반응성기 또는 반응성기로 전환가능한 기이고, n은 1 내지 3의 정수이며, n이 2 이상인 경우 R들은 서로 같거나 상이할 수 있고, 이들은 함께 지방족 또는 방향족 단환 또는 다환 고리를 형성할 수 있으며,
    L은 적어도 하나의 불소원자를 포함하는 연결기이고,
    s는 1 내지 3의 정수이며 s가 2 이상인 경우 L은 서로 동일하거나 상이하고,
    M은 주기율표의 1족 원소이고,
    t는 1 내지 3의 정수이며 t가 2 이상인 경우 괄호안의 치환기들은 서로 동일하거나 상이하고, n+t은 2 내지 4의 정수이다.
  2. 청구항 1에 있어서, 상기 X, Y 및 R 중 적어도 X 및 Y는 반응성기 또는 반응성기로 전환가능한 기인 것인 화합물.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 4로 표시되는 것인 화합물:
    [화학식 4]
    Figure PCTKR2012010385-appb-I000012
    상기 화학식 4에 있어서, X, Y, R, n, L, s, t 및 M은 화학식 1에서 정의한 바와 같다.
  4. 청구항 1에 있어서, 상기 반응성기는 -OH기, -SH 또는 -NRaRb 이고, 여기서 Ra 및 Rb는 각각 수소, 알킬, 알케닐, 알키닐, 알콕시 또는 아릴인 것인 화합물.
  5. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 5로 표시되는 것인 화합물:
    [화학식 5]
    Figure PCTKR2012010385-appb-I000013
    상기 화학식 5에 있어서,
    X, Y, R, n, t 및 M은 화학식 1에서 정의한 바와 같고,
    R1 내지 R4 중 적어도 하나는 불소원자이고, R1 내지 R4 중 불소원자가 아닌 것은 수소, C1 내지 C6 알킬 또는 C1 내지 C6의 불소치환 알킬이며, p는 1 내지 10의 정수이며, r은 0 내지 10의 정수이고,
    Z는 2가기이며, q는 0 또는 1이다.
  6. 청구항 5에 있어서, p는 1 내지 5의 정수이고, q는 0 내지 5의 정수인 것인 화합물.
  7. 청구항 5에 있어서, R1 내지 R4는 모두 불소인 화합물.
  8. 청구항 5에 있어서, M은 칼륨(K), 나트륨(Na) 또는 수소(H)인 것인 화합물.
  9. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 6으로 표시되는 것인 화합물:
    [화학식 6]
    Figure PCTKR2012010385-appb-I000014
    상기 화학식 6에 있어서, X, Y, R, n, L, s, t 및 M은 화학식 1에서 정의한 바와 같다.
  10. a) 하기 화학식 2의 화합물을 준비하는 단계;
    [화학식 2]
    Figure PCTKR2012010385-appb-I000015
    상기 화학식 2에 있어서,
    R'는 서로 같거나 상이하고, 각각 수소, 지방족 탄화수소기, 방향족 탄화수소기, 헤테로고리기, 반응성기 또는 반응성기로 전환가능한 기이고, m은 1 내지 5의 정수이며, m이 2 이상인 경우 R'들은 서로 같거나 상이할 수 있고, 이들은 함께 지방족 또는 방향족 단환 또는 다환 고리를 형성할 수 있으며,
    A는 할로겐 기이고, v는 1 내지 3의 정수이며 v가 2 이상인 경우 A는 서로 동일하거나 상이하고,
    m+v는 2 이상 6 이하의 정수이고,
    b) 하기 화학식 3의 화합물을 준비하는 단계;
    [화학식 3]
    Figure PCTKR2012010385-appb-I000016
    상기 화학식 3에 있어서,
    L 및 M은 상기 화학식 1에서 정의한 바와 같고,
    E는 할로겐 기이며,
    c) 상기 화학식 2의 화합물 및 상기 화학식 3의 화합물을 반응시켜 상기 화학식 1의 화합물을 얻는 단계
    를 포함하는 청구항 1 내지 9 중 어느 하나의 방법에 따른 화합물의 제조방법.
  11. 청구항 10에 있어서, 상기 R'는 각각 화학식 1의 X, Y 또는 R과 동일하거나, X, Y 또는 R로 전환가능한 기인 것인 화합물의 제조방법.
  12. 청구항 10에 있어서, 상기 R'는 상기 a), b) 및 c) 단계의 반응 조건하에서 반응하지 않는 기인 것인 화합물의 제조방법.
  13. 청구항 10에 있어서, 상기 b) 단계 이전에 하기 화학식 7의 화합물을 이용하여 상기 화학식 3의 화합물을 제조하는 단계를 추가로 포함하는 화합물의 제조방법:
    [화학식 7]
    Figure PCTKR2012010385-appb-I000017
    상기 화학식 7에 있어서,
    L 및 M은 상기 화학식 1에서 정의한 바와 같고,
    E 및 G는 각각 할로겐 기이다.
  14. 청구항 10에 있어서, 상기 R' 중 적어도 하나는 반응성기로 전환가능한 기이고, 상기 c) 단계 이후에 d) R' 기 중 적어도 하나를 반응성기로 전환하는 단계를 추가로 포함하는 화합물의 제조방법.
  15. 청구항 1 내지 9 중 어느 하나의 항에 따른 화합물을 포함하는 고분자 전해질막.
  16. 청구항 15에 있어서, 상기 고분자 전해질막은 상기 화학식 1의 화합물을 포함하는 고분자를 포함하는 것인 고분자 전해질막.
  17. 청구항 15에 있어서, 상기 고분자 전해질막은 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰 및이들의 산 또는 이들의 염기 중 1 이상의 고분자를 추가로 포함하는 것인 고분자 전해질막.
  18. 애노드 전극; 캐소드 전극; 및 애노드와 캐소드 사이에 구비되고, 청구항 15에 따른 고분자 전해질막을 포함하는 막 전극 접합체.
  19. 청구항 18에 있어서, 상기 애노드 전극은 애노드 촉매층 및 애노드 기체확산층을 포함하고, 상기 캐소드 전극은 캐소드 촉매층 및 캐소드 기체확산층을 포함하는 것인 막 전극 접합체.
  20. 2 이상의 청구항 18에 따른 막 전극 접합체와 막 전극 접합체들 사이에 구비된 세퍼레이터를 포함하는 스택;
    연료를 스택으로 공급하는 연료공급부; 및
    산화제를 스택으로 공급하는 산화제 공급부를 포함하는 연료전지.
PCT/KR2012/010385 2011-12-02 2012-12-03 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지 WO2013081437A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12853234.8A EP2786999B1 (en) 2011-12-02 2012-12-03 Sulphonate based compound, polymer electrolyte membrane comprising same and fuel cell comprising same
CN201280022563.XA CN103517912B (zh) 2011-12-02 2012-12-03 磺酸盐类化合物、包含该化合物的聚合物电解质膜和包含该聚合物电解质膜的燃料电池
JP2014511311A JP5796813B2 (ja) 2011-12-02 2012-12-03 スルホネート系化合物、これを含む高分子電解質膜及びこれを含む燃料電池
US14/111,399 US9136551B2 (en) 2011-12-02 2012-12-03 Sulphonate based compound, polymer electrolyte membrane comprising same and fuel cell comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110128662 2011-12-02
KR10-2011-0128662 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013081437A1 true WO2013081437A1 (ko) 2013-06-06

Family

ID=48535805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010385 WO2013081437A1 (ko) 2011-12-02 2012-12-03 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지

Country Status (6)

Country Link
US (1) US9136551B2 (ko)
EP (1) EP2786999B1 (ko)
JP (1) JP5796813B2 (ko)
KR (2) KR101403723B1 (ko)
CN (1) CN103517912B (ko)
WO (1) WO2013081437A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200286A3 (ko) * 2013-06-14 2015-04-23 주식회사 엘지화학 술포네이트계 화합물 및 이를 이용한 고분자 전해질막

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153435B1 (en) 2005-03-30 2012-04-10 Tracer Detection Technology Corp. Methods and articles for identifying objects using encapsulated perfluorocarbon tracers
CN106414400B (zh) * 2014-06-18 2018-04-03 株式会社Lg化学 基于磺酸盐的化合物及其制备方法
US10483576B2 (en) 2014-12-04 2019-11-19 Lg Chem, Ltd. Polymer electrolyte membrane
KR20160067720A (ko) 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
WO2016089152A1 (ko) * 2014-12-04 2016-06-09 주식회사 엘지화학 할로겐화 화합물, 이를 포함하는 중합체 및 이를 포함하는 고분자 전해질막
CN107001254B (zh) * 2014-12-04 2019-11-05 株式会社Lg化学 卤代化合物、包含该卤代化合物的聚合物和包含该聚合物的聚合物电解质膜
US10407521B2 (en) 2014-12-04 2019-09-10 Lg Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
WO2016089154A1 (ko) * 2014-12-04 2016-06-09 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
JP6460243B2 (ja) * 2015-01-26 2019-01-30 エルジー・ケム・リミテッド 芳香族環を含む化合物、これを含む高分子およびこれを用いた高分子電解質膜
KR101947605B1 (ko) * 2015-01-26 2019-02-14 주식회사 엘지화학 할로겐화 화합물, 중합체 및 이를 포함하는 고분자 전해질막
CN107207424B (zh) * 2015-01-27 2019-11-05 株式会社Lg化学 包含芳环的化合物和使用该化合物的聚电解质膜
KR101839184B1 (ko) * 2015-01-27 2018-03-15 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
KR20160093853A (ko) * 2015-01-30 2016-08-09 주식회사 엘지화학 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
KR102068872B1 (ko) * 2015-09-22 2020-01-21 주식회사 엘지화학 블록 중합체 및 이를 포함하는 고분자 전해질막
JP6972003B2 (ja) * 2016-03-29 2021-11-24 エルジー・ケム・リミテッド ブロック重合体およびこれを含む高分子電解質膜
KR102026510B1 (ko) * 2016-03-31 2019-09-27 주식회사 엘지화학 화합물, 이를 이용한 고분자 및 이를 이용한 전해질막
KR102063048B1 (ko) * 2016-05-24 2020-01-07 주식회사 엘지화학 연료 전지 또는 레독스 플로우 전지의 분리막용 고분자 및 이의 제조방법
JP6760646B2 (ja) * 2016-08-23 2020-09-23 東京都公立大学法人 表面修飾ナノファイバー、電解質膜、電解質膜の製造方法、膜電極接合体及び固体高分子形燃料電池
KR20180034032A (ko) * 2016-09-27 2018-04-04 삼성전자주식회사 전기화학 거울
KR20180034031A (ko) * 2016-09-27 2018-04-04 삼성전자주식회사 전기화학 거울
KR102053622B1 (ko) * 2018-06-27 2019-12-09 성균관대학교산학협력단 알칼라인 연료전지용 고분자 전해질막, 이를 포함하는 알칼라인 연료전지, 알칼라인 연료전지용 고분자 전해질막의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076902A (ko) * 2008-12-26 2010-07-06 제너럴 일렉트릭 캄파니 복합막 및 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1219155B (de) * 1963-11-27 1966-06-16 Hoechst Ag Verfahren zur Herstellung wasserloeslicher Azofarbstoffe
WO1999067304A1 (en) * 1998-06-25 1999-12-29 E.I. Du Pont De Nemours And Company Aromatic polymers with pendant fluorinated ionic groups
US20030013817A1 (en) 2001-06-26 2003-01-16 Kelly Lu High temperature ionic polymers and membranes made therefrom
FR2843399B1 (fr) * 2002-08-06 2004-09-03 Commissariat Energie Atomique Polymeres de type polyphenylenes, leur procede de preparation, membranes et dispositif de pile a combustible comprenant ces membranes
KR100696460B1 (ko) * 2003-06-05 2007-03-19 삼성에스디아이 주식회사 수소이온 전도성 폴리머
KR100721640B1 (ko) * 2004-01-26 2007-05-23 마쯔시다덴기산교 가부시키가이샤 막촉매층 접합체, 막전극 접합체 및 고분자 전해질형연료전지
US20090005321A1 (en) * 2005-02-09 2009-01-01 Microbia, Inc. Phenylazetidinone Derivatives
US20070065700A1 (en) * 2005-09-22 2007-03-22 Sri International High temperature polymer electrolyte membranes
DE102005047391A1 (de) * 2005-10-05 2007-04-12 Dystar Textilfarben Gmbh & Co. Deutschland Kg Farbstoffe und Farbstoffmischungen von faserreaktiven Azofarbstoffen, ihre Herstellung und ihre Verwendung
JP5124806B2 (ja) * 2006-06-27 2013-01-23 信越化学工業株式会社 光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
US20080114183A1 (en) 2006-11-14 2008-05-15 General Electric Company Monomers comprising superacidic groups, and polymers therefrom
US20080318108A1 (en) * 2007-06-22 2008-12-25 Fujifilm Corporation Solid Electrolyte, Membrane and Electrode Assembly, and Fuel Cell
KR20090053499A (ko) * 2007-11-23 2009-05-27 주식회사 동진쎄미켐 측쇄에 산성기를 갖는 양성자 전도성 고분자 단량체, 상기단량체로 제조된 양성자 전도성 고분자, 상기 양성자전도성 고분자의 제조 방법, 상기 양성자 전도성 고분자를포함하는 전해질막 및 상기 전해질막을 채용한 막-전극접합체
US20090163692A1 (en) * 2007-12-21 2009-06-25 General Electric Company Aromatic polyethers
JP5407203B2 (ja) 2008-07-14 2014-02-05 セントラル硝子株式会社 新規スルホン酸塩及びその誘導体、光酸発生剤並びにスルホン酸塩の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076902A (ko) * 2008-12-26 2010-07-06 제너럴 일렉트릭 캄파니 복합막 및 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. PAILLARDA ET AL.: "Electrochemical investigation of polymer electrolytes based on lithium 2-(phenylsulfanyl)-1,1,2,2-tetrafluoro-ethansulfonate", ELECTROCHIMICA ACTA, vol. 53, no. 4, 31 December 2007 (2007-12-31), pages 1439 - 1443, XP022321985 *
FABIEN TOULGOAT ET AL.: "An Efficient Preparation of New Sulfonyl Fluorides and Lithium Sulfonates", J. ORG. CHEM., vol. 72, no. 24, 2007, pages 9046 - 9052, XP009098089 *
KUI XU ET AL.: "Highly Conductive Aromatic Ionomers with Perfluorosulfonic Acid Side Chains for Elevated Temperature Fuel Cells", MACROMOLECULES, vol. 44, no. 12, 2011, pages 4605 - 4609, XP055137602 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200286A3 (ko) * 2013-06-14 2015-04-23 주식회사 엘지화학 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
EP2987795A4 (en) * 2013-06-14 2017-01-25 LG Chem, Ltd. Sulfonate-based compound and polymer electrolyte membrane using same
US9782767B2 (en) 2013-06-14 2017-10-10 Lg Chem, Ltd. Sulfonate-based compound and polymer electrolyte membrane using same

Also Published As

Publication number Publication date
CN103517912B (zh) 2019-07-02
EP2786999A1 (en) 2014-10-08
KR101375508B1 (ko) 2014-03-18
US9136551B2 (en) 2015-09-15
JP2014520082A (ja) 2014-08-21
EP2786999A4 (en) 2015-07-01
KR101403723B1 (ko) 2014-06-12
EP2786999B1 (en) 2018-02-07
CN103517912A (zh) 2014-01-15
KR20130062252A (ko) 2013-06-12
KR20130062253A (ko) 2013-06-12
JP5796813B2 (ja) 2015-10-21
US20140065512A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2016089158A1 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2013137691A1 (ko) 고분자 전해질 조성물, 전해질 막, 막-전극 접합체 및 연료전지
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2015190897A1 (ko) 리튬 전극 및 이를 포함하는 리튬 전지
WO2015047008A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2010053297A2 (ko) 고분자 전해질막
WO2015147550A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2021112420A1 (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2016089155A1 (ko) 고분자 전해질막
WO2022210641A1 (ja) スルホン酸基を有するフッ素含有化合物及び固体高分子形燃料電池
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
WO2023234725A1 (ko) 신규한 가지부 함유 폴리(아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 그 제조방법
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2024039146A1 (ko) 음이온 교환막 및 이의 제조방법
WO2012008753A2 (ko) 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
WO2023106657A1 (ko) 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111399

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012853234

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE