WO2013062113A1 - 可塑性油脂組成物 - Google Patents

可塑性油脂組成物 Download PDF

Info

Publication number
WO2013062113A1
WO2013062113A1 PCT/JP2012/077800 JP2012077800W WO2013062113A1 WO 2013062113 A1 WO2013062113 A1 WO 2013062113A1 JP 2012077800 W JP2012077800 W JP 2012077800W WO 2013062113 A1 WO2013062113 A1 WO 2013062113A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
weight
fat
parts
reaction
Prior art date
Application number
PCT/JP2012/077800
Other languages
English (en)
French (fr)
Inventor
章弘 菊田
隆宏 青野
晃生 榊
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013062113A1 publication Critical patent/WO2013062113A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/001Spread compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/02Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange

Definitions

  • the present invention relates to a plastic fat composition containing palm oil-derived liquid oil and suitable for the production of margarine, shortening and the like.
  • soybean oil, rapeseed oil, or palm olein is used as a liquid oil in order to adjust physical properties such as hardness.
  • soybean oil and rapeseed oil have low oxidation stability, when used in products that require long-term storage such as confectionery, there is a problem that the flavor tends to deteriorate with the elapsed days in the distribution process.
  • raw material costs are higher than palm oils.
  • palm olein iodine value 60 to 65
  • coarse crystals are formed in the product when the plastic fat composition is stored for a long period of time.
  • Patent Document 1 discloses fats and oils in which palm stearin is blended with palm-based fats and oils. , 3-dipalmitoyl-2-monooleoylglycerin) content is 20% by weight or less, and trisaturated triglyceride content is 7 to 20% by weight. Moreover, in patent document 2, even if it mix
  • a plastic fat composition wherein the fat A is a palm-based fat having an iodine value of 62 or less, and the fat B has 20 to 20 saturated fatty acids having 12 to 14 carbon atoms in the total fatty acids constituting the fat B.
  • the transesterified oil and fat containing 60% by mass and 40 to 80% by mass of a saturated fatty acid having 16 to 18 carbon atoms, and the oil C is a vegetable oil having a melting point of 25 ° C.
  • the ratio of the content of oil A to oil is 0.5 to 5.5, and 4.5 to 3.5 trisaturated triglycerides consisting only of saturated fatty acids having 16 or more carbon atoms in the oil phase.
  • Plastic fat and oil group containing 10.5% by mass Things have been disclosed. However, even in the conventional plastic fat composition using these palm fats and oils, the above-described formation of coarse crystals during long-term storage cannot be sufficiently suppressed, and further improvement has been demanded.
  • triglyceride having palmitic acid bonded to ⁇ -position (2nd position) is known to exhibit much higher absorbability than triglyceride having palmitic acid bonded to ⁇ -position (1,3rd position) (patent) Reference 3).
  • the solid fat and liquid oil that are filtered out when producing a liquid oil using palm oil as a raw material have a large amount of palmitic acid as a constituent fatty acid, but most of them are bonded to the 1st and 3rd positions. It does not show high absorbency.
  • the present invention is inexpensive in view of the problems in the conventional plastic fat composition as described above, and looks good when used as a plastic fat composition for kneading. Furthermore, it is smooth and has good handling properties.
  • An object of the present invention is to provide a plastic oil composition having good workability when used as a plastic oil composition for folding.
  • a palm oil-derived liquid oil having an SSS content of 2% by weight or less and further containing 10-30% by weight of glyceride bound with palmitic acid at the 2-position is 10-60% by weight based on the entire plastic fat composition.
  • the present invention is a plastic fat composition containing 30 to 100% by weight of fats and oils, comprising palm-based fats and oils as a main raw material, with a SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2 wt% or less.
  • the present invention relates to a plastic oil / fat composition containing 10-60% by weight of a palm oil-derived liquid oil containing 10-30% by weight of glyceride having palmitic acid bonded to the 2nd position in the whole liquid oil.
  • a preferred embodiment relates to the above-described plastic fat composition, wherein the cloud point of the palm oil-derived liquid oil is 0 to -12 ° C.
  • the S2U content in the palm oil-derived liquid oil used in the plastic fat composition is 1.0 to 10.0% by weight, and the PPO / POP weight ratio is 1.5 to 2%. It is related with the said plastic oil-fat composition of said description which is .5. Moreover, this invention relates to the foodstuff containing the said plastic fat composition.
  • the formation of coarse crystals due to changes over time is less likely to occur compared to conventional palm olein (iodine value 60 to 65), and the oxidation stability of the plastic fat composition is increased.
  • the plastic oil composition is used for products that need to be preserved and stored for a long period of time, such as confectionery, flavor deterioration of the product is suppressed.
  • the plastic oil composition of the present invention is used for kneading, it looks good, smooth and easy to handle, and when it is used for folding, workability such as folding and extending oil and fat into the fabric. Is good.
  • a plastic fat composition having good absorbability can be provided at low cost.
  • the present invention is a plastic fat composition containing a specific amount of fats and oils, mainly composed of palm-based fats and oils, the SU2 / UUU weight ratio is a specific value, the SSS content is not more than a specific amount, and palmitic acid is in the second position.
  • a palm oil-derived liquid oil containing a specific amount of bound glyceride in the whole liquid oil is contained in a specific amount in the whole fat and oil contained in the plastic fat composition.
  • the plastic fat composition of the present invention preferably contains 30 to 100% by weight of fat. If the oil content is less than 30% by weight, a large amount of an emulsifier is required to stabilize the water-in-oil emulsification, and there is a problem of impairing the flavor, for example, producing a gummy taste.
  • the plastic fat composition of the present invention can be used as a raw material fat for margarine, fat spread, and shortening, depending on the fat content, and can be used for the production of margarine, fat spread, and shortening. Simplification is achieved.
  • the palm oil-derived liquid oil used in the plastic fat composition of the present invention will be described below.
  • the fatty acid composition of triglyceride in the present invention is abbreviated as follows.
  • S saturated fatty acid
  • U unsaturated fatty acid
  • SSS trisaturated fatty acid
  • SU2 monosaturated fatty acid diunsaturated fatty acid
  • S2U disaturated fatty acid monounsaturated fatty acid glyceride
  • POP 1,3-dipalmitoyl-2-monooleoyl
  • PPO 1,2-dipalmitoyl-3-monooleoyl glycerol
  • UUU Triunsaturated fatty acid glyceride
  • the method for measuring each triglyceride content is as follows. ⁇ Measurement of each triglyceride content in fats and oils> Each triglyceride content in fats and oils is determined using AOCS Official using HPLC. It was measured according to Method Ce 5c-93 and calculated from the retention time and area ratio of each peak. The analysis conditions are described below. Eluent: Acetonitrile: Acetone (70:30, volume ratio) Flow rate: 0.9 ml / min Column: ODS Column temperature: 36 ° C Detector: Differential refractometer
  • the method for measuring the fatty acid composition in the fat is as follows. ⁇ Measurement of fatty acid composition in fats and oils>
  • the fatty acid composition in the fat / oil can be measured by the FID constant temperature gas chromatograph method.
  • the FID constant temperature gas chromatograph method is a method described in “2.4.2.1 Fatty acid composition” of “Standard oil analysis test method” (issue year: 1996) edited by Japan Oil Chemistry Association.
  • the palm oil-derived liquid oil used in the present invention is made of palm oil and fat, preferably palm oil and fat having an iodine value of 55 or more as a main raw material, has a specific fatty acid composition, and has low liquidity and high oxidation stability.
  • Liquid oil is not particularly limited as long as it is derived from palm oil, and examples thereof include palm refined oil, unrefined crude oil, and fractionated oil and fat such as palm olein obtained by one or more fractionations. .
  • the palm oil-derived liquid oil used in the present invention can be produced by a direct transesterification reaction of palm oil.
  • the saturated fatty acid content in the total constituent fatty acids of the palm oil used as a raw material is preferably 70% by weight or less, more preferably 3 to 70% by weight, still more preferably 3 to 52% by weight, particularly preferably 30 to 52% by weight. If the saturated fatty acid content is more than 70% by weight, there will be too many hard parts during direct transesterification, making it difficult to obtain crystals with good separability, and obtaining a liquid oil with high liquidity in a high yield. It can be difficult. However, if the saturated fatty acid content is less than 3% by weight, the raw material becomes expensive, and the obtained liquid oil becomes expensive, which may increase the cost too much.
  • a preferred embodiment of palm oil is palm olein.
  • the said palm olein in this invention refers to the thing obtained by isolate
  • the content of fats and oils other than palm-based fats and oils is preferably as small as possible, preferably 50% by weight or less, more preferably 30% by weight or less, and still more preferably 10%. % By weight or less, most preferably 0% by weight. If the content of fats and oils other than palm-based fats and oils is more than 50% by weight, the raw material becomes expensive, and the obtained liquid oil becomes expensive, which may increase the cost too much.
  • the SU2 / UUU weight ratio in the finally obtained liquid oil is 1.9 or less, more preferably 1.1 or less, and the SSS content is There is no particular limitation as long as it is an edible oil and fat of 2% by weight or less.
  • Examples of such fats are soybean oil, rapeseed oil, sunflower oil, olive oil, sesame oil, canola oil, cottonseed oil, rice bran oil, safflower oil, palm oil, palm kernel oil, shea oil, monkey fat, iripe Fats, cacao butter, beef tallow, pork fat, milk fat, fractionated fats and oils of these fats, hardened fats and oils, transesterified fats and the like, and the like.
  • soybean oil and rapeseed oil having a saturated fatty acid content lower than 20% by weight in the total constituent fatty acids are preferable because the effects of the present invention are easily exhibited.
  • the saturated fatty acid content in the entire constituent fatty acids of the fats and oils other than the palm-based fats and oils is preferably 70% by weight or less, more preferably 3 to 70% by weight, for the same reason as described for the palm-based fats and oils. More preferably, it is 3 to 52% by weight.
  • the triglyceride composition of the liquid oil preferably has a SU2 / UUU weight ratio of 1.9 or less, and 1.3 Less than is more preferable, and 1.1 or less is more preferable.
  • the SU2 / UUU weight ratio is preferably 1.0 or less, more preferably 0.95 or less, 0.9 or less, 0.8 or less, 0.7 or less, Hereinafter, the smaller the value, 0.5 or less, the more preferable.
  • the lower limit of the SU2 / UUU weight ratio is preferably 0.5 or more, more preferably 0.6 or more, still more preferably 0.65 or more, and 7 or more is particularly preferable.
  • the SU2 / UUU weight ratio is preferably in the range of 1.1 to 0.5, more preferably 1.0 to 0.6, and 0.95 to 0. .65 is more preferable, and 0.9 to 0.7 is most preferable.
  • the SSS content in the palm oil-derived liquid oil used in the present invention is preferably as small as possible, and the SSS content of the liquid oil is preferably 2% by weight or less, and 0.5% by weight or less. Is more preferably 0.3% by weight or less, particularly preferably 0.1% by weight or less, extremely preferably 0.05% by weight or less, and 0.03% by weight or less. Most preferred. When the SSS content of the liquid oil exceeds 2% by weight, the liquid oil may not be used as a substitute for a commonly used liquid oil.
  • the S2U content is preferably 0.5 to 10% by weight in the entire liquid oil.
  • the S2U content is more preferably 1.0 to 10.0% by weight, still more preferably 2.0 to 9.5% by weight, particularly preferably 3.0 to 9.0% by weight, and 4.0 to 8.%. 5% by weight is most preferred.
  • the S2U content is less than 0.5% by weight, due to the property that S2U has a high crystallization rate, crystals are refined when producing a plastic fat composition, and the plastic fat composition has good extensibility. It may not be possible.
  • the UUU content is preferably 12% by weight or more, more preferably 25% by weight or more, further preferably 35% by weight or more, and 40% by weight or more. Most preferred.
  • the palm oil-derived liquid oil used in the present invention is preferable as the content of glyceride having palmitic acid bonded to the 2-position is higher, considering that the crystals generated during refrigeration are finer and less likely to break emulsion and absorbability. .
  • the reason for this is that, in the palm oil-derived liquid oil used in the present invention, the content of POP (1,3-dipalmitoyl-2-oleoylglycerin) is small when the content of glyceride bound with palmitic acid at the 2-position is large. This is because glyceride is structurally low in symmetry, so that it is difficult to form a coarse crystal and the absorbency is considered high.
  • the content of glyceride having palmitic acid bonded to the 2-position is preferably 10 to 30% by weight, more preferably 13 to 30% by weight, and further more preferably 16 to 30% by weight.
  • 16 to 25% by weight is particularly preferable, and 16 to 20% by weight is most preferable.
  • the PPO / POP weight ratio in the palm oil-derived liquid oil used in the present invention is preferably in the range of 1.5 to 2.5 as a value in which coarse crystals are less likely to occur due to changes over time in the plastic fat composition.
  • the range of 1.7 to 2.3 is more preferable, and the range of 1.9 to 2.1 is still more preferable.
  • the content of polyunsaturated fatty acids in the palm oil-derived liquid oil used in the present invention is preferably as low as possible from the viewpoint of oxidation stability, preferably 22% by weight or less, more preferably 21% by weight or less, and 20% by weight or less. More preferred is 19% by weight or less, particularly preferred is 18% by weight or less, and most preferred is 17% by weight or less.
  • the timing for stopping the direct transesterification described later may be advanced or the fractionation temperature may be increased.
  • the cloud point of the palm oil-derived liquid oil used in the present invention is not particularly problematic as long as the liquid oil composition is satisfied, but is preferably 0 to ⁇ 12 ° C., from ⁇ 2 ° C. to ⁇ 12 ° C. is more preferable, ⁇ 2.5 ° C. to ⁇ 12 ° C. is further preferable, and 0 ° C. to ⁇ 10 ° C. is preferable and 0 ° C. to ⁇ 9 ° C. is more preferable from the viewpoints of ease of manufacture and oxidation stability.
  • the palm oil-derived liquid oil used in the present invention preferably has a CDM value of 5 hours or more, more preferably 6 hours or more, and still more preferably 8 hours or more (CDM: Conductometric Determination Method, “Standard Oil Analysis Test”. (See Law 2.5.1.2-1996 CDM test).
  • CDM Conductometric Determination Method, “Standard Oil Analysis Test”. (See Law 2.5.1.2-1996 CDM test).
  • the palm oil-derived liquid oil used in the present invention has a high CDM value as described above, and is excellent in oxidation stability.
  • the first production method is characterized in that the direct transesterification reaction is stopped in order to obtain a composition in which crystals with high separability are likely to be generated during crystallization.
  • the second production method is characterized in that crystals having good separability are produced during the direct transesterification reaction, and thereafter fractionation is performed without dissolving all the crystals.
  • the raw oil and fat is used, and as the SSS / S2U in the fat and oil increases, crystals with high separability are more likely to be generated and the separation efficiency increases, so that the SSS / S2U becomes 0.5 or more.
  • the direct transesterification reaction is performed until the reaction is stopped, and then the hard part is separated and removed.
  • SSS / S2U in the oil / fat is preferably as high as 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, and SSS / S2U in the oil / fat becomes 2.0 or more. It is most preferable to carry out the direct transesterification reaction.
  • the direct transesterification reaction using palm-based fats and oils having a saturated fatty acid content of 70% by weight or less in the whole constituent fatty acids as a main raw material, and at least 31% by weight of the SSS content in the oil / fat composition during the reaction. It is preferable to carry out until the S2U content is 14% by weight or less and the reaction is stopped without exceeding. If the above is satisfied, any number of direct transesterification reactions may be performed. However, considering the cost, it is preferable to stop the transesterification immediately if the above is satisfied.
  • the direct transesterification reaction is performed while flowing the fats and oils by applying force from the outside, and then the solid fat content is separated without making it 1% or less. .
  • the direct transesterification reaction is performed until the SSS / S2U in the fat becomes 0.5 or more.
  • SSS / S2U in the oil / fat is preferably as high as 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, and SSS / S2U in the oil / fat becomes 2.0 or more. It is most preferable to carry out the direct transesterification reaction.
  • the SSS content in the oil and fat composition during the direct transesterification reaction does not exceed 31% by weight, and it is even more preferable that the S2U content be 14% by weight or less.
  • crystallization is performed after the direct transesterification reaction and before the fractionation treatment.
  • the condition for raising the temperature is to prevent the solid fat content from becoming 1% by weight or less. If the temperature is raised until the solid fat content is 1% by weight or less, the heating cost increases, and the effect as a seed crystal may be lost when crystallization is performed.
  • the crystallization rate is preferably 0.01 ° C./min to 5 ° C./min, more preferably 0.1 ° C./min to 2 ° C./min. If the crystallization rate is out of the above range, the separation of the generated crystals may be poor.
  • the direct transesterification reaction in the present invention is a reaction in which transesterification is carried out while generating fat crystals under a catalyst having transesterification ability.
  • the direct transesterification method in the present invention may be either a batch type or a continuous type.
  • the direct transesterification reaction may be cyclic.
  • SSS and SS diglyceride composed of two saturated fatty acids precipitated in the palm oil and fat deposited in the raw material oil tank A adjusted to a specific temperature are precipitated, and the supernatant liquid is obtained.
  • the direct transesterification reaction is performed until the SSS / S2U in the fats and oils in the raw material oil tank A becomes 0.5 or more. More preferably, the SSS / S2U in the fat is 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, most preferably, the SSS / S2U in the fat is 2 Direct transesterification reaction is carried out until it becomes 0 or more.
  • the direct transesterification reaction is carried out until the S2U content is 14% by weight or less without the SSS content in the oil or fat exceeding 31% by weight. Thereafter, the reaction fats and oils in the raw material oil tank A are separated into liquid oil (soft part) and solid fat (hard part).
  • the catalyst used for the direct transesterification reaction is not particularly limited, and any catalyst such as a chemical catalyst or an enzyme catalyst may be used as long as it has transesterification ability.
  • a chemical catalyst potassium sodium alloy is preferable because of its high activity at low temperatures, and sodium methylate is more preferable because of economy and ease of handling.
  • the amount of the chemical catalyst used is not particularly limited, and may be an amount used in ordinary transesterification, but is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the raw oil and fat in view of reaction efficiency and economy. .
  • Sodium methylate is preferably 0.05 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight with respect to 100 parts by weight of the raw oil and fat, from the viewpoint of reaction efficiency and fractionation efficiency, and yield of liquid oil. Part by weight is more preferred.
  • the enzyme catalyst is not particularly limited as long as it is a lipase having transesterification ability, and may be a random transesterase having no positional specificity or a transesterase having 1,3-position specificity. However, depending on the desired amount of palmitic acid at the 2-position, it is preferable to use a random transesterification reaction or a regiospecific transesterification reaction.
  • the amount of the enzyme catalyst used is not particularly limited as long as the transesterification reaction proceeds, but is preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the raw material fats and oils from the viewpoint of reaction efficiency and economy.
  • the direct transesterification reaction temperature is not particularly limited as long as it is a temperature at which the high melting point glyceride is crystallized, but a temperature at which the catalytic activity is the highest is preferable in order to perform the reaction efficiently at the start of the reaction.
  • sodium methylate it is preferably 50 ° C to 120 ° C
  • potassium sodium alloy it is preferably 25 ° C to 270 ° C.
  • an enzyme catalyst it is preferably 50 ° C to 70 ° C.
  • the direct transesterification temperature is preferably 0 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C.
  • the direct transesterification reaction temperature is preferably 0 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C. 1 to 18 hours after the start of the reaction.
  • the final reaction temperature is the direct transesterification reaction temperature.
  • stirring it is preferable to perform stirring at a speed of 1000 rpm or less, more preferably 600 rpm or less, more preferably from the viewpoint of imparting fluidity to fats and oils and producing excellent separable crystals. Preferably, it is 300 rpm to 1 rpm.
  • the final amount of crystals after the direct transesterification reaction is preferably 3% by weight to 60% by weight, more preferably 5% by weight to 40% by weight, based on the entire reaction fat and oil, from the viewpoint of fractionation efficiency.
  • the amount of crystals may be controlled by the reaction time, and the direct transesterification reaction at 0 ° C. to 40 ° C., preferably 10 ° C. to 40 ° C. is used for 1 to 48 hours when a chemical catalyst is used. In this case, it is preferable to carry out for 3 to 120 hours.
  • the method for stopping the direct transesterification reaction is not particularly limited as long as the reaction is stopped, but if it is a chemical catalyst, water or citric acid can be added, and it is acidic from the viewpoint of preventing deterioration of the equipment during fractionation. It is preferable to stop neutralization with the substance.
  • the addition amount of the terminator is preferably from 0.1 to 5 parts by weight, more preferably from 0.2 to 1 part by weight, based on 100 parts by weight of the reaction fat and oil from the viewpoint of fractionation efficiency. When the amount is more than 5 parts by weight, the filtration efficiency at the time of fractionation may deteriorate, and the yield of liquid oil may decrease. On the other hand, when the addition amount of the terminator is less than 0.1 parts by weight, the color tone may deteriorate or the reaction may not stop.
  • the timing for stopping the direct transesterification reaction is preferably after the reaction is performed until the SSS content in the oil and fat composition during the reaction is 31% by weight or less and the S2U content is 14% by weight or less. . More preferably, from the viewpoint of the liquidity of the liquid oil, it is preferable that the reaction is performed until the SU2 / UUU (weight ratio) is 1.9 or less, more preferably 1.1 or less.
  • the reaction is more preferably terminated when the SSS content is between 1% and 31% by weight, particularly preferably between 1% and 25% by weight, very particularly preferably between 1% and 20% by weight, and between 1% and 15% by weight. % Is most preferred.
  • the S2U content in the oil and fat during the reaction decreases as the direct transesterification reaction is continued.
  • the S2U content in the oil and fat during the reaction is 14% by weight. It is preferable to stop after reacting until it becomes less than 10%, more preferably until 10% by weight or less, still more preferably until 7% by weight or less, and most preferably until 5% by weight or less.
  • the method of fractionating liquid oil after the direct transesterification is not limited to solvent fractionation or dry fractionation.
  • solvent fractionation requires equipment costs and running costs due to the use of solvent
  • dry fractionation without using a solvent is preferable.
  • hexane, acetone or the like can be used.
  • the fractionation temperature in the dry fractionation is preferably 0 ° C. to 45 ° C., preferably 30 ° C. or less, more preferably 20 ° C. or less, still more preferably 10 ° C. or less in order to obtain higher liquidity, and also the viewpoint of yield. Including 0 to 10 ° C is most preferable.
  • the above palm oil-derived liquid oil is contained in an amount of 10 to 60% by weight based on the total fat contained in the plastic fat composition. If content of the said palm oil origin liquid oil is less than 10 weight%, the extensibility of a plastic fat composition may worsen. Moreover, when content of the said palm oil origin liquid oil exceeds 60 weight%, the shape retention of a plastic fat composition will become low and workability
  • Oils and fats other than the palm oil-derived liquid oil contained in the plastic oil and fat composition are not particularly limited as long as they are edible, and vegetable oils, animal oils, edible refined processed oils and the like can be used. Specifically, linseed oil, tung oil, safflower oil, pod oil, walnut oil, coconut oil, sunflower oil, high oleic sunflower oil, cottonseed oil, rapeseed oil, high oleic rapeseed oil, soybean oil, pepper oil, kapok oil , Rice bran oil, sesame oil, onion oil, peanut oil, olive oil, coconut oil, tea oil, castor oil, coconut oil, palm oil, palm kernel oil, cacao butter, shea butter, borneo and other vegetable oils, fish oil, whale oil, beef tallow , Animal fats and oils such as pork fat, milk fat and sheep fat, those obtained by transesterification of these fats and oils, hardened fats and oils, fractionated fats and oils, mixed fats and oils, and at least one selected from the group of these
  • the plastic fat composition of the present invention can also contain edible fats and oils such as palm oil-derived liquid oil and other components other than water.
  • Other ingredients include emulsifiers, thickening stabilizers, salty agents such as salt and potassium chloride, acidulants such as acetic acid, lactic acid and gluconic acid, sugars, sugar alcohols, sweeteners such as stevia and aspartame, ⁇ -carotene , Colorants such as caramel and red bean pigment, antioxidants such as tocopherol and tea extract, plant proteins such as wheat protein and soy protein, eggs and various processed eggs, flavors, dairy products, seasonings, pH adjusters, Various food materials and food additives such as food preservatives, fruits, fruit juices, coffee, nut paste, spices, cocoa mass, cocoa powder, cereals, beans, vegetables, meats, and seafood are included.
  • the emulsifier examples include polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polysorbate, condensed ricinolein fatty acid ester, glyceride ester, soybean lecithin, egg yolk lecithin, soybean lysolecithin, egg yolk lysolecithin, enzyme-treated egg yolk, saponin, plant Examples include sterols and milk fat globule membranes.
  • thickening stabilizer examples include guar gum, locust bean gum, carrageenan, gum arabic, alginic acids, pectin, xanthan gum, pullulan, tamarind seed gum, psyllium seed gum, crystalline cellulose, carboxymethylcellulose, methylcellulose, agar, glucomannan, gelatin , Starch, modified starch and the like.
  • the content of components other than the fat and water as described above is preferably 10% by weight or less, more preferably 5% by weight or less in the entire plastic fat composition.
  • the method for producing the plastic fat composition of the present invention is not particularly limited, and can be obtained by heating and dissolving an oil phase containing a palm oil-derived liquid oil, cooling and crystallizing. Specifically, the oil phase is heated and dissolved, and if necessary, an aqueous phase is added and mixed to emulsify. It is desirable to sterilize after emulsification.
  • the sterilization method may be a batch type in a tank, or a continuous type using a plate type heat exchanger or a scraping type heat exchanger. Next, it is cooled and crystallized. Preferably, cooling plasticization is performed. At this time, rapid cooling is preferable to slow cooling.
  • Examples of the equipment to be cooled include a closed continuous tube cooler, for example, a margarine manufacturing machine such as a botator, a combinator, and a perfector, a plate heat exchanger, and the like, and an open-type diacooler and a compressor. Combinations are listed.
  • the emulsified state may be any of a double emulsion type such as a water-in-oil type or an oil-in-water type.
  • the plastic fat composition of the present invention can be suitably used for folding or kneading.
  • the plastic oil / fat composition for folding is used for producing a layered wheat flour expanded food such as croissant, Danish, pie, etc., and is also called margarine for pastry, margarine for roll-in, or the like.
  • the kneading plastic fat composition refers to other than the folding plastic fat composition.
  • Examples of foods using margarine, fat spread, shortening and the like comprising the plastic fat composition of the present invention include breads such as bread, confectionery bread, croissant, Danish, baked confectionery such as cookies, biscuits, cakes, and pies. Is mentioned.
  • the reaction solution was concentrated and then subjected to silica gel column chromatography (Model number: Silica gel 60 (0.063-0.200 mm) for column chromatography, manufactured by Merck Co., Ltd., separated into triglyceride, diglyceride, and monoglyceride components, removing triglyceride and diglyceride components that remain slightly unreacted, and monoglyceride component Was recovered.
  • silica gel column chromatography Model number: Silica gel 60 (0.063-0.200 mm
  • the glyceride content having palmitic acid at the second position was determined based on the retention time and peak area area of the organic phase by gas chromatography (model number: 6890N, manufactured by Agilent).
  • liquid oils obtained by the production methods of Production Examples 1 to 10 were analyzed for fatty acid composition, triglyceride composition, cloud point, iodine value, and CDM value, and the results are summarized in Table 1.
  • the oil and fat temperature after decolorization is 1 ° C / min (set value) until 40 ° C and from 40 ° C to 0.2 ° C / min (set value), and when it reaches 10 ° C, the temperature is maintained. Then, crystallization was performed until 24 hours in total from the start of temperature drop. After crystallization, 3200 parts by weight (yield: 64%) of liquid oil was obtained by filtering using a filter press (pressurized to 3 MPa).
  • Example 1 Production of shortening 1 for kneading
  • 34 parts by weight of the transesterification reaction fat A obtained in Production Example 21, 6 parts by weight of the transesterification reaction fat B obtained in Production Example 22, and a palm oil-derived liquid oil having an iodine value of 84 obtained in Production Example 3 40 parts by weight and refined palm oil at a ratio of 20 parts by weight, and kneaded rapidly by a conventional method to obtain a shortening 1 for kneading.
  • the S2U content of the palm oil-derived liquid oil was 7.7% by weight, and the PPO / POP weight ratio was 2.0.
  • Example 2 Production of Margarine 1 for Folding 48 parts by weight of the transesterification oil C obtained in Production Example 23, 24 parts by weight of a palm oil-derived liquid oil having an iodine value of 89 obtained in Production Example 6, and 8 parts by weight of coconut oil, While adjusting the temperature to 60 ° C., 0.4 parts by weight of lecithin and stearic acid monoglyceride were added respectively, and after heating to 65 ° C. to completely dissolve the stearic acid monoglyceride, 19.2 parts by weight of water was added. Stir and emulsify. This was quenched with a continuous quenching plasticizer, and a margarine 1 for folding was obtained through a molding machine.
  • the palm oil-derived liquid oil had an S2U content of 6.5% by weight and a PPO / POP weight ratio of 2.0.
  • Table 4 summarizes the composition and evaluation results of the margarine for folding in Example 2 and Comparative Examples 3 and 4.
  • Example 3 Preparation of margarine 1 for kneading
  • the palm oil-derived liquid oil having an iodine value of 89 obtained in Production Example 5 was prepared according to the formulation in Table 5.
  • the margarine 1 for kneading was obtained by quenching and kneading by a conventional method.
  • the S2U content contained in the palm oil-derived liquid oil (iodine value 89) was 6.6% by weight, and the PPO / POP weight ratio was 2.0.
  • Example 4 Production of baked confectionery 1
  • baked confectionery was prepared with the composition shown in Table 5.
  • Prepare baked confectionery dough by mixing margarine 1 for kneading, white saccharose, and whole fat condensed milk well with a Hobart mixer (using a beater), adding whole eggs dissolved with ammonium bicarbonate little by little, and stirring to mix evenly After that, it was performed by combining pre-mixed flour, skim milk powder and salt. The dough was once rested in a refrigerator, then stretched with a sheeter and punched out, and baked at 180 ° C. for 11 minutes to obtain baked confectionery 1.
  • Table 5 shows the flavor evaluation of the baked goods obtained in Example 4 and Comparative Examples 7 and 8.
  • margarine with excellent physical properties can be obtained as in the case of using refined rapeseed oil, while using inexpensive palm oil-derived liquid oil, and further excellent in oxidation stability.
  • a baked confectionery with less flavor deterioration can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Edible Oils And Fats (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

 油脂を30~100重量%含有する可塑性油脂組成物であって、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下で、2位にパルミチン酸が結合したグリセライドを液状油全体中10~30重量%含有するパーム油由来液状油を、可塑性油脂組成物の油脂全体中10~60重量%含有する可塑性油脂組成物。

Description

可塑性油脂組成物
 本発明は、パーム油由来液状油を含有し、マーガリン、ショートニング等の製造に適した可塑性油脂組成物に関する。
 通常、マーガリンやショートニングといった可塑性油脂組成物では、硬さなどの物性を調整するために、液状油として大豆油、ナタネ油、パームオレイン(ヨウ素価60~65)が使用されている。しかし、大豆油やナタネ油は酸化安定性が低いため、菓子用途などの長期保存が必要な製品に使用された場合、流通過程において経過日数とともに風味が悪くなりやすいという問題がある。また、原料コストもパーム系油脂に較べて高い。一方、パームオレイン(ヨウ素価60~65)が使用された場合、可塑性油脂組成物を長期保存した際、製品中に粗大結晶が形成されてしまう。粗大結晶が形成されると、見た目が悪い上に、物性的にも脆くなるという問題がある。また、折り込み用の可塑性油脂組成物では、生地に油脂を折り込んで伸展する際のマーガリンの割れの原因となるという問題がある。
 特許文献1には、パーム系油脂にパームステアリンを配合した油脂であって、当該油脂中のPOO(1-モノパルミトイル-2,3-ジオレオイルグリセリン)含量が20重量%以下、POP(1,3-ジパルミトイル-2-モノオレオイルグリセリン)含量が20重量%以下、トリ飽和トリグリセライド含量が7~20重量%であることを特徴とする練り込み用油脂が開示されている。また、特許文献2には、パーム系油脂を多く配合しても粗大結晶等を生じない良好な品質を有する可塑性油脂組成物として、油相中に、油脂A、油脂B及び油脂Cを含有する可塑性油脂組成物であって、前記油脂Aは、ヨウ素価62以下のパーム系油脂であり、前記油脂Bは、該油脂Bを構成する全脂肪酸中に炭素数12~14の飽和脂肪酸を20~60質量%、炭素数16~18の飽和脂肪酸を40~80質量%含有したエステル交換油脂であり、前記油脂Cは、油脂Aを除く融点25℃以下の植物油であり、前記油脂Bの含有量に対する前記油脂Aの含有量の比(油脂A/油脂B)が0.5~5.5であり、前記油相中に炭素数16以上の飽和脂肪酸のみからなるトリ飽和トリグリセリドを4.5~10.5質量%含有する可塑性油脂組成物が開示されている。しかしながら、これらパーム系油脂を用いた従来の可塑性油脂組成物においても、前記した長期保存中の粗大結晶の形成を十分には抑制することができず、更なる改善が求められていた。
 また、β位(2位)にパルミチン酸が結合したトリグリセライドは、α位(1,3位)にパルミチン酸が結合したトリグリセライドにくらべ、はるかに高い吸収性を示すことが知られている(特許文献3)。しかしながら、パ-ム油を原料として液状油を作製する際にろ別される固体脂及び該液状油は、構成脂肪酸としてパルミチン酸は多いものの、その殆どが1,3位に結合しており、高い吸収性を示すものではない。
特開2005-278594号公報 国際公開第2009/008410号公報 特開平6-70786号公報
 本発明は、上記のような従来の可塑性油脂組成物における問題点に鑑み、安価であり、練り込み用可塑性油脂組成物としての使用では見た目も良く、更には、また、滑らかでハンドリング性が良く、折り込み用可塑性油脂組成物としての使用では作業性が良い可塑性油脂組成物を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、可塑性油脂組成物の作製時に使用する液状油として、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であり、更に2位にパルミチン酸が結合したグリセライドを10~30重量%含有するパーム油由来液状油を、可塑性油脂組成物全体に対して10~60重量%の配合量にすることで、粗大結晶が発生せず、酸化安定性の高い可塑性油脂組成物が、安価で作製可能となること見出し、本発明を完成させるに至った。
 即ち、本発明は、油脂を30~100重量%含有する可塑性油脂組成物であって、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下で、2位にパルミチン酸が結合したグリセライドを液状油全体中10~30重量%含有するパーム油由来液状油を、可塑性油脂組成物の油脂全体中10~60重量%含有する可塑性油脂組成物に関する。好ましい実施態様は、前記パーム油由来液状油の曇点が0~-12℃である上記記載の可塑性油脂組成物に関する。更に好ましい実施態様では、前記可塑性油脂組成物に使用されるパーム油由来液状油中の、S2U含量が1.0~10.0重量%であり、且つPPO/POP重量比が1.5~2.5である上記記載の可塑性油脂組成物に関する。また本発明は、上記記載の可塑性油脂組成物を含有する食品に関する。
 本発明のパーム油由来液状油を使用することで、従来のパームオレイン(ヨウ素価60~65)に較べて経日変化による粗大結晶の形成が起こりにくく、可塑性油脂組成物の酸化安定性を高く保ち、菓子などの長期保存が必要な製品に上記可塑性油脂組成物を使用した場合、上記製品の風味劣化が抑制される。更には、本発明の可塑性油脂組成物を、練り込み用として使用すると、見た目も良く、滑らかでハンドリング性が良く、また、折り込み用として使用すると、生地に油脂を折り込んで伸展するなどの作業性が良い。更に、本発明のパーム油由来の液状油を用いることにより、吸収性の良い可塑性油脂組成物を安価に提供することができる。
 本発明は、油脂を特定量含有する可塑性油脂組成物であって、パーム系油脂を主原料とし、SU2/UUU重量比が特定値で且つSSS含量が特定量以下で、2位にパルミチン酸が結合したグリセライドを液状油全体中特定量含有するパーム油由来液状油を、可塑性油脂組成物に含まれる油脂全体中特定量含有する。
 本発明の可塑性油脂組成物は、油脂を30~100重量%含有することが好ましい。油脂の含有量が30重量%未満であると、油中水型の乳化を安定させるために多量の乳化剤が必要となり、えぐ味を生じるなど、風味を損なう問題がある。
 本発明の可塑性油脂組成物は、油脂含量に応じて、それ自体単独でマーガリン、ファットスプレッド、ショートニングの原料油脂として供することが出来、マーガリン、ファットスプレッド、ショートニングの製造において必要とする配合油脂種類の簡素化が図られる。
 本発明の可塑性油脂組成物に用いるパーム油由来液状油について、以下、説明する。
 本発明におけるトリグリセライドの脂肪酸組成は、以下のように略記する。
  S:飽和脂肪酸、U:不飽和脂肪酸
  SSS:トリ飽和脂肪酸グリセライド
  SU2:モノ飽和脂肪酸ジ不飽和脂肪酸グリセライド
  S2U:ジ飽和脂肪酸モノ不飽和脂肪酸グリセライド
  POP:1,3-ジパルミトイル-2-モノオレオイルグリセリン
  PPO:1,2-ジパルミトイル-3-モノオレオイルグリセリン
  UUU:トリ不飽和脂肪酸グリセライド
 また、本発明において、前記各トリグリセライド含量を測定する方法は、以下のとおりである。
 <油脂中の各トリグリセライド含量の測定>
 油脂中の各トリグリセライド含量は、HPLCを用いて、AOCS Official
 Method Ce 5c-93に準拠して測定し、各ピークのリテンションタイムおよびエリア比から算出した。以下に、分析の条件を記す。
   溶離液  :アセトニトリル:アセトン(70:30、体積比)
   流速   :0.9ml/分
   カラム  :ODS
   カラム温度:36℃
   検出器  :示差屈折計
 更に、本発明において、油脂中の脂肪酸組成を測定する方法は、以下のとおりである。<油脂中の脂肪酸組成の測定>
 油脂中の脂肪酸組成の測定は、FID恒温ガスクロマトグラフ法により行うことができる。FID恒温ガスクロマトグラフ法とは、社団法人日本油化学協会編「基準油脂分析試験法」(発行年:1996年)の「2.4.2.1 脂肪酸組成」に記載された方法である。
 本発明で用いるパーム油由来液状油は、パーム系油脂、好ましくはヨウ素価55以上のパーム系油脂を主原料とし、特定の脂肪酸組成を有し、高い液状性と酸化安定性を兼ね備えた安価な液状油である。前記パーム系油脂としては、パーム油由来であれば特に限定はなく、パーム精製油、未精製のクルード油、一回以上の分別によって得られたパームオレインなどの分画油脂、などが例示される。
 本発明で用いるパーム油由来液状油は、パーム系油脂のダイレクトエステル交換反応により製造することができる。
 原料として使用するパーム系油脂の構成脂肪酸全体中の飽和脂肪酸含量は70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%、特に好ましくは30~52重量%である。飽和脂肪酸含量が70重量%より多いと、ダイレクトエステル交換中に硬質部が多くなり過ぎ、分離性の良い結晶を得ることが困難になり、液状性の高い液状油を高収率で得ることが困難な場合がある。しかし、飽和脂肪酸含量が3重量%より少ないと、原料が高価になり、得られた液状油も高価なものになるため、コストが上がりすぎる場合がある。パーム系油脂の好ましい実施態様はパームオレインである。本発明における前記パームオレインとは、パームの果肉から採取した油脂を分離して得られ、ヨウ素価が55以上のものを指す。
 本発明で用いるパーム油由来液状油を製造する際には、原料油脂として、パーム系油脂に加えて、パーム系油脂以外の油脂を更に用いても良い。但し、本発明の効果をより享受するためにはパーム系油脂以外の油脂の含有量は少ない程良く、原料油脂全体中50重量%以下が好ましく、より好ましくは30重量%以下、更に好ましくは10重量%以下、最も好ましくは0重量%である。パーム系油脂以外の油脂の含有量が50重量%より多いと、原料が高価になり、得られた液状油も高価なものになるため、コストが上がりすぎる場合がある。
 パーム油由来液状油の製造に用いるパーム系油脂以外の油脂としては、最終的に得られる液状油中のSU2/UUU重量比が1.9以下、より好ましくは1.1以下、且つSSS含量が2重量%以下となる食用油脂であれば特に限定はない。そのような油脂の例としては、大豆油、ナタネ油、ひまわり油、オリーブ油、ごま油、キャノーラ油、綿実油、こめ油、サフラワー油、やし油、パーム核油、シア油、サル脂、イリッぺ脂、カカオ脂、牛脂、豚脂、乳脂、これらの油脂の分別油脂、硬化油脂、エステル交換油脂などが挙げられる。これらの中でも、構成脂肪酸全体中の飽和脂肪酸含量が20重量%よりも低い大豆油、ナタネ油などが本発明の効果を発現し易いために好ましい。
 前記パーム系油脂以外の油脂の構成脂肪酸全体中の飽和脂肪酸含量は、パーム系油脂について述べたのと同様の理由により、70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%である。
 本発明で用いるパーム油由来液状油は、液状性が高いほど冷蔵時の乳化安定性が高いため、該液状油のトリグリセライド組成は、SU2/UUU重量比が1.9以下が好ましく、1.3未満がより好ましく、更に好ましくは1.1以下である。前記SU2/UUU重量比は、更に高い液状性を求めると、1.0以下がより好ましく、0.95以下が更に好ましく、0.9以下、0.8以下、0.7以下、0.6以下、0.5以下と、小さくなるほど好ましい。一方、製造のし易さと酸化安定性を考慮すると、前記SU2/UUU重量比の下限値は、0.5以上が好ましく、0.6以上がより好ましく、0.65以上が更に好ましく、0.7以上が特に好ましい。液状性と製造のし易さのバランスを考慮すると、前記SU2/UUU重量比は、1.1~0.5の範囲が好ましく、1.0~0.6がより好ましく、0.95~0.65が更に好ましく、0.9~0.7が最も好ましい。
 また、本発明で用いるパーム油由来液状油中におけるSSS含量をできるだけ少なくすることが好ましく、該液状油のSSS含量は、2重量%以下であることが好ましく、0.5重量%以下であることがより好ましく、0.3重量%以下であることが更に好ましく、0.1重量%以下であることが特に好ましく、0.05重量%以下であることが極めて好ましく、0.03重量%以下が最も好ましい。該液状油のSSS含量が2重量%を超えると、通常用いられている液油の代替として使用できない場合がある。
 更に、本発明で用いるパーム油由来液状油の液状性を維持するためには、S2U含量が液状油全体中0.5~10重量%であることが好ましい。S2U含有量は、1.0~10.0重量%がより好ましく、2.0~9.5重量%が更に好ましく、3.0~9.0重量%が特に好ましく、4.0~8.5重量%が最も好ましい。S2U含有量が0.5重量%未満の場合、S2Uの有する結晶化速度が速いという性質により、可塑性油脂組成物を製造する際に結晶が微細化し、良好な伸展性を有する可塑性油脂組成物とならない場合がある。また、S2U含有量が10重量%を超える場合、可塑性油脂組成物の低温保管時における固体脂含有量を増加させてしまうため、可塑性油脂組成物の硬さなどの物性を調整するための効果を果たさない場合がある。また、上記と同様の理由で、UUU含量は12重量%以上であることが好ましく、25重量%以上であることがより好ましく、35重量%以上であることが更に好ましく、40重量%以上であることが最も好ましい。
 本発明で用いるパーム油由来液状油は、冷蔵時に発生する結晶がより微細で、乳化破壊しにくくなる点、および吸収性を考慮すると、2位にパルミチン酸が結合したグリセライドの含量が多いほど好ましい。その理由は、本発明で用いるパーム油由来液状油においては、2位にパルミチン酸が結合したグリセライドの含量が多いと、POP(1,3-ジパルミトイル-2-オレオイルグリセリン)の含量が少なく、構造的にグリセライドの対称性が低いため、粗大結晶が出来にくく、且つ吸収性が高いと考えられるからである。前記パーム油由来液状油の液状性も考慮すると、2位にパルミチン酸が結合したグリセライドの含量は、10~30重量%が好ましく、13~30重量%がより好ましく、16~30重量%が更に好ましく、16~25重量%が特に好ましく、16~20重量%が最も好ましい。また、本発明で用いるパーム油由来液状油中のPPO/POP重量比は、可塑性油脂組成物の経日変化による粗大結晶の発生が起こりにくい値として、1.5~2.5の範囲が好ましく、1.7~2.3の範囲がより好ましく、1.9~2.1の範囲が更に好ましい。
 本発明で用いるパーム油由来液状油中の多価不飽和脂肪酸含量は、酸化安定性の観点からは少ないほど良く、22重量%以下が好ましく、21重量%以下がより好ましく、20重量%以下が更に好ましく、19重量%以下が特に好ましく、18重量%以下が極めて好ましく、17重量%以下が最も好ましい。多価不飽和脂肪酸量を減らすには、後述のダイレクトエステル交換反応を停止するタイミングを早めるか、分別温度を高くすればよい。
 また、本発明で用いるパーム油由来液状油の曇点は、前記液状油組成を満たしていれば特に問題はないが、液状性の観点からは0~-12℃が好ましく、-2℃~-12℃がより好ましく、-2.5℃~-12℃が更に好ましく、製造のし易さと酸化安定性の観点からは0℃~-10℃が好ましく、0℃~-9℃がより好ましい。
 また、本発明に使用するパーム油由来液状油は、CDM値が5時間以上が好ましく、より好ましくは6時間以上、更に好ましくは8時間以上である(CDM:Conductometric Determination Method、「基準油脂分析試験法 2.5.1.2-1996 CDM試験」参照。)。本発明に使用するパーム油由来液状油は、前記のようにCDM値が高く、酸化安定性に優れる。
 本発明で用いるパーム油由来液状油の製造方法としては2つある。第一の製造方法は、晶析時に分離性の高い結晶が発生しやすい組成にするためにダイレクトエステル交換反応をどこで停止させるかに特徴がある。また、第二の製造方法は、ダイレクトエステル交換反応中に分離性の良い結晶を生成させ、その後、その結晶を全て溶解させず分別を行なうことに特徴がある。
 第一の製造方法では、前記原料油脂を用い、油脂中のSSS/S2Uが大きくなるほど分離性の高い結晶が発生しやすくなり、分離効率が上がることから、SSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行い、反応を停止させた後、硬質部を分別除去する。前記油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上と大きくなるほど好ましく、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行うことが最も好ましい。好ましい実施態様では、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料としたダイレクトエステル交換反応を、少なくとも反応中の油脂組成物中のSSS含量が31重量%を超えることなく、S2U含量が14重量%以下になり、反応を停止させるまで行うことが好ましく、その後、分別する。前記を満たせば、ダイレクトエステル交換反応はどれだけ行っても良いが、コストを考え、前記を満たせば直ぐに停止させることが好ましい。
 また、第二の製造方法では、前記した原料油脂を用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行い、その後、固体脂含量を1%以下にすることなく分別する。好ましい実施態様では、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。前記油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上と大きくなるほど好ましく、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行うことが最も好ましい。また、ダイレクトエステル交換反応中の油脂組成中のSSS含量が31重量%を超えないことがより好ましく、且つ、S2U含量が14重量%以下になることが更に好ましい。
 外部から力を加えて油脂を流動させるためには、攪拌する、反応管などにポンプなどの外圧で油脂を通す、高所から自然落下させるなど、各種の方法を採用しうる。具体的には、撹拌するには、攪拌翼を有しているタンクやピンマシンなどの装置を用いることにより、反応させる油脂を流動させる。反応管などにポンプなどの外圧で油脂を通すには、スタティックミキサーなどの手段により、反応させる油脂を流動させることができる。もし、反応開始時や途中で撹拌などによる外部からの力を加えず、油脂を流動させないでダイレクトエステル交換反応を行うと、分離性の悪い結晶が生成し、反応中の油脂が固形状になってしまい、分別が困難となる場合がある。
 前記外部から力を加えて油脂を流動させてダイレクトエステル交換反応を行う第二の製造方法において、更に液状性を高めるためには、ダイレクトエステル交換反応後、分別処理するまでに、晶析することが好ましく、収率を高めるためには昇温することが好ましい。但し、晶析せずに昇温のみする場合は液状性が低くなる場合がある。昇温する場合の条件は、固体脂含量が1重量%以下にならないようにすることである。もし、固体脂含量が1重量%以下になるまで昇温すると、加熱ためのコストが高くなり、また晶析も行う場合に種晶としての効果がなくなる場合がある。晶析速度は0.01℃/分~5℃/分が好ましく、0.1℃/分~2℃/分がより好ましい。晶析速度が前記範囲を外れると、生成する結晶の分離性が悪い場合がある。
 本発明における上記ダイレクトエステル交換反応とは、エステル交換能を有する触媒下で油脂結晶を発生させながらエステル交換を行う反応である。本発明におけるダイレクトエステル交換反応の方法は、バッチ式、連続式を問わない。更に、前記ダイレクトエステル交換反応は、循環式であってもよい。循環式のダイレクトエステル交換反応としては、例えば、特定の温度に調整した原料油タンクAで析出したパーム系油脂中のSSS及びSS(飽和脂肪酸2つで構成されるジグリセライド)を沈降させ、上澄み液をエステル交換装置Bに連続的に移送する工程(1)と、エステル交換装置Bにおいて、移送された上澄み液をリパーゼの至適温度でエステル交換反応し、その後、再び原料油タンクAに移送する工程(2)を繰り返すことで、原料油タンクAにある油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。より好ましくは、前記油脂中のSSS/S2Uが、0.75以上、1.0以上、1.25以上、1.5以上、1.75以上、最も好ましくは前記油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行う。更に好ましくは、油脂中のSSS含量が31重量%を超えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行う。その後、原料油タンクA中の反応油脂を液状油(軟質部)と固体脂(硬質部)とに分別する。
 前記ダイレクトエステル交換反応に使用する触媒は特に限定せず、エステル交換能を有していれば化学触媒、酵素触媒など何を使用しても良い。化学触媒の中でもカリウムナトリウム合金は低温での活性が高いことから好ましく、ナトリウムメチラートは経済性や扱い易さからより好ましい。化学触媒の使用量は特に限定されず、通常のエステル交換で使用される量で良いが、反応効率と経済性からは原料油脂100重量部に対して0.01重量部~1重量部が好ましい。ナトリウムメチラートでは、反応効率と分別効率、液状油の収率の観点から原料油脂100重量部に対して0.05重量部~0.5重量部が好ましく、0.1重量部~0.3重量部がより好ましい。
 酵素触媒は、エステル交換能を有するリパーゼであれば特に限定されず、位置特異性が全くないランダムエステル交換酵素でも、1,3位特異性を有するエステル交換酵素でも良い。但し、所望の2位のパルミチン酸量によっては、ランダムエステル交換反応を行うか、位置特異的エステル交換反応を行うかは、使い分けた方が好ましい。酵素触媒の使用量はエステル交換反応が進行する量であれば良く特に限定されないが、反応効率と経済性から原料油脂100重量部に対して0.5重量部~20重量部が好ましい。
 本発明において、ダイレクトエステル交換反応温度は、高融点グリセライドが結晶化する温度であれば特に限定されないが、反応開始時は効率良く反応を行なうために触媒活性が最も高くなる温度が好ましい。具体的には、ナトリウムメチラートを使用する場合は50℃~120℃が好ましく、カリウムナトリウム合金を使用する場合は25℃~270℃が好ましい。また、酵素触媒を使用する場合は50℃~70℃が好ましい。また、化学触媒を使用する場合は、反応開始から5~20分後に、ダイレクトエステル交換反応温度を0℃~40℃にすることが好ましく、10℃~40℃にすることがより好ましい。酵素触媒を使用する場合は、反応開始から1~18時間後に、ダイレクトエステル交換反応温度を0℃~40℃にすることが好ましく、10℃~40℃にすることがより好ましい。なお、本発明では、最終的な反応温度をダイレクトエステル交換反応温度とする。
 上記ダイレクトエステル交換反応において、攪拌する場合は、油脂に流動性を与え、また分離性の良い結晶を生成させる観点から、1000rpm以下の速度で攪拌を行うことが好ましく、より好ましくは600rpm以下、更に好ましくは300rpm~1rpmである。
 ダイレクトエステル交換反応後の最終的な結晶量は、分別効率の観点からは反応油脂全体中、3重量%~60重量%が好ましく、より好ましくは5重量%~40重量%である。前記結晶量は、反応時間でコントロールすれば良く、前記0℃~40℃、好ましくは10℃~40℃でのダイレクトエステル交換反応を、化学触媒使用の場合は1~48時間、酵素触媒使用の場合は3~120時間行うことが好ましい。
 ダイレクトエステル交換反応を停止する方法は、反応が停止しさえすれば特に問わないが、化学触媒であれば水やクエン酸水の添加などが挙げられ、分別時の機器の劣化を防ぐ観点から酸性物質で中和停止することが好ましい。停止剤の添加量は、分別効率の観点から反応油脂100重量部に対して0.1重量部~5重量部が好ましく、0.2重量部~1重量部がより好ましい。5重量部より多いと、分別時のろ過効率が悪くなる場合があり、液状油の収率が低下する場合がある。一方、停止剤の添加量が0.1重量部より少ないと、色調が悪くなったり、反応が停止しない場合がある。
 ダイレクトエステル交換反応を停止するタイミングは、液状油の収率の観点からは、反応中の油脂組成中のSSS含量が31重量%以下且つS2U含量が14重量%以下になるまで反応した後が好ましい。より好ましくは液状油の液状性の観点から、SU2/UUU(重量比)が1.9以下、更には1.1以下になるまで反応した後であることが好ましい。
 一方、ダイレクトエステル交換反応を続けるほど反応中の油脂中のSSS含量が増えてゆくため、反応系中に固体脂が増えすぎて分別しにくくなる。従って、分別効率の観点からは、反応中の油脂中のSSS含量が50重量%を超えることなく反応を停止することが好ましく、SSS含量が31重量%を超えることなく反応を停止することがより好ましく、SSS含量が1重量%~31重量%の間で反応を停止することが更に好ましく、1重量%~25重量%が特に好ましく、1~20重量%が極めて好ましく、1重量%~15重量%が最も好ましい。
 また、ダイレクトエステル交換反応を続けるほど反応中の油脂中のS2U含量が減ってゆき、反応後の分別で得られる液状油の液状性の観点からは、反応中の油脂中のS2U含量が14重量%以下になるまで反応させてから停止することが好ましく、10重量%以下になるまでがより好ましく、7重量%以下になるまでが更に好ましく、5重量%以下になるまでが最も好ましい。
 上記ダイレクトエステル交換後に液状油を分別する方法は、溶剤分別、乾式分別を問わないが、溶剤分別は溶剤の使用により設備費やランニングコストがかかるため、溶剤を使用しない乾式分別が好ましい。溶剤を使用する場合は、ヘキサン、アセトンなどを用いることができる。乾式分別の際の分別温度は、0℃~45℃が好ましく、より高い液状性を得るために30℃以下が好ましく、20℃以下がより好ましく、10℃以下が更に好ましく、収率の観点も含めると0℃~10℃が最も好ましい。
 本発明の可塑性油脂組成物では、上記のようなパーム油由来液状油を可塑性油脂組成物に含まれる油脂全体中10~60重量%含有する。前記パーム油由来液状油の含有量が10重量%未満では、可塑性油脂組成物の伸展性が悪くなる場合がある。また、前記パーム油由来液状油の含有量が60重量%を超えると、可塑性油脂組成物の保型性が低くなり、作業性が悪くなる場合がある。
 可塑性油脂組成物に含まれるパーム油由来液状油以外の油脂は、食用であれば特に限定されず、植物性油脂、動物性油脂、食用精製加工油脂等を用いることができる。具体的にはあまに油、桐油、サフラワー油、かや油、胡桃油、芥子油、ひまわり油、ハイオレイックひまわり油、綿実油、ナタネ油、ハイオレイックナタネ油、大豆油、辛子油、カポック油、米糠油、胡麻油、玉蜀黍油、落花生油、オリーブ油、椿油、茶油、ひまし油、椰子油、パーム油、パーム核油、カカオ脂、シア脂、ボルネオ脂等の植物油脂や、魚油、鯨油、牛脂、豚脂、乳脂、羊脂等の動物油脂、またこれらの油脂を原料にエステル交換したものや、硬化油脂、分別油脂、混合油脂が挙げられ、これら油脂の群から選択される少なくとも1種を用いることができる。
 本発明の可塑性油脂組成物は、パーム油由来液状油などの食用油脂と水以外の他の成分を含有することもできる。他の成分としては、乳化剤、増粘安定剤、食塩や塩化カリウムなどの塩味剤、酢酸、乳酸、グルコン酸などの酸味料、糖類、糖アルコール類、ステビア、アスパルテームなどの甘味料、β-カロテン、カラメル、紅麹色素などの着色料、トコフェロール、茶抽出物などの酸化防止剤、小麦蛋白や大豆蛋白といった植物蛋白、卵および各種卵加工品、香料、乳製品、調味料、pH調整剤、食品保存料、果実、果汁、コーヒー、ナッツペースト、香辛料、ココアマス、ココアパウダー、穀類、豆類、野菜類、肉類、魚介類などの各種食品素材や食品添加物が挙げられる。
 上記乳化剤としては、例えば、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリソルベート、縮合リシノレイン脂肪酸エステル、グリセリドエステル、大豆レシチン、卵黄レシチン、大豆リゾレシチン、卵黄リゾレシチン、酵素処理卵黄、サポニン、植物ステロール類、乳脂肪球皮膜などが挙げられる。
 上記増粘安定剤としては、グアーガム、ローカストビーンガム、カラギーナン、アラビアガム、アルギン酸類、ペクチン、キサンタンガム、プルラン、タマリンドシードガム、サイリウムシードガム、結晶セルロース、カルボキシメチルセルロース、メチルセルロース、寒天、グルコマンナン、ゼラチン、澱粉、化工澱粉などが挙げられる。
 本発明の可塑性油脂組成物において、上記のような油脂と水以外の成分の含有量は、可塑性油脂組成物全体中で好ましくは10重量%以下、より好ましくは5重量%以下である。
 次に、本発明の可塑性油脂組成物の製造方法を説明する。
 本発明の可塑性油脂組成物の製造方法は特に限定されるものではなく、パーム油由来液状油を含む油相を加熱溶解し、冷却し、結晶化することにより得ることができる。具体的には、上記油相を加熱溶解し、必要により水相を添加混合して乳化する。乳化の後、殺菌処理することが望ましい。殺菌方法は、タンクでのバッチ式であってもよく、またプレート型熱交換機や掻き取り式熱交換機を用いた連続式であってもよい。次に、冷却し、結晶化させる。好ましくは、冷却可塑化する。この際、徐冷却よりも急冷却の方が好ましい。冷却する機器としては、密閉型連続式チューブ冷却機、例えば、ボテーター、コンビネーター、パーフェクターなどのマーガリン製造機やプレート型熱交換機などが挙げられ、また、開放型のダイアクーラーとコンプレクターとの組み合わせが挙げられる。
 本発明の可塑性油脂組成物をマーガリン、ファットスプレッドとして製造する場合、その乳化状態は、油中水型、油中水中油型のような二重乳化型のいずれであってもよい。
 本発明の可塑性油脂組成物は、折り込み用または練り込み用として好適に使用できる。前記折り込み用可塑性油脂組成物としては、クロワッサン、デニッシュ、パイなどの層状小麦粉膨化食品を製造するために使用され、ペーストリー用マーガリン、ロールイン用マーガリンなどとも呼ばれている。また、前記練り込み用可塑性油脂組成物は、折り込み用可塑性油脂組成物以外を指す。
 本発明の可塑性油脂組成物からなるマーガリン、ファットスプレッド、ショートニングなどを用いた食品としては、例えば、食パン、菓子パン、クロワッサン、デニッシュなどのパン類、クッキー、ビスケット、ケーキ、パイなどの焼き菓子類などが挙げられる。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 <脂肪酸組成の測定>
 油脂中の脂肪酸組成は、既述の方法により測定した。
 <油脂中の各トリグリセライド含量の測定>
 油脂中の各トリグリセライド含量は、既述の方法により測定した。
 <2位にパルミチン酸を有するグリセライド含量の測定>
 分析対象の油脂7.5gとエタノール22.5gを混合しノボザイム435(ノボザイムズジャパン社製)を1.2g加えて30℃で4時間反応させ、反応液を濃縮後、シリカゲルカラムクロマトグラフィー(型番:シリカゲル60(0.063-0.200mm)カラムクロマトグラフィー用、メルク社製)によりトリグリセライド、ジグリセライド、モノグリセライドの各成分に分離し、若干未反応で残るトリグリセライド及びジグリセライド成分を除去し、モノグリセライド成分を回収した。そのモノグリセライド0.05gをイソオクタン5mlに溶解し、0.2mol/Lナトリウムメチラート/メタノール溶液1mlを加えて70℃で15分間反応させることによりメチルエステル化し、酢酸により反応液を中和した後に適量の水を加え、有機相をガスクロマトグラフ(型番:6890N、Agilent社製)によるリテンションタイム及びピークエリア面積により2位にパルミチン酸を有するグリセライド含有量を決定した。
 <曇点>
 基準油脂分析試験法「2.2.7-1996 曇り点」に準じて行なった。
 <CDM試験(酸化安定性)>
 基準油脂分析試験法「2.5.1.2-1996 CDM試験」に準じてCDM値を測定した。
 <ヨウ素価>
 基準油脂分析試験法「3.3.3-1996 ヨウ素価(ウィイス-シクロヘキサン法)」に準じて測定を行なった。
 (製造例1;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ18重量%、13.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加え、20分間攪拌後、ろ過することで白土を除き、脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、トリグリセライド組成中のSU2/UUU(重量比)が1.1の液状油を3200重量部(収率:64%)得た。
 (製造例2;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ27重量%、11.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が1.1の液状油を2700重量部(収率:54%)得た。
 (製造例3;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油を3100重量部(収率:62%)得た。
 (製造例4;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、9.4重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油を2640重量部(収率:53%)得た。
 (製造例5;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ23重量%、10.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.7の液状油を3000重量部(収率:60%)得た。
 (製造例6;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、8.0重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.7の液状油を2600重量部(収率:52%)得た。
 (製造例7;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約2時間、22.5℃で約5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ29重量%、3.8重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.5の液状油を2700重量部(収率:54%)得た。
 (製造例8;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を36℃で約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ13重量%、16.5重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が1.3の液状油を3200重量部(収率:64%)得た。
 (製造例9;液状油の作製)
 パーム油(ヨウ素価52)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ33重量%、8.6重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油を1800重量部(収率:36%)得た。
 (製造例10;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約2時間、22.5℃で約5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ37重量%、3.7重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.5の液状油を850重量部(収率:17%)得た。
 製造例1~10の製造方法で得られた液状油について、脂肪酸組成、トリグリセライド組成、曇点、ヨウ素価、CDM値について分析を行い、それらの結果を表1にまとめた。


Figure JPOXMLDOC01-appb-T000001
 (製造例11;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 (製造例12;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、30℃到達後、トリパルミチン粉末(ナカライテスク社製)を25重量部加え、ダイレクトエステル交換反応を4時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、11.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を30重量
部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を320
0重量部(収率:64%)得た。
 (製造例13;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて300rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 (製造例14;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて600rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3150重量部(収率:63%)得た。
 (製造例15;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、38℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ16重量%、13.0重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3850重量部(収率:77%)得た。
 (製造例16;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を16時間行なった後、更に降温し、10℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3100重量部(収率:62%)得た。
 (製造例17;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を16時間行なった後、更に降温し、10℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、30℃まで昇温し、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3350重量部(収率:67%)得た。
 (製造例18;液状油の作製)
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を12時間行なった後、更に降温し、25℃でダイレクトエステル交換反応を20時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ30重量%、8.0重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.17℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を2700重量部(収率:54%)得た。
 (製造例19;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、50℃に降温してリパーゼ(ノボザイムズ社製「Lipozyme TL IM」)を500重量部加え、50℃で4時間保持した後、降温し、36℃でダイレクトエステル交換反応を38時間行なった後、更に降温し、10℃で18時間ダイレクトエステル交換反応を行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、酵素を含んだまま10℃でフィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を2850重量部(収率:57%)得た。
 (製造例20;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加えてから静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで該温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌した後、ろ過することで白土を除いて脱色を行なった。脱色後の油脂温度を、40℃になるまでは1℃/分(設定値)で、40℃からは0.2℃/分(設定値)で降温し、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 上記製造例11~20で得られた液状油の分析値を表2にまとめた。


Figure JPOXMLDOC01-appb-T000002
 (製造例21;エステル交換反応油脂Aの作製)
 それぞれ脱酸、脱色したパーム核低融点画分26重量部と、パーム油67重量部と、パームステアリン5重量部とを混合し、90℃に加熱し、1.3kPa(10torr)の真空条件で20分間、真空脱水した後、0.2重量部のナトリウムメチラートを混合して、90℃、1.3kPa(10torr)の真空条件で20分間、ランダムエステル交換反応を行った。その後、水洗、脱色、脱臭して、エステル交換反応油脂Aを得た。
 (製造例22;エステル交換反応油脂Bの作製)
 それぞれ脱酸、脱色したパーム核低融点画分30重量部と、パームステアリン油47重量部と、水素添加パーム油(融点10℃)23重量部とを混合し、90℃に加熱し、1.3kPa(10torr)の真空条件で20分間、真空脱水した後、0.2重量部のナトリウムメチラートを混合して、90℃、1.3kPa(10torr)の真空条件で20分間、ランダムエステル交換反応を行った。その後、水洗、脱色、脱臭して、エステル交換反応油脂Bを得た。
 (製造例23;エステル交換反応油脂Cの作製)
 それぞれ脱酸、脱色処理した、ラード30重量部、硬化パーム核油(融点40℃)55重量部、極度硬化ナタネ油15重量部を混合した油脂を60℃に温調し、60℃に温調したカラムにつめた1、3位特異的固定化酵素「Lipozyme RM-IM(ノボザイムズジャパン社製)」1gに対して、前記混合油脂を1g/hの流量で流し、反応させ、反応後の油脂を0.5~0.7kPa(4~5torr)、240℃で1時間脱臭し、エステル交換油脂Cを得た。
 (製造例24;エステル交換反応油脂Dの作製)
 それぞれ脱酸、脱色した牛脂90重量部及びハイエルシン完全水素添加ナタネ油10重量部を混合し、90℃になるまで加熱してから1.3kPa(10torr)の真空条件で20分間真空脱水した。その後、ナトリウムメチラートを0.2重量部添加して、90℃、1.3kPa(10torr)の真空条件で20分間、ランダムエステル交換反応を行った。その後、常法に従って、水洗、脱色、脱臭してエステル交換反応油脂Dを得た。
 <練り込み用可塑性油脂組成物(ショートニング)の評価>
 可塑性油脂組成物(ショートニング)を、10℃の恒温槽で6ヶ月間保存した。各々のショートニングについて、1ヶ月目、3ヶ月目および6ヶ月目の試料をスライドガラス上に塗布し、偏光顕微鏡で粗大結晶の有無を観察した。その際の評価基準は以下の通りとした。
 ◎:直径50μm以上の粗大結晶が見られない。
 ○:直径50μm以上の粗大結晶が殆どない。
 △:直径50μm以上の粗大結晶が僅かに見られる。
 ×:直径50μm以上の粗大結晶が多く見られる。
 <折り込み用可塑性油脂組成物(マーガリン)の評価>
 折り込み用可塑性油脂組成物(マーガリン)を使用してクロワッサンを作製した。マーガリンの作業性評価として、クロワッサン作製時にマーガリンが生地の端まで伸びているか、割れなどがないかを観察した。その際の評価基準は以下の通りとした。
 ◎:生地の端まで伸びており、割れなども見られず、非常に良好。
 ○:生地のほぼ端まで伸びており、割れなども殆ど見られず、良好。
 △:生地の端までの伸びがやや足りない、または割れも僅かに見られる。
 ×:生地の端までの伸びが足りない、または多くの割れが見られる。
 <練り込み用可塑性油脂組成物(マーガリン)の評価>
 可塑性油脂組成物(マーガリン)を、25℃の恒温槽で6ヶ月間保存した。各々のマーガリンについて、1ヶ月目、3ヶ月目および6ヶ月目の試料をスライドガラス上に塗布し、偏光顕微鏡で粗大結晶の有無を観察した。その際の評価基準は以下の通りとした。
 ◎:直径50μm以上の粗大結晶が見られない。
 ○:直径50μm以上の粗大結晶が殆どない。
 △:直径50μm以上の粗大結晶が僅かに見られる。
 ×:直径50μm以上の粗大結晶が多く見られる。
 <練り込み用可塑性油脂組成物を使用した焼き菓子の風味試験>
 実施例、比較例で作製した焼き菓子を、40℃の恒温槽で1ヶ月保存した。各々の焼き菓子について、10日目、20日目および30日目に風味試験を行った。その際の評価基準は以下の通りとした。
 ◎:良好。
 ○:やや良好。
 △:劣る。
 ×:極めて劣る。
 (実施例1;練り込み用ショートニング1の作製)
 製造例21で得られたエステル交換反応油脂Aを34重量部、製造例22で得られたエステル交換反応油脂Bを6重量部、製造例3で得られたヨウ素価84のパーム油由来液状油を40重量部、精製パーム油を20重量部の割合で混合し、常法により急冷捏和して練り込み用ショートニング1を得た。前記パーム油由来液状油のS2U含有量は7.7重量%であり、PPO/POP重量比は2.0であった。
 (比較例1;練り込み用ショートニング2の作製)
 精製ナタネ油を40重量部、製造例21で得られたエステル交換反応油脂Aを34重量部、製造例22で得られたエステル交換反応油脂Bを6重量部、精製パーム油を20重量部の割合で混合し、常法により急冷捏和して練り込み用ショートニング2を得た。精製ナタネ油のS2U含量は検出限界以下であり、PPO含量もPOP含量も0重量%であった。
 (比較例2;練り込み用ショートニング3の作製)
 精製ナタネ油を30重量部、ヨウ素価64のパームオレインを25重量部、製造例21で得られたエステル交換反応油脂Aを19重量部、製造例22で得られたエステル交換反応油脂Bを6重量部、精製パーム油を20重量部の割合で混合し、常法により急冷捏和して練り込み用ショートニング3を得た。精製ナタネ油のS2U含量は検出限界以下であり、PPO含量もPOP含量も0重量%であった。また、パームオレインのS2U含量は29.2重量%であり、PPO/POP重量比は0.3であった。
 以上の実施例1および比較例1、2の練り込み用ショートニングの評価結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1の練り込み用ショートニング1および比較例1の練り込み用ショートニング2は、いずれも、6ヶ月間粗大結晶は観察されず、非常に良好な物性を保っていた。これに対し、比較例2の練り込み用ショートニング3は、3ヶ月後には粗大結晶が観察された。この結果から、本発明によれば、安価なパーム油由来液状油を用いて、精製ナタネ油を用いた場合と同様に物性の優れたショートニングが得られることが分かった。
 (実施例2;折り込み用マーガリン1の作製)
 製造例23で得られたエステル交換反応油脂Cを48重量部、製造例6で得られたヨウ素価89のパーム油由来液状油を24重量部、ヤシ油を8重量部の割合で混合し、60℃に温調しながら、レシチンおよびステアリン酸モノグリセリドを各々0.4重量部添加し、65℃まで加温してステアリン酸モノグリセリドを完全に溶解した後、水を19.2重量部添加して攪拌し、乳化させた。これを連続急冷可塑化装置にかけて急冷し、成型器を通して折り込み用マーガリン1を得た。前記パーム油由来液状油のS2U含有量は6.5重量%であり、PPO/POP重量比は2.0であった。
 (比較例3;折り込み用マーガリン2の作製)
 製造例23で得られたエステル交換反応油脂Cを48重量部、精製ナタネ油を24重量部、ヤシ油を8重量部の割合で混合し、60℃に温調しながら、レシチンおよびステアリン酸モノグリセリドを各々0.4重量部添加し、65℃まで加温してステアリン酸モノグリセリドを完全に溶解した後、水を19.2重量部添加して攪拌し、乳化させた。これを連続急冷可塑化装置にかけて急冷し、成型器を通して折り込み用マーガリン2を得た。精製ナタネ油のS2U含量は検出限界以下であり、PPO含量もPOP含量も0重量%であった。
 (比較例4;折り込み用マーガリン3の作製)
 製造例23で得られたエステル交換反応油脂Cを48重量部、ヨウ素価64のパームオレインを24重量部、ヤシ油を8重量部の割合で混合し、60℃に温調しながら、レシチンおよびステアリン酸モノグリセリドを各々0.4重量部添加し、65℃まで加温してステアリン酸モノグリセリドを完全に溶解した後、水を19.2重量部添加して攪拌し、乳化させた。これを連続急冷可塑化装置にかけて急冷し、成型器を通して折り込み用マーガリン3を得た。パームオレインのS2U含量は29.2重量%であり、PPO/POP重量比は0.3であった。
 実施例2および比較例3、4の折り込み用マーガリンの配合および評価結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例2の折り込み用マーガリン1および比較例3の折り込み用マーガリン2は、いずれも、折り込み時の作業性に優れていた。これに対し、比較例4の折り込み用マーガリン3は、折り込み時の作業性が悪かった。この結果から、本発明によれば、安価なパーム油由来液状油を用いて、ナタネ油を用いた場合と同様に作業性に優れた折り込み用マーガリンが得られることが分かった。
 (実施例3;練り込み用マーガリン1の作製)
 製造例24で得られたエステル交換反応油脂D、製造例5で得られたヨウ素価89のパーム油由来液状油、パーム中融点部を油脂原料として用い、表5の配合に従って調合油を作製し、常法により急冷捏和して練り込み用マーガリン1を得た。前記パーム油由来液状油(ヨウ素価89)に含まれるS2U含量は6.6重量%であり、PPO/POP重量比は2.0であった。
 (比較例5;練り込み用マーガリン2の作製)
 製造例24で得られたエステル交換反応油脂D、精製ナタネ油、パーム中融点部を油脂原料として用い、表5の配合に従って調合油を作製し、常法により急冷捏和して練り込み用マーガリン2を得た。精製ナタネ油のS2U含量は検出限界以下であり、PPO含量もPOP含量も0重量%であった。
 (比較例6;練り込み用マーガリン3の作製)
 製造例24で得られたエステル交換反応油脂D、パームオレイン(ヨウ素価64)、パーム中融点部を油脂原料として用い、表5の配合に従って調合油を作製し、常法により急冷捏和して練り込み用マーガリン3を得た。前記パームオレイン(ヨウ素価64)に含まれるS2U含量は29.2重量%であり、PPO/POP重量比は0.3であった。パームオレインのS2U含量は29.2重量%であり、PPO/POP重量比は0.3であった。
 実施例3および比較例5、6の練り込み用マーガリン1~3を偏光顕微鏡で結晶観察し、結果を表5にまとめた。
 (実施例4;焼き菓子1の作製)
 実施例3で得られた練り込み用マーガリン1を用いて、表5に示した配合で焼き菓子を作製した。焼き菓子生地の調製は、練り込み用マーガリン1、上白糖、全脂練乳をホバートミキサー(ビーター使用)でよく摺り合わせ、重炭酸アンモニウムを溶解した全卵を少しずつ添加し、攪拌混合で均一にした後、予め混合しておいた薄力粉、脱脂粉乳及び食塩を合わせることにより行った。この生地を冷蔵庫で一旦休ませてからシーターで延ばして型抜きし、180℃で11分間焼成を行い、焼き菓子1を得た。
 (比較例7;焼き菓子2の作製)
 比較例5で得られた練り込み用マーガリン2を用いて、表5に示した配合で焼き菓子を作製した。焼き菓子生地の調製は、練り込み用マーガリン2、上白糖、全脂練乳をホバートミキサー(ビーター使用)でよく摺り合わせ、重炭酸アンモニウムを溶解した全卵を少しずつ添加し、攪拌混合で均一にした後、予め混合しておいた薄力粉、脱脂粉乳及び食塩を合わせることにより行った。この生地を冷蔵庫で一旦休ませてからシーターで延ばして型抜きし、180℃で11分間焼成を行い、焼き菓子2を得た。
 (比較例8;焼き菓子3の作製)
 比較例6で得られた練り込み用マーガリン3を用いて、表5に示した配合で焼き菓子を作製した。焼き菓子生地の調製は、菓子用マーガリン、上白糖、全脂練乳をホバートミキサー(ビーター使用)でよく摺り合わせ、重炭酸アンモニウムを溶解した全卵を少しずつ添加し、攪拌混合で均一にした後、予め混合しておいた薄力粉、脱脂粉乳及び食塩を合わせることにより行った。この生地を冷蔵庫で一旦休ませてからシーターで延ばして型抜きし、180℃で11分間焼成を行い、焼き菓子3を得た。
 実施例4および比較例7、8で得られた焼き菓子の風味評価を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例3の練り込み用マーガリン1及び比較例5の練り込み用マーガリン2は、いずれも、6ヶ月間粗大結晶は観察されず、非常に良好な物性を保っていた。これに対し、比較例6の練り込み用マーガリン3は3ヵ月後には粗大結晶が観察された。また、表5に示すように実施例4の焼き菓子1及び比較例8の焼き菓子3は、30日後にも良好な風味を保っていた。これに対し、比較例7の焼き菓子2は20日後に風味の劣化が見られた。これらの結果から、本発明によれば、安価なパーム油由来液状油を用いながらも、精製ナタネ油を用いた場合と同様に物性の優れたマーガリンが得られ、更には、酸化安定性に優れ、風味劣化の起こりにくい焼き菓子が得られることが分かった。

Claims (4)

  1.  油脂を30~100重量%含有する可塑性油脂組成物であって、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下で、2位にパルミチン酸が結合したグリセライドを液状油全体中10~30重量%含有するパーム油由来液状油を、可塑性油脂組成物の油脂全体中10~60重量%含有する可塑性油脂組成物。
  2.  前記パーム油由来液状油の曇点が0~-12℃である請求項1記載の可塑性油脂組成物。
  3.  前記パーム油由来液状油中の、S2U含量が1.0~10.0重量%であり、且つPPO/POP重量比が1.5~2.5である請求項1または2に記載の可塑性油脂組成物。
  4.  請求項1~3のいずれかに記載の可塑性油脂組成物を含有する食品。
PCT/JP2012/077800 2011-10-26 2012-10-26 可塑性油脂組成物 WO2013062113A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011235523A JP2015006132A (ja) 2011-10-26 2011-10-26 可塑性油脂組成物
JP2011-235523 2011-10-26

Publications (1)

Publication Number Publication Date
WO2013062113A1 true WO2013062113A1 (ja) 2013-05-02

Family

ID=48167937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077800 WO2013062113A1 (ja) 2011-10-26 2012-10-26 可塑性油脂組成物

Country Status (2)

Country Link
JP (1) JP2015006132A (ja)
WO (1) WO2013062113A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012829A (ja) * 2013-07-05 2015-01-22 株式会社Adeka 可塑性油脂組成物
WO2015099160A1 (ja) * 2013-12-26 2015-07-02 ミヨシ油脂株式会社 油脂組成物
JP2015142569A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 練り込み用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP2015142568A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 バタークリーム用油脂組成物とそれを用いたバタークリーム
JP2015142570A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 層状食品用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP2015142567A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 スプレッド用油脂組成物とそれを用いたスプレッド

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214743A (ja) * 1985-07-09 1987-01-23 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ ハ−ドストツクおよびハ−ドストツク含有脂肪ブレンドならびにそれらの製造法
JPH0686636A (ja) * 1992-09-08 1994-03-29 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH07135901A (ja) * 1993-11-18 1995-05-30 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JP2005278594A (ja) * 2004-03-31 2005-10-13 Fuji Oil Co Ltd 練り込み用油脂及びその製造法
JP2007177100A (ja) * 2005-12-28 2007-07-12 Fuji Oil Co Ltd 可塑性油脂組成物(ハードストック)及びこれを用いた可塑性油脂食品の製造法
WO2009008410A1 (ja) * 2007-07-10 2009-01-15 The Nisshin Oillio Group, Ltd. 可塑性油脂組成物
WO2011132734A1 (ja) * 2010-04-22 2011-10-27 株式会社カネカ 液状油脂とその製造法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214743A (ja) * 1985-07-09 1987-01-23 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ ハ−ドストツクおよびハ−ドストツク含有脂肪ブレンドならびにそれらの製造法
JPH0686636A (ja) * 1992-09-08 1994-03-29 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH07135901A (ja) * 1993-11-18 1995-05-30 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JP2005278594A (ja) * 2004-03-31 2005-10-13 Fuji Oil Co Ltd 練り込み用油脂及びその製造法
JP2007177100A (ja) * 2005-12-28 2007-07-12 Fuji Oil Co Ltd 可塑性油脂組成物(ハードストック)及びこれを用いた可塑性油脂食品の製造法
WO2009008410A1 (ja) * 2007-07-10 2009-01-15 The Nisshin Oillio Group, Ltd. 可塑性油脂組成物
WO2011132734A1 (ja) * 2010-04-22 2011-10-27 株式会社カネカ 液状油脂とその製造法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012829A (ja) * 2013-07-05 2015-01-22 株式会社Adeka 可塑性油脂組成物
WO2015099160A1 (ja) * 2013-12-26 2015-07-02 ミヨシ油脂株式会社 油脂組成物
JP2015142569A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 練り込み用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP2015142568A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 バタークリーム用油脂組成物とそれを用いたバタークリーム
JP2015142570A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 層状食品用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP2015142567A (ja) * 2013-12-26 2015-08-06 ミヨシ油脂株式会社 スプレッド用油脂組成物とそれを用いたスプレッド
CN105025728A (zh) * 2013-12-26 2015-11-04 三吉油脂株式会社 油脂组合物
CN105025728B (zh) * 2013-12-26 2018-08-28 三吉油脂株式会社 油脂组合物
JP2019187437A (ja) * 2013-12-26 2019-10-31 ミヨシ油脂株式会社 バタークリーム用油脂組成物とそれを用いたバタークリーム
JP2019187435A (ja) * 2013-12-26 2019-10-31 ミヨシ油脂株式会社 層状食品用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP2019187436A (ja) * 2013-12-26 2019-10-31 ミヨシ油脂株式会社 スプレッド用油脂組成物とそれを用いたスプレッド
JP2019187434A (ja) * 2013-12-26 2019-10-31 ミヨシ油脂株式会社 練り込み用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP7180956B2 (ja) 2013-12-26 2022-11-30 ミヨシ油脂株式会社 層状食品用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP7180955B2 (ja) 2013-12-26 2022-11-30 ミヨシ油脂株式会社 練り込み用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品

Also Published As

Publication number Publication date
JP2015006132A (ja) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5649962B2 (ja) 可塑性油脂組成物
JP4362548B2 (ja) 可塑性油脂組成物
JP4917523B2 (ja) ロールイン用可塑性油脂組成物及び層状小麦粉膨化食品
JP5241284B2 (ja) サンドクリーム用油脂組成物
JP4426643B2 (ja) 硬質脂肪
JP6172141B2 (ja) ロールインマーガリン
JP2005350660A (ja) 可塑性油脂組成物
WO2013062113A1 (ja) 可塑性油脂組成物
JP6831791B2 (ja) ロールインマーガリン
JP2017169588A (ja) ロールイン用可塑性油脂組成物及び層状小麦粉膨化食品
JP2018019619A (ja) 可塑性油脂組成物
JP4964863B2 (ja) 焼成菓子
WO2016159242A1 (ja) 新規なロールインマーガリン
JP6157815B2 (ja) ロールイン用可塑性油脂組成物及び層状小麦粉膨化食品
JP7226925B2 (ja) 油脂を連続相とする油脂組成物
JP7203555B2 (ja) 油脂組成物
JP6246787B2 (ja) 乳化油脂組成物
JP5153038B2 (ja) 可塑性油脂組成物
WO2013062111A1 (ja) 酸性水中油型乳化油脂組成物
JP6441625B2 (ja) 層状食品用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP2018191595A (ja) 折り込み用油脂組成物
JP5729731B2 (ja) サンドクリーム用油脂組成物
JP2020080862A (ja) 折り込み用油脂組成物
JP2003000136A (ja) パフ性改良剤及びロールイン用油脂組成物
JP7376226B2 (ja) 焼菓子用油脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP