WO2013057819A1 - マイクロニードル溶着法 - Google Patents

マイクロニードル溶着法 Download PDF

Info

Publication number
WO2013057819A1
WO2013057819A1 PCT/JP2011/074159 JP2011074159W WO2013057819A1 WO 2013057819 A1 WO2013057819 A1 WO 2013057819A1 JP 2011074159 W JP2011074159 W JP 2011074159W WO 2013057819 A1 WO2013057819 A1 WO 2013057819A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
drug
water
microneedle array
soluble polymer
Prior art date
Application number
PCT/JP2011/074159
Other languages
English (en)
French (fr)
Inventor
英淑 権
文男 神山
Original Assignee
コスメディ製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスメディ製薬株式会社 filed Critical コスメディ製薬株式会社
Priority to US14/352,397 priority Critical patent/US9993423B2/en
Priority to PCT/JP2011/074159 priority patent/WO2013057819A1/ja
Priority to CN201180074326.3A priority patent/CN103889497A/zh
Priority to CN201710935111.5A priority patent/CN107582517A/zh
Priority to KR1020147010167A priority patent/KR101931845B1/ko
Priority to EP11874199.0A priority patent/EP2769749B1/en
Publication of WO2013057819A1 publication Critical patent/WO2013057819A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • the present invention relates to a microneedle welding method for imparting a modification effect and / or a functional effect to the skin surface layer and / or the skin stratum corneum.
  • Oral administration and transdermal administration are often used as methods for administering drugs to human body.
  • Injection is a typical transdermal method of administration.
  • injection is an unacceptable technique for many people who must bother the hands of specialists such as doctors and nurses, can be painful, and can also be infected with AIDS or hepatitis B.
  • a transdermal administration method using a microneedle array without causing pain has recently attracted attention (Non-Patent Document 1).
  • a microneedle array is a large number of microneedles integrated on a substrate.
  • microneedles are made by adding various tapes to the microneedle array, such as an adhesive tape for attaching the microneedle array to the skin and a cover sheet for maintaining sterility until use. This is called a patch.
  • tape means a film coated with an adhesive.
  • Patent Document 1 A method of piercing the skin with a stainless needle, allowing a drug solution to flow through it and absorbing the drug from the hole (Patent Document 1), or a method of coating the drug on the surface of the stainless needle and inserting the drug ( Patent Document 2) has been proposed. Furthermore, it has also been proposed to inject a drug solution simply by using a hollow microneedle in which the injection needle is miniaturized (Patent Document 3).
  • the chemical solution casting method has poor drug uptake efficiency or sterilization, and the coating method peels off the coated drug at the time of insertion and the drug uptake efficiency is low, and the microinjection needle method has a complicated structure There were disadvantages such as. Furthermore, metal and silicon microneedles have the drawback of causing an accident when broken inside the body.
  • Patent Document 4 if a microneedle is made using a substance that dissolves in the body, such problems can be solved.
  • a polymer (biosoluble polymer) that dissolves in the skin after administration is used as the material for the microneedle, the moisture in the skin diffuses into the needle due to the application of the microneedle and is inserted into the skin. The needle part swells and then dissolves. Anti-wrinkle action is expressed by diffusion of hyaluronic acid and collagen into the skin due to dissolution of the needle, or drugs and valuable substances previously dissolved in the needle are released into the skin (Patent Documents 5 and 6).
  • a microneedle array made of a biosoluble polymer is often manufactured using a template (Patent Document 5).
  • a microneedle pattern is formed by a lithography method using a photosensitive resin and then transferred to create a mold having a microneedle-forming recess.
  • a microneedle array can be obtained by casting a microneedle material onto this mold and then heating to evaporate the moisture, and then separating the solidified material from the mold.
  • Some drugs contained in the microneedle array are very expensive and only a small amount can be obtained.
  • a precious drug is contained in a material and a microneedle array is prepared by a conventional method, the drug is contained not only in the microneedle part but also in the substrate part (Patent Document 7).
  • Patent Document 7 When this microneedle array is inserted into the skin, the drug contained in the microneedle part is taken into the body and diffuses, but the drug present in the substrate part is discarded without being used, and the utilization efficiency of expensive drugs is low. Result.
  • Patent Document 2 the method of coating the surface of the microneedle
  • Patent Document 8 the method of attaching the drug to the tip of the microneedle
  • Patent Document 10 A method (Patent Document 10), in which a template is filled with a drug-containing material solution, dried and then filled with a material solution that does not contain the drug, and the drug is held only at the tip of the microneedle has been reported.
  • the method of Patent Document 8 for attaching the drug to the tip is characterized in that the drug is heated to about 100 ° C. and dissolved to adhere to the tip of the microneedle.
  • the problem to be solved by the present invention is to solve the problems of the prior art and to provide a new method for effective use of expensive drugs.
  • the microneedle welding method according to the present invention made to solve the above problems is as follows. a) Create a microneedle array using water-soluble polymer as a raw material, b) creating a drug solution to be attached to the tip of the microneedle array; c) bringing the tip of the microneedle array into contact with the drug solution for a short time; A microneedle array in which a drug is welded to the tip is manufactured.
  • the microneedle array material and the drug solution are preferably compatible.
  • both the drug and the microneedle material are water-soluble.
  • the drug solution may be a mixture of water and an organic solvent that is mainly miscible therewith. Examples of the organic solvent miscible with water are ethanol and acetone.
  • the viscosity of the drug solution by dissolving a water-soluble polymer in the drug solution. This is because the viscosity increases due to dissolution of the water-soluble polymer, and the amount of drug solution deposited on the tip of the microneedle increases.
  • the concentration of the water-soluble polymer in the aqueous solution is 1 to 20%, preferably 2 to 15%. If the concentration of the water-soluble polymer is small, the amount of the drug solution deposited by needle contact is small, and if the concentration is too high, the fluidity is lost and the welding operation is difficult to perform smoothly.
  • the appropriate concentration of the water-soluble polymer in the drug solution can be determined by the solution viscosity of the drug solution.
  • the viscosity of the drug solution preferable for drug welding is in the range of 1.0 dPa ⁇ s to 90 dPa ⁇ s.
  • the viscosity of the drug solution is less than 1.0 dPa ⁇ s, the viscosity is too low and the amount of welding decreases.
  • it exceeds 90 dPa ⁇ s stringing tends to occur even after pulling after contact with the drug solution.
  • the viscosity is a value at room temperature (25 ° C.).
  • the time for which the tip of the microneedle array is brought into contact with the drug solution is preferably 0.01 to 5 seconds because the water-soluble microneedle material dissolves in the drug solution if it is too long.
  • the tip By combining the drug and the water-soluble polymer, which is a microneedle material, into a drug aqueous solution, the tip is partially dissolved when the microneedle tip is immersed in the drug aqueous solution, so the drug is integrated with the water-soluble polymer. Therefore, it will be taken into the tip of the microneedle. In this way, the microneedle in which the drug and the material are integrated does not peel off the welded portion, that is, the drug when the skin is inserted, and the drug is completely taken into the body.
  • integration means that there is no clear interface between the original microneedle tip and the newly welded portion. At the border, the drug appears to have a concentration gradient.
  • a method characterized by such integration is called a welding method.
  • the drug referred to in the present invention includes all substances that cause some effect when taken into the body.
  • the drug may be mixed with the microneedle material from the beginning and a microneedle may be prepared from the mixed material according to a conventional method.
  • a solution in which the drug is dissolved in the organic solvent is mixed in the water-soluble polymer aqueous solution to prepare a drug aqueous solution, and the same procedure can be used. Even when the drug is not completely dissolved in the water-soluble polymer solution but suspended in the form of particles, if the suspension is uniform and the particle size is several ⁇ m or less, the drug is not welded or administered into the body. It behaves as if it had been dissolved.
  • any drugs can be used as long as they are effective when administered in several mg, but are particularly effective for high-molecular drugs.
  • bioactive peptides and derivatives thereof, nucleic acids, oligonucleotides, various antigen proteins, bacteria, virus fragments and the like can be mentioned.
  • physiologically active peptides include insulin, exendin-4, exendin-4 derivatives, calcitonin, adrenocorticotropic hormone, parathyroid hormone (PTH), hPTH (1 ⁇ 34), secretin, oxytocin, angiotensin, ⁇ - Endorphin, glucagon, vasopressin, somatostatin, gastrin, luteinizing hormone releasing hormone, enkephalin, neurotensin, atrial natriuretic peptide, growth hormone, growth hormone releasing hormone, bradykinin, substance P, dynorphin, thyroid stimulating hormone, prolactin, interferon Interleukin, G-CSF, glutathione peroxidase, superoxide dismutase, desmopressin, somatomedin, endothelin, GF, skin-related growth factors such as FGF, botulinum toxin, and salts thereof.
  • PTH parathyroid hormone
  • antigen protein or virus fragment examples include influenza antigen, tetanus antigen, diphtheria antigen, HBs surface antigen, HBe antigen and the like. Is mentioned. These are required to be uniformly dispersed in a solution or suspension in the aqueous drug solution of the present invention.
  • microneedle material of the present invention water-soluble natural polymer substances such as hyaluronic acid, collagen, dextrin, dextran, chondroitin sulfate, gelatin, and proteoglycan are suitable.
  • Synthetic polymer materials such as polyvinyl pyrrolidone, polybille alcohol (partially saponified product), and polyacrylic acid (salt) can also be used. It is also possible to improve the physical properties of the microneedles by blending these polymers or blending low-molecular water-soluble substances. If the microneedle array manufactured in this way is added with various tapes such as adhesive tapes and bar sheets to make the product easy to use, a microneedle patch having a drug only at the tip is obtained.
  • Patent Document 7 In the method of impregnating both the needle portion and the substrate portion with a drug that has been reported many times, there is a limit even if the substrate portion is thinned, and 50 ⁇ m is necessary. In that case, there is a disadvantage that more drug is present in the substrate part than the drug in the microneedle array, and the drug present in the substrate part is not administered into the skin (Patent Document 7).
  • a drug-containing material solution is cast on a microneedle mold, and after drying, the substrate material is removed leaving the microneedle, and then a drug-free material solution is cast and dried to dry the substrate.
  • Patent Document 10 There is also an attempt to form (Patent Document 10).
  • this method has a drawback in that the drug diffuses into the substrate material solution when the material solution is applied and the amount of the drug in the needle portion is reduced.
  • the waste of the drug can be prevented and the drug can be used economically and effectively. This is because even if a drug is present in the substrate, it is not absorbed into the body by skin penetration of the microneedle.
  • This method dissolves the drug in a solvent and welds it to the tip of the microneedle, so there is no need to heat the drug.
  • Many useful drugs decompose by heating at about 100 ° C., and it has been difficult to apply the conventional method, but this method has no weak point.
  • the tip of the microneedle is brought into contact with a solution containing both the drug and the microneedle material and the drug is taken into the microneedle, the interface between the original part and the newly attached part disappears, and the microneedle is integrated. It becomes the target. When integrated, only the drug does not fall off when the microneedle is inserted into the skin.
  • drying may be performed as necessary, such as air drying, air blowing, hot air blowing, or nitrogen gas blowing. It is also possible to seal the aluminum pouch together with a desiccant without drying.
  • FIG. 1 is a schematic view of the microneedle welding method of the present invention.
  • FIG. 2 is a diagram showing the time change of blood glucose level after insulin administration in diabetic model rats.
  • FIG. 3 is a graph showing changes in blood glucose level over time after administration of exendin-4 in GK rats.
  • FIG. 4 is a graph showing the change over time in drug concentration after administration of exendin-4 in GK rats.
  • FIG. 5 is a post-weld microneedle photograph created by changing the microneedle array contact depth to the drug solution.
  • the microneedle array is immersed in the drug solution surface from above (FIG. 1).
  • the microneedle array is placed face up, and the chemical solution impregnated in the sponge is brought into contact from above.
  • the drug solution is flowed from above as a laminar flow, and the microneedle array is turned sideways and brought into contact for a short time.
  • the method (1) is used, but the methods (2) and (3) can also be adopted.
  • Example 1 (Production of drug-containing microneedles by welding method)
  • the microneedle array of Example 1 was manufactured using a template. After the frustoconical microneedle pattern is formed by the lithography method of irradiating the photosensitive resin with light, the frustoconical microneedle forming recess is formed by transferring the frustoconical microneedle pattern by electroforming. Used molds.
  • the microneedle array was formed in a circular shape having a diameter of 10 mm.
  • Hyaluronic acid was used as a water-soluble polymer.
  • Hyaluronic acid aqueous solution is a high molecular weight hyaluronic acid having a weight average molecular weight of 100,000 (from Kibun Food Chemifa Co., Ltd., trade name “FCH-SU”), derived from culture) and 13.5 parts by weight and a low molecular weight hyaluron having a weight average molecular weight of 10,000. It was obtained by dissolving 1.5 parts by weight of acid (made by Kewpie Co., Ltd., trade name “Hialoligo”, derived from culture) in 85 parts by weight of water.
  • This hyaluronic acid aqueous solution was cast on a mold, heated to evaporate water, and peeled off from the mold to obtain a hyaluronic acid microneedle array.
  • the obtained microneedles reflected the shape of the mold, and had a truncated cone shape with a root diameter of 0.16 mm, a tip diameter of 0.03 mm, and a height of 0.8 mm.
  • the microneedle array had a circular shape with a diameter of 10 mm, with microneedles arranged in a grid at intervals of 0.6 mm.
  • bovine insulin (Nacalai Tesque Co., Ltd.) was dissolved in an aqueous hydrochloric acid solution having a pH of 2.5, and the aqueous solution was added to the aqueous hyaluronic acid solution to obtain a drug solution having a concentration of 1.0 unit (U) / ml.
  • the viscosity was 25 dPa ⁇ s.
  • the microneedle array 2 obtained above the drug solution 1 was placed. As shown in FIG. 1 (b), the microneedle array 2 was lowered and the tip of the microneedle 100 ⁇ m was contacted for 1 second. Thereafter, as shown in FIG. 1 (c), the microneedle array 2 was pulled up. Air-dried to obtain 20 pieces of tip-end insulin-concentrated microneedle arrays 2A shown in FIG. 1 (d).
  • the amount of insulin attached to the tip was measured.
  • Grazyme insulin-EIA TEST kit (Wako Pure Chemical Industries, Ltd.) was used. It was confirmed that one microneedle array contained 0.25 unit of insulin. The content variation was within 20%.
  • the abdomen of a diabetic model rat (weight approximately 300 g) prepared by administration of streptozotocin was removed. After fasting this rat for 14 hours or more, the microneedle array was inserted into the hair removal skin, and the microneedle array was fixed to the skin with excellent skin bonds (manufactured by Nitto Denko). After administration of the microneedle array, blood was collected after 0.5, 1 and 2 hours, and blood glucose level was measured. Glucose CII-test kit (Wako Pure Chemical Industries, Ltd.) was used for blood glucose level measurement. The number of tests was 4.
  • Insulin was administered to the rats by subcutaneous injection.
  • Example 2 Manufacture of drug-containing microneedles by welding method: When hyaluronic acid is the main component
  • the water-soluble polymer solution contains 6 parts by weight of hyaluronic acid (manufactured by Kibun Food Chemifa Co., Ltd., weight average molecular weight 800,000, trade name FCH-80L) and 3 parts by weight of polyvinylpyrrolidone (trade name Kollidon 12PF, manufactured by BASF Japan Ltd.). Obtained by dissolving in 91 parts of water.
  • a microneedle array was produced in the same manner as in Example 1 except that the composition of the water-soluble polymer solution and drying were not air drying but nitrogen gas blowing. The shapes and dimensions of the microneedles and the microneedle array are the same as those in the first embodiment.
  • Exendin-4 (Wako Pure Chemical Industries, Ltd.) was used as a drug.
  • Exendin-4 is a therapeutic agent for type II diabetes, a protein having a molecular weight of 4200, and has a blood glucose lowering effect.
  • a drug solution was prepared by dissolving exendin-4 at 30 mg / ml in a 10% by weight aqueous solution of high molecular weight hyaluronic acid having a weight average molecular weight of 100,000 (manufactured by Kibun Food Chemical Co., Ltd., trade name FCH-SU, derived from culture). did.
  • the tip of the microneedle array 200 ⁇ m was taken out immediately after coming into contact with the drug solution and dried by blowing nitrogen gas to prepare 20 drug tip welded microneedle arrays.
  • a microneedle array using polymethyl methacrylate (MMA) as a raw material was prepared using the same template as used in Example 1.
  • a 10% toluene solution of MMA (Wako Pure Chemical Industries, Ltd.) was poured into a mold and dried at 40 ° C. for 48 hours to produce an MMA microneedle array having the same shape as in Example 2.
  • a 200 ⁇ m tip of the microneedle array was brought into contact with the same drug solution as in Example 2 using a jig, and immediately taken out and dried by blowing nitrogen gas to produce a drug tip welded microneedle.
  • Exendin-4 abundance was determined by enzyme immunoassay.
  • Exendin-4 EIA kit (Wako Pure Chemical Industries, Ltd.) determined the concentration of exendin-4 in the sample using a solution prepared by dissolving drug-welded microneedles in ion-exchanged water or blood collected from a rat vein. .
  • the amount of exendin-4 adhering to the tip was measured by using this method. Whether hyaluronic acid is the main component or MMA, it was confirmed that 10 ⁇ g of exendin-4 was contained in one microneedle array. The content variation was within 15%.
  • exendin-4 was transdermally administered to rats to perform a glucose tolerance test, and compared with the subcutaneous injection method and the control.
  • Glucose CII-test kit (Wako Pure Chemical Industries, Ltd.) was used for blood glucose level measurement.
  • Exendin-4 blood concentration change test Using the manufactured microneedle array, exendin-4 was transdermally administered to rats, and exendin-4 blood concentration change test was performed, and compared with the subcutaneous injection method and the control.
  • the subcutaneous injection method was performed as follows.
  • a GK rat spontaneous type 2 diabetes model (8-week-old male, Shimizu Experimental Materials Co., Ltd.) was fasted for 14 hours or more, and then 10 ⁇ g exendin-4 was administered by subcutaneous injection. Thirty minutes later, 2 g / kg body weight equivalent of glucose was intraperitoneally administered. After administration of glucose, blood was collected after 15, 30, 60, 90 and 120 minutes, and blood glucose level and exendin-4 concentration were measured. The number of tests was 5.
  • Control was performed as follows. 30 minutes after fasting the GK rat spontaneous onset type 2 diabetes model (same as above) for 14 hours or more, glucose equivalent to 2 g / kg body weight was intraperitoneally administered. After administration of glucose, blood was collected after 15, 30, 60, 90 and 120 minutes, and blood glucose level and exendin-4 concentration were measured. The number of tests was 3 cases.
  • FIG. 4 shows the time course of blood exendin-4 concentration after glucose loading 30 minutes after drug administration.
  • the symbols in the figure are the same as those in FIG.
  • the blood glucose level of the Control group after glucose loading is rapidly increased.
  • C In the 10 ⁇ g group and the MN (HA) 10 ⁇ g group, the increase in blood glucose level is suppressed.
  • the blood glucose level of the MN (MMA) group is lower than that of the Control group, but is much higher than that of the MN (HA) 10 ⁇ g group.
  • FIGS. 3 and 4 show that the drug (exendin-4) welded to the hyaluronic acid microneedles has an extremely large amount of penetration into the drug by applying the microneedle to the skin as compared to the case of attaching to the polymethylmethacrylate microneedles. Thereby, it is shown that the blood glucose level lowering effect is also great.
  • Administration with MN (HA) shows the same behavior as subcutaneous injection, indicating that all drugs welded to the microneedle penetrate into the body.
  • MN MMA
  • MN MN
  • Example 3 High-molecular-weight hyaluronic acid with a weight-average molecular weight of 100,000 (manufactured by Kibun Food Chemifa Co., Ltd., trade name FCH-SU, derived from culture) was prepared in various concentrations, and the ratio of hyaluronic acid and water to the following viscosity Adjusted.
  • the viscosity of the prepared solution was 0.5, 1.0, 5.0, 20, 50, 90, 150 dPa ⁇ s.
  • the room temperature was 25 degrees.
  • Red No. 102 (Wako Pure Chemical Industries, Ltd.) was uniformly dissolved in these seven aqueous solutions having different concentrations to a concentration of 0.5%.
  • microneedle array a circular microneedle array having a diameter of 1.0 cm was prepared in the same manner as in Example 1.
  • the microneedle array tip part 150 ⁇ m was brought into contact with the obtained hyaluronic acid aqueous solutions having various viscosities for 1 second, and then taken out and air-dried.
  • one microneedle array was dissolved in 2 ml of ion-exchanged water, and the concentration of red No. 102 was measured by absorbance at 510 nm.
  • the amount of welding per microneedle array of various aqueous solutions with different hyaluronic acid concentrations was calculated from the measured values, and the results are shown in the table below.
  • aqueous solution viscosity When the aqueous solution viscosity is low, the amount of welding is low. The handling becomes worse as the height increases, and the shape of the needle becomes irregular. Appropriate aqueous solution viscosity was found to be 1.0 to 90 dPa ⁇ s, more desirably 5.0 to 50 dPa ⁇ s.
  • Example 1 Using the microneedle forming mold recess used in Example 1, the following microneedle array having a diameter of 1 cm was prepared.
  • the water-soluble polymer solution is composed of 14.995 parts by weight of hyaluronic acid (manufactured by Kibun Food Chemifa Co., Ltd., molecular weight 800,000, trade name FCH-80L), 0.005 parts by weight of red No. 102 dye as a model drug, and 85 parts of water.
  • Comparative Example 2 A microneedle array was molded on the mold in the same manner as in Comparative Example 1 except that the mold filling amount of the aqueous solution was 0.15 ml. Next, the substrate portion existing in the form of a film on the mold surface was carefully wiped with wet cotton.
  • Red 102 model drug originally existed only in the needle part.
  • this result shows that the drug diffuses from the needle part to the substrate part in the process of casting the hyaluronic acid aqueous solution on the mold and drying it to form the substrate part.
  • Example 4 An aqueous solution of high molecular weight hyaluronic acid having a weight average molecular weight of 100,000 (manufactured by Kibun Food Chemifa, trade name FCH-SU, derived from culture) was prepared. The viscosity of the solution was 5.0 dPa ⁇ s. The room temperature was 25 ° C. In this aqueous solution, FD4 (fluorescene dextran, model compound, Wako Pure Chemical Industries, Ltd.) was uniformly dissolved to a concentration of 5%. A circular microneedle array having a diameter of 1.0 cm was prepared using the same mold as in Example 1 except that the height of the microneedle array was 0.65 ⁇ m.
  • the tip of the microneedle array was brought into contact with the obtained hyaluronic acid aqueous solution for 1 second, and then taken out and air-dried. At that time, the needle length was adjusted by setting the contact depth of the tip to 150 ⁇ m and 250 ⁇ m.
  • the microneedle with the model drug welded to the tip was shortened by partially dissolving the tip.
  • the length of the needle when not in contact was 650 ⁇ m, but it could be about 640 ⁇ m and about 570 ⁇ m, respectively, by contact with 150 ⁇ m and 250 ⁇ m. See FIG. This shows that the needle length could be adjusted by changing the contact depth of the microneedle to the chemical solution.
  • microneedle patch according to the present invention is expected to be widely used in the fields of medicine and beauty.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 本発明は、マイクロニードルの先端部のみに薬物を保持させたマイクロニードルアレイとその製造方法を提供する。 マイクロニードルの先端部のみに薬物を保持させたマイクロニードルアレイ2Aは、マイクロニードル溶着法すなわちa)水溶性高分子を素材としてマイクロニードルアレイ2を作成し、b)該マイクロニードルアレイ2の先端に付着させる薬物溶液1を作成し、c)該マイクロニードルアレイ2の先端を該薬物溶液1に短時間接触させて、製造できる。薬物溶液1を水溶液とし、生分解性高分子を水溶性とし、水溶液には薬物のほか生分解性高分子をも高濃度に溶解して粘度を高くしておくならば、付着した薬物はマイクロニードルと一体的となり、刺入に際し薬物のみが剥がれ落ちることがない。

Description

マイクロニードル溶着法
 本発明は皮膚表層及び/又は皮膚角質層に修飾効果及び/又は機能効果を与えるためのマイクロニードル溶着法に関する。
 薬物を人の体内に投与する手法として、経口的投与と経皮的投与がよく用いられている。注射は代表的な経皮的投与法である。しかし、注射は医師・看護師のような専門家の手を煩わせねばならず、苦痛を伴い、更にエイズやB型肝炎などの感染もあり得る、多くの人にとって歓迎すべからざる手法である。これに対し、最近マイクロニードルアレイを利用した、苦痛を伴わない経皮的投与法が注目されてきた(非特許文献1)。
 薬物の経皮的投与の際、皮膚角質層は薬物透過のバリアとして働き、単に皮膚表面に薬物を塗布するだけでは透過性は必ずしも十分ではない。これに対し微小な針、すなわちマイクロニードルを用いて角質層を穿孔することにより、塗布法より薬物投与効率を格段に向上させることができる。このマイクロニードルを基板上に多数集積したものがマイクロニードルアレイである。また、マイクロニードルアレイに、マイクロニードルアレイを皮膚に付着させるための粘着テ-プや使用まで無菌状態を維持するためのカバーシートなど各種テープを付加して使用しやすい製品としたものをマイクロニードルパッチという。
 ここにテ-プとは、フィルムに粘着剤を塗布したものをいう。
 マイクロニードルの素材としては、当初、金属やシリコンが用いられていた。ステンレス針で皮膚を穿孔し、その上に薬液を流してその穴より薬物を吸収させる方法(特許文献1)や、ステンレス針の表面に薬物を被覆したうえ刺入して薬物を投与する方法(特許文献2)が提案された。さらには、単に注射針を微小化した中空マイクロニードルにより薬液を注入することも提案された(特許文献3)。
 しかし、薬液流延法は薬物取込効率が悪いのみか滅菌性に疑問があり、被覆法は被覆薬物が刺入時に剥がれて薬物取込効率が低く、微小注射針法は構造が複雑となる等の欠点があった。さらに金属やシリコンマイクロニードルは、体内で折れたとき事故となる欠点があった。
 これに対し、体内で溶解する物質を用いてマイクロニードルを作成すればこのような諸問題を解決することができる(特許文献4)。また、マイクロニードルの素材として皮膚投与後皮膚内で水分により溶解する高分子(生体溶解性高分子)を用いると、マイクロニードルの皮膚適用により皮膚内水分が針部に拡散し、皮膚に差し込まれた針部が膨潤しその後溶解する。針部の溶解によるヒアルロン酸やコラーゲンの皮膚内拡散により抗しわ作用を発現し、あるいは針部に前もって溶解させている薬物や有価物質を皮膚内に放散する(特許文献5、6)。
 生体溶解性高分子からなるマイクロニードルアレイは、鋳型を用いて製造されることが多い(特許文献5)。感光性樹脂を用いてリソグラフィ法によりマイクロニードルパターンを形成した後転写し、マイクロニードル形成用凹部を有する鋳型を作成する。マイクロニードル素材をこの鋳型上に流延し、次に加熱して水分を蒸発させた後、固化したものを鋳型から剥離してマイクロニードルアレイを得ることができる。
 マイクロニードルアレイに含有させる薬物には非常に高価なものや微量しか得られないものもある。そのような高価貴重な薬物を素材に含有させて常法によりマイクロニードルアレイを作成すると、薬物はマイクロニードル部分のみならず基板部分にも含まれることとなる(特許文献7)。このマイクロニードルアレイを皮膚に刺入すると、マイクロニードル部分に含まれる薬物は体内に取り込まれ拡散するが、基板部分に存在する薬物は利用されることなく廃棄され、高価な薬物の利用効率が低い結果となる。
 高価な薬物を効率的に利用する試みはすでにいくつか知られている。マイクロニードル表面を被覆する方法(特許文献2)の他、薬物をマイクロニードル先端に付着させる方法(特許文献8)、マイクロニードルが柔らかい内に遠心分離して薬物をニードル先端に集める方法(特許文献9)、鋳型に薬物入り素材溶液を充填し乾燥後薬物を含まない素材溶液を充填してマイクロニードル先端部にのみ薬物を保持させる方法(特許文献10)などが報告されている。この薬物を先端に付着させる特許文献8の方法は、薬物を約100℃に加温し溶解させてマイクロニードル先端部に付着させる点に特色がある。
特開平3-151982号公報 特開2008-029710号公報 特表2002-517300号公報 特開2003-238347号公報 特開2009-273872号公報 特開2010-029634号公報 特開2008-303162号公報 特開2006-346127号公報 特表2009-507573号公報 特再表2009-066763号公報
権英淑、神山文男「マイクロニードル製品化への道程」、薬剤学、社団法人日本薬剤学会、平成21年9月、第69巻、第4号、p.272-276.
 本発明が解決しようとする課題は、従来技術の問題点を解決し、高価な薬物の有効利用を図る新しい方法を提供することである。
 薬物をマイクロニードルの先端に付着させる特許文献8の方法はそのため薬物を100℃以上に加温するならば、高価貴重な薬物が熱分解する場合が多い。従って、薬物をマイクロニードル先端に付着させるとき、加温することは避けるべきである。
 また特許文献8の方法では、薬物は単にマイクロニードル先端に付着したものであるため、薬物の付着強度が弱くマイクロニードルを皮膚に刺入するに際し付着部分が折れて薬物が剥がれたりし、薬物が十分取り込まれない問題点を有している。これらの問題点を解決する必要がある。
 上記課題を解決するためになされた本発明に係わるマイクロニードル溶着法は、
 a)水溶性高分子を素材としてマイクロニードルアレイを作成し、
 b)該マイクロニードルアレイ先端に付着させる薬物溶液を作成し、
 c)該マイクロニードルアレイの先端を該薬物溶液に短時間接触させて、
 先端に薬物を溶着させたマイクロニードルアレイを製造することを特徴とする。
 マイクロニードルアレイ先端に効率よく薬物を付着させるためには、マイクロニードルアレイ素材と薬物溶液は相溶性があることが好ましい。そのためには薬物とマイクロニードル素材が共に水溶性であることが好ましい。薬物溶液は水を主としてそれに混和する有機溶媒との混合液であってもよい。水に混和する有機溶媒の例は、エタノール、アセトンである。
 さらに薬物溶液に水溶性高分子を溶解させて薬物溶液の粘度を高めておくことが好ましい。水溶性高分子の溶解により粘度が上昇し、マイクロニードル先端部への薬物溶液の溶着量が増大するからである。水溶性高分子の水溶液中の濃度は1~20%、好ましくは2~15%である。水溶性高分子の濃度が小さければ薬物溶液のニードル接触による溶着量が少なく、また濃度が高すぎると流動性がなくなり溶着操作がスムースに行われにくくなる。
 薬物溶液中の水溶性高分子の適正な濃度は、薬物溶液の溶液粘度により決めることができる。薬物溶着に好ましい薬物溶液の粘度は、1.0dPa・s~90dPa・sの範囲である。薬物溶液の粘度が1.0dPa・s未満であると、粘度が低すぎて溶着量が少なくなる。また90dPa・sを超えると薬物溶液への接触後引き離しても糸引きが起こりがちである。なお、粘度はいずれも室温(25℃)での値とする。
 該マイクロニードルアレイの先端を該薬物溶液に接触させる時間は、長すぎると水溶性マイクロニードル素材が薬物溶液中で溶解してしまうので、0.01~5秒が望ましい。
 薬物とマイクロニードル素材である水溶性高分子を併せて薬物水溶液とすることにより、マイクロニードル先端部を薬物水溶液に浸したとき、先端部が部分的に溶解するため薬物は水溶性高分子と一体的にマイクロニードル先端に取り込まれることとなる。このように薬物と素材が一体化したマイクロニードルは皮膚刺入の際、溶着部分すなわち薬物が剥がれ落ちることがなく、薬物が体内に完全に取り込まれることとなる。
 ここに、一体的とは、元のマイクロニードル先端部と新たに溶着した部分との間に明確な境界面が存在しないことをいう。境界部分では、薬物は濃度勾配を有しているものと思われる。このような一体化することを特徴とする方法を溶着法という。
 本発明でいう薬物には、体内に取り込まれることにより何らかの効果を生じる全ての物質を含むものとする。
 高価な薬物や大量に得ることが困難な薬物を経皮的に人体に投与したいとき、本方法を用いるのが適当である。安価な薬物や大量に得られる薬物については、常法に従い、当初より薬物をマイクロニードル素材に混合し、その混合素材よりマイクロニードルを作成すればよい。
 薬物が有機溶剤にのみ溶解するときは、その有機溶剤に薬物を溶解した溶液を水溶性高分子水溶液中に混合して薬物水溶液を作製し同様な手順の手順を用いることができる。また薬物が完全に水溶性高分子溶液中に溶解せずに粒子状に懸濁した場合であっても懸濁が均一でありかつ粒子径が数μm以下であれば溶着及び体内投与は薬物が溶解した場合と同様に挙動する。
 本発明の目的に適した薬物の例としては数mgの体内投与で有効性を発揮する薬物であればあらゆる薬物が対象となるが特に高分子医薬に有効である。例えば、生理活性ペプチド類とその誘導体、核酸、オリゴヌクレオチド、各種の抗原蛋白質、バクテリア、ウイルスの断片等が挙げられる。
 上記生理活性ペプチド類とは、例えば、インスリン、エクセンジン-4、エクセンジン-4誘導体、カルシトニン、副腎皮質刺激ホルモン、副甲状腺ホルモン(PTH)、hPTH(1→34)、セクレチン、オキシトシン、アンギオテンシン、β-エンドルフィン、グルカゴン、バソプレッシン、ソマトスタチン、ガストリン、黄体形成ホルモン放出ホルモン、エンケファリン、ニューロテンシン、心房性ナトリウム利尿ペプチド、成長ホルモン、成長ホルモン放出ホルモン、ブラジキニン、サブスタンスP、ダイノルフィン、甲状腺刺激ホルモン、プロラクチン、インターフェロン、インターロイキン、G-CSF、グルタチオンパーオキシダーゼ、スーパーオキシドディスムターゼ、デスモプレシン、ソマトメジン、エンドセリン、EGF、FGFなど皮膚関連成長因子、ボツリヌストキシン、及びこれらの塩等が挙げられる。抗原蛋白質ないしはウイルス断片としては、インフルエンザ抗原、破傷風抗原、ジフテリア抗原、HBs表面抗原、HBe抗原等が挙げられる。が挙げられる。これらは本発明の薬物水溶液中に溶解あるいは懸濁状態で均一に分散していることが必要である。
 本発明のマイクロニードル素材として、ヒアルロン酸、コラーゲンやデキストリン、デキストラン、コンドロイチン硫酸、ゼラチン、プロテオグリカン等の水溶性天然物高分子物質が適当である。ポリビニルピロリドン、ポリビルルアルコール(部分ケン化物)、ポリアクリル酸(塩)等の合成高分子物質も使用し得る。またそれら高分子同士のブレンドあるいは低分子水溶性物質をブレンドしてマイクロニードルの物性を改善することも可能である。このようにして製造したマイクロニードルアレイに、粘着テ-プやバーシートなど各種テープを付加して使用しやすい製品とすれば、薬物を先端にのみ有するマイクロニードルパッチとなる。
 従来多くの報告があるような薬物をニードル部と基板部双方に含浸させる方法では、基板部を薄くしてもその限界があり50μmは必要である。その場合はマイクロニードルアレイ中の薬物に比べさらに多くの薬物が基板部に存在し、基板部に存在する薬物は皮膚内に投与されないという欠点を有する(特許文献7)。
 また、上記欠点を補うためにマイクロニードル用鋳型に薬物入り素材溶液を流延し、乾燥後マイクロニードルを残して基板素材を除去後に薬物を含まない素材溶液を流延し、乾燥させて基板を形成する試みもある(特許文献10)。しかしながらこの方法では素材溶液を塗布した時点において薬物が基板素材溶液中に拡散してしまい針部の薬物量が減少するという欠点を有する。
 これらの点については、実施例中の比較例1、2を参照されたい。
 高価かつ貴重な薬物を、マイクロニードルの先端部のみに保持することにより、薬物の無駄を防ぎ、薬物を経済的かつ有効に利用することができる。基板内に薬物が存在していても、マイクロニードルの皮膚刺入により体内に吸収されることがないためである。
 本方法は、薬物を溶媒に溶かしてマイクロニードルの先端に溶着させるものであるから、薬物を加熱する必要がない。有用な薬物の中には100℃程度の加熱で分解するものが多く、従来法の適用が困難であったが、本方法にはその弱点がない。
 薬物とマイクロニードル素材とを共に含む溶液にマイクロニードル先端部を接触させてマイクロニードルに薬物を取り込む方式とすれば、元の部分と新たに付着した部分との境界面がなくなり、マイクロニードルは一体的となる。一体的であるときは、マイクロニードルを皮膚に刺入するに際し、薬物のみが剥がれ落ちることがない。
 本方法においては乾燥は風乾、空気吹き付け、熱風吹き付け、窒素ガス吹き付け、などを必要に応じて採用することができる。また乾燥することなくアルミパウチ等に乾燥剤とともに密封することも可能である。
 また本方法において、薬物溶液との接触時間、ニードルの接触深さ、などを変化させることによりニードルの長さを調整することが可能であり、これは本溶着法の他法に比べての大きな特徴である。
図1は、本発明のマイクロニードル溶着法の概略図である。 図2は、糖尿病モデルラットのインスリン投与後の血糖値の時間変化を示す図である。 図3は、GKラットのエクセンジン-4投与後の血糖値の時間変化を示す図である。 図4は、GKラットのエクセンジン-4投与後の薬物濃度の時間変化を示す図である。 図5は、薬物溶液へのマイクロニードルアレイ接触深さを変え作成した溶着後マイクロニードル写真である。
 薬物溶液とマイクロニードルの先端部とを接触させるには次のような方法がある。
 (1)薬物溶液面にマイクロニードルアレイを上から浸漬する(図1)。
 (2)マイクロニードルアレイを上向きに置きスポンジに含浸させた薬液を上から接触させる。
 (3)薬液を層流として上から流しマイクロニードルアレイを横向きにして短時間接触させる。
 以下の実施例においては(1)の方法によっているが、(2)、(3)の方法を採用することもできる。
 次に、本発明の実施例を図面を参照して詳細に説明するが、本発明は実施例に限定されるものではない。
 〔実施例1〕
 (溶着法による薬物含有マイクロニードルの製造)
 実施例1のマイクロニードルアレイは、鋳型を用いて製造した。感光性樹脂に光照射するリソグラフィ法により円錐台型のマイクロニードルパターンを形成した後、電鋳加工することにより円錐台型のマイクロニードルパターンを転写した円錐台型のマイクロニードル形成用凹部が形成された鋳型を用いた。
 マイクロニードル形成用鋳型凹部は根元の直径が0.16mm、先端直径が0.03mm、深さ0.8mmの円錐台状であり、0.6mm間隔に格子状に配列されており、1cmあたり250個形成されている。又、マイクロニードルアレイは直径10mmの円形に形成した。
 水溶性高分子としてヒアルロン酸を用いた。ヒアルロン酸水溶液は、重量平均分子量10万の高分子量ヒアルロン酸(株式会社紀文フードケミファ製、商品名「FCH-SU」)、培養由来)13.5重量部と重量平均分子量1万の低分子量ヒアルロン酸(キューピー株式会社製、商品名「ヒアルオリゴ」、培養由来)1.5重量部を水85重量部に溶解して得た。このヒアルロン酸水溶液を鋳型上に流延し、加熱して水分を蒸発させ、鋳型から剥離しヒアルロン酸マイクロニードルアレイを得た。得られたマイクロニードルは上記金型の形を反映したものであり、根元の直径が0.16mm、先端直径が0.03mm、高さ0.8mmの円錐台状であった。マイクロニードルアレイは、マイクロニードルが0.6mm間隔に格子状に配列されており、直径10mmの円形であった。
 別途、牛インスリン(ナカライテスク株式会社)をpH2.5の塩酸水溶液に溶解し水溶液を上記ヒアルロン酸水溶液に添加し1.0ユニット(U)/ml濃度の薬物溶液を得た。粘度は25dPa・sであった。
 図1(a)に示すように、薬物溶液1の上方に得られたマイクロニードルアレイ2を配置した。図1(b)に示すように、マイクロニードルアレイ2を降下させてマイクロニードルの先端部100μmを1秒間接触させた。その後、図1(c)に示すように、マイクロニードルアレイ2を引き上げた。風乾して図1(d)に示す先端部インスリン濃縮マイクロニードルアレイ2Aを20枚得た。
 得られたマイクロニードルアレイ2Aを顕微鏡観察するとニードル先端部は図1(d)のように膨れていた。元のマイクロニードルと溶着部分であるインスリン含有ヒアルロン酸とはまったく一体化していることが観察された。
 得られたマイクロニードルアレイ3枚を使用して先端に付着したインスリン量を測定した。測定はグラザイムinsulin-EIA TEST キット(和光純薬工業株式会社)を利用した。マイクロニードルアレイ1枚にインスリン0.25ユニットを含有していることを確認した。含有量のばらつきは20%以内であった。
 (血糖値測定試験)
 製造したマイクロニードルアレイを用い、ラットにインスリンを経皮投与した。
 ストレプトゾトシン投与により作成した糖尿病モデルラット(体重約300g)の腹部を除毛した。このラットを14時間以上絶食させた後、除毛皮膚にマイクロニードルアレイを刺入し、優肌絆(日東電工製)でマイクロニードルアレイを皮膚に固定した。マイクロニードルアレイ投与後、0.5、1、2時間経過後に採血し血糖値を測定した。血糖値の測定はGlucose CII-test kit(和光純薬工業株式会社)を用いた。試験数は4例であった。
 皮下注射によりラットにインスリンを投与した。
 糖尿病モデルラットを14時間以上絶食させた後、皮下注射により0.25ユニットのインスリンを投与した。インスリン投与後、0.5,1、2時間経過後に採血し血糖値を測定した。血糖値の測定は実施例1と同様にGlucose CII-test kitを用いた。試験数は4例であった。
 血糖値測定試験の基準として、コントロール(インスリン投与なし)の測定を行った。
 糖尿病モデルラットを14時間以上絶食させた後、0.5、1、2時間経過後に採血し血糖値を測定した。血糖値の測定は実施例1と同様にGlucose CII-test kitを用いた。試験数は4例であった。
 (血糖値試験の結果と考察)
 上記3つの試験結果を血糖値の時間変化として図2に示した。それぞれの0時間値(初期値)を100として、血糖値の相対値を示す。本図から明らかなように、血糖値は、マイクロニードル投与法によれば皮下注射投与法と同様に降下した。
 〔実施例2〕
 (溶着法による薬物含有マイクロニードルの製造:ヒアルロン酸が主成分の場合)
 水溶性高分子溶液はヒアルロン酸(株式会社紀文フードケミファ製、重量平均分子量80万、商品名FCH-80L)6重量部及びポリビニルピロリドン(BASFジャパン株式会社製、商品名コリドン12PF)3重量部を水91部に溶解して得た。水溶性高分子溶液組成及び乾燥を風乾でなく窒素ガス吹き付けであることを除いては実施例1と同様の操作でマイクロニードルアレイを製造した。マイクロニードル及びマイクロニードルアレイの形状・寸法は実施例1と同じである。
 薬物としてエクセンジン-4(和光純薬工業株式会社)を使用した。エクセンジン-4はII型糖尿病治療薬であり、分子量4200のたんぱく質であり、血糖値降下作用を有する。重量平均分子量10万の高分子量ヒアルロン酸(紀文フードケミカル社製、商品名FCH-SU、培養由来)の10重量%の水溶液にエクセンジン-4を30mg/mlになるよう溶解して薬物溶液を調整した。
 冶具を用いてマイクロニードルアレイの先端200μmを薬物溶液に接触しただちに取出して窒素ガスを吹き付けて乾燥させ、薬物先端溶着マイクロニードルアレイを20枚作製した。
 (溶着法による薬物含有マイクロニードルの製造:ポリメチルメタクリレートの場合)
 実施例1に用いたと同様の鋳型を用いてポリメチルメタクリレート(MMA)を素材とするマイクロニードルアレイを作製した。MMA(和光純薬工業株式会社)の10%トルエン溶液を鋳型に注入し40℃で48時間乾燥させて実施例2と同一形状のMMAマイクロニードルアレイを作製した。冶具を用いてマイクロニードルアレイの先端200μmを実施例2と同様の薬物溶液に接触し、ただちに取出して窒素ガスを吹き付けて乾燥させて薬物先端溶着マイクロニードルを作製した。
 (エクセンジン-4の存在量の確認)
 エクセンジン-4の存在量は酵素免疫測定法により決定した。薬物溶着マイクロニ―ドルをイオン交換水に溶解させた溶液、又はラット静脈から採血した血液を試料とし、Exendin-4 EIA kit(和光純薬工業株式会社)により試料中のエクセンジン-4濃度を決定した。
 作成したマイクロニードルアレイ3枚を使用して先端に付着したエクセンジン-4の量をこの方法で測定した。ヒアルロン酸が主成分の場合もMMAの場合も、マイクロニードルアレイ1枚にエクセンジン-4が10μg含まれていることを確認した。含有量のばらつきは15%以内であった。
 (血糖値測定試験)
 製造したマイクロニードルアレイを用い、ラットにエクセンジン-4を経皮投与して糖負荷試験を行い、皮下注射法及びコントロールと比較した。
 GKラット、自然発症2型糖尿病モデル(8週齢オス、清水実験材料株式会社より購入)を麻酔後、背部を除毛した。14時間以上絶食させた後、除毛皮膚にマイクロニードルアレイを刺入し、優肌絆(日東電工製)で皮膚に固定した。マイクロニードルアレイ投与30分後に2g/kg体重相当量のぶどう糖を腹腔内投与した。投与後、15、30、60、90、120分経過後に採血し血糖値を測定した。試験数は5例であった。
 血糖値の測定はGlucose CII-test kit(和光純薬工業株式会社)を用いた。
 (エクセンジン-4血中濃度変化試験)
 製造したマイクロニードルアレイを用い、ラットにエクセンジン-4を経皮投与してエクセンジン-4血中濃度変化試験を行い、皮下注射法及びコントロールと比較した。
 GKラット、自然発症2型糖尿病モデル(8週齢オス、清水実験材料株式会社より購入)を麻酔後、背部を除毛した。14時間以上絶食させた後除毛皮膚にマイクロニードルアレイを刺入し、優肌絆(日東電工製)で皮膚に固定した。マイクロニードルアレイ投与30分後に2g/kg体重相当量のぶどう糖を腹腔内投与した。糖投与後、15、30、60、90、120分経過後に採血し、エクセンジン-4の濃度を測定した。試験数は5例であった。
 血糖値測定試験及び薬物血中濃度変化試験のいずれにおいても、マイクロニードル経皮投与法と比較するため、皮下注射投与法と薬物を投与しないコントロール試験を行った。
 皮下注射投与法は次のように行った。GKラット自然発症2型糖尿病モデル(8週齢オス、清水実験材料株式会社)を14時間以上絶食させた後皮下注射により10μgのエクセンジン-4を投与した。その30分後に2g/kg体重相当量のぶどう糖を腹腔内投与した。ブドウ糖投与後、15、30、60、90、120分経過後に採血し、血糖値及びエクセンジン-4の濃度を測定した。試験数は5例であった。
 コントロールは次のように行った。GKラット自然発症2型糖尿病モデル(同上)を14時間以上絶食させた30分後に2g/kg体重相当量のぶどう糖を腹腔内投与した。ブドウ糖投与後、15、30、60、90、120分経過後に採血し、血糖値及びエクセンジン-4の濃度を測定した。試験数は3例であった。
 糖負荷後の血糖値の時間変化を図3に示す。図における記号は以下のようである。
 Control:エクセンジン-4投与なし
 S.C.10μg:エクセンジン-4を皮下注射により投与
 MN(HA)10μg:エクセンジン-4をヒアルロン酸が主成分のマイクロニードルにより投与
 MN(MMA)10μg:エクセンジン-4をMMAのマイクロニードルにより投与
 薬物投与30分後に糖負荷し、その後の血中エクセンジン-4濃度の時間変化を図4に示す。図中の記号は図3と同じである。
 (試験結果及び考察)
 図3によれば、ブドウ糖負荷後Control群の血糖値は急激に上昇しているが、S.C.10μg群及びMN(HA)10μg群では血糖値の上昇が抑えられている。一方、MN(MMA)群の血糖値はControl群よりは低いがMN(HA)10μg群の血糖値に比較してはるかに高い。この結果は同じ10μgを先端塗布したマイクロニードルであってもヒアルロン酸からなるマイクロニードルはポリメチルメタクリレートからなるマイクロニードルよりも血糖値を抑える効果が高いことを示している。
 図4によれば、ブドウ糖負荷30分前にエクセンジン-4を投与した3群において、S.C.10μg群及びMN(HA)10μg群では急激に血中エクセンジン-4濃度が増加し、投与後45分(ブドウ糖負荷後15分)に濃度は最大となっている。一方、MN(MMA)10μg群の血中エクセンジン-4濃度は、MN(HA)10μg群の濃度に比較してはるかに低い。
 図3、4の結果は、ヒアルロン酸マイクロニードルに溶着させた薬物(エクセンジン-4)はポリメチルメタクリレートマイクロニードルに付着させた場合に比べてマイクロニードルの皮膚適用による薬物体内浸透量が極めて大きく、それにより血糖値の低下作用も大きいことを示している。MN(HA)による投与は皮下注射と同様の挙動を示すことから、マイクロニードルに溶着されたすべての薬物が体内浸透することを示している。一方、MN(MMA)においてはニードルに付着した薬物はその数分の1しか体内に浸透していないことを示している。
 この原因として、MN(MMA)先端に付着した薬物の付着強度が弱いためマイクロニードル刺入に際し角質を通過する時薬物がマイクロニードルから剥がれて体内吸収されないことが考えられる。それに反しMN(HA)においては、薬物は溶着のさいマイクロニードルと一体化しているので刺入の際剥がれおちることは一切なく、全量が体内吸収されるものと思われる。
 〔実施例3〕
 重量平均分子量10万の高分子量ヒアルロン酸(株式会社紀文フードケミファ製、商品名FCH-SU、培養由来)の種々の濃度の水溶液を作成し、以下の粘度になるようにヒアルロン酸と水の割合を調整した。調整した溶液の粘度は、0.5、1.0、5.0、20、50、90、150dPa・sであった。室温は25度であった。それらの7種の濃度の異なった水溶液中に赤色102号(和光純薬工業株式会社)を濃度0.5%になるように均一に溶解させた。
 マイクロニードルアレイは、実施例1と同様にして直径1.0cmの円形のマイクロニードルアレイを作成した。
 得られた種々の粘度のヒアルロン酸水溶液にマイクロニードルアレイの先端部150μmを1秒間接触した後、取り出し風乾した。接触により溶着したヒアルロン酸水溶液量を評価するためにマイクロニードルアレイ1枚を2mlのイオン交換水に溶解し赤色102号の濃度を510nmでの吸光度により測定した。その測定値から各種ヒアルロン酸濃度の異なる水溶液のマイクロニードルアレイ1枚当たりの溶着量を算定し、結果を下表に示す。
Figure JPOXMLDOC01-appb-T000001
 水溶液粘度が低いと溶着量が低い。高くなるに従い取り扱い性が悪くなり、かつ針の形状も不規則となる。適切な水溶液粘度は1.0~90dPa・sであり、より望ましくは5.0~50dPa・sであることがわかった。
 (比較例1)
 実施例1において使用したマイクロニードル形成用鋳型凹部を用い、次のような直径1cmのマイクロニードルアレイを作製した。
 水溶性高分子溶液がヒアルロン酸(株式会社紀文フードケミファ製、分子量80万、商品名FCH-80L)14.995重量部、モデル薬物として赤色102号色素0.005重量部、水85部からなる水溶液を用いた。この水溶液0.3mlを鋳型に流延し、室温で乾燥させてマイクロニードルアレイ(直径1cm)を成形した。マイクロニードルアレイを鋳型から取り出し、顕微鏡にて観察下そのマイクロニードルアレイの針部を鋭利なカッターナイフで注意深く削り取り、針部部と基板部に分離した。それぞれをイオン交換水に溶解させ、510nmの吸光度を測定してモデル薬物の針部と基板部への分配比を求めた。
  針部存在量:基板部存在量 = 0.048:0.952
 よって、このような方法でマイクロニードルアレイを作成すると、薬物の大部分が基板部に未利用で残ることが予想される。
 (比較例2)
 水溶液の鋳型充填量が0.15mlであることを除き比較例1と同様にして鋳型上にマイクロニードルアレイを成形した。次いで鋳型表面に皮膜状に存在する基板部を濡れたコットンで丁寧に拭き取った。
 次いで、ヒアルロン酸(紀文フードケミファ製、分子量80万、商品名FCH-80L)15重量部、水85部からなる赤色102号色素を含まない水溶液の0.3mlを鋳型に流延し、40℃で乾燥させてマイクロニードルアレイ(直径1cm)を成形した。マイクロニードルアレイを鋳型から取り出し、顕微鏡にて観察下そのマイクロニードルアレイの針部を鋭利なカッターナイフで注意深く削り取り、針部と基板部に分離した。それぞれをイオン交換水に溶解させ、510nmの吸光度を測定してモデル薬物の針部と基板部への分配比を求めた。
  針部存在量:基板部存在量 = 0.62:0.38
 赤色102号モデル薬物は、本来針部にのみ存在していたものである。しかしこの結果は、基板部形成のためヒアルロン酸水溶液を鋳型上に流延し乾燥させる工程の中で、針部から基板部へ薬物が拡散することを示している。
 よって、このような方法では、マイクロニードル部分にのみ薬物を保持するマイクロニードルアレイを作成することはできない。
 〔実施例4〕
 重量平均分子量10万の高分子量ヒアルロン酸(株式会社紀文フードケミファ製、商品名FCH-SU、培養由来)の水溶液を作成した。溶液の粘度は、5.0dPa・sであった。室温は25℃であった。本水溶液中にFD4、(フルオレセンデキストラン、モデル化合物、和光純薬工業株式会社)を濃度5%になるように均一に溶解させた。マイクロニードルアレイは高さが0.65μmであること除いては実施例1と同様の鋳型を用いて直径1.0cmの円形のマイクロニードルアレイを作成した。
 得られたヒアルロン酸水溶液にマイクロニードルアレイの先端部を1秒間接触した後、取り出し風乾した。その際先端部の接触深さを150μmと250μmとすることにより針長さを調整した。先端にモデル薬物を溶着したマイクロニードルは先端部を一部溶解させることにより長さを短くした。未接触時の針長さは650μmであるが150μm、及び250μmの接触によって、それぞれ約640μm、約570μm、とすることができた。図5参照。マイクロニードルの薬液への接触深さを変化させることにより針長さを調節できたことを示している。
 本発明によるマイクロニードルパッチは、医療や美容の分野において広く利用されるものと期待される。
 1…薬物溶液
 2…マイクロニードルアレイ
 2A…先端部インスリン濃縮マイクロニードルアレイ

Claims (14)

  1.  a)水溶性高分子を素材としてマイクロニードルアレイを作成し、
     b)該マイクロニードルアレイ先端に付着させる薬物溶液を作成し、
     c)該マイクロニードルアレイの先端を該薬物溶液に短時間接触させて、
     先端に薬物を付着させたマイクロニードルアレイを製造するマイクロニードル溶着法。
  2.  前記薬物溶液には前記薬物のほか水溶性高分子をも溶解しておくことを特徴とする請求項1に記載のマイクロニードル溶着法。
  3.  前記薬物溶液における水溶性高分子と前記マイクロニードルアレイの素材である水溶性高分子とは、少なくとも1種の同一成分を含むことを特徴とする請求項2に記載のマイクロニードル溶着法。
  4.  前記薬物溶液における水溶性高分子と前記マイクロニードルアレイの素材である水溶性高分子とは、主成分が同一であることを特徴とする請求項2に記載のマイクロニードル溶着法。
  5.  前記薬物溶液に含まれる水溶性高分子と前記マイクロニードルアレイの素材である水溶性高分子とが同一であることを特徴とする請求項2に記載のマイクロニードル溶着法。
  6.  前記薬物溶液の粘度を1.0dPa・s以上90dPa・s以下とすることを特徴とする請求項2~5のいずれか1項に記載のマイクロニードル溶着法。
  7.  前記薬物溶液の溶媒の主成分が水であることを特徴とする請求項1又は請求項2に記載のマイクロニードル溶着法。
  8.  マイクロニードルの針長さが100-2,000ミクロンの長さを有することを特徴とする請求項1~7のいずれか1項に記載のマイクロニードル溶着法。
  9.  前記薬物が、PTH、インターフェロン、インスリン、エクセンジン-4、エクセンジン誘導体、EGF,FGF,ボツリヌストキシン、各種抗原蛋白又はウイルス断片のいずれかであることを特徴とする請求項1~7のいずれか1項に記載のマイクロニードル溶着法。
  10.  前記水溶性高分子が、ヒアルロン酸、デキストリン、デキストラン、カルボキシメチルセルロース、コンドロイチン硫酸、プロテオグリカン、ポリアクリル酸(塩)、ポリビニルピロリドン、ポリビニルアルコール、から選ばれた1種あるいはそれ以上であることを特徴とする請求項1~7のいずれか1項に記載のマイクロニードル溶着法。
  11.  マイクロニードル先端部に、マイクロニードル素材と薬物の混合物が一体的に溶着していることを特徴とするマイクロニードルアレイ。
  12.  マイクロニードル素材と、溶着した薬物を含有する素材とが同一の水溶性高分子であることを特徴とする請求項11に記載のマイクロニードルアレイ。
  13.  前記薬物が、PTH、インターフェロン、インスリン、エクセンジン-4、エクセンジン誘導体、EGF,FGF,ボツリヌストキシン、各種抗原蛋白又はウイルス断片のいずれかであることを特徴とする請求項11又は請求項12に記載のマイクロニードルアレイ。
  14.  前記水溶性高分子が、ヒアルロン酸、デキストリン、デキストラン、カルボキシメチルセルロース、コンドロイチン硫酸、プロテオグリカン、ポリアクリル酸(塩)、ポリビニルピロリドン、ポリビニルアルコール、から選ばれた1種あるいはそれ以上であることを特徴とする請求項11~13のいずれか1項に記載のマイクロニードルアレイ。
PCT/JP2011/074159 2011-10-20 2011-10-20 マイクロニードル溶着法 WO2013057819A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/352,397 US9993423B2 (en) 2011-10-20 2011-10-20 Microneedle deposition method
PCT/JP2011/074159 WO2013057819A1 (ja) 2011-10-20 2011-10-20 マイクロニードル溶着法
CN201180074326.3A CN103889497A (zh) 2011-10-20 2011-10-20 微针熔着法
CN201710935111.5A CN107582517A (zh) 2011-10-20 2011-10-20 微针阵列
KR1020147010167A KR101931845B1 (ko) 2011-10-20 2011-10-20 마이크로니들 용착법
EP11874199.0A EP2769749B1 (en) 2011-10-20 2011-10-20 Microneedle deposition technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074159 WO2013057819A1 (ja) 2011-10-20 2011-10-20 マイクロニードル溶着法

Publications (1)

Publication Number Publication Date
WO2013057819A1 true WO2013057819A1 (ja) 2013-04-25

Family

ID=48140496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074159 WO2013057819A1 (ja) 2011-10-20 2011-10-20 マイクロニードル溶着法

Country Status (5)

Country Link
US (1) US9993423B2 (ja)
EP (1) EP2769749B1 (ja)
KR (1) KR101931845B1 (ja)
CN (2) CN103889497A (ja)
WO (1) WO2013057819A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104922093A (zh) * 2014-03-19 2015-09-23 纳米及先进材料研发院有限公司 用于局部递送的可生物降解的微贮库型递送系统
US10603477B2 (en) 2014-03-28 2020-03-31 Allergan, Inc. Dissolvable microneedles for skin treatment
US11065428B2 (en) 2017-02-17 2021-07-20 Allergan, Inc. Microneedle array with active ingredient

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10980865B2 (en) * 2012-08-10 2021-04-20 Aquavit Pharmaceuticals, Inc. Direct application system and method for the delivery of bioactive compositions and formulations
WO2014026161A1 (en) 2012-08-10 2014-02-13 Aquavit Pharmaceuticals, Inc. Vitamin supplement compositions for injection
US20180116938A1 (en) * 2015-04-06 2018-05-03 Lg Household & Health Care Ltd. Soluble microneedle for delivering proteins or peptides
KR101747411B1 (ko) * 2015-04-13 2017-06-14 주식회사 엘지생활건강 신경전달물질을 조절하는 펩타이드의 신경세포 전달용 용해성 미세바늘
JP2017051312A (ja) * 2015-09-08 2017-03-16 富士フイルム株式会社 マイクロニードルアレイ
CN105411997A (zh) * 2015-12-30 2016-03-23 李媚 一种可降解微结构体及其制备方法
JP6970954B2 (ja) * 2016-03-16 2021-11-24 コスメディ製薬株式会社 フコイダン育毛剤
CN106063970B (zh) * 2016-05-24 2019-03-05 华中科技大学 一种载金纳米笼的透明质酸微针阵列及其制备与应用
US20180056053A1 (en) * 2016-08-26 2018-03-01 Juvic Inc. Protruding microstructure for transdermal delivery
CN106619480A (zh) * 2016-10-20 2017-05-10 南通普莱德医疗器械科技有限公司 一种新型聚合物微针阵列及其制备方法
KR101745682B1 (ko) 2017-01-05 2017-06-09 주식회사 쿼드메디슨 마이크로 니들 제조방법 및 이에 의해 제조된 마이크로 니들
KR101942172B1 (ko) * 2017-01-11 2019-01-24 가천대학교 산학협력단 마이크로 니들, 이의 제조장치 및 이를 이용한 마이크로 니들 제조방법
KR101776659B1 (ko) 2017-02-27 2017-09-11 주식회사 쿼드메디슨 마이크로 니들 및 이의 제조방법
CN107184417B (zh) * 2017-03-31 2020-04-28 广州新济药业科技有限公司 可溶性微针贴片及其制备方法
CN107349175A (zh) * 2017-06-06 2017-11-17 浙江理工大学 一种负载脂肪褐变剂的微针贴片及其制备方法
KR102036921B1 (ko) * 2017-07-27 2019-10-28 주식회사 쿼드메디슨 마이크로 니들 제조방법
KR102006071B1 (ko) 2017-08-18 2019-07-31 가천대학교 산학협력단 마이크로 니들 및 이의 제조방법
JP6671616B2 (ja) * 2017-11-02 2020-03-25 コスメディ製薬株式会社 歯科用局所麻酔マイクロニードルアレイ
WO2019143293A1 (en) * 2018-01-16 2019-07-25 Nanyang Technological University Self-implantable micro-drug-reservoirs for localized and controlled ocular drug delivery
AU2019322890B2 (en) * 2018-08-15 2022-10-06 Allergan, Inc. Microneedle array with active ingredient
KR102039582B1 (ko) * 2018-12-12 2019-11-01 주식회사 라파스 인장 공정으로 제조하기에 적합한 마이크로니들 재료의 적합성 시험 방법 및 이를 포함하는 마이크로니들 제조 방법
MX2022000360A (es) 2019-07-10 2022-04-18 Mineed Tech Company Limited Una microaguja disoluble.
JP2021164635A (ja) * 2020-04-03 2021-10-14 コスメディ製薬株式会社 短時間溶解マイクロニードル
CN112023033B (zh) * 2020-04-29 2023-08-25 中山大学·深圳 一种同时实现卡介苗接种及其诊断的两段式微针阵列药贴及其制备方法
CN115282114B (zh) * 2022-07-29 2023-06-02 珠海科瑞微医药科技有限公司 重组蛋白类药物可溶性微针配方及应用、微针及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151982A (ja) 1989-10-27 1991-06-28 Korea Res Inst Of Chem Technol タンパク及びペプチド性薬物の経皮投与器具
JP2002517300A (ja) 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
JP2003238347A (ja) 2002-02-18 2003-08-27 Nano Device & System Research Inc 機能性マイクロパイル及びその製造方法
JP2006346127A (ja) 2005-06-15 2006-12-28 Nabtesco Corp 皮膚用針製造方法
JP2008029710A (ja) 2006-07-31 2008-02-14 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai マイクロニードル型パッチ及びその製造方法
WO2008139648A1 (ja) * 2007-05-15 2008-11-20 Hisamitsu Pharmaceutical Co., Inc. マイクロニードルのコーティング方法
JP2008303162A (ja) 2007-06-06 2008-12-18 Bioserentack Co Ltd 数百ミクロンの円錐状突起物を有する貼付剤の製造法
JP2009507573A (ja) 2005-09-06 2009-02-26 セラジェクト, インコーポレイテッド 薬物粒子および/または薬物を吸着した粒子を含む、固溶体穿孔器
JP2009066763A (ja) 2007-09-10 2009-04-02 Sol-Plus Co Ltd 被膜成形体
JP2009273872A (ja) 2008-04-14 2009-11-26 Kosumedei Seiyaku Kk マイクロニードルアレイ
JP2010029634A (ja) 2008-07-01 2010-02-12 Kosumedei Seiyaku Kk マイクロニードルアレイ及びその製造方法
JP2010094414A (ja) * 2008-10-20 2010-04-30 Kyokko Seiko Co Ltd マイクロニードルシート貼付剤とその製造方法および製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344499B1 (en) 1998-06-10 2008-03-18 Georgia Tech Research Corporation Microneedle device for extraction and sensing of bodily fluids
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6611707B1 (en) 1999-06-04 2003-08-26 Georgia Tech Research Corporation Microneedle drug delivery device
AU5461300A (en) 1999-06-04 2000-12-28 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
BR0209046A (pt) 2001-04-20 2004-11-09 Alza Corp Disposição de microprojeção que possui um agente benéfico contendo revestimento
JP2008284318A (ja) 2007-05-15 2008-11-27 Kosumedei Seiyaku Kk 生体由来物質からなる投薬用微細針
WO2009021048A2 (en) * 2007-08-06 2009-02-12 Transderm, Inc. Microneedle arrays formed from polymer films
US20120150023A1 (en) 2007-08-06 2012-06-14 Kaspar Roger L Microneedle arrays for active agent delivery
US8491534B2 (en) 2007-11-21 2013-07-23 Bioserentach Co., Ltd. Preparation for body surface application and preparation for body surface application-holding sheet
EP2296557B1 (en) 2008-05-21 2018-07-11 Theraject, Inc. Method of manufacturing microneedle arrays
JP5063544B2 (ja) 2008-09-22 2012-10-31 富士フイルム株式会社 経皮吸収シート及びその製造方法
KR101634836B1 (ko) * 2008-12-26 2016-06-29 히사미쓰 세이야꾸 가부시키가이샤 마이크로 니들 디바이스
CN101829396B (zh) 2009-03-27 2013-01-30 清华大学 微针阵列芯片及利用其的经皮给药贴剂及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151982A (ja) 1989-10-27 1991-06-28 Korea Res Inst Of Chem Technol タンパク及びペプチド性薬物の経皮投与器具
JP2002517300A (ja) 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
JP2003238347A (ja) 2002-02-18 2003-08-27 Nano Device & System Research Inc 機能性マイクロパイル及びその製造方法
JP2006346127A (ja) 2005-06-15 2006-12-28 Nabtesco Corp 皮膚用針製造方法
JP2009507573A (ja) 2005-09-06 2009-02-26 セラジェクト, インコーポレイテッド 薬物粒子および/または薬物を吸着した粒子を含む、固溶体穿孔器
JP2008029710A (ja) 2006-07-31 2008-02-14 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai マイクロニードル型パッチ及びその製造方法
WO2008139648A1 (ja) * 2007-05-15 2008-11-20 Hisamitsu Pharmaceutical Co., Inc. マイクロニードルのコーティング方法
JP2008303162A (ja) 2007-06-06 2008-12-18 Bioserentack Co Ltd 数百ミクロンの円錐状突起物を有する貼付剤の製造法
JP2009066763A (ja) 2007-09-10 2009-04-02 Sol-Plus Co Ltd 被膜成形体
JP2009273872A (ja) 2008-04-14 2009-11-26 Kosumedei Seiyaku Kk マイクロニードルアレイ
JP2010029634A (ja) 2008-07-01 2010-02-12 Kosumedei Seiyaku Kk マイクロニードルアレイ及びその製造方法
JP2010094414A (ja) * 2008-10-20 2010-04-30 Kyokko Seiko Co Ltd マイクロニードルシート貼付剤とその製造方法および製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUAN YING-SHU; KAMIYAMA FUMIO: "The Course of Development and Manufacturing for Microneedle, Yakuzaigaku", THE ACADEMY OF PHARMACEUTICAL SCIENCE AND TECHNOLOGY, vol. 69, no. 4, pages 272 - 276
See also references of EP2769749A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104922093A (zh) * 2014-03-19 2015-09-23 纳米及先进材料研发院有限公司 用于局部递送的可生物降解的微贮库型递送系统
CN104922093B (zh) * 2014-03-19 2019-06-18 纳米及先进材料研发院有限公司 用于局部递送的可生物降解的微贮库型递送系统
US10603477B2 (en) 2014-03-28 2020-03-31 Allergan, Inc. Dissolvable microneedles for skin treatment
US10987503B2 (en) 2014-03-28 2021-04-27 Allergan, Inc. Dissolvable microneedles for skin treatment
US11065428B2 (en) 2017-02-17 2021-07-20 Allergan, Inc. Microneedle array with active ingredient

Also Published As

Publication number Publication date
US9993423B2 (en) 2018-06-12
EP2769749A1 (en) 2014-08-27
EP2769749B1 (en) 2018-07-18
EP2769749A4 (en) 2015-05-06
CN103889497A (zh) 2014-06-25
KR20140084042A (ko) 2014-07-04
US20140257189A1 (en) 2014-09-11
CN107582517A (zh) 2018-01-16
KR101931845B1 (ko) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2013057819A1 (ja) マイクロニードル溶着法
JP5472770B2 (ja) 短時間溶解型マイクロニードル
JP6894455B2 (ja) 治療剤の送達のためのマイクロアレイ、使用方法および製造方法
RU2698095C2 (ru) Микроматрица для доставки терапевтического средства и способы использования
JP2016512754A5 (ja)
JP5472771B1 (ja) 段差に薬物を保持したマイクロニードル
JP4427691B2 (ja) マイクロニードルアレイ
JP5472673B2 (ja) マイクロニードルアレイ
JP6198373B2 (ja) マイクロニードル
JP2011224308A (ja) マイクロニードル溶着法
WO2016036866A1 (en) Microstructure array, methods of making, and methods of use
WO2018124290A1 (ja) 薬剤を塗布したマイクロニードルアレイ
JP7306666B2 (ja) 撥水コーティングマイクロニードルアレイ
JP5778622B2 (ja) マイクロニードル溶着法
JP2023101406A (ja) 粒子付着型マイクロニードル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010167

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14352397

Country of ref document: US

Ref document number: 2011874199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP