WO2013080787A1 - 切削加工用硬質ポリウレタン樹脂 - Google Patents

切削加工用硬質ポリウレタン樹脂 Download PDF

Info

Publication number
WO2013080787A1
WO2013080787A1 PCT/JP2012/079398 JP2012079398W WO2013080787A1 WO 2013080787 A1 WO2013080787 A1 WO 2013080787A1 JP 2012079398 W JP2012079398 W JP 2012079398W WO 2013080787 A1 WO2013080787 A1 WO 2013080787A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
cutting
polyurethane resin
polyol
hard polyurethane
Prior art date
Application number
PCT/JP2012/079398
Other languages
English (en)
French (fr)
Inventor
昌紀 粟原
雄作 森
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2013516032A priority Critical patent/JP5703374B2/ja
Priority to US14/355,643 priority patent/US9580570B2/en
Publication of WO2013080787A1 publication Critical patent/WO2013080787A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4879Polyethers containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/022Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a hard polyurethane resin for machining.
  • an object of the present invention is to provide a hard polyurethane resin for cutting and a hard foam polyurethane resin for cutting that have high heat resistance, do not generate scorch, and suppress elongation caused by absorption of moisture in the air. is there.
  • Alkylene oxide addition wherein the total weight of alkylene oxide adduct (ak) of k-valent polyphenol (j) having an addition mole number of oxide of k or less is 39% by weight or less and the hydroxyl value is 100 to 295 mgKOH / g 45 to 99% by weight of product (a), A polyol containing 1 to 55% by weight of a polyfunctional aliphatic polyol or polyfunctional alicyclic polyol having 3 to 8 functional groups and a polyol (b) having a hydroxyl value of 160 to 700 mgKOH / g Component (A), comprising: A polyol component (A) in which the weight of the oxyethylene group contained in (A) is 10% by weight or less with respect to 100% by weight of (A), Hard polyurethane resin-forming composition for cutting (P) comprising an isocyanate component (B), an inorganic filler (C) and a dehydrating agent (D); Hard polyurethane resin for cutting (Q) obtained by reacting
  • the hard polyurethane resin-forming composition of the present invention has high heat resistance, does not generate scorch, and suppresses elongation caused by absorption of moisture in the air, and hard polyurethane resin for cutting.
  • a foamed polyurethane resin can be obtained.
  • the hard polyurethane resin-forming composition for cutting (P) of the present invention comprises a polyol component (A), an isocyanate component (B), an inorganic filler (C), and a dehydrating agent (D).
  • the alkylene oxide adduct (a) has a hydroxyl value of 100 to 295 mgKOH / g, the lower limit is preferably 150 mgKOH / g, more preferably 200 mgKOH / g, and the upper limit is preferably 290 mgKOH / g, more preferably 285 mgKOH / g. g.
  • the hydroxyl value is less than 100 mgKOH / g, the heat resistance is lowered, and the elongation due to moisture absorption of the rigid polyurethane resin molded article is increased.
  • scorch is generated.
  • bisphenols (j1) represented by the following general formula (2) [for example, bisphenol F (Y is —CH 2 —), bisphenol A (Y is —C (CH 3 ) 2 —)
  • Bisphenol E (Y is —CH (CH 3 ) —)
  • bisphenol S Y is —SO 2 —
  • 4,4′-dihydroxydiphenyl ether Y is —O—
  • 4,4′-biphenol (Y is And the like]
  • monocyclic dihydric phenols (j2) represented by the following general formula (3) for example, hydroquinone, catechol, resorcinol, etc.
  • polycyclic dihydric phenols (j3) [dihydroxynaphthalene (eg, 1,5-d
  • —Y— represents any one of —CH 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, —SO 2 —, —O—, and a group that does not exist.
  • AO alkylene oxide
  • examples of the alkylene oxide include AO having 2 to 4 carbon atoms, such as propylene oxide (hereinafter referred to as PO), ethylene oxide (hereinafter referred to as EO), butylene oxide, and the like. Of the mixture. Among them, PO and a mixture of PO and EO are preferable.
  • —Y— represents any one of —CH 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, —SO 2 —, —O—, and a group that does not exist.
  • G is an alkylene group having 2 to 4 carbon atoms; m and n are integers, and m + n is 1 to 13.
  • [G ′ is an alkylene group having 2 to 4 carbon atoms; m ′ and n ′ are integers, and m ′ + n ′ is 1 to 13.
  • [G ′′ is an alkylene group having 2 to 4 carbon atoms; m ′′ and n ′′ are integers, and m ′′ + n ′′ is 1 to 13.
  • [G ′ ′′ is an alkylene group having 2 to 4 carbon atoms; m ′ ′′ and n ′ ′′ are integers, and m ′ ′′ + n ′ ′′ is 1 to 13.
  • BPA bisphenol A
  • the total weight of alkylene oxide adduct (ak) of k-valent polyphenol (j) in which the number of added moles of alkylene oxide is k or less is 39% by weight with respect to 100% by weight of (a). % Or less, preferably 35% by weight or less, and more preferably 30% by weight or less.
  • scorch occurs in the hard polyurethane resin molded product.
  • (a) is a PO adduct of BPA
  • the total weight of (ak) which is a mixture of BPA PO 2 mol adduct, PO 1 mol adduct and BPA, is 39% by weight with respect to 100% by weight of (a). It is as follows.
  • the proportion of (a) based on the weight of the polyol component (A) is 45 to 99% by weight, preferably 50 to 90% by weight, particularly preferably 55 to 85% by weight from the viewpoint of elongation due to moisture absorption of the rigid polyurethane resin molded body. It is. If it is less than 45% by weight, the rigid polyurethane resin molded body has a large elongation due to moisture absorption. If it exceeds 99% by weight, it becomes a resin that melts during cutting.
  • the hydroxyl value of the polyfunctional aliphatic alcohol or polyfunctional alicyclic polyol (b) having 3 to 8 functional groups is 160 to 700 mgKOH / g.
  • the lower limit is preferably 250 mgKOH / g, more preferably 300 mgKOH / g, and the upper limit is preferably 600 mgKOH / g, more preferably 500 mgKOH / g.
  • the hydroxyl value is less than 160 mgKOH / g, the rigid polyurethane resin molded body has a large elongation due to moisture absorption, and when it exceeds 700 mgKOH / g, scorch is generated due to heat generation during molding.
  • the polyfunctional aliphatic polyol or polyfunctional alicyclic polyol (b) having 3 to 8 functional groups is an AO adduct of the following polyfunctional aliphatic alcohol and polyfunctional alicyclic alcohol.
  • Examples of the polyfunctional aliphatic alcohol include the following. In the following, C represents the number of carbon atoms.
  • C3-20 trihydric alcohol glycerin, trimethylolpropane; aliphatic triol such as trimethylolethane and hexanetriol; trialkanolamine such as triethanolamine
  • C5-20 tetrahydric or higher polyhydric alcohol an aliphatic polyol such as pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol; and intramolecular or intermolecular dehydrates; sucrose, glucose Saccharides such as mannose, fructose, and methylglucoside and their derivatives).
  • C6-20 trihydric alcohols alicyclic triols such as cyclohexanetriol
  • C6-20 polyhydric alcohols having a valence of 4 or more alicyclic tetraols such as cyclohexanetetraol
  • AO include alkylene oxides having 2 to 4 carbon atoms, and specifically include PO, EO, butylene oxide, and mixtures thereof. Of these, PO is preferred.
  • Preferable as (b) is a polyfunctional aliphatic polyol, and specific examples thereof include glycerin, trimethylolpropane, pentaerythritol, sorbitol, and PO adducts of sucrose (added mole number: 2 to 25 mol). It is done.
  • the proportion of (b) based on the weight of the polyol component (A) is 1 to 55% by weight, preferably 10 to 50% by weight, particularly preferably 15 to 45% by weight from the viewpoint of elongation due to moisture absorption of the rigid polyurethane resin molded body. It is. If it is less than 1% by weight, it becomes a resin that melts during cutting, and if it exceeds 55% by weight, elongation of the rigid polyurethane resin molded body due to moisture absorption increases.
  • the weight of the oxyethylene group contained in (A) is 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less with respect to 100% by weight of (A).
  • the weight of the oxyethylene group contained in (A) exceeds 10% by weight with respect to 100% by weight of (A), elongation due to moisture absorption of the rigid polyurethane resin molded product becomes large.
  • the polyol component (A) includes a low molecular polyol [for example, a dihydric alcohol having 3 to 20 carbon atoms of a low molecular active hydrogen-containing compound having a molecular weight of 400 or less (for example, an aliphatic having 2 to 12 carbon atoms).
  • a low molecular polyol for example, a dihydric alcohol having 3 to 20 carbon atoms of a low molecular active hydrogen-containing compound having a molecular weight of 400 or less (for example, an aliphatic having 2 to 12 carbon atoms).
  • Dihydric alcohols [(di) alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,2-, 2,3-, 1,3- and 1,4-butanediol, 1,6-hexane Diol, neopentyl glycol and 3-methylpentanediol, dodecanediol, etc.], C6-10 alicyclic divalent alcohol [1,4-cyclohexanediol, cyclohexanedimethanol, etc.], C8-20 araliphatic divalent Alcohol [xylylene glycol, bis (hydroxyethyl) Can be used in combination Zen like] ⁇ , etc.] as the active hydrogen component.
  • alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,2-, 2,3-, 1,3- and 1,4-butanediol, 1,6-hexane
  • Isocyanate component (B) examples include aromatic polyisocyanates, aliphatic polyisocyanates, alicyclic polyisocyanates, araliphatic polyisocyanates, and modified products of these polyisocyanates.
  • Aromatic polyisocyanates include C (excluding carbon in the NCO group, the same shall apply hereinafter) 6 to 63, such as diisocyanate [1,3- and / or 1,4-phenylene diisocyanate, 2,4- and / or 2, 6-tolylene diisocyanate (TDI), 4,4'- and / or 2,4'-diphenylmethane diisocyanate (MDI), m- and / or p-isocyanatophenylsulfonyl isocyanate, 4,4'-diisocyanatobiphenyl 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 3,3′-dimethyl-4,4′-diisocyanatodiphenylmethane and 1,5-naphthylene diisocyanate]; (Triisocyanate, etc.) [crude TDI, crude MDI (polymethylene poly Include polyphenyl isocyanate) and the
  • Aliphatic polyisocyanates include C2-18, such as diisocyanates [ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4- And / or 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, 2,6-diisocyanatoethylcaproate, bis (2-isocyanatoethyl) fumarate and bis (2-isocyanatoethyl) carbonate]; tri- or higher functional polyisocyanate (such as triisocyanate) [1,6,11-undecane triisocyanate 1,8-diisocyanate-4-isocyanate methyloctane, 1,
  • Alicyclic polyisocyanates include C4-15, such as diisocyanates [isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis (2-isocyanate). Natoethyl) -4-cyclohexylene-1,2-dicarboxylate and 2,5- and / or 2,6-norbornane diisocyanate etc.]; Trifunctional or higher polyisocyanate (such as triisocyanate) [bicycloheptane triisocyanate and the like].
  • araliphatic polyisocyanates include C8-15, such as m- and / or p-xylylene diisocyanate (XDI), diethylbenzene diisocyanate and ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate (TMXDI). It is done.
  • modified polyisocyanate examples include a carbodiimide group, a urethane group, a urea group, an isocyanurate group, a uretoimine group, an allophanate group, a biuret group, an oxazolidone group, and a uretdione group, for example, MDI, TDI, Urethane modified products such as HDI and IPDI (NCO-terminated urethane prepolymers obtained by reacting the above polyether polyols and excess polyisocyanate), biuret modified products, isocyanurate modified products, trihydrocarbyl phosphate modified products, And mixtures thereof
  • C6 to 63 aromatic polyisocyanates are preferable from the viewpoint of elongation at the time of moisture absorption, and particularly preferable is crude MDI (polymethylene polyphenyl polyisocyanate having 15 to 63 carbon atoms).
  • the isocyanate index [(equivalent ratio of NCO group / active hydrogen atom-containing group) ⁇ 100] is preferably from the viewpoint of resin strength. 80 to 140, more preferably 85 to 120, particularly preferably 90 to 115.
  • the weight ratio of the polyol component (A) and the isocyanate component (B) is preferably 50:50 to 80:20.
  • the hard polyurethane resin-forming composition for cutting (P) in the present invention contains the following inorganic filler (C) and dehydrating agent (D).
  • the total weight of the polyol component (A) and the isocyanate component (B) is 100% by weight, and (C) is preferably 0.1 to 50% by weight, more preferably 1 to 40% by weight, Preferably, it is 5 to 35% by weight, and (D) is preferably 0.1 to 15% by weight, more preferably 0.5 to 10% by weight, still more preferably 1 to 8% by weight.
  • the inorganic filler (C) is powdery and the particle size is not particularly limited.
  • examples of (C) include talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, calcium carbonate, gypsum, etc. Among these, talc is preferable from the viewpoint of machinability.
  • the dehydrating agent (D) a commonly used compound having a dehydrating effect can be used, but a dehydrating agent which is neutral or alkaline and has a volume average particle size of 0.1 to 50 ⁇ m is preferable.
  • a dehydrating agent which is neutral or alkaline and has a volume average particle size of 0.1 to 50 ⁇ m is preferable.
  • examples of such a material include calcium oxide, calcium sulfate (hemihydrate gypsum), calcium chloride, and molecular sieve. Calcium sulfate (hemihydrate gypsum) and molecular sieve are preferable, and molecular sieve is particularly preferable.
  • the hard polyurethane resin-forming composition for cutting (P) is a microballoon (E) for the purpose of improving the cutting workability of the hard polyurethane resin for cutting (Q) obtained by reacting (P).
  • E is usually 15% by weight or less, preferably 0.1 to 15% by weight, more preferably 100% by weight of the total weight of the polyol component (A) and the isocyanate component (B). It is 0.1 to 10% by weight, more preferably 1 to 8% by weight.
  • the microballoon (E) includes a microballoon made of a thermoplastic resin (for example, polyvinylidene chloride, polymethyl methacrylate, polyacrylonitrile, etc.), and a microballoon made of a thermosetting resin (phenol resin, epoxy resin, urea resin, etc.). And microballoons made of inorganic substances (glass, alumina, shirasu, carbon, etc.).
  • the volume average particle diameter of (E) is preferably 10 to 200 ⁇ m, and the bulk specific gravity is preferably 0.01 to 0.5.
  • microballoons available from the market include Matsumoto Microsphere F-80ED and MFL series (Matsumoto Yushi Seiyaku Co., Ltd.), Phenolic Microballoon BJO-0930 (Union Carbide), Scotchlite K- 15, K-37 (manufactured by Scotchlite).
  • the hard polyurethane resin-forming composition for cutting (P) of the present invention may further contain an additive (G) in order to improve moldability and other functions of the molded body.
  • the total content of the additive (G) is usually 10% by weight or less, preferably 0.5 to 8% by weight, based on 100% by weight of the total weight of (A) and (B).
  • examples of such (G) include lubricants (calcium stearate, ethylenediamine distearylamide, etc.), catalysts [amine catalysts such as triethylenediamine, metal catalysts such as dibutyltin dilaurate, tris (2-ethylhexanoic acid) bismuth, etc.
  • Colorant metal oxide, disazo pigment, etc.
  • anti-aging agent nickel dibutyldithiocarbamate, hindered phenol, etc.
  • plasticizer dibutyl phthalate, di-2-ethylhexyl adipate, etc.
  • flame retardant melamine
  • Salts with cyanuric acid or isocyanuric acid antistatic agents
  • anionic surfactants phosphoric acid ester salts (for example, monophosphoric acid ester salts and diphosphoric acid ester salts of polyoxyalkylene compounds), alkylbenzene sulfonates, etc.]
  • Cation world Active agents, nonionic surface active agent, etc.] and the like, may be added to one or more members selected from these.
  • the hard polyurethane resin for cutting (Q) of the present invention is obtained by reacting the hard polyurethane resin-forming composition for cutting (P).
  • a reaction method of the polyol component (A) and the isocyanate component (B) in (P) (1) One shot method in which (A) and (B) are mixed and reacted at a time (2) A part of (A) and (B) are reacted in advance to form an NCO-terminated prepolymer, and then the remaining Or a prepolymer method in which (A) and a part of (B) are reacted in advance to form an OH-terminated prepolymer and then reacted with the remaining (B). It is done.
  • the hard polyurethane resin molding (R) for cutting made of the hard polyurethane resin (Q) for cutting is a molded body containing no microbubbles, a syntactic foam reduced in weight only by microbubbles of a microballoon, Examples include foams that are reduced in weight by inert gas microbubbles formed by mechanical flossing, and foams that simultaneously contain microballoon microbubbles and inert gas microbubbles formed by mechanical flossing. It is done.
  • a molded body containing no microbubbles has a high density of about 1.2 g / cm 3 or more, and is used for a model material requiring a high strength.
  • a syntactic foam or foam to reduce the weight and improve the machinability and is used as a model material.
  • a volatile foaming agent such as a fluorocarbon, a hydrogen atom-containing halogenated hydrocarbon, a low-boiling point hydrocarbon, or the like, and a carbon dioxide gas generation source may be used during and / or before mixing the polyol component and the aromatic polyisocyanate component.
  • a mechanical floss foaming method is suitable for molding a resin molded body.
  • the mechanical froth foaming method is a mechanical stator comprising a cylindrical stator having a large number of teeth on the inner surface and a rotor having a large number of teeth inside the stator, as shown in FIG. 3 of Japanese Patent No. 3083751.
  • This is a method of continuously taking out the foamed material from the outlet of the foaming machine by simultaneously injecting the material to be foamed and the inert gas into the foaming machine simultaneously while the rotor of the froth foaming machine is rotating. Since an arbitrary number of materials and inert gas inlets can be provided, two or more types of materials and inert gas can be mixed. Further, even if the material is curable, it does not matter as long as it is cured after leaving the foaming machine.
  • the mixture of the material discharged from the outlet and the inert gas is cast on a mold (open mold or sealed mold) whose temperature is adjusted in advance to 25 to 120 ° C. or on a belt conveyor partitioned on both sides so as not to spill.
  • the cast mixture is cured in a curing furnace at preferably 70 to 130 ° C., more preferably 80 to 120 ° C. for 0.5 to 10 hours to obtain a molded product.
  • Metals aluminum, stainless steel, etc.
  • plastics polypropylene, polycarbonate, etc.
  • the mechanical floss foaming method is preferable to the foaming agent foaming method as a method for producing a model material in that the bubble diameter after foaming is fine and fine and the density distribution in the obtained cured product is uniform.
  • the microbubble diameter by the mechanical froth foaming method is preferably 0.5 to 300 ⁇ m, more preferably 1 to 200 ⁇ m.
  • the amount (volume%) of microbubbles by the mechanical floss foaming method is the volume% of an inert gas in the case of a molded body not containing a microballoon and the micro volume in the case of a molded body containing a microballoon.
  • the volume of the balloon + the volume% of the inert gas is preferably 10 to 95, more preferably 15 to 90, and still more preferably 20 to 85. Within this range, fine and uniformly dispersed bubbles can be obtained.
  • a foam stabilizer (F) can be contained in the hard polyurethane resin-forming composition for cutting (P) for the purpose of stabilizing the cell diameter of the rigid foamed polyurethane resin.
  • (F) is usually 10% by weight or less, preferably 0.1 to 8% by weight, more preferably 0.5% with respect to 100% by weight of the total weight of (A) and (B). ⁇ 5% by weight.
  • foam stabilizer (F) a silicon-based foam stabilizer (for example, non-reactive dimethyl modified with dimethylpolysiloxane or at least one of main chain, side chain and terminal with polyoxyalkylene, phenyl, alkyl, aralkyl, etc. Siloxane etc.).
  • a silicon-based foam stabilizer for example, non-reactive dimethyl modified with dimethylpolysiloxane or at least one of main chain, side chain and terminal with polyoxyalkylene, phenyl, alkyl, aralkyl, etc. Siloxane etc.
  • the saturated moisture absorption elongation of 95% RH at the same temperature as the saturated water absorption elongation for measuring the elongation after immersing the molded body in water shows the same value
  • the saturated water absorption elongation is used as a promotion method. Compare the elongation at the time of moisture absorption.
  • the test method for the saturated water absorption elongation is as follows. A test piece of 20 ⁇ 20 ⁇ 100 mm is cut out from the hard polyurethane resin molded body, and the cut out test piece is put in an aluminum laminate bag and sealed.
  • the test piece After storing the bag at 25 ° C. for 24 hours, the test piece is taken out of the bag, the length in the 100 mm direction is measured with a caliper, and the length is defined as the length before immersion.
  • the test piece is immersed in purified water contained in a container that can be sealed, and is stored in a thermostat at 25 ° C. after sealing.
  • the length of the test piece is measured with a vernier caliper at regular intervals, and the length is taken as the length after immersion.
  • the water absorption elongation rate in purified water is calculated by the following formula (1).
  • the saturated water absorption elongation is defined as the water absorption elongation when the increase in water absorption elongation is 0.01% or less from the previous measurement.
  • the saturated water absorption elongation is preferably 0.3% or less from the viewpoint of distortion and warping of the model and inspection jig material.
  • the hard polyurethane resin molded body (R) for cutting can be cut to obtain a model, master model, or inspection jig.
  • an NC machine As described in, for example, “Model Making Technology Manual” (issued by the Shape Materials Center).
  • CNC milling machines and machining centers or machined (saw machined) using saws, saws, planers, etc., and finally finished with sandpaper. Smoothed to become a model.
  • Cutting tools used in machining are a ball end mill and a flat end mill, and generally used are materials called high speed steel and carbide.
  • Machining mainly consists of three stages of cutting processes, the initial stage being called roughing, the middle period being called middle machining, and the last being called finishing.
  • the hard polyurethane resin in the present invention is preferably cut by roughing at a blade diameter of 20 to 30 mm, a blade feed speed of 1,000 to 3,000 mm / min, and a blade rotation speed of 200 to 5,000 rpm.
  • the blade diameter is preferably 10 to 20 mm
  • the feed speed is 1,000 to 2,000 mm / min
  • the rotation speed is 1,000 to 3,000 rpm.
  • 500 mm / min at a rotational speed of 1,000 to 2,000 rpm.
  • the obtained model When used for a design model of an automobile or the like, it is further painted and finished and used for design evaluation.
  • a master model which is a prototype such as a molding die, it is used for shape reversal with foundry sand, resin, gypsum and the like.
  • Polyol component (A) AO adduct (a) AO adduct (a-1): BPA PO2 mol or less adduct (29%), PO3 mol or more adduct (71%) [Hydroxyl value 280 mgKOH / g] AO adduct (a-2): BPA PO2 mol or less adduct (36%), PO3 mol or more adduct (64%) [Hydroxyl value 288 mgKOH / g] AO adduct (a-3): BPA PO3 mol or more adduct (PO2 mol or less does not contain adduct) [Hydroxyl value 112 mgKOH / g] AO adduct (a-4): BPA PO 2 mol or less adduct (4%), PO 3 mol or more adduct (96%) [Hydroxyl value 216 mgKOH / g] AO adduct (a-1 ′
  • Isocyanate component (B) Crude MDI (B-1): Trade name “Millionate MR-200”, manufactured by Nippon Polyurethane Industry Co., Ltd. (NCO% 31.3) Carbodiimide-modified M diisocyanate (B-2): trade name “Coronate MTL” manufactured by Nippon Polyurethane Industry Co., Ltd. (NCO% 28.8)
  • Inorganic filler C
  • Inorganic filler C-1): Trade name “Soapstone C”, manufactured by Nippon Mystron Co., Ltd., talc dehydrating agent (D)
  • Dehydrating agent D-1): Trade name “Molecular Sieve 3A-B Powder”, Union Showa Co., Ltd., Molecular Sieve Microballoon (E)
  • Microballoon E-1): Trade name “Matsumoto Microsphere MFL-80GCA”, Matsumoto Yushi Seiyaku Co., Ltd., average particle size 20 ⁇ m, density 0.24 g / cm 3 acrylic microballoon
  • Foam stabilizer (F-1): Trade name “SZ-1671”, manufactured by Toray Dow Corning Co., Ltd., Silicone foam stabilizer catalyst (G-1): Trade name “Stan BL”, Sankyo Co., Ltd. Di-n-butyltin dilaurate manufactured by Synthetic Co., Ltd.
  • Examples 1 to 6 ⁇ Rigid polyurethane resin molding for cutting>
  • the main component was put into a planetary mixer, stirred for 10 minutes at 130 rpm, and then defoamed for 5 minutes at 4 kPa or less to obtain a main component mixture.
  • the curing agent component was similarly stirred and degassed to obtain a curing agent component mixture.
  • the temperature of each component was adjusted to 25 ⁇ 1 ° C.
  • the adjusted main component component mixture and curing agent component mixture are put into a planetary mixer, stirred and defoamed at 130 rpm for 1 minute at 4 kPa or less, then poured into a 50 ⁇ 50 ⁇ 150 mm mold, and hard polyurethane resin for cutting work. A molded body was obtained.
  • Comparative Examples 1-6 A hard polyurethane resin molding for comparative cutting was obtained in the same manner as in Examples 1 to 6 with the formulation shown in Table 2.
  • Examples 7 to 9 ⁇ Rigid foamed polyurethane resin molding for cutting>
  • the main component was put into a planetary mixer, stirred at 130 rpm for 10 minutes, and then stirred and degassed at 4 kPa or less for 5 minutes to obtain a main component mixture.
  • the curing agent component was similarly stirred and degassed to obtain a curing agent component mixture.
  • the temperature of each component was adjusted to 25 ⁇ 1 ° C.
  • the rotor of the mechanical floss machine (MF-350 type mechanical floss foaming device manufactured by Toho Kikai Kogyo Co., Ltd.) is rotated at 300 rpm, and the main component mixture and the hardener component mixture are brought to 3 L / min in total while blowing nitrogen gas.
  • a 1 m vinyl hose was passed through the mixed and discharged liquid mixing head outlet and poured into a 50 ⁇ 50 ⁇ 150 mm mold to obtain a rigid foamed polyurethane resin molded body for cutting.
  • Comparative Examples 7-8 A rigid foamed polyurethane resin molded article for comparative cutting was obtained in the same manner as in Examples 7 to 9 with the formulation shown in Table 3.
  • ⁇ Scorch> The obtained rigid polyurethane resin molded product was cut in half, and the color of the cut surface was confirmed. A scorch was used when no change was observed, and a scorch was used when the center was brown.
  • the test piece is taken out of the bag, the length in the 100 mm direction is measured with a caliper, and the length is defined as the length before immersion.
  • the test piece is immersed in purified water contained in a container that can be sealed, and is stored in a thermostat at 25 ° C. after sealing.
  • the length of the test piece is measured with a caliper at regular intervals, and the water absorption elongation when the increase in water absorption elongation is 0.01% or less from the previous measurement is defined as the saturated water absorption elongation.
  • the length of the test piece when the saturated water absorption elongation is reached is defined as the length after immersion.
  • the water absorption elongation rate in purified water was calculated by the following formula (1).
  • the resin moldings obtained from the hard polyurethane resin-forming compositions (P) of Examples 1 to 6 have a high deflection temperature under load, no scorch generation, and a low water absorption elongation. Compared to this, scorch occurs in Comparative Examples 1, 5, and 6, Comparative Examples 2 and 3 have a low deflection temperature under load and a large water absorption elongation rate, and Comparative Example 4 has a large water absorption elongation rate. In addition, none of the three physical properties, high deflection temperature under load, no generation of scorch, and low water absorption elongation were all satisfactory.
  • the foamed resin moldings obtained from the hard polyurethane resin-forming compositions (P) of Examples 7 to 9 have a high load deflection temperature, no scorch generation, and a low water absorption elongation. .
  • scorch is generated in Comparative Example 7, and the deflection temperature under load is low and the water absorption elongation is large in Comparative Example 8, and the three physical properties and the deflection temperature under load are high as in Example, and there is no occurrence of scorch.
  • the hard polyurethane resin molding for cutting of the present invention can be widely used as a cutting material for models such as design models and master models, simple injection molds, inspection jigs, etc., and is extremely useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の課題は、官能基数がk価(k=2~3の整数)のポリフェノール(j)のアルキレンオキシド付加物(a)((a)の重量100重量%に対してアルキレンオキシドの付加モル数がk以下であるk価のポリフェノール(j)のアルキレンオキシド付加物(ak)の合計重量が39重量%以下であり、かつ水酸基価が100~295mgKOH/gである)を45~99重量%、及び官能基数が3~8価である多官能脂肪族ポリオールまたは多官能脂環式ポリオールであって水酸基価が160~700mgKOH/gであるポリオール(b)を1~55重量%含有するポリオール成分(A)((A)中に含有されるオキシエチレン基の重量は、(A)の重量100重量%に対して10重量%以下である)、イソシアネート成分(B)、無機フィラー(C)、並びに脱水剤(D)を含有してなる、切削加工用硬質ポリウレタン樹脂形成性組成物(P)を提供することである。

Description

切削加工用硬質ポリウレタン樹脂
本発明は、切削加工用硬質ポリウレタン樹脂に関する。
従来、模型や検査治具素材としては、天然木材や、硬質ウレタンフォーム、合成木材(ビスフェノールAのアルキレンオキシド付加物、脂肪族ポリオール、芳香族ポリイソシアネートおよび脱水剤の混合物を、メカニカルフロス法により発泡させて得られる発泡ポリウレタン成形体等)(例えば、特許文献1参照)が使用されている。
特開平6-329747
しかしながら、特許文献1記載の合成木材は、(1)耐熱性、(2)スコーチの発生がない、(3)空気中の湿気を吸収して寸法増加があるがわずかであり、特に湿度が高い夏場や高温多湿の地域でも寸法増加が大きくない、以上3点ともすべてを満足することができず、模型や検査治具として改良の余地があるという問題があった。
すなわち本発明の課題は、耐熱性が高く、スコーチの発生がなく、かつ空気中の湿気の吸収により生じる伸びを抑えた切削加工用硬質ポリウレタン樹脂および切削加工用硬質発泡ポリウレタン樹脂を提供することである。
本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は、官能基数がk価(k=2~3の整数)のポリフェノール(j)のアルキレンオキシド付加物(a)であって、(a)の重量100重量%に対して、アルキレンオキシドの付加モル数がk以下であるk価のポリフェノール(j)のアルキレンオキシド付加物(ak)の合計重量が39重量%以下であり、かつ水酸基価が100~295mgKOH/gであるアルキレンオキシド付加物(a)を45~99重量%、
官能基数が3~8価である多官能脂肪族ポリオールまたは多官能脂環式ポリオールであって水酸基価が160~700mgKOH/gであるポリオール(b)を1~55重量%の割合で含有するポリオール成分(A)であって、
(A)中に含有されるオキシエチレン基の重量が(A)の重量100重量%に対して10重量%以下であるポリオール成分(A)、
イソシアネート成分(B)、無機フィラー(C)および脱水剤(D)を含有してなる切削加工用硬質ポリウレタン樹脂形成性組成物(P);
(P)を反応させてなる切削加工用硬質ポリウレタン樹脂(Q);
(Q)からなる切削加工用硬質ポリウレタン樹脂成形体(R);
(R)を切削加工してなる模型、マスターモデル、検査治具;
(P)をメカニカルフロス法で反応させて切削加工用硬質ポリウレタン樹脂(Q)を得る(Q)の製造方法である。
本発明の硬質ポリウレタン樹脂形成性組成物は、耐熱性が高く、スコーチの発生をさせることがなく、かつ空気中の湿気の吸収により生じる伸びを抑えた切削加工用硬質ポリウレタン樹脂および切削加工用硬質発泡ポリウレタン樹脂を得ることができる。
本発明の切削加工用硬質ポリウレタン樹脂形成性組成物(P)は、ポリオール成分(A)、イソシアネート成分(B)、無機フィラー(C)および脱水剤(D)を含有してなる。
ポリオール成分(A)
ポリオール成分(A)は、官能基数がk価(k=2~3の整数)のポリフェノール(j)のアルキレンオキシド付加物(a)であって、(a)の重量100重量%に対して、アルキレンオキシドの付加モル数がk以下であるk価のポリフェノール(j)のアルキレンオキシド付加物(ak)の合計重量が39重量%以下であり、かつ水酸基価が100~295mgKOH/gであるアルキレンオキシド付加物(a)と、官能基数が3~8価である多官能脂肪族ポリオールまたは多官能脂環式ポリオールであって水酸基価が160~700mgKOH/gであるポリオール(b)を含有する。
アルキレンオキシド付加物(a)は、水酸基価が100~295mgKOH/gであり、下限は好ましくは150mgKOH/gであり、さらに好ましくは200mgKOH/g、上限は好ましくは290mgKOH/g、さらに好ましくは285mgKOH/gである。水酸基価が100mgKOH/g未満では耐熱性が低下し、かつ硬質ポリウレタン樹脂成形体の吸湿による伸びが大きくなり、295mgKOH/gを超える場合ではスコーチが発生する。
官能基数がk価(kは2~3の整数)のポリフェノール(j)としては、k=2の場合、C6~20の2価フェノールおよびk=3の場合、C6の多価フェノールが挙げられる。
k=2の場合としては、下記一般式(2)で示されるビスフェノール類(j1)[例えば、ビスフェノールF(Yが-CH-)、ビスフェノールA(Yが-C(CH-)、ビスフェノールE(Yが-CH(CH)-)、ビスフェノールS(Yが-SO-)、4,4’-ジヒドロキシジフェニルエーテル(Yが-O-)、4,4’-ビフェノール(Yが存在しない)など]、下記一般式(3)で示される単環2価フェノール類(j2)(例えば、ヒドロキノン、カテコール、レゾルシノールなど)、および下記一般式(4)または(5)で示される縮合多環2価フェノール類(j3)[ジヒドロキシナフタレン(1,5-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレンなど)]が挙げられる。
Figure JPOXMLDOC01-appb-C000002
[式中、-Y-は-CH-、-C(CH-、-CH(CH)-、-SO-、-O-、存在しない基のいずれかの基である。]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
k=3の場合としては、単環多価フェノール(ピロガロール、フロログルシノールなど)が挙げられる。
それらの中で、k=2の場合が好ましく、ビスフェノールA(以下BPAと記載。)がさらに好ましい。
アルキレンオキシド(以下AOと記載。)としては炭素数2~4のAOが挙げられ、具体的にはプロピレンオキシド(以下POと記載。)、エチレンオキシド(以下EOと記載。)、ブチレンオキシド、およびそれらの混合物が挙げられる。それらの中で、POおよびPOとEOの混合物が好ましい。
ポリフェノール(j)のAO付加物(a)としては、k=2の場合、下記一般式(1)で示されるビスフェノール類(j1)のAO付加物(a1)、下記一般式(6)で示される単環2価フェノール類(j2)のAO付加物(a2)、下記一般式(7)または(8)で示される縮合多環2価フェノール類(j3)のAO付加物(a3)が挙げられる。
Figure JPOXMLDOC01-appb-C000006
[式中、-Y-は-CH-、-C(CH-、-CH(CH)-、-SO-、-O-、存在しない基のいずれかの基である。Gは炭素数2~4のアルキレン基;mおよびnは整数でありm+nは1~13である。]
Figure JPOXMLDOC01-appb-C000007
[G’は炭素数2~4のアルキレン基;m’およびn’は整数でありm’+n’は1~13である。]
Figure JPOXMLDOC01-appb-C000008
[G’’は炭素数2~4のアルキレン基;m’’およびn’’は整数でありm’’+n’’は1~13である。]
Figure JPOXMLDOC01-appb-C000009
[G’’’は炭素数2~4のアルキレン基;m’’’およびn’’’は整数でありm’’’+n’’’は1~13である。]
k=3の場合としては、単環多価フェノール類のAO付加物が挙げられる。
それらの中で、k=2の場合が好ましく、ビスフェノールA(BPA)のAO付加物がさらに好ましく、ビスフェノールAのPO付加物が特に好ましい。
(a)においては、アルキレンオキシドの付加モル数がk以下であるk価のポリフェノール(j)のアルキレンオキシド付加物(ak)の合計重量が、(a)の重量100重量%に対して39重量%以下であり、35重量%以下が好ましく、30重量%以下がさらに好ましい。(ak)が39重量%を超えると、硬質ポリウレタン樹脂成形体にスコーチが発生する。
(a)がBPAのPO付加物の場合、BPAのPO2モル付加物、PO1モル付加物およびBPAの混合物である(ak)の合計重量が(a)の重量100重量%に対して39重量%以下である。
ポリオール成分(A)の重量に基づく(a)の割合は、硬質ポリウレタン樹脂成形体の吸湿による伸びの観点から45~99重量%、好ましくは50~90重量%、特に好ましくは55~85重量%である。45重量%未満では硬質ポリウレタン樹脂成形体の吸湿による伸びが大きく、99重量を超えると切削時に溶融する樹脂となる。
官能基数が3~8価である多官能脂肪族アルコールまたは多官能脂環式ポリオール(b)の水酸基価は、160~700mgKOH/gである。下限は好ましくは250mgKOH/gであり、さらに好ましくは300mgKOH/g、上限は好ましくは600mgKOH/g、さらに好ましくは500mgKOH/gである。水酸基価が160mgKOH/g未満では硬質ポリウレタン樹脂成形体の吸湿による伸びが大きくなり、700mgKOH/gを超えると成形中の発熱によるスコーチが発生する。
官能基数が3~8価である多官能脂肪族ポリオールまたは多官能脂環式ポリオール(b)は、下記の多官能脂肪族アルコールおよび多官能脂環式アルコールのAO付加物である。多官能脂肪族アルコールとしては、下記が挙げられる。
なお、以下において、Cは炭素数を表している。
(1)C3~20の3価アルコール(グリセリン、トリメチロールプロパン;トリメチロールエタン、ヘキサントリオールなどの脂肪族トリオール;トリエタノールアミンなどのトリアルカノールアミン);
(2)C5~20の4価以上の多価アルコール(ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトールなどの脂肪族ポリオール;およびその分子内もしくは分子間脱水物;ショ糖、グルコース、マンノース、フラクトース、メチルグルコシドなどの糖類とその誘導体)など。
多官能脂環式ポリオールとしては、下記が挙げられる。
(1)C6~20の3価アルコール(シクロヘキサントリオールなどの脂環式トリオール);
(2)C6~20の4価以上の多価アルコール(シクロヘキサンテトラオールなどの脂環式テトラオール)など。
AOとしては、炭素数2~4のアルキレンオキシドが挙げられ、具体的にはPO、EO、ブチレンオキシド、およびそれらの混合物が挙げられる。それらの中で、POが好ましい。
(b)として好ましいものは、多官能脂肪族ポリオールであり、その具体例としては、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ショ糖のPO付加物(付加モル数2~25モル)が挙げられる。
ポリオール成分(A)の重量に基づく(b)の割合は、硬質ポリウレタン樹脂成形体の吸湿による伸びの観点から1~55重量%、好ましくは10~50重量%、特に好ましくは15~45重量%である。1重量%未満で切削時に溶融する樹脂となり、55重量%を超えると硬質ポリウレタン樹脂成形体の吸湿による伸びが大きくなる。
(A)中に含有されるオキシエチレン基の重量が(A)の重量100重量%に対して10重量%以下であり、好ましくは5重量%以下、さらに好ましくは3重量%以下である。(A)中に含有されるオキシエチレン基の重量が(A)の重量100重量%に対して10重量%を超えた場合は硬質ポリウレタン樹脂成形体の吸湿による伸びが大きくなる。
また、本発明において、ポリオール成分(A)には低分子ポリオール〔例えば、分子量400以下の低分子活性水素含有化合物のうちの、炭素数3~20の2価アルコール{例えばC2~12の脂肪族2価アルコール[(ジ)アルキレングリコール、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-、2,3-、1,3-および1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールおよび3-メチルペンタンジオール、ドデカンジオール等]、C6~10の脂環含有2価アルコール[1,4-シクロヘキサンジオール、シクロヘキサンジメタノール等]、C8~20の芳香脂肪族2価アルコール[キシリレングリコール、ビス(ヒドロキシエチル)ベンゼン等]}など〕を活性水素成分として併用することができる。
イソシアネート成分(B)
本発明のイソシアネート成分(B)としては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香脂肪族ポリイソシアネート、およびこれらのポリイソシアネートの変性体が挙げられる。
芳香族ポリイソシアネートとしては、C(NCO基中の炭素を除く、以下同様)6~63、例えばジイソシアネート[1,3-および/または1,4-フェニレンジイソシアネート、2,4-および/または2,6-トリレンジイソシアネート(TDI)、4,4’-および/または2,4’-ジフェニルメタンジイソシアネート(MDI)、m-および/またはp-イソシアナトフェニルスルホニルイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタンおよび1,5-ナフチレンジイソシアネート];3官能以上のポリイソシアネート(トリイソシアネート等)[粗製TDI、粗製MDI(ポリメチレンポリフェニルポリイソシアネート)等]が挙げられる。
脂肪族ポリイソシアネートとしては、C2~18、例えばジイソシアネート[エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、2,2,4-および/または2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、2,6-ジイソシアナトエチルカプロエート、ビス(2-イソシアナトエチル)フマレートおよびビス(2-イソシアナトエチル)カーボネート];3官能以上のポリイソシアネート(トリイソシアネート等)[1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネートおよびリジンエステルトリイソシアネート(リジンとアルカノールアミンとの反応生成物のホスゲン化物)、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート、2-および/または3-イソシアナトプロピル-2,6-ジイソシアナトヘキサノエート等]が挙げられる。
脂環式ポリイソシアネートとしては、C4~15、例えばジイソシアネート[イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキシレン-1,2-ジカルボキシレートおよび2,5-および/または2,6-ノルボルナンジイソシアネート等];
3官能以上のポリイソシアネート(トリイソシアネート等)[ビシクロヘプタントリイソシアネート等]が挙げられる。
芳香脂肪族ポリイソシアネートとしては、C8~15、例えばm-および/またはp-キシリレンジイソシアネート(XDI)、ジエチルベンゼンジイソシアネートおよびα,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)が挙げられる。
ポリイソシアネートの変性体としては、例えばカルボジイミド基、ウレタン基、ウレア基、イソシアヌレート基、ウレトイミン基、アロファネート基、ビウレット基、オキサゾリドン基およびウレトジオン基の少なくとも1つを有する変性体、例えばMDI、TDI、HDI、IPDI等のウレタン変性物(前記のポリエーテルポリオール等と過剰のポリイソシアネートとを反応させて得られるNCO末端ウレタンプレポリマー等)、ビウレット変性物、イソシアヌレート変性物、トリヒドロカルビルホスフェート変性物、およびこれらの混合物が挙げられる
これらのうちで好ましいものは、吸湿時の伸びの観点から、C6~63の芳香族ポリイソシアネートであり、特に好ましいものは粗製MDI(炭素数15~63のポリメチレンポリフェニルポリイソシアネート)である。
ポリオール成分(A)とイソシアネート成分(B)の割合は種々変えることができるが、イソシアネート指数[(NCO基/活性水素原子含有基の当量比)×100]は、樹脂強度の点から、好ましくは80~140、さらに好ましくは85~120、特に好ましくは90~115である。ポリオール成分(A)とイソシアネート成分(B)の重量比率は、好ましくは50:50~80:20である。
無機フィラー(C)、および脱水剤(D)
本発明における、切削加工用硬質ポリウレタン樹脂形成性組成物(P)は、下記の無機フィラー(C)、および脱水剤(D)を含有する。成形性の観点からポリオール成分(A)とイソシアネート成分(B)の合計重量100重量%に対して、(C)は好ましくは0.1~50重量%、より好ましくは1~40重量%、さらに好ましくは5~35重量%、(D)は好ましくは0.1~15重量%、より好ましくは0.5~10重量%、さらに好ましくは1~8重量%である。
無機フィラー(C)は粉状であり、粒径は特に制限されない。(C)としては、例えば、タルク、マイカ、カオリン、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、石膏などが挙げられ、これらの中で切削加工性の観点からタルクが好ましい。
脱水剤(D)としては、通常用いられる脱水効果を持つ化合物が使用できるが、中性又はアルカリ性であり体積平均粒径が0.1~50μmである脱水剤が好ましい。
このようなものとしては、例えば、酸化カルシウム、硫酸カルシウム(半水石膏)、塩化カルシウム、モレキュラーシーブが挙げられる。好ましくは硫酸カルシウム(半水石膏)及びモレキュラーシーブであり、特に好ましくはモレキュラーシーブである。
本発明における、切削加工用硬質ポリウレタン樹脂形成性組成物(P)は、(P)を反応させてなる切削加工用硬質ポリウレタン樹脂(Q)の切削加工性を良くする目的でマイクロバルーン(E)を含有させることができる。切削加工性の観点からポリオール成分(A)とイソシアネート成分(B)の合計重量100重量%に対して、(E)は通常15重量%以下、好ましくは0.1~15重量%、より好ましくは0.1~10重量%、さらに好ましくは1~8重量%である。
マイクロバルーン(E)としては、熱可塑性樹脂(例えば、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリアクリロニトリルなど)からなるマイクロバルーン、熱硬化性樹脂(フェノール樹脂、エポキシ樹脂、尿素樹脂など)からなるマイクロバルーン、無機物(ガラス、アルミナ、シラス、カーボンなど)からなるマイクロバルーンなどがある。(E)の体積平均粒径は好ましくは10~200μm、かさ比重は好ましくは0.01~0.5である。このようなマイクロバルーンの市場から入手できる具体例としては、マツモトマイクロスフェアーF-80ED及びMFLシリーズ(松本油脂製薬社製)、フェノリックマイクロバルーンBJO-0930(ユニオンカーバイド社製)、スコッチライトK-15、K-37(スコッチライト社製)などがある。
本発明の切削加工用硬質ポリウレタン樹脂形成性組成物(P)には、成形性や成形体のその他の機能を向上させるために、さらに添加剤(G)を含有させてもよい。添加剤(G)の合計含有量は(A)と(B)の合計重量100重量%に対して、通常10重量%以下、好ましくは0.5~8重量%である。
このような(G)としては、滑剤(ステアリン酸カルシウム、エチレンジアミンジステアリルアミドなど)、触媒[アミン系触媒、例えばトリエチレンジアミン、金属系触媒、例えばジブチル錫ジラウレート、トリス(2-エチルヘキサン酸)ビスマスなど]、着色剤(金属酸化物、ジスアゾピグメントなど)、老化防止剤(ジブチルジチオカルバミン酸ニッケル、ヒンダードフェノールなど)、可塑剤(フタル酸ジブチル、アジピン酸ジ-2-エチルヘキシルなど)、難燃剤(メラミン、シアヌール酸またはイソシアヌル酸との塩など)、帯電防止剤〔アニオン界面活性剤[リン酸エステル塩(例えば、ポリオキシアルキレン化合物のモノリン酸エステル塩、ジリン酸エステル塩など)、アルキルベンゼンスルホン酸塩など]、カチオン界面活性剤、非イオン界面活性剤など〕が挙げられ、これらから選ばれる1種以上のものを添加してもよい。
本発明の切削加工用硬質ポリウレタン樹脂(Q)は切削加工用硬質ポリウレタン樹脂形成性組成物(P)を反応させて得られる。
(P)中のポリオール成分(A)とイソシアネート成分(B)の反応方法としては、
(1)(A)と(B)を一度に混合して反応させるワンショット法
(2)予め(A)の一部と(B)を反応させてNCO末端プレポリマーを形成させた後、残りの(A)と反応させるか、あるいは予め(A)と、(B)の一部を反応させてOH末端プレポリマーを形成させた後、残りの(B)と反応させるプレポリマー法
等が挙げられる。
上記切削加工用硬質ポリウレタン樹脂(Q)からなる切削加工用硬質ポリウレタン樹脂成形体(R)は、微小気泡を全く含まない成形体、マイクロバルーンの微小気泡のみで軽量化されたシンタクチックフォーム、後述のメカニカルフロス法によって形成された不活性気体の微小気泡で軽量化された発泡体、及びマイクロバルーンの微小気泡とメカニカルフロス法によって形成された不活性気体の微小気泡を同時に含む発泡体等が挙げられる。
微小気泡を全く含まない成形体は密度が約1.2g/cm以上と高く、大きな強度の必要な模型用材料に使用される。通常はシンタクチックフォームや発泡体にすることで軽量化して切削加工性を良くし、模型用材料に使用される。
発泡方法としては、ポリオール成分と芳香族ポリイソシアネート成分の混合中及び/又は混合前にフロロカーボン、水素原子含有ハロゲン化炭化水素、低沸点炭化水素等の揮発性の発泡剤や、炭酸ガス発生源となる水などを投入する発泡剤発泡法と、上記成分を混合中に空気や窒素等の不活性ガスを吹き込むメカニカルフロス発泡法が挙げられるが、模型用材料に必要な緻密な面を有する硬質ポリウレタン樹脂成形体を成形するにはメカニカルフロス発泡法が適している。
メカニカルフロス発泡法とは、特許第3083751号公報の選択図3に示されている、内面に多数の歯の付いた円筒状のステーターと、ステーター内部に同じく多数の歯の付いたローターからなるメカニカルフロス発泡機のローターが回転中に、発泡させたい材料と不活性ガスを同時に連続的に当該発泡機に注入することにより、当該発泡機の出口から発泡した材料を連続的に取り出す方法である。
材料や不活性ガスの注入口を任意の数だけ設けられるため、2種類以上の材料と不活性ガスの混合が可能である。また、材料は硬化性があっても発泡機から出た後に硬化するのであればかまわない。
出口から吐出する材料と不活性ガスの混合物は25~120℃に予め温度調整された型(開放型や密閉型)、あるいはこぼれないように両側を仕切られたベルトコンベア上に注型される。
注型された混合物は、硬化炉にて、好ましくは70~130℃、さらに好ましくは80~120℃で、0.5~10時間硬化させることにより成型品が得られる。
型やベルトコンベアの材質は金属(アルミニウム、ステンレスなど)やプラスチック(ポリプロピレンやポリカーボネートなど)が通常使用される。
発泡後の気泡径が細かく微小であるという点、得られる硬化物内の密度分布が均一であるという点でメカニカルフロス発泡法は模型用材料を作製する方法としては発泡剤発泡法より好ましい。
メカニカルフロス発泡法による微小気泡径は好ましくは0.5~300μmであり、さらに好ましくは1~200μmである。
微小気泡径が0.5μm以上であると安定した微小気泡が得られ、300μm以下であると得られる樹脂成形体の肌理が細かく、切削加工した場合は塗装工程が簡略化できる。
メカニカルフロス発泡法による微小気泡の量(体積%)は、成形体の体積に対する、マイクロバルーンを含有しない成形体の場合は不活性ガスの体積%、マイクロバルーンを含有させた成形体の場合はマイクロバルーンの体積+不活性ガスの体積%であり、好ましくは10~95、より好ましくは15~90、さらに好ましくは20~85である。この範囲であれば微細で均一に分散した気泡が得られる。
メカニカルフロス発泡法では、硬質発泡ポリウレタン樹脂の気泡径を安定させる目的で、切削加工用硬質ポリウレタン樹脂形成性組成物(P)に整泡剤(F)を含有させることができる。気泡の安定化の観点から(A)と(B)の合計重量100重量%に対して、(F)は通常10重量%以下、好ましくは0.1~8重量%、さらに好ましくは0.5~5重量%である。
整泡剤(F)としては、シリコン系整泡剤(例えば、ジメチルポリシロキサンや主鎖、側鎖及び末端の少なくとも1つをポリオキシアルキレン、フェニル、アルキル、アラルキル等で変性した非反応性ジメチルシロキサンなど)が挙げられる。
本発明の硬質ポリウレタン樹脂成形体(R)において、吸湿時の伸び率を測定するには長期間要する。そのため、成形体を水に浸漬し、その後の伸びを測定する飽和吸水伸び率と同じ温度での95%RHの飽和吸湿伸び率は同じ値を示すことから、促進方法として飽和吸水伸び率を用いて、吸湿時の伸びの比較を行う。
飽和吸水伸び率の試験方法は以下の通りである。
硬質ポリウレタン樹脂成形体から20×20×100mmの試験片を切り出し、切り出した試験片をアルミラミネート袋に入れて密閉する。袋を25℃で24時間保管後、試験片を袋から取り出して100mm方向の長さをノギスで測定し、その長さを浸漬前の長さとする。試験片は、密閉できる容器に入った精製水に浸漬し、密閉後25℃の恒温器で保管する。試験片の長さは、一定期間毎にノギスで測定し、その長さを浸漬後の長さとする。
精製水中での吸水伸び率は、下記式(1)にて算出する。
Figure JPOXMLDOC01-appb-M000010
そのうち、前回測定から吸水伸び率の増加が0.01%以下となった時点での吸水伸び率を飽和吸水伸び率とする。
飽和吸水伸び率は、模型や検査治具素材の歪みや反りの観点から、好ましくは0.3%以下である。
切削加工用硬質ポリウレタン樹脂成形体(R)は、切削加工されて模型、マスターモデルまたは検査治具を得ることができる。
本発明における切削加工用硬質ポリウレタン樹脂成形体(R)を切削加工して用いる場合は、例えば「模型作製技術マニュアル」(財団法人 素形材センター発行)に記載されているようにNCマシンと呼ばれるコンピュータ制御の工作機械のうち、通常、NCフライス盤やマシニングセンタによって切削加工(機械加工)されたり、のこぎり、のみ、かんな等を使用して切削加工(手加工)され、最後に仕上がり面をサンドペーパーで平滑にされて模型となる。
機械加工において使用される刃物は、ボールエンドミルやフラットエンドミルであり、一般にハイス、超硬と呼ばれる材質のものが使用される。
機械加工は主として3段階の切削工程からなり、初期が粗加工、中期が中加工、最後が仕上げ加工と呼ばれる。本発明における硬質ポリウレタン樹脂は、粗加工では好ましくは刃物の直径が20~30mm、刃物送り速度1,000~3,000mm/分、刃物回転数200~5,000rpmで切削される。次に、中加工では好ましくは刃物直径10~20mm、送り速度1,000~2,000mm/分、回転数1,000~3,000rpm、仕上げ加工では刃物直径5~10mm、送り速度500~1,500mm/分、回転数1,000~2,000rpmで切削される。
得られた模型が自動車等のデザインモデルに使用される場合はさらに塗装されて仕上げられ、デザインの評価に供される。成形用金型等の原型であるマスターモデルとして使用される場合は鋳物砂や樹脂、石膏等での形状反転に供される。
以下、実施例をもって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の部は重量部、%は重量%を表す。
表1~3に記載の実施例および比較例に使用した原料の組成、記号等は次の通りである。
ポリオール成分(A)
AO付加物(a)
AO付加物(a-1):BPAのPO2モル以下付加物(29%)、PO3モル以上付加物(71%)〔水酸基価280mgKOH/g〕
AO付加物(a-2):BPAのPO2モル以下付加物(36%)、PO3モル以上付加物(64%)〔水酸基価288mgKOH/g〕
AO付加物(a-3):BPAのPO3モル以上付加物(PO2モル以下付加物を含まない)〔水酸基価112mgKOH/g〕
AO付加物(a-4):BPAのPO2モル以下付加物(4%)、PO3モル以上付加物(96%)〔水酸基価216mgKOH/g〕
AO付加物(a-1’):BPAのPO2モル以下付加物(49%)、PO3モル以上付加物(51%)〔水酸基価300mgKOH/g〕
AO付加物(a-2’):BPAのPO3モル以上付加物(PO2モル以下付加物を含まない)〔水酸基価56mgKOH/g〕
AO付加物(a-3’):BPAのPO2モル以下付加物(93%)、PO3モル以上付加物(7%)〔水酸基価316mgKOH/g〕
ポリオール(b)
ポリオール(b-1):グリセリンのPO5.7モル付加物〔水酸基価400mgKOH/g〕
ポリオール(b-2):グリセリンのPO2.7モル付加物〔水酸基価673mgKOH/g〕
ポリオール(b-3):グリセリンのPO15.7モル付加物〔水酸基価168mgKOH/g〕
ポリオール(b-4):ペンタエリスリトールのPO7.3モル付加物〔水酸基価400mgKOH/g〕
ポリオール(b-1’):グリセリンのPO24.3モル付加物〔水酸基価112mgKOH/g〕
ポリオール(b-2’):トリレンジアミンのPO5.6モル、EO2.6モル付加物〔水酸基価400mgKOH/g〕
ポリオール(b-3’):グリセリンのPO2.3モル付加物〔水酸基価750mgKOH/g〕
<水酸基価測定方法>
JIS K1557-1(2007年)に準じて測定した。
<BPAのPO2モル以下付加物測定方法>
BPAのPO2モル以下付加物の含有量は高速液体クロマトグラフにより測定した。
測定条件は以下の通りである。
高速液体クロマトグラフ:ProminenceUFLC
カラム:Shim-pack XR-ODS〔(株)島津製作所製〕
移動相:水/メタノール
温度:40℃
イソシアネート成分(B)
粗製MDI(B-1):商品名「ミリオネートMR-200」、日本ポリウレタン工業(株)製、(NCO%31.3)
カルボジイミド変性Mジイソシアネート(B-2):商品名「コロネートMTL」日本ポリウレタン工業(株)製、(NCO%28.8)
無機フィラー(C)
無機フィラー(C-1):商品名「ソープストーンC」、日本ミストロン(株)製、タルク
脱水剤(D)
脱水剤(D-1):商品名「モレキュラーシーブ3A-Bパウダー」、ユニオン昭和(株)製、モレキュラーシーブ
マイクロバルーン(E)
マイクロバルーン(E-1):商品名「マツモトマイクロスフェアMFL-80GCA」、松本油脂製薬(株)製、平均粒径20μm、密度0.24g/cmのアクリルマイクロバルーン
その他の成分
整泡剤(F-1):商品名「SZ-1671」、東レ・ダウコーニング(株)製、シリコーン整泡剤
触媒(G-1):商品名「Stann BL」、三共有機合成(株)製、ジ-n-ブチル錫ジラウレート
実施例1~6 <切削加工用硬質ポリウレタン樹脂成形体>
表1に記載の処方で、主剤成分をプラネタリーミキサーに投入し、130rpmで10分間撹拌後、5分間4kPa以下で撹拌脱泡して主剤成分混合液を得た。硬化剤成分も同様にして撹拌脱泡し、硬化剤成分混合液を得た。各成分とも25±1℃となるよう温度調整した。調整した主剤成分混合液と硬化剤成分混合液をプラネタリーミキサーに投入し、130rpmで1分間4kPa以下で撹拌脱泡後、50×50×150mm金型に注型し、切削加工用硬質ポリウレタン樹脂成形体を得た。
比較例1~6
表2に記載の処方で、実施例1~6と同様に行い、比較切削加工用硬質ポリウレタン樹脂成形体を得た。
上記で得られた実施例1~6および比較例1~6の切削加工用硬質ポリウレタン樹脂成形体について、下記の測定方法でスコーチ、荷重たわみ温度、および吸水伸び率を評価し、その結果を表1、2に示した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
実施例7~9 <切削加工用硬質発泡ポリウレタン樹脂成形体>
表3に記載の処方で、主剤成分をプラネタリーミキサーに投入し、130rpmで10分間撹拌後、5分間4kPa以下で撹拌脱泡して主剤成分混合液を得た。硬化剤成分も同様にして撹拌脱泡し、硬化剤成分混合液を得た。各成分とも25±1℃となるよう温度調整した。次に、メカニカルフロス機(東邦機械工業製 MF-350型メカニカルフロス発泡装置)のローターを300rpmで回転させ、窒素ガスを吹き込みながら主剤成分混合液および硬化剤成分混合液を合計で3L/分になるような流量でミキシングヘッド入り口部に連続供給した。混合、吐出された液ミキシングヘッド出口から1mのビニールホースを通し、50×50×150mm金型に注型し、切削加工用硬質発泡ポリウレタン樹脂成形体を得た。
比較例7~8
表3に記載の処方で、実施例7~9と同様に行い、比較切削加工用硬質発泡ポリウレタン樹脂成形体を得た。
Figure JPOXMLDOC01-appb-T000013
<硬化物の密度>
硬質ポリウレタン樹脂成形体から20×20×100mmの試験片を切り出し、重量と体積から算出した。
<スコーチ>
得られた硬質ポリウレタン樹脂成形体を半分に切断し、切断面の色を確認した。変化のないものをスコーチなし、中心部が茶色に変色したものをスコーチありとした。
<荷重たわみ温度>
JIS K6911(2006年)に準じて、得られた硬質ポリウレタン樹脂成形体を試験した。
<吸水伸び率>
成形体を水に浸漬し、その後の伸びを測定する飽和吸水伸び率と同じ温度での95%RHの飽和吸湿伸び率は同じ値を示すことから、促進方法として飽和吸水伸び率を用いて、吸湿時の伸びの比較を行った。試験方法は以下の通りである。
硬質ポリウレタン樹脂成形体から20×20×100mmの試験片を切り出し、切り出した試験片をアルミラミネート袋に入れて密閉する。袋を25℃で24時間保管後、試験片を袋から取り出して100mm方向の長さをノギスで測定し、その長さを浸漬前の長さとする。試験片は、密閉できる容器に入った精製水に浸漬し、密閉後25℃の恒温器で保管する。試験片の長さは、一定期間毎にノギスで測定し、前回測定から吸水伸び率の増加が0.01%以下となった時点での吸水伸び率を飽和吸水伸び率とする。飽和吸水伸び率に達した時点での試験片の長さを浸漬後の長さとする。
精製水中での吸水伸び率は、下記式(1)にて算出した。
Figure JPOXMLDOC01-appb-M000014
表1,2において、実施例1~6の硬質ポリウレタン樹脂形成性組成物(P)から得られた樹脂成形体は、荷重たわみ温度が高く、スコーチの発生が無く、吸水伸び率も小さい。これに比べて、比較例1,5,6ではスコーチが発生し、比較例2,3では荷重たわみ温度が低く、吸水伸び率が大きく、比較例4では吸水伸び率が大きく、実施例のように3つの物性、荷重たわみ温度が高く、スコーチの発生が無く、吸水伸び率も小さいことをすべて満足できるものはなかった。
また、表3においても、実施例7~9の硬質ポリウレタン樹脂形成性組成物(P)から得られた発泡樹脂成形体は、荷重たわみ温度が高く、スコーチの発生が無く、吸水伸び率も小さい。これに比べて、比較例7ではスコーチが発生し、比較例8では荷重たわみ温度が低く、吸水伸び率が大きく、実施例のように3つの物性、荷重たわみ温度が高く、スコーチの発生が無く、吸水伸び率も小さいことをすべて満足できるものはなかった。
本発明の切削加工用硬質ポリウレタン樹脂成形体は、デザインモデル、マスターモデル等の模型、簡易射出成形型、検査治具等の切削加工材料等として幅広く用いることができ極めて有用である。

Claims (15)

  1. 官能基数がk価(k=2~3の整数)のポリフェノール(j)のアルキレンオキシド付加物(a)であって、(a)の重量100重量%に対して、アルキレンオキシドの付加モル数がk以下であるk価のポリフェノール(j)のアルキレンオキシド付加物(ak)の合計重量が39重量%以下であり、かつ水酸基価が100~295mgKOH/gであるアルキレンオキシド付加物(a)を45~99重量%、
    官能基数が3~8価である多官能脂肪族ポリオールまたは多官能脂環式ポリオールであって水酸基価が160~700mgKOH/gであるポリオール(b)を1~55重量%の割合で含有するポリオール成分(A)であって、
    (A)中に含有されるオキシエチレン基の重量が(A)の重量100重量%に対して10重量%以下であるポリオール成分(A)、
    イソシアネート成分(B)、無機フィラー(C)および脱水剤(D)を含有してなる切削加工用硬質ポリウレタン樹脂形成性組成物(P)。
  2. アルキレンオキシド付加物(a)が下記一般式(1)で示される請求項1に記載の組成物(P)。
    Figure JPOXMLDOC01-appb-C000001
    [式中、-Y-は-CH-、-C(CH-、-CH(CH)-、-SO-、-O-、存在しない基のいずれかの基;Gは炭素数2~4のアルキレン基;mおよびnは整数でありm+nは1~13である。]
  3. アルキレンオキシド付加物(a)が、ビスフェノールAのプロピレンオキシド付加物である請求項1または2に記載の組成物(P)。
  4. ポリオール(b)が、官能基数が3~8価である多官能脂肪族ポリオールまたは多官能脂環式ポリオールのプロピレンオキシド付加物である請求項1~3のいずれか1項に記載の組成物(P)。
  5. イソシアネート成分(B)が、炭素数15~63のポリメチレンポリフェニレンポリイソシアネートである請求項1~4のいずれか1項に記載の組成物(P)。
  6. 無機フィラー(C)が、タルクである請求項1~5のいずれか1項に記載の組成物(P)。
  7. ポリオール成分(A)とイソシアネート成分(B)の合計重量100重量%に対して、さらに、マイクロバルーン(E)を15重量%以下含有する請求項1~6のいずれか1項に記載の組成物(P)。
  8. 請求項1~7のいずれか1項に記載の切削加工用硬質ポリウレタン樹脂形成性組成物(P)を反応させてなる切削加工用硬質ポリウレタン樹脂(Q)。
  9. 発泡体である請求項8に記載のポリウレタン樹脂(Q)。
  10. 請求項8または9に記載の切削加工用硬質ポリウレタン樹脂(Q)からなる切削加工用硬質ポリウレタン樹脂成形体(R)。
  11. 請求項10に記載の切削加工用硬質ポリウレタン樹脂成形体(R)を切削加工してなる模型。
  12. 請求項10に記載の切削加工用硬質ポリウレタン樹脂成形体(R)を切削加工してなるマスターモデル。
  13. 請求項10に記載の切削加工用硬質ポリウレタン樹脂成形体(R)を切削加工してなる検査治具。
  14. 請求項1~7のいずれか1項に記載の切削加工用硬質ポリウレタン樹脂形成性組成物(P)をメカニカルフロス法で反応させて切削加工用硬質ポリウレタン樹脂(Q)を得る切削加工用硬質ポリウレタン樹脂の製造方法。
  15. 切削加工用硬質ポリウレタン樹脂形成性組成物(P)が、さらに整泡剤(F)を含有する請求項14に記載の製造方法。
PCT/JP2012/079398 2011-11-30 2012-11-13 切削加工用硬質ポリウレタン樹脂 WO2013080787A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013516032A JP5703374B2 (ja) 2011-11-30 2012-11-13 切削加工用硬質ポリウレタン樹脂
US14/355,643 US9580570B2 (en) 2011-11-30 2012-11-13 Rigid polyurethane resin for cutting work

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011261597 2011-11-30
JP2011-261597 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080787A1 true WO2013080787A1 (ja) 2013-06-06

Family

ID=48535254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079398 WO2013080787A1 (ja) 2011-11-30 2012-11-13 切削加工用硬質ポリウレタン樹脂

Country Status (3)

Country Link
US (1) US9580570B2 (ja)
JP (1) JP5703374B2 (ja)
WO (1) WO2013080787A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187395A1 (en) * 2017-04-07 2018-10-11 The Willamette Valley Company Llc Polymeric plugging composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3498745A1 (de) * 2017-12-18 2019-06-19 Covestro Deutschland AG Flammgeschützte polyurethan-hartschaumstoffe
CN109265639A (zh) * 2018-08-10 2019-01-25 上纬新材料科技股份有限公司 一种具有耐热性的改性聚氨酯组合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255819A (ja) * 1988-11-30 1990-10-16 Takeda Chem Ind Ltd 硬質ウレタンフオーム用ポリオール組成物
JPH06329747A (ja) * 1993-04-28 1994-11-29 Sanyo Chem Ind Ltd 発泡ポリウレタン成形品の製造法
JPH10168152A (ja) * 1996-12-17 1998-06-23 Sumitomo Bayer Urethane Kk 硬質ポリウレタンフォームの製造方法および硬質ポリウレタンフォーム用組成物
JPH10339854A (ja) * 1997-06-09 1998-12-22 Hoya Corp ポリウレタン眼装着用レンズ材料及びポリウレタン眼装着用レンズ
JP2004115772A (ja) * 2002-09-27 2004-04-15 Toho Chem Ind Co Ltd 硬質ポリウレタンフォームの製造方法
JP2006249422A (ja) * 2005-02-09 2006-09-21 Sanyo Chem Ind Ltd 切削加工用ポリウレタン樹脂形成性組成物
JP2007291371A (ja) * 2006-03-29 2007-11-08 Sanyo Chem Ind Ltd 模型素材用盛り付け剤
WO2009060903A1 (ja) * 2007-11-09 2009-05-14 Mitsui Chemicals Polyurethanes, Inc. ポリオール組成物、発泡用組成物およびポリウレタンフォーム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX171424B (es) 1988-11-30 1993-10-26 Takeda Chemical Industries Ltd Composiciones de poliol para producir espumas rigidas de poliuretano
US20060258762A1 (en) * 2005-05-13 2006-11-16 Dobransky Michael A Hydrocarbon or hydrofluorocarbon blown ASTM E-84 class I rigid polyurethane foams

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255819A (ja) * 1988-11-30 1990-10-16 Takeda Chem Ind Ltd 硬質ウレタンフオーム用ポリオール組成物
JPH06329747A (ja) * 1993-04-28 1994-11-29 Sanyo Chem Ind Ltd 発泡ポリウレタン成形品の製造法
JPH10168152A (ja) * 1996-12-17 1998-06-23 Sumitomo Bayer Urethane Kk 硬質ポリウレタンフォームの製造方法および硬質ポリウレタンフォーム用組成物
JPH10339854A (ja) * 1997-06-09 1998-12-22 Hoya Corp ポリウレタン眼装着用レンズ材料及びポリウレタン眼装着用レンズ
JP2004115772A (ja) * 2002-09-27 2004-04-15 Toho Chem Ind Co Ltd 硬質ポリウレタンフォームの製造方法
JP2006249422A (ja) * 2005-02-09 2006-09-21 Sanyo Chem Ind Ltd 切削加工用ポリウレタン樹脂形成性組成物
JP2007291371A (ja) * 2006-03-29 2007-11-08 Sanyo Chem Ind Ltd 模型素材用盛り付け剤
WO2009060903A1 (ja) * 2007-11-09 2009-05-14 Mitsui Chemicals Polyurethanes, Inc. ポリオール組成物、発泡用組成物およびポリウレタンフォーム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187395A1 (en) * 2017-04-07 2018-10-11 The Willamette Valley Company Llc Polymeric plugging composition
US11820856B2 (en) 2017-04-07 2023-11-21 The Williamette Valley Company Llc Polymeric plugging composition

Also Published As

Publication number Publication date
US9580570B2 (en) 2017-02-28
JPWO2013080787A1 (ja) 2015-04-27
JP5703374B2 (ja) 2015-04-15
US20140288198A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US6221929B1 (en) Rigid foamed polyurethane-forming compositions, foamed polyurethane moldings and models made of the same
TWI488876B (zh) 研磨墊用2液型胺基甲酸乙酯樹脂組成物、聚胺基甲酸乙酯研磨墊及聚胺基甲酸乙酯研磨墊之製造方法
EP0035389A2 (en) Process for preparing integral skin microcellular polyester base polyurethane elastomers, the elastomers per se isocyanate curable compositions and two component combinations for producing the elastomers and cast shoe soles attached to shoe uppers
JP5703374B2 (ja) 切削加工用硬質ポリウレタン樹脂
CN100351282C (zh) 两组分可固化耐磨泡沫体用多元醇组合物,耐磨泡沫体及制备耐磨泡沫体的方法
CN114258409B (zh) 软质聚氨酯泡沫的制备方法
JP3130893B2 (ja) 合成樹脂成形品
JP4402121B2 (ja) 切削加工用硬質ポリウレタンフォームの製造方法
JP2018135508A (ja) ポリウレタン樹脂組成物形成用組成物
JP4343178B2 (ja) 切削加工用ポリウレタン樹脂形成性組成物
JPH0680107B2 (ja) ポリウレタンウレア系エラストマ−の製造方法
JP6666931B2 (ja) 帯電防止性ポリウレタン樹脂組成物
JP2010155942A (ja) 切削加工用模型素材形成性組成物
JP4166588B2 (ja) 模型の製造方法
JP2016113537A (ja) 低反発性発泡ポリウレタン樹脂
JP6714053B2 (ja) 切削加工用ポリウレタン樹脂組成物
JP2015078349A (ja) 低反発性ポリウレタン樹脂
JP6259950B2 (ja) 水等価ファントム材用ポリウレタン樹脂
JP3734783B2 (ja) 模型素材用ウレタン系盛り付け剤
JPH06329747A (ja) 発泡ポリウレタン成形品の製造法
JP2002275235A (ja) メカニカルフロス発泡用硬質ポリウレタンフォーム形成性組成物およびフォーム成形品
JP2004204227A (ja) 切削加工性ポリウレタン樹脂形成性組成物、樹脂成形品、および模型または真空成形型の製法
KR102300038B1 (ko) 연마패드로부터 재생된 폴리올 조성물 및 이의 제조방법
KR102300050B1 (ko) 연마패드로부터 재생된 폴리올 및 이의 제조방법
JP2011212775A (ja) ポリウレタン研磨パッド部材組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013516032

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355643

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853921

Country of ref document: EP

Kind code of ref document: A1