WO2013061419A1 - 全熱交換素子およびその製造方法 - Google Patents

全熱交換素子およびその製造方法 Download PDF

Info

Publication number
WO2013061419A1
WO2013061419A1 PCT/JP2011/074666 JP2011074666W WO2013061419A1 WO 2013061419 A1 WO2013061419 A1 WO 2013061419A1 JP 2011074666 W JP2011074666 W JP 2011074666W WO 2013061419 A1 WO2013061419 A1 WO 2013061419A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition member
heat exchange
heat
exchange element
flow path
Prior art date
Application number
PCT/JP2011/074666
Other languages
English (en)
French (fr)
Inventor
勝 高田
鴇崎 晋也
一 外川
裕一 石丸
今井 孝典
秀元 荒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/347,469 priority Critical patent/US9664457B2/en
Priority to CN201180074354.5A priority patent/CN103890528B/zh
Priority to KR1020147009527A priority patent/KR101574036B1/ko
Priority to PCT/JP2011/074666 priority patent/WO2013061419A1/ja
Priority to JP2013540543A priority patent/JP5748863B2/ja
Publication of WO2013061419A1 publication Critical patent/WO2013061419A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a heat exchange element having a laminated structure that is provided in an air conditioner and performs heat exchange between fluids, and a method for manufacturing the same.
  • total heat exchange element for example, those disclosed in Patent Documents 1 and 2 are widely used. These total heat exchange elements have a partition member having heat conductivity and moisture permeability, and a spacing member that is sandwiched between the partition members and holds the spacing between the partition members.
  • the total heat exchange element has a basic structure in which these partition members and spacing members are stacked in a plurality of layers.
  • the partition member is, for example, a rectangular flat plate.
  • the spacing member is a corrugated plate formed into a sawtooth, sinusoidal, or substantially triangular cross-sectional waveform whose projection plane coincides with the partition member.
  • the partition member and the spacing member are overlapped so that the waveform directions of the spacing members that sandwich the partition member are alternately 90 degrees or an angle close thereto.
  • two systems of fluid passages that is, a fluid passage for passing the primary airflow and a fluid passage for passing the secondary airflow, are alternately configured between the layers of the total heat exchange element. That is, the primary airflow passes along the one surface side of the partition member and the secondary airflow passes along the other surface side.
  • the characteristics required for the partition member of the total heat exchange element are low air permeability between the fluid flow paths through which the primary air flow and the secondary air flow pass, and high heat transfer and moisture permeability. This is to prevent the mixing of fresh outside air sucked indoors from the outside and dirty air exhausted indoors to the outside when using the total heat exchanger, and between the primary air flow and the secondary air flow. This is so that latent heat can be exchanged simultaneously with sensible heat. Further, it is also required that the ventilation resistance (also referred to as pressure loss or static pressure loss) when each airflow passes is as low as possible. This is to reduce the power consumption of the blower (fan, blower, etc.) that allows the airflow to pass for ventilation and to reduce the operating noise of the total heat exchanger.
  • Patent Document 3 discloses a configuration in which injection molding is applied and a partition member is insert-molded with a resin. With such a configuration, the air flow resistance is reduced by reducing the area ratio of the spacing member (resin portion) to the partition member to ensure heat exchange efficiency and making the flow passage cross section rectangular.
  • Such a method by injection molding may cause the partition member to bend under a high humidity condition, the height of the flow path becomes uneven on the primary air flow side and the secondary air flow side, and the ventilation resistance may be increased. Especially when the flow path height is small, the ventilation resistance tends to be high, and as a means to improve heat exchange efficiency, it is an obstacle to increase the heat transfer area of the heat exchange element by reducing the flow path height. There was a case.
  • Patent Document 4 uses a moisture-permeable polyethylene film having high crystallinity and good dimensional stability even under high-humidity conditions, and paper mixed with the same resin as a partition member, and the problem of an increase in channel resistance under high-humidity conditions. We are trying to solve it. However, when a moisture-permeable polyethylene film is used, there is a problem that warping and shrinkage are likely to occur after the molded product is taken out. Therefore, when the resin of the spacing member is deformed and contracted after releasing, the insert-molded partition member and the spacing member may bend and the ventilation resistance may be increased.
  • Patent Document 5 an inorganic filler such as glass fiber or carbon fiber is added to a resin to be molded, or foam molding is performed in which a high-pressure fluid or a supercritical fluid is finely foamed in a resin using a physical foaming agent. Used. Further, Patent Document 6 proposes a method in which the partition member is bonded after the interval holding member is first injection molded and sufficiently contracted.
  • Patent Document 5 can suppress warping and shrinkage after taking out a molded product when they are added to the resin, the molding cycle is slowed down due to the decrease in fluidity of the molten resin, and mass productivity is reduced. There was a problem to do. Further, although the amount of resin used is reduced, there is a problem that the material cost is increased due to the additive. Moreover, since the contact surface of resin of a partition member and a space
  • Patent Document 6 the one disclosed in Patent Document 6 is that when the partition member and the interval holding member are bonded together, the partition member must be sufficiently stretched to be bonded or welded, and the bonding process becomes complicated. There was a problem that productivity was lowered.
  • the present invention has been made in view of the above, and can be molded with simple equipment, and by reducing the deflection of the partition member immediately after injection molding by a simple method as much as possible, reducing the draft resistance, heat
  • An object of the present invention is to obtain a heat exchange element capable of improving exchange efficiency and productivity.
  • the present invention provides a flow path formed by providing spacing members on both sides of a sheet-like partition member, and forming a flow path on one side of the partition member.
  • a total heat exchange element that exchanges heat between an airflow flowing through a path and an airflow flowing through a flow path formed on the other side via a partition member, wherein the spacing member is partitioned using a resin
  • the partition member is integrally formed with the member, and the partition member includes a functional layer having heat conductivity, moisture permeability, and gas shielding properties, and a heat shrink layer that shrinks at a predetermined temperature or more.
  • the total heat exchange element according to the present invention can be molded with simple equipment, and by reducing the deflection of the partition member immediately after injection molding by a simple method as much as possible, reducing the ventilation resistance, improving the heat exchange efficiency, In addition, the productivity can be improved.
  • FIG. 1 is a perspective view of a total heat exchange element according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of the partition member.
  • FIG. 3 is an external perspective view of a unit component member including a spacing member and a partition member.
  • 4A is a cross-sectional view taken along the line AA shown in FIG. 3 and shows a state immediately after forming the spacing member and releasing the mold.
  • 4B is a cross-sectional view taken along the line AA shown in FIG. 3 and shows a state in which the partition member is heated after the mold is released.
  • FIG. 5 is a diagram for explaining a heating member that heats the partition member.
  • FIG. 6 is a flowchart showing a manufacturing procedure of the total heat exchange element according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing a manufacturing procedure of the total heat exchange element according to the second embodiment of the present invention.
  • FIG. 1 is a perspective view of a total heat exchange element according to the first embodiment of the present invention.
  • the total heat exchange element 100 includes a partition member 2 and a spacing member 3.
  • the interval holding member 3 that holds the partition member 2 at a predetermined interval and the unit constituent members that are composed of the partition member 2 are alternately stacked so that the arrangement direction of the interval holding member 3 is different by 90 degrees. Configured.
  • each layer sandwiched between the partition members 2 serves as a passage through which air passes, and a passage through which a primary airflow passes and a passage through which a secondary airflow passes are alternately configured for each layer. . Between the primary airflow and the secondary airflow, exchange of temperature and humidity is performed via the partition member 2.
  • the partition member 2 is configured by bonding a highly air-permeable layer (heat-shrinkable layer) that contracts at a temperature higher than a certain temperature (functional layer) having heat conductivity, moisture permeability, and gas shielding properties.
  • heat-shrinkable layer that contracts at a temperature higher than a certain temperature (functional layer) having heat conductivity, moisture permeability, and gas shielding properties.
  • the partition member 2 is a medium that transmits heat and moisture when the temperature and humidity are exchanged between the primary airflow and the secondary airflow.
  • the primary airflow passes along the one surface side of the partition member 2 and the secondary airflow passes along the other surface side by the configuration described above.
  • the heat (or water vapor) in the air flow on the high temperature side (or the high humidity side in the case of moisture) is converted into the temperature difference (or water vapor partial pressure difference) via the partition member 2.
  • the low temperature side or low humidity side
  • the water vapor in the air stream on the high humidity side is transferred to the low humidity side through the partition member 2 using the water vapor partial pressure difference. Therefore, it is desirable that the partition member 2 is as thin as possible and has a high heat transfer rate and humidity transfer rate.
  • the partition member 2 is required to prevent mixing of the primary airflow and the secondary airflow, and to suppress the transfer of carbon dioxide, odor components, etc. between the airflows.
  • a material having air permeability resistance JIS P8628 of 200 sec / 100 cc or more as a partition member and having moisture permeability is preferable.
  • a water-insoluble hydrophilic polymer thin film is used for the partition member 2 in order to satisfy these conditions.
  • more specific materials include polyurethane resins containing moisture-permeable oxyethylene groups, polyester resins containing oxyethylene groups, sulfonic acid groups, amino groups, hydroxyl groups, and carboxyl groups at the terminals or side chains. Resin or the like is used.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the partition member 2.
  • the partition member 2 is configured by bonding a heat shrinkable layer 2 a to the functional layer 2 b by a process such as adhesion or heat fusion.
  • a film having normal heat transfer / moisture permeability and gas shielding is used for the functional layer 2b.
  • a porous film having excellent tensile strength and dimensional stability is used for the heat shrink layer 2a.
  • the partition member under the high humidity condition is supported by supporting the moisture permeable film at as small intervals as possible while maintaining the moisture permeability of the partition member 2 as much as possible. Can be prevented and air flow resistance can be reduced.
  • a material having a function of contracting by heating in addition to the above-described function as the porous film is used as the heat-shrinkable layer 2a.
  • a non-woven fabric containing a heat-shrinkable resin for example, a cyclic olefin resin or a polyolefin resin
  • latent crimpable fibers in a woven fabric or a non-woven fabric can be used.
  • the latent crimpable fiber is a fiber having a property that a helical crimp is developed and contracted by heating at a predetermined temperature.
  • it is composed of an eccentric core-sheath type composite fiber or a side-by-side type composite fiber containing two types of thermoplastic polymer materials having different shrinkage rates as components. Examples thereof include those described in JP-A-9-296325 and Japanese Patent No. 2759331.
  • the heat-shrinkable non-woven fabric may be a non-woven fabric containing other fibers such as rayon, cotton, hydrophilic acrylic fiber and the like together with latent crimpable fibers.
  • the moisture-permeable material (functional layer 2b) is subject to expansion and contraction of the material itself due to environmental conditions (humidity, etc.). It is possible to improve the dimensional stability against changes. Further, when the partition member 2 is heated, the partition member 2 as a whole contracts by being pulled by the contraction of the heat shrink layer 2a.
  • the compressive strength in the plane direction of the functional layer 2b is sufficiently weaker than the compressive strength of the heat shrinkable layer 2a so as not to hinder the heat shrinkable layer 2a from shrinking.
  • the strength in the plane direction of the sheet-like member such as the heat shrink layer 2a and the functional layer 2b greatly depends on the thickness. Therefore, it is desirable that the functional layer 2b is sufficiently thinner than the heat-shrinkable layer 2a (as a guide, the film thickness of the functional layer 2b is less than half the film thickness of the heat-shrinkable layer 2a) and the material strength is also low.
  • FIG. 3 is an external perspective view of a unit component member composed of the spacing member 3 and the partition member 2.
  • interval holding member 3 has the shielding rib 3a and the space
  • the shielding rib 3a has both ends in order to prevent air leakage from two sides (hereinafter referred to as both ends) perpendicular to the direction in which the airflow flows on the surface among the four sides in the plan view of the partition member 2.
  • a plurality of the spacing ribs 3b are provided between the shielding ribs 3a at a predetermined spacing in parallel with the shielding ribs 3a.
  • the shielding rib 3 a and the spacing rib 3 b as the spacing member 3 are formed on both surfaces of the partition member 2. Further, the shielding rib 3a and the spacing rib 3b formed on the one surface side of the partition member 2 are provided so as to be orthogonal to each other on the one surface side and the other surface side of the partition member 2.
  • the spacing member 3 is formed using a resin.
  • the spacing member 3 is manufactured by integrally molding the partition member 2 and the spacing member 3.
  • the spacing member 3 is directly resin-molded with respect to the partition member 2.
  • the partition member 2 is manufactured by putting the partition member 2 into a mold in which the shape of the shielding rib 3a and the spacing rib 3b is carved and molding it before resin molding.
  • maintains the space
  • the shielding rib 3a and the spacing rib 3b formed on the one surface side of the partition member 2 may be provided so as to cross each other on the one surface side and the other surface side of the partition member 2.
  • the resin used for the spacing member 3 is polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), acrylonitrile-styrene (AS), polycarbonate (PC), and other general resins in a desired shape. Any material that can be molded may be used.
  • the mold temperature does not exceed the heat shrink temperature of the heat shrink layer 2a of the partition plate. If the mold temperature exceeds the heat shrinkage temperature, the heat shrink layer 2a of the partition member shrinks before shrinkage after the molding of the spacing member 3 starts, and the aim of the present invention cannot be achieved. In other words, a material having a heat shrinkage starting temperature higher than the mold temperature at the time of molding the spacing member 3 is used for the heat shrinkable layer 2a.
  • a flame retardant may be added to these resins to make them flame retardant, or an inorganic component may be added to improve dimensional stability and strength.
  • a foaming agent physical foaming agent / chemical foaming agent may be added to foam the resin to reduce the amount of resin.
  • FIG. 4A is a cross-sectional view taken along the line AA shown in FIG. 3, and shows a state immediately after the spacing member 3 is formed and the mold is released.
  • 4B is a cross-sectional view taken along the line AA shown in FIG. 3 and shows a state in which the partition member 2 is heated after the mold is released.
  • the partition member 2 may bend on its surface in the state immediately after the spacing member 3 is molded and the mold is released. Accordingly, the partition member 2 is heated to contract the heat-shrinkable layer 2a, thereby eliminating the deflection that has occurred immediately after the release, as shown in FIG.
  • the heating method for the partition member 2 is not particularly limited as long as it is a method capable of heating at a temperature higher than the heat shrinkage temperature set for each substance constituting the heat shrinkable layer 2a.
  • the interval holding member 3 is more than the partition member 2 when the heat shrinkage temperature of the heat shrinkable layer 2 a is equal to or higher than the softening temperature of the resin constituting the interval holding member 3. May soften first.
  • the spacing member 3 may be deformed by the contraction force when the partition member 2 contracts. Therefore, it is desirable that the heat shrink temperature of the heat shrink layer 2 a of the partition member 2 is equal to or lower than the softening temperature of the spacing member 3.
  • FIG. 5 is a view for explaining a heating member for heating the partition member 2.
  • the heating member 50 shown in FIG. 5 is a metal plate in which irregularities are formed in accordance with the shape of the spacing member 3.
  • the unevenness of the heating member 50 is such that when the heating member 50 is pressed against the partition member 2, only the tip 50 a of the convex portion contacts the partition member 2, and the heating member 50 hardly contacts the spacing member 3. It has become.
  • the partition member can be heated without heating the spacing member 3. Therefore, if the partition member 2 can be heated without heating the spacing member 3 as in the heating member 50, the heat shrink temperature of the heat shrink layer 2 a is equal to or higher than the softening temperature of the resin constituting the spacing member 3. Even if it exists, the deformation
  • the heat shrinkage rate of the heat shrinkable layer 2a is equal to or higher than the heat shrinkage rate after molding of the resin used as the spacing member 3.
  • the heat shrinkage rate of the heat shrinkable layer 2a is small, it may not be possible to obtain the amount of shrinkage necessary to eliminate the deflection, and it may be difficult to eliminate the deflection of the partition member 2.
  • the heat shrinkage rate of the heat shrinkable layer 2a is large, it becomes easy to obtain a shrinkage amount necessary for eliminating the deflection.
  • the amount of shrinkage can be adjusted by adjusting the heating time to the heat-shrinkable layer 2a, so that the deflection is eliminated more completely. Is possible.
  • FIG. 6 is a flowchart showing a manufacturing procedure of the total heat exchange element 100 according to the first embodiment of the present invention.
  • the partition member 2 and the spacing member 3 are integrally formed to produce a unit component member (step S1).
  • the partition member 2 is heated using the heating member 50 for each unit constituent member to eliminate the deflection (step S2).
  • the unit constituent members are stacked and fixed by adhesion or heat fusion (step S3). Thereby, the total heat exchange element 100 as shown in FIG. 1 is manufactured.
  • the unit constituent members are stacked so that the direction in which the spacing members extend (direction of the fluid passage) differs 90 degrees (orthogonal) for each layer.
  • the interval holding member 3 is integrally formed on both surfaces of the partition member 2 to form a unit component member. Therefore, in step S3, the interval holding member 3 is formed.
  • the partition members 2 and the unit constituent members that are not present are stacked alternately.
  • the interval holding member 3 is integrally formed on only one side of the partition member 2 to form a unit constituent member, only the unit constituent members may be laminated.
  • the unit component member When the unit component member is heated and contracted too much, even if the spacing member 3 is not softened by heat, the unit component member is elastically deformed and warped. When the unit constituent member is warped, the laminated adhesion surface is not flat, and a part of the laminated surface that is not partially bonded may occur depending on the shape of the warp.
  • the part where the adhesion is not made becomes a gap of the fluid passage, and the fluid escapes to another fluid flow path. If the primary air flow and the secondary air flow are mixed with each other due to the escape of the fluid to other fluid flow paths, odors, carbon dioxide, and other undesirable gas bodies are supplied from the exhaust air to the living room for the total heat exchanger. Since it becomes cloudy to air, it is not preferable. Therefore, it is necessary to adjust the heating time of the partition member as appropriate.
  • the total heat exchange element 100 manufactured in this way has fluid passages through which a primary air flow and a secondary air flow pass as shown in FIG. 1, and each fluid passage has an approximately rectangular shape whose cross section is large and small. It becomes a collective structure in which small passages are alternately arranged.
  • the cross-sectional shape of the flow path becomes a rectangular shape. Therefore, the equivalent diameter (the size of the circular tube when replaced with a circular tube with equivalent pressure loss.
  • S is the cross-sectional area of the channel and the circumference of the channel is greater than the triangular channel with the same layer height and the same mountain pitch.
  • L is obtained by 4S / L when L is set), and the pressure loss is reduced.
  • the deflection of the partition member 2 due to the shrinkage of the resin after molding can be eliminated by the heat shrinkage of the partition member 2, the pressure loss is reduced as compared with the state in which the deflection is left.
  • the partition member 2 may not be able to fully exert the function of total heat exchange.
  • the surface of the partition member 2 is more effectively utilized, It is possible to improve the exchange efficiency and the humidity exchange efficiency.
  • the total heat exchange element illustrated below was manufactured with the said manufacturing method.
  • a polyurethane resin (thickness: about 20 ⁇ m) containing 30% oxyethylene groups was used.
  • latent crimpable fiber core-sheath composite fiber having heat-shrinkability with ethylene-propylene random copolymer (EP) as a core component and polypropylene (PP) as a sheath component, Daiwa A heat-shrinkable non-woven fabric was used as a raw material manufactured by Boshin Co., Ltd., having a heat shrink start temperature of about 90 ° C.
  • the functional layer 2b and the heat shrinkable layer 2a were laminated with heat to form a partition member 2, and cut into appropriate dimensions.
  • the partition member 2 was set in a mold, and the spacing member 3 was integrally formed by injection molding of acrylonitrile-butadiene-styrene resin (ABS) [UMB ABS EX120, heat distortion temperature of about 80 ° C.].
  • ABS acrylonitrile-butadiene-styrene resin
  • the unit constituent members were formed so that the shielding ribs 3a and the spacing ribs 3b extend (orthogonal) in directions different by 90 degrees between the front and back of the partition member 2.
  • the completed unit component is heated by the heating member 50.
  • the tip 50a of the heating member 50 was pressed against the heat-shrinkable layer 2a of the partition member 2 for an arbitrary time, and the heat-shrinkable layer 2a was thermally contracted to eliminate the deflection of the partition member 2.
  • the unit structural member was laminated
  • MEK methyl ethyl ketone
  • FIG. FIG. 7 is a flowchart showing a manufacturing procedure of the total heat exchange element according to the second embodiment of the present invention.
  • the materials to be used are almost the same as those in the first embodiment.
  • ABS resin is used for forming the spacing member 3, but instead, a unit constituent member is produced using PP resin. did.
  • the thermal deformation temperature of the ABS resin is approximately the same as the thermal contraction start temperature (about 90 ° C.) of the thermal contraction layer 2 a of the partition member 2. Therefore, in the first embodiment, only the partition member 2 is heated using the heating member 50 to suppress the deformation of the spacing member 3.
  • the thermal deformation temperature of the PP resin used for the spacing member 3 in the second embodiment is higher than the thermal shrinkage start temperature (about 90 ° C.) of the heat shrink layer 2a (about 115 ° C.).
  • the thermal contraction temperature of the spacing member 3 is higher than the thermal contraction temperature of the thermal contraction layer 2a. If the entire unit component member is heated at a temperature lower than the heat deformation temperature, the deflection of the partition member 2 can be eliminated while suppressing the deformation of the spacing member 3.
  • the total heat exchange element is manufactured by the following procedure. First, a unit constituent member is prepared (step S11), and the unit constituent members are laminated and bonded prior to the heating step (step S12), thereby completing the entire configuration of the total heat exchange element.
  • Step S13 air that is equal to or higher than the heat shrinkage temperature of the heat shrink layer 2a and lower than the heat deformation temperature of the spacing member 3 flows down to the first flow path and the second flow path of the completed total heat exchange element 100. (Step S13), the deflection of the partition members 2 of a plurality of layers can be eliminated together.
  • the control of the deflection amount of the partition member 2 can be adjusted by the time during which high-temperature air flows. Since heating is performed after the entire configuration of the total heat exchange element is completed, that is, after ensuring the rigidity of the entire total heat exchange element, the time for flowing high-temperature air becomes long, and even when the partition member 2 is contracted too much, Each layer becomes difficult to deform.
  • the total heat exchange element illustrated below was manufactured with the said manufacturing method.
  • a polyurethane-based resin film thickness: about 20 ⁇ m
  • latent crimpable fiber core-sheath composite fiber having heat-shrinkability with ethylene-propylene random copolymer (EP) as a core component and polypropylene (PP) as a sheath component
  • EP ethylene-propylene random copolymer
  • PP polypropylene
  • Daiwa A heat-shrinkable non-woven fabric was used as a raw material manufactured by Boshin Co., Ltd., having a heat shrink start temperature of about 90 ° C.
  • the functional layer 2b and the heat shrinkable layer 2a were laminated with heat to form the partition member 2, and cut into appropriate dimensions.
  • the partition member 2 was set in a mold, and the spacing member 3 was integrally formed by injection molding of polypropylene resin (PP) [manufactured by Nippon Polypro Co., Ltd., MA3H, thermal deformation temperature of about 115 ° C.].
  • PP polypropylene resin
  • the unit constituent members were formed so that the shielding ribs 3a and the spacing ribs 3b extend (orthogonal) in directions different by 90 degrees between the front and back of the partition member 2.
  • the completed unit constituent members were laminated, and methyl ethyl ketone (MEK) was applied and welded to the contact portions when the four outer sides of the unit constituent members were laminated, thereby completing the entire configuration of the total heat exchange element.
  • MEK methyl ethyl ketone
  • the total heat exchange element according to the present invention is useful for a total heat exchange element in which a partition member and a spacing member are integrally formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Laminated Bodies (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 本発明は、シート状の仕切部材2の両側にそれぞれ間隔保持部材を設けて流路を形成し、仕切部材の一方の側に形成された流路を流通する気流と他方の側に形成された流路を流通する気流との間で仕切部材2を介して熱交換を行う全熱交換素子であって、間隔保持部材は、樹脂を用いて仕切部材に一体成形され、仕切部材2は、伝熱性と透湿性と気体遮蔽性を有する機能層2bと、所定の温度以上で収縮する熱収縮層2aとを有して構成される。

Description

全熱交換素子およびその製造方法
 本発明は、空調機器に設けられて、流体間での熱交換を行なわせる積層構造の熱交換素子およびその製造方法に関する。
 近年、暖房および冷房などの空調機器が発達かつ普及し、空調装置を用いた居住区域が拡大するにつれて、換気において温度および湿度が回収できる空調用の全熱交換器の重要性も高まっている。こうした全熱交換器には熱交換する要素部品として全熱交換素子が搭載されている。
 全熱交換素子としては例えば、特許文献1,2に開示されているようなものが広く採用されている。これらの全熱交換素子は、伝熱性と透湿性とを有する仕切部材と、仕切部材に挟まれて仕切部材同士の間隔を保持する間隔保持部材とを有している。全熱交換素子は、これらの仕切部材と間隔保持部材とを複数層に重ね合わせた基本構造を採っている。
 仕切部材は、例えば方形の平板である。間隔保持部材は投影平面が仕切部材と一致する鋸波状、正弦波状、または略三角形断面の波形に成形された波形板となっている。仕切部材を挟んだ間隔保持部材同士の波形の方向が交互に90度またはそれに近い角度となるように、仕切部材と間隔保持部材は重ね合わされる。このような構造により、一次気流を通す流体流路と二次気流を通す流体流路の二系統の流体通路が、全熱交換素子の各層間に交互に構成される。すなわち、仕切部材の一面側に沿って一次気流が通過し、他面側に沿って二次気流が通過することとなる。
 全熱交換素子の仕切部材に要求される特性としては、一次気流と二次気流を通す流体流路間の通気性が低く、かつ伝熱性と透湿性が高いことである。これは、全熱交換器の使用時に、屋外から屋内に吸込まれる新鮮な外気と屋内から屋外へ排気される汚れた空気とが混合するのを抑えるため、および一次気流と二次気流との間で顕熱と同時に潜熱も熱交換できるようにするためである。また、各気流が通過する際の通風抵抗(圧力損失、静圧損失とも言う)が極力低いことも求められる。これは換気を行なうために気流を通過させる送風装置(ファン、ブロワなど)の消費電力を抑え、全熱交換器の運転音を低く抑えるためである。
 これらの要求される特性を満たすための試みの1つとして、例えば特許文献3には、射出成形を応用し、仕切部材を樹脂でインサート成形する構成が開示されている。このような構成により、仕切部材に対する間隔保持部材(樹脂部)の面積比率を小さくして熱交換効率を確保しつつ、流路断面を矩形形状にすることで通風抵抗の低減を図っている。
 このような射出成形による方法は、仕切部材が多湿条件下でたわみ、一次気流側と二次気流側で流路の高さが不均一になり、通気抵抗が高くなる場合がある。特に流路高さが小さい場合に、通気抵抗が高くなりやすいため、熱交換効率を向上させる手段として流路高さを小さくして熱交換素子の伝熱面積の拡大を図る上での障害となる場合があった。
 特許文献4では、結晶性が高く多湿条件下においても寸法安定性が良い透湿性ポリエチレン系フィルムおよび同樹脂を混抄した紙を仕切部材として用いて、多湿条件下で流路抵抗が増加する問題の解決を図っている。しかしながら、透湿性ポリエチレン系フィルムを用いた場合には、成形品を取り出した後に反りや収縮が起こりやすいという問題がある。そのため、間隔保持部材の樹脂が離型後に変形、収縮することにより、インサート成形した仕切部材と間隔保持部材とがたわんでしまい、通風抵抗が高くなる場合がある。
 特許文献5では、成形する樹脂に無機充填剤、例えば、ガラス繊維や炭素繊維などを添加すること、または高圧流体や超臨界流体を物理発泡剤に用いて樹脂内で微細に発泡させる発泡成形を用いている。また、特許文献6では間隔保持部材を先に射出成形し十分収縮させた後に仕切部材を貼り合せる方法を提案している。
特公昭47-19990号広報 特公昭51-2131号公報 特許第2690272号公報 特許第3461697号公報 特開2006-29692号公報 特開2007-100997号公報
 しかしながら、特許文献5に開示のものは、これらを樹脂に添加すると、成形品取り出し後の反りや収縮を抑えることができるが、溶融樹脂の流動性の低下により成形サイクルが遅くなり量産性が低下するという問題があった。また、樹脂の使用量は減るが添加物の分材料コストが高くなるという問題があった。また、仕切部材と間隔保持部材の樹脂の接触面が減少するため、それらの間の密着性が悪化するという問題があった。また、超臨界流体を注入する場合には、特殊な付帯設備が必要となり、製造コストの増大を招くという問題があった。また、拡大伝熱面(フィン)として機能している樹脂成形部分の熱伝達率が低下し、温度交換効率が低下してしまうという問題があった。
 また、特許文献6に開示のものは、仕切部材と間隔保持部材とを貼り合せる際に、仕切部材を十分に張って接着や溶着を行なわなければならず、貼り合せの工程が複雑になり、生産性の低下を招くという問題があった。
 本発明は、上記に鑑みてなされたものであって、平易な設備で成形が可能で、また極力簡便な方法で射出成形直後の仕切部材のたわみを緩和することにより、通風抵抗の低減、熱交換効率の向上、および生産性の向上を図ることができる熱交換素子を得ることを目的としている。
 上述した課題を解決し、目的を達成するために、本発明は、シート状の仕切部材の両側にそれぞれ間隔保持部材を設けて流路を形成し、仕切部材の一方の側に形成された流路を流通する気流と他方の側に形成された流路を流通する気流との間で仕切部材を介して熱交換を行う全熱交換素子であって、間隔保持部材は、樹脂を用いて仕切部材に一体成形され、仕切部材は、伝熱性と透湿性と気体遮蔽性を有する機能層と、所定の温度以上で収縮する熱収縮層とを有して構成されることを特徴とする。
 本発明にかかる全熱交換素子は、平易な設備で成形が可能で、また極力簡便な方法で射出成形直後の仕切部材のたわみを緩和することにより、通風抵抗の低減、熱交換効率の向上、および生産性の向上を図ることができるという効果を奏する。
図1は、本発明の実施の形態1にかかる全熱交換素子の斜視図である。 図2は、仕切部材の断面構成を示す図である。 図3は、間隔保持部材と、仕切部材とからなる単位構成部材の外観斜視図である。 図4-1は、図3に示すA-A線に沿った矢視断面図であって、間隔保持部材を成形し、金型を離型した直後の状態を示す図である。 図4-2は、図3に示すA-A線に沿った矢視断面図であって、金型を離型してから仕切部材を加熱した状態を示す図である。 図5は、仕切部材を加熱する加熱部材を説明するための図である。 図6は、本発明の実施の形態1にかかる全熱交換素子の製造手順を示すフローチャートである。 図7は、本発明の実施の形態2にかかる全熱交換素子の製造手順を示すフローチャートである。
 以下に、本発明の実施の形態にかかる全熱交換素子およびその製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる全熱交換素子の斜視図である。全熱交換素子100は、仕切部材2と、間隔保持部材3を備える。全熱交換素子100は、仕切部材2を所定間隔に保持する間隔保持部材3と、仕切部材2とからなる単位構成部材が、間隔保持部材3の配列方向が90度ずつ異なるように交互に積層されて構成される。
 全熱交換素子100では、仕切部材2に挟まれた各層が空気の通過する流路となり、一次気流が通過する流路と二次気流が通過する流路が1層ごとに交互に構成される。一次気流と二次気流との間では、仕切部材2を介して、温度と湿度の交換が行われる。
 仕切部材2は、後に詳説するが、伝熱性と透湿性と気体遮蔽性を有する層(機能層)にある温度以上で収縮する通気性の高い層(熱収縮層)を貼り合わせて構成される。以下で各要素について詳細に説明する。
 仕切部材2は、一次気流と二次気流との間で温度と湿度の交換が行われる際に、熱と湿分を透過させる媒体となるものである。全熱交換素子100は、上述した構成により、仕切部材2の一面側に沿って一次気流が通過し、他面側に沿って二次気流が通過することとなる。
 そして、一次気流と二次気流を流した場合、仕切部材2を介して、高温側(湿分の場合には多湿側)の気流中の熱(もしくは水蒸気)を、温度差(もしくは水蒸気分圧差)を利用し低温側(もしくは低湿側)へ移行させる。また、仕切部材2を介して、多湿側の気流中の水蒸気を、水蒸気分圧差を利用し低湿側へ移行させる。そのため、仕切部材2は、極力薄く、熱伝達率や湿度伝達率が高いことが望ましい。
 また、仕切部材2には、一次気流と二次気流の混合を防止し、両気流間での二酸化炭素や臭い成分等の移行を抑制することも要求される。これらを満足するためには、仕切部材としての透気抵抗度(JIS P8628)が200秒/100cc以上で、かつ透湿性を有するものが好適である。
 全熱交換素子100では、これらの条件を満足するために、仕切部材2に非水溶性の親水性高分子薄膜を用いる。より具体的な材料の例としては、透湿性を有するオキシエチレン基を含むポリウレタン系樹脂、オキシエチレン基を含むポリエステル系樹脂、末端または側鎖にスルホン酸基、アミノ基、水酸基、カルボキシル基を含む樹脂等を用いる。
 図2は、仕切部材2の断面構成を示す図である。仕切部材2は、図2に示すように、機能層2bに対して、接着や熱融着等の加工により熱収縮層2aを貼り合わせて構成される。機能層2bには、通常伝熱性・透湿性と気体遮蔽性を持つ膜が用いられる。
 熱収縮層2aには、引張強度と寸法安定性に優れた多孔質膜が用いられる。熱収縮層2aには、透湿性を妨げないために通気性が良好で、加工時の引張力や湿度変化に対する寸法安定性に優れる多孔質膜が用いられるのが望ましい。
 このように、機能層2bと熱収縮層2aとを貼り合わせることで、仕切部材2の透湿性を極力確保したまま、透湿性の膜を極力細かい間隔で支持することにより多湿条件下の仕切部材のたわみを防止し、気流の通気抵抗を低減させることができる。
 本実施の形態では、熱収縮層2aとして、多孔質膜としての上述した機能に加えて、加熱により収縮する機能を備えた素材を用いる。オレフィン系樹脂等の熱可塑性樹脂で作られた織布や不織布などの一部であって、その製造工程で延伸力を加えられたものは、その構成樹脂に固有の温度(軟化温度)以上に昇温されると収縮する性質を持つ。例えば、熱収縮層2aとして、織布や不織布の中に熱収縮性の樹脂(例えば環状オレフィン樹脂やポリオレフィン樹脂など)や潜在捲縮性繊維を含む不織布を用いることができる。
 潜在捲縮性繊維とは、所定温度での加熱によって螺旋状の捲縮が発現して収縮する性質を有する繊維である。例えば、収縮率の異なる2種類の熱可塑性ポリマー材料を成分とする偏心芯鞘型複合繊維またはサイド・バイ・サイド型複合繊維からなる。その例としては、特開平9-296325号公報や特許2759331号公報に記載のものが挙げられる。
 なお、熱収縮性不織布には、潜在捲縮性繊維と共に他の繊維、例えばレーヨン、コットン、親水化アクリル系繊維などの繊維を含む不織布を用いることができる。一般に透湿性を有する素材(機能層2b)は、環境条件(湿度など)により材料自体の伸び縮みが発生するが、上述した不織布のような素材(熱収縮層2a)を貼り合わせることにより、湿度変化に対する寸法安定性の向上を図ることができる。また、仕切部材2を加熱した際には、熱収縮層2aの収縮に引っ張られることで、仕切部材2の全体が収縮する。
 ただし、熱収縮層2aが収縮する際の妨げにならないようにするため、機能層2bの平面方向の圧縮強度は、熱収縮層2aの圧縮強度よりも十分弱いことが望ましい。熱収縮層2aや機能層2bのようなシート状の部材における平面方向強度は、その厚さに大きく依存する。そのため、機能層2bは熱収縮層2aよりも十分薄く(目安は、機能層2bの膜厚が熱収縮層2aの膜厚の半分以下)、材料強度も低いことが望ましい。
 次に、これら2層を貼合せた仕切部材2の上に間隔保持部材3を設ける。図3は、間隔保持部材3と、仕切部材2とからなる単位構成部材の外観斜視図である。間隔保持部材3は、遮蔽リブ3aと間隔リブ3bとを有する。
 遮蔽リブ3aは、仕切部材2の平面視における4辺のうち、表面に気流が流れる方向に対して垂直方向にある2辺(以後両端部とする)からの空気漏れを防止するために、両端部に設けられる。間隔リブ3bは、遮蔽リブ3aの間に、遮蔽リブ3aと平行に所定の間隔で複数本設けられている。
 間隔保持部材3としての遮蔽リブ3aと間隔リブ3bは、仕切部材2の両面に形成される。また、仕切部材2の一面側に形成される遮蔽リブ3aと間隔リブ3bは、仕切部材2の一面側と他面側とで、直交するように設けられる。間隔保持部材3は、樹脂を用いて形成される。
 図3に示す単位構成部材は、仕切部材2と間隔保持部材3とを一体成形することで製造される。具体的には、仕切部材2に対して、間隔保持部材3を直接樹脂成形する。例えば、遮蔽リブ3aと間隔リブ3bの形状を彫った金型に、樹脂成形前に仕切部材2を入れて成形することにより製造される。間隔保持部材3は、単位構成部材と仕切部材2とを積層した際に、仕切部材2同士の間隔を保持する。なお、仕切部材2の一面側に形成される遮蔽リブ3aと間隔リブ3bは、仕切部材2の一面側と他面側とで、斜交するように設けられてもよい。
 間隔保持部材3に用いる樹脂は、ポリプロピレン(PP)、アクリロニトリル-ブタジエン-スチレン(ABS)、ポリスチレン(PS)、アクリロニトリル-スチレン(AS)、ポリカーボネート(PC)、その他一般的な樹脂で希望の形状に成形可能なものであればよい。
 ここで、間隔保持部材3の成形時には、金型温度が仕切板の熱収縮層2aの熱収縮温度を越えない程度の条件を設定する必要がある。もし金型温度が熱収縮温度を超えてしまうと、間隔保持部材3の成形後の収縮が始まる前に仕切部材の熱収縮層2aが収縮し、本発明の狙いが達成できない。これは、間隔保持部材3の成形時の金型温度よりも熱収縮開始温度が高い材料を熱収縮層2aに用いると換言することもできる。
 このように、間隔保持部材3を樹脂で成形することにより、間隔保持部材3の湿度による変形を抑え、通風路の形状の安定化を図ることができる。また、これら樹脂に難燃剤を添加して難燃化を図ったり、無機分を添加して寸法安定性や強度の向上を図ったりしてもよい。または、目的によっては発泡剤(物理発泡剤・化学発泡剤)を添加して樹脂を発泡させ、樹脂量の削減などを図ってもよい。
 図4-1は、図3に示すA-A線に沿った矢視断面図であって、間隔保持部材3を成形し、金型を離型した直後の状態を示す図である。図4-2は、図3に示すA-A線に沿った矢視断面図であって、金型を離型してから仕切部材2を加熱した状態を示す図である。
 図4-1に示すように、仕切部材2は、間隔保持部材3が成形されて金型を離型した直後の状態では、その表面にたわみが生じている場合がある。そこで、仕切部材2を加熱して、熱収縮層2aを収縮させることで、図4-2に示すように、離型直後に生じていたたわみを解消させる。
 ここで、熱収縮層2aを構成する物質ごとに設定された熱収縮温度以上に加温できる方法であれば、仕切部材2への加熱方法は特に限定されない。ただし、単位構成部材全体をまとめて加熱する場合には、熱収縮層2aの熱収縮温度が、間隔保持部材3を構成する樹脂の軟化温度以上であると、仕切部材2よりも間隔保持部材3が先に軟化してしまうおそれがある。
 間隔保持部材3が先に軟化すると、仕切部材2が収縮した際にその収縮力によって間隔保持部材3に変形が生じてしまうことがある。そのため、仕切部材2の熱収縮層2aの熱収縮温度は、間隔保持部材3の軟化温度以下であることが望ましい。
 図5は、仕切部材2を加熱する加熱部材を説明するための図である。例えば、図5に示す加熱部材50は、間隔保持部材3の形状に合わせて凹凸が形成された金属板である。加熱部材50の凹凸は、加熱部材50を仕切部材2に押し当てた際に、凸部の先端50aのみが仕切部材2に接触し、間隔保持部材3には加熱部材50がほとんど接触しないようになっている。
 このような加熱部材50を加熱源として、仕切部材2の熱収縮層2a側に接触させることにより、間隔保持部材3を加熱せずに仕切部材を加熱することが可能となる。したがって、加熱部材50のように間隔保持部材3を加熱せずに仕切部材2を加熱することができれば、熱収縮層2aの熱収縮温度が、間隔保持部材3を構成する樹脂の軟化温度以上である場合であっても、間隔保持部材3の変形を抑えて仕切部材2のたわみを解消することができる。
 また、熱収縮層2aの熱収縮率は、間隔保持部材3として使用する樹脂の成形後の熱収縮率以上であることが望ましい。熱収縮層2aの熱収縮率が小さな場合には、たわみの解消に必要な収縮量を得られず、仕切部材2のたわみを解消することが難しい場合がある。一方、熱収縮層2aの熱収縮率が大きい場合には、たわみの解消に必要な収縮量を得やすくなる。そして、その収縮量がたわみの解消に必要な収縮量よりも大きすぎる場合であっても、熱収縮層2aへの加熱時間の調整によって収縮量を調整できるので、たわみをより完全に解消することが可能となる。
 図6は、本発明の実施の形態1にかかる全熱交換素子100の製造手順を示すフローチャートである。まず、仕切部材2と間隔保持部材3とを一体成形して、単位構成部材を作製する(ステップS1)。次に、単位構成部材ごとに加熱部材50を用いて仕切部材2を加熱してたわみの解消を図る(ステップS2)。次に、単位構成部材を積層して、接着や熱融着などにより固定化する(ステップS3)。これにより、図1に示すような全熱交換素子100が製造される。
 なお、単位構成部材は、一層ごとに間隔保持部材の延びる方向(流体通路の方向)が、90度異なる(直交する)ように積層される。また、本実施の形態1では、図3に示すように、仕切部材2の両面に間隔保持部材3を一体成形して単位構成部材としているので、ステップS3では、間隔保持部材3が形成されていない仕切部材2と単位構成部材とが交互に積層されることとなる。一方、仕切部材2の片面のみに間隔保持部材3を一体成形して単位構成部材とした場合には、単位構成部材のみを積層させればよい。
 単位構成部材は、加熱して収縮させすぎると、間隔保持部材3が熱によって軟化していない場合でも弾性変形をして反り返りなどが発生する。単位構成部材が反っている場合、積層接着面が平坦ではなくなり、反りの形状によっては積層面で一部接着が為されない部分が発生することがある。
 接着が為されない部分は、流体通路の隙間となり、他の流体流路へ流体が逃げてしまうことになる。他の流体流路へ流体が逃げることで、一次気流と二次気流が交じり合ってしまうと、全熱交換器にとっては排気空気から臭気や二酸化炭素、その他望ましくないガス体が居室へ給気する空気へ混濁することになるため好ましくない。したがって、仕切部材の加熱時間は適宜調整する必要がある。
 こうして製造された全熱交換素子100は、一次気流と二次気流を通す流体通路が図1に示すように、各層間に一層おきに構成され、各流体通路はその通路断面が大小の概矩形形状である小通路が交互に並ぶ集合構造となる。
 このような製造方法で全熱交換素子100を得ることにより、まず流路の断面形状が矩形状となる。そのため、同じ層高さで同じ山ピッチを持つ三角形流路よりも等価直径(圧損が等価な円管に置き換えたときの円管の大きさ。流路断面積をS、流路の周長をLとした時に4S/Lで求められる)が大きくなり、圧力損失が低くなる効果がある。
 さらに、成形後の樹脂の収縮に起因する仕切部材2のたわみを仕切部材2の加熱収縮により解消することができるため、たわみを残した状態に比べて圧損が低下する。また、たわみが残存していると仕切部材2に全熱交換の機能を十分に発揮させることができない場合があるが、たわみを解消することで仕切部材2の表面がより有効に活用され、熱交換効率や湿度交換効率の向上を図ることができる。
 さらに、発泡成形に使うような特殊な設備も不要で、仕切部材2を加熱する簡単な設備があればよいため、設備投資も最小限に抑えられ、製造コストの抑制を図ることができる。
 なお、以下に例示する全熱交換素子を、上記製造方法で製造した。仕切部材の伝熱性・透湿性・気体遮蔽性を有する機能層2bとして、オキシエチレン基を30%含むポリウレタン系樹脂(膜厚約20μm)を用いた。また、熱収縮層2aとして、潜在捲縮性繊維[エチレン-プロピレンランダム共重合体(EP)を芯成分とし、ポリプロピレン(PP)を鞘成分とした熱収縮性を示す芯鞘型複合繊維、ダイワ紡績株式会社製、熱収縮開始温度約90℃]を原料とした熱収縮性の不織布を用いた。
 この機能層2bと熱収縮層2aとを熱でラミネートして仕切部材2とし、適当な寸法に切断した。仕切部材2を金型にセットして、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)[UMB ABS製 EX120 熱変形温度約80℃]の射出成形で間隔保持部材3を一体成形した。
 遮蔽リブ3aと間隔リブ3bとが、仕切部材2の表と裏とで90度異なる方向に延びる(直交する)ように、単位構成部材を形成した。出来上がった単位構成部材は、加熱部材50で加熱される。この際、加熱部材50の先端50aを仕切部材2の熱収縮層2aに任意時間押し当てて、熱収縮層2aを熱収縮させて仕切部材2のたわみを解消した。そして、単位構成部材を積層し、単位構成部材の外周4辺の積層する際接触する部分にメチルエチルケトン(MEK)を塗布して溶着し、熱交換素子を得た。
実施の形態2.
 図7は、本発明の実施の形態2にかかる全熱交換素子の製造手順を示すフローチャートである。使用する材料等は上記実施の形態1にほとんど順ずるが、異なる点として実施の形態1では間隔保持部材3の成形にABS樹脂を用いたが、代わりにPP樹脂を用いて単位構成部材を作製した。
 ABS樹脂の熱変形温度は、仕切部材2の熱収縮層2aの熱収縮開始温度(約90℃)と同程度となっている。そのため、上記実施の形態1では、加熱部材50を用いて仕切部材2のみを加熱して、間隔保持部材3の変形を抑えている。
 一方、本実施の形態2で間隔保持部材3に用いるPP樹脂の熱変形温度は、熱収縮層2aの熱収縮開始温度(約90℃)よりも高くなっている(約115℃)。このように、間隔保持部材3の熱変形温度が、仕切部材2の熱収縮層2aの熱収縮開始温度よりも高いため、熱収縮層2aの熱収縮温度以上であって、間隔保持部材3の熱変形温度未満となる温度で単位構成部材の全体を加熱すれば、間隔保持部材3の変形を抑えつつ仕切部材2のたわみの解消を図ることができる。
 そこで、本実施の形態2では、以下の手順で全熱交換素子を製造する。まず、単位構成部材を作製し(ステップS11)、加熱工程よりも先に単位構成部材を積層接着して(ステップS12)、全熱交換素子の全体構成を完成させる。
 そして、出来上がった全熱交換素子100の第一流路と第二流路に、熱収縮層2aの熱収縮温度以上であって、間隔保持部材3の熱変形温度未満となる空気を流下させることにより(ステップS13)、複数の層の仕切部材2のたわみをまとめて解消することができる。
 この方法を用いると、仕切部材2のたわみ量の制御を、高温空気を流す時間で調整できる。全熱交換素子の全体構成を完成させてから、すなわち全熱交換素子全体としての剛性を確保してから加熱するので、高温空気を流す時間が長くなり、仕切部材2が縮みすぎた場合でも、各層が変形しにくくなる。
 上記実施の形態1では、仕切部材の縮ませすぎにより単位構成部材が変形すると、その後の作業性が妨げられてしまう場合がある。一方、本実施の形態2では、上述したように各層が変形しにくくなるため、生産効率の向上を図ることができる。また、各層のたわみをまとめて解消できるため、生産効率のより一層の向上を図ることができる。
 なお、以下に例示する全熱交換素子を、上記製造方法で製造した。仕切部材2の伝熱性・透湿性・気体遮蔽性を有する機能層2bとして、ポリウレタン系の樹脂(膜厚約20μm)を用いた。また、熱収縮層2aとして、潜在捲縮性繊維[エチレン-プロピレンランダム共重合体(EP)を芯成分とし、ポリプロピレン(PP)を鞘成分とした熱収縮性を示す芯鞘型複合繊維、ダイワ紡績株式会社製、熱収縮開始温度約90℃]を原料とした熱収縮性の不織布を用いた。
 この機能層2bと熱収縮層2aとを、熱でラミネートして仕切部材2とし、適当な寸法に切断した。仕切部材2を金型にセットして、ポリプロピレン樹脂(PP)[日本ポリプロ製 MA3H、熱変形温度約115℃]の射出成形で間隔保持部材3を一体成形した。
 遮蔽リブ3aと間隔リブ3bとが、仕切部材2の表と裏とで90度異なる方向に延びる(直交する)ように、単位構成部材を形成した。出来上がった単位構成部材を積層し、単位構成部材の外周4辺の積層する際接触する部分にメチルエチルケトン(MEK)を塗布して溶着し、全熱交換素子の全体構成を完成させた。そして、熱収縮層2aの熱収縮開始温度よりも高く、間隔保持部材3の熱変形温度よりも低い100℃に調整された空気を熱交換素子の第一流路と第二流路の両方に流通させ、仕切部材2のたわみを解消した。
 以上のように、本発明にかかる全熱交換素子は、仕切部材と間隔保持部材を一体成形する全熱交換素子に有用である。
 2 仕切部材
 2a 熱収縮層
 2b 機能層
 3 間隔保持部材
 3a 遮蔽リブ
 3b 間隔リブ
 50 加熱部材
 50a 先端
 100 全熱交換素子

Claims (7)

  1.  シート状の仕切部材の両側にそれぞれ間隔保持部材を設けて流路を形成し、前記仕切部材の一方の側に形成された流路を流通する気流と他方の側に形成された流路を流通する気流との間で前記仕切部材を介して熱交換を行う全熱交換素子であって、
     前記間隔保持部材は、樹脂を用いて前記仕切部材に一体成形され、
     前記仕切部材は、伝熱性と透湿性と気体遮蔽性を有する機能層と、所定の温度以上で収縮する熱収縮層とを有して構成されることを特徴とする全熱交換素子。
  2.  前記熱収縮層として、不織布を用いることを特徴とする請求項1に記載の全熱交換素子。
  3.  前記不織布の熱収縮率は、前記間隔保持部材として使用する樹脂の熱収縮率よりも大きいことを特徴とする請求項1または2に記載の全熱交換素子。
  4.  前記仕切部材の熱収縮開始温度は、前記間隔保持部材の成形時の金型温度より高く、前記間隔保持部材用として使用する樹脂の軟化温度より低いことを特徴とする請求項1~3のいずれか1つに記載の全熱交換素子。
  5.  シート状の仕切部材の両側にそれぞれ間隔保持部材を設けて流路を形成し、前記仕切部材の一方の側に形成された流路を流通する気流と他方の側に形成された流路を流通する気流との間で前記仕切部材を介して熱交換を行う全熱交換素子の製造方法であって、
     伝熱性と透湿性と気体遮蔽性を有する機能層と、所定の温度以上で収縮する熱収縮層とを重ねて前記仕切部材を作製するステップと、
     前記仕切部材に対して樹脂を用いて前記間隔保持部材を一体成形して単位構成部材を作製するステップと、
     前記単位構成部材のうち前記熱収縮層を前記所定の温度以上に加熱するステップと、
     前記所定の温度以上に加熱するステップの後に、前記単位構成部材を積層するステップと、を備えることを特徴とする全熱交換素子の製造方法。
  6.  前記熱収縮層を前記所定の温度以上に加熱するステップは、前記単位構成部材のうち前記熱収縮層のみに接触する加熱部材を用いて行われることを特徴とする請求項5に記載の全熱交換素子の製造方法。
  7.  シート状の仕切部材の両側にそれぞれ間隔保持部材を設けて流路を形成し、前記仕切部材の一方の側に形成された流路を流通する気流と他方の側に形成された流路を流通する気流との間で前記仕切部材を介して熱交換を行う全熱交換素子の製造方法であって、
     伝熱性と透湿性と気体遮蔽性を有する機能層と、所定の温度以上で収縮する熱収縮層とを重ねて前記仕切部材を作製するステップと、
     前記単位構成部材を積層するステップと、
     前記単位構成部材を積層するステップの後に、前記所定の温度以上の空気を前記流路に通過させるステップと、を備えることを特徴とする全熱交換素子の製造方法。
PCT/JP2011/074666 2011-10-26 2011-10-26 全熱交換素子およびその製造方法 WO2013061419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/347,469 US9664457B2 (en) 2011-10-26 2011-10-26 Total heat exchange element and manufacturing method thereof
CN201180074354.5A CN103890528B (zh) 2011-10-26 2011-10-26 全热交换元件及其制造方法
KR1020147009527A KR101574036B1 (ko) 2011-10-26 2011-10-26 전열교환 소자 및 그 제조 방법
PCT/JP2011/074666 WO2013061419A1 (ja) 2011-10-26 2011-10-26 全熱交換素子およびその製造方法
JP2013540543A JP5748863B2 (ja) 2011-10-26 2011-10-26 全熱交換素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074666 WO2013061419A1 (ja) 2011-10-26 2011-10-26 全熱交換素子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013061419A1 true WO2013061419A1 (ja) 2013-05-02

Family

ID=48167286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074666 WO2013061419A1 (ja) 2011-10-26 2011-10-26 全熱交換素子およびその製造方法

Country Status (5)

Country Link
US (1) US9664457B2 (ja)
JP (1) JP5748863B2 (ja)
KR (1) KR101574036B1 (ja)
CN (1) CN103890528B (ja)
WO (1) WO2013061419A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025645A (ja) * 2013-06-20 2015-02-05 パナソニックIpマネジメント株式会社 全熱交換素子用仕切部材およびその素材を用いた全熱交換素子および全熱交換形換気装置
JP2015117898A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 全熱交換素子用仕切部材およびその全熱交換素子用仕切部材を用いた全熱交換素子および熱交換形換気装置
JP2015178949A (ja) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 全熱交換素子用仕切部材およびその素材を用いた全熱交換素子および全熱交換形換気装置
US20170030657A1 (en) * 2013-12-26 2017-02-02 Toray Industries, Inc. Method of manufacturing total heat exchange element, and total heat exchanger element
WO2021131725A1 (ja) * 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 熱交換素子及びそれを用いた熱交換形換気装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US10352628B2 (en) * 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
CN106164599B (zh) * 2013-12-26 2019-07-05 巍然科技私人有限公司 加热或冷却流体流的流体处理装置和方法
DE102014017362A1 (de) * 2014-11-24 2016-05-25 Klingenburg Gmbh Plattenelement für einen Plattenwärmetauscher
RU2640263C1 (ru) * 2016-08-05 2017-12-27 Владимир Евсеевич Злотин Теплообменник
SE1651723A1 (en) * 2016-12-22 2018-06-23 Air To Air Sweden Ab A heat exchanger and a method of producing a heat exchanger
WO2018191806A1 (en) 2017-04-18 2018-10-25 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
US20220163272A1 (en) * 2017-05-18 2022-05-26 Kai Klingenburg Heat-exchanger plate
US10823511B2 (en) * 2017-06-26 2020-11-03 Raytheon Technologies Corporation Manufacturing a heat exchanger using a material buildup process
WO2020174721A1 (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 熱交換素子及びそれを用いた熱交換形換気装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054691A (ja) * 1996-08-08 1998-02-24 Mitsubishi Electric Corp 熱交換器の間隔板及び熱交換器用部材及び熱交換器並びにその製造方法
JP2006097958A (ja) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd 熱交換器
JP2006207092A (ja) * 2005-01-31 2006-08-10 Toyobo Co Ltd 伸縮性シートおよび貼付剤ならびにそれらの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719990Y1 (ja) 1970-06-19 1972-07-06
JPS512131A (ja) 1974-06-24 1976-01-09 Hitachi Ltd Jidoshayoreibosochi
JPH07208890A (ja) 1994-01-14 1995-08-11 Toshiba Corp 熱交換器
JP2690272B2 (ja) 1994-08-04 1997-12-10 松下精工株式会社 熱交換素子
JP3461697B2 (ja) 1997-10-01 2003-10-27 松下エコシステムズ株式会社 熱交換素子
US8684274B2 (en) * 2003-05-16 2014-04-01 Kambix Innovations, Llc Cooling enhancements in thin films using flexible complex seal due to temperature increase or thermal load increase
JP4206894B2 (ja) 2003-10-15 2009-01-14 三菱電機株式会社 全熱交換素子
JP2005140362A (ja) * 2003-11-05 2005-06-02 Matsushita Electric Ind Co Ltd 熱交換器
JP4449529B2 (ja) 2004-03-29 2010-04-14 パナソニック株式会社 熱交換器
WO2006008823A1 (ja) * 2004-07-16 2006-01-26 Matsushita Electric Industrial Co., Ltd. 熱交換器
JP2006029692A (ja) 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd 熱交換器
JP2007100997A (ja) 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd 熱交換素子
JP2007285598A (ja) * 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd 熱交換器
JP5568231B2 (ja) * 2008-11-07 2014-08-06 日本ゴア株式会社 成形品の製造方法
WO2013157040A1 (ja) 2012-04-18 2013-10-24 三菱電機株式会社 熱交換素子及び空気調和装置
JP2013257107A (ja) 2012-06-14 2013-12-26 Mitsubishi Electric Corp 熱交換素子及び熱交換素子の製造方法
JP5817652B2 (ja) 2012-06-14 2015-11-18 三菱電機株式会社 全熱交換素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054691A (ja) * 1996-08-08 1998-02-24 Mitsubishi Electric Corp 熱交換器の間隔板及び熱交換器用部材及び熱交換器並びにその製造方法
JP2006097958A (ja) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd 熱交換器
JP2006207092A (ja) * 2005-01-31 2006-08-10 Toyobo Co Ltd 伸縮性シートおよび貼付剤ならびにそれらの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025645A (ja) * 2013-06-20 2015-02-05 パナソニックIpマネジメント株式会社 全熱交換素子用仕切部材およびその素材を用いた全熱交換素子および全熱交換形換気装置
US9879869B2 (en) 2013-06-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Partition member for total heat exchange element, total heat exchange element using this member, and total heat exchange type ventilation device
JP2015178949A (ja) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 全熱交換素子用仕切部材およびその素材を用いた全熱交換素子および全熱交換形換気装置
JP2015117898A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 全熱交換素子用仕切部材およびその全熱交換素子用仕切部材を用いた全熱交換素子および熱交換形換気装置
US20170030657A1 (en) * 2013-12-26 2017-02-02 Toray Industries, Inc. Method of manufacturing total heat exchange element, and total heat exchanger element
JPWO2015098592A1 (ja) * 2013-12-26 2017-03-23 東レ株式会社 全熱交換素子の製造方法および全熱交換素子
WO2021131725A1 (ja) * 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 熱交換素子及びそれを用いた熱交換形換気装置

Also Published As

Publication number Publication date
KR20140061512A (ko) 2014-05-21
JP5748863B2 (ja) 2015-07-15
JPWO2013061419A1 (ja) 2015-04-02
KR101574036B1 (ko) 2015-12-02
US20140242900A1 (en) 2014-08-28
CN103890528A (zh) 2014-06-25
CN103890528B (zh) 2017-05-24
US9664457B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
JP5748863B2 (ja) 全熱交換素子およびその製造方法
US10352629B2 (en) Heat exchange element
US8550151B2 (en) Heat exchanger
JP5230821B2 (ja) 全熱交換器及びそれに用いる仕切板の製造方法
JP2639303B2 (ja) 全熱交換器
JPH1054691A (ja) 熱交換器の間隔板及び熱交換器用部材及び熱交換器並びにその製造方法
WO2010053087A1 (ja) 成形品の製造方法、及び熱交換用膜エレメント
JP5817652B2 (ja) 全熱交換素子
JP4094318B2 (ja) 熱交換膜および熱交換素子
WO2019124286A1 (ja) 熱交換素子とそれを用いた熱交換形換気装置
JP4449529B2 (ja) 熱交換器
JP5610777B2 (ja) 全熱交換素子
JP5797328B2 (ja) 熱交換素子
JP2016138707A (ja) 全熱交換素子用仕切部材およびその素材を用いた全熱交換素子および全熱交換形換気装置
JP2009210236A (ja) 熱交換器および熱交換器の製造方法
JP2013257107A (ja) 熱交換素子及び熱交換素子の製造方法
WO2022172339A1 (ja) 対向流型全熱交換素子用の仕切板、対向流型全熱交換素子および熱交換換気装置
JP2006097958A (ja) 熱交換器
JP2015123709A (ja) 中空構造板の製造方法
JP5480057B2 (ja) エアフィルタユニットの製造方法
JP2005024207A (ja) 熱交換器
JP5790600B2 (ja) 熱交換素子
JP3863393B2 (ja) 光学スクリーン用シート状部材の製造方法
JP5959959B2 (ja) 中空構造板の製造方法
JPH04155192A (ja) 全熱交換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540543

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347469

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147009527

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874610

Country of ref document: EP

Kind code of ref document: A1