WO2013073417A1 - エッチング方法 - Google Patents

エッチング方法 Download PDF

Info

Publication number
WO2013073417A1
WO2013073417A1 PCT/JP2012/078712 JP2012078712W WO2013073417A1 WO 2013073417 A1 WO2013073417 A1 WO 2013073417A1 JP 2012078712 W JP2012078712 W JP 2012078712W WO 2013073417 A1 WO2013073417 A1 WO 2013073417A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
etching
resist film
mask layer
plasma
Prior art date
Application number
PCT/JP2012/078712
Other languages
English (en)
French (fr)
Inventor
鈴木敦志
難波江宏一
近藤俊行
森みどり
寺前文晴
Original Assignee
エルシード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルシード株式会社 filed Critical エルシード株式会社
Priority to EP12850278.8A priority Critical patent/EP2782120A4/en
Priority to CN201280055844.5A priority patent/CN103946960B/zh
Priority to US14/357,185 priority patent/US9472736B2/en
Priority to KR1020147013080A priority patent/KR20140090209A/ko
Publication of WO2013073417A1 publication Critical patent/WO2013073417A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention relates to an etching method using plasma, a sapphire substrate processed by this etching method, and a light-emitting element including the sapphire substrate.
  • a method for etching a workpiece a method in which a substrate having a resist film formed on the surface is etched using the resist film as a mask (see, for example, Patent Document 1).
  • a sapphire substrate is etched by exciting a mixed gas obtained by adding a carbon-based gas to an etching gas into a plasma state, and the flow rate of the carbon-based gas is adjusted by adjusting the flow rate of the carbon-based gas.
  • the taper shape is adjusted.
  • the etching process is performed in consideration of the selection ratio determined by the material of the workpiece and the resist.
  • the etching process is performed in consideration of the selection ratio determined by the material of the workpiece and the resist.
  • processing of a desired shape cannot be performed unless a material with an appropriate selection ratio exists.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an etching method capable of increasing the etching selectivity between a workpiece and a resist, and a sapphire substrate processed by this etching method. And it is providing a light emitting element provided with this sapphire substrate.
  • a resist film forming step of forming a resist film on a workpiece a pattern forming step of forming a predetermined pattern on the resist film, and the resist on which the pattern is formed Exposing the film to plasma under predetermined alteration conditions, altering the resist film to increase the etching selectivity, and exposing the workpiece to plasma under etching conditions different from the alteration conditions And an etching process for the workpiece, which etches the workpiece using the resist film having a high etching selectivity as a mask.
  • condition for alteration may have a lower bias output than the condition for etching.
  • the workpiece may be a substrate mask layer formed on a predetermined substrate.
  • the etching method may include a substrate etching step of etching the substrate to be processed using the etched substrate mask layer as a mask.
  • an uneven shape with a period of 1 ⁇ m or less may be formed on the substrate to be processed in the substrate etching step.
  • an uneven shape having a depth of 300 nm or more may be formed on the substrate to be processed.
  • the substrate to be processed may be sapphire.
  • a sapphire substrate that has been subjected to uneven processing by the etching method is provided.
  • a light emitting device having the sapphire substrate and a semiconductor light emitting layer formed on the sapphire substrate.
  • a resist film forming step for forming a resist film on a work material, a pattern forming step for forming a predetermined pattern on the resist film, and the resist film on which the pattern is formed are predetermined.
  • a resist alteration process in which the resist film is exposed to plasma under alteration conditions and the resist film is altered to increase the etching selectivity, and the workpiece is exposed to plasma under etching conditions different from the alteration conditions, and an etching selectivity ratio is obtained.
  • the processed substrate is a sapphire substrate, and the sapphire substrate is etched using the etched substrate mask layer as a mask.
  • Ar gas plasma is used as the plasma in the etching step, and a bias output higher than the alteration condition is applied, and the Ar gas plasma is applied to the substrate mask layer.
  • An inductive etching method is provided.
  • an uneven shape having a depth of 300 nm or more may be formed on the sapphire substrate in the substrate etching step.
  • an uneven shape having a depth of 500 nm or more may be formed on the sapphire substrate in the substrate etching step.
  • the etching method may include a residual film removing step of removing the residual film of the resist film by plasma ashing after the pattern forming step.
  • the resist film may be cured while the pressed state is maintained, and the uneven structure of the mold may be transferred to the resist film.
  • the sapphire substrate may be etched in the substrate etching step in a state where the resist film remains on the substrate mask layer.
  • the sapphire substrate may be etched in a state where the Ni layer and the resist film are laminated.
  • the etching method may include a mask layer removing step of removing the substrate mask layer remaining on the sapphire substrate using a predetermined stripping solution after the substrate etching step.
  • the resist film is removed in advance by O 2 ashing, and then the substrate mask layer remaining on the sapphire substrate is removed using a predetermined stripping solution. Also good.
  • a resist film forming step for forming a resist film on a work material, a pattern forming step for forming a predetermined pattern on the resist film, and the resist film on which the pattern is formed are predetermined.
  • a resist alteration process in which the resist film is exposed to plasma under alteration conditions and the resist film is altered to increase the etching selectivity, and the workpiece is exposed to plasma under etching conditions different from the alteration conditions, and an etching selectivity ratio is obtained.
  • the processed substrate is a sapphire substrate, and the sapphire substrate is etched using the etched substrate mask layer as a mask. And etching the substrate to form a concavo-convex shape on the sapphire substrate.
  • Ar gas plasma is used as plasma, a predetermined bias output is applied, and the Ar gas plasma is applied to the substrate.
  • the etching selectivity between the workpiece and the resist can be increased.
  • FIG. 1 is a schematic explanatory view of a plasma etching apparatus showing an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an etching method.
  • FIG. 3A shows the process of the etching method of the substrate to be processed and the mask layer, (a) shows the substrate to be processed before processing, (b) shows the state in which the mask layer is formed on the substrate to be processed, (c ) Shows a state where a resist film is formed on the mask layer, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
  • FIG. 3A shows the process of the etching method of the substrate to be processed and the mask layer, (a) shows the substrate to be processed before processing, (b) shows the state in which the mask layer is formed on the substrate to be processed, (c ) Shows a state where a resist film is formed on the mask layer, (d) shows a state where a mold is
  • FIG. 3B shows a process of the etching method of the substrate to be processed and the mask layer
  • (f) shows a state in which the residual film of the resist film is removed
  • (g) shows a state in which the resist film is altered
  • (h) Indicates a state in which the mask layer is etched using the resist film as a mask
  • (i) indicates a state in which the substrate to be processed is etched using the mask layer as a mask
  • FIG. 3C shows the process of the etching method of the substrate to be processed and the mask layer
  • (j) shows a state where the substrate to be processed is further etched using the mask layer as a mask
  • (k) shows the mask layer remaining from the substrate to be processed.
  • FIG. 4A is a schematic perspective view
  • FIG. 4B is a schematic cross-sectional view of a light-emitting element provided with a substrate to be processed.
  • FIG. 1 is a schematic explanatory view of a plasma etching apparatus showing an embodiment of the present invention.
  • the plasma etching apparatus 1 is an inductively coupled (ICP) type, a flat substrate holding table 2 that holds a substrate to be processed 100, a container 3 that houses the substrate holding table 2, and a container 3, a coil 4 provided via a quartz plate 6, and a power source 5 connected to the substrate holder 2.
  • the coil 4 is a three-dimensional spiral coil, which supplies high-frequency power from the center of the coil and is grounded at the outer periphery of the coil.
  • the substrate 100 to be etched is placed on the substrate holder 2 directly or via a transfer tray.
  • the substrate holder 2 has a built-in cooling mechanism for cooling the substrate 100 to be processed, and is controlled by the cooling control unit 7.
  • the container 3 has a supply port and can supply various gases such as O 2 gas and Ar gas.
  • the substrate 100 to be processed is placed on the substrate holder 2, and then the air in the container 3 is discharged to make the pressure reduced. Then, a predetermined processing gas is supplied into the container 3 to adjust the gas pressure in the container 3. Thereafter, high-frequency high-frequency power is supplied to the coil 4 and the substrate holder 2 for a predetermined time to generate a reactive gas plasma 8.
  • the substrate 8 to be processed is etched by the plasma 8.
  • FIG. 2 is a flowchart showing an etching method.
  • the etching method of this embodiment includes a mask layer forming step S1, a resist film forming step S2, a pattern forming step S3, a residual film removing step S4, a resist alteration step S5, and a mask layer.
  • FIG. 3A shows the process of the etching method of the substrate to be processed and the mask layer, (a) shows the substrate to be processed before processing, (b) shows the state in which the mask layer is formed on the substrate to be processed, (c ) Shows a state where a resist film is formed on the mask layer, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
  • FIG. 3A shows the process of the etching method of the substrate to be processed and the mask layer, (a) shows the substrate to be processed before processing, (b) shows the state in which the mask layer is formed on the substrate to be processed, (c ) Shows a state where a resist film is formed on the mask layer, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
  • 3B shows a process of the etching method of the substrate to be processed and the mask layer
  • (f) shows a state in which the residual film of the resist film is removed
  • (g) shows a state in which the resist film is altered
  • (h) Indicates a state in which the mask layer is etched using the resist film as a mask
  • (i) indicates a state in which the substrate to be processed is etched using the mask layer as a mask.
  • the resist film after the alteration is expressed by painting out in the drawing.
  • 3C shows the process of the etching method of the substrate to be processed and the mask layer
  • (j) shows a state in which the substrate to be processed is further etched using the mask layer as a mask
  • (k) shows the mask layer remaining from the substrate to be processed. The removed state is shown
  • (l) shows a state in which wet etching is performed on the substrate to be processed.
  • a substrate to be processed 100 before processing is prepared. Prior to etching, the substrate to be processed 100 is cleaned with a predetermined cleaning liquid.
  • the substrate to be processed 100 is a sapphire substrate.
  • a mask layer 110 is formed on the substrate to be processed 100 (mask layer forming step: S1).
  • the mask layer 110 has a SiO 2 layer 111 on the substrate to be processed 100 and a Ni layer 112 on the SiO 2 layer 111.
  • the thickness of each of the layers 111 and 112 is arbitrary.
  • the SiO 2 layer can be 1 nm to 100 nm and the Ni layer 112 can be 1 nm to 100 nm.
  • the mask layer 110 may be a single layer.
  • the mask layer 110 is formed by a sputtering method, a vacuum evaporation method, a CVD method, or the like.
  • a resist film 120 is formed on the mask layer 110 (resist film forming step: S2).
  • a thermoplastic resin is used as the resist film 120 and is formed to have a uniform thickness by a spin coating method.
  • the resist film 120 is made of, for example, an epoxy resin and has a thickness of, for example, 100 nm or more and 300 nm or less.
  • a photo-curable resin that can be cured by ultraviolet rays or the like can be used.
  • the resist film 120 is heated and softened together with the substrate to be processed 100, and the resist film 120 is pressed with a mold 130 as shown in FIG. 3A (d).
  • An uneven structure 131 is formed on the contact surface of the mold 130, and the resist film 120 is deformed along the uneven structure 131.
  • the resist film 120 is cooled and cured together with the substrate to be processed 100 while keeping the pressed state. Then, by separating the mold 200 from the resist film 120, the concavo-convex structure 121 is transferred to the resist film 120 as shown in FIG. 3A (e) (pattern forming step: S3).
  • the period of the concavo-convex structure 121 is 1 ⁇ m or less. In the present embodiment, the period of the concavo-convex structure 121 is 500 nm.
  • the width of the convex portion 123 of the concavo-convex structure 121 is not less than 100 nm and not more than 300 nm. Moreover, the height of the convex part 123 is 100 nm or more and 300 nm or less. In this state, a residual film 122 is formed in the recess of the resist film 120.
  • the substrate to be processed 100 on which the resist film 120 is formed as described above is attached to the substrate holder 2 of the plasma etching apparatus 1. Then, the residual film 122 is removed by, for example, plasma ashing to expose the mask layer 110 that is a workpiece as shown in FIG. 3B (f) (residual film removing step: S4).
  • O 2 gas is used as a processing gas for plasma ashing.
  • the convex portion 123 of the resist film 120 is also affected by ashing, and the side surface 124 of the convex portion 123 is not perpendicular to the surface of the mask layer 110 but is inclined by a predetermined angle.
  • the resist film 120 is exposed to plasma under the condition for alteration, thereby altering the resist film 120 and increasing the etching selectivity (resist alteration step: S5).
  • Ar gas is used as a process gas for altering the resist film 120, and Ar gas plasma is induced to the resist film 120 by applying a predetermined bias output.
  • the alteration condition is set such that the bias output of the power source 5 is lower than the etching condition described later.
  • the mask layer 110 as a workpiece is etched using the resist film 120 that has been exposed to plasma under the etching conditions and has a high etching selectivity as a mask (mask layer etching step: S6).
  • Ar gas is used as a processing gas for etching the resist film 120, and a bias output higher than the alteration condition is applied to induce Ar gas plasma to the resist film 120.
  • a pattern 113 is formed in the mask layer 110 as shown in FIG.
  • the processing gas, the antenna output, the bias output, and the like can be changed as appropriate for the alteration condition and the etching condition, but it is preferable to change the bias output using the same processing gas as in this embodiment.
  • the processing gas is Ar gas
  • the back pressure is 0.5 Pa
  • the Ar gas flow rate is 25 sccm
  • the antenna output of the coil 4 is 350 W
  • the bias output of the power source 5 is 50 W
  • the resist film 120 Curing was observed.
  • Etching of the mask layer 110 is performed when the etching gas is Ar gas
  • the back pressure is 0.5 Pa
  • the Ar gas flow rate is 25 sccm
  • the antenna output of the coil 4 is 350 W
  • the bias output of the power source 5 is 100 W.
  • the resist can be cured even if the antenna output is reduced or the gas flow rate is reduced.
  • the substrate to be processed 100 is etched using the mask layer 110 as a mask (etching step of the substrate to be processed: S7).
  • etching is performed with the resist film 120 remaining on the mask layer 110.
  • plasma etching is performed using a chlorine-based gas such as BCl 3 gas as a processing gas.
  • a concavo-convex structure 101 is formed on the substrate 100 to be processed.
  • the height of the concavo-convex structure 101 is 500 nm.
  • the height of the concavo-convex structure 101 can be larger than 500 nm.
  • the etching may be finished with the resist film 120 remaining as shown in FIG. 3B (i). .
  • side etching is promoted by the SiO 2 layer 111 of the mask layer 110, and the side surface 103 of the convex portion 102 of the concavo-convex structure 101 is inclined. Further, the state of side etching can also be controlled by the inclination angle of the side surface 123 of the resist film 120. If the mask layer 110 is a single layer of the Ni layer 112, the side surface 103 of the convex portion 102 can be made substantially perpendicular to the main surface.
  • the mask layer 110 remaining on the substrate to be processed 100 is removed using a predetermined stripping solution (mask layer removing step: S8).
  • the SiO 2 layer 111 is removed by using hydrofluoric acid. Note that even if the resist film 120 remains on the mask layer 110, it can be removed together with the Ni layer 112 with high-temperature nitric acid. However, if the residual amount of the resist film 120 is large, the resist film 120 is previously obtained by O 2 ashing. Is preferably removed.
  • the corner of the convex portion 102 is removed by wet etching to form a curved portion (curved portion forming step: S9).
  • the etching solution is arbitrary, but for example, a phosphoric acid aqueous solution heated to about 170 ° C., so-called “hot phosphoric acid” can be used.
  • this bending part formation process can be abbreviate
  • the resist film 120 is exposed to plasma and altered, so that the etching selectivity between the mask layer 110 and the resist film 120 can be increased. Thereby, it becomes easy to process the mask layer 110 with a fine and deep shape, and the mask layer 110 with a fine shape can be formed sufficiently thick.
  • the plasma etching apparatus 1 can continuously perform the alteration of the resist film 120 and the etching of the mask layer 110 without significantly increasing the number of steps.
  • the resist film 120 is altered and the mask layer 110 is etched by changing the bias output of the power supply 5, and the selectivity of the resist film 120 can be easily increased.
  • the substrate to be processed 100 is etched using the sufficiently thick mask layer 110 as a mask, it becomes easy to process the substrate 100 to be processed in a fine and deep shape.
  • the formation of the concavo-convex structure 101 having a period of 1 ⁇ m or less and a depth of 300 nm or more forms a resist film on the substrate on which the mask layer is formed, and uses the resist film to form the mask layer
  • the etching method that performs etching has been impossible in the past, but is possible with the etching method of the present embodiment.
  • the etching method of this embodiment is suitable for forming a concavo-convex structure having a period of 1 ⁇ m or less and a depth of 500 nm or more.
  • the nanoscale periodic concavo-convex structure is called moth eye, but when sapphire is processed to sapphire, sapphire is a difficult-to-cut material and can only be processed to a depth of about 200 nm. However, a step of about 200 nm may be insufficient as a moth eye. It can be said that the etching method of this embodiment has solved a novel problem in the case of performing moth-eye processing on a sapphire substrate.
  • the mask layer 110 made of SiO 2 / Ni is shown as a workpiece, it goes without saying that the mask layer 110 may be a single Ni layer or other material. In short, the resist may be altered to increase the etching selectivity between the mask layer 110 and the resist film 120.
  • the processed substrate 100 may be etched without using the mask layer 110.
  • the substrate to be processed 100 becomes a material to be processed, and a resist film 120 is formed on the substrate to be processed 100, and the resist is altered to increase the etching selectivity.
  • a sapphire substrate can be etched without using a mask layer by directly forming a resist film on the sapphire substrate.
  • the change of the bias output of the plasma etching apparatus 1 is shown as the condition for alteration and the condition for etching.
  • the condition for alteration may be a condition in which the resist is altered when the resist is exposed to plasma and the etching selectivity is increased.
  • the present invention can be applied to etching of other materials.
  • SiC, Si, GaAs, GaN, InP, ZnO or the like can be used as a substrate for etching.
  • the mask layer 110 made of SiO 2 / Ni similar to the above embodiment is formed on the SiC substrate, the resist film is cured under the same conditions as the above embodiment, and the SiC substrate can be etched with SF 6 type gas It has been confirmed.
  • SF 6 type gas It has been confirmed.
  • FIGS. 4A and 4B show a substrate to be processed, where FIG. 4A is a schematic perspective view, and FIG. 4B is a cross-sectional view along AA.
  • the processed substrate 100 manufactured through the above-described steps will be described.
  • the concavo-convex structure 101 has a plurality of convex portions 102 formed periodically, and a concave portion is formed between the convex portions 102. ing.
  • the shape of each convex part 102 is a frustum shape which cut off the upper part of the cone.
  • the shape of the convex part 102 can be made into other frustum shapes, such as a polygonal frustum other than a truncated cone shape, and can also be made into weights, such as a cone and a polygonal frustum.
  • the concave portion instead of the convex portion 102 may have a shape such as a weight, a frustum, or a frustum.
  • the concavo-convex structure 101 is formed in alignment with the intersection of the virtual triangular lattice at a predetermined cycle so that the center of each convex portion 102 is the position of the apex of the regular triangle in plan view.
  • each convex portion 102 is 500 nm.
  • the period refers to the distance between the height peak positions of adjacent convex portions 102.
  • each convex portion 102 has a base end diameter of 200 nm and a height of 600 nm.
  • the period, dimension, shape, etc. of each convex part 102 can be changed suitably.
  • the light emitting element 200 shown in FIG. 5 can be manufactured by using the substrate 100 to be processed.
  • the light emitting element 200 is a face-up type LED, and a group III nitride semiconductor layer is formed on the surface of the substrate 100 to be processed having the concavo-convex structure 101.
  • the group III nitride semiconductor layer has a buffer layer 210, an n-type GaN layer 212, a multiple quantum well active layer 214, an electron block layer 216, and a p-type GaN layer 218 in this order from the substrate 100 to be processed.
  • a p-side electrode 220 is formed on the p-type GaN layer 218, and an n-side electrode 224 is formed on the n-type GaN layer 212.
  • a reflective film 226 is formed on the back surface side of the sapphire substrate 2.
  • the reflective film 226 can be composed of, for example, a dielectric multilayer film and an Al layer.
  • the buffer layer 210 is made of AlN
  • the n-type GaN layer 212 is made of n-GaN
  • the multiple quantum well active layer 214 is made of GalnN / GaN.
  • the peak wavelength of light emission of the multiple quantum well active layer 214 is 450 nm.
  • the electron block layer 216 is composed of p-AIGaN
  • the p-type GaN layer 218 is composed of p-GaN.
  • the n-type GaN layer 212 to the p-type GaN layer 218 are formed by epitaxial growth of a group III nitride semiconductor, and the concavo-convex structure 101 exists on the substrate 100 to be processed. Is flattened.
  • the p-side electrode 220 is made of a transparent material such as ITO (Indium Tin Oxide).
  • the n-side electrode 224 is formed on the exposed n-type GaN layer 212 by etching the n-type GaN layer 212 from the p-type GaN layer 218.
  • the n-side electrode 224 is made of, for example, Ti / Al / Ti / Au.
  • the surface of the reflective film 226 on the substrate 100 side forms the reflective surface 228, and light emitted from the active layer 214 is transmitted through the interface of the concavo-convex structure 101 by diffraction.
  • Light is reflected by the reflecting surface 228.
  • the light transmitted by the diffractive action is re-incident on the interface, and the light is transmitted again using the diffractive action at the interface, whereby the light can be extracted outside the element in a plurality of modes.
  • the period of each convex portion 101 is preferably larger than the optical wavelength of the light emitted from the multiple quantum well active layer 214 and smaller than the coherent length of the light.
  • the optical wavelength means a value obtained by dividing the actual wavelength by the refractive index.
  • the coherent length corresponds to the distance until the periodic oscillations of the waves cancel each other and the coherence disappears due to differences in individual wavelengths of the photon group having a predetermined spectral width.
  • the period of each convex part 102 is preferably larger than twice the optical wavelength of the light emitted from the multiple quantum well active layer 214. Moreover, it is preferable that the period of each convex part 102 is half or less of the coherent length of the light emitted from the multiple quantum well active layer 214.
  • the period of each convex portion 102 is 500 nm. Since the wavelength of light emitted from the active layer 214 is 450 nm and the refractive index of the group III nitride semiconductor layer is 2.4, the optical wavelength thereof is 187.5 nm. Further, since the half width of the light emitted from the active layer 214 is 63 nm, the coherent length of the light is 3214 nm. That is, the period of the concavo-convex structure 101 is greater than twice the optical wavelength of the active layer 214 and less than or equal to half the coherent length.
  • the to-be-processed substrate 100 which consists of sapphire for the light emitting element 200 was illustrated, the to-be-processed substrate 100 can also be used for another device, and about other specific uses etc. suitably It can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

【課題】被加工材とレジストのエッチングの選択比を高くすることのできるエッチング方法、このエッチング方法により加工されたサファイア基板、及び、このサファイア基板を備える発光素子を提供する。 【解決手段】プラズマエッチング装置を用いたエッチング方法であって、被加工材上にレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜に所定のパターンを形成するパターン形成工程と、前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、被加工材を変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして被加工材のエッチングを行う被加工材のエッチング工程と、を含むようにした。

Description

エッチング方法
 本発明は、プラズマを用いたエッチング方法、このエッチング方法により加工されたサファイア基板、及び、このサファイア基板を備える発光素子に関する。
 被加工材のエッチング方法として、表面にレジスト膜が形成された基板を、レジスト膜をマスクとしてエッチングするものが一般的である(例えば、特許文献1参照)。例えば、特許文献1に記載のエッチング方法では、エッチングガスに炭素系ガスを添加した混合ガスをプラズマ状態に励起してサファイア基板をエッチングすると共に、炭素系ガスの流量を調整することで凸部のテーパ形状を調整している。
特開2011-134800号公報
 ところで、従来のエッチング方法では、被加工材とレジストの材質により定まる選択比を考慮して、エッチング加工が行われている。しかしながら、被加工材に微細で深い形状の加工を施す場合、適切な選択比の材料が存在しないと、所望の形状の加工を施すことができない。
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、被加工材とレジストのエッチングの選択比を高くすることのできるエッチング方法、このエッチング方法により加工されたサファイア基板、及び、このサファイア基板を備える発光素子を提供することにある。
 前記目的を達成するため、本発明では、被加工材上にレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜に所定のパターンを形成するパターン形成工程と、前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、前記被加工材を前記変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記被加工材のエッチングを行う被加工材のエッチング工程と、を含むエッチング方法が提供される。
 上記エッチング方法において、前記変質用条件は、前記エッチング用条件よりも、バイアス出力が低くともよい。
 上記エッチング方法において、前記被加工材は、所定の被加工基板上に形成された基板用マスク層であってもよい。
 上記エッチング方法において、エッチングされた基板用マスク層をマスクとして、前記被加工基板のエッチングを行う基板のエッチング工程を含んでもよい。
 上記エッチング方法において、前記基板のエッチング工程にて、前記被加工基板に1μm以下の周期の凹凸形状を形成してもよい。
 上記エッチング方法において、前記被加工基板に深さ300nm以上の凹凸形状を形成してもよい。
 上記エッチング方法において、前記被加工基板はサファイアであってもよい。
 また、本発明では、上記エッチング方法により、凹凸加工が施されたサファイア基板が提供される。
 さらに、本発明では、上記サファイア基板と、前記サファイア基板上に形成された半導体発光層と、を有する発光素子が提供される。
 さらにまた、本発明では、被加工材上にレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜に所定のパターンを形成するパターン形成工程と、前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、前記被加工材を前記変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記被加工材のエッチングを行う被加工材のエッチング工程と、前記被加工材は所定の被加工基板上に形成された基板用マスク層であるとともに前記被加工基板はサファイア基板であり、エッチングされた基板用マスク層をマスクとして、前記サファイア基板のエッチングを行って、前記サファイア基板に1μm以下の周期の凹凸形状を形成する基板のエッチング工程と、を含み、前記レジスト変質工程にて、プラズマとしてArガスのプラズマを用い、所定のバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導し、前記エッチング工程にて、プラズマとしてArガスのプラズマを用い、前記変質用条件より高いバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導するエッチング方法が提供される。
 上記エッチング方法において、前記基板のエッチング工程にて、前記サファイア基板に深さ300nm以上の凹凸形状を形成してもよい。
 上記エッチング方法において、前記基板のエッチング工程にて、前記サファイア基板に深さ500nm以上の凹凸形状を形成してもよい。
 上記エッチング方法において、前記パターン形成工程の後、プラズマアッシングにより前記レジスト膜の残膜を取り除く残膜除去工程を含んでもよい。
 上記エッチング方法において、前記パターン形成工程にて、モールドで前記レジスト膜をプレスした後、プレス状態を保ったまま前記レジスト膜を硬化させ、前記レジスト膜に前記モールドの凹凸構造を転写してもよい。
 上記エッチング方法において、前記基板のエッチング工程にて、前記基板用マスク層上に前記レジスト膜が残った状態で、前記サファイア基板のエッチングを行ってもよい。
 上記エッチング方法において、前記基板用マスク層は、前記サファイア基板上のSiO層と、前記SiO層上のNi層と、を有し、前記基板のエッチング工程にて、前記SiO層と、前記Ni層と、前記レジスト膜と、が積層した状態で、前記サファイア基板のエッチングを行ってもよい。
 上記エッチング方法において、前記基板のエッチング工程の後、所定の剥離液を用いて前記サファイア基板上に残った前記基板用マスク層を除去するマスク層除去工程を含んでもよい。
 上記エッチング方法において、前記マスク層除去工程にて、Oアッシングにより予め前記レジスト膜を除去してから、所定の剥離液を用いて前記サファイア基板上に残った前記基板用マスク層を除去してもよい。
 さらにまた、本発明では、被加工材上にレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜に所定のパターンを形成するパターン形成工程と、前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、前記被加工材を前記変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記被加工材のエッチングを行う被加工材のエッチング工程と、前記被加工材は所定の被加工基板上に形成された基板用マスク層であるとともに前記被加工基板はサファイア基板であり、エッチングされた基板用マスク層をマスクとして、前記サファイア基板のエッチングを行って、前記サファイア基板に凹凸形状を形成する基板のエッチング工程と、を含み、前記レジスト変質工程にて、プラズマとしてArガスのプラズマを用い、所定のバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導し、前記エッチング工程にて、プラズマとしてArガスのプラズマを用い、前記変質用条件より高いバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導するエッチング方法が提供される。
 本発明によれば、被加工材とレジストのエッチングの選択比を高くすることができる。
図1は、本発明の一実施形態を示すプラズマエッチング装置の概略説明図である。 図2は、エッチング方法を示すフローチャートである。 図3Aは被加工基板及びマスク層のエッチング方法の過程を示し、(a)は加工前の被加工基板を示し、(b)は被加工基板上にマスク層を形成した状態を示し、(c)はマスク層上にレジスト膜を形成した状態を示し、(d)はレジスト膜にモールドを接触させた状態を示し、(e)はレジスト膜にパターンが形成された状態を示す。 図3Bは被加工基板及びマスク層のエッチング方法の過程を示し、(f)はレジスト膜の残膜を除去した状態を示し、(g)はレジスト膜を変質させた状態を示し、(h)はレジスト膜をマスクとしてマスク層をエッチングした状態を示し、(i)はマスク層をマスクとして被加工基板をエッチングした状態を示す。 図3Cは被加工基板及びマスク層のエッチング方法の過程を示し、(j)はマスク層をマスクとして被加工基板をさらにエッチングした状態を示し、(k)は被加工基板から残ったマスク層を除去した状態を示し、(l)は被加工基板にウェットエッチングを施した状態を示す。 図4は被加工基板を示し、(a)は模式斜視図を、(b)はA-A断面図をそれぞれ示す。 図5は、被加工基板を備えた発光素子の模式断面図を示す。
 図1は、本発明の一実施形態を示すプラズマエッチング装置の概略説明図である。
 図1に示すように、プラズマエッチング装置1は、誘導結合型(ICP)であり、被加工基板100を保持する平板状の基板保持台2と、基板保持台2を収容する容器3と、容器3の上方に石英板6を介して設けられたコイル4と、基板保持台2に接続された電源5と、を有している。コイル4は立体渦巻形のコイルであり、コイル中央から高周波電力を供給し、コイル外周の末端が接地されている。エッチング対象の被加工基板100は直接或いは搬送用トレーを介して基板保持台2に載置される。基板保持台2には被加工基板100を冷却するための冷却機構が内蔵されており、冷却制御部7によって制御される。容器3は供給ポートを有し、Oガス、Arガス等の各種ガスが供給可能となっている。
 このプラズマエッチング装置1でエッチングを行うにあたっては、基板保持台2に被加工基板100を載置した後、容器3内の空気を排出して減圧状態とする。そして、容器3内に所定の処理ガスを供給し、容器3内のガス圧力を調整する。その後、コイル4及び基板保持台2に高出力の高周波電力を所定時間供給して、反応ガスのプラズマ8を生成させる。このプラズマ8によって被加工基板100のエッチングを行う。
 次いで、図2、図3A及び図3Bを参照して、プラズマエッチング装置1を用いたエッチング方法について説明する。
 図2は、エッチング方法を示すフローチャートである。図2に示すように、本実施形態のエッチング方法は、マスク層形成工程S1と、レジスト膜形成工程S2と、パターン形成工程S3と、残膜除去工程S4と、レジスト変質工程S5と、マスク層のエッチング工程S6と、被加工基板のエッチング工程S7と、マスク層除去工程S8と、湾曲部形成工程S9と、を含んでいる。
 図3Aは被加工基板及びマスク層のエッチング方法の過程を示し、(a)は加工前の被加工基板を示し、(b)は被加工基板上にマスク層を形成した状態を示し、(c)はマスク層上にレジスト膜を形成した状態を示し、(d)はレジスト膜にモールドを接触させた状態を示し、(e)はレジスト膜にパターンが形成された状態を示す。
 図3Bは被加工基板及びマスク層のエッチング方法の過程を示し、(f)はレジスト膜の残膜を除去した状態を示し、(g)はレジスト膜を変質させた状態を示し、(h)はレジスト膜をマスクとしてマスク層をエッチングした状態を示し、(i)はマスク層をマスクとして被加工基板をエッチングした状態を示す。尚、変質後のレジスト膜は、図中、塗りつぶすことで表現している。
 図3Cは被加工基板及びマスク層のエッチング方法の過程を示し、(j)はマスク層をマスクとして被加工基板をさらにエッチングした状態を示し、(k)は被加工基板から残ったマスク層を除去した状態を示し、(l)は被加工基板にウェットエッチングを施した状態を示す。
 まず、図3A(a)に示すように、加工前の被加工基板100を準備する。エッチングに先立って、被加工基板100を所定の洗浄液で洗浄しておく。本実施形態においては、被加工基板100はサファイア基板である。
 次いで、図3A(b)に示すように、被加工基板100にマスク層110を形成する(マスク層形成工程:S1)。本実施形態においては、マスク層110は、被加工基板100上のSiO層111と、SiO層111上のNi層112と、を有している。各層111,112の厚さは任意であるが、例えばSiO層を1nm以上100nm以下、Ni層112を1nm以上100nm以下とすることができる。尚、マスク層110は、単層とすることもできる。マスク層110は、スパッタリング法、真空蒸着法、CVD法等により形成される。
 次に、図3A(c)に示すように、マスク層110上にレジスト膜120を形成する(レジスト膜形成工程:S2)。本実施形態においては、レジスト膜120として熱可塑性樹脂が用いられ、スピンコート法により均一な厚さに形成される。レジスト膜120は、例えばエポキシ系樹脂からなり、厚さが例えば100nm以上300nm以下である。尚、レジスト膜40として、紫外線等で硬化させることのできる光硬化性樹脂を用いることもできる。
 そして、レジスト膜120を被加工基板100ごと加熱して軟化させ、図3A(d)に示すように、モールド130でレジスト膜120をプレスする。モールド130の接触面には凹凸構造131が形成されており、レジスト膜120が凹凸構造131に沿って変形する。
 この後、プレス状態を保ったまま、レジスト膜120を被加工基板100ごと冷却して硬化させる。そして、モールド200をレジスト膜120から離隔することにより、図3A(e)に示すように、レジスト膜120に凹凸構造121が転写される(パターン形成工程:S3)。ここで、凹凸構造121の周期は1μm以下となっている。本実施形態においては、凹凸構造121の周期は500nmである。また、本実施形態においては、凹凸構造121の凸部123の幅は100nm以上300nm以下となっている。また、凸部123の高さは100nm以上300nm以下となっている。この状態で、レジスト膜120の凹部には残膜122が形成されている。
 以上のようにレジスト膜120が形成された被加工基板100を、プラズマエッチング装置1の基板保持台2に取り付ける。そして、例えばプラズマアッシングにより残膜122を取り除いて、図3B(f)に示すように被加工材であるマスク層110を露出させる(残膜除去工程:S4)。本実施形態においては、プラズマアッシングの処理ガスとしてOガスが用いられる。このとき、レジスト膜120の凸部123もアッシングの影響を受け、凸部123の側面124は、マスク層110の表面に対して垂直でなく、所定の角度だけ傾斜する。
 そして、図3B(g)に示すようにレジスト膜120を変質用条件にてプラズマに曝して、レジスト膜120を変質させてエッチング選択比を高くする(レジスト変質工程:S5)。本実施形態においては、レジスト膜120の変質用の処理ガスとしてArガスが用いられ、所定のバイアス出力を加えることにより、Arガスのプラズマがレジスト膜120へ誘導される。また、本実施形態においては、変質用条件は、後述のエッチング用条件よりも電源5のバイアス出力が低く設定される。
 この後、エッチング用条件にてプラズマに曝し、エッチング選択比が高くなったレジスト膜120をマスクとして被加工材としてのマスク層110のエッチングを行う(マスク層のエッチング工程:S6)。本実施形態においては、レジスト膜120のエッチング用の処理ガスとしてArガスが用いられ、変質用条件より高いバイアス出力を加えて、Arガスのプラズマをレジスト膜120へ誘導する。これにより、図3B(h)に示すように、マスク層110にパターン113が形成される。
 ここで、変質用条件とエッチング用条件について、処理ガス、アンテナ出力、バイアス出力等を適宜に変更できるが、本実施形態のように同一の処理ガスを用いてバイアス出力を変えることが好ましい。具体的に、変質用条件について、処理ガスをArガスとし、背圧を0.5Pa、Arガスの流量25sccm、コイル4のアンテナ出力を350W、電源5のバイアス出力50Wとすると、レジスト膜120の硬化が観察された。そして、エッチング用条件について、処理ガスをArガスとし、背圧を0.5Pa、Arガスの流量25sccm、コイル4のアンテナ出力を350W、電源5のバイアス出力を100Wとすると、マスク層110のエッチングが観察された。尚、エッチング用条件に対してバイアス出力を低くする他、アンテナ出力を低くしたり、ガス流量を少なくしても、レジストの硬化が可能である。
 次に、図3B(i)に示すように、マスク層110をマスクとして、被加工基板100のエッチングを行う(被加工基板のエッチング工程:S7)。本実施形態においては、マスク層110上にレジスト膜120が残った状態でエッチングが行われる。また、処理ガスとしてBClガス等の塩素系ガスを用いたプラズマエッチングが行われる。
 そして、図3C(j)に示すように、エッチングが進行していくと、被加工基板100に凹凸構造101が形成される。本実施形態においては、凹凸構造101の高さは、500nmである。尚、凹凸構造101の高さを500nmより大きくすることもできる。ここで、凹凸構造101の高さが、例えば300nmのように比較的浅くするのならば、図3B(i)に示すように、レジスト膜120が残留した状態でエッチングを終了しても差し支えない。
 本実施形態においては、マスク層110のSiO層111により、サイドエッチングが助長されて、凹凸構造101の凸部102の側面103が傾斜している。また、レジスト膜120の側面123の傾斜角によっても、サイドエッチングの状態を制御することができる。尚、マスク層110をNi層112の単層とすれば、凸部102の側面103を主面に対してほぼ垂直にすることができる。
 この後、図3B(k)に示すように、所定の剥離液を用いて被加工基板100上に残ったマスク層110を除去する(マスク層除去工程:S8)。本実施形態においては、高温の硝酸を用いることでNi層112を除去した後、フッ化水素酸を用いてSiO層111を除去する。尚、レジスト膜120がマスク層110上に残留していても、高温の硝酸でNi層112とともに除去することができるが、レジスト膜120の残留量が多い場合はOアッシングにより予めレジスト膜120を除去しておくことが好ましい。
 そして、図3B(l)に示すように、ウェットエッチングにより凸部102の角を除去して湾曲部を形成する(湾曲部形成工程:S9)。ここで、エッチング液は任意であるが、例えば170℃程度に加温したリン酸水溶液、いわゆる“熱リン酸”を用いることができる。尚、この湾曲部形成工程は、適宜省略することができる。以上の工程を経て、表面に凹凸構造101を有する被加工基板100が作製される。
 この被加工基板100のエッチング方法によれば、レジスト膜120をプラズマに曝して変質させたので、マスク層110とレジスト膜120のエッチングの選択比を高くすることができる。これにより、マスク層110に対して微細で深い形状の加工を施しやすくなり、微細な形状のマスク層110を十分に厚く形成することができる。
 また、プラズマエッチング装置1により、レジスト膜120の変質と、マスク層110のエッチングとを連続的に行うことができ、工数が著しく増大することもない。本実施形態においては、電源5のバイアス出力を変化させることにより、レジスト膜120の変質とマスク層110のエッチングとを行っており、簡単容易にレジスト膜120の選択比を高くすることができる。
 さらに、十分に厚いマスク層110をマスクとして、被加工基板100のエッチングを行うようにしたので、被加工基板100に対して微細で深い形状の加工を施しやすくなる。特に、サファイア基板において、周期が1μm以下で深さが300nm以上の凹凸構造101を形成することは、マスク層が形成された基板上にレジスト膜を形成し、レジスト膜を利用してマスク層のエッチングを行うエッチング方法では従来は不可能であったが、本実施形態のエッチング方法では可能となる。特に、本実施形態のエッチング方法では、周期が1μm以下で深さが500nm以上の凹凸構造を形成するのに好適である。
 ナノスケールの周期的な凹凸構造はモスアイと称されるが、このモスアイの加工をサファイアに行う場合、サファイアは難削材であることから、200nm程度の深さまでしか加工ができなかった。しかしながら、200nm程度の段差では、モスアイとして不十分な場合があった。本実施形態のエッチング方法は、サファイア基板にモスアイ加工を施す場合の新規な課題を解決したものといえる。
 尚、ナノインプリント技術を用いてレジストパターンを形成するものを示したが、例えばステンシルマスク等を用いて電子線照射によりレジストパターンを形成するものであってもよい。
 また、被加工材として、SiO/Niからなるマスク層110を示したが、マスク層110がNiの単層であったり他の材料であってもよいことは勿論である。要は、レジストを変質させて、マスク層110とレジスト膜120のエッチング選択比を高くすればよいのである。
 さらに、マスク層110を用いて被加工基板100をエッチングするものを示したが、マスク層110を用いることなく被加工基板100をエッチングするようにしてもよい。この場合、被加工基板100が被加工材となり、被加工基板100にレジスト膜120を形成して、レジストを変質させてエッチング選択比を高くすることとなる。前記実施形態の例であれば、サファイア基板にレジスト膜を直接形成して、マスク層を用いることなくサファイア基板をエッチング可能なことが確認されている。
 また、プラズマエッチング装置1のバイアス出力を変化させて変質用条件とエッチング用条件とするものを示したが、アンテナ出力、ガス流量を変化させる他、例えば処理ガスを変更することで設定してもよい。要は、変質用条件は、レジストがプラズマに曝された際に変質してエッチング選択比が高くなる条件であればよい。
 また、被加工基板100としてサファイアを用い、マスク層110としてNi層110が含まれるものを示したが、他の材料のエッチングであっても本発明を適用可能なことはいうまでもない。例えば、エッチング加工の対象を、SiC、Si、GaAs、GaN、InP、ZnO等を基板とすることもできる。実際に、SiC基板に前記実施形態と同様のSiO/Niからなるマスク層110を形成し、前記実施形態と同様の条件でレジスト膜を硬化させ、SF系のガスでSiC基板をエッチング可能なことが確認されている。また、これらの基板を加工する場合も、マスク層の使用の有無を問わないことは勿論である。
 図4は被加工基板を示し、(a)は模式斜視図を、(b)はA-A断面図をそれぞれ示す。
 前述の工程を経て作製される被加工基板100について説明する。本実施形態においては、図4(a)及び(b)に示すように、凹凸構造101は、周期的に形成された複数の凸部102を有し、各凸部102の間が凹部をなしている。本実施形態においては、各凸部102の形状は、円錘の上部を切り落とした円錘台状である。尚、凸部102の形状は、円錐台状の他、多角錘台等の他の錘台状としたり、円錐、多角錘等の錘状とすることができる。尚、凸部102でなく凹部が、錘状、円錘台、錘台状等の形状をなしていてもよい。本実施形態においては、凹凸構造101は、平面視にて、各凸部102の中心が正三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。
 本実施形態においては、各凸部102の周期は、500nmである。尚、ここでいう周期とは、隣接する凸部102における高さのピーク位置の距離をいう。また、各凸部102は、基端部の直径が200nmであり、高さは600nmとなっている。尚、各凸部102の周期、寸法、形状等は適宜に変更可能である。
 そして、この被加工基板100を用いて、例えば図5に示す発光素子200を製造することができる。この発光素子200は、フェイスアップ型のLEDであり、被加工基板100の凹凸構造101を有する面上に、III族窒化物半導体層が形成されたものである。III族窒化物半導体層は、バッファ層210、n型GaN層212、多重量子井戸活性層214、電子ブロック層216、p型GaN層218を被加工基板100側からこの順に有している。p型GaN層218上にはp側電極220が形成されるとともに、n型GaN層212上にはn側電極224が形成されている。また、サファイア基板2の裏面側には、反射膜226が形成されている。反射膜226は、例えば、誘電体多層膜及びAl層から構成することができる。
 バッファ層210はAlNで、n型GaN層212はn-GaNで、多重量子井戸活性層214はGalnN/GaNで、それぞれ構成される。本実施形態においては、多重量子井戸活性層214の発光のピーク波長は450nmである。また、電子ブロック層216はp―AIGaNで、p型GaN層218はp-GaNで、それぞれ構成される。n型GaN層212からp型GaN層218までは、III族窒化物半導体のエピタキシャル成長により形成され、被加工基板100に凹凸構造101が存在するが、III族窒化物半導体の成長初期に横方向成長による平坦化が図られる。
 p側電極220は、例えばITO(Indium Tin Oxide)等の透明な材料からなる。また、n側電極224は、p型GaN層218からn型GaN層212をエッチングして、露出したn型GaN層212上に形成される。n側電極224は、例えばTi/Al/Ti/Auから構成される。
 この発光素子200においては、反射膜226の被加工基板100側の面が反射面228をなしており、活性層214から発せられた光が凹凸構造101における界面を回折作用によって透過し、透過した光を反射面228にて反射する。これにより、回折作用により透過した光を当該界面に再入射させて、当該界面にて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。この回折作用を得るため、各凸部101の周期は、多重量子井戸活性層214から発せられる光の光学波長より大きく、当該光のコヒーレント長より小さくすることが好ましい。
 ここで、光学波長とは、実際の波長を屈折率で除した値を意味する。また、コヒーレント長とは、所定のスペクトル幅のフォトン群の個々の波長の違いによって、波の周期的振動が互いに打ち消され、可干渉性が消失するまでの距離に相当する。コヒーレント長lcは、光の波長をλ、当該光の半値幅をΔλとすると、おおよそlc=(λ/Δλ)の関係にある。ここで、各凸部102の周期は、多重量子井戸活性層214から発せられる光の光学波長の2倍より大きいことが好ましい。また、各凸部102の周期は、多重量子井戸活性層214から発せられる光のコヒーレント長の半分以下であることが好ましい。
 本実施形態においては、各凸部102の周期は、500nmである。活性層214から発せられる光の波長は450nmであり、III族窒化物半導体層の屈折率が2.4であることから、その光学波長は187.5nmである。また、活性層214から発せられる光の半値幅は63nmであることから、当該光のコヒーレント長は、3214nmである。すなわち、凹凸構造101の周期は、活性層214の光学波長の2倍より大きく、かつ、コヒーレント長の半分以下となっている。
 このように、サファイアからなる被加工基板100を発光素子200に用いたものを例示したが、被加工基板100を他のデバイスに用いることもできるし、その他、具体的な用途等については適宜に変更が可能である。
 1  プラズマエッチング装置
 2  基板保持台
 3  容器
 4  コイル
 5  電源
 6  石英板
 7  冷却制御部
 8  プラズマ
 100 被加工基板
 101 凹凸構造
 102 凸部
 103 側面
 200 発光素子
 210 バッファ層
 212 n型GaN層
 214 多重量子井戸活性層
 216 電子ブロック層
 218 p型GaN層
 220 p側電極
 224 n側電極
 226 反射膜
 228 反射面

Claims (10)

  1.  被加工材上にレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜に所定のパターンを形成するパターン形成工程と、
     前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、
     前記被加工材を前記変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記被加工材のエッチングを行う被加工材のエッチング工程と、
     前記被加工材は所定の被加工基板上に形成された基板用マスク層であるとともに前記被加工基板はサファイア基板であり、エッチングされた基板用マスク層をマスクとして、前記サファイア基板のエッチングを行って、前記サファイア基板に1μm以下の周期の凹凸形状を形成する基板のエッチング工程と、を含み、
     前記レジスト変質工程にて、プラズマとしてArガスのプラズマを用い、所定のバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導し、
     前記エッチング工程にて、プラズマとしてArガスのプラズマを用い、前記変質用条件より高いバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導するエッチング方法。
  2.  前記基板のエッチング工程にて、前記サファイア基板に深さ300nm以上の凹凸形状を形成する請求項1に記載のエッチング方法。
  3.  前記基板のエッチング工程にて、前記サファイア基板に深さ500nm以上の凹凸形状を形成する請求項1に記載のエッチング方法。
  4.  前記パターン形成工程の後、プラズマアッシングにより前記レジスト膜の残膜を取り除く残膜除去工程を含む請求項1から3のいずれか1項に記載のエッチング方法。
  5.  前記パターン形成工程にて、モールドで前記レジスト膜をプレスした後、プレス状態を保ったまま前記レジスト膜を硬化させ、前記レジスト膜に前記モールドの凹凸構造を転写する請求項1から4のいずれか1項に記載のエッチング方法。
  6.  前記基板のエッチング工程にて、前記基板用マスク層上に前記レジスト膜が残った状態で、前記サファイア基板のエッチングを行う請求項1から5のいずれか1項に記載のエッチング方法。
  7.  前記基板用マスク層は、前記サファイア基板上のSiO層と、前記SiO層上のNi層と、を有し、
     前記基板のエッチング工程にて、前記SiO層と、前記Ni層と、前記レジスト膜と、が積層した状態で、前記サファイア基板のエッチングを行う請求項6に記載のエッチング方法。
  8.  前記基板のエッチング工程の後、所定の剥離液を用いて前記サファイア基板上に残った前記基板用マスク層を除去するマスク層除去工程を含む請求項6または7に記載のエッチング方法。
  9.  前記マスク層除去工程にて、Oアッシングにより予め前記レジスト膜を除去してから、所定の剥離液を用いて前記サファイア基板上に残った前記基板用マスク層を除去する請求項8に記載のエッチング方法。
  10.  被加工材上にレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜に所定のパターンを形成するパターン形成工程と、
     前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、
     前記被加工材を前記変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記被加工材のエッチングを行う被加工材のエッチング工程と、
     前記被加工材は所定の被加工基板上に形成された基板用マスク層であるとともに前記被加工基板はサファイア基板であり、エッチングされた基板用マスク層をマスクとして、前記サファイア基板のエッチングを行って、前記サファイア基板に凹凸形状を形成する基板のエッチング工程と、を含み、
     前記レジスト変質工程にて、プラズマとしてArガスのプラズマを用い、所定のバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導し、
     前記エッチング工程にて、プラズマとしてArガスのプラズマを用い、前記変質用条件より高いバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導するエッチング方法。
PCT/JP2012/078712 2011-11-15 2012-11-06 エッチング方法 WO2013073417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12850278.8A EP2782120A4 (en) 2011-11-15 2012-11-06 ETCHING METHOD
CN201280055844.5A CN103946960B (zh) 2011-11-15 2012-11-06 蚀刻方法
US14/357,185 US9472736B2 (en) 2011-11-15 2012-11-06 Etching method
KR1020147013080A KR20140090209A (ko) 2011-11-15 2012-11-06 에칭 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-249370 2011-11-15
JP2011249370A JP5142236B1 (ja) 2011-11-15 2011-11-15 エッチング方法

Publications (1)

Publication Number Publication Date
WO2013073417A1 true WO2013073417A1 (ja) 2013-05-23

Family

ID=47789869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078712 WO2013073417A1 (ja) 2011-11-15 2012-11-06 エッチング方法

Country Status (7)

Country Link
US (1) US9472736B2 (ja)
EP (1) EP2782120A4 (ja)
JP (1) JP5142236B1 (ja)
KR (1) KR20140090209A (ja)
CN (1) CN103946960B (ja)
TW (1) TWI518776B (ja)
WO (1) WO2013073417A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058069A1 (ja) * 2012-10-12 2014-04-17 エルシード株式会社 半導体発光素子及びその製造方法
CN105355538A (zh) * 2014-08-21 2016-02-24 北京北方微电子基地设备工艺研究中心有限责任公司 一种刻蚀方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447083B1 (ko) 2013-01-03 2014-10-06 주식회사 에이앤디코퍼레이션 사파이어 기판의 표면 패턴 형성 방법
CN104969366A (zh) * 2013-02-12 2015-10-07 崇高种子公司 Led元件及其制造方法
WO2014171467A1 (ja) * 2013-04-16 2014-10-23 エルシード株式会社 Led素子及びその製造方法
JP6177168B2 (ja) * 2013-05-08 2017-08-09 旭化成株式会社 エッチング被加工材及びそれを用いたエッチング方法
JP6194515B2 (ja) * 2014-06-30 2017-09-13 豊田合成株式会社 サファイア基板の製造方法およびiii族窒化物半導体発光素子の製造方法
US20160013363A1 (en) 2014-07-08 2016-01-14 Epistar Corporation Light-emitting element and the manufacturing method thereof
JP6436694B2 (ja) * 2014-09-17 2018-12-12 住友化学株式会社 窒化物半導体テンプレートの製造方法
US20180011564A1 (en) * 2016-07-11 2018-01-11 Dell Products, Lp Display Surface Structure for Enhanced Optical, Thermal, and Touch Performance
US10304993B1 (en) * 2018-01-05 2019-05-28 Epistar Corporation Light-emitting device and method of manufacturing the same
CN109037029B (zh) * 2018-06-29 2020-09-01 山东元旭光电股份有限公司 一种蓝宝石等离子刻蚀负载效应的图形修饰方法及系统
CN114220893B (zh) * 2021-12-17 2024-04-16 北京北方华创微电子装备有限公司 蓝宝石衬底的刻蚀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221698A (ja) * 1999-01-29 2000-08-11 Sony Corp 電子装置の製造方法
JP2010074090A (ja) * 2008-09-22 2010-04-02 Meijo Univ 発光素子、発光素子用サファイア基板及び発光素子用サファイア基板の製造方法
JP2011060916A (ja) * 2009-09-08 2011-03-24 Tokyo Electron Ltd 被処理体の処理方法およびコンピュータ読み取り可能な記憶媒体
JP2011134800A (ja) 2009-12-22 2011-07-07 Samco Inc エッチング方法及びプラズマ処理装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472237A (en) * 1981-05-22 1984-09-18 At&T Bell Laboratories Reactive ion etching of tantalum and silicon
US4554048A (en) * 1984-10-17 1985-11-19 At&T Bell Laboratories Anistropic etching
US4729815A (en) * 1986-07-21 1988-03-08 Motorola, Inc. Multiple step trench etching process
JPH08153714A (ja) * 1994-09-30 1996-06-11 Sanyo Electric Co Ltd エッチング方法及び半導体装置の製造方法
JPH09213687A (ja) 1995-11-30 1997-08-15 Fujitsu Ltd 半導体装置の製造方法
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
JP2003069158A (ja) 2001-08-29 2003-03-07 Sanyo Electric Co Ltd 窒化物系半導体レーザ素子の形成方法
US6716570B2 (en) * 2002-05-23 2004-04-06 Institute Of Microelectronics Low temperature resist trimming process
AU2003244166A1 (en) 2002-06-27 2004-01-19 Tokyo Electron Limited Plasma processing method
US6923920B2 (en) * 2002-08-14 2005-08-02 Lam Research Corporation Method and compositions for hardening photoresist in etching processes
JP4538209B2 (ja) * 2003-08-28 2010-09-08 株式会社日立ハイテクノロジーズ 半導体装置の製造方法
JP2005136106A (ja) 2003-10-29 2005-05-26 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
JP2005203672A (ja) * 2004-01-19 2005-07-28 Sony Corp 半導体装置の製造方法
JP2007184390A (ja) 2006-01-06 2007-07-19 Nippon Telegr & Teleph Corp <Ntt> 半導体基板のエッチング方法
JP2008110895A (ja) 2006-10-31 2008-05-15 Mitsubishi Cable Ind Ltd 窒化物半導体結晶の製造方法
JP5094535B2 (ja) 2008-05-07 2012-12-12 富士フイルム株式会社 凹部形成方法、凹凸製品の製造方法、発光素子の製造方法および光学素子の製造方法
JP2010062212A (ja) * 2008-09-01 2010-03-18 Oki Semiconductor Co Ltd 半導体装置の製造方法
US7968401B2 (en) * 2009-01-26 2011-06-28 Applied Materials, Inc. Reducing photoresist layer degradation in plasma immersion ion implantation
US8941136B2 (en) * 2009-09-07 2015-01-27 El-Seed Corporation Semiconductor light emitting element
TWI414647B (zh) * 2010-09-27 2013-11-11 私立中原大學 製作次微米圖樣化藍寶石基板之方法
JP2012169366A (ja) * 2011-02-10 2012-09-06 Toshiba Corp 半導体発光装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221698A (ja) * 1999-01-29 2000-08-11 Sony Corp 電子装置の製造方法
JP2010074090A (ja) * 2008-09-22 2010-04-02 Meijo Univ 発光素子、発光素子用サファイア基板及び発光素子用サファイア基板の製造方法
JP2011060916A (ja) * 2009-09-08 2011-03-24 Tokyo Electron Ltd 被処理体の処理方法およびコンピュータ読み取り可能な記憶媒体
JP2011134800A (ja) 2009-12-22 2011-07-07 Samco Inc エッチング方法及びプラズマ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782120A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058069A1 (ja) * 2012-10-12 2014-04-17 エルシード株式会社 半導体発光素子及びその製造方法
CN105355538A (zh) * 2014-08-21 2016-02-24 北京北方微电子基地设备工艺研究中心有限责任公司 一种刻蚀方法

Also Published As

Publication number Publication date
CN103946960B (zh) 2017-04-12
US20140312004A1 (en) 2014-10-23
EP2782120A4 (en) 2015-05-20
JP2014096394A (ja) 2014-05-22
TW201324614A (zh) 2013-06-16
KR20140090209A (ko) 2014-07-16
US9472736B2 (en) 2016-10-18
CN103946960A (zh) 2014-07-23
TWI518776B (zh) 2016-01-21
JP5142236B1 (ja) 2013-02-13
EP2782120A1 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5142236B1 (ja) エッチング方法
JP5728116B2 (ja) Led素子及びその製造方法
WO2014126016A1 (ja) Led素子及びその製造方法
WO2013008556A1 (ja) 発光素子及びその製造方法
JP5435523B1 (ja) 半導体発光素子及びその製造方法
JP2009054882A (ja) 発光装置の製造方法
US20150214439A1 (en) Led device with bragg reflector and method of singulating led wafer substrates into dice with same
US20180097144A1 (en) Method for manufacturing light emitting element and light emitting element
JP2011159650A (ja) 発光素子
JP2016027658A (ja) エッチング方法
JP5808725B2 (ja) エッチング方法
WO2014115830A1 (ja) 半導体発光素子の製造方法
JP5866044B1 (ja) 発光素子の製造方法及び発光素子
WO2016167281A1 (ja) Led素子
JP2019009317A (ja) 半導体発光素子および半導体発光素子の製造方法
JP2019009318A (ja) 半導体発光素子および半導体発光素子の製造方法
WO2015194382A1 (ja) 発光素子の製造方法及び発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357185

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147013080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012850278

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP