WO2013067765A1 - 一种空心球形im-5分子筛及其制备方法 - Google Patents

一种空心球形im-5分子筛及其制备方法 Download PDF

Info

Publication number
WO2013067765A1
WO2013067765A1 PCT/CN2012/001474 CN2012001474W WO2013067765A1 WO 2013067765 A1 WO2013067765 A1 WO 2013067765A1 CN 2012001474 W CN2012001474 W CN 2012001474W WO 2013067765 A1 WO2013067765 A1 WO 2013067765A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
bromide
hollow sphere
surfactant
aluminum
Prior art date
Application number
PCT/CN2012/001474
Other languages
English (en)
French (fr)
Inventor
凌凤香
杨卫亚
王少军
沈智奇
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to IN4224CHN2014 priority Critical patent/IN2014CN04224A/en
Priority to EP12848497.9A priority patent/EP2778136B1/en
Priority to CA2855179A priority patent/CA2855179C/en
Priority to KR1020147015502A priority patent/KR101915104B1/ko
Priority to US14/356,704 priority patent/US9248437B2/en
Publication of WO2013067765A1 publication Critical patent/WO2013067765A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the invention relates to a hollow spherical IM-5 molecular sieve and a preparation method thereof, and belongs to the field of preparation of inorganic materials. Background technique
  • Microporous molecular sieve materials have regular pores and large surface area, and are widely used in adsorption, separation, chemical, and catalytic fields. In recent years, some new molecular sieve materials have been continuously prepared.
  • the IM-5 molecular sieve is a novel zeolite prepared by using a double quaternary ammonium salt as a template.
  • the IM-5 molecular sieve is similar to the pore structure of ZSM-5. It has a two-dimensional 10MR staggered channel and is highly stable in thermal stability and hydrothermal stability. It is used in the petrochemical industry such as paraffin cracking, isomerization of n-butene, and preparation of gas-to-gasoline. Has a strong prospect of catalytic applications.
  • CN1234012A discloses an IM-5 molecular sieve and a preparation method thereof. By adding extra
  • the NU-88 powder was seeded and hydrothermally crystallized at 170 ° C to obtain an IM-5 molecular sieve.
  • the IM-5 molecular sieve obtained in the prior art has a two-dimensional shape in shape, and the rod has a general diameter of 50 nm or more and a length to diameter ratio of about 5.
  • the molecular hollow spheres are mainly prepared by using polystyrene microspheres as a template, combined with layer self-assembly and hydrothermal or gas phase conversion crystallization.
  • Typical related literatures are: Chem. Commun., 2000, 2161-2162 and Adv. Mater. 2006, 18, 801-806.
  • the method for preparing a molecular sieve hollow sphere using a polymer microsphere as a hard template has complicated operation steps, poor controllability, and high cost.
  • CN101618336A MCM-22 molecular sieve hollow spheres were prepared by rotating hydrothermal crystallization using carbon black particles as a template.
  • the carbon black template used is wider and cheaper than the polystyrene microsphere template.
  • the obtained hollow spheres have a larger particle size and the pore walls are correspondingly thin, thus hollow.
  • the ball is easy to break.
  • the preparation of the molecular sieve hollow sphere is generally prepared by using a hard template such as polymer microspheres and carbon black, and the controllability is not strong, the amount of the hard template is relatively large, the burning is difficult, and the burning of the template is brought about. A large amount of environmental pollutants.
  • the present invention provides a hollow spherical IM-5 molecular sieve and a method for preparing the hollow spherical IM-5 molecular sieve by a soft template method.
  • a hollow spherical IM-5 molecular sieve can be obtained by further introducing a cationic surfactant based on a usual hydrothermal system for preparing an IM-5 molecular sieve.
  • the hollow spherical IM-5 molecular sieve of the present invention has an outer diameter of the hollow sphere of about 2 to about 15 ⁇ m, preferably the outer diameter is not less than about 3 ⁇ m, more preferably the outer diameter is not less than about 4 ⁇ m; preferably the outer diameter is not more than about 13 ⁇ m. , not more than about 12 ⁇ m, not more than about ⁇ , more preferably the outer diameter is no more than about 9 ⁇ m, or no more than about 8 ⁇ m.
  • the outer diameter be from about 2 to about ⁇ , more preferably from about 4 to about 8 ⁇ m.
  • the walls of the hollow spheres consist essentially of small IM-5 grains having a particle size of from about 10 to about 500 nm, preferably from about 10 to about 200 nm.
  • the wall thickness of the hollow spheres is generally from about 10% to about 40%, preferably from about 15% to about 30%, of the outer diameter of the hollow spheres.
  • the preparation method of the hollow spherical IM-5 molecular sieve of the present invention is as follows:
  • step (1) The mixture of step (1) is heated in a hydrothermal reactor to about 140-about
  • the solid product is taken out and separated, dried, and calcined to obtain an IM-5 molecular sieve in the form of a hollow sphere.
  • the stirring temperature is from about 20 to about 70 ° C, preferably from about 55 to about 65. C.
  • the stirring time is from about 1 to about 24 hours, preferably from about 10 to about 20 hours.
  • the cationic surfactant is preferably added last.
  • the mixture is preferably ultrasonically dispersed prior to the addition of the cationic surfactant.
  • the ultrasonic dispersion is used at a frequency of 10-100 kHz.
  • the ultrasonic dispersion temperature is about 20-large It is about 70 ° C, preferably about 55 to about 65 ° C.
  • the sonication time is from about 1 to about 24 hours, preferably from about 10 to about 20 hours.
  • the alkali source is sodium hydroxide, potassium hydroxide or lithium hydroxide, or a combination thereof, preferably sodium hydroxide.
  • the templating agent is pentylene) bis(1-methylpyrrolidine) bromide, and the English name is 1, 1 '-(Pentamethylene)bis(1-methylpyrrolidinium), and the structural formula is:
  • the aluminum source is aluminum nitrate, aluminum chloride or aluminum sulfate, or a combination thereof, preferably aluminum nitrate, aluminum chloride, or a combination thereof.
  • the silicon source is silica, silicic acid, silicon alkoxide, silica sol or silica gel, or a combination thereof, preferably white carbon black.
  • the surfactant is one or more cationic quaternary ammonium salts having a carbon chain length of 12-18, and the carbon chain is preferably a normal paraffin; the cationic anion of the cationic quaternary ammonium salt is a bromide ion or a chloride ion. Preferably, it is a bromide ion.
  • the cationic quaternary ammonium salt having a carbon chain length of 12-18 including but not limited to octadecyltrimethylammonium bromide, cetyltrimethylammonium bromide, tetradecyltrimethyl bromide Ammonium, dodecyltrimethylammonium bromide.
  • the molar ratio of each component in the reaction mixture to the following species is:
  • Si0 2 /Al 2 0 3 is from about 30 to about 70, preferably from about 40 to about 70;
  • R/Si0 2 is from about 0.3 to about 0.6, preferably from about 0.3 to about 0.45, and R means a templating agent;
  • H 2 0/Si0 2 is from about 20 to about 90, preferably from about 50 to about 90;
  • OH7Si0 2 is from about 0.5 to about 0.8, preferably from about 0.6 to about 0.75; and R/SUR+ is from about 0.3 to about 4.5, preferably the ratio is not less than about 0.4, not less than about 0.5, or not less than about 0.6. And preferably the ratio does not exceed about 4, does not exceed about 3.5, does not exceed about 3, does not exceed about 2.5, does not exceed about 2, or does not exceed about 1.5; for example, the ratio is preferably from about 0.6 to about 1.5, wherein SUR+ refers to a cationic surfactant.
  • the hydrothermal crystallization temperature is preferably from about 160 to about 185 ° C, more preferably from about 165 to about 175 ° C.
  • the hydrothermal crystallization time is preferably from about 7 to about 12 days.
  • the obtained product has the fields of paraffin cracking, n-butene isomerization, synthesis gas gasoline, etc. It has unique reaction properties, especially for reaction materials that are larger molecules, such as paraffin cracking, or require a high space velocity reaction process.
  • the invention adds a relatively large amount of cationic quaternary ammonium salt having a carbon chain length of 12-18 in the IM-5 molecular sieve system, and the cationic quaternary ammonium salt is combined with the templating agent to form a hollow spherical IM-5.
  • Molecular sieve this structure is conducive to mass transfer of materials.
  • the preparation method of the molecular sieve hollow sphere with the quaternary ammonium salt micelle as the soft template has the small amount of the template agent, is easy to be burned off, produces less emissions, and has less environmental pollution.
  • the obtained product has uniform particles and strong controllability.
  • Figure 1 is a low-power transmission electron microscope image of a hollow spherical IM-5 molecular sieve prepared in Example 1 of the present invention.
  • Fig. 2 is a low-power scanning electron microscope image of a hollow spherical IM-5 molecular sieve prepared in Example 1 of the present invention.
  • Fig. 3 is a high-power transmission electron microscope image of a hollow spherical IM-5 molecular sieve prepared in Example 1 of the present invention.
  • Figure 4 is an XRD curve of a hollow spherical IM-5 molecular sieve prepared in Example 1 of the present invention.
  • Figure 5 is a transmission electron microscope image of a conventional IM-5 molecular sieve prepared in Comparative Example 1. detailed description
  • the outer diameter, wall thickness, and grain size of the hollow spheres were measured by transmission electron microscopy and scanning electron microscope images. Randomly photographed 20 transmission electron microscopes or scanning electron microscope images, using image processing software Image J to measure the outer diameter of the hollow sphere, the wall thickness and the size of the molecular sieve grains on the pore walls. In the transmission electron microscope image, in the image of the hollow sphere, the maximum length from the outer edge to the center of the sphere is the wall thickness.
  • the transmission electron microscope (TEM) used in the examples was manufactured by JEOL, model number JEM 2100 (HR), with an accelerating voltage of 200 kV and a resolution of 0.23 nm.
  • the gel was transferred to a hydrothermal reaction vessel, heated to 165 ° C, hydrothermally crystallized for 10 days, then naturally cooled, and dried by filtration to obtain a molecular sieve raw powder.
  • the obtained products are all well-crystallized IM-5 molecular sieves, and the morphology is observed by low-power TEM, which is a hollow sphere with an outer diameter of about 5 ⁇ m; and when viewed by high-power transmission electron microscopy, the wall has a size ranging from 10 to 200 nm. It consists of small particles with a wall thickness of about 1.4 ⁇ m.
  • the gel was transferred to a hydrothermal reaction vessel, heated to 170 ° C, hydrothermally crystallized for 8 days, then naturally cooled, and dried by filtration to obtain a molecular sieve raw powder.
  • the obtained product was IM-5 molecular sieve, and the morphology was observed by low-power TEM, which was a hollow sphere with an outer diameter of about 8 ⁇ m.
  • the wall was composed of small particles ranging in size from 40 to 200 nm. , the wall thickness is about 1.6 ⁇ .
  • the gel was transferred to a hydrothermal reaction vessel, heated to 175 ° C, hydrothermally crystallized for 7 days, then naturally cooled, and dried by filtration to obtain a molecular sieve raw powder.
  • the obtained product was IM-5 molecular sieve, and the morphology was observed by low-power TEM. It was a hollow sphere with an outer diameter of about 4 ⁇ m.
  • the wall was composed of small particles ranging in size from 20 to 170 nm. The wall thickness is about 0.9 ⁇ m. Comparative example 1
  • the gel was transferred to a hydrothermal reaction vessel, heated to 165 ° C, hydrothermally crystallized for 10 days, then naturally cooled, and dried by filtration to obtain a molecular sieve raw powder.
  • the obtained products were all well-crystallized IM-5 molecular sieves, and the morphology was observed by low-power TEM, which was short rod-shaped and did not form a hollow sphere structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

提供一种空心球形IM-5分子筛及其制备方法。向IM-5分子筛制备体系中添加长碳链的阳离子季铵盐表面活性剂,按照摩尔比计,模板剂/表面活性剂约0.3-约4.5,通过表面活性剂的胶束作用,生成空心球形IM-5分子筛。该结构有利于反应过程的物料传质。

Description

一种空心球形 IM-5分子筛及其制备方法 技术领域
本发明涉及一种空心球形 IM-5分子筛及其制备方法, 属于无机材 料制备领域。 背景技术
微孔分子筛材料具有规则的孔道、 较大的表面积, 广泛应用于吸 附、 分离、 化工、 催化等领域。 近年来, 一些新型结构的分子筛材料 已经不断被制备出来。
IM-5分子筛是以双季铵盐为模板剂制备的一种新型沸石。 IM-5分 子筛与 ZSM-5的孔道结构类似, 拥有二维 10MR交错孔道, 且热稳定 和水热稳定性较高, 在石蜡裂化、 正丁烯异构化、 制备气制汽油等石 油化工领域具有较强的催化应用前景。
Journal of Molecular Catalysis A: Chemical, 2000, 162: 175-189, 以 Ι,Γ- (戊甲撑)二 (1-甲基吡咯烷鑰)溴化物为模板剂, 在添加溴化钠促 进剂的条件下, 175°C静态水热条件下得到 IM-5分子筛。
Journal of Catalysis 215 (2003) 151-170, 以 Ι,Γ- (戊曱撑)二(1-曱基 吡咯烷鑰)溴化物为模板剂,在 160 °C动态水热条件下得到 IM-5分子筛。
CN1234012A公开了 IM-5分子筛及其制备方法。 通过添加额外的
NU-88粉末为晶种, 在 170 °C下水热晶化得到 IM-5分子筛。
通过研究上述文献制备的产物可知, 现有技术所得 IM-5分子筛在 形貌上为二维棒状,棒的一般直径为 50nm以上,长径比一般为 5左右。
分子筛材料除具有棒状、 条状、 块状或球状等形状外, 目前空心 球结构的分子筛的制备引起人们很大的兴趣。 因为这种特殊的中空结 构往往会引发材料的一些特殊的性能, 尤其体现在催化、 吸附、 药物 的控制释放、 纳米光电等领域。
目前分子歸空心球主要通过聚苯乙烯微球做模板, 结合层层自组 装及水热或气相转化晶化法制备。典型的相关文献有: Chem.Commun., 2000, 2161-2162和 Adv. Mater. 2006, 18, 801-806。这种以聚合物微球为 硬模板的制备分子筛空心球的方法, 操作步骤繁瑣、 可控性较差, 成 本较高。 CN101618336A 利用炭黑粒子做模板, 通过旋转水热晶化制备了 MCM-22 分子筛空心球。 所用炭黑模板较聚苯乙烯微球模板来源广泛 成本低廉,但由于炭黑粒子的不均勾性及颗粒尺寸一般在 20微米以上 , 所得空心球的粒度较大, 孔壁相应单薄, 因此空心球容易破碎。
可见, 目前由分子筛空心球的制备一般采用聚合物微球及炭黑等 硬模板来制备, 可控性不强, 硬模板的用量相对较多, 烧除困难, 同 时模板的烧除会带来大量的环境污染物。 发明内容
本发明提供了一种空心球状 IM-5分子筛以及以软模板法制备该空 心球形 IM-5分子筛的方法。根据本发明的方法,基于通常的制备 IM-5 分子筛的水热体系, 通过进一步引入阳离子表面活性剂可获得空心球 形 IM-5分子筛。
本发明空心球形 IM-5分子筛, 空心球的外径为大约 2-大约 15μιη, 优选该外径不低于大约 3μηι, 更优选该外径不低于大约 4μιη; 优选该 外径不超过大约 13μιη, 不超过大约 12μπι, 不超过大约 ΙΟμιη, 更优选 该外径不超过大约 9μπι, 或不超过大约 8μπι。 例如, 优选该外径为大 约 2-大约 ΙΟμηι, 更优选为大约 4-大约 8μιη。 空心球的壁基本上由粒度 大约 10-大约 500nm, 优选大约 10-大约 200nm的 IM-5小晶粒构成。 空心球壁厚一般为空心球外径的大约 10%-大约 40%,优选为大约 15%- 大约 30%。
本发明空心球形 IM-5分子筛的制备方法如下:
( 1 )将碱源、 模板剂、 铝源、 水、 硅源和阳离子表面活性剂 (以 SUR+表示) 混合, 在适宜温度下搅拌混合物生成溶胶;
( 2 ) 将步骤 ( 1 ) 的混合物在水热反应釜中升温至大约 140-大约
200°C水热晶化大约 2-大约 15天后, 取出并分离固体产物, 干燥、 焙 烧后得到 IM-5分子筛, 其形态为空心球。
步骤( 1 ) 中, 搅拌温度为大约 20-大约 70°C, 优选为大约 55-大约 65。C。 搅拌时间为大约 1-大约 24小时, 优选为大约 10-大约 20小时。
步骤 ( 1 ) 中, 在所述的各种物料中, 阳离子表面活性剂优选最后 加入。 在加入阳离子表面活性剂之前, 优选对混合物进行超声分散。 该超声分散使用的频率为 10-100kHz。 该超声分散的温度为大约 20-大 约 70°C , 优选为大约 55-大约 65°C。 超声时间为大约 1-大约 24小时, 优选为大约 10-大约 20小时。 步骤 ( 1 ) 中, 所述碱源为氢氧化钠、 氢 氧化钾或氢氧化锂, 或其组合, 优选为氢氧化钠。 所述的模板剂为 戊甲撑)二(1-甲基吡咯烷鑰)溴化物, 参考英文名称为 1 , 1 '-(Pentamethylene)bis( 1 -methylpyrrolidinium), 结构式为:
Figure imgf000004_0001
所述铝源为硝酸铝、 氯化铝或硫酸铝, 或其组合, 优选为硝酸铝、 氯化铝, 或其组合。 所述的硅源为白炭黑、 硅酸、 硅醇盐、 硅溶胶或 硅胶, 或其组合, 优选为白炭黑。 所述的表面活性剂为一种或多种碳 链长度为 12-18的阳离子季铵盐, 碳链优选为正构烷烃; 所述的阳离子 季铵盐其对应的阴离子为溴离子或氯离子, 优选为溴离子。 所述碳链 长度为 12-18的阳离子季铵盐, 包括但不限于十八烷基三甲基溴化铵, 十六烷基三曱基溴化铵, 十四烷基三甲基溴化铵, 十二烷基三曱基溴 化铵。
步骤 ( 1 ) 中, 反应混合物中各组分以下列物类计的摩尔比率为:
Si02/Al203为大约 30-大约 70, 优选为大约 40-大约 70;
R/Si02为大约 0.3-大约 0.6, 优选为大约 0.3-大约 0.45 , R指模板 剂;
H20/Si02为大约 20-大约 90, 优选为大约 50-大约 90;
OH7Si02为大约 0.5-大约 0.8, 优选为大约 0.6-大约 0.75; 和 R/ SUR+为大约 0.3-大约 4.5, 优选该比率为不低于大约 0.4, 不低 于大约 0.5, 或不低于大约 0.6; 以及优选该比率不超过大约 4, 不超过 大约 3.5, 不超过大约 3 , 不超过大约 2.5 , 不超过大约 2, 或不超过大 约 1.5; 例如该比率优选为大约 0.6-大约 1.5, 其中所述 SUR+指阳离子 表面活性剂。
步骤 (2 ) 中, 水热晶化温度优选为大约 160-大约 185°C , 更优选 为大约 165-大约 175°C。 水热晶化时间优选为大约 7-大约 12天。
得到的产品在石蜡裂化、 正丁烯异构化、 合成气制汽油等领域具 有独特的反应性能, 尤其是对反应物料为较大分子, 如石蜡裂化, 或 需要高空速的反应过程。
本发明与常规水热制备法相比 , 在 IM-5分子筛体系中添加了相对 大量的碳链长度为 12-18 的阳离子季铵盐, 阳离子季铵盐与模板剂配 合, 形成空心球形 IM-5分子筛, 该结构有利于物料传质。 本发明的以 季铵盐的胶束为软模板的分子筛空心球的制备方法, 模板剂用量少, 容易烧除, 产生的排放物少, 对环境污染小。 所得产品颗粒均匀, 可 控性强。 附图说明
图 1为本发明实施例 1制备的空心球形 IM-5分子筛的低倍透射电 镜图像。
图 2 本发明实施例 1制备的空心球形 IM-5分子筛的低倍扫描电镜 图像。
图 3为本发明实施例 1制备的空心球形 IM-5分子筛的高倍透射电 镜图像。
图 4为本发明实施例 1制备的空心球形 IM-5分子筛的 XRD曲线。 图 5为本发明对比例 1制备的普通 IM-5分子筛透射电镜图像。 具体实施方式
通过透射电子显微镜、 扫描电子显微镜图像测量空心球的外径、 壁厚以及晶粒大小。 随机拍摄 20张透射电子显微镜或扫描电子显微镜 图像, 采用图像处理软件 Image J测量空心球的外径, 壁厚以及孔壁上 分子筛晶粒的大小。 在透射电子显微镜图像中, 空心球的图像中, 从 外边缘至球心方向衬度最大的长度为壁厚。
以下通过实施例进一步说明本发明方案和效果。
实施例中使用的透射电子显微镜 (TEM ) 制造商为日本电子株式 会社 (JEOL ) , 型号为 JEM 2100 ( HR ) , 加速电压 200KV, 分辨率 0.23nm。
实施例 1
将氢氧化钠、 Ι,Γ- (戊曱撑)二 (1-曱基吡咯烷鑰)溴化物, 硝酸铝, 水, 白炭黑和十六烷基三曱基溴化铵 (CTAB)混合, 按以下物类计的摩 尔比率如下: SiO2/Al2O3=40, OH7SiO2=0.62, R/SiO2=0.45 , H2O/SiO2=50, R/CTAB=0.7。 然后将混合物在 60°C的水浴中搅拌至均匀的溶胶, 溶胶 在搅拌的同时保持恒温 12小时以预凝胶。 之后, 将凝胶转移到水热反 应釜中, 升温到 165°C , 水热晶化 10天, 然后自然冷却, 过滤干燥后 得到分子筛原粉。 经 XRD测试, 所得产物皆为结晶良好的 IM-5分子 筛, 以低倍 TEM观察形貌, 为空心球, 外径约 5μιη; 而高倍透射电镜 观察时, 其壁由尺寸为 10-200nm不等的小颗粒组成,壁厚约为 1.4μηι。 实施例 2
将氢氧化钠、 Ι,Γ- (戊甲撑)二 (1-曱基吡咯烷鑰)溴化物, 硝酸铝, 水, 白炭黑和十六烷基三甲基溴化铵混合, 按以下物类计的摩尔比率 如下: SiO2/Al2O3=50, OH7SiO2=0.70, R/SiO2=0.40 , H20/Si02=65, R/CTAB=1.0。 然后将混合物在 60°C的水浴中搅拌至均匀的溶胶, 溶胶 在搅拌的同时保持 12小时的恒温以预凝胶。 之后, 将凝胶转移到水热 反应釜中, 升温到 170°C , 水热晶化 8天, 然后自然冷却, 过滤干燥后 得到分子筛原粉。经 XRD测试,所得产物为 IM-5分子筛 ,以低倍 TEM 观察形貌, 为空心球, 外径约 8μπι; 而高倍透射电镜观察时, 其壁由 尺寸为 40-200nm不等的小颗粒组成, 壁厚约为 1.6μιη。 实施例 3
将氢氧化钠、 Ι,Γ- (戊甲撑)二 (1-甲基吡咯烷鏺)溴化物, 硝酸铝, 水, 白炭黑和十二烷基三曱基溴化铵(DTAB ) 混合, 按以下物类计的 摩尔 比率如下: SiO2/Al2O3=70, OH7SiO2=0.73 , R/SiO2=0.45, H20/Si02=85, R/DTAB=1.4。然后将混合物在 60 °C的水浴中搅拌至均匀 的溶胶, 溶胶在搅拌的同时保持 20小时的恒温以预凝胶。 之后, 将凝 胶转移到水热反应釜中,升温到 175°C ,水热晶化 7天, 然后自然冷却, 过滤干燥后得到分子筛原粉。 经 XRD测试, 所得产物为 IM-5分子筛, 以低倍 TEM观察形貌, 为空心球, 外径约 4μπι; 而高倍透射电镜观察 时, 其壁由尺寸为 20-170nm不等的小颗粒组成, 壁厚约为 0.9μιη。 对比例 1
将氢氧化钠、 1,1'- (戊曱撑)二 (1-甲基吡咯烷鑰)溴化物, 硝酸铝, 水, 白炭黑混合, 按以下物类计的摩尔比率如下: SiO2/Al2O3=40 , OH7SiO2=0.62 , R/SiO2=0.45, H2O/SiO2=50。 然后将混合物在 60°C的 水浴中搅拌至均勾的溶胶, 溶胶在搅拌的同时保持恒温 12小时以预凝 胶。 之后, 将凝胶转移到水热反应釜中, 升温到 165 °C , 水热晶化 10 天, 然后自然冷却, 过滤干燥后得到分子筛原粉。 经 XRD测试, 所得 产物皆为结晶良好的 IM-5分子筛, 以低倍 TEM观察形貌, 为短棒状, 未形成空心球结构。

Claims

权 利 要 求
1. IM-5分子筛, 其特征在于: 该 IM-5分子筛为空心球形, 所述 空心球外径为大约 2-大约 15μπι,优选为 大约 2-大约 ΙΟμπι, 更优选为 大约 4-大约 8μιη。
2. 根据权利要求 1 所述的 ΙΜ-5分子筛, 其特征在于: 空心球的 壁由粒度大约 10-大约 500nm, 优选为大约 10-大约 200nm的 IM-5晶 粒构成。
3. 根据权利要求 1或 2所述的 IM-5分子筛, 其特征在于: 空心 球壁厚为空心球外径的大约 10%-大约 40%, 优选为大约 15%-大约
30%。
4. 制备权利要求 1 所述 IM-5分子筛的方法, 其特征在于包括如 下步骤:
( 1 )将碱源、 模板剂、 铝源、 水、 硅源和阳离子表面活性剂混合, 在适宜温度下搅拌混合物生成溶胶;
( 2 ) 将步骤 ( 1 ) 的混合物在水热反应釜中升温至大约 140-大约 200°C以水热晶化大约 2-大约 15天后, 取出固体产物并将其分离, 干 燥后得到 IM-5分子筛, 其为空心球形。
5. 根据权利要求 4 所述的方法, 其特征在于: 步骤 ( 1 ) 中, 搅 拌温度为大约 20-大约 70°C , 优选大约 55-大约 65°C , 搅拌时间为大约
1-大约 24小时, 优选大约 10-大约 20小时。
6. 根据权利要求 4 所述的方法, 其特征在于: 步骤 ( 1 ) 中, 碱 源为氢氧化钠、 氢氧化钾或氢氧化锂, 或其组合; 模板剂为 Ι,Γ- (戊曱 撑)二(1-曱基吡咯烷鑰)溴化物; 铝源为硝酸铝、 氯化铝或硫酸铝, 或 其组合; 以及硅源为白炭黑、 硅酸、 硅醇盐、 硅溶胶或硅胶, 或其组 合。
7. 根据权利要求 4 所述的方法, 其特征在于: 步骤 ( 1 ) 中, 表 面活性剂为碳链长度为 12-18 的阳离子季铵盐, 其对应的阴离子为溴 离子或氯离子。
8. 根据权利要求 4或 7所述的方法, 其特征在于: 表面活性剂为 十八烷基三曱基溴化铵、 十六烷基三甲基溴化铵、 十四烷基三甲基溴 化铵或十二烷基三甲基溴化铵。
9. 根据权利要求 4、 6或 7所述的方法, 其特征在于: 步骤 ( 1) 中, 反应混合物中各组分以下列物类计的摩尔比率为:
Si02/Al203为大约 30-大约 70, 优选为大约 40-大约 70;
R/Si02为大约 0.3-大约 0.6, 优选为大约 0.3-大约 0.45, R指模板 剂;
H20/Si02为大约 20-大约 90, 优选为大约 50-大约 90;
OH7Si02为大约 0.5-大约 0.8, 优选为大约 0.6-大约 0.75; 和 R/SUR+为大约 0.3-大约 4.5, 优选为大约 0.6-大约 1.5, SUR+指阳 离子表面活性剂。
10. 根据权利要求 4所述的方法, 其特征在于: 步骤 (2) 中, 水 热晶化温度为大约 160-大约 185°C, 优选为大约 165-大约 175°C。
11. 根据权利要求 4或 10所述的方法, 其特征在于: 步骤 (2) 中, 水热晶化的时间为大约 7-大约 12天。
PCT/CN2012/001474 2011-11-10 2012-10-30 一种空心球形im-5分子筛及其制备方法 WO2013067765A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN4224CHN2014 IN2014CN04224A (zh) 2011-11-10 2012-10-30
EP12848497.9A EP2778136B1 (en) 2011-11-10 2012-10-30 Hollow spherical zeolite im-5 and preparation method therefor
CA2855179A CA2855179C (en) 2011-11-10 2012-10-30 A hollow im-5 molecular sieve sphere and the preparation process thereof
KR1020147015502A KR101915104B1 (ko) 2011-11-10 2012-10-30 중공 im-5 분자체 구 및 그 제조 방법
US14/356,704 US9248437B2 (en) 2011-11-10 2012-10-30 Hollow spherical zeolite IM-5 and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110353565.4A CN103101926B (zh) 2011-11-10 2011-11-10 一种空心球形im-5分子筛及其制备方法
CN201110353565.4 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013067765A1 true WO2013067765A1 (zh) 2013-05-16

Family

ID=48288484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001474 WO2013067765A1 (zh) 2011-11-10 2012-10-30 一种空心球形im-5分子筛及其制备方法

Country Status (7)

Country Link
US (1) US9248437B2 (zh)
EP (1) EP2778136B1 (zh)
KR (1) KR101915104B1 (zh)
CN (1) CN103101926B (zh)
CA (1) CA2855179C (zh)
IN (1) IN2014CN04224A (zh)
WO (1) WO2013067765A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569827A (zh) * 2020-05-26 2020-08-25 北京泷涛环境科技有限公司 一种空心球分子筛吸附剂及其制备方法
CN111617736A (zh) * 2020-04-20 2020-09-04 内江师范学院 空包结构Cu基-分子筛CO吸附剂及其制备方法和应用
CN113731351A (zh) * 2021-07-29 2021-12-03 浙江工业大学 一种天然沸石改性制备空心球状沸石的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101927B (zh) * 2011-11-10 2014-12-31 中国石油化工股份有限公司 一种im-5分子筛纤维及其合成方法
CN103193247A (zh) * 2013-03-09 2013-07-10 淮南师范学院 一种直接制备复合孔沸石分子筛球的方法
CN104591220B (zh) * 2013-11-04 2016-08-17 中国石油化工股份有限公司 一种空心beta沸石及其制备方法
CN105585023B (zh) * 2014-10-22 2017-10-03 中国石油化工股份有限公司 一种空腔聚集形态的mcm‑22分子筛及其制备方法
CN105585024B (zh) * 2014-10-22 2017-06-20 中国石油化工股份有限公司 一种中空聚集形态的mcm‑22/zsm‑35共生分子筛及其制备方法
KR101659709B1 (ko) * 2016-05-18 2016-09-26 주식회사 나노신소재 중공형 알루미노실리케이트 입자 및 이의 제조방법
CN110407228B (zh) * 2018-04-26 2021-04-06 中国石油化工股份有限公司 合成im-5分子筛的方法
CN111977668B (zh) * 2019-05-22 2022-08-30 中国石油天然气股份有限公司 一种im-5分子筛及其制备方法
CN112090443B (zh) * 2019-06-17 2023-03-10 中国石油化工股份有限公司 加氢脱氧催化剂及其应用和环己烷的制备方法
CN110862098B (zh) * 2019-11-28 2023-01-20 上海华谊(集团)公司 Mcm-22分子筛的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234012A (zh) 1996-10-21 1999-11-03 法国石油公司 Im-5沸石,其制备方法及其作为催化剂的应用
CN101618336A (zh) 2009-08-03 2010-01-06 大连理工大学 一种金属负载型mcm-22分子筛空心球双功能催化剂制备及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758810B1 (fr) 1997-01-24 1999-02-19 Inst Francais Du Petrole Zeolithe im-5 desaluminee
FR2769919B1 (fr) 1997-10-16 1999-12-24 Inst Francais Du Petrole Procede pour l'amelioration du point d'ecoulement de charges paraffiniques avec un catalyseur a base de zeolithe im-5
CN1093510C (zh) * 1998-09-25 2002-10-30 北京燕山石油化工公司研究院 一种β沸石的合成方法
US20030091504A1 (en) * 2001-11-15 2003-05-15 Gary Pasquale Method for controlling synthesis conditions during molecular sieve synthesis using combinations of quaternary ammonium hydroxides and halides
US7276224B2 (en) * 2002-06-11 2007-10-02 Regents Of The University Of Minnesota Synthesis of nanoporous particles
US7799128B2 (en) * 2008-10-10 2010-09-21 Roman Cement, Llc High early strength pozzolan cement blends
CN101862669B (zh) * 2010-06-23 2012-06-20 东南大学 异丁烷脱氢制异丁烯催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234012A (zh) 1996-10-21 1999-11-03 法国石油公司 Im-5沸石,其制备方法及其作为催化剂的应用
CN101618336A (zh) 2009-08-03 2010-01-06 大连理工大学 一种金属负载型mcm-22分子筛空心球双功能催化剂制备及应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 18, 2006, pages 801 - 806
CHEM.COMMUN., 2000, pages 2161 - 2162
CHEN XIAOGANG ET AL.: "IM-5 zeolite hollow spheres: synthesis and characterization", CHEMICAL ENGINEERING OF OIL AND GAS, 7 June 2012 (2012-06-07), pages 1 - 7, XP008173324 *
JOURNAL OF CATALYSIS, vol. 215, 2003, pages 151 - 170
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 162, 2000, pages 175 - 189
See also references of EP2778136A4
WANG LEI ET AL.: "A facile method for the fabrication of IM-5 hollow zeolite sphere in emulsion system", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 163, 14 July 2012 (2012-07-14), pages 243 - 248, XP028936596 *
WANG LEI ET AL.: "Synthesis of nano-zeolite IM-5 by hydrothermal method with the aid of PEG and CTAB", MATERIALS LETTERS, vol. 69, 26 November 2011 (2011-11-26), pages 16 - 19, XP028433728 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617736A (zh) * 2020-04-20 2020-09-04 内江师范学院 空包结构Cu基-分子筛CO吸附剂及其制备方法和应用
CN111569827A (zh) * 2020-05-26 2020-08-25 北京泷涛环境科技有限公司 一种空心球分子筛吸附剂及其制备方法
CN113731351A (zh) * 2021-07-29 2021-12-03 浙江工业大学 一种天然沸石改性制备空心球状沸石的方法

Also Published As

Publication number Publication date
CN103101926B (zh) 2014-10-15
US20140287910A1 (en) 2014-09-25
CA2855179A1 (en) 2013-05-16
KR101915104B1 (ko) 2018-11-06
EP2778136B1 (en) 2017-05-10
CA2855179C (en) 2019-12-24
IN2014CN04224A (zh) 2015-07-17
EP2778136A4 (en) 2015-08-12
CN103101926A (zh) 2013-05-15
KR20140118994A (ko) 2014-10-08
EP2778136A1 (en) 2014-09-17
US9248437B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
WO2013067765A1 (zh) 一种空心球形im-5分子筛及其制备方法
JP5175428B2 (ja) ケイ素を含む階層的な多孔度を有する材料
CN101890363B (zh) 一种介孔–微孔核–壳复合分子筛催化剂的制备方法
FR2890388A1 (fr) Procede de production d'une zeolite zsm-5 exempte de liant et a cristaux de petite taille
CN109110779B (zh) 一种zsm-35分子筛的制备方法
WO2013067764A1 (zh) 一种纤维状im-5分子筛及其制备方法
CN103101925B (zh) 一种高效合成im-5分子筛的方法
CN112661167B (zh) 一种纳米丝光沸石分子筛的合成方法及分子筛
CN107758685B (zh) 纳米聚集片形丝光沸石
CN105585024B (zh) 一种中空聚集形态的mcm‑22/zsm‑35共生分子筛及其制备方法
Zhou et al. Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor
CN105585029B (zh) 一种中空聚集形态的zsm‑35分子筛及其制备方法
JP4488691B2 (ja) フォージャサイト型ゼオライトの製造方法
CN105585025B (zh) 一种中空聚集形态的mcm‑49/zsm‑35共生分子筛及其制备方法
JP6928488B2 (ja) Mwf型ゼオライト
CN103101928B (zh) 一种超细纳米im-5分子筛及其合成方法
CN105585023B (zh) 一种空腔聚集形态的mcm‑22分子筛及其制备方法
CN105585026B (zh) 一种空腔结构的mww类型分子筛的制备方法
KR20150050363A (ko) 제올라이트 나노입자 합성 방법 및 이에 의해 합성된 제올라이트 나노입자
CN116354359A (zh) 纯硅mfi结构分子筛及其制备方法
CN115010144A (zh) 一种片状zsm-11分子筛的合成方法
JP2009155187A (ja) コロイド状フォージャサイト型ゼオライトおよびその合成方法
KR20200101758A (ko) 층상 실리케이트 합성방법 및 이로부터 합성된 층상 실리케이트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14356704

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2855179

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012848497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012848497

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015502

Country of ref document: KR

Kind code of ref document: A