WO2014171467A1 - Led素子及びその製造方法 - Google Patents

Led素子及びその製造方法 Download PDF

Info

Publication number
WO2014171467A1
WO2014171467A1 PCT/JP2014/060763 JP2014060763W WO2014171467A1 WO 2014171467 A1 WO2014171467 A1 WO 2014171467A1 JP 2014060763 W JP2014060763 W JP 2014060763W WO 2014171467 A1 WO2014171467 A1 WO 2014171467A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
moth
sapphire substrate
eye
Prior art date
Application number
PCT/JP2014/060763
Other languages
English (en)
French (fr)
Inventor
北野司
森みどり
近藤俊行
鈴木敦志
難波江宏一
大矢昌輝
Original Assignee
エルシード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルシード株式会社 filed Critical エルシード株式会社
Priority to CN201480030587.9A priority Critical patent/CN105264676A/zh
Priority to US14/784,936 priority patent/US9793434B2/en
Priority to JP2014531040A priority patent/JP5643920B1/ja
Publication of WO2014171467A1 publication Critical patent/WO2014171467A1/ja
Priority to HK16102139.0A priority patent/HK1214407A1/zh
Priority to US15/714,136 priority patent/US20180026154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Definitions

  • the present invention relates to an LED element and a manufacturing method thereof.
  • an LED element comprising a diffractive surface in which concave or convex portions are formed at a period, and an Al reflective film that is formed on the back side of the substrate and reflects light diffracted by the diffractive surface and re-enters the diffractive surface.
  • the light transmitted by the diffraction action is re-incident on the diffraction surface, and the light is transmitted again using the diffraction action on the diffraction surface, so that the light can be extracted outside the element in a plurality of modes.
  • the inventors of the present application sought to further improve the light extraction efficiency.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an LED element capable of further improving the light extraction efficiency and a method for manufacturing the same.
  • a semiconductor laminated portion including a light emitting layer and light emitted from the light emitting layer are incident, and the convex portion has a period larger than the optical wavelength of the light and smaller than the coherent length of the light.
  • the incident light is reflected in a plurality of modes according to the Bragg diffraction condition, and the diffraction surface that transmits the incident light in the plurality of modes according to the Bragg diffraction condition; and the light diffracted by the diffraction surface is reflected to reflect the light
  • a reflective surface that re-enters the diffractive surface, and the semiconductor stacked portion is formed on the diffractive surface without a gap around the convex portion, and the flat portion of the diffractive surface in a plan view
  • the LED element whose is 40% or more is provided.
  • a mask layer forming step of forming a mask layer on the surface of the sapphire substrate, a resist film forming step of forming a resist film on the mask layer, and the resist film A pattern forming step for forming a predetermined pattern on the substrate, a mask layer etching step for etching the mask layer using the resist film as a mask, and an etching for the sapphire substrate using the etched mask layer as a mask.
  • an LED element manufacturing method including an etching process of a substrate for forming the convex part, and a semiconductor forming process of forming the semiconductor stacked part on the etched surface of the sapphire substrate.
  • the present invention further includes a sapphire substrate, and a semiconductor stacked portion including a light emitting layer that is formed on the surface of the sapphire substrate and emits blue light, and the surface of the sapphire substrate is a virtual triangle in plan view.
  • a triangle or quadrangle having a plurality of concave portions or convex portions arranged at intersections of a lattice or a square lattice and forming the virtual triangular lattice or the square lattice is not a regular polygon, and the length of each side is the blue light.
  • An LED element having a wavelength greater than twice the optical wavelength and less than the coherent length is provided.
  • a substrate, a semiconductor laminated portion including a light emitting layer formed on the front surface of the substrate, a reflective portion formed on the back surface of the substrate, and the semiconductor laminated portion are formed.
  • An electrode, and the electrode has a diffusion electrode layer formed on the semiconductor laminate, and a period smaller than twice the optical wavelength of light emitted from the light emitting layer formed on the diffusion electrode layer.
  • the LED element comprised from the material which has the refractive index substantially the same as the material which comprises the said diffusion electrode layer is provided.
  • the light extraction efficiency can be further improved.
  • FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
  • 2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG. 2B shows a state of transmission through the interface.
  • FIG. 3 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a transmission angle.
  • FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
  • 2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG
  • FIG. 4 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a reflection angle.
  • FIG. 5 is an explanatory view showing the traveling direction of light inside the device.
  • FIG. 6 is a partially enlarged schematic cross-sectional view of the LED element.
  • 7A and 7B show a sapphire substrate, in which FIG. 7A is a schematic perspective view, FIG. 7B is a schematic explanatory view showing an AA section, and FIG. 7C is a schematic enlarged explanatory view.
  • FIG. 8A and 8B are schematic plan views showing the arrangement of the convex portions, in which FIG. 8A shows a virtual triangular lattice as an equilateral triangle, and FIG. 8B shows a virtual triangular lattice as an isosceles triangle.
  • FIG. 9 is a graph showing the relationship between the length of one side and the light extraction efficiency when a virtual triangular lattice or square lattice is a regular polygon.
  • FIG. 10 is a graph showing the relationship between the length of the equilateral side and the light extraction efficiency when the virtual triangular lattice is an isosceles triangle.
  • FIG. 11 is a schematic explanatory diagram of a plasma etching apparatus.
  • FIG. 12 is a flowchart showing a method for etching a sapphire substrate.
  • FIG. 13A shows a process of an etching method of a sapphire substrate and a mask layer, (a) shows a sapphire substrate before processing, (b) shows a state in which a mask layer is formed on sapphire, and (c) shows a mask layer. A state where a resist film is formed is shown, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
  • FIG. 13A shows a process of an etching method of a sapphire substrate and a mask layer, (a) shows a sapphire substrate before processing, (b) shows a state in which a mask layer is formed on sapphire, and (c) shows a mask layer. A state where a resist film is formed is shown, (d) shows a state where a mold is brought into contact with the resist film, and (e
  • FIG. 13B shows the process of the etching method of the sapphire substrate and the mask layer, (f) shows the state where the remaining film of the resist film is removed, (g) shows the state where the resist film is altered, and (h) The mask layer is etched using the resist film as a mask, and (i) shows the sapphire substrate etched using the mask layer as a mask.
  • FIG. 13C shows the process of the etching method of the sapphire substrate and the mask layer, (j) shows a state where the sapphire substrate is further etched using the mask layer as a mask, and (k) shows a state where the remaining mask layer is removed from the sapphire substrate. (L) shows a state in which wet etching is performed on the sapphire substrate.
  • FIG. 14 is a graph showing the relationship between the diameter of the base end portion of the convex portion and the height of the convex portion when the thickness of the Ni layer is changed.
  • FIG. 15 is a table showing the period of the convex portions and the ratio of the C-plane region and whether the dislocation density is equal to or lower than a predetermined value.
  • FIG. 16 is a graph showing the reflectance of the reflecting portion of Example 1.
  • FIG. 17 is a graph showing the reflectivity of the reflecting portion of Example 2.
  • FIG. 18 is a schematic cross-sectional view of an LED element showing a second embodiment of the present invention.
  • FIG. 19 is a partially enlarged schematic cross-sectional view of an LED element.
  • FIG. 20 is a graph showing the reflectivity of the reflecting portion of Example 3.
  • FIG. 21 is a graph showing the reflectance of the reflecting portion of Example 4.
  • FIG. 22 is a schematic cross-sectional view of an LED element showing a second embodiment of the present invention.
  • FIG. 23 is an explanatory diagram showing the traveling direction of light inside the device.
  • FIG. 24 is an explanatory diagram for processing a moth-eye layer, where (a) shows a state in which a first mask layer is formed on the transmission moth-eye surface, and (b) shows a state in which a resist layer is formed on the first mask layer. (C) shows a state in which the resist layer is selectively irradiated with an electron beam, (d) shows a state in which the resist layer is developed and removed, and (e) shows a state in which the second mask layer is formed.
  • FIG. 25 is an explanatory view for processing the moth-eye layer, (a) shows a state where the resist layer is completely removed, (b) shows a state where the first mask layer is etched using the second mask layer as a mask, (C) shows a state where the second mask layer is removed, (d) shows a state where the transmission moth-eye surface is etched using the first mask layer as a mask, and (e) shows a state where the first mask layer is removed.
  • FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
  • the LED element 1 is obtained by forming a semiconductor laminated portion 19 made of a group III nitride semiconductor layer on the surface of a sapphire substrate 2.
  • the LED element 1 is a flip chip type, and light is mainly extracted from the back side of the sapphire substrate 2.
  • the semiconductor stacked unit 19 includes a buffer layer 10, an n-type GaN layer 12, a light emitting layer 14, an electron blocking layer 16, and a p-type GaN layer 18 in this order from the sapphire substrate 2 side.
  • a p-side electrode 27 is formed on the p-type GaN layer 18, and an n-side electrode 28 is formed on the n-type GaN layer 12.
  • the buffer layer 10 is formed on the surface of the sapphire substrate 2 and is made of AlN.
  • the buffer layer 10 is formed by MOCVD (Metal-Organic-Chemical-Vapor-Deposition) method, but a sputtering method can also be used.
  • the n-type GaN layer 12 as the first conductivity type layer is formed on the buffer layer 10 and is made of n-GaN.
  • the light emitting layer 14 is formed on the n-type GaN layer 12, is made of GalnN / GaN, and emits blue light by injection of electrons and holes.
  • blue light refers to light having a peak wavelength of 430 nm or more and 480 nm or less, for example.
  • the peak wavelength of light emission of the light emitting layer 14 is 450 nm.
  • the electron block layer 16 is formed on the light emitting layer 14 and is made of p-AIGaN.
  • the p-type GaN layer 18 as the second conductivity type layer is formed on the electron block layer 16 and is made of p-GaN.
  • the n-type GaN layer 12 to the p-type GaN layer 18 are formed by epitaxial growth of a group III nitride semiconductor, and convex portions 2 c are periodically formed on the surface of the sapphire substrate 2. Planarization is achieved by lateral growth in the initial growth stage.
  • the active layer is formed by recombination of electrons and holes.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the surface of the sapphire substrate 2 forms a vertical moth-eye surface 2a, and the back surface of the sapphire substrate 2 forms a transmission moth-eye surface 2g.
  • a flat portion 2b and a plurality of convex portions 2c periodically formed on the flat portion 2b are formed on the surface of the sapphire substrate 2.
  • the semiconductor laminated portion 19 is formed without a gap around each convex portion 2c.
  • the shape of each convex portion 2c may be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone.
  • Each convex portion 2 c is designed to diffract light emitted from the light emitting layer 14.
  • the light verticalizing action can be obtained by the convex portions 2c arranged periodically.
  • the light verticalizing action means that the light intensity distribution is reflected and transmitted with respect to the interface between the sapphire substrate 2 and the semiconductor laminated portion 19 rather than before the light is incident on the vertical moth-eye surface. It is biased in the vertical direction.
  • each convex part 2i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone.
  • the period of the convex part 2i of the transmission moth-eye surface is shorter than the period of the convex part 2c of the verticalized moth-eye surface. In the present embodiment, Fresnel reflection at the interface with the outside is suppressed by the convex portions 2i that are periodically arranged.
  • FIG. 2 is an explanatory view showing the diffraction action of light at an interface having different refractive indexes, where (a) shows a state of reflection at the interface and (b) shows a state of transmission through the interface.
  • n1 is the refractive index of the medium on the incident side
  • is the wavelength of the incident light
  • m is an integer.
  • n1 is the refractive index of the group III nitride semiconductor. As shown in FIG. 2A, light incident on the interface is reflected at a reflection angle ⁇ ref that satisfies the above equation (1).
  • n2 is the refractive index of the medium on the exit side
  • m ′ is an integer.
  • n2 is the refractive index of sapphire.
  • FIG. 2B light incident on the interface is transmitted at a transmission angle ⁇ out that satisfies the above equation (2).
  • the period of the surface of the sapphire substrate 2 is the optical wavelength inside the element ( ⁇ / n1) and ( ⁇ / n2) must be larger. Therefore, the surface of the sapphire substrate 2 is set to have a period longer than ( ⁇ / n1) or ( ⁇ / n2) so that diffracted light exists.
  • FIG. 3 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a transmission angle.
  • FIG. 4 shows the incident angle of light incident on the interface from the semiconductor layer side and the diffraction at the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm. It is a graph which shows the relationship of the reflection angle by an effect
  • the critical angle of total reflection exists in the light incident on the verticalized moth-eye surface 2a, like a general flat surface.
  • the critical angle is 45.9 °.
  • the critical angle is 45.9 °
  • the light output exceeding the critical angle is about 70%, and the light output not exceeding the critical angle is about 30%. That is, extracting light in a region exceeding the critical angle greatly contributes to improving the light extraction efficiency of the LED element 1.
  • the angle will change to the side. That is, the intensity distribution of the light transmitted through the vertical moth-eye surface 2a on the sapphire substrate 2 side is emitted compared to the intensity distribution of the light incident on the vertical moth-eye surface 2a on the semiconductor multilayer portion 19 side. It is biased in a direction perpendicular to the interface between the portion 19 and the sapphire substrate 2.
  • the light reflected by the vertical moth-eye surface 2a changes in angle toward the perpendicular to the interface between the sapphire substrate 2 and the group III nitride semiconductor layer. .
  • this area is indicated by hatching.
  • the angle will change. That is, compared with the intensity distribution of light incident on the vertical moth-eye surface 2a on the semiconductor multilayer portion 19 side, the intensity distribution of light emitted from the vertical moth-eye surface 2a on the semiconductor multilayer portion 19 side is reflected by the semiconductor multilayer portion. It is biased in a direction perpendicular to the interface between the portion 19 and the sapphire substrate 2.
  • FIG. 5 is an explanatory view showing the traveling direction of light inside the device.
  • the light incident on the sapphire substrate 2 beyond the critical angle is transmitted and reflected in the vertical moth-eye surface 2 a in a direction closer to the vertical than the incident.
  • the light transmitted through the verticalized moth-eye surface 2a is incident on the transmissive moth-eye surface 2g in a state where the angle is changed toward the vertical direction.
  • the light reflected by the vertical moth-eye surface 2a is reflected by the p-side electrode 27 and the n-side electrode 28 while changing the angle toward the vertical direction, and then enters the vertical moth-eye surface 2a again.
  • the incident angle at this time is closer to the vertical than the previous incident angle.
  • the light incident on the transmission moth-eye surface 2g can be shifted to the vertical direction.
  • FIG. 6 is a partially enlarged schematic cross-sectional view of the LED element.
  • the p-side electrode 27 includes a diffusion electrode 21 formed on the p-type GaN layer 18, a dielectric multilayer film 22 formed in a predetermined region on the diffusion electrode 21, and a dielectric multilayer film. 22 and a metal electrode 23 formed on the substrate 22.
  • the diffusion electrode 21 is formed on the entire surface of the p-type GaN layer 18 and is made of a transparent material such as ITO (Indium Tin Oxide).
  • the dielectric multilayer film 22 is configured by repeating a plurality of pairs of the first material 22a and the second material 22b having different refractive indexes.
  • the first material 22a may be ZrO 2 (refractive index: 2.18)
  • the second material 22b may be SiO 2 (refractive index: 1.46)
  • the number of pairs is five. it can.
  • the metal electrode 23 covers the dielectric multilayer film 22 and is made of a metal material such as Al.
  • the metal electrode 23 is electrically connected to the diffusion electrode 21 through a via hole 22 c formed in the dielectric multilayer film 22.
  • the n-side electrode 28 is formed on the exposed n-type GaN layer 12 by etching the n-type GaN layer 12 from the p-type GaN layer 18.
  • the n-side electrode 28 includes a diffusion electrode 24 formed on the n-type GaN layer 12, a dielectric multilayer film 25 formed in a predetermined region on the diffusion electrode 24, and a metal formed on the dielectric multilayer film 25. Electrode 26.
  • the diffusion electrode 24 is formed on the entire surface of the n-type GaN layer 12 and is made of a transparent material such as ITO (Indium Tin Oxide).
  • the dielectric multilayer film 25 is configured by repeating a plurality of pairs of the first material 25a and the second material 25b having different refractive indexes.
  • the first material 25a may be ZrO 2 (refractive index: 2.18)
  • the second material 25b may be SiO 2 (refractive index: 1.46)
  • the number of pairs is five. it can.
  • the dielectric multilayer film 25 may be formed using a material different from ZrO 2 and SiO 2 , for example, AlN (refractive index: 2.18), Nb 2 O 3 (refractive index: 2.4), Ta 2 O 3 (refractive index: 2.35) or the like may be used.
  • the metal electrode 26 covers the dielectric multilayer film 25 and is made of a metal material such as Al. The metal electrode 26 is electrically connected to the diffusion electrode 24 through a via hole 25 a formed in the dielectric multilayer film 25.
  • the p-side electrode 27 and the n-side electrode 28 form a reflecting portion.
  • the p-side electrode 27 and the n-side electrode 28 each have a higher reflectance as the angle is closer to the vertical.
  • the light reflected by the vertical moth-eye surface 2a of the sapphire substrate 2 and changed in angle toward the perpendicular to the interface is incident. . That is, the intensity distribution of light incident on the reflecting portion is biased toward the vertical as compared with the case where the surface of the sapphire substrate 2 is a flat surface.
  • FIG. 7A and 7B show a sapphire substrate, in which FIG. 7A is a schematic perspective view, FIG. 7B is a schematic explanatory view showing an AA section, and FIG. 7C is a schematic enlarged explanatory view.
  • the verticalized moth-eye surface 2a has an intersection of virtual triangular lattices at a predetermined cycle so that the center of each convex portion 2c is the position of the vertex of an equilateral triangle in plan view. It is formed in alignment with. In addition, you may arrange
  • the period of each convex part 2c is larger than the optical wavelength of the light emitted from the light emitting layer 14, and smaller than the coherent length of the said light. In addition, the period here means the distance of the peak position of the height in the adjacent convex part 2c.
  • the optical wavelength means a value obtained by dividing the actual wavelength by the refractive index. Furthermore, the coherent length corresponds to a distance until the periodic oscillations of the waves cancel each other and the coherence disappears due to the difference in the individual wavelengths of the photon group having a predetermined spectral width.
  • the period of each convex part 2c is 1 time or more of the optical wavelength, and the diffractive action gradually works effectively for incident light having an angle greater than or equal to the critical angle, and is 2 of the optical wavelength of the light emitted from the light emitting layer 14. If it is larger than twice, the number of transmission modes and reflection modes is sufficiently increased, which is preferable. Moreover, it is preferable that the period of each convex part 2c is below half of the coherent length of the light emitted from the light emitting layer 14.
  • the length of one side of an equilateral triangle forming a virtual triangular lattice is 460 nm. That is, the main period of each convex part 2c is 460 nm and 797 nm.
  • the sapphire substrate 2 is configured such that the ratio of the flat portion 2b is 40% or more in plan view. Since the wavelength of light emitted from the light emitting layer 14 is 450 nm and the refractive index of the group III nitride semiconductor layer is 2.4, the optical wavelength is 187.5 nm. Moreover, since the half width of the light emitted from the light emitting layer 14 is 27 nm, the coherent length of the light is 7500 nm. That is, the period of the verticalized moth-eye surface 2a is greater than twice the optical wavelength of the light emitting layer 14 and less than or equal to half the coherent length.
  • FIGS. 8A and 8B are schematic plan views showing the arrangement of the convex portions, in which FIG. 8A shows a virtual triangular lattice as an equilateral triangle, and FIG. 8B shows a virtual triangular lattice as an isosceles triangle.
  • FIG. 8A when the virtual triangular lattice is an equilateral triangle, for each convex portion 2c, there are six convex portions 2c located at the closest distance a1 every 60 °. That is, as shown in FIG.
  • the closest convex portion 2c has a 0 ° direction, a 60 ° direction, a 120 ° direction, a 180 ° direction, a 240 ° direction, and a 300 ° direction. Located in the ° direction. Among these, the 0 ° direction and the 180 ° direction, the 60 ° direction and the 240 ° direction, and the 120 ° direction and the 300 ° direction are equivalent directions.
  • the convex part 2c of the distance a2 next closest to these is located in the 30 ° direction, 90 ° direction, 150 ° direction, 210 ° direction, 270 ° direction and 330 ° direction.
  • the 30 ° direction and the 210 ° direction, the 90 ° direction and the 270 ° direction, and the 150 ° direction and the 330 ° direction are equivalent directions. That is, when the virtual triangular lattice is an equilateral triangle, there are mainly two types of periods, the distance a1 and the distance a2.
  • the convex portion 2c located at the equilateral distance b1 has the base angle ⁇ and the ⁇ direction. , (180 ° ⁇ ) direction, (180 ° + ⁇ ) direction, and (360 ° ⁇ ) direction.
  • the ⁇ direction and the (180 ° + ⁇ ) direction, and the (180 ° ⁇ ) direction and the (360 ° ⁇ ) direction are equivalent directions.
  • the convex part 2c located in the distance b2 of a base is located in the 0 degree direction and the 180 degree direction.
  • FIG. 9 is a graph showing the relationship between the length of one side and the light extraction efficiency when a virtual triangular lattice or square lattice is a regular polygon.
  • a virtual triangular lattice or quadrangular lattice was used as a regular polygon, and the relationship between the length of one side and the light extraction efficiency was calculated by simulation.
  • the light wavelength was set to 450 nm, and the transmittance from the GaN-based semiconductor to the sapphire substrate was calculated at the interface between the GaN-based semiconductor and the sapphire substrate.
  • FIG. 10 is a graph showing the relationship between the length of the equilateral side and the light extraction efficiency when the virtual triangular lattice is an isosceles triangle.
  • the virtual triangular lattice is an isosceles triangle, and the relationship between the length of the equilateral side and the light extraction efficiency was calculated by simulation. Specifically, the transmittance from the GaN-based semiconductor to the sapphire substrate was calculated at the interface between the GaN-based semiconductor and the sapphire substrate, with the base length being 600 nm and the light wavelength being 450 nm.
  • the transmittance is generally higher when the triangular lattice is an isosceles triangle.
  • the lengths of the equal sides and one side were 4% at 400 nm, 5% at 460 nm, 1% at 500 nm, 1% at 700 nm, and the transmittance was high.
  • the base of the isosceles triangle is 600 nm
  • the transmittance is equal to that of the equilateral triangle when the isosceles is 600 nm.
  • the equilateral side was 800 nm
  • the transmittance was almost equal to that of an equilateral triangle having 800 nm per side.
  • the light extraction efficiency is higher in the isosceles triangle than in the regular triangle.
  • the isosceles and base sides of the isosceles triangle are 460 nm or less, or 550 nm to 800 nm, respectively.
  • the relationship between the incident angle of light and the transmittance tends to be different between the region of 460 nm or less and the region of 550 nm to 800 nm. That is, it is more preferable that one of the equilateral and base sides of the isosceles triangle is 460 nm or less and the other is 550 nm or more and 800 nm or less.
  • each convex portion 2c of the verticalized moth-eye surface 2a includes a side surface 2d extending upward from the flat portion 2b, and a center side of the convex portion 2c from the upper end of the side surface 2d. And a curved upper surface 2f formed continuously with the curved portion 2e.
  • the curved portion 2e is formed by dropping the corners by wet etching of the convex portion 2c before the curved portion 2e formed with the corners formed by the meeting portions of the side surface 2d and the upper surface 2f. Note that wet etching may be performed until the flat upper surface 2f disappears and the entire upper side of the convex portion 2c becomes the curved portion 2e.
  • each convex part 2c has a base end diameter of 380 nm and a height of 350 nm.
  • the verticalized moth-eye surface 2a of the sapphire substrate 2 is a flat portion 2b in addition to the convex portions 2c, so that the lateral growth of the semiconductor is promoted.
  • the transmission moth-eye surface 2g on the back surface of the sapphire substrate 2 is aligned with the intersections of the virtual triangular lattice at a predetermined cycle so that the center of each convex portion 2i is the position of the apex of the triangle in plan view. It is formed.
  • the shortest period of each convex portion 2 i is smaller than twice the optical wavelength of the light emitted from the light emitting layer 14.
  • the length of one side of an equilateral triangle forming a virtual triangular lattice is 300 nm. That is, the shortest period of each convex part 2i is 300 nm.
  • the wavelength of light emitted from the light emitting layer 14 is 450 nm, and since the refractive index of sapphire is 1.78, the optical wavelength is 252.8 nm. That is, the shortest period of the transmission moth-eye surface 2g is smaller than twice the optical wavelength of the light emitting layer 14. In addition, if the period of a moth-eye surface is 2 times or less of an optical wavelength, the Fresnel reflection in an interface can be suppressed. The Fresnel reflection suppressing effect can be sufficiently obtained if the shortest period of the convex portion 2i is smaller than twice the optical wavelength.
  • the entire period of the convex portion 2i is made smaller than twice the optical wavelength, a larger Fresnel reflection suppressing action can be obtained.
  • the optical wavelength of the transmission moth-eye surface 2g approaches from 2 times to 1 time, the effect of suppressing Fresnel reflection increases.
  • the outside of the sapphire substrate 2 is resin or air, if the period of the transmission moth-eye surface 2g is 1.25 times or less of the optical wavelength, the same Fresnel reflection suppressing effect as 1 time or less can be obtained.
  • FIG. 11 is a schematic explanatory diagram of a plasma etching apparatus for processing a sapphire substrate.
  • the plasma etching apparatus 91 is an inductively coupled type (ICP), a flat substrate holding base 92 that holds the sapphire substrate 2, a container 93 that contains the substrate holding base 92, and a container 93
  • a coil 94 provided via a quartz plate 96 and a power source 95 connected to the substrate holding base 92 are provided.
  • the coil 94 is a solid spiral coil, which supplies high-frequency power from the center of the coil, and the end of the outer periphery of the coil is grounded.
  • the sapphire substrate 2 to be etched is placed on the substrate holder 92 directly or via a transfer tray.
  • the substrate holding base 92 incorporates a cooling mechanism for cooling the sapphire substrate 2, and is controlled by the cooling control unit 97.
  • the container 93 has a supply port and can supply various gases such as O 2 gas and Ar gas.
  • the sapphire substrate 2 is placed on the substrate holder 92, and then the air in the container 93 is discharged to make the pressure reduced. Then, a predetermined processing gas is supplied into the container 93 and the gas pressure in the container 93 is adjusted. Thereafter, high-frequency high-frequency power is supplied to the coil 94 and the substrate holder 92 for a predetermined time to generate a reactive gas plasma 98. The plasma 98 is used to etch the sapphire substrate 2.
  • FIG. 12 is a flowchart showing an etching method.
  • the etching method of this embodiment includes a mask layer forming step S1, a resist film forming step S2, a pattern forming step S3, a residual film removing step S4, a resist alteration step S5, and a mask layer.
  • FIG. 13A shows the process of the etching method of the sapphire substrate and the mask layer, (a) shows the sapphire substrate before processing, (b) shows the state in which the mask layer is formed on the sapphire substrate, and (c) shows the mask. A state where a resist film is formed on the layer is shown, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
  • FIG. 13A shows the process of the etching method of the sapphire substrate and the mask layer, (a) shows the sapphire substrate before processing, (b) shows the state in which the mask layer is formed on the sapphire substrate, and (c) shows the mask. A state where a resist film is formed on the layer is shown, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
  • FIG. 13B shows the process of the etching method of the sapphire substrate and the mask layer, (f) shows the state where the remaining film of the resist film is removed, (g) shows the state where the resist film is altered, and (h) The mask layer is etched using the resist film as a mask, and (i) shows the sapphire substrate etched using the mask layer as a mask. Incidentally, the resist film after the alteration is expressed by painting out in the drawing.
  • FIG. 13C shows the process of the etching method of the sapphire substrate and the mask layer, (j) shows a state where the sapphire substrate is further etched using the mask layer as a mask, and (k) shows a state where the remaining mask layer is removed from the sapphire substrate. (L) shows a state in which wet etching is performed on the sapphire substrate.
  • a sapphire substrate 2 before processing is prepared. Prior to etching, the sapphire substrate 2 is cleaned with a predetermined cleaning solution.
  • the sapphire substrate 2 is a sapphire substrate.
  • a mask layer 30 is formed on the sapphire substrate 2 (mask layer forming step: S1).
  • the mask layer 30 has a SiO 2 layer 31 on the sapphire substrate 2 and a Ni layer 32 on the SiO 2 layer 31.
  • the thickness of each layer 31 and 112 is arbitrary, for example, the SiO 2 layer can be 1 nm to 100 nm and the Ni layer 32 can be 1 nm to 200 nm.
  • the mask layer 30 may be a single layer.
  • the mask layer 30 is formed by a sputtering method, a vacuum evaporation method, a CVD method, or the like.
  • a resist film 40 is formed on the mask layer 30 (resist film forming step: S2).
  • a thermoplastic resin is used as the resist film 40 and is formed to have a uniform thickness by a spin coating method.
  • the resist film 40 is made of, for example, an epoxy resin and has a thickness of, for example, not less than 100 nm and not more than 300 nm. Note that a photo-curable resin can also be used as the resist film 40.
  • the resist film 40 is heated and softened together with the sapphire substrate 2, and the resist film 40 is pressed with a mold 50 as shown in FIG. 13A (d).
  • An uneven structure 51 is formed on the contact surface of the mold 50, and the resist film 40 is deformed along the uneven structure 51.
  • the resist film 40 is cooled and cured together with the sapphire substrate 2 while keeping the pressed state. Then, by separating the mold 50 from the resist film 40, the concavo-convex structure 41 is transferred to the resist film 40 as shown in FIG. 10A (e) (pattern forming step: S3).
  • the period of the concavo-convex structure 41 is 1 ⁇ m or less. In the present embodiment, the period of the concavo-convex structure 41 is 460 nm.
  • the diameter of the convex part 43 of the uneven structure 41 is 100 nm or more and 300 nm or less, for example, 230 nm.
  • the height of the convex part 43 is 100 nm or more and 300 nm or less, for example, 250 nm. In this state, a remaining film 42 is formed in the recess of the resist film 40.
  • the sapphire substrate 2 on which the resist film 40 is formed as described above is attached to the substrate holder 92 of the plasma etching apparatus 1. Then, the residual film 42 is removed by, for example, plasma ashing to expose the mask layer 30 as a workpiece as shown in FIG. 13B (f) (residual film removing step: S4).
  • O 2 gas is used as a processing gas for plasma ashing.
  • the convex portion 43 of the resist film 40 is also affected by ashing, and the side surface 44 of the convex portion 43 is not perpendicular to the surface of the mask layer 30 and is inclined by a predetermined angle.
  • the resist film 40 is exposed to plasma under the condition for alteration, thereby altering the resist film 40 and increasing the etching selectivity (resist alteration step: S5).
  • Ar gas is used as a process gas for modifying the resist film 40.
  • the bias output of the power source 95 for inducing plasma to the sapphire substrate 2 side is set to be lower than the etching condition described later.
  • the mask layer 30 as a workpiece is etched using the resist film 40 that has been exposed to plasma under etching conditions and has a high etching selectivity as a mask (mask layer etching step: S6).
  • Ar gas is used as a processing gas for etching the resist film 40.
  • a pattern 33 is formed in the mask layer 30 as shown in FIG. 13B (h).
  • the processing gas, the antenna output, the bias output, and the like can be changed as appropriate for the alteration condition and the etching condition, but it is preferable to change the bias output using the same processing gas as in this embodiment.
  • the condition for alteration when the processing gas is Ar gas, the antenna output of the coil 94 is 350 W, and the bias output of the power supply 95 is 50 W, curing of the resist film 40 was observed.
  • Etching of the mask layer 30 was observed when the etching gas was Ar gas, the antenna output of the coil 94 was 350 W, and the bias output of the power source 95 was 100 W.
  • the resist can be cured even if the antenna output is reduced or the gas flow rate is reduced.
  • the sapphire substrate 2 is etched using the mask layer 30 as a mask (sapphire substrate etching step: S7).
  • etching is performed with the resist film 40 remaining on the mask layer 30.
  • plasma etching is performed using a chlorine-based gas such as BCl 3 gas as a processing gas.
  • a verticalized moth-eye surface 2a is formed on the sapphire substrate 2.
  • the height of the concavo-convex structure of the verticalized moth-eye surface 2a is 350 nm.
  • the height of the concavo-convex structure can be made larger than 350 nm.
  • the etching may be finished with the resist film 40 remaining as shown in FIG. 13B (i).
  • side etching is promoted by the SiO 2 layer 31 of the mask layer 30, and the side surface 2d of the convex portion 2c of the verticalized moth-eye surface 2a is inclined. Further, the side etching state can also be controlled by the inclination angle of the side surface 43 of the resist film 40. If the mask layer 30 is a single layer of the Ni layer 32, the side surface 2d of the convex portion 2c can be made substantially perpendicular to the main surface.
  • the size of the base end portion of the convex portion 2 c is controlled by the thickness of the Ni layer 32.
  • the inventors of the present application have found that the diameter of the base end portion of the convex portion 2c can be adjusted by controlling the thickness of the Ni layer 32 as a metal mask.
  • FIG. 14 is a graph showing the relationship between the diameter of the base end portion of the convex portion and the height of the convex portion when the thickness of the Ni layer is changed. In the experiment, the same mold 50 was used, and data was acquired by changing the thickness of the Ni layer 32 and the height of the convex portion 2c.
  • the thickness of the Ni layer 32 is three types of 50 nm, 75 nm, and 100 nm, and the height of the convex portion 2 c is four types of 400 nm, 500 nm, 600 nm, and 700 nm.
  • the height of the projecting portion 2c after the etching did not exactly match the target height.
  • the thicker the Ni layer 32 the larger the diameter of the base end portion of the convex portion 2c. Thereby, the base end part of the convex part 2c can be changed, without changing the type
  • the mask layer 30 remaining on the sapphire substrate 2 is removed using a predetermined stripping solution (mask layer removing step: S8).
  • the SiO 2 layer 31 is removed by using hydrofluoric acid. Even if the resist film 40 remains on the mask layer 30, it can be removed together with the Ni layer 32 with high-temperature nitric acid. However, if the residual amount of the resist film 40 is large, the resist film 40 is previously obtained by O 2 ashing. Is preferably removed.
  • angular part of the convex part 2c is removed by wet etching, and a curved part is formed (curved part formation process: S9).
  • the etching solution is arbitrary, but for example, a phosphoric acid aqueous solution heated to about 170 ° C., so-called “hot phosphoric acid” can be used.
  • this bending part formation process can be abbreviate
  • the etching selectivity between the mask layer 30 and the resist film 40 can be increased. Thereby, it becomes easy to process the mask layer 30 with a fine and deep shape, and the mask layer 30 with a fine shape can be formed sufficiently thick.
  • the plasma etching apparatus 1 can continuously perform the alteration of the resist film 40 and the etching of the mask layer 30 without significantly increasing the number of steps.
  • the resist film 40 is altered and the mask layer 30 is etched by changing the bias output of the power supply 95, and the selectivity of the resist film 40 can be easily increased.
  • the sapphire substrate 2 is etched using the sufficiently thick mask layer 30 as a mask, it becomes easy to process the sapphire substrate 2 in a fine and deep shape.
  • forming a concavo-convex structure with a period of 1 ⁇ m or less and a depth of 300 nm or more in a sapphire substrate forms a resist film on the substrate on which the mask layer is formed, and etches the mask layer using the resist film.
  • the etching method of this embodiment is suitable for forming a concavo-convex structure having a period of 1 ⁇ m or less and a depth of 500 nm or more.
  • the nanoscale periodic concavo-convex structure is called moth eye, but when sapphire is processed to sapphire, sapphire is a difficult-to-cut material and can only be processed to a depth of about 200 nm. However, a step of about 200 nm may be insufficient as a moth eye. It can be said that the etching method of this embodiment has solved a novel problem in the case of performing moth-eye processing on a sapphire substrate.
  • the mask layer 30 made of SiO 2 / Ni is shown as a workpiece, it is needless to say that the mask layer 30 may be a single Ni layer or another material. In short, the resist may be altered to increase the etching selectivity between the mask layer 30 and the resist film 40.
  • the change of the bias output of the plasma etching apparatus 1 is shown as the condition for alteration and the condition for etching.
  • the condition for alteration may be a condition in which the resist is altered when the resist is exposed to plasma and the etching selectivity is increased.
  • the mask layer 30 includes the Ni layer 32, it is needless to say that the present invention can be applied to etching of other materials.
  • the sapphire substrate etching method of the present embodiment can also be applied to substrates of SiC, Si, GaAs, GaN, InP, ZnO, and the like.
  • a semiconductor laminated portion 19 made of a group III nitride semiconductor is epitaxially grown on the verticalized moth-eye surface 2a of the sapphire substrate 2 manufactured as described above using lateral growth (semiconductor formation step), and the p-side electrode 27 and The n-side electrode 28 is formed (electrode formation process). Thereafter, a convex portion 2i is formed on the back surface of the sapphire substrate 2 in the same process as the vertical moth-eye surface 2a on the front surface, and then divided into a plurality of LED devices 1 by dicing, whereby the LED device 1 is manufactured. .
  • the inventors of the present application investigated whether the dislocation density is equal to or lower than a predetermined value when the ratio of the flat portion 2b of the sapphire substrate 2 is changed and the semiconductor stacked portion 19 has a predetermined thickness. . Specifically, whether the flat portion 2b is a C plane, the period of the convex portion 2c is changed, and the thickness of the semiconductor stacked portion 19 is 2.5 ⁇ m and the dislocation density is 2 ⁇ 10 8 / cm 2 or less. I investigated. The investigation was performed using a sample body formed in alignment with the intersection of the triangular lattice so that the convex portion 2c is located at the apex of the regular triangle. The results of this investigation are shown in FIG. FIG.
  • the period shown in FIG. 15 is a period corresponding to the length of one side of the equilateral triangle.
  • the dislocation density is 2 ⁇ 10 8 / cm 2 or less when the period of the convex portions 2 c is 600 nm or more. Further, it is understood that even if the period is 460 nm, the dislocation density is 2 ⁇ 10 8 / cm 2 or less if the ratio of the flat portion 2b is 41% or more. That is, by setting the period of the protrusions 2c to 600 nm or more, or the ratio of the flat portions 2b to 41% or more, good crystal quality can be obtained even if the semiconductor stacked portion 19 is thinned.
  • the semiconductor stacked portion 19 can be made thin without impairing the crystal quality of the light emitting layer 14 by setting the ratio of the flat portion 2b to 41% or more. Moreover, if the thickness of the semiconductor stacked portion 19 is about the same as that of the conventional one, the crystal quality of the light emitting layer 14 can be improved, and the light extraction efficiency can be further improved.
  • the base end portion of the convex portion 2c can be controlled, different convex portions 2c can be manufactured using the same mold 50, and the mold 50 can be shared. The manufacturing cost can be reduced.
  • the vertical moth-eye surface 2a since the vertical moth-eye surface 2a is provided, light incident at an angle exceeding the total reflection critical angle can be made perpendicular to the interface at the interface between the sapphire substrate 2 and the group III nitride semiconductor layer. Further, since the transmission moth-eye surface 2g that suppresses Fresnel reflection is provided, light that has been shifted vertically from the interface between the sapphire substrate 2 and the outside of the element can be smoothly taken out to the outside of the element. As described above, although both the front and back surfaces of the sapphire substrate 2 are processed to be uneven, different functions of the verticalization function and the Fresnel reflection suppression function are given, and the light extraction efficiency is dramatically improved by the synergistic effect of these functions. Can be improved.
  • the distance until the light emitted from the light emitting layer 14 reaches the back surface of the sapphire substrate 2 can be remarkably shortened, and the absorption of light inside the device can be suppressed.
  • the light in the angle region exceeding the critical angle of the interface propagates in the lateral direction, so there was a problem that the light was absorbed inside the device, but the light in the angle region exceeding the critical angle was verticalized Since the moth-eye surface 2a is close to the vertical and the Fresnel reflection on the moth-eye surface 2g of the light that is close to the vertical is suppressed, the light absorbed inside the device can be drastically reduced.
  • the surface of the sapphire substrate 2 has a plurality of convex portions 2c arranged at intersections of the virtual triangular lattice in plan view, and the triangles forming the virtual triangular lattice are not regular polygons.
  • the light can be extracted using many diffraction modes.
  • the length of one side of the triangle forming the virtual triangular lattice is not less than twice the optical wavelength of blue light and not more than 460 nm, or not less than 550 nm and not more than 800 nm, the light extraction efficiency can be improved.
  • the diffraction mode can be increased while regularly arranging the convex portions 2c. Furthermore, by setting the equilateral sides of the isosceles triangle to be not less than twice the optical wavelength of blue light and not more than 460 nm and the base is not less than 550 nm and not more than 800 nm, light can be extracted using diffraction modes having different properties.
  • the inventors of the present application significantly increase the light extraction efficiency of the LED element 1 by using a combination of the dielectric multilayer films 22 and 25 and the metal layers 23 and 26 as the p-side electrode 27 and the n-side electrode 28. I found something to do. That is, when the dielectric multilayer films 22 and 25 and the metal layers 23 and 26 are combined, the reflectivity increases as the angle is more perpendicular to the interface, which is advantageous for light that is closer to the interface. It becomes a reflection condition.
  • FIG. 16 is a graph showing the reflectance of the reflecting portion of Example 1.
  • the dielectric multilayer film formed on ITO was combined with ZrO 2 and SiO 2 to have a pair number of 5, and an Al layer was formed on the dielectric multilayer film.
  • a reflectance of 98% or more is realized in an angle range where the incident angle is 0 to 45 degrees.
  • a reflectance of 90% or more is realized in an angle range where the incident angle is 0 to 75 degrees.
  • the combination of the dielectric multilayer film and the metal layer is an advantageous reflection condition for the light that is perpendicular to the interface.
  • FIG. 17 is a graph showing the reflectance of the reflecting portion of Example 2.
  • Example 2 only an Al layer was formed on ITO. As shown in FIG. 17, the reflectance is almost 84% regardless of the incident angle.
  • the reflective portion may be a single metal layer such as an Al layer only.
  • FIG. 18 is a schematic cross-sectional view of an LED element showing a second embodiment of the present invention.
  • the LED element 101 has a semiconductor laminated portion 119 made of a group III nitride semiconductor layer formed on the surface of a sapphire substrate 102.
  • This LED element 101 is a face-up type, and light is mainly extracted from the side opposite to the sapphire substrate 102.
  • the semiconductor stacked unit 119 includes a buffer layer 110, an n-type GaN layer 112, a light emitting layer 114, an electron blocking layer 116, and a p-type GaN layer 118 in this order from the sapphire substrate 102 side.
  • a p-side electrode 127 is formed on the p-type GaN layer 118 and an n-side electrode 128 is formed on the n-type GaN layer 112.
  • the buffer layer 110 is formed on the surface of the sapphire substrate 102 and is made of AlN.
  • the n-type GaN layer 112 is formed on the buffer layer 110 and is composed of n-GaN.
  • the light emitting layer 114 is formed on the n-type GaN layer 112 and is made of GalnN / GaN. In this embodiment, the light emission peak wavelength of the light emitting layer 114 is 450 nm.
  • the electron block layer 116 is formed on the light emitting layer 114 and is made of p-AIGaN.
  • the p-type GaN layer 118 is formed on the electron block layer 116 and is made of p-GaN.
  • the n-type GaN layer 112 to the p-type GaN layer 118 are formed by epitaxial growth of a group III nitride semiconductor, and convex portions 102c are periodically formed on the surface of the sapphire substrate 102. Planarization is achieved by lateral growth in the initial growth stage.
  • the active layer is formed by recombination of electrons and holes.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the surface of the sapphire substrate 102 forms a vertical moth-eye surface 102a, and the p-side electrode 127 forms a transmission moth-eye surface 127g.
  • a flat portion 102b and a plurality of convex portions 102c periodically formed on the flat portion 102b are formed.
  • the sapphire substrate 102 is configured such that the ratio of the flat portion 102b is 40% or more in plan view.
  • each convex portion 102c can be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone.
  • Each convex part 102c is designed to diffract the light emitted from the light emitting layer 114.
  • a light verticalizing action can be obtained by each of the convex portions 102c arranged periodically.
  • the p-side electrode 127 has a diffusion electrode 121 formed on the p-type GaN layer 118 and a pad electrode 122 formed on a part of the diffusion electrode 121.
  • the diffusion electrode 121 is formed on the entire surface of the p-type GaN layer 118 and is made of a transparent material such as ITO (Indium Tin Oxide).
  • the pad electrode 122 is made of a metal material such as Al, for example.
  • a flat portion 127h and a plurality of convex portions 127i periodically formed on the flat portion 127h are formed on the surface of the diffusion electrode 121.
  • each convex portion 127i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone.
  • the period of the convex portion 127 i on the transmission moth-eye surface is smaller than twice the optical wavelength of the light emitting layer 114. In the present embodiment, Fresnel reflection at the interface with the outside is suppressed by the convex portions 127i that are periodically arranged.
  • the n-side electrode 128 is formed on the exposed n-type GaN layer 112 by etching the n-type GaN layer 112 from the p-type GaN layer 118.
  • the n-side electrode 128 is formed on the n-type GaN layer 112 and is made of a metal material such as Al.
  • FIG. 19 is a partially enlarged schematic cross-sectional view of the LED element.
  • a dielectric multilayer film 124 is formed on the back surface side of the sapphire substrate 102.
  • the dielectric multilayer film 124 is configured by repeating a plurality of pairs of the first material 124a and the second material 124b having different refractive indexes.
  • the dielectric multilayer film 124 is covered with an Al layer 126 that is a metal layer.
  • the dielectric multilayer film 124 and the Al layer 126 form a reflecting portion, and light emitted from the light emitting layer 114 and transmitted through the vertical moth-eye surface 102a by the diffraction action is reflected by the reflecting portion.
  • the light transmitted by the diffractive action is re-incident on the diffractive surface 102a, and is transmitted again by using the diffractive action on the diffractive surface 102a, so that the light can be extracted outside the element in a plurality of modes.
  • the semiconductor stacked portion 119 can be made thin without impairing the crystal quality of the light emitting layer 114.
  • the thickness of the semiconductor stacked portion 119 is approximately the same as the conventional thickness, the crystal quality of the light emitting layer 114 can be improved, and the light extraction efficiency can be further improved.
  • the verticalized moth-eye surface 102a is provided, light incident at an angle exceeding the total reflection critical angle can be made closer to the vertical at the interface between the sapphire substrate 102 and the group III nitride semiconductor layer. Furthermore, since the transmissive moth-eye surface 127g is provided, it is possible to suppress Fresnel reflection of light that is shifted vertically at the interface between the sapphire substrate 102 and the outside of the element. Thereby, the light extraction efficiency can be dramatically improved.
  • the distance until the light emitted from the light emitting layer 114 reaches the surface of the p-side electrode 127 can be remarkably shortened, and the light absorption inside the device can be suppressed.
  • the light in the angle region exceeding the critical angle of the interface propagates in the lateral direction, so there was a problem that the light was absorbed inside the device, but the light in the angle region exceeding the critical angle was verticalized By making the moth-eye surface 102a closer to the vertical, light absorbed inside the element can be drastically reduced.
  • the surface of the sapphire substrate 102 has a plurality of convex portions 102c arranged at intersections of the virtual triangular lattice in plan view, and the triangles forming the virtual triangular lattice are not regular polygons.
  • the light can be extracted using many diffraction modes.
  • the length of one side of the triangle forming the virtual triangular lattice is not less than twice the optical wavelength of blue light and not more than 460 nm, or not less than 550 nm and not more than 800 nm, the light extraction efficiency can be improved.
  • the diffraction mode can be increased while regularly arranging the convex portions 102c. Furthermore, by setting the equilateral sides of the isosceles triangle to be not less than twice the optical wavelength of blue light and not more than 460 nm and the base is not less than 550 nm and not more than 800 nm, light can be extracted using diffraction modes having different properties.
  • the inventors of the present application have found that the light extraction efficiency of the LED element 101 is remarkably increased by using the combination of the dielectric multilayer film 124 and the metal layer 126 as the reflection part on the back surface of the sapphire substrate 102. . That is, when the dielectric multilayer film 124 and the metal layer 126 are combined, the reflectance becomes higher as the angle is more perpendicular to the interface, which is an advantageous reflection condition for light that is closer to the interface. .
  • FIG. 20 is a graph showing the reflectivity of the reflecting portion of Example 3.
  • the dielectric multilayer film formed on the sapphire substrate was made of a combination of ZrO 2 and SiO 2 and the number of pairs was five, and an Al layer was formed on the dielectric multilayer film.
  • a reflectance of 99% or more is realized in an angle range where the incident angle is 0 degree to 55 degrees.
  • a reflectance of 98% or more is realized in the angle range where the incident angle is 0 degree to 60 degrees.
  • a reflectance of 92% or more is realized in an angle range where the incident angle is 0 degree to 75 degrees.
  • the combination of the dielectric multilayer film and the metal layer is an advantageous reflection condition for the light that is perpendicular to the interface.
  • FIG. 21 is a graph showing the reflectivity of the reflection part of Example 4.
  • Example 4 only the Al layer was formed on the sapphire substrate. As shown in FIG. 21, the reflectance is almost 88% regardless of the incident angle.
  • the reflective portion may be a single metal layer such as an Al layer only.
  • FIG. 22 is a schematic cross-sectional view of an LED element showing a third embodiment of the present invention.
  • the LED element 201 is a face-up type, in which a semiconductor stacked portion 219 made of a group III nitride semiconductor layer is formed on the surface of a sapphire substrate 202.
  • the semiconductor stacked unit 219 includes a buffer layer 210, an n-type GaN layer 212, a light emitting layer 214, an electron block layer 216, and a p-type GaN layer 218 in this order from the sapphire substrate 202 side.
  • a p-side electrode 227 is formed on the p-type GaN layer 218, and an n-side electrode 228 is formed on the n-type GaN layer 212.
  • the buffer layer 210 is formed on the surface of the sapphire substrate 2 and is made of AlN.
  • the buffer layer 210 is formed by MOCVD (Metal-Organic-Chemical-Vapor-Deposition) method, but a sputtering method can also be used.
  • the n-type GaN layer 212 as the first conductivity type layer is formed on the buffer layer 210 and is made of n-GaN.
  • the light emitting layer 214 is formed on the n-type GaN layer 212, is made of GalnN / GaN, and emits blue light by injecting electrons and holes.
  • blue light refers to light having a peak wavelength of 430 nm or more and 480 nm or less, for example.
  • the peak wavelength of light emission of the light emitting layer 214 is 450 nm.
  • the electron block layer 216 is formed on the light emitting layer 214 and is made of p-AIGaN.
  • the p-type GaN layer 218 as the second conductivity type layer is formed on the electron block layer 216 and is made of p-GaN.
  • the n-type GaN layer 212 to the p-type GaN layer 218 are formed by epitaxial growth of a group III nitride semiconductor, and convex portions 2c are periodically formed on the surface of the sapphire substrate 2, but the group III nitride semiconductor is formed. Planarization is achieved by lateral growth in the initial growth stage.
  • the active layer is formed by recombination of electrons and holes.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the surface of the sapphire substrate 202 forms a vertical moth-eye surface 202a, and the surface of the p-side electrode 227 forms a transmission moth-eye surface 227g.
  • a flat portion 202b and a plurality of convex portions 202c periodically formed on the flat portion 202b are formed. Further, the sapphire substrate 202 is configured such that the ratio of the flat portion 202b is 40% or more in plan view.
  • each convex portion 202c may be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone.
  • Each convex portion 202c is designed to diffract light emitted from the light emitting layer 214.
  • the vertical operation of light can be obtained by the convex portions 202c arranged periodically.
  • the light verticalizing action means that the intensity distribution of light is reflected and transmitted with respect to the interface between the sapphire substrate 202 and the semiconductor stacked portion 219 than before the light intensity is incident on the vertical moth-eye surface. It is biased in the vertical direction.
  • a dielectric multilayer film 224 is formed on the back surface side of the sapphire substrate 202.
  • the dielectric multilayer film 224 is covered with an Al layer 226 that is a metal layer.
  • the dielectric multilayer film 224 and the Al layer 226 form a reflecting portion, and the light emitted from the light emitting layer 214 and transmitted through the vertical moth-eye surface 202a by the diffraction action is reflected by the reflecting portion. Then, the light transmitted by the diffractive action is incident again on the diffractive surface 202a, and is transmitted again using the diffractive action on the diffractive surface 202a, whereby the light can be extracted outside the element in a plurality of modes.
  • the p-side electrode 227 has a diffusion electrode layer 221 formed on the p-type GaN layer 218 and a moth-eye layer 222 formed on the diffusion electrode layer 221.
  • the p-side electrode 227 has a pad electrode 223 that penetrates the diffusion electrode layer 221 and the moth-eye layer 222 and contacts the p-type GaN layer 218.
  • the diffusion electrode layer 221 is formed on the p-type GaN layer 218 except for the formation region of the pad electrode 223, and is made of a transparent material.
  • the moth-eye layer 222 is formed on the diffusion electrode layer 221 except for the formation region of the pad electrode 223, and is made of a transparent material.
  • the moth-eye layer 222 is made of a material having a smaller extinction coefficient than that of the material constituting the diffusion electrode layer 221 and having substantially the same refractive index as that of the material constituting the diffusion electrode layer 221.
  • “the refractive index is substantially the same” means that the difference in refractive index between the diffusion electrode layer 221 and the moth-eye layer 222 is within 20% of the refractive index of the moth-eye layer 222.
  • the diffusion electrode layer 221 is made of a material having a sheet resistance smaller than that of the moth-eye layer 222, and is formed thinner than the moth-eye layer 222. Further, the diffusion electrode layer 221 is thinner than the moth-eye layer 222.
  • the pad electrode 223 is made of a metal material such as Al.
  • the pad electrode 223 is made of a material that has a higher adhesion to the semiconductor stacked portion 219 than the adhesion to the diffusion electrode layer 221.
  • the diffusion electrode layer 221 is made of ITO (Indium Tin Oxide) having a thickness of 100 nm
  • the moth-eye layer 222 is made of ZrO 2 having a thickness of 400 nm.
  • the extinction coefficient of ITO is 0.04, and the extinction coefficient of ZrO 2 is almost zero.
  • the refractive index of ITO is 2.04, and the refractive index of ZrO2 is 2.24.
  • a material such as IZO (indium zinc oxide) can be used as the diffusion electrode layer 221, and a material such as Nb 2 O 5 can be used as the moth-eye layer 222.
  • the surface of the moth-eye layer 222 is formed with a flat portion 227h and a plurality of convex portions 227i periodically formed on the flat portion 227h.
  • the shape of each convex part 227i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone.
  • the period of the convex part 227 i on the transmission moth-eye surface is smaller than twice the optical wavelength of the light emitting layer 214. In the present embodiment, Fresnel reflection at the interface with the outside is suppressed by the convex portions 227i arranged periodically.
  • the n-side electrode 228 is formed on the exposed n-type GaN layer 212 by etching the n-type GaN layer 212 from the p-type GaN layer 218.
  • the n-side electrode 228 is formed on the n-type GaN layer 212 and is made of a metal material such as Al.
  • FIG. 23 is an explanatory diagram showing the traveling direction of light inside the device.
  • the light incident on the sapphire substrate 202 beyond the critical angle is transmitted and reflected in the vertical moth-eye surface 202a in a direction closer to the vertical than the incident. To do. That is, the light reflected by the vertical moth-eye surface 202a is incident on the transmission moth-eye surface 227g in a state where the angle is changed toward the vertical direction.
  • the light transmitted through the verticalized moth-eye surface 202a is reflected by a reflecting portion made of a dielectric multilayer film 224 and an Al layer 226, which will be described later, with the angle being changed toward the vertical direction, and then incident again on the verticalized moth-eye surface 202a. To do.
  • the incident angle at this time is closer to the vertical than the previous incident angle.
  • the light incident on the transmission moth-eye surface 227g can be shifted to the vertical direction.
  • the transmission moth-eye surface 227g of the p-side electrode 227 is aligned with the intersection of the virtual triangular lattice at a predetermined period so that the center of each convex portion 227i is the position of the apex of the regular triangle in plan view. It is formed.
  • the shortest period of each convex part 227i is smaller than the optical wavelength of the light emitted from the light emitting layer 214. That is, Fresnel reflection is suppressed at the transmission moth-eye surface 227g.
  • the length of one side of an equilateral triangle forming a virtual triangular lattice is 300 m.
  • the shortest period of each convex part 227i is 300 nm. Since the wavelength of light emitted from the light emitting layer 214 is 450 nm and the refractive index of ZrO 2 is 2.24, the optical wavelength is 200.9 nm. That is, the shortest period of the transmission moth-eye surface 227g is smaller than twice the optical wavelength of the light emitting layer 214. In addition, if the period of a moth-eye surface is 2 times or less of an optical wavelength, the Fresnel reflection in an interface can be suppressed. The Fresnel reflection suppressing action can be sufficiently obtained if the shortest period among the periods of the convex portions 227i is smaller than twice the optical wavelength.
  • the entire period of the convex portion 227i is made smaller than twice the optical wavelength, a larger Fresnel reflection suppressing effect can be obtained.
  • the optical wavelength of the transmissive moth-eye surface 227g approaches from 2 times to 1 time, the effect of suppressing Fresnel reflection increases.
  • the outside of the moth-eye layer 222 is resin or air, if the period of the transmissive moth-eye surface 227g is 1.25 times or less of the optical wavelength, it is possible to obtain the same Fresnel reflection suppressing effect as 1 time or less.
  • FIG. 24 is an explanatory diagram for processing a moth-eye layer, where (a) shows a state in which a first mask layer is formed on the transmission moth-eye surface, and (b) shows a state in which a resist layer is formed on the first mask layer. (C) shows a state in which the resist layer is selectively irradiated with an electron beam, (d) shows a state in which the resist layer is developed and removed, and (e) shows a state in which the second mask layer is formed. Indicates the state.
  • the first mask layer 330 is formed on the surface of the moth-eye layer 222.
  • the first mask layer 330 is made of, for example, SiO 2 and is formed by a sputtering method, a vacuum evaporation method, a CVD method, or the like.
  • the thickness of the 1st mask layer 330 is arbitrary, it is 1.0 micrometer, for example.
  • a resist layer 332 is formed on the first mask layer 330 of the moth-eye layer 222.
  • the resist layer 332 is made of, for example, an electron beam photosensitive material such as ZEP manufactured by Nippon Zeon Co., Ltd., and is applied on the first mask layer 330.
  • the thickness of the resist layer 332 is arbitrary, but is, for example, 100 nm to 2.0 ⁇ m.
  • a stencil mask 334 is set apart from the resist layer 332.
  • a gap of 1.0 ⁇ m to 100 ⁇ m is formed between the resist layer 332 and the stencil mask 334.
  • the stencil mask 334 is formed of, for example, a material such as diamond or SiC, and the thickness is arbitrary, but the thickness is, for example, 500 nm to 100 ⁇ m.
  • the stencil mask 334 has an opening 334a that selectively transmits an electron beam.
  • the stencil mask 334 is irradiated with an electron beam, and the resist layer 332 is exposed to the electron beam that has passed through each opening 334a of the stencil mask 334.
  • the pattern of the stencil mask 334 is transferred to the resist layer 332 using an electron beam of 10 to 100 ⁇ C / cm 2 .
  • the resist layer 332 is developed using a predetermined developer. As a result, as shown in FIG. 24D, the portion irradiated with the electron beam is eluted into the developer, and the portion not irradiated with the electron beam remains, thereby forming an opening 332a.
  • ZEP manufactured by Nippon Zeon Co., Ltd. is used as the resist layer 332, for example, amyl acetate can be used as the developer.
  • a second mask layer 336 is formed on the first mask layer 330 on which the resist layer 332 is patterned.
  • the second mask layer 336 is patterned on the first mask layer 330 using electron beam irradiation.
  • the second mask layer 336 is made of, for example, Ni, and is formed by a sputtering method, a vacuum evaporation method, a CVD method, or the like.
  • the thickness of the 2nd mask layer 336 is arbitrary, it is 20 nm, for example.
  • FIG. 25 is an explanatory view for processing the moth-eye layer, (a) shows a state where the resist layer is completely removed, (b) shows a state where the first mask layer is etched using the second mask layer as a mask, (C) shows a state where the second mask layer is removed, (d) shows a state where the transmission moth-eye surface is etched using the first mask layer as a mask, and (e) shows a state where the first mask layer is removed.
  • the resist layer 332 is removed using a stripping solution.
  • the resist layer 332 can be removed by immersing it in a stripping solution and irradiating with ultrasonic waves for a predetermined time.
  • diethyl ketone can be used as the stripping solution.
  • a pattern of the second mask layer 336 is formed on the first mask layer 330 by inverting the pattern of the openings 334a of the stencil mask 334.
  • the first mask layer 330 is dry-etched using the second mask layer 336 as a mask. Thereby, the opening 330a is formed in the first mask layer 330, and the pattern of the first mask layer 330 is formed.
  • the etching gas a gas having resistance to the moth-eye layer 222 and the first mask layer 330 as compared with the second mask layer 336 is used.
  • the first mask layer 330 is SiO 2 and the second mask layer 336 is Ni
  • a fluorine-based gas such as SF 6
  • the etching selectivity of Ni to SiO 2 is about 100.
  • the patterning of the first mask layer 330 can be performed accurately.
  • the second mask layer 336 on the first mask layer 330 is removed.
  • the first mask layer 330 is SiO 2 and the second mask layer 336 is Ni
  • it is immersed in hydrochloric acid and nitric acid diluted with water and mixed at about 1: 1, or Ni is removed by dry etching with argon gas. Can be removed.
  • the moth-eye layer 222 is dry-etched using the first mask layer 330 as a mask.
  • the inverted pattern of each opening 334a of the stencil mask 334 can be transferred to the moth-eye layer 222. it can.
  • the first mask layer 330 has higher resistance to the etching gas than the moth-eye layer 222, a portion that is not covered with the first mask layer 330 can be selectively etched. Then, the etching is terminated when the etching depth of the moth-eye layer 222 reaches the desired depth.
  • a chlorine-based gas such as Cl 2 or a fluorine-based gas can be used as the etching gas.
  • the fluorine-based gas cannot etch ITO, when ITO is used as the current diffusion layer 221, the current diffusion layer 221 is not processed beyond the moth-eye layer 222. That is, even if the moth-eye layer 222 has the minimum thickness necessary for forming the unevenness and the current diffusion layer 221 is exposed during etching, the current diffusion layer 221 is not etched.
  • the first mask layer 330 remaining on the moth-eye layer 222 is removed using a predetermined stripping solution.
  • a stripping solution for example, when SiO 2 is used for the first mask layer 330, diluted hydrofluoric acid can be used.
  • a mask made of SiO 2 is formed in the pad electrode 223 formation region of the p-type GaN layer 218, this mask can also be removed at once.
  • a pad electrode 223 is formed on the moth-eye layer 222.
  • the LED element 201 is manufactured by dividing into a plurality of LED elements 201 by dicing.
  • the current flowing from the semiconductor stacked portion 219 to the p-side electrode 227 flows through the pad electrode 223 after the current is diffused in the diffusion electrode layer 221.
  • the diffusion electrode layer 221 has a low sheet resistance, the current can be diffused accurately.
  • the pad electrode 223 and the current diffusion layer 221 are in direct contact with each other, a current flows directly from the current diffusion layer 221 to the pad electrode 223 without passing through the moth-eye layer 222.
  • the pad electrode 223 is a material having higher adhesion to the semiconductor stacked portion 219 than the diffusion electrode layer 221, the pad electrode 223 is easily peeled off from the semiconductor stacked portion 219 due to a mechanical load or the like. There is nothing.
  • the vertical moth-eye surface 202a since the vertical moth-eye surface 202a is provided, light incident at an angle exceeding the total reflection critical angle can be made perpendicular to the interface at the interface between the sapphire substrate 202 and the group III nitride semiconductor layer. Furthermore, since the transmissive moth-eye surface 227g that suppresses Fresnel reflection is provided, light that has been vertically shifted at the interface between the sapphire substrate 202 and the outside of the element can be smoothly taken out to the outside of the element. Thereby, the light extraction efficiency can be dramatically improved.
  • the distance until the light emitted from the light emitting layer 214 reaches the transmission moth-eye surface 227g can be remarkably shortened, and the light absorption inside the device can be suppressed.
  • the light in the angle region exceeding the critical angle of the interface propagates in the lateral direction, so there was a problem that the light was absorbed inside the device, but the light in the angle region exceeding the critical angle was verticalized Since the moth-eye surface 202a is close to the vertical and the Fresnel reflection of the vertically-transmitted moth-eye surface 227g is suppressed, the light absorbed inside the device can be drastically reduced.
  • the semiconductor stacked portion 219 can be thinned without impairing the crystal quality of the light emitting layer 214.
  • the thickness of the semiconductor stacked portion 219 is approximately the same as the conventional thickness, the crystal quality of the light emitting layer 214 can be improved, and the light extraction efficiency can be further improved.
  • the triangle forming the virtual triangular lattice is not a regular polygon.
  • the light can be extracted using many diffraction modes.
  • the length of one side of the triangle forming the virtual triangular lattice is not less than twice the optical wavelength of blue light and not more than 460 nm, or not less than 550 nm and not more than 800 nm, the light extraction efficiency can be improved.
  • the diffraction mode can be increased while regularly arranging the convex portions 102c. Furthermore, by setting the equilateral sides of the isosceles triangle to be not less than twice the optical wavelength of blue light and not more than 460 nm and the base is not less than 550 nm and not more than 800 nm, light can be extracted using diffraction modes having different properties.
  • the inventors of the present application have found that the light extraction efficiency of the LED element 201 is remarkably increased by using a combination of the dielectric multilayer film 224 and the metal layer 226 as a reflection part on the back surface of the sapphire substrate 202. . That is, when the dielectric multilayer film 224 and the metal layer 226 are combined, the reflectivity becomes higher as the angle is more perpendicular to the interface, and the reflection condition is advantageous for light that is closer to the interface. .
  • the vertical moth-eye surface and the transmission moth-eye surface are configured by the periodically formed convex portions.
  • each moth-eye surface may be configured by the periodically formed concave portions.
  • the transmission moth-eye surface is formed only on the p-side electrode, it may be formed on the n-side electrode.
  • the convex portions or the concave portions in alignment with the intersections of the triangular lattice, for example, it can be formed in alignment with the intersections of the virtual square lattice.
  • the LED light emitting device and the manufacturing method thereof of the present invention are industrially useful because the light extraction efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 さらに光取り出し効率を向上させることのできるLED素子及びその製造方法を提供する。 発光層を含む半導体積層部と、発光層から発せられる光が入射し、当該光の光学波長より大きく当該光のコヒーレント長より小さい周期で凸部が形成され、入射光をブラッグの回折条件に従って複数のモードで反射するとともに、入射光をブラッグの回折条件に従って複数のモードで透過する回折面と、回折面にて回折した光を反射して前記回折面へ再入射させる反射面と、を備えたLED素子において、半導体積層部は、回折面上に凸部の周囲に空隙なく形成され、回折面において、平面視にて、平坦部の割合が40%以上であるようにした。

Description

LED素子及びその製造方法
 本発明は、LED素子及びその製造方法に関する。
 サファイア基板の表面上に形成され発光層を含むIII族窒化物半導体と、サファイア基板の表面側に形成され発光層から発せられる光が入射し当該光の光学波長より大きく当該光のコヒーレント長より小さい周期で凹部又は凸部が形成された回折面と、基板の裏面側に形成され回折面にて回折した光を反射して回折面へ再入射させるAl反射膜と、を備えるLED素子が知られている(特許文献1参照)。このLED素子では、回折作用により透過した光を回折面に再入射させて、回折面にて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。
国際公開第2011/027679号
 本願発明者らは、さらなる光取り出し効率の向上を追及していた。
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、さらに光取り出し効率を向上させることのできるLED素子及びその製造方法を提供することにある。
 前記目的を達成するため、本発明では、発光層を含む半導体積層部と、前記発光層から発せられる光が入射し、当該光の光学波長より大きく当該光のコヒーレント長より小さい周期で凸部が形成され、入射光をブラッグの回折条件に従って複数のモードで反射するとともに、入射光をブラッグの回折条件に従って複数のモードで透過する回折面と、前記回折面にて回折した光を反射して前記回折面へ再入射させる反射面と、を備え、前記半導体積層部は、前記回折面上に前記凸部の周囲に空隙なく形成され、前記回折面において、平面視にて、前記平坦部の割合が40%以上であるLED素子が提供される。
 また、本発明では、上記LED素子を製造するにあたり、サファイア基板の表面上にマスク層を形成するマスク層形成工程と、前記マスク層上にレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜に所定のパターンを形成するパターン形成工程と、前記レジスト膜をマスクとして前記マスク層のエッチングを行うマスク層のエッチング工程と、エッチングされた前記マスク層をマスクとして、前記サファイア基板のエッチングを行って前記凸部を形成する基板のエッチング工程と、エッチングされた前記サファイア基板の表面上に、前記半導体積層部を形成する半導体形成工程と、を含むLED素子の製造方法が提供される。
 さらに、本発明では、サファイア基板と、前記サファイア基板の表面上に形成され青色光を発する発光層を含む半導体積層部と、を備え、前記サファイア基板の表面は、平面視にて、仮想の三角格子又は四角格子の交点に配置される複数の凹部又は凸部を有し、前記仮想の三角格子又は四角格子をなす三角形又は四角形は、正多角形ではなく、各辺の長さが前記青色光の光学波長の2倍より大きくコヒーレント長より小さいLED素子が提供される。
 さらにまた、本発明では、基板と、前記基板の表面上に形成された発光層を含む半導体積層部と、前記基板の裏面上に形成された反射部と、前記半導体積層部上に形成された電極と、を備え、前記電極は、前記半導体積層部上に形成される拡散電極層と、前記拡散電極層上に形成され表面が前記発光層から発せられる光の光学波長の2倍より小さい周期の凹部又は凸部を有する透過モスアイ面をなすモスアイ層と、を有し、前記モスアイ層は、前記発光層から発せられる光について、前記拡散電極層を構成する材料よりも消衰係数が小さく、前記拡散電極層を構成する材料と屈折率がほぼ同じ材料から構成したLED素子が提供される。
 本発明のLED素子によれば、さらに光取り出し効率を向上させることができる。
図1は、本発明の第1の実施形態を示すLED素子の模式断面図である。 図2は、異なる屈折率の界面における光の回折作用を示す説明図であり、(a)は界面にて反射する状態を示し、(b)は界面を透過する状態を示す。 図3は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による透過角の関係を示すグラフである。 図4は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による反射角の関係を示すグラフである。 図5は、素子内部における光の進行方向を示す説明図である。 図6は、LED素子の一部拡大模式断面図である。 図7はサファイア基板を示し、(a)が模式斜視図、(b)がA-A断面を示す模式説明図、(c)が模式拡大説明図である。 図8は凸部の配置状態を示す平面模式図であり、(a)が仮想の三角格子を正三角形としたもの、(b)が仮想の三角格子を二等辺三角形としたものである。 図9は、仮想の三角格子又は四角格子を正多角形とした場合における、1辺の長さと光取り出し効率との関係を示すグラフである。 図10は、仮想の三角格子を二等辺三角形とした場合における、等辺の長さと光取り出し効率との関係を示すグラフである。 図11は、プラズマエッチング装置の概略説明図である。 図12は、サファイア基板のエッチング方法を示すフローチャートである。 図13Aはサファイア基板及びマスク層のエッチング方法の過程を示し、(a)は加工前のサファイア基板を示し、(b)はサファイア上にマスク層を形成した状態を示し、(c)はマスク層上にレジスト膜を形成した状態を示し、(d)はレジスト膜にモールドを接触させた状態を示し、(e)はレジスト膜にパターンが形成された状態を示す。 図13Bはサファイア基板及びマスク層のエッチング方法の過程を示し、(f)はレジスト膜の残膜を除去した状態を示し、(g)はレジスト膜を変質させた状態を示し、(h)はレジスト膜をマスクとしてマスク層をエッチングした状態を示し、(i)はマスク層をマスクとしてサファイア基板をエッチングした状態を示す。 図13Cはサファイア基板及びマスク層のエッチング方法の過程を示し、(j)はマスク層をマスクとしてサファイア基板をさらにエッチングした状態を示し、(k)はサファイア基板から残ったマスク層を除去した状態を示し、(l)はサファイア基板にウェットエッチングを施した状態を示す。 図14は、Ni層の厚さを変化させた際における凸部の基端部の径と凸部の高さの関係を示すグラフである。 図15は、凸部の周期及びC面領域の割合と、転位密度が所定値以下となったか否かを示す表である。 図16は、実施例1の反射部の反射率を示すグラフである。 図17は、実施例2の反射部の反射率を示すグラフである。 図18は、本発明の第2の実施形態を示すLED素子の模式断面図である。 図19は、LED素子の一部拡大模式断面図である。 図20は、実施例3の反射部の反射率を示すグラフである。 図21は、実施例4の反射部の反射率を示すグラフである。 図22は、本発明の第2の実施形態を示すLED素子の模式断面図である。 図23は、素子内部における光の進行方向を示す説明図である。 図24はモスアイ層を加工する説明図であり、(a)は透過モスアイ面に第1マスク層が形成された状態を示し、(b)は第1マスク層上にレジスト層が形成された状態を示し、(c)はレジスト層に選択的に電子線を照射する状態を示し、(d)はレジスト層を現像して除去した状態を示し、(e)は第2マスク層が形成された状態を示している。 図25はモスアイ層を加工する説明図であり、(a)はレジスト層を完全に除去した状態を示し、(b)は第2マスク層をマスクとして第1マスク層をエッチングした状態を示し、(c)は第2マスク層を除去した状態を示し、(d)第1マスク層をマスクとして透過モスアイ面をエッチングした状態を示し、(e)は第1マスク層を除去した状態を示す。
 図1は、本発明の第1の実施形態を示すLED素子の模式断面図である。
 図1に示すように、LED素子1は、サファイア基板2の表面上に、III族窒化物半導体層からなる半導体積層部19が形成されたものである。このLED素子1は、フリップチップ型であり、サファイア基板2の裏面側から主として光が取り出される。半導体積層部19は、バッファ層10、n型GaN層12、発光層14、電子ブロック層16、p型GaN層18をサファイア基板2側からこの順に有している。p型GaN層18上にはp側電極27が形成されるとともに、n型GaN層12上にはn側電極28が形成されている。
 図1に示すように、バッファ層10は、サファイア基板2の表面上に形成され、AlNで構成されている。本実施形態においては、バッファ層10は、MOCVD(Metal Organic Chemical Vapor Deposition)法により形成されるが、スパッタリング法を用いることもできる。第1導電型層としてのn型GaN層12は、バッファ層10上に形成され、n-GaNで構成されている。発光層14は、n型GaN層12上に形成され、GalnN/GaNで構成され、電子及び正孔の注入により青色光を発する。ここで、青色光とは、例えば、ピーク波長が430nm以上480nm以下の光をいうものとする。本実施形態においては、発光層14の発光のピーク波長は450nmである。
 電子ブロック層16は、発光層14上に形成され、p―AIGaNで構成されている。第2導電型層としてのp型GaN層18は、電子ブロック層16上に形成され、p-GaNで構成されている。n型GaN層12からp型GaN層18までは、III族窒化物半導体のエピタキシャル成長により形成され、サファイア基板2の表面には周期的に凸部2cが形成されているが、III族窒化物半導体の成長初期に横方向成長による平坦化が図られる。尚、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。
 サファイア基板2の表面は垂直化モスアイ面2aをなし、サファイア基板2の裏面は透過モスアイ面2gをなす。サファイア基板2の表面は、平坦部2bと、平坦部2bに周期的に形成された複数の凸部2cと、が形成されている。本実施形態においては、各凸部2cの周囲に半導体積層部19が空隙なく形成されている。各凸部2cの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。各凸部2cは、発光層14から発せられる光を回折するよう設計される。本実施形態においては、周期的に配置される各凸部2cにより、光の垂直化作用を得ることができる。ここで、光の垂直化作用とは、光の強度分布が、垂直化モスアイ面へ入射する前よりも、反射及び透過した後の方が、サファイア基板2と半導体積層部19の界面に対して垂直な方向に偏ることをいう。
 また、サファイア基板2の裏面は、平坦部2hと、平坦部2hに周期的に形成された複数の凸部2iと、が形成されている。各凸部2iの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。透過モスアイ面の凸部2iの周期は、垂直化モスアイ面の凸部2cの周期より短い。本実施形態においては、周期的に配置される各凸部2iにより、外部との界面におけるフレネル反射が抑制される。
 図2は、異なる屈折率の界面における光の回折作用を示す説明図であり、(a)は界面にて反射する状態を示し、(b)は界面を透過する状態を示す。
 ここで、ブラッグの回折条件から、界面にて光が反射する場合において、入射角θinに対して反射角θrefが満たすべき条件は、
 d・n1・(sinθin-sinθref)=m・λ・・・(1)
である。ここで、n1は入射側の媒質の屈折率、λは入射する光の波長、mは整数である。半導体積層部19からサファイア基板2へ光が入射する場合、n1はIII族窒化物半導体の屈折率となる。図2(a)に示すように、上記(1)式を満たす反射角θrefで、界面へ入射する光は反射される。
 一方、ブラッグの回折条件から、界面にて光が透過する場合において、入射角θinに対して透過角θoutが満たすべき条件は、
 d・(n1・sinθin-n2・sinθout)=m’・λ・・・(2)
である。ここで、n2は出射側の媒質の屈折率であり、m’は整数である。例えば半導体積層部19からサファイア基板2へ光が入射する場合、n2はサファイアの屈折率となる。図2(b)に示すように、上記(2)式を満たす透過角θoutで、界面へ入射する光は透過される。
 上記(1)式及び(2)式の回折条件を満たす反射角θref及び透過角θoutが存在するためには、サファイア基板2の表面の周期は、素子内部の光学波長である(λ/n1)や(λ/n2)よりも大きくなければならない。従って、サファイア基板2の表面は、回折光が存在するように周期が(λ/n1)や(λ/n2)よりも大きく設定されている。
 図3は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による透過角の関係を示すグラフである。また、図4は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による反射角の関係を示すグラフである。
 垂直化モスアイ面2aに入射する光には、一般的な平坦面と同様に全反射の臨界角が存在する。GaN系半導体層とサファイア基板2との界面では、臨界角は45.9°である。図3に示すように、臨界角を超えた領域では、上記(2)式の回折条件を満たすm’=1,2,3,4での回折モードでの透過が可能である。また、図4に示すように、臨界角を超えた領域では、上記(1)式の回折条件を満たすm=1,2,3,4での回折モードでの反射が可能である。臨界角が45.9°の場合、臨界角を超える光出力が約70%、臨界角を超えない光出力が約30%となる。すなわち、臨界角を超えた領域の光を取り出すことは、LED素子1の光取り出し効率の向上に大きく寄与する。
 ここで、入射角θinよりも透過角θoutが小さくなる領域では、垂直化モスアイ面2aを透過する光は、サファイア基板2とIII族窒化物半導体層の界面に対して垂直寄りに角度変化する。図3中、この領域をハッチングで示す。図3に示すように、垂直化モスアイ面2aを透過する光については、臨界角を超えた領域では、m’=1,2,3の回折モードの光は全ての角度域で垂直寄りに角度変化する。m’=4の回折モードの光は一部の角度域で垂直寄りとならないが、回折次数が大きい光の強度は比較的小さいため影響が小さく、この一部の角度域においても実質的に垂直寄りに角度変化することとなる。すなわち、半導体積層部19側にて垂直化モスアイ面2aへ入射する光の強度分布と比べて、サファイア基板2側にて垂直化モスアイ面2aを透過して出射する光の強度分布が、半導体積層部19とサファイア基板2の界面に対して垂直な方向に偏る。
 また、入射角θinよりも反射角θrefが小さくなる領域では、垂直化モスアイ面2aで反射する光は、サファイア基板2とIII族窒化物半導体層の界面に対して垂直寄りに角度変化する。図4中、この領域をハッチングで示す。図4に示すように、垂直化モスアイ面2aにて反射する光については、臨界角を超えた領域では、m=1,2,3の回折モードの光は全ての角度域で垂直寄りに角度変化する。m=4の回折モードの光は一部の角度域で垂直寄りとならないが、回折次数が大きい光の強度は比較的小さいため影響が小さく、この一部の角度域においても実質的に垂直寄りに角度変化することとなる。すなわち、半導体積層部19側にて垂直化モスアイ面2aへ入射する光の強度分布と比べて、半導体積層部19側にて垂直化モスアイ面2aから反射により出射する光の強度分布が、半導体積層部19とサファイア基板2の界面に対して垂直な方向に偏る。
 図5は、素子内部における光の進行方向を示す説明図である。
 図5に示すように、発光層14から発せられた光のうち、サファイア基板2へ臨界角を超えて入射する光は、垂直化モスアイ面2aで入射時よりも垂直寄りの方向へ透過及び反射する。すなわち、垂直化モスアイ面2aを透過した光は、垂直寄りへ角度変化した状態で透過モスアイ面2gへ入射する。また、垂直化モスアイ面2aで反射した光は、垂直寄りへ角度変化した状態でp側電極27及びn側電極28で反射された後、垂直化モスアイ面2aに再度入射する。このときの入射角は、先の入射角よりも垂直寄りとなる。この結果、透過モスアイ面2gへ入射する光を垂直寄りとすることができる。
 図6は、LED素子の一部拡大模式断面図である。
 図6に示すように、p側電極27は、p型GaN層18上に形成される拡散電極21と、拡散電極21上の所定領域に形成される誘電体多層膜22と、誘電体多層膜22上に形成される金属電極23とを有している。拡散電極21は、p型GaN層18に全面的に形成され、例えばITO(Indium Tin Oxide)等の透明材料からなる。また、誘電体多層膜22は、屈折率の異なる第1材料22aと第2材料22bのペアを複数繰り返して構成される。誘電体多層膜22は、例えば、第1材料22aをZrO(屈折率:2.18)、第2材料22bをSiO(屈折率:1.46)とし、ペア数を5とすることができる。尚、ZrOとSiOと異なる材料を用いて誘電体多層膜22を構成してもよく、例えば、AlN(屈折率:2.18)、Nb(屈折率:2.4)、Ta(屈折率:2.35)等を用いてもよい。金属電極23は、誘電体多層膜22を被覆し、例えばAl等の金属材料からなる。金属電極23は、誘電体多層膜22に形成されたビアホール22cを通じて拡散電極21と電気的に接続されている。
 図6に示すように、n側電極28は、p型GaN層18からn型GaN層12をエッチングして、露出したn型GaN層12上に形成される。n側電極28は、n型GaN層12上に形成される拡散電極24と、拡散電極24上の所定領域に形成される誘電体多層膜25と、誘電体多層膜25上に形成される金属電極26とを有している。拡散電極24は、n型GaN層12に全面的に形成され、例えばITO(Indium Tin Oxide)等の透明材料からなる。また、誘電体多層膜25は、屈折率の異なる第1材料25aと第2材料25bのペアを複数繰り返して構成される。誘電体多層膜25は、例えば、第1材料25aをZrO(屈折率:2.18)、第2材料25bをSiO(屈折率:1.46)とし、ペア数を5とすることができる。尚、ZrOとSiOと異なる材料を用いて誘電体多層膜25を構成してもよく、例えば、AlN(屈折率:2.18)、Nb(屈折率:2.4)、Ta(屈折率:2.35)等を用いてもよい。金属電極26は、誘電体多層膜25を被覆し、例えばAl等の金属材料からなる。金属電極26は、誘電体多層膜25に形成されたビアホール25aを通じて拡散電極24と電気的に接続されている。
 このLED素子1においては、p側電極27及びn側電極28が反射部をなしている。p側電極27及びn側電極28は、それぞれ垂直に近い角度ほど反射率が高くなっている。反射部へは、発光層14から発せられて直接的に入射する光の他、サファイア基板2の垂直化モスアイ面2aにて反射して、界面に対して垂直寄りに角度変化した光が入射する。すなわち、反射部へ入射する光の強度分布は、サファイア基板2の表面が平坦面だった場合と比較すると、垂直寄りに偏った状態となっている。
 次いで、図7を参照してサファイア基板2について詳述する。図7はサファイア基板を示し、(a)が模式斜視図、(b)がA-A断面を示す模式説明図、(c)が模式拡大説明図である。
 図7(a)に示すように、垂直化モスアイ面2aは、平面視にて、各凸部2cの中心が正三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。尚、各凸部2cの中心が二等辺三角形の頂点の位置となるように配置してもよい。各凸部2cの周期は、発光層14から発せられる光の光学波長より大きく、当該光のコヒーレント長より小さくなっている。尚、ここでいう周期とは、隣接する凸部2cにおける高さのピーク位置の距離をいう。また、光学波長とは、実際の波長を屈折率で除した値を意味する。さらに、コヒーレント長とは、所定のスペクトル幅のフォトン群の個々の波長の違いによって、波の周期的振動が互いに打ち消され、可干渉性が消失するまでの距離に相当する。コヒーレント長lcは、光の波長をλ、当該光の半値幅をΔλとすると、おおよそlc=(λ/Δλ)の関係にある。ここで、各凸部2cの周期は光学波長の1倍以上で臨界角以上の角度の入射光に対して徐々に回折作用が有効に働き出し、発光層14から発せられる光の光学波長の2倍より大きいと、透過モード及び反射モードの数が十分に増えるので好ましい。また、各凸部2cの周期は、発光層14から発せられる光のコヒーレント長の半分以下であることが好ましい。
 本実施形態においては、仮想の三角格子をなす正三角形の一辺の長さが460nmとなっている。すなわち、各凸部2cの主な周期は、460nm及び797nmである。また、サファイア基板2は、平面視にて、平坦部2bの割合が40%以上となるよう構成されている。発光層14から発せられる光の波長は450nmであり、III族窒化物半導体層の屈折率が2.4であることから、その光学波長は187.5nmである。また、発光層14から発せられる光の半値幅は27nmであることから、当該光のコヒーレント長は、7500nmである。すなわち、垂直化モスアイ面2aの周期は、発光層14の光学波長の2倍より大きく、かつ、コヒーレント長の半分以下となっている。
 図8は凸部の配置状態を示す平面模式図であり、(a)が仮想の三角格子を正三角形としたもの、(b)が仮想の三角格子を二等辺三角形としたものである。
 ここで、図8(a)に示すように、仮想の三角格子を正三角形とすると、各凸部2cについて、最も近接する距離a1に位置する凸部2cは60°おきに6つ存在する。すなわち、図8(a)に示すように、所定の凸部2cを基準として、最も近接する凸部2cは、0°方向、60°方向、120°方向、180°方向、240°方向及び300°方向に位置している。このうち、0°方向と180°方向、60°方向と240°方向、120°方向と300°方向は等価な方向である。
 また、これらに次いで近い距離a2の凸部2cは、30°方向、90°方向、150°方向、210°方向、270°方向及び330°方向に位置している。このうち、30°方向と210°方向、90°方向と270°方向、150°方向と330°方向は等価な方向である。すなわち、仮想の三角格子を正三角形とした場合、主として、距離a1と距離a2の2種類の周期が存在することとなる。
 一方、図8(b)に示すように、仮想の三角格子を二等辺三角形とすると、各凸部2cについて、等辺の距離b1に位置する凸部2cが、底角をθとすると、θ方向、(180°-θ)方向、(180°+θ)方向、(360°-θ)方向に位置している。このうち、θ方向と(180°+θ)方向、及び、(180°-θ)方向と(360°-θ)方向は等価な方向である。
 また、各凸部2cについて、底辺の距離b2に位置する凸部2cが0°方向と180°方向に位置している。これらの方向は等価な方向である。
 さらに、各凸部2cについて、(2・b1・sinθ)の距離b3に位置する凸部2cが、90°方向と270°方向に位置している。これらの方向は等価な方向である。
 さらにまた、各凸部2cについて、((3/2×b2)+(b1・sinθ)1/2の距離b4に位置する凸部2cが、Tan-1(b3/3・b2)方向、(180°-Tan-1(b3/3・b2))方向、(180°+Tan-1(b3/3・b2))方向及び(360°-Tan-1(b3/3・b2))方向に位置している。このうち、Tan-1(b3/3・b2)方向と(180°+Tan-1(b3/3・b2))方向、及び、(180°-Tan-1(b3/3・b2))方向と(360°-Tan-1(b3/3・b2))方向は等価な方向である。
 すなわち、仮想の三角格子を二等辺三角形とした場合、主として、距離b1、距離b2、距離b3及び距離b4の4種類の周期が存在することとなり、光取り出しに利用可能な回折モードが多くなる。
 図9は、仮想の三角格子又は四角格子を正多角形とした場合における、1辺の長さと光取り出し効率との関係を示すグラフである。
 図9に示すように、仮想の三角格子又は四角格子を正多角形として、1辺の長さと光取り出し効率の関係をシミュレーションにて計算した。具体的には、光の波長を450nmとし、GaN系半導体とサファイア基板の界面において、GaN系半導体からサファイア基板への透過率を計算した。
 この結果、仮想の三角格子においては、1辺の長さを460nm以下とした場合と、550nm以上800nm以下とした場合に比較的良好な透過率となった。また、仮想の四角格子においては、1辺の長さを500nm以下とした場合に比較的良好な透過率となった。
 図10は、仮想の三角格子を二等辺三角形とした場合における、等辺の長さと光取り出し効率との関係を示すグラフである。
 図10に示すように、仮想の三角格子を二等辺三角形として、等辺の長さと光取り出し効率の関係をシミュレーションにて計算した。具体的には、底辺の長さを600nm、光の波長を450nmとし、GaN系半導体とサファイア基板の界面において、GaN系半導体からサファイア基板への透過率を計算した。
 この結果、仮想の三角格子を正三角形とした場合と同様に、等辺の長さを460nm以下とした場合と、550nm以上800nm以下とした場合に比較的良好な透過率となった。
 また、二等辺三角形の等辺の長さと、正三角形の1辺の長さが同じ場合、三角格子を二等辺三角形とした方がおおむね透過率が高かった。具体的には、等辺及び1辺の長さが400nmで4%、460nmで5%、500nmで1%、700nmで1%、透過率が高くなった。尚、二等辺三角形の底辺が600nmであることから等辺が600nmのときは正三角形と等しい透過率となった。また、等辺が800nmのときは、1辺800nmの正三角形とほぼ等しい透過率であった。
 これにより、仮想の三角格子では、正三角形より二等辺三角形の方が光取り出し効率が高くなることが理解される。このとき、二等辺三角形の等辺及び底辺をそれぞれ、460nm以下、または、550nm以上800nm以下とすることが好ましい。また、460nm以下の領域と、550nm以上800nm以下の領域では、光の入射角度と透過率の関係が異なる傾向を示すものと考えられる。すなわち、二等辺三角形の等辺及び底辺の一方を460nm以下とし、他方を550nm以上800nm以下とすることが、さらに好ましい。
 本実施形態においては、図7(c)に示すように、垂直化モスアイ面2aの各凸部2cは、平坦部2bから上方へ伸びる側面2dと、側面2dの上端から凸部2cの中心側へ湾曲して伸びる湾曲部2eと、湾曲部2eと連続的に形成される平坦な上面2fとを有する。後述するように、側面2dと上面2fの会合部により角が形成された湾曲部2e形成前の凸部2cのウエットエッチングにより、角を落とすことで湾曲部2eが形成される。尚、平坦な上面2fが消失して凸部2cの上側全体が湾曲部2eとなるまでウェットエッチングを施すようにしても差し支えない。本実施形態においては、具体的に、各凸部2cは、基端部の直径が380nmであり、高さは350nmとなっている。サファイア基板2の垂直化モスアイ面2aは、各凸部2cの他は平坦部2bとなっており、半導体の横方向成長が助長されるようになっている。
 また、サファイア基板2の裏面の透過モスアイ面2gは、平面視にて、各凸部2iの中心が三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。各凸部2iの最も短い周期は、発光層14から発せられる光の光学波長の2倍より小さくなっている。本実施形態においては、仮想の三角格子をなす正三角形の一辺の長さが300nmとなっている。すなわち、各凸部2iの最も短い周期は、300nmである。発光層14から発せられる光の波長は450nmであり、サファイアの屈折率が1.78であることから、その光学波長は252.8nmである。すなわち、透過モスアイ面2gのうち最も短い周期は、発光層14の光学波長の2倍より小さくなっている。尚、モスアイ面の周期は、光学波長の2倍以下であれば界面におけるフレネル反射を抑制することができる。フレネル反射抑制作用は、凸部2iの最も短い周期が光学波長の2倍より小さければ十分に得ることができる。また、凸部2iの全ての周期を光学波長の2倍より小さくすると、より大きなフレネル反射抑制作用を得ることができる。透過モスアイ面2gの周期が光学波長が2倍から1倍に近づくにつれ、フレネル反射の抑制作用が大きくなる。サファイア基板2の外部が樹脂や空気であれば、透過モスアイ面2gの周期が光学波長の1.25倍以下であれば、1倍以下とほぼ同じフレネル反射の抑制作用を得ることができる。
 ここで、図11から図13Cを参照してLED素子1用のサファイア基板2の作製方法について説明する。図11は、サファイア基板を加工するためのプラズマエッチング装置の概略説明図である。
 図11に示すように、プラズマエッチング装置91は、誘導結合型(ICP)であり、サファイア基板2を保持する平板状の基板保持台92と、基板保持台92を収容する容器93と、容器93の上方に石英板96を介して設けられたコイル94と、基板保持台92に接続された電源95と、を有している。コイル94は立体渦巻形のコイルであり、コイル中央から高周波電力を供給し、コイル外周の末端が接地されている。エッチング対象のサファイア基板2は直接或いは搬送用トレーを介して基板保持台92に載置される。基板保持台92にはサファイア基板2を冷却するための冷却機構が内蔵されており、冷却制御部97によって制御される。容器93は供給ポートを有し、Oガス、Arガス等の各種ガスが供給可能となっている。
 このプラズマエッチング装置1でエッチングを行うにあたっては、基板保持台92にサファイア基板2を載置した後、容器93内の空気を排出して減圧状態とする。そして、容器93内に所定の処理ガスを供給し、容器93内のガス圧力を調整する。その後、コイル94及び基板保持台92に高出力の高周波電力を所定時間供給して、反応ガスのプラズマ98を生成させる。このプラズマ98によってサファイア基板2のエッチングを行う。
 次いで、図12、図13A、図13B及び図13Cを参照して、プラズマエッチング装置91を用いたエッチング方法について説明する。
 図12は、エッチング方法を示すフローチャートである。図12に示すように、本実施形態のエッチング方法は、マスク層形成工程S1と、レジスト膜形成工程S2と、パターン形成工程S3と、残膜除去工程S4と、レジスト変質工程S5と、マスク層のエッチング工程S6と、サファイア基板のエッチング工程S7と、マスク層除去工程S8と、湾曲部形成工程S9と、を含んでいる。
 図13Aはサファイア基板及びマスク層のエッチング方法の過程を示し、(a)は加工前のサファイア基板を示し、(b)はサファイア基板上にマスク層を形成した状態を示し、(c)はマスク層上にレジスト膜を形成した状態を示し、(d)はレジスト膜にモールドを接触させた状態を示し、(e)はレジスト膜にパターンが形成された状態を示す。
 図13Bはサファイア基板及びマスク層のエッチング方法の過程を示し、(f)はレジスト膜の残膜を除去した状態を示し、(g)はレジスト膜を変質させた状態を示し、(h)はレジスト膜をマスクとしてマスク層をエッチングした状態を示し、(i)はマスク層をマスクとしてサファイア基板をエッチングした状態を示す。尚、変質後のレジスト膜は、図中、塗りつぶすことで表現している。
 図13Cはサファイア基板及びマスク層のエッチング方法の過程を示し、(j)はマスク層をマスクとしてサファイア基板をさらにエッチングした状態を示し、(k)はサファイア基板から残ったマスク層を除去した状態を示し、(l)はサファイア基板にウェットエッチングを施した状態を示す。
 まず、図13A(a)に示すように、加工前のサファイア基板2を準備する。エッチングに先立って、サファイア基板2を所定の洗浄液で洗浄しておく。本実施形態においては、サファイア基板2はサファイア基板である。
 次いで、図13A(b)に示すように、サファイア基板2にマスク層30を形成する(マスク層形成工程:S1)。本実施形態においては、マスク層30は、サファイア基板2上のSiO層31と、SiO層31上のNi層32と、を有している。各層31,112の厚さは任意であるが、例えばSiO層を1nm以上100nm以下、Ni層32を1nm以上200nm以下とすることができる。尚、マスク層30は、単層とすることもできる。マスク層30は、スパッタリング法、真空蒸着法、CVD法等により形成される。
 次に、図13A(c)に示すように、マスク層30上にレジスト膜40を形成する(レジスト膜形成工程:S2)。本実施形態においては、レジスト膜40として熱可塑性樹脂が用いられ、スピンコート法により均一な厚さに形成される。レジスト膜40は、例えばエポキシ系樹脂からなり、厚さが例えば100nm以上300nm以下である。尚、レジスト膜40として、光硬化性樹脂を用いることもできる。
 そして、レジスト膜40をサファイア基板2ごと加熱して軟化させ、図13A(d)に示すように、モールド50でレジスト膜40をプレスする。モールド50の接触面には凹凸構造51が形成されており、レジスト膜40が凹凸構造51に沿って変形する。
 この後、プレス状態を保ったまま、レジスト膜40をサファイア基板2ごと冷却して硬化させる。そして、モールド50をレジスト膜40から離隔することにより、図10A(e)に示すように、レジスト膜40に凹凸構造41が転写される(パターン形成工程:S3)。ここで、凹凸構造41の周期は1μm以下となっている。本実施形態においては、凹凸構造41の周期は460nmである。また、本実施形態においては、凹凸構造41の凸部43の直径は100nm以上300nm以下となっており、例えば230nmである。また、凸部43の高さは100nm以上300nm以下となっており、例えば250nmである。この状態で、レジスト膜40の凹部には残膜42が形成されている。
 以上のようにレジスト膜40が形成されたサファイア基板2を、プラズマエッチング装置1の基板保持台92に取り付ける。そして、例えばプラズマアッシングにより残膜42を取り除いて、図13B(f)に示すように被加工材であるマスク層30を露出させる(残膜除去工程:S4)。本実施形態においては、プラズマアッシングの処理ガスとしてOガスが用いられる。このとき、レジスト膜40の凸部43もアッシングの影響を受け、凸部43の側面44は、マスク層30の表面に対して垂直でなく、所定の角度だけ傾斜する。
 そして、図13B(g)に示すようにレジスト膜40を変質用条件にてプラズマに曝して、レジスト膜40を変質させてエッチング選択比を高くする(レジスト変質工程:S5)。本実施形態においては、レジスト膜40の変質用の処理ガスとして、Arガスが用いられる。また、本実施形態においては、変質用条件として、プラズマをサファイア基板2側に誘導するための電源95のバイアス出力が、後述のエッチング用条件よりも低くなるよう設定される。
 この後、エッチング用条件にてプラズマに曝し、エッチング選択比が高くなったレジスト膜40をマスクとして被加工材としてのマスク層30のエッチングを行う(マスク層のエッチング工程:S6)。本実施形態においては、レジスト膜40のエッチング用の処理ガスとして、Arガスが用いられる。これにより、図13B(h)に示すように、マスク層30にパターン33が形成される。
 ここで、変質用条件とエッチング用条件について、処理ガス、アンテナ出力、バイアス出力等を適宜に変更できるが、本実施形態のように同一の処理ガスを用いてバイアス出力を変えることが好ましい。具体的に、変質用条件について、処理ガスをArガスとし、コイル94のアンテナ出力を350W、電源95のバイアス出力50Wとすると、レジスト膜40の硬化が観察された。そして、エッチング用条件について、処理ガスをArガスとし、コイル94のアンテナ出力を350W、電源95のバイアス出力を100Wとすると、マスク層30のエッチングが観察された。尚、エッチング用条件に対してバイアス出力を低くする他、アンテナ出力を低くしたり、ガス流量を少なくしても、レジストの硬化が可能である。
 次に、図13B(i)に示すように、マスク層30をマスクとして、サファイア基板2のエッチングを行う(サファイア基板のエッチング工程:S7)。本実施形態においては、マスク層30上にレジスト膜40が残った状態でエッチングが行われる。また、処理ガスとしてBClガス等の塩素系ガスを用いたプラズマエッチングが行われる。
 そして、図13C(j)に示すように、エッチングが進行していくと、サファイア基板2に垂直化モスアイ面2aが形成される。本実施形態においては、垂直化モスアイ面2aの凹凸構造の高さは、350nmである。尚、凹凸構造の高さを350nmより大きくすることもできる。ここで、凹凸構造の高さが、例えば300nmのように比較的浅くするのならば、図13B(i)に示すように、レジスト膜40が残留した状態でエッチングを終了しても差し支えない。
 本実施形態においては、マスク層30のSiO層31により、サイドエッチングが助長されて、垂直化モスアイ面2aの凸部2cの側面2dが傾斜している。また、レジスト膜40の側面43の傾斜角によっても、サイドエッチングの状態を制御することができる。尚、マスク層30をNi層32の単層とすれば、凸部2cの側面2dを主面に対してほぼ垂直にすることができる。
 また、本実施形態においては、Ni層32の厚さによって凸部2cの基端部の大きさを制御している。本願発明者らは、メタルマスクとしてのNi層32の厚さを制御することにより、凸部2cの基端部の径を調整可能なことを見出した。図14は、Ni層の厚さを変化させた際における凸部の基端部の径と凸部の高さの関係を示すグラフである。実験にあたっては全て同一のモールド50を使用し、Ni層32の厚さと、凸部2cの高さを変化させてデータを取得した。具体的に、Ni層32の厚さを50nm、75nm、100nmの3種類とし、凸部2cの高さを400nm、500nm、600nm、700nmの4種類とした。尚、エッチング後の凸部2cの高さについては、厳密に狙った高さ通りとならなかった試料体も存在した。図14に示すように、Ni層32が厚くなるほど、凸部2cの基端部の径が大きくなることが理解される。これにより、モールド50の型を変更することなく、凸部2cの基端部を変化させることができる。
 この後、図13C(k)に示すように、所定の剥離液を用いてサファイア基板2上に残ったマスク層30を除去する(マスク層除去工程:S8)。本実施形態においては、高温の硝酸を用いることでNi層32を除去した後、フッ化水素酸を用いてSiO層31を除去する。尚、レジスト膜40がマスク層30上に残留していても、高温の硝酸でNi層32とともに除去することができるが、レジスト膜40の残留量が多い場合はOアッシングにより予めレジスト膜40を除去しておくことが好ましい。
 そして、図13C(l)に示すように、ウェットエッチングにより凸部2cの角を除去して湾曲部を形成する(湾曲部形成工程:S9)。ここで、エッチング液は任意であるが、例えば170℃程度に加温したリン酸水溶液、いわゆる“熱リン酸”を用いることができる。尚、この湾曲部形成工程は、適宜省略することができる。以上の工程を経て、表面に凹凸構造を有するサファイア基板2が作製される。
 このサファイア基板2のエッチング方法によれば、レジスト膜40をプラズマに曝して変質させたので、マスク層30とレジスト膜40のエッチングの選択比を高くすることができる。これにより、マスク層30に対して微細で深い形状の加工を施しやすくなり、微細な形状のマスク層30を十分に厚く形成することができる。
 また、プラズマエッチング装置1により、レジスト膜40の変質と、マスク層30のエッチングとを連続的に行うことができ、工数が著しく増大することもない。本実施形態においては、電源95のバイアス出力を変化させることにより、レジスト膜40の変質とマスク層30のエッチングとを行っており、簡単容易にレジスト膜40の選択比を高くすることができる。
 さらに、十分に厚いマスク層30をマスクとして、サファイア基板2のエッチングを行うようにしたので、サファイア基板2に対して微細で深い形状の加工を施しやすくなる。特に、サファイア基板において、周期が1μm以下で深さが300nm以上の凹凸構造を形成することは、マスク層が形成された基板上にレジスト膜を形成し、レジスト膜を利用してマスク層のエッチングを行うエッチング方法では従来は不可能であったが、本実施形態のエッチング方法では可能となる。特に、本実施形態のエッチング方法では、周期が1μm以下で深さが500nm以上の凹凸構造を形成するのに好適である。
 ナノスケールの周期的な凹凸構造はモスアイと称されるが、このモスアイの加工をサファイアに行う場合、サファイアは難削材であることから、200nm程度の深さまでしか加工ができなかった。しかしながら、200nm程度の段差では、モスアイとして不十分な場合があった。本実施形態のエッチング方法は、サファイア基板にモスアイ加工を施す場合の新規な課題を解決したものといえる。
 尚、被加工材として、SiO/Niからなるマスク層30を示したが、マスク層30がNiの単層であったり他の材料であってもよいことは勿論である。要は、レジストを変質させて、マスク層30とレジスト膜40のエッチング選択比を高くすればよいのである。
 また、プラズマエッチング装置1のバイアス出力を変化させて変質用条件とエッチング用条件とするものを示したが、アンテナ出力、ガス流量を変化させる他、例えば処理ガスを変更することで設定してもよい。要は、変質用条件は、レジストがプラズマに曝された際に変質してエッチング選択比が高くなる条件であればよい。
 また、マスク層30としてNi層32が含まれるものを示したが、他の材料のエッチングであっても本発明を適用可能なことはいうまでもない。尚、本実施形態のサファイア基板のエッチング方法は、SiC、Si、GaAs、GaN、InP、ZnO等の基板にも適用可能である。
 以上のように作製されたサファイア基板2の垂直化モスアイ面2aに、横方向成長を利用してIII族窒化物半導体からなる半導体積層部19をエピタキシャル成長させ(半導体形成工程)、p側電極27及びn側電極28を形成する(電極形成工程)。この後、サファイア基板2の裏面に、表面の垂直化モスアイ面2aと同様の工程で凸部2iを形成した後、ダイシングにより複数のLED素子1に分割することにより、LED素子1が製造される。
 ここで、本願発明者らは、サファイア基板2の平坦部2bの割合を変化させて、半導体積層部19が所定厚さのときに、転位密度が所定値以下となっているかどうか調査を行った。具体的には、平坦部2bをC面とし、凸部2cの周期等を変化させて、半導体積層部19の厚さが2.5μmで転位密度が2×10/cm以下であるかどうか調査を行った。調査は、凸部2cが正三角形の頂点の位置となるように三角格子の交点に整列して形成された試料体を用いて行った。この調査結果を図15に示す。図15は、凸部2cの周期及びC面領域の割合と、転位密度が所定値以下となったか否かを示す表である。尚、図15中に示した周期は、正三角形の一辺の長さに相当する周期である。
 図15に示すように、凸部2cの周期が600nm以上となれば転位密度が2×10/cm以下となることが理解される。また、周期が460nmであっても、平坦部2bの割合が41%以上であれば、転位密度が2×10/cm以下となることが理解される。すなわち、凸部2cの周期を600nm以上とするか、平坦部2bの割合を41%以上とすることにより、半導体積層部19を薄くしても良好な結晶品質とすることができる。
 以上のように構成されたLED素子1では、平坦部2bの割合を41%以上とすることにより、発光層14の結晶品質を損なうことなく、半導体積層部19を薄くすることができる。また、従来と同程度の半導体積層部19の厚さであれば、発光層14の結晶品質を向上させることができ、光取り出し効率をさらに向上させることができる。
 また、メタルマスクの厚さを制御することで、凸部2cの基端部を制御することができ、同じモールド50を用いて異なる凸部2cを製造することができ、モールド50の共用化を図り製造コストを低減することができる。
 また、垂直化モスアイ面2aを備えたので、サファイア基板2とIII族窒化物半導体層の界面において、全反射臨界角を超える角度で入射する光を界面に対して垂直寄りとすることができる。さらに、フレネル反射を抑制する透過モスアイ面2gを備えたので、サファイア基板2と素子外部との界面において、垂直寄りとされた光をスムースに素子外部へ取り出すことができる。このように、サファイア基板2の表面と裏面はともに凹凸加工されるものの、垂直化機能とフレネル反射抑制機能という異なる機能が付与されており、これらの機能の相乗効果によって光取り出し効率を飛躍的に向上することができる。
 また、発光層14から発せられた光が、サファイア基板2の裏面に到達するまでの距離を格段に短くすることができ、素子内部における光の吸収を抑制することができる。LED素子においては、界面の臨界角を超える角度領域の光が横方向に伝搬してしまうので素子内部で光が吸収されてしまう問題があったが、臨界角を超える角度領域の光を垂直化モスアイ面2aで垂直寄りとし、垂直寄りとされた光の透過モスアイ面2gにおけるフレネル反射が抑制されることから、素子内部にて吸収される光を飛躍的に減じることができる。
 また、サファイア基板2の表面が、平面視にて、仮想の三角格子の交点に配置される複数の凸部2cを有するようにし、仮想の三角格子をなす三角形が正多角形ではないようにすると、多くの回折モードを利用して光を取り出すことができるようになる。特に、仮想の三角格子をなす三角形の一辺の長さが、青色光の光学波長の2倍以上460nm以下、または、550nm以上800nm以下とすると、光取り出し効率を向上させることができる。また、仮想の三角格子をなす三角形を二等辺三角形とすると、凸部2cを規則的に配置しつつ、回折モードを増加させることができる。さらに、二等辺三角形の等辺を青色光の光学波長の2倍以上460nm以下とし、底辺を550nm以上800nm以下とすることにより、異なる性質の回折モードを利用して光を取り出すことができる。
 ここで、本願発明者らは、p側電極27及びn側電極28として誘電体多層膜22,25及び金属層23,26の組み合わせを用いることにより、LED素子1の光取り出し効率が顕著に増大することを見いだした。すなわち、誘電体多層膜22,25と金属層23,26の組み合わせとすると、界面に対して垂直に近い角度ほど反射率が高くなり、界面に対して垂直寄りとなった光に対して有利な反射条件となる。
 図16は、実施例1の反射部の反射率を示すグラフである。実施例1では、ITO上に形成される誘電体多層膜をZrOとSiOの組み合わせでペア数を5とし、誘電体多層膜に重ねてAl層を形成した。図16に示すように、入射角が0度から45度の角度域で、98%以上の反射率を実現している。また、入射角が0度から75度の角度域で、90%以上の反射率を実現している。このように、誘電体多層膜と金属層の組み合わせは、界面に対して垂直寄りとなった光に対して有利な反射条件となる。
 図17は、実施例2の反射部の反射率を示すグラフである。実施例2では、ITO上にAl層のみを形成した。図17に示すように、入射角によらず、ほぼ84%の一定の反射率となっている。このように、反射部をAl層のみのような金属の単層としてもよい。
 図18は、本発明の第2の実施形態を示すLED素子の模式断面図である。
 図18に示すように、このLED素子101は、サファイア基板102の表面上に、III族窒化物半導体層からなる半導体積層部119が形成されたものである。このLED素子101は、フェイスアップ型であり、サファイア基板102と反対側から主として光が取り出される。半導体積層部119は、バッファ層110、n型GaN層112、発光層114、電子ブロック層116、p型GaN層118をサファイア基板102側からこの順に有している。p型GaN層118上にはp側電極127が形成されるとともに、n型GaN層112上にはn側電極128が形成されている。
 図18に示すように、バッファ層110は、サファイア基板102の表面上に形成され、AlNで構成されている。n型GaN層112はバッファ層110上に形成され、n-GaNで構成されている。発光層114はn型GaN層112上に形成され、GalnN/GaNで構成されている。本実施形態においては、発光層114の発光のピーク波長は450nmである。
 電子ブロック層116は、発光層114上に形成され、p―AIGaNで構成されている。p型GaN層118は、電子ブロック層116上に形成され、p-GaNで構成されている。n型GaN層112からp型GaN層118までは、III族窒化物半導体のエピタキシャル成長により形成され、サファイア基板102の表面には周期的に凸部102cが形成されているが、III族窒化物半導体の成長初期に横方向成長による平坦化が図られる。尚、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。
 本実施形態においては、サファイア基板102の表面は垂直化モスアイ面102aをなし、p側電極127は透過モスアイ面127gをなす。サファイア基板102の表面は、平坦部102bと、平坦部102bに周期的に形成された複数の凸部102cと、が形成されている。また、サファイア基板102は、平面視にて、平坦部102bの割合が40%以上となるよう構成されている。各凸部102cの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。各凸部102cは、発光層114から発せられる光を回折するよう設計される。本実施形態においては、周期的に配置される各凸部102cにより、光の垂直化作用を得ることができる。
 p側電極127は、p型GaN層118上に形成される拡散電極121と、拡散電極121上の一部に形成されるパッド電極122と、を有している。拡散電極121は、p型GaN層118に全面的に形成され、例えばITO(Indium Tin Oxide)等の透明材料からなる。また、パッド電極122は、例えばAl等の金属材料からなる。拡散電極121の表面は、平坦部127hと、平坦部127hに周期的に形成された複数の凸部127iと、が形成されている。各凸部127iの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。透過モスアイ面の凸部127iの周期は、発光層114の光学波長の2倍より小さくなっている。本実施形態においては、周期的に配置される各凸部127iにより、外部との界面におけるフレネル反射が抑制される。
 n側電極128は、p型GaN層118からn型GaN層112をエッチングして、露出したn型GaN層112上に形成される。n側電極128は、n型GaN層112上に形成され、例えばAl等の金属材料からなる。
 図19は、LED素子の一部拡大模式断面図である。
 図19に示すように、サファイア基板102の裏面側には、誘電体多層膜124が形成されている。誘電体多層膜124は、屈折率の異なる第1材料124aと第2材料124bのペアを複数繰り返して構成される。誘電体多層膜124は金属層であるAl層126により被覆される。この発光素子101においては、誘電体多層膜124及びAl層126が反射部をなしており、発光層114から発せられ垂直化モスアイ面102aを回折作用によって透過した光を当該反射部で反射する。そして、回折作用により透過した光を回折面102aに再入射させて、回折面102aにて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。
 以上のように構成されたLED素子101では、平坦部102bの割合を41%以上とすることにより、発光層114の結晶品質を損なうことなく、半導体積層部119を薄くすることができる。また、従来と同程度の半導体積層部119の厚さであれば、発光層114の結晶品質を向上させることができ、光取り出し効率をさらに向上させることができる。
 また、垂直化モスアイ面102aを備えたので、サファイア基板102とIII族窒化物半導体層の界面において、全反射臨界角を超える角度で入射する光を垂直寄りとすることができる。さらに、透過モスアイ面127gを備えたので、サファイア基板102と素子外部との界面において、垂直寄りとされた光のフレネル反射を抑制することができる。これにより、光取り出し効率を飛躍的に向上することができる。
 また、発光層114から発せられた光が、p側電極127の表面に到達するまでの距離を格段に短くすることができ、素子内部における光の吸収を抑制することができる。LED素子においては、界面の臨界角を超える角度領域の光が横方向に伝搬してしまうので素子内部で光が吸収されてしまう問題があったが、臨界角を超える角度領域の光を垂直化モスアイ面102aで垂直寄りとすることで、素子内部にて吸収される光を飛躍的に減じることができる。
 また、サファイア基板102の表面が、平面視にて、仮想の三角格子の交点に配置される複数の凸部102cを有するようにし、仮想の三角格子をなす三角形が正多角形ではないようにすると、多くの回折モードを利用して光を取り出すことができるようになる。特に、仮想の三角格子をなす三角形の一辺の長さが、青色光の光学波長の2倍以上460nm以下、または、550nm以上800nm以下とすると、光取り出し効率を向上させることができる。また、仮想の三角格子をなす三角形を二等辺三角形とすると、凸部102cを規則的に配置しつつ、回折モードを増加させることができる。さらに、二等辺三角形の等辺を青色光の光学波長の2倍以上460nm以下とし、底辺を550nm以上800nm以下とすることにより、異なる性質の回折モードを利用して光を取り出すことができる。
 ここで、本願発明者らは、サファイア基板102の裏面の反射部として誘電体多層膜124及び金属層126の組み合わせを用いることにより、LED素子101の光取り出し効率が顕著に増大することを見いだした。すなわち、誘電体多層膜124と金属層126の組み合わせとすると、界面に対して垂直に近い角度ほど反射率が高くなり、界面に対して垂直寄りとなった光に対して有利な反射条件となる。
 図20は、実施例3の反射部の反射率を示すグラフである。実施例3では、サファイア基板上に形成される誘電体多層膜をZrOとSiOの組み合わせでペア数を5とし、誘電体多層膜に重ねてAl層を形成した。図20に示すように、入射角が0度から55度の角度域で、99%以上の反射率を実現している。また、入射角が0度から60度の角度域で、98%以上の反射率を実現している。また、入射角が0度から75度の角度域で、92%以上の反射率を実現している。このように、誘電体多層膜と金属層の組み合わせは、界面に対して垂直寄りとなった光に対して有利な反射条件となる。
 図21は、実施例4の反射部の反射率を示すグラフである。実施例4では、サファイア基板上にAl層のみを形成した。図21に示すように、入射角によらず、ほぼ88%の一定の反射率となっている。このように、反射部をAl層のみのような金属の単層としてもよい。
 図22は、本発明の第3の実施形態を示すLED素子の模式断面図である。
 図22に示すように、LED素子201は、フェイスアップ型であり、サファイア基板202の表面上に、III族窒化物半導体層からなる半導体積層部219が形成されたものである。半導体積層部219は、バッファ層210、n型GaN層212、発光層214、電子ブロック層216、p型GaN層218をサファイア基板202側からこの順に有している。p型GaN層218上にはp側電極227が形成されるとともに、n型GaN層212上にはn側電極228が形成されている。
 図22に示すように、バッファ層210は、サファイア基板2の表面上に形成され、AlNで構成されている。本実施形態においては、バッファ層210は、MOCVD(Metal Organic Chemical Vapor Deposition)法により形成されるが、スパッタリング法を用いることもできる。第1導電型層としてのn型GaN層212は、バッファ層210上に形成され、n-GaNで構成されている。発光層214は、n型GaN層212上に形成され、GalnN/GaNで構成され、電子及び正孔の注入により青色光を発する。ここで、青色光とは、例えば、ピーク波長が430nm以上480nm以下の光をいうものとする。本実施形態においては、発光層214の発光のピーク波長は450nmである。
 電子ブロック層216は、発光層214上に形成され、p―AIGaNで構成されている。第2導電型層としてのp型GaN層218は、電子ブロック層216上に形成され、p-GaNで構成されている。n型GaN層212からp型GaN層218までは、III族窒化物半導体のエピタキシャル成長により形成され、サファイア基板2の表面には周期的に凸部2cが形成されているが、III族窒化物半導体の成長初期に横方向成長による平坦化が図られる。尚、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。
 サファイア基板202の表面は垂直化モスアイ面202aをなし、p側電極227の表面は透過モスアイ面227gをなす。サファイア基板202の表面は、平坦部202bと、平坦部202bに周期的に形成された複数の凸部202cと、が形成されている。また、サファイア基板202は、平面視にて、平坦部202bの割合が40%以上となるよう構成されている。各凸部202cの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。各凸部202cは、発光層214から発せられる光を回折するよう設計される。本実施形態においては、周期的に配置される各凸部202cにより、光の垂直化作用を得ることができる。ここで、光の垂直化作用とは、光の強度分布が、垂直化モスアイ面へ入射する前よりも、反射及び透過した後の方が、サファイア基板202と半導体積層部219の界面に対して垂直な方向に偏ることをいう。
 サファイア基板202の裏面側には、誘電体多層膜224が形成されている。誘電体多層膜224は金属層であるAl層226により被覆される。この発光素子201においては、誘電体多層膜224及びAl層226が反射部をなしており、発光層214から発せられ垂直化モスアイ面202aを回折作用によって透過した光を当該反射部で反射する。そして、回折作用により透過した光を回折面202aに再入射させて、回折面202aにて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。
 p側電極227は、p型GaN層218上に形成される拡散電極層221と、拡散電極層221上に形成されるモスアイ層222と、を有している。また、本実施形態においては、p側電極227は、拡散電極層221及びモスアイ層222を貫通してp型GaN層218と接触するパッド電極223を有している。拡散電極層221は、p型GaN層218上にパッド電極223の形成領域を除いて形成され、透明材料からなる。また、モスアイ層222は、拡散電極層221上にパッド電極223の形成領域を除いて形成され、透明材料からなる。モスアイ層222は、拡散電極層221を構成する材料よりも消衰係数が小さく拡散電極層221を構成する材料と屈折率がほぼ同じ材料からなる。屈折率がほぼ同じとは、ここでは拡散電極層221とモスアイ層222の屈折率の差が、モスアイ層222の屈折率に対して20%以内であることをいう。また、拡散電極層221はシート抵抗がモスアイ層222よりも小さい材料で構成され、モスアイ層222よりも薄く形成されている。さらに、拡散電極層221の厚さはモスアイ層222よりも薄くなっている。また、パッド電極223は、例えばAl等の金属材料からなる。また、パッド電極223は、拡散電極層221に対する密着力よりも半導体積層部219に対する密着力が高い材料からなる。
 本実施形態においては、拡散電極層221は厚さ100nmのITO(Indium Tin Oxide)からなり、モスアイ層222は厚さ400nmのZrOからなる。450nmの波長の光について、ITOの消衰係数は0.04であり、ZrO2の消衰係数はほぼ0である。また、450nmの波長の光について、ITOの屈折率は2.04であり、ZrO2の屈折率は2.24である。尚、拡散電極層221として例えばIZO(indium zinc oxide)等の材料を用いることができるし、モスアイ層222として例えばNb等の材料を用いることもできる。
 モスアイ層222の表面は、平坦部227hと、平坦部227hに周期的に形成された複数の凸部227iと、が形成されている。各凸部227iの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。透過モスアイ面の凸部227iの周期は、発光層214の光学波長の2倍より小さくなっている。本実施形態においては、周期的に配置される各凸部227iにより、外部との界面におけるフレネル反射が抑制される。
 n側電極228は、p型GaN層218からn型GaN層212をエッチングして、露出したn型GaN層212上に形成される。n側電極228は、n型GaN層212上に形成され、例えばAl等の金属材料からなる。
 図23は、素子内部における光の進行方向を示す説明図である。
 図23に示すように、発光層214から発せられた光のうち、サファイア基板202へ臨界角を超えて入射する光は、垂直化モスアイ面202aで入射時よりも垂直寄りの方向へ透過及び反射する。すなわち、垂直化モスアイ面202aで反射した光は、垂直寄りへ角度変化した状態で透過モスアイ面227gへ入射する。また、垂直化モスアイ面202aを透過した光は、垂直寄りへ角度変化した状態で後述する誘電体多層膜224及びAl層226からなる反射部で反射された後、垂直化モスアイ面202aに再度入射する。このときの入射角は、先の入射角よりも垂直寄りとなる。この結果、透過モスアイ面227gへ入射する光を垂直寄りとすることができる。
 また、p側電極227の透過モスアイ面227gは、平面視にて、各凸部227iの中心が正三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。各凸部227iの最も短い周期は、発光層214から発せられる光の光学波長より小さくなっている。すなわち、透過モスアイ面227gにおいては、フレネル反射が抑制されることとなる。本実施形態においては、仮想の三角格子をなす正三角形の一辺の長さが300mとなっている。すなわち、各凸部227iの最も短い周期は、300nmである。発光層214から発せられる光の波長は450nmであり、ZrOの屈折率が2.24であることから、その光学波長は200.9nmである。すなわち、透過モスアイ面227gの最も短い周期は、発光層214の光学波長の2倍より小さくなっている。尚、モスアイ面の周期は、光学波長の2倍以下であれば界面におけるフレネル反射を抑制することができる。フレネル反射抑制作用は、凸部227iの周期のうち最も短い周期が光学波長の2倍より小さければ十分に得ることができる。また、凸部227iの全ての周期を光学波長の2倍より小さくすると、より大きなフレネル反射抑制作用を得ることができる。透過モスアイ面227gの周期が光学波長が2倍から1倍に近づくにつれ、フレネル反射の抑制作用が大きくなる。モスアイ層222の外部が樹脂や空気であれば、透過モスアイ面227gの周期が光学波長の1.25倍以下であれば、1倍以下とほぼ同じフレネル反射の抑制作用を得ることができる。
 次いで、図24及び図25を参照してp側電極227の透過モスアイ面227gの形成方法について説明する。図24はモスアイ層を加工する説明図であり、(a)は透過モスアイ面に第1マスク層が形成された状態を示し、(b)は第1マスク層上にレジスト層が形成された状態を示し、(c)はレジスト層に選択的に電子線を照射する状態を示し、(d)はレジスト層を現像して除去した状態を示し、(e)は第2マスク層が形成された状態を示している。
 まず、図24(a)に示すように、モスアイ層222の表面に第1マスク層330を形成する。第1マスク層330は、例えばSiOからなり、スパッタリング法、真空蒸着法、CVD法等により形成される。第1マスク層330の厚さは、任意であるが、例えば1.0μmである。
 次いで、図24(b)に示すように、モスアイ層222の第1マスク層330上にレジスト層332を形成する。レジスト層332は、例えば、日本ゼオン社製のZEP等の電子線感光材料からなり、第1マスク層330上に塗布される。レジスト層332の厚さは、任意であるが、例えば100nmから2.0μmである。
 次に、図24(c)に示すように、レジスト層332と離隔してステンシルマスク334をセットする。レジスト層332とステンシルマスク334との間は、1.0μm~100μmの隙間があけられる。ステンシルマスク334は、例えばダイヤモンド、SiC等の材料で形成されており、厚さは任意であるが、例えば、厚みが500nm~100μmとされる。ステンシルマスク334は、電子線を選択的に透過する開口334aを有している。
 この後、図24(c)に示すように、ステンシルマスク334へ電子線を照射し、レジスト層332をステンシルマスク334の各開口334aを通過した電子線に曝す。具体的には、例えば、10~100μC/cmの電子ビームを用いて、ステンシルマスク334のパターンをレジスト層332に転写する。
 電子線の照射が完了した後、所定の現像液を用いてレジスト層332を現像する。これにより、図24(d)に示すように、電子線が照射された部位が現像液に溶出し、電子線が照射されてない部位が残留して、開口332aが形成される。レジスト層332として日本ゼオン社製のZEPを用いた場合、現像液として例えば酢酸アミルを用いることができる。
 次いで、図24(e)に示すように、レジスト層332がパターンニングされた第1マスク層330上に、第2マスク層336を形成する。このようにして、第1マスク層330上に第2マスク層336を電子線照射を利用してパターンニングする。第2マスク層336は、例えばNiからなり、スパッタリング法、真空蒸着法、CVD法等により形成される。第2マスク層336の厚さは、任意であるが、例えば20nmである。
 図25はモスアイ層を加工する説明図であり、(a)はレジスト層を完全に除去した状態を示し、(b)は第2マスク層をマスクとして第1マスク層をエッチングした状態を示し、(c)は第2マスク層を除去した状態を示し、(d)第1マスク層をマスクとして透過モスアイ面をエッチングした状態を示し、(e)は第1マスク層を除去した状態を示す。
 図25(a)に示すように、レジスト層332を剥離液を用いて除去する。例えば、レジスト層332を剥離液中に浸し、所定時間だけ超音波を照射することにより除去することができる。具体的に、剥離液としては例えばジエチルケトンを用いることができる。これにより、第1マスク層330上に、ステンシルマスク334の開口334aのパターンを反転させた第2マスク層336のパターンが形成される。
 次いで、図25(b)に示すように、第2マスク層336をマスクとして、第1マスク層330のドライエッチングを行う。これにより、第1マスク層330に開口330aが形成され、第1マスク層330のパターンが形成される。このとき、エッチングガスとして、第2マスク層336に比してモスアイ層222及び第1マスク層330が耐性を有するものが用いられる。例えば、第1マスク層330がSiOで第2マスク層336がNiである場合、SF等のフッ素系ガスを用いると、NiはSiOに対してエッチングの選択比が100程度であることから、第1マスク層330のパターンニングを的確に行うことができる。
 この後、図25(c)に示すように、第1マスク層330上の第2マスク層336を除去する。第1マスク層330がSiOであり、第2マスク層336がNiである場合、水で希釈して1:1程度で混合した塩酸及び硝酸に浸漬したり、アルゴンガスによるドライエッチングによりNiを除去することができる。
 そして、図25(d)に示すように、第1マスク層330をマスクとして、モスアイ層222のドライエッチングを行う。このとき、モスアイ層222のうち第1マスク層330が除去された部位のみがエッチングガスに曝されることになるため、モスアイ層222にステンシルマスク334の各開口334aの反転パターンを転写することができる。このとき、第1マスク層330は、モスアイ層222よりも、エッチングガスへの耐性が大きいため、第1マスク層330に被覆されていない箇所を選択的にエッチングすることができる。そして、モスアイ層222のエッチング深さが所期の深さとなるところでエッチングを終了させる。ここで、エッチングガスとしては、例えば、Cl等の塩素系ガスや、フッ素系ガスを用いることができる。尚、フッ素系ガスはITOをエッチングすることができないので、電流拡散層221としてITOを用いた場合に、モスアイ層222を超えて電流拡散層221が加工されてしまうことはない。すなわち、モスアイ層222を凹凸形成に必要な最小限な厚さとして、エッチング時に電流拡散層221が露出したとしても、電流拡散層221がエッチングされることはない。
 この後、図25(e)に示すように、所定の剥離液を用いてモスアイ層222上に残った第1マスク層330を除去する。剥離液としては、例えば、第1マスク層330にSiOが用いられている場合は希弗酸を用いることができる。このとき、p型GaN層218のパッド電極223形成領域にSiOからなるマスクが形成されているのならば、このマスクも一括して除去することができる。この後、モスアイ層222上にパッド電極223を形成する。このようにして、p側電極227の表面に凸部227iを形成した後、ダイシングにより複数のLED素子201に分割することにより、LED素子201が製造される。
 以上のように構成されたLED素子201では、半導体積層部219からp側電極227へ流れる電流は、拡散電極層221にて電流が拡散された後、パッド電極223に電流が流れる。このとき、拡散電極層221はシート抵抗が低いため、電流を的確に拡散することができる。尚、パッド電極223と電流拡散層221とが直接的に接触しているので、モスアイ層222を介することなく、電流拡散層221からパッド電極223へ電流が直接的に流れることとなる。ここで、パッド電極223は、拡散電極層221よりも半導体積層部219に対する密着力が高い材料であることから、パッド電極223が機械的負荷等により半導体積層部219から簡単容易に剥離するようなことはない。
 一方、p側電極227へ入射する光は、拡散電極層221,モスアイ層222を通って素子外部へ放出される。ここで、消衰係数が高い拡散電極層221を薄型とし、消衰係数が低いモスアイ層222を厚くしたので、p側電極227における光吸収を小さくすることができる。これにより、LED素子201の光取り出し効率を向上することができる。また、拡散電極層221とモスアイ層222は、屈折率がほぼ同じであるため、これらの界面における全反射を抑制することができる。
 また、垂直化モスアイ面202aを備えたので、サファイア基板202とIII族窒化物半導体層の界面において、全反射臨界角を超える角度で入射する光を界面に対して垂直寄りとすることができる。さらに、フレネル反射を抑制する透過モスアイ面227gを備えたので、サファイア基板202と素子外部との界面において、垂直寄りとされた光をスムースに素子外部へ取り出すことができる。これにより、光取り出し効率を飛躍的に向上することができる。
 また、発光層214から発せられた光が、透過モスアイ面227gに到達するまでの距離を格段に短くすることができ、素子内部における光の吸収を抑制することができる。LED素子においては、界面の臨界角を超える角度領域の光が横方向に伝搬してしまうので素子内部で光が吸収されてしまう問題があったが、臨界角を超える角度領域の光を垂直化モスアイ面202aで垂直寄りとし、垂直寄りとされた光の透過モスアイ面227gにおけるフレネル反射が抑制されることから、素子内部にて吸収される光を飛躍的に減じることができる。
 また、平坦部202bの割合を41%以上とすることにより、発光層214の結晶品質を損なうことなく、半導体積層部219を薄くすることができる。また、従来と同程度の半導体積層部219の厚さであれば、発光層214の結晶品質を向上させることができ、光取り出し効率をさらに向上させることができる。
 また、サファイア基板202の表面が、平面視にて、仮想の三角格子の交点に配置される複数の凸部202cを有するようにし、仮想の三角格子をなす三角形が正多角形ではないようにすると、多くの回折モードを利用して光を取り出すことができるようになる。特に、仮想の三角格子をなす三角形の一辺の長さが、青色光の光学波長の2倍以上460nm以下、または、550nm以上800nm以下とすると、光取り出し効率を向上させることができる。また、仮想の三角格子をなす三角形を二等辺三角形とすると、凸部102cを規則的に配置しつつ、回折モードを増加させることができる。さらに、二等辺三角形の等辺を青色光の光学波長の2倍以上460nm以下とし、底辺を550nm以上800nm以下とすることにより、異なる性質の回折モードを利用して光を取り出すことができる。
 ここで、本願発明者らは、サファイア基板202の裏面の反射部として誘電体多層膜224及び金属層226の組み合わせを用いることにより、LED素子201の光取り出し効率が顕著に増大することを見いだした。すなわち、誘電体多層膜224と金属層226の組み合わせとすると、界面に対して垂直に近い角度ほど反射率が高くなり、界面に対して垂直寄りとなった光に対して有利な反射条件となる。
 尚、前記実施形態においては、垂直化モスアイ面及び透過モスアイ面を周期的に形成された凸部で構成するものを示したが、各モスアイ面を周期的に形成された凹部で構成してもよいことは勿論である。また、透過モスアイ面をp側電極にのみ形成したものを示したが、さらにn側電極に形成してもよい。また、凸部又は凹部を、三角格子の交点に整列して形成する他、例えば、仮想の正方格子の交点に整列して形成することもできる。
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 本発明のLED発光素子及びその製造方法は、光取り出し効率を向上させることができるので、産業上有用である。
 1  LED素子
 2  サファイア基板
 2a  垂直化モスアイ面
 2b  平坦部
 2c  凸部
 2d  側面
 2e  湾曲部
 2f  上面
 2g  透過モスアイ面
 2h  平坦部
 2i  凸部
 10  バッファ層
 12  n型GaN層
 14  発光層
 16  電子ブロック層
 18  p型GaN層
 19  半導体積層部
 21  拡散電極
 22  誘電体多層膜
 22a 第1材料
 22b 第2材料
 22c ビアホール
 23  金属電極
 24  拡散電極
 25  誘電体多層膜
 25a ビアホール
 26  金属電極
 27  p側電極
 28  n側電極
 30  マスク層
 31  SiO
 32  Ni層
 40  レジスト膜
 41  凹凸構造
 42  残膜
 43  凸部
 50  モールド
 51  凹凸構造
 91  プラズマエッチング装置
 92  基板保持台
 93  容器
 94  コイル
 95  電源
 96  石英板
 97  冷却制御部
 98  プラズマ
 101 LED素子
 102 サファイア基板
 102a 垂直化モスアイ面
 110 バッファ層
 112 n型GaN層
 114 発光層
 116 電子ブロック層
 118 p型GaN層
 119 半導体積層部
 122 パッド電極
 124 誘電体多層膜
 124a 第1材料
 124b 第2材料
 126 Al層
 127 p側電極
 127g 透過モスアイ面
 128 n側電極
 201 LED素子
 202 サファイア基板
 202a 垂直化モスアイ面
 202b 平坦部
 202c 凸部
 210 バッファ層
 212 n型GaN層
 214 発光層
 216 電子ブロック層
 218 p型GaN層
 219 半導体積層部
 221 拡散電極層
 222 モスアイ層
 223 パッド電極
 224 誘電体多層膜
 226 Al層
 227 p側電極
 227g 透過モスアイ面
 227h 平坦部
 227i 凸部
 228 n側電極
 330 第1マスク層
 330a 開口
 332 レジスト層
 332a 開口
 334 ステンシルマスク
 334a 開口
 336 第2マスク層

Claims (23)

  1.  発光層を含む半導体積層部と、
     前記発光層から発せられる光が入射し、当該光の光学波長より大きく当該光のコヒーレント長より小さい周期で凸部が形成され、入射光をブラッグの回折条件に従って複数のモードで反射するとともに、入射光をブラッグの回折条件に従って複数のモードで透過する回折面と、
     前記回折面にて回折した光を反射して前記回折面へ再入射させる反射面と、を備え、
     前記半導体積層部は、前記回折面上に前記凸部の周囲に空隙なく形成され、
     前記回折面において、平面視にて、前記平坦部の割合が40%以上であるLED素子。
  2.  前記発光層は青色光を発し、
     前記凸部は、平面視にて、仮想の三角格子又は四角格子の交点に配置され、
     前記仮想の三角格子又は四角格子をなす三角形又は四角形は、正多角形ではなく、各辺の長さが前記青色光の光学波長の2倍より大きくコヒーレント長より小さい請求項1に記載のLED素子。
  3.  前記凸部は、仮想の三角格子の交点に配置され、
     前記仮想の三角格子をなす三角形の一辺の長さが、前記青色光の光学波長の2倍以上460nm以下、または、550nm以上800nm以下である請求項2に記載のLED素子。
  4.  前記仮想の三角格子をなす三角形は、二等辺三角形である請求項3に記載のLED素子。
  5.  前記二等辺三角形の等辺と底辺の一方の長さが前記青色光の光学波長の2倍以上460nm以下であり、他方の長さが550nm以上800nm以下である請求項4に記載のLED素子。
  6.  前記サファイア基板の表面は、前記凸部が、前記青色光の光学波長の2倍より大きくコヒーレント長より小さい周期で配置された垂直化モスアイ面をなし、
     前記垂直化モスアイ面は、前記半導体積層部側から当該垂直化モスアイ面へ入射する光を反射及び透過し、臨界角を超えた角度域において、前記半導体積層部側にて当該垂直化モスアイ面へ入射する光の強度分布と比べて、前記半導体積層部側にて当該垂直化モスアイ面から反射により出射する光の強度分布が、前記半導体積層部と前記サファイア基板の界面に対して垂直な方向に偏るとともに、臨界角を超えた角度域において、前記半導体積層部側にて当該垂直化モスアイ面へ入射する光の強度分布と比べて、前記サファイア基板側にて当該垂直化モスアイ面から透過により出射する光の強度分布が、前記界面に対して垂直な方向に偏るよう構成され、
     前記垂直化モスアイ面を透過した光を反射する反射部を有し、
     前記発光層から発せられる光の光学波長の2倍より小さい周期の凹部又は凸部を有する透過モスアイ面を有し、
     前記垂直化モスアイ面における反射及び透過により、前記界面に対して垂直な方向に偏るよう強度分布が調整された光は、前記透過モスアイ面にてフレネル反射が抑制された状態で素子外部へ放出される請求項5に記載のLED素子。
  7.  前記反射部は、前記界面に対して垂直に近い角度ほど反射率が高い請求項6に記載のLED素子。
  8.  前記半導体積層部上に形成された電極、を備え、
     前記電極は、前記半導体積層部上に形成される拡散電極層と、前記拡散電極層上に形成され表面が前記発光層から発せられる光の光学波長の2倍より小さい周期の凹部又は凸部を有する前記透過モスアイ面をなすモスアイ層と、を有し、
     前記モスアイ層は、前記発光層から発せられる光について、前記拡散電極層を構成する材料よりも消衰係数が小さく、前記拡散電極層を構成する材料と屈折率がほぼ同じ材料から構成した請求項7に記載のLED素子。
  9.  前記拡散電極層は、ITOからなり、
     前記モスアイ層は、ZrOからなる請求項8に記載のLED素子。
  10.  請求項9に記載のLED素子を製造するにあたり、
     サファイア基板の表面上にマスク層を形成するマスク層形成工程と、
     前記マスク層上にレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜に所定のパターンを形成するパターン形成工程と、
     前記レジスト膜をマスクとして前記マスク層のエッチングを行うマスク層のエッチング工程と、
     エッチングされた前記マスク層をマスクとして、前記サファイア基板のエッチングを行って前記凸部を形成する基板のエッチング工程と、
     エッチングされた前記サファイア基板の表面上に、前記半導体積層部を形成する半導体形成工程と、を含むLED素子の製造方法。
  11.  前記マスク層は、メタルマスクを含み、当該メタルマスクの厚さによって凸部の基端部の大きさを制御する請求項10に記載のLED素子の製造方法。
  12.  請求項1に記載のLED素子を製造するにあたり、
     サファイア基板の表面上にマスク層を形成するマスク層形成工程と、
     前記マスク層上にレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜に所定のパターンを形成するパターン形成工程と、
     前記レジスト膜をマスクとして前記マスク層のエッチングを行うマスク層のエッチング工程と、
     エッチングされた前記マスク層をマスクとして、前記サファイア基板のエッチングを行って前記凸部を形成する基板のエッチング工程と、
     エッチングされた前記サファイア基板の表面上に、前記半導体積層部を形成する半導体形成工程と、を含むLED素子の製造方法。
  13.  前記マスク層は、メタルマスクを含み、当該メタルマスクの厚さによって凸部の基端部の大きさを制御する請求項12に記載のLED素子の製造方法。
  14.  サファイア基板と、
     前記サファイア基板の表面上に形成され青色光を発する発光層を含む半導体積層部と、を備え、
     前記サファイア基板の表面は、平面視にて、仮想の三角格子又は四角格子の交点に配置される複数の凹部又は凸部を有し、
     前記仮想の三角格子又は四角格子をなす三角形又は四角形は、正多角形ではなく、各辺の長さが前記青色光の光学波長の2倍より大きくコヒーレント長より小さいLED素子。
  15.  前記凹部又は凸部は、仮想の三角格子の交点に配置され、
     前記仮想の三角格子をなす三角形の一辺の長さが、前記青色光の光学波長の2倍以上460nm以下、または、550nm以上800nm以下である請求項14に記載のLED素子。
  16.  前記仮想の三角格子をなす三角形は、二等辺三角形である請求項15に記載のLED素子。
  17.  前記二等辺三角形の等辺と底辺の一方の長さが前記青色光の光学波長の2倍以上460nm以下であり、他方の長さが550nm以上800nm以下である請求項16に記載のLED素子。
  18.  前記サファイア基板の表面は、前記凹部又は凸部が、前記青色光の光学波長の2倍より大きくコヒーレント長より小さい周期で配置された垂直化モスアイ面をなし、
     前記垂直化モスアイ面は、前記半導体積層部側から当該垂直化モスアイ面へ入射する光を反射及び透過し、臨界角を超えた角度域において、前記半導体積層部側にて当該垂直化モスアイ面へ入射する光の強度分布と比べて、前記半導体積層部側にて当該垂直化モスアイ面から反射により出射する光の強度分布が、前記半導体積層部と前記サファイア基板の界面に対して垂直な方向に偏るとともに、臨界角を超えた角度域において、前記半導体積層部側にて当該垂直化モスアイ面へ入射する光の強度分布と比べて、前記サファイア基板側にて当該垂直化モスアイ面から透過により出射する光の強度分布が、前記界面に対して垂直な方向に偏るよう構成され、
     前記垂直化モスアイ面を透過した光を反射する反射部を有し、
     前記発光層から発せられる光の光学波長の2倍より小さい周期の凹部又は凸部を有する透過モスアイ面を有し、
     前記垂直化モスアイ面における反射及び透過により、前記界面に対して垂直な方向に偏るよう強度分布が調整された光は、前記透過モスアイ面にてフレネル反射が抑制された状態で素子外部へ放出される請求項14から17のいずれか1項に記載のLED素子。
  19.  前記反射部は、前記界面に対して垂直に近い角度ほど反射率が高い請求項18に記載のLED素子。
  20.  基板と、
     前記基板の表面上に形成された発光層を含む半導体積層部と、
     前記基板の裏面上に形成された反射部と、
     前記半導体積層部上に形成された電極と、を備え、
     前記電極は、前記半導体積層部上に形成される拡散電極層と、前記拡散電極層上に形成され表面が前記発光層から発せられる光の光学波長の2倍より小さい周期の凹部又は凸部を有する透過モスアイ面をなすモスアイ層と、を有し、
     前記モスアイ層は、前記発光層から発せられる光について、前記拡散電極層を構成する材料よりも消衰係数が小さく、前記拡散電極層を構成する材料と屈折率がほぼ同じ材料から構成したLED素子。
  21.  前記拡散電極層は、ITOからなり、
     前記モスアイ層は、ZrOからなる請求項20に記載のLED素子。
  22.  前記基板は、サファイアからなり、
     前記サファイア基板の表面は、前記発光層から発せられる光の光学波長の2倍より大きくコヒーレント長より小さい周期の複数の凹部又は凸部を有する垂直化モスアイ面をなし、
     前記垂直化モスアイ面は、前記半導体積層部側から当該垂直化モスアイ面へ入射する光を反射及び透過し、臨界角を超えた角度域において、前記半導体積層部側にて当該垂直化モスアイ面へ入射する光の強度分布と比べて、前記半導体積層部側にて当該垂直化モスアイ面から反射により出射する光の強度分布が、前記半導体積層部と前記サファイア基板の界面に対して垂直な方向に偏るとともに、臨界角を超えた角度域において、前記半導体積層部側にて当該垂直化モスアイ面へ入射する光の強度分布と比べて、前記サファイア基板側にて当該垂直化モスアイ面から透過により出射する光の強度分布が、前記界面に対して垂直な方向に偏るよう構成され、
     前記垂直化モスアイ面における反射及び透過により、前記界面に対して垂直な方向に偏るよう強度分布が調整された光は、前記透過モスアイ面を通じてフレネル反射が抑制された状態で素子外部へ放出される請求項20または21に記載のLED素子。
  23.  前記反射部は、前記界面に対して垂直に近い角度ほど反射率が高い請求項22に記載のLED素子。
PCT/JP2014/060763 2013-04-16 2014-04-15 Led素子及びその製造方法 WO2014171467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480030587.9A CN105264676A (zh) 2013-04-16 2014-04-15 Led元件及其制造方法
US14/784,936 US9793434B2 (en) 2013-04-16 2014-04-15 LED element and method of manufacturing the same
JP2014531040A JP5643920B1 (ja) 2013-04-16 2014-04-15 Led素子及びその製造方法
HK16102139.0A HK1214407A1 (zh) 2013-04-16 2016-02-25 元件及其製造方法
US15/714,136 US20180026154A1 (en) 2013-04-16 2017-09-25 Led element and method for producing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013086050 2013-04-16
JP2013-086051 2013-04-16
JP2013-086049 2013-04-16
JP2013-086050 2013-04-16
JP2013086049 2013-04-16
JP2013086051 2013-04-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/784,936 A-371-Of-International US9793434B2 (en) 2013-04-16 2014-04-15 LED element and method of manufacturing the same
US15/714,136 Division US20180026154A1 (en) 2013-04-16 2017-09-25 Led element and method for producing same

Publications (1)

Publication Number Publication Date
WO2014171467A1 true WO2014171467A1 (ja) 2014-10-23

Family

ID=51731404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060763 WO2014171467A1 (ja) 2013-04-16 2014-04-15 Led素子及びその製造方法

Country Status (5)

Country Link
US (2) US9793434B2 (ja)
JP (3) JP5643920B1 (ja)
CN (1) CN105264676A (ja)
HK (1) HK1214407A1 (ja)
WO (1) WO2014171467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067832A (ja) * 2017-09-28 2019-04-25 豊田合成株式会社 発光素子の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069049B2 (en) * 2013-07-30 2018-09-04 National Institute Of Information And Communicatio Semiconductor light emitting element and method for manufacturing the same
JP6436694B2 (ja) * 2014-09-17 2018-12-12 住友化学株式会社 窒化物半導体テンプレートの製造方法
DE102014116999A1 (de) * 2014-11-20 2016-05-25 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
US20180248076A1 (en) * 2015-07-17 2018-08-30 Scivax Corporation Light emitting device
JP6524904B2 (ja) 2015-12-22 2019-06-05 日亜化学工業株式会社 発光装置
JP2017175004A (ja) * 2016-03-24 2017-09-28 ソニー株式会社 チップサイズパッケージ、製造方法、電子機器、および内視鏡
CN106299085B (zh) * 2016-09-21 2019-04-30 海迪科(南通)光电科技有限公司 一种偏振发光二极管芯片
CN110036493A (zh) * 2016-11-22 2019-07-19 国立研究开发法人情报通信研究机构 具备放射深紫外光的半导体发光元件的发光组件
JP6608352B2 (ja) * 2016-12-20 2019-11-20 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法
US10304993B1 (en) * 2018-01-05 2019-05-28 Epistar Corporation Light-emitting device and method of manufacturing the same
KR102443027B1 (ko) 2018-03-02 2022-09-14 삼성전자주식회사 반도체 발광소자
CN108447404B (zh) * 2018-04-04 2021-10-26 京东方科技集团股份有限公司 柔性阵列基板、显示装置及柔性阵列基板的制造方法
CN109599469A (zh) * 2018-12-18 2019-04-09 华中科技大学鄂州工业技术研究院 蛾眼结构深紫外发光二极管及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177528A (ja) * 2006-12-21 2008-07-31 Nichia Chem Ind Ltd 半導体発光素子用基板の製造方法及びそれを用いた半導体発光素子
JP2010074090A (ja) * 2008-09-22 2010-04-02 Meijo Univ 発光素子、発光素子用サファイア基板及び発光素子用サファイア基板の製造方法
WO2011027679A1 (ja) * 2009-09-07 2011-03-10 エルシード株式会社 半導体発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220972A (ja) * 2006-02-17 2007-08-30 Showa Denko Kk 半導体発光素子及びその製造方法、並びにランプ
JP4637781B2 (ja) * 2006-03-31 2011-02-23 昭和電工株式会社 GaN系半導体発光素子の製造方法
JP5477084B2 (ja) * 2010-03-17 2014-04-23 豊田合成株式会社 半導体発光素子およびその製造方法、ランプ、電子機器、機械装置
JP5142236B1 (ja) * 2011-11-15 2013-02-13 エルシード株式会社 エッチング方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177528A (ja) * 2006-12-21 2008-07-31 Nichia Chem Ind Ltd 半導体発光素子用基板の製造方法及びそれを用いた半導体発光素子
JP2010074090A (ja) * 2008-09-22 2010-04-02 Meijo Univ 発光素子、発光素子用サファイア基板及び発光素子用サファイア基板の製造方法
WO2011027679A1 (ja) * 2009-09-07 2011-03-10 エルシード株式会社 半導体発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067832A (ja) * 2017-09-28 2019-04-25 豊田合成株式会社 発光素子の製造方法

Also Published As

Publication number Publication date
JP5728116B2 (ja) 2015-06-03
US9793434B2 (en) 2017-10-17
JP2015119202A (ja) 2015-06-25
CN105264676A (zh) 2016-01-20
JP2015029118A (ja) 2015-02-12
US20160149076A1 (en) 2016-05-26
JPWO2014171467A1 (ja) 2017-02-23
JP5643920B1 (ja) 2014-12-17
US20180026154A1 (en) 2018-01-25
HK1214407A1 (zh) 2016-07-22

Similar Documents

Publication Publication Date Title
JP5643920B1 (ja) Led素子及びその製造方法
JP6410751B2 (ja) 半導体発光素子
TWI518776B (zh) Etching method
WO2014126016A1 (ja) Led素子及びその製造方法
JP5435523B1 (ja) 半導体発光素子及びその製造方法
KR20170018802A (ko) 발광 소자의 제조 방법 및 발광 소자
JP2011159650A (ja) 発光素子
JP5866044B1 (ja) 発光素子の製造方法及び発光素子
JP2016027658A (ja) エッチング方法
JP5808725B2 (ja) エッチング方法
WO2015194382A1 (ja) 発光素子の製造方法及び発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030587.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014531040

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784609

Country of ref document: EP

Kind code of ref document: A1