WO2013047836A1 - 亜鉛めっき鋼板及びその製造方法 - Google Patents
亜鉛めっき鋼板及びその製造方法 Download PDFInfo
- Publication number
- WO2013047836A1 WO2013047836A1 PCT/JP2012/075244 JP2012075244W WO2013047836A1 WO 2013047836 A1 WO2013047836 A1 WO 2013047836A1 JP 2012075244 W JP2012075244 W JP 2012075244W WO 2013047836 A1 WO2013047836 A1 WO 2013047836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- steel sheet
- less
- plating
- temperature
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 71
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 460
- 239000010959 steel Substances 0.000 claims abstract description 460
- 238000007747 plating Methods 0.000 claims abstract description 196
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 86
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 35
- 239000000126 substance Substances 0.000 claims abstract description 35
- 229910052729 chemical element Inorganic materials 0.000 claims abstract description 28
- 238000001816 cooling Methods 0.000 claims description 127
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 56
- 238000010438 heat treatment Methods 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 37
- 238000005275 alloying Methods 0.000 claims description 36
- 238000000137 annealing Methods 0.000 claims description 29
- 238000005097 cold rolling Methods 0.000 claims description 28
- 238000005096 rolling process Methods 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 25
- 230000009466 transformation Effects 0.000 claims description 25
- 238000005246 galvanizing Methods 0.000 claims description 24
- 230000009467 reduction Effects 0.000 claims description 24
- 230000001186 cumulative effect Effects 0.000 claims description 22
- 229910001562 pearlite Inorganic materials 0.000 claims description 22
- 238000005098 hot rolling Methods 0.000 claims description 21
- 238000011282 treatment Methods 0.000 claims description 19
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 14
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 238000005554 pickling Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 238000003303 reheating Methods 0.000 claims description 3
- 229910001566 austenite Inorganic materials 0.000 abstract description 83
- 229910052710 silicon Inorganic materials 0.000 abstract description 31
- 229910052748 manganese Inorganic materials 0.000 abstract description 29
- 229910052782 aluminium Inorganic materials 0.000 abstract description 27
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 95
- 230000003111 delayed effect Effects 0.000 description 51
- 239000001257 hydrogen Substances 0.000 description 50
- 229910052739 hydrogen Inorganic materials 0.000 description 50
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 48
- 238000000034 method Methods 0.000 description 35
- 230000000717 retained effect Effects 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- 238000001953 recrystallisation Methods 0.000 description 19
- 238000005728 strengthening Methods 0.000 description 19
- 239000011701 zinc Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 239000002244 precipitate Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 239000000047 product Substances 0.000 description 14
- 239000012467 final product Substances 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000007792 addition Methods 0.000 description 11
- 239000010960 cold rolled steel Substances 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 150000002910 rare earth metals Chemical class 0.000 description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 10
- 229910052804 chromium Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 241000428199 Mustelinae Species 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/02—Alloys based on zinc with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the present invention relates to a galvanized steel sheet having a tensile strength (TS) of 980 MPa or more and excellent delayed fracture resistance, plating adhesion, elongation, and hole expandability.
- the galvanized steel sheet according to the present invention is particularly suitable for structural members, reinforcing members, and suspension members for automobiles.
- the galvanized steel sheet (Zinc Coated Steel Sheet) according to the present invention can be classified into a galvanized steel sheet and a galvanized steel sheet.
- steel plates having a tensile strength of 440 MPa class or 590 MPa class are mainly used in the framework members of automobiles.
- steel sheets having a tensile strength of 980 MPa or more will be developed in the future. It is desired.
- the 980 MPa grade steel plate When replacing a 590 MPa grade steel plate with a 980 MPa grade steel plate, the 980 MPa grade steel plate is required to have an elongation equivalent to that of a 590 MPa grade steel plate. For this reason, development of a steel sheet having a tensile strength of 980 MPa or more and excellent elongation is eagerly desired.
- TRIP steel has a particularly excellent elongation compared to precipitation-strengthened steel and DP steel (steel made of ferrite and martensite, Dual Phase Steel), and is a steel sheet that is strongly desired to expand its application.
- DP steel steel made of ferrite and martensite, Dual Phase Steel
- TRIP steel is excellent in strength and ductility, it is generally characterized by low hole expansibility.
- Delayed fracture is a phenomenon that occurs due to stress applied to a steel material or hydrogen embrittlement, and hydrogen diffused in a stress concentration portion of a steel material used as a structure accumulates to break the structure.
- a phenomenon in which a member subjected to a high stress load under usage conditions such as PC steel wire (Prestressed Concrete Steel Wire) or a bolt suddenly breaks down is an example of delayed fracture.
- Delayed fracture is known to be closely related to hydrogen entering the steel from the environment.
- hydrogen sources that enter the steel from the environment, such as hydrogen contained in the atmosphere and hydrogen generated in a corrosive environment. Regardless of the hydrogen source, if hydrogen enters the steel, it can cause delayed fracture.
- Examples of the stress acting on the steel material used as the structure include a stress applied to the structure and a residual stress in which a part of the stress generated during forming remains in the steel material.
- steel materials used as members after forming such as thin steel plates for automobiles, have a large residual stress compared to thick plates and strips (for example, bolts) that use the product as it is with little deformation. Become. Therefore, when forming a steel sheet in which delayed fracture is a problem, it is desired to form the steel sheet so that no residual stress remains.
- Patent Document 1 discloses a hot press forming method for a metal plate, in which a steel plate is heated to a high temperature, processed, and then baked using a mold to increase the strength.
- a steel plate is heated to a high temperature, processed, and then baked using a mold to increase the strength.
- the dislocation introduced at the time of processing that causes residual stress is recovered, or transformation occurs after processing, and the residual stress is relaxed. Therefore, there is not much residual stress in the molded product.
- the delayed fracture characteristics of the steel sheet can be improved.
- heating is required before pressing, so that energy costs and equipment costs are higher than cold forming.
- the molded product is directly quenched from a high temperature of 600 ° C. or higher, the characteristics of the steel sheet (for example, plating properties in the plated steel sheet) are likely to change, and it is difficult to control characteristics other than strength and delayed fracture characteristics.
- Non-Patent Document 1 discloses a high-strength bolt having high hydrogen embrittlement resistance, in which fine precipitates of elements exhibiting temper softening resistance such as Cr, Mo, and V are coherently precipitated in martensite. It is disclosed. In this high-strength bolt, the steel material is quenched from a high-temperature austenite single phase to obtain a martensite single-phase microstructure, and then the fine precipitates described above are coherently precipitated in the martensite by tempering treatment. .
- precipitation of these precipitates requires precipitation heat treatment for several hours or more, and there is a problem in manufacturability. That is, in steel sheets manufactured using general thin steel sheet manufacturing equipment such as continuous annealing equipment and continuous hot dip galvanizing equipment, the structure is controlled in a few tens of minutes. In this case, it was difficult to improve the delayed fracture resistance by these precipitates.
- the precipitates precipitated in the hot rolling process even if the precipitates are precipitated in the hot rolling process, by recrystallization during subsequent cold rolling and continuous annealing, The orientation relationship with the parent phase (ferrite, martensite) is lost. That is, in this case, the precipitate is not a matched precipitate. As a result, the delayed fracture resistance of the obtained steel sheet is greatly reduced.
- a high-strength steel sheet that is likely to cause delayed fracture has a microstructure mainly composed of martensite. Martensite can be formed in a low temperature range, but in this temperature range, precipitates that become trapping sites for hydrogen, including VC, cannot be precipitated.
- Non-Patent Document 1 has a C content of 0.4% or more and is a steel containing a large amount of alloy elements, so that the workability and weldability required for thin steel sheets are inferior. .
- Patent Document 2 discloses a thick steel plate in which hydrogen defects are reduced by an oxide mainly composed of Ti and Mg.
- the thick steel sheet disclosed in Patent Document 2 only reduces hydrogen defects caused by hydrogen trapped in the steel at the time of manufacture, and does not take into account hydrogen embrittlement resistance (delayed fracture resistance) at all. Absent. Furthermore, no consideration is given to the compatibility between high formability and hydrogen embrittlement resistance required for thin steel sheets.
- residual stress In the molded member, a stress called residual stress remains inside the member. Although the residual stress exists locally, it may be a high value that exceeds the yield stress of the material. For this reason, a thin steel plate is required not to cause hydrogen embrittlement under high residual stress.
- Non-Patent Document 2 reports that hydrogen embrittlement is promoted by processing-induced transformation of retained austenite.
- the forming of a thin steel sheet is considered, but in order not to deteriorate the hydrogen embrittlement resistance, the concentration of C in the austenite is suppressed and the amount of retained austenite is greatly reduced.
- the microstructure of the high-strength thin steel sheet is limited to a very narrow range, and only hydrogen embrittlement occurring in a relatively short period is evaluated. It is difficult to fundamentally solve the hydrogen embrittlement in actual use.
- the retained austenite cannot be actively used, and the use of the steel sheet is limited. As described above, when a large amount of retained austenite that easily causes hydrogen embrittlement is contained, it is extremely difficult to obtain a steel sheet that simultaneously satisfies high corrosion resistance, high tensile strength, excellent delayed fracture resistance, and high ductility.
- the present invention is a galvanized steel sheet (including hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet) having a tensile strength (TS) of 980 MPa or more and excellent in delayed fracture resistance, plating adhesion, elongation, and hole expansibility.
- TS tensile strength
- the inventors of the present invention improved the delayed fracture resistance of steel by applying plating capable of improving delayed fracture resistance as a means of improving delayed fracture resistance without affecting the steel material. I found out.
- an oxide containing one or more chemical elements selected from Si, Mn, and Al is dispersed in the plating layer, and hydrogen entering from the environment is trapped by the oxide in the plating layer. And, it was found that the diffusion of hydrogen to the stress concentration part and the delayed fracture caused by this can be delayed.
- Si which is a strengthening element, is used to the maximum, and in the microstructure, tempered martensite having a volume ratio of 30% or more and It was found that it is important to form retained austenite having a volume ratio of 8% or more.
- a galvanized steel sheet having a tensile strength (TS) of 980 MPa or more and excellent in delayed fracture resistance, plating adhesion, elongation, and hole expandability can be provided. It is.
- a galvanized steel sheet includes a steel sheet and a plating layer on the surface of the steel sheet, and the steel sheet is C: 0.05 to 0.40% by mass%, Si. : 0.5 to 3.0%, Mn: 1.5 to 3.0%, P: 0.04% or less, S: 0.01% or less, N: 0.01% or less, Al: 2 0.0% or less, O: limited to 0.01% or less, the balance being a steel chemical composition consisting of iron and inevitable impurities, ferrite, bainite, and tempered martensite with a volume fraction of 30% or more And austenite with a volume fraction of 8% or more, the volume fraction of pearlite is limited to 10% or less, and the total volume fraction of the tempered martensite and the bainite is 40% or more.
- the proportion of the area occupied by the crystal grains is 10% or less, the tensile strength is 980 MPa or more, and the plating metal in the plating layer limits the Fe content to 15 mass% or less and the Al content to 2 mass% or less.
- the balance has a plating chemical composition composed of Zn and inevitable impurities, and the plating layer contains an oxide containing one or more chemical elements selected from Si, Mn, and Al, and the steel plate and the When viewed in a cross section in the plate thickness direction including the plating layer, the length of the oxide projected on the interface between the plating layer and the steel plate is divided by the length of the interface between the plating layer and the steel plate.
- the obtained projected area ratio is 10% or more, and the coverage of the plating layer on the steel sheet is 99% or more.
- the steel chemical composition further includes, in mass%, Mo: 0.01 to 1.0%, Cr: 0.05 to 1.0%, Ni : 0.05 to 1.0%, Cu: 0.05 to 1.0%, Nb: 0.005 to 0.3%, Ti: 0.005 to 0.3%, V: 0.005 to 0 0.5%, B: 0.0001 to 0.01%, Ca, Mg, and one or more selected from REM may be included: one or more selected from 0.0005 to 0.04%.
- the plated layer may be a hot dip galvanized layer.
- the plated layer may be an alloyed hot-dip galvanized layer.
- the amount of Fe in the plating chemical composition may be limited to less than 7% by mass.
- the plating chemical composition may include 7 to 15% by mass of Fe.
- the plating chemical composition may include Al in excess of 0% and 2% by mass or less.
- the method for producing a galvanized steel sheet according to one aspect of the present invention is, in mass%, C: 0.05 to 0.40%, Si: 0.5 to 3.0%, Mn: 1.5 to Including 3.0%, P: 0.04% or less, S: 0.01% or less, N: 0.01% or less, Al: 2.0% or less, O: 0.01% or less,
- a tenth step of controlling the temperature of the steel within a range an eleventh step of galvanizing the steel by immersing the steel in a hot dip galvanizing bath flowing at a flow rate of 10 to 50 m / min; Cooling the steel to a temperature below 100 ° C.
- a second average cooling rate of 1 to 100 ° C./second, and in a step after the ninth step, the temperature of the steel is 350 to 500 ° C.
- the time in the range is 20 seconds or more.
- the steel chemical composition further includes, in mass%, Mo: 0.01 to 1.0%, Cr: 0.05 to 1.0. %, Ni: 0.05 to 1.0%, Cu: 0.05 to 1.0%, Nb: 0.005 to 0.3%, Ti: 0.005 to 0.3%, V: 0.00. 005 to 0.5%, B: 0.0001 to 0.01%, one or more selected from Ca, Mg, and REM: one or more selected from 0.0005 to 0.04% But you can.
- the ratio of this length was measured for five visual fields at a magnification of 10,000, and the average value was defined as the projected area ratio.
- the steel plate 2 may contain any one or more of Mo, Cr, Ni, Cu, Nb, Ti, V, B, Ca, Mg, and REM as selective elements or inevitable impurities.
- the lower limits of these 11 kinds of chemical elements are all 0% and are not limited. Therefore, only the upper limit of these 11 kinds of chemical elements is limited.
- Cr 0 to 1.0% Cr is a strengthening element and an important element for improving hardenability.
- the Cr content is less than 0.05%, the effect of the addition cannot be obtained, so the lower limit of the Cr content may be 0.05%.
- the upper limit of the Cr content was set to 1.0%. From the viewpoint of the manufacturability and cost of the steel plate 2, the upper limit of the Cr amount is preferably 0.9%, more preferably 0.8% or 0.5%.
- Ni is an element that is difficult to oxidize compared to Fe. Therefore, in order to prevent Fe oxidation and to flexibly control the size and amount of the oxide 3a in the plating layer 3, or to appropriately control the plating property, the upper limit of the Ni amount is further limited. Also good. For example, the upper limit of the Ni amount may be 0.9%.
- B is an element effective for strengthening grain boundaries and improving the strength of the steel plate 2.
- the amount of B is less than 0.0001%, the effect of addition cannot be obtained, so the lower limit of the amount of B may be 0.0001%.
- the amount of B exceeds 0.01%, not only the effect of addition is saturated, but also the manufacturability of the steel sheet 2 during hot rolling is lowered, so the upper limit of the amount of B is set to 0.01%.
- the upper limit of the B amount is preferably 0.008%, more preferably 0.006% or 0.005%.
- Ti is a strengthening element. Ti contributes to an increase in the strength of the steel sheet 2 by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization. When adding Ti to the steel, if the Ti content is less than 0.005%, the effect of the addition cannot be obtained, so the lower limit of the Ti content may be 0.005%. On the other hand, when the Ti content exceeds 0.3%, carbonitride precipitation increases and the formability deteriorates, so the upper limit of the Ti content was set to 0.3%. In order to further improve the formability of the steel plate 2, the upper limit of the Ti amount is preferably 0.25%, more preferably 0.20% or 0.15%.
- V (V: 0-0.5%) V is a strengthening element.
- V contributes to the strength increase of the steel sheet 2 by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
- the lower limit of the amount of V may be 0.005%.
- the upper limit of the amount of V was set to 0.5%.
- the upper limit of the V amount is preferably 0.4%, and more preferably 0.3% or 0.2%.
- Total of one or more of Ca, Mg, and REM 0 to 0.04%
- One or more of Ca, Mg, and REM may be added up to a maximum of 0.04% in total.
- Ca, Mg, and REM are elements used for deoxidation, and one, two, or three selected from Ca, Mg, and REM are added to the steel in a total amount of 0.0005% or more. You may make it contain.
- the upper limit of this total amount was set to 0.04%.
- REM is often added to steel with misch metal.
- La and Ce one or more lanthanoid series elements may be contained.
- the steel plate 2 may contain a lanthanoid series element other than La and Ce, and a metal La or Ce may be added to the steel.
- the upper limit of the total amount of one or more selected from Ca, Mg, and REM is preferably 0.03%, 0.02%, or 0 0.01% is more preferable.
- microstructure of the steel plate 2 that is the material to be plated will be described.
- % in the microstructure of the steel plate 2 means volume% (volume fraction, that is, area% in cross-sectional observation).
- each structure in the microstructure (six types of tempered martensite, austenite, ferrite, bainite, pearlite, and martensite) is referred to as “phase” for convenience.
- the amount of tempered martensite is 30% or more. Tempered martensite can increase the tensile strength compared to ferrite and can increase the hole expandability compared to martensite.
- Tempered martensite is martensite containing iron-based carbides such as cementite in its interior, compared to as-quenched martensite (also called fresh martensite) having the same chemical composition, strength (tensile strength) Is low and the hole expandability is high.
- tempered martensite contains a lot of dislocations, so it has high strength but is inferior in ductility. Therefore, the ductility is improved by utilizing transformation-induced plasticity of retained austenite. If the volume fraction of retained austenite is less than 8%, sufficient ductility (total elongation El) cannot be obtained. Therefore, the lower limit of the amount of retained austenite is 8%.
- the microstructure contains 40% or more of tempered martensite and bainite (total) and ferrite, the amount of retained austenite may be less than 60% in volume fraction. In order to ensure higher elongation, the amount of retained austenite is preferably 9% or more, and more preferably 10% or more.
- the microstructure contains ferrite.
- Ferrite is effective in increasing the amount of C in austenite.
- ferrite is formed by cooling after two-phase annealing or single-phase region annealing in order to stabilize retained austenite.
- the ferrite content may be more than 0% or 1% or more.
- the volume fraction of ferrite may be 10% or more, or 20% or more according to such a requirement.
- the microstructure includes bainite.
- Bainite is effective in increasing the amount of C in retained austenite.
- the amount of bainite is not particularly limited, but the total amount of tempered martensite and bainite is 40% or more in order to make the tensile strength 980 MPa or more.
- the amount of bainite may be more than 0% or 1% or more.
- the volume fraction of bainite may be 2% or more, or 5% or more according to such a request.
- the microstructure contains 30% or more of tempered martensite, ferrite, and 8% or more of austenite, the amount of bainite is less than 62% in volume fraction.
- the steel sheet 2 includes tempered martensite having a volume fraction of 30% or more and austenite (residual austenite) having a volume fraction of 8% or more, and the volume fraction of pearlite is limited to 10% or less. If necessary, the volume fraction of martensite is limited to 10% or less, the balance has a microstructure composed of ferrite and bainite, and the total volume fraction of tempered martensite and bainite is 40% or more. There should be.
- the proportion of the area occupied by crystal grains (coarse grains) having a grain size exceeding 35 ⁇ m per unit area (coarse grain fraction) for all the structural elements (each phase) of the microstructure is limited to 10% or less.
- the tensile strength decreases and the local deformability also decreases. Therefore, it is preferable to make the crystal grains as fine as possible.
- the hole expansibility is improved. Therefore, by restricting the amount of coarse grains, local crystal grain strain can be suppressed.
- the particle size at this time is evaluated as a region surrounded by a grain boundary of 15 ° or more measured from EBSP (Electron Back Scattering Pattern).
- each phase of the above microstructure (bainite, martensite, tempered martensite, retained austenite, ferrite, pearlite) and the remaining structure are identified, the location of each phase is observed, and the area ratio of each phase (Corresponding to the volume fraction of each phase) was measured.
- the cross section including the rolling direction of the steel plate 2 or the cross section including the direction perpendicular to the rolling direction is corroded.
- Each phase can be quantified by observing (with a magnification of 1000 times) or with a scanning or transmission electron microscope (with a magnification of 1000 to 100,000). In this case, 20 or more visual fields can be observed, and the area ratio of each phase (that is, corresponding to the volume ratio of each phase) can be obtained by a point counting method or image analysis.
- a galvanized steel sheet is manufactured by the following steps. That is, steel (slab) is cast (S1), heated (S2), and hot-rolled (S3). After hot rolling (S3), the steel (steel plate, hot rolled steel plate) is wound (S4), pickled (S5), and cold rolled (S6). After cold rolling (S6), the steel (steel plate, cold rolled steel plate) is heated so that the ferrite recrystallizes (S7), annealed (S8), controlled to cool (S9), and the temperature of the plating bath is the standard.
- the temperature is controlled (S10), and hot dip galvanizing is performed (S11).
- S11 steel (steel plate, galvanized steel plate) is cooled (S12), and a hot dip galvanized steel plate is obtained as the final product.
- S11 hot dip galvanization
- S11 steel (steel plate, galvanized steel plate) is cooled (S12), and a hot dip galvanized steel plate is obtained as the final product.
- an alloying process is performed on steel (steel plate, plated steel plate) after hot dip galvanizing (S11) (S20)
- S21 an alloyed hot dip galvanized steel plate is obtained as a final product after cooling
- S9 steel (a steel plate, a cold-rolled steel plate, or a plated steel plate) may be heat-held as needed (S30, S31, S32).
- the steel having the chemical composition described in the above embodiment is melted and cast by a conventional method (S1).
- the steel (slab) after casting is directly or once cooled, and then heated (S2) and subjected to hot rolling (S3).
- the heating temperature before hot rolling is not particularly limited, but is preferably 1150 ° C. or higher, or 1200 ° C. or higher in order to make the chemical composition in steel more uniform.
- hot rolling is completed at the Ar 3 transformation point or higher.
- the Ar 3 transformation point (Ar 3 ) and the Ac 3 transformation point (Ac 3 ) in Table 1 to be described later are C amount (% C), Mn amount (% Mn), Si amount (% Si), and And Cr amount (% Cr), respectively, can be calculated by the following formulas 2 and 3.
- Ar 3 901-325 ⁇ (% C) ⁇ 92 ⁇ (% Mn) + 33 ⁇ (% Si) ⁇ 20 ⁇ (% Cr) (Formula 2)
- Ac 3 910 ⁇ 203 ⁇ (% C) ⁇ 0.5 + 44.7 ⁇ (% Si) ⁇ 30 ⁇ (% Mn) ⁇ 11 ⁇ (% Cr) (Formula 3)
- the Ar 3 transformation point and the Ac 3 transformation point can be calculated by the following formulas 4 and 5, respectively.
- Ar 3 901-325 ⁇ (% C) ⁇ 92 ⁇ (% Mn) + 33 ⁇ (% Si) (Formula 4)
- Ac 3 910 ⁇ 203 ⁇ (% C) ⁇ 0.5 + 44.7 ⁇ (% Si) ⁇ 30 ⁇ (% Mn) (Formula 5)
- the hot rolled steel (steel plate, hot rolled steel plate) is wound at a winding temperature of 300 to 700 ° C. (S4).
- the coiling temperature in hot rolling exceeds 700 ° C.
- the microstructure of the hot-rolled steel sheet becomes a coarse ferrite-pearlite structure, and after subsequent processes (for example, cold rolling, annealing, galvanizing and alloying heat treatment)
- Each phase of the microstructure of the final steel sheet becomes coarse and the microstructure becomes non-uniform.
- the coarse particle fraction cannot be sufficiently controlled, and good hole expansibility cannot be obtained. Therefore, the upper limit of the coiling temperature is set to 700 ° C.
- the winding temperature is desirably 650 ° C. or lower.
- the lower limit of the coiling temperature is not particularly specified, but if the coiling temperature is 300 ° C. or higher, the strength of the hot-rolled steel sheet can be made suitable for cold rolling. Therefore, the winding temperature is desirably 300 ° C. or higher.
- the hot-rolled steel sheet thus manufactured is pickled (S5).
- Pickling removes oxides on the surface of the steel sheet and is therefore important for improving the plating property. Pickling may be performed once, or pickling may be performed in a plurality of times.
- the pickled hot-rolled steel sheet is cold-rolled with a roll having a roll diameter of 1400 mm or less (work roll) at a cumulative reduction rate of 30% or more (S6), and passed through a continuous hot dip galvanizing line.
- This cold rolling it is possible to promote the recrystallization of ferrite and the formation of oxides (oxides necessary for forming the oxide 3a) by the recrystallization at the time of heating (retention) in the subsequent process. it can.
- the cumulative rolling reduction is set to 30% or more.
- the cumulative rolling reduction is 40% or more.
- the upper limit of the cumulative rolling reduction of cold rolling is not particularly specified (less than 100%), but the cumulative rolling reduction is 80% or less in order to suppress an increase in cold rolling load and easily perform cold rolling. preferable.
- the number of rolling passes and the rolling reduction for each pass are not particularly specified because they hardly affect plating adhesion, elongation, strength, hole expandability, and hydrogen embrittlement resistance.
- the cumulative reduction ratio is based on the inlet plate thickness before the first pass in cold rolling, and the cumulative reduction amount (inlet plate thickness before the first pass in cold rolling and the final pass in cold rolling). The difference between the thickness of the outlet plate and the thickness after the outlet.
- the strain required for recrystallization increases with an increase in the deformation rate of the steel sheet per unit thickness (hereinafter referred to as the average deformation rate), so that the average deformation rate can be sufficiently obtained.
- a roll having a small roll diameter and having a small area on the surface in contact with the rolled material and the amount of elastic deformation of the roll on this surface is used.
- an oxide necessary for obtaining sufficient hydrogen embrittlement resistance can be formed. The smaller the roll diameter, the higher the average deformation speed. Therefore, it is possible to shorten the time until recrystallization starts, increase the recrystallization speed, and increase the amount of oxide formed.
- the roll diameter was set to 1400 mm or less.
- the roll diameter is desirably 1200 mm or less, and more desirably 1000 mm or less.
- the steel (steel plate, cold rolled steel plate) after cold rolling is heated (S7).
- the heating rate (average heating rate) for passing the steel sheet through the plating line is not particularly specified because it hardly affects the plating adhesion, elongation, strength, hole expansibility, and hydrogen embrittlement resistance. If the heating rate is 0.5 ° C./second or more, sufficient productivity can be secured, so the heating rate is preferably 0.5 ° C./second or more. When the heating rate is 100 ° C./second or less, it can be carried out with ordinary equipment investment. Therefore, the heating rate is preferably 100 ° C./second in terms of cost.
- the steel plate is retained at 550 to 750 ° C. for 20 seconds or more. This is because the oxide can be dispersed by retaining the steel sheet in this temperature range.
- This oxide formation is thought to be closely related to the recrystallization of cold worked ferrite. That is, since Si, Al, or Mn forming the oxide is supplied by diffusion (particularly, grain boundary diffusion) from the inside of the steel sheet, the oxide containing Si, Mn, Al alone or in combination is a steel sheet. It tends to form at the grain boundary of ferrite on the surface. The grain boundaries of fine ferrite generated by such recrystallization are utilized as oxide generation sites.
- oxides are preferentially generated at ferrite grain boundaries, they often have a network structure and tend to be in a form (projected area ratio) capable of efficiently trapping hydrogen.
- the rate of recrystallization of ferrite is faster than the rate of oxide formation. Therefore, if the temperature of the steel sheet after cold rolling is controlled within this temperature range, recrystallization starts before the oxide is formed, so that a sufficient amount (area) of oxide can be formed on the steel sheet surface. it can.
- the residence temperature is less than 550 ° C., in addition to the recrystallization taking a long time, there is only a large and extended ferrite as processed, and an amount (density) of grains sufficient to form an oxide. There is no world.
- the residence temperature exceeds 750 ° C., the oxide formation rate is faster than the ferrite recrystallization rate, and a granular oxide is formed at the grain boundary during recrystallization and grain growth or reverse transformation. For this reason, it is difficult to form a sufficient amount (area) of oxide on the steel sheet surface. Therefore, the time during which the temperature of the steel (steel plate) is in the temperature range of 550 to 750 ° C. is controlled.
- the residence time is 30 seconds or more.
- the time during which the temperature of the steel sheet is in the temperature range of 550 to 750 ° C. may be controlled by isothermal holding, or may be controlled by heating (temperature increase).
- the upper limit of the time during which the temperature of the steel sheet is in the temperature range of 550 to 750 ° C. is not particularly limited, and may be 2000 seconds or 1000 seconds.
- the ferrite grains extend in the rolling direction, the ferrite grain size is large, and the amount of ferrite grain boundaries is small.
- the time during which the temperature of the steel sheet is in the temperature range of 550 to 750 ° C. is controlled to recrystallize the ferrite before forming the oxide, thereby reducing the ferrite grain size.
- the steel sheet after recrystallization is annealed at an annealing temperature (maximum heating temperature) of 750 to 900 ° C. (S8). If the annealing temperature is less than 750 ° C., it takes too much time for the carbides generated during hot rolling to re-dissolve, and the carbides remain and the hardenability decreases. Therefore, a sufficient amount of tempered martensite and austenite cannot be secured, and it is difficult to secure a tensile strength of 980 MPa or more. Therefore, 750 ° C. is the lower limit of the annealing temperature.
- the upper limit of the annealing temperature is set to 900 ° C.
- the heat treatment time (annealing time) in the above temperature range (750 to 900 ° C.) is not particularly limited, but is preferably 10 seconds or more for dissolving the carbide.
- the heat treatment time is preferably 600 seconds or less.
- the steel sheet may be annealed by holding it isothermally at the maximum heating temperature, or after the gradient heating is performed and the maximum heating temperature is reached, cooling is started and the steel sheet may be annealed.
- the atmosphere in the annealing process of the continuous hot dip galvanizing line it is possible to flexibly control the oxide (oxide containing one or more chemical elements selected from Si, Mn, and Al) formed on the steel sheet surface. it can. That is, by managing the H 2 concentration and the dew point in the annealing atmosphere, the oxygen potential that is important for reaction control can be flexibly controlled. For example, in an N 2 atmosphere with an H 2 concentration of 20% by volume or less applied under normal annealing conditions, the dew point may be ⁇ 20 ° C. or higher. In this case, the amount and shape of the oxide containing one or more chemical elements selected from Si, Mn, and Al can be controlled more flexibly.
- the cooling conditions are controlled so that other structures (for example, ferrite, pearlite, bainite) are not excessively generated during the cooling process after annealing. This is very important.
- first average cooling rate 0.1 ° C./second or more.
- the first average cooling rate is preferably 0.2 ° C./second or more, preferably 0.5 ° C./second or more, or 0.8 ° C./second or more. preferable.
- a 1st average cooling rate shall be 30 degrees C / sec or less.
- the first average cooling rate is preferably 25 ° C./second or less, 22 ° C./second or less, or 20 ° C./second. More preferably, it is less than a second. Therefore, the first average cooling rate is set to 0.1 to 30 ° C./second.
- the intermediate cooling temperature is less than 500 ° C.
- a structure other than austenite and martensite for example, ferrite and bainite
- austenite residual austenite
- the intermediate cooling temperature is Ar 3 ° C. or higher in order to ensure productivity and prevent the formation of pearlite. And it is desirable to set it below 750 degreeC.
- the intermediate cooling temperature is 750 ° C.
- the intermediate cooling temperature is preferably 740 ° C. or lower, and more preferably 730 ° C. or lower. Therefore, the intermediate cooling temperature is set to 500 ° C. or higher and lower than 750 ° C.
- the intermediate cooling temperature is higher than the first average cooling rate from the intermediate cooling temperature to a cooling stop temperature of 100 ° C. or higher and lower than 350 ° C.
- the steel sheet is cooled at a certain average cooling rate (hereinafter referred to as a second average cooling rate) (second stage cooling).
- second stage cooling a certain average cooling rate
- the cooling stop temperature is set to less than 350 ° C.
- the cooling stop temperature is preferably 340 ° C. or lower, more preferably 320 ° C. or lower, or 300 ° C. or lower.
- the cooling stop temperature is set to 100 ° C. or more.
- the cooling stop temperature is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, or 180 ° C. or higher.
- the cooling stop temperature is set to 100 ° C. or more and less than 350 ° C.
- the second average cooling rate is set to 1 ° C./second or more.
- the second average cooling rate is preferably 2 ° C / second or more, or 5 ° C / second or more, preferably 10 ° C / second or more.
- the second average cooling rate is set to 100 ° C./second or less.
- This second average cooling rate is preferably 80 ° C./second or less, and more preferably 50 ° C./second or less. Therefore, the second average cooling rate is set to 1 to 100 ° C./second.
- the second average cooling rate is set to the first average cooling rate.
- the average cooling rate may be larger than the cooling rate.
- the second average cooling It is desirable that the difference between the speed and the first average cooling rate be large.
- the steel sheet has a mean cooling rate of 1 to 30 ° C./second up to a cooling stop temperature of 100 ° C. or more and less than 350 ° C. for the same reason as the two-stage cooling. Can be cooled.
- This one-stage cooling condition is the above-described two-stage cooling condition in which the first average cooling rate is equal to the second average cooling rate (in this case, the intermediate cooling temperature is 500 ° C. or more and less than 750 ° C. It is included in the temperature range.
- the average cooling rate in this one-stage cooling is preferably 10 ° C./second or more, or 12 ° C./second or more, more preferably 15 ° C./second or more, or 20 ° C./second or more. It is more desirable that the cooling rate per second satisfies the average cooling rate condition in addition to the average cooling rate.
- the steel plate is reheated. Subsequently, the steel is immersed in a hot dip galvanizing bath and then cooled to room temperature.
- the time during which the temperature of the steel sheet is in the temperature range of 350 to 500 ° C. is controlled to 20 seconds or more.
- the transformation from austenite to bainite (bainite transformation) proceeds sufficiently, and the amount of C in untransformed austenite can be increased.
- the stability of austenite is increased, and 8% or more of austenite (residual austenite) can be secured in the final product.
- this time is less than 20 seconds, the transformation from austenite to bainite (bainite transformation) does not proceed sufficiently, so that the stability of austenite is lowered and 8% or more austenite can be secured in the final product. Can not.
- the upper limit of the time during which the steel temperature is in the temperature range of 350 to 500 ° C. is not particularly limited, but may be, for example, 1000 seconds or 500 seconds from the viewpoint of productivity.
- the temperature of the steel plate is 350 to What is necessary is just to control the time in the temperature range of 500 degreeC to 20 seconds or more in total.
- the step of holding the steel plate in the temperature range of 350 to 500 ° C. after the second stage cooling may be further added.
- the time for holding the steel sheet in the temperature range of 350 to 500 ° C. is not particularly limited, but may be, for example, 20 seconds or more.
- the temperature of the steel sheet is within a temperature range of 40 ° C. higher than the plating bath temperature and 40 ° C. higher than the plating bath temperature by reheating. Is controlled (S10).
- the plate temperature is lower than the plating bath temperature by 40 ° C. or more, when the steel is immersed in the plating bath, the temperature of the molten zinc near the surface of the steel plate is greatly reduced, and a part of the molten zinc is solidified. Since this solidification deteriorates the plating appearance, the plate temperature is set to (plating bath temperature ⁇ 40 ° C.) or higher by reheating. Further, when the plate temperature is higher by 40 ° C. or more than the plating bath temperature, operational problems occur during hot dip galvanization, so the plate temperature is set to (plating bath temperature + 40 ° C.) or less.
- the steel is immersed in a hot dip galvanizing bath (plating bath) having a molten metal flowing at a flow rate of 10 to 50 m / min, and hot dip galvanizing is performed (S11).
- a hot dip galvanizing bath plating bath having a molten metal flowing at a flow rate of 10 to 50 m / min, and hot dip galvanizing is performed (S11).
- the flow rate of the molten metal By setting the flow rate of the molten metal to 10 to 50 m / min, it is possible to form a plating layer containing an oxide while preventing unplating. If the flow rate of the molten metal is less than 10 m / min, the adhesion of the oxide in the plating bath to the steel sheet surface cannot be suppressed and the contact ratio of the molten metal in the plating bath cannot be increased. This is not possible and the appearance of the plating layer deteriorates. On the other hand, when the flow rate of the molten metal exceeds 50 m / min, not only an excessive capital investment is required to obtain such a flow rate, but also a pattern due to the flow of the molten metal occurs in the plating layer, The appearance of will deteriorate.
- the flow rate of the molten metal is set to 10 to 50 m / min.
- the oxide of the easily oxidizable element formed on the plating layer can be taken into the plating layer. Therefore, it becomes possible to disperse the oxide in the plating layer having a good appearance.
- the oxide containing one or more chemical elements selected from Si, Mn, and Al is formed on the surface of the steel sheet during the heating before the above-described annealing, it is not effective after the steel sheet is lifted from the plating bath. Plating (plating defects, portions where plating is not formed) is likely to occur. Therefore, in the plating bath, the molten metal is caused to flow at a flow rate of 10 to 50 m / min. By causing the molten metal (jet) to flow at such a flow rate, non-plating can be prevented. In addition, when an oxide is formed on the surface of the steel sheet, alloying is delayed when the plating layer is alloyed, but alloying can be promoted by controlling the flow rate of the molten metal.
- the direction of the flow rate of the molten metal is not particularly limited, and only the magnitude of the flow rate of the molten metal may be controlled.
- the molten metal in the plating bath may be pure zinc (zinc and unavoidable impurities), Al (for example, 2% by mass or less) as a selective element or unavoidable impurities, Fe, Mg as unavoidable impurities. , Mn, Si, Cr and other chemical elements may be contained.
- the effective amount of Al in the plating bath is controlled to 0.05 to 0.500 mass in order to control the properties of the plating layer. It is desirable to control to%.
- the effective amount of Al in the plating bath is a value obtained by subtracting the amount of Fe in the plating bath from the amount of Al in the plating bath.
- the effective Al amount is 0.05 to 0.500% by mass, it is possible to obtain a plated layer having a good appearance and to sufficiently increase productivity. That is, when the effective Al amount is 0.05% by mass or more, dross generation can be suppressed and a plating layer having a good appearance can be obtained. Further, when the effective Al amount is 0.500% by mass or less, alloying can be efficiently performed, and productivity can be sufficiently improved.
- the steel plate immersed in the plating bath is pulled up from the plating bath, and wiping is performed as necessary.
- the amount of plating (plating adhesion amount) adhering to the surface of the steel plate can be controlled.
- the amount of plating adhesion amount is 5 g / m ⁇ 2 > or more per one side.
- the plating adhesion amount is 100 g / m 2 or less per side.
- the steel sheet After the hot dip galvanizing is performed on the steel sheet, the steel sheet is cooled to a temperature lower than 100 ° C. (for example, room temperature) (S12).
- the cooling stop temperature in this cooling is not particularly limited as long as the microstructure is stable, and may be, for example, 0 ° C. or higher (for example, water temperature or room temperature or higher) in terms of cost.
- a hot-dip galvanized steel sheet can be obtained as the plated steel sheet.
- the obtained plated steel sheet may be alloyed (S20). Since Fe in the steel sheet is taken into the plating layer by the alloying treatment, after cooling (S21), a galvanized steel sheet excellent in paintability and spot weldability (that is, galvannealed steel sheet) can be obtained. .
- the plated steel sheet may be heated to 460 ° C. or higher.
- the temperature of alloying treatment (alloying temperature) is set to 460 ° C. or higher, alloying can be efficiently performed at a high alloying speed, and thus productivity can be sufficiently increased.
- the alloying temperature exceeds 600 ° C., carbides are generated, the volume fraction of austenite in the steel in the final product is reduced, and 8% or more austenite cannot be secured. Therefore, the upper limit of the alloying temperature is set to 600 ° C. That is, the maximum temperature in the process after the second stage cooling is preferably limited to 600 ° C. or less.
- an upper layer plating (additional plating, for example, electroplating) may be applied on a galvanized steel sheet for the purpose of improving characteristics such as paintability and weldability, and various treatments (for example, chromate treatment, phosphoric acid) Salt treatment, treatment for improving lubricity, treatment for improving weldability, etc.) may be applied.
- various treatments for example, chromate treatment, phosphoric acid) Salt treatment, treatment for improving lubricity, treatment for improving weldability, etc.
- the steel sheet is plated with one or more of Ni, Cu, Co, Fe (one selected from these chemical elements) between cold rolling and annealing.
- Plating comprising two or more chemical elements and inevitable impurities may be applied. Although this plating is intentionally performed, the amount of chemical elements mixed into the plating layer by this plating is small enough to be judged as an impurity.
- skin pass rolling may be performed on a plated steel sheet cooled to a temperature of less than 100 ° C.
- the cumulative rolling reduction of this skin pass rolling is preferably 0.1 to 1.5%.
- the cumulative rolling reduction is 0.1% or more, the appearance of the plated steel sheet can be further enhanced by the skin pass, and the cumulative rolling reduction can be easily controlled. Therefore, the cumulative rolling reduction is preferably 0.1% or more. If the cumulative rolling reduction is 1.5% or less, sufficient productivity can be secured, so the cumulative rolling reduction is preferably 1.5% or less.
- the skin pass may be performed inline or offline. The skin pass may be performed once or divided into several times so as to achieve the target cumulative reduction ratio.
- the cumulative reduction ratio is based on the inlet plate thickness before the first pass in skin pass rolling, and the cumulative reduction amount relative to this reference (the inlet plate thickness before the first pass in skin pass rolling and the outlet after the final pass in skin pass rolling) It is a percentage of the difference from the plate thickness.
- the specific method from the step of pickling the steel plate to the step of immersing the steel plate in the plating bath is not particularly limited as long as the above conditions are satisfied.
- “steel plate is degreased and pickled, heated in a non-oxidizing atmosphere, annealed in a reducing atmosphere containing H 2 and N 2 , then cooled to near the plating bath temperature, and plated.
- the Zenzimer method “After oxidizing the steel sheet surface by adjusting the atmosphere during annealing, the steel sheet surface is reduced (here, oxides of oxidizable elements are not reduced).
- immersing the steel plate in the plating bath "" After cleaning the steel plate surface, immersing the steel plate in the plating bath "," After the steel plate is degreased and pickled, flux treatment is performed using ammonium chloride, etc.
- the flux method of “immersing” or the like may be applied after changing as necessary along each step of the present embodiment.
- the slab after continuous casting having the chemical composition shown in Table 1 (where the balance is iron and inevitable impurities) is heated under the hot rolling conditions shown in Tables 2 and 5 (slab heating temperature and finish rolling temperature in the table). After hot rolling, the obtained hot-rolled steel sheet was water-cooled in a water-cooled zone, and then wound at the temperatures shown in Tables 2 and 5 (winding temperature in the table). The thickness of the hot-rolled steel sheet was 2 to 4.5 mm.
- cold-rolling is performed under the cold-rolling conditions shown in Tables 2 and 5 (in the table, roll diameter and cold-rolling rate) so that the thickness after cold rolling becomes 1.2 mm. And cold rolled steel sheet. Thereafter, various heat treatments and hot dip galvanizing were performed on these cold-rolled steel sheets in a continuous alloying hot dip galvanizing line under the conditions shown in Table 3 (continuation of Table 2) and Table 6 (continuation of Table 5). And processed.
- the cold-rolled steel sheet in the heat treatment after cold rolling, is cooled so that the time (in the table, t A ) in the temperature range of 550 to 750 ° C. becomes a predetermined time.
- the cold rolled steel sheet was annealed under predetermined annealing conditions (in the table, the annealing temperature (however, the maximum heating temperature), the H 2 concentration, and the dew point).
- the annealing temperatures in Tables 3 and 6 the cold-rolled steel sheet is cooled to a predetermined intermediate cooling temperature at a predetermined primary cooling rate, and then to a predetermined cooling stop temperature at a predetermined secondary cooling rate. Cooled (one-stage or two-stage controlled cooling).
- Table 4 continuous of Table 3
- Table 7 continuous of Table 6
- the obtained steel plate (plated steel plate) was cooled to room temperature.
- the effective amount of Al of molten metal (molten zinc) in the plating bath was 0.09 to 0.17% by mass.
- alloying processing was performed on each condition (in the table, alloying temperature), and the obtained steel plates were cooled to room temperature.
- the basis weight (amount of plating layer) at that time was about 35 g / m 2 on both sides.
- t B in Tables 4 and 7 represents the total time during which the temperature of the steel sheet is 350 to 500 ° C. after the end of the controlled cooling.
- GI indicates a galvanized steel sheet
- GA indicates an alloyed galvanized steel sheet.
- the hole expansion rate ( ⁇ ) was determined by a hole expansion test in accordance with the Iron Federation standard JFS T1001.
- the amount of Fe in the plating layer was analyzed by ICP emission analysis of the solution obtained by dissolving the plating layer of the plated steel sheet using 5% HCl aqueous solution to which inhibitor was added, and removing residues such as undissolved oxides. Was measured. Three samples were used for the measurement, and the average value of the amount of Fe in these three samples was defined as Fe% of the plating layer.
- the microstructure of the cross section of the plated steel sheet was observed.
- Each phase of the microstructure is determined using an optical microscope, a scanning electron microscope, and a transmission electron microscope as necessary, and the area ratio and coarse grain area ratio of each phase (over 35 ⁇ m per unit area) The ratio of crystal grains having a particle size) was measured.
- the oxide in the plating layer of the obtained thin piece was processed using a focused ion beam processing apparatus (FIB).
- FIB focused ion beam processing apparatus
- FE-TEM field emission transmission electron microscope
- composition analysis identification of oxide
- EDX energy dispersive X-ray detector
- a test piece was prepared by a U-bending test, and a delayed fracture test by electrolytic charging was performed on the test piece.
- the plated steel sheet obtained by the above method was evaluated for delayed fracture resistance according to the method described in “Materia (Journal of the Japan Institute of Metals Vol. 44, No. 3, (2005) p254-256”).
- the end surface thereof was mechanically ground, and then a U-bending test was performed so that the test piece had a bending radius of 10R.
- a strain gauge was attached to the center of the surface of the obtained test piece, and both ends of the test piece were tightened with bolts to apply stress to the test piece.
- the applied stress was calculated from the strain of the monitored strain gauge.
- the applied stress was about 0.7 times the tensile strength TS (0.7 ⁇ TS). For example, it is 700 MPa for a 980 MPa grade steel plate, 840 MPa for a 1180 MPa grade steel plate, and 925 MPa for a 1320 MPa grade steel plate.
- the reason why the additional stress is increased as the tensile strength TS is increased is that the residual stress introduced into the steel sheet during forming is considered to increase as the tensile strength TS of the steel sheet increases.
- the obtained U-bending specimen is immersed in an ammonium thiocyanate solution, and the electrolytic charging apparatus is placed at a current density of 0.1 mA / cm 2 so that the steel sheet (U-bending specimen) serves as a cathode and the platinum electrode serves as an anode. An electric current was passed and the electrolytic charge test was conducted for 2 hours.
- the plating property (wetting property) was evaluated using a stereomicroscope (100 times magnification). That is, the surface of the plated steel sheet (however, the region of 3/8 of the plate width from the center position of the plate width toward both edges) is observed over 3 fields of view, and there is no plating (defect reaching the base material (steel plate)) It was confirmed. As a result, when the coverage of the plating layer is less than 99% (when the defect rate is more than 1%), since there are many unplated, the wettability was evaluated as “No Good”. Further, when the coverage of the plating layer was 100%, there was no non-plating, so the wettability was evaluated as “Good”.
- the measured microstructures are shown in Tables 8 and 11, the tensile properties are shown in Table 9 (continuation of Table 8) and Table 12 (continuation of Table 11), and the delayed fracture resistance, plating properties and Fe% in the plating layer are shown. 10 and Table 13.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
本願は、2011年9月30日に、日本に出願された特願2011-217811号に基づき優先権を主張し、その内容をここに援用する。
そのため、成形方法ではなく、必要とされる特性に応じた材料開発によって鋼板の耐遅れ破壊特性を確保することが求められている。
このように、水素脆性を起こしやすい残留オーステナイトを多く含む場合において、高い耐食性、高い引張強度、優れた耐遅れ破壊特性及び高い延性を同時に満足する鋼板を得ることは、極めて難しい。
本発明者らは、溶融亜鉛めっき浴中で溶融金属を流動させると、上記の酸化物間の反応または相互作用を抑制して不めっきを抑制することができることも見出した。
そのため、例えば、酸化物3aは、Si、Mn、及び、Alを、単独または複合で(すなわち、少なくとも1種)含み、残部がO(酸素)及び不可避的不純物からなってもよい。
ここで、Si、Mn、及び、Alを、単独又は複合で含む酸化物3aとして、SiO2、MnO、Al2O3、Mn2SiO4等が挙げられ、酸化物3aが、SiO2、または、Mn2SiO4を含むと望ましい。
Cは、鋼板2の強度を上昇させる元素である。C量が0.05%未満では、980MPa以上の引張強度と加工性とを両立することが難しくなる。また、C量が0.40%を超えると、ミクロ組織中のマルテンサイト及びセメンタイトの量が多くなり、十分な伸び及び穴拡げ性が得られない。加えて、この場合には、スポット溶接性の確保が困難となる。このため、C量を0.05~0.40%とした。鋼板2の強度をより高める場合には、C量を、0.08%以上とすると好ましく、0.10%以上、または、0.12%以上とするとより好ましい。また、鋼板2のスポット溶接性をより高める場合には、C量を、0.38%以下とすると好ましく、0.35%以下、または、0.32%以下とするとより好ましい。
Siは、耐水素脆性を改善するための重要な元素である。Si量が0.5%未満では、めっき層3中の酸化物3aの量が十分でなく、耐遅れ破壊特性が向上しない。そのため、Si量の下限を0.5%とする。Si量が3.0%を超えると、過剰のフェライトの生成によりミクロ組織が制御できなかったり、加工性が低下したりする。そのため、Si量を0.5~3.0%とした。また、Siは、鋼板2の強度を上昇させる元素である。そのため、鋼板2の強度をより高める場合には、Si量を、0.6%以上とすると好ましく、0.7%以上、または、0.8%以上とするとより好ましい。また、鋼板2の加工性をより高める場合には、Si量を、2.8%以下とすると好ましく、2.5%以下、または、2.2%以下とするとより好ましい。
Mnは、酸化物を形成する元素であり、かつ、鋼板2の強度を上昇させる元素である。Mn量が1.5%未満では、980MPa以上の引張強度を得ることが困難である。Mn量が多いと、Mnと、P及びSとの共偏析が助長されて、加工性が低下する。そのため、Mn量の上限を3.0%とする。鋼板2の強度をより高める場合には、Mn量を、1.6%以上とすると好ましく、1.8%以上、または、2.0%以上とするとより好ましい。また、鋼板の加工性をより高める場合には、Mn量を、2.8%以下とすると好ましく、2.7%以下、または、2.6%以下とするとより好ましい。
Oは、鋼中に酸化物を形成し、伸び、曲げ性、及び、穴拡げ性を劣化させるので、鋼中のO量を抑える必要がある。特に、酸化物は、介在物として存在する場合が多く、打抜き端面、又は、切断面に存在すると、端面に切欠き状の傷や粗大なディンプルが形成する。この傷やディンプルは、穴拡げ時や強加工時に、応力集中を招き、亀裂形成の起点となり、大幅に穴拡げ性又は曲げ性を低下させる。
Pは、鋼板の板厚中央部に偏析し、溶接部を脆化させる元素である。P量が0.04%を超えると、溶接部の脆化が顕著になるので、P量の上限を0.04%とした。P量の下限は特に定めないが、P量を0.0001%未満にすると、コストが増加するので、P量を0.0001%以上とすると好ましい。より鋼板2の溶接性を高めるために、P量を、0.035%以下に制限すると好ましく、0.03%以下、または、0.02%以下に制限するとより好ましい。
Sは、溶接性、及び、鋳造時及び熱延時の鋼板2の製造性に悪影響を及ぼす元素である。このことから、S量の上限を0.01%とした。S量の下限は特に定めないが、S量を0.0001%未満にすると、コストが増加するので、S量を0.0001%以上とすると好ましい。また、Sは、Mnと結びついて、粗大なMnSを形成して、曲げ性や穴拡げ性を劣化させるので、S量をできるだけ少なくする必要がある。より鋼板2の加工性を高めるために、S量を、0.008%以下に制限すると好ましく、0.005%以下、または、0.004%以下に制限するとより好ましい。
Alは、酸化物として、耐遅れ破壊特性の向上に活用できる元素である。また、Alは、脱酸材としても活用可能な元素である。しかし、Alを鋼中に過剰に添加すると、Al系の粗大介在物の個数が増大し、穴拡げ性の劣化や表面疵の原因になるので、Al量の上限を2.0%とした。Al量の下限は、特に限定しないが、Al量を0.0005%以下にするのは困難であるので、Al量の下限を0.0005%としてもよい。Al量は、1.8%以下であると好ましく、1.5%以下、または、1.2%以下であるとより好ましい。
Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させる元素である。それ故、鋼中のN量を抑える必要がある。N量が0.01%を超えると、上記傾向が顕著となるので、N量の上限を0.01%とした。加えて、Nは、溶接時のブローホールを発生させるので、少ない方が好ましい。N量の下限は、特に限定しないが、N量を0.0005%未満にすると、製造コストが大幅に増加するので、N量の下限を0.0005%としてもよい。より鋼板2の溶接性を高める場合には、N量を、0.008%以下とすると好ましく、0.005%以下、または、0.004%以下とするとより好ましい。
すなわち、鋼板2が、選択元素または不可避的不純物として、Mo、Cr、Ni、Cu、Nb、Ti、V、B、Ca、Mg、REMのうちいずれか1種以上を含有しても構わない。なお、これらの化学元素を、必ずしも鋼板2中に添加する必要がないため、これらの11種の化学元素の下限は、いずれも0%であり制限されない。そのため、これらの11種の化学元素の上限のみが制限される。
Moは、強化元素であるとともに焼き入れ性の向上に重要な元素である。鋼中にMoを添加する場合、Mo量が0.01%未満では、添加による効果が得られないので、Mo量の下限を0.01%としてもよい。Mo量が1.0%を超えると、製造時及び熱延時の鋼板2の製造性が低下するので、Mo量の上限を1.0%とした。鋼板2の製造性及びコストの観点から、Mo量の上限は、0.8%であると好ましく、0.5%、または、0.3%であるとより好ましい。
Crは、強化元素であるとともに焼き入れ性の向上に重要な元素である。鋼中にCrを添加する場合、Cr量が0.05%未満では、添加による効果が得られないので、Cr量の下限を0.05%としてもよい。Cr量が1.0%を超えると、製造時及び熱延時の鋼板2の製造性が低下するので、Cr量の上限を1.0%とした。鋼板2の製造性及びコストの観点から、Cr量の上限は、0.9%であると好ましく、0.8%、または、0.5%であるとより好ましい。
Niは、強化元素であるとともに焼き入れ性の向上に重要な元素である。鋼中にNiを添加する場合、Ni量が0.05%未満では、添加による効果が得られないので、Ni量の下限を0.05%としてもよい。Ni量が1.0%を超えると、製造時及び熱延時の鋼板2の製造性が低下するので、Ni量の上限を1.0%とした。加えて、Niは、鋼板2の濡れ性を向上させたり、合金化反応を促進させたりする。そのため、Ni量を0.2%以上としてもよい。
Cuは、強化元素であるとともに焼き入れ性の向上に重要な元素である。鋼中にCuを添加する場合、Cu量が0.05%未満では、添加による効果が得られないので、Cu量の下限を0.05%としてもよい。Cu量が1.0%を超えると、製造時及び熱延時の鋼板2の製造性が低下するので、Cu量の上限を1.0%とした。加えて、Cuは、鋼板2の濡れ性を向上させたり、合金化反応を促進させたりする。そのため、Cu量を0.2%以上としてもよい。Niと同様に、Cuは、Feに比べて酸化し難い元素である。そのため、Cu量の上限が、0.9%であってもよい。
Bは、粒界の強化や鋼板2の強度向上に有効な元素である。鋼中にBを添加する場合、B量が0.0001%未満では、添加による効果が得られないので、B量の下限を0.0001%としてもよい。一方、B量が0.01%を超えると、添加による効果が飽和するばかりでなく、熱延時の鋼板2の製造性を低下させるので、B量の上限を0.01%とした。鋼板2の製造性及びコストの観点から、B量の上限は、0.008%であると好ましく、0.006%、または、0.005%であるとより好ましい。
Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び、再結晶の抑制を通じた転位強化で、鋼板2の強度上昇にTiが寄与する。鋼中にTiを添加する場合、Ti量が0.005%未満では、添加による効果が得られないので、Ti量の下限を0.005%としてもよい。一方、Ti量が0.3%を超えると、炭窒化物の析出が多くなり、成形性が劣化するので、Ti量の上限を0.3%とした。鋼板2の成形性をより高める場合には、Ti量の上限は、0.25%であると好ましく、0.20%、または、0.15%であるとより好ましい。
Nbは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び、再結晶の抑制を通じた転位強化で、鋼板2の強度上昇にNbが寄与する。鋼中にNbを添加する場合、Nb量が0.005%未満では、添加による効果が得られないので、Nb量の下限を0.005%としてもよい。一方、Nb量が0.3%を超えると、炭窒化物の析出が多くなり、成形性が劣化するので、Nb量の上限を0.3%とした。鋼板2の成形性をより高める場合には、Nb量の上限は、0.25%であると好ましく、0.20%、または、0.15%であるとより好ましい。
Vは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び、再結晶の抑制を通じた転位強化で、鋼板2の強度上昇にVが寄与する。鋼中にVを添加する場合、V量が0.005%未満では、添加による効果が得られないので、V量の下限を0.005%としてもよい。一方、V量が0.5%を超えると、炭窒化物の析出が多くなり、成形性が劣化するので、V量の上限を0.5%とした。鋼板2の成形性をより高める場合には、V量の上限は、0.4%であると好ましく、0.3%、または、0.2%であるとより好ましい。
Ca、Mg、及び、REM(Rare Earth Metal)の1種以上を、合計で最大0.04%まで添加してもよい。Ca、Mg、及び、REMは、脱酸に用いる元素であり、Ca、Mg、及び、REMから選択された1種、2種、又は、3種を、合計で0.0005%以上鋼中に含有させてもよい。
伸びの指標を、引張強度TS(MPa)と全伸びEl(%)との積から得た上で、この積が16000(MPa×%)以上である場合(TS×El≧16000MPa×%)に、伸びが優れていると評価する。伸びを重要視する場合、この積(TS×El)は、望ましくは、18000MPa×%以上であり、さらに望ましくは、20000MPa×%以上である。
また、本実施形態に係る亜鉛めっき鋼板1を部材として適用する際には、例えば、溶接性を確保するために、めっき層3の一部を除去してもよく、目的に応じて適宜亜鉛めっき鋼板を加工することができる。
ここで、上記実施形態に係る亜鉛めっき鋼板のめっき層中の酸化物3aの投影面積率を10%以上に制御するために、本実施形態では、少なくとも、冷間圧延(S6)の条件と、加熱(S7)の条件と、溶融亜鉛めっき(S11)の条件とを、後述のように適切に制御している。
以下に、本実施形態の各工程について説明する。
Ar3=901-325×(%C)-92×(%Mn)+33×(%Si)-20×(%Cr) ・・・(式2)
Ac3=910-203×(%C)^0.5+44.7×(%Si)-30×(%Mn)-11×(%Cr) ・・・(式3)
鋼板が選択元素としてCrを含まない場合には、Ar3変態点及びAc3変態点は、それぞれ、下記式4及び式5により算出することができる。
Ar3=901-325×(%C)-92×(%Mn)+33×(%Si) ・・・(式4)
Ac3=910-203×(%C)^0.5+44.7×(%Si)-30×(%Mn) ・・・(式5)
酸洗した熱延鋼板を、1400mm以下のロール径を有するロール(ワークロール)にて30%以上の累積圧下率で冷間圧延して(S6)、連続溶融亜鉛めっきラインに通板する。この冷間圧延により、後工程の加熱(滞留)時において、フェライトの再結晶とこの再結晶による酸化物(上記酸化物3aを形成するために必要な酸化物)の形成とを促進させることができる。
また、550~750℃の温度域では、酸化物の生成速度に比べ、フェライトの再結晶の速度が速い。そのため、この温度域内に冷延後の鋼板の温度が制御されると、酸化物が形成する前に再結晶が開始するため、鋼板表面に十分な量(面積)の酸化物を形成させることができる。
ここで、鋼板の温度が550~750℃の温度域にある時間を、等温保持で制御してもよく、加熱(温度上昇)により制御してもよい。鋼板の温度が550~750℃の温度域にある時間の上限は、特に制限されず、2000秒であっても、1000秒であってもよい。
そのため、焼鈍後の鋼板を以下のように一段階または二段階の冷却によって制御冷却する(S9)。
十分に生産性を確保するために、第一の平均冷却速度を、0.1℃/秒以上とする。より生産性を高める場合には、第一の平均冷却速度が0.2℃/秒以上であることが好ましく、0.5℃/秒以上、または、0.8℃/秒以上であることが好ましい。また、フェライトを生成させるために、第一の平均冷却速度を、30℃/秒以下とする。フェライトの量をさらに高めてオーステナイトの量及び安定度を高める場合には、この第一の平均冷却速度が、25℃/秒以下であることが好ましく、22℃/秒以下、または、20℃/秒以下であることがより好ましい。したがって、第一の平均冷却速度を0.1~30℃/秒とする。また、第一の平均冷却速度が30℃/秒以下である場合に、中間冷却温度を500℃未満にすると、オーステナイト及びマルテンサイト以外の組織(例えば、フェライトやベイナイト)が過剰に生成するため、最終製品において、焼き戻しマルテンサイトを30%以上、オーステナイト(残留オーステナイト)を8%以上確保することができなくなる。但し、第一の平均冷却速度が0.1~0.8℃/秒である場合には、生産性を確保し、かつ、パーライトの生成を防止するために、中間冷却温度をAr3℃以上かつ750℃未満とすると望ましい。一方、中間冷却温度が750℃以上であると、製造コストが増加する上、フェライトが生成しない場合もある。より安定的にフェライトを生成させるために、中間冷却温度は、740℃以下であることが好ましく、730℃以下であることがより好ましい。したがって、中間冷却温度を、500℃以上かつ750℃未満とする。
最終製品において30%以上の焼き戻しマルテンサイトを得るために必要なマルテンサイトを確保するために、冷却停止温度を350℃未満とする。最終製品においてより多くの焼き戻しマルテンサイトを確保するためには、冷却停止温度を、340℃以下にすることが好ましく、320℃以下、または、300℃以下にすることがより好ましい。また、最終製品において8%以上のオーステナイト(残留オーステナイト)を得るために必要なオーステナイトを確保するために、冷却停止温度を100℃以上とする。最終製品においてより多くのオーステナイトを確保するために、冷却停止温度を、120℃以上にすることが好ましく、150℃以上、または、180℃以上にすることがより好ましい。特に、冷却停止温度をマルテンサイト変態が開始する温度(MS点)より100℃低い温度以上とするとさらに好ましい。したがって、冷却停止温度を100℃以上かつ350℃未満とする。このような冷却停止温度を制御することにより、第一段の冷却の終了直後に存在したオーステナイトのうち、適切な量のオーステナイトをマルテンサイトに変態させることができる。最終製品において30%以上の焼き戻しマルテンサイトを得るために必要なマルテンサイトを確保するために、第二の平均冷却速度を1℃/秒以上とする。第二の平均冷却速度が1℃/秒未満であると、生産性が低下するだけでなく、オーステナイト及びマルテンサイト以外の組織が過剰に生成する。最終製品においてより多くの焼き戻しマルテンサイト及びオーステナイトを確保するために、第二の平均冷却速度を、2℃/秒以上、または、5℃/秒以上にすることが好ましく、10℃/秒以上、または、20℃/秒以上にすることがより好ましい。特に、上記第一の平均冷却速度が0.1~0.8℃/秒である場合には、この第二の平均冷却速度を前述のように高めることが望ましい。また、製造コスト(設備コスト)を十分に抑えるために、第二の平均冷却速度を100℃/秒以下とする。この第二の平均冷却速度を、80℃/秒以下とすると好ましく、50℃/秒以下とするとより好ましい。したがって、第二の平均冷却速度を1~100℃/秒とする。加えて、生産性を高め、かつ、オーステナイト及びマルテンサイト以外の相の生成をできる限り抑制するために、二段階の冷却を行う場合には、この第二の平均冷却速度を、第一の平均冷却速度よりも大きな平均冷却速度にするとよい。第一段の冷却及び第二段の冷却後のオーステナイト中のC量をより高め、かつ、第二段の冷却後のマルテンサイト及びオーステナイトの量をより増加させるためには、第二の平均冷却速度と第一の平均冷却速度との差が大きいことが望ましい。
なお、上記各平均冷却速度に加え、秒毎の冷却速度が上記平均冷却速度の条件を満足するとより望ましい。
冷却後、めっき鋼板として、溶融亜鉛めっき鋼板を得ることができる。このめっき鋼板のスポット溶接性や塗装性をより高める場合には、得られためっき鋼板に対し合金化処理を行ってもよい(S20)。合金化処理によってめっき層中に鋼板中のFeが取り込まれるため、冷却(S21)後、塗装性やスポット溶接性に優れた亜鉛めっき鋼板(すなわち、合金化溶融亜鉛めっき鋼板)を得ることができる。
鋼No.A-8、B-4、及び、R-6では、めっき浴中の溶融金属の流速が10m/min未満であった。そのため、これら鋼No.A-8、B-4、及び、R-6では、鋼板表面の酸化物に起因する不めっきが発生し、この不めっきの部分(めっき層により被覆されていない部分)によって外観及び耐久性が低下した。
鋼No.A-2、E-3、及び、R-4では、巻取り温度が700℃を超えていたため、熱延鋼板のミクロ組織が粗大なフェライト-パーライト組織となり、その後の工程(冷間圧延、焼鈍、亜鉛めっき、及び、合金化熱処理)後の最終的な鋼板のミクロ組織の各相が粗大化し(粗大粒面積率が30%超)、ミクロ組織が不均一化した。そのため、これら鋼No.A-2、E-3、及び、R-4では、伸び(TS×El)及び穴拡げ性(TS×λ)の少なくとも1つが十分ではなかった。
鋼No.A-4及びC-3では、一段目の冷却における冷却停止温度が500℃未満であったため、フェライトが過剰に生成し、焼き戻しマルテンサイト、オーステナイト、及び、焼き戻しマルテンサイトとベイナイトとの合計について、体積分率が十分ではなかった。そのため、鋼No.A-4及びC-3では、引張強度(TS)が980MPa未満になり、伸び(TS×El)及び穴拡げ性(TS×λ)の少なくとも1つが十分ではなかった。
鋼No.A-2、A-8、A-10、及び、C-4では、二段目の冷却における冷却停止温度が350℃以上であったため、十分にミクロ組織が焼き入れられず、焼き戻しマルテンサイトの体積分率が30%未満であった。そのため、鋼No.A-2、A-8、A-10、及び、C-4では、伸び(TS×El)及び穴拡げ性(TS×λ)の少なくとも1つが十分ではなかった。
鋼No.A-13では、二段目の冷却における冷却停止温度が100℃未満であったため、オーステナイトのほとんどがマルテンサイトに変態してしまい、オーステナイトの体積分率が8%未満であった。そのため、この鋼No.A-13では、伸び(TS×El)が十分でなかった。
鋼No.A-5、A-6、A-7、C-4、G-3、M-3、R-6、及び、R-7では、制御冷却の終了(二段目の冷却の終了)から最終製品が得られるまでの工程において、鋼板の温度が350~500℃の温度範囲にある時間を20秒未満とした。そのため、鋼No.A-5及びG-3では、350℃未満に鋼板を保持したにも関わらず、オーステナイトを十分に安定化できず、オーステナイトの体積率が8%未満であった。また、鋼No.A-6では、500℃を超える温度に鋼板を保持したにも関わらず、ベイナイト変態が十分に進まずマルテンサイトの体積率の増加により、焼き戻しマルテンサイト、オーステナイト、及び、焼き戻しマルテンサイトとベイナイトとの合計について、体積分率が十分ではなかった。なお、鋼No.C-4については、二段目の冷却直後に鋼板を保持しているため、上述の理由により焼き戻しマルテンサイトの体積分率が30%未満であった。鋼No.A-7、M-3、及び、R-6では、350~500℃の温度範囲に鋼板を保持したが、鋼板の温度が350~500℃の温度範囲にある時間を十分に確保できなかった。鋼No.R-7では、鋼板を保持せず、鋼板の温度が350~500℃の温度範囲にある時間を十分に確保できなかった。そのため、これら鋼No.A-7、M-3、R-6、及び、R-7では、オーステナイトを十分に安定化できず、オーステナイトの体積率が8%未満であった。したがって、鋼No.A-5、A-6、A-7、C-4、G-3、M-3、R-6、及び、R-7では、伸び(TS×El)及び穴拡げ性(TS×λ)の少なくとも1つが十分ではなかった。
鋼No.Y-1では、鋼中のSi量が3%を超えていたため、フェライトの安定化により過剰のフェライトが生成し、焼き戻しマルテンサイトの体積分率が30%未満、焼き戻しマルテンサイトとベイナイトとの合計の体積分率が40%未満であった。そのため、この鋼No.Y-1では、穴拡げ性(TS×λ)が十分ではなかった。また、鋼No.Y-1では、鋼板表面の酸化物量が多くなったため、不めっきが発生し、耐遅れ破壊特性が十分でなかった。
鋼No.Z-1では、鋼中のMn量が1.5%未満であったため、焼き入れ性の低下によりフェライトが過剰に生成し、焼き戻しマルテンサイト、オーステナイト、及び、焼き戻しマルテンサイトとベイナイトとの合計について、体積分率が十分ではなかった。その結果、鋼No.Z-1では、引張強度(TS)が980MPa未満になり、伸び(TS×El)及び穴拡げ性(TS×λ)が十分ではなかった。また、この鋼No.Z-1では、パーライトの生成をMnによって抑制できなかったため、パーライトの体積分率が10%を超えていた。
鋼No.AA-1では、鋼中のMn量が3%を超えていたため、焼き入れ性が高くなりすぎ、二段目の冷却後にオーステナイトのほとんどがマルテンサイトに変態した。そのため、この鋼No.AA-1では、オーステナイトの体積分率が8%未満になり、伸び(TS×El)及び穴拡げ性(TS×λ)が十分ではなかった。
鋼No.AB-1では、鋼中のC量が0.4%を超えていたため、セメンタイトの体積分率が10%を超えていた。また、この鋼No.ABでは、焼き入れ性が高すぎるため、焼き戻しマルテンサイトの体積分率が30%未満であり、マルテンサイトとベイナイトとの合計の体積分率が40%未満であった。そのため、この鋼No.ABでは、伸び(TS×El)及び穴拡げ性(TS×λ)が十分ではなかった。
Claims (12)
- 鋼板と、
前記鋼板の表面上のめっき層と
を備え、
前記鋼板が、質量%で、
C:0.05~0.40%、
Si:0.5~3.0%、
Mn:1.5~3.0%
を含み、
P:0.04%以下、
S:0.01%以下、
N:0.01%以下、
Al:2.0%以下、
O:0.01%以下
に制限し、残部が鉄及び不可避的不純物からなる鋼化学組成を有し、フェライトと、ベイナイトと、30%以上の体積分率の焼き戻しマルテンサイトと、8%以上の体積分率のオーステナイトとを含み、パーライトの体積分率を10%以下に制限し、前記焼き戻しマルテンサイトと前記ベイナイトとの合計体積分率が40%以上であるミクロ組織を有し、このミクロ組織の単位面積に対して35μmを超える粒径を有する結晶粒が占める面積の割合が10%以下であり、980MPa以上の引張強度を有し、
前記めっき層中のめっき金属が、Fe量を15質量%以下、Al量を2質量%以下に制限し、残部が、Zn及び不可避的不純物からなるめっき化学組成を有し、前記めっき層がSi、Mn、及び、Alから選ばれる1種以上の化学元素を含む酸化物を含有し、前記鋼板と前記めっき層とを含む板厚方向断面で見た場合に、前記酸化物を前記めっき層と前記鋼板との界面に投影した長さを前記めっき層と前記鋼板との界面の長さで除して得られる投影面積率が10%以上であり、前記鋼板に対する前記めっき層の被覆率が99%以上である
ことを特徴とする亜鉛めっき鋼板。 - 前記鋼化学組成が、さらに、質量%で、
Mo:0.01~1.0%、
Cr:0.05~1.0%、
Ni:0.05~1.0%、
Cu:0.05~1.0%、
Nb:0.005~0.3%、
Ti:0.005~0.3%、
V:0.005~0.5%、
B:0.0001~0.01%、
Ca、Mg、及び、REMから選ばれる1種以上の合計:0.0005~0.04%
から選ばれる1種以上を含む
ことを特徴とする請求項1に記載の亜鉛めっき鋼板。 - 前記めっき層が、溶融亜鉛めっき層であることを特徴とする請求項1または2に記載の亜鉛めっき鋼板。
- 前記めっき層が、合金化溶融亜鉛めっき層であることを特徴とする請求項1または2に記載の亜鉛めっき鋼板。
- 前記めっき化学組成のFe量を7質量%未満に制限することを特徴とする請求項1または2に記載の亜鉛めっき鋼板。
- 前記めっき化学組成が、Feを7~15質量%を含むことを特徴とする請求項1または2に記載の亜鉛めっき鋼板。
- 前記めっき化学組成が、Alを0%超かつ2質量%以下含むことを特徴とする請求項1または2に記載の亜鉛めっき鋼板。
- 質量%で、
C:0.05~0.40%、
Si:0.5~3.0%、
Mn:1.5~3.0%
を含み、
P:0.04%以下、
S:0.01%以下、
N:0.01%以下、
Al:2.0%以下、
O:0.01%以下
に制限し、残部が鉄及び不可避的不純物からなる鋼化学組成を有する鋼を鋳造する第1の工程と;
前記鋼を、直接又は一旦冷却した後、加熱する第2の工程と;
Ar3変態点以上で熱間圧延が完了するように前記鋼を熱間圧延する第3の工程と;
前記鋼を300~700℃で巻き取る第4の工程と;
前記鋼を酸洗する第5の工程と;
ロール径1400mm以下のワークロールを有する冷間圧延機にて30%以上かつ100%未満の累積圧下率で前記鋼を冷間圧延する第6の工程と;
前記鋼を加熱して550~750℃で20秒以上前記鋼を滞留させる第7の工程と;
750~900℃にて前記鋼を焼鈍する第8の工程と;
500℃以上かつ750℃未満の温度域の中間冷却温度まで0.1~30℃/秒の第一の平均冷却速度で前記鋼を冷却し、この中間冷却温度から100℃以上かつ350℃未満の冷却停止温度まで前記第一の平均冷却速度以上の第二の平均冷却速度で前記鋼を冷却する第9の工程と;
めっき浴温度よりも40℃低い温度以上かつ前記めっき浴温度よりも40℃高い温度以下の温度範囲内に前記鋼の温度を制御する第10の工程と;
流速10~50m/minにて流動する溶融亜鉛めっき浴に前記鋼を浸漬して前記鋼に亜鉛めっきを施す第11の工程と;
前記鋼を100℃未満の温度まで冷却する第12の工程と;
を含み、
前記第二の平均冷却速度が1~100℃/秒であり、
前記第9の工程よりも後の工程では、前記鋼の温度が350~500℃の温度範囲にある時間が20秒以上である
ことを特徴とする亜鉛めっき鋼板の製造方法。 - 前記鋼化学組成が、さらに、質量%で、
Mo:0.01~1.0%、
Cr:0.05~1.0%、
Ni:0.05~1.0%、
Cu:0.05~1.0%、
Nb:0.005~0.3%、
Ti:0.005~0.3%、
V:0.005~0.5%、
B:0.0001~0.01%、
Ca、Mg、及び、REMから選ばれる1種以上の合計:0.0005~0.04%
から選ばれる1種以上を含むことを特徴とする請求項8に記載の亜鉛めっき鋼板の製造方法。 - 前記第9の工程では、前記第一の平均冷却速度が前記第二の平均冷却速度と等しい場合に、前記第一の平均冷却速度が1℃/秒以上かつ30℃/秒以下である
ことを特徴とする請求項8または9に記載の亜鉛めっき鋼板の製造方法。 - 前記第10の工程よりも後に、前記鋼を再加熱して350~500℃の温度範囲に保持する工程をさらに含む
ことを特徴とする請求項8または9に記載の亜鉛めっき鋼板の製造方法。 - 前記第12の工程よりも後に、前記鋼を460~600℃に加熱して合金化処理を施す工程をさらに含む
ことを特徴とする請求項8または9に記載の亜鉛めっき鋼板の製造方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014117661/02A RU2574568C2 (ru) | 2011-09-30 | 2012-09-28 | Стальной лист с гальваническим покрытием и способ его изготовления |
KR1020147008474A KR101606658B1 (ko) | 2011-09-30 | 2012-09-28 | 아연 도금 강판 및 그 제조 방법 |
ES12836743T ES2712809T3 (es) | 2011-09-30 | 2012-09-28 | Chapa de acero galvanizada y su método de fabricación |
EP12836743.0A EP2762590B1 (en) | 2011-09-30 | 2012-09-28 | Galvanized steel sheet and method of manufacturing same |
BR112014007432-1A BR112014007432B1 (pt) | 2011-09-30 | 2012-09-28 | Chapa de aço galvanizada e método de fabricação da mesma |
CA2850045A CA2850045C (en) | 2011-09-30 | 2012-09-28 | Galvanized steel sheet and method of manufacturing the same |
JP2013513432A JP5376090B2 (ja) | 2011-09-30 | 2012-09-28 | 亜鉛めっき鋼板及びその製造方法 |
MX2014003713A MX2014003713A (es) | 2011-09-30 | 2012-09-28 | Placa de acero galvanizado, y metodo para fabricarla. |
PL12836743T PL2762590T3 (pl) | 2011-09-30 | 2012-09-28 | Blacha stalowa ocynkowana i sposób jej wytwarzania |
CN201280047117.4A CN103827335B (zh) | 2011-09-30 | 2012-09-28 | 镀锌钢板及其制造方法 |
US14/347,120 US9970092B2 (en) | 2011-09-30 | 2012-09-28 | Galvanized steel sheet and method of manufacturing the same |
ZA2014/02216A ZA201402216B (en) | 2011-09-30 | 2014-03-25 | Galvanized steel sheet and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-217811 | 2011-09-30 | ||
JP2011217811 | 2011-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047836A1 true WO2013047836A1 (ja) | 2013-04-04 |
Family
ID=47995860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075244 WO2013047836A1 (ja) | 2011-09-30 | 2012-09-28 | 亜鉛めっき鋼板及びその製造方法 |
Country Status (13)
Country | Link |
---|---|
US (1) | US9970092B2 (ja) |
EP (1) | EP2762590B1 (ja) |
JP (1) | JP5376090B2 (ja) |
KR (1) | KR101606658B1 (ja) |
CN (1) | CN103827335B (ja) |
BR (1) | BR112014007432B1 (ja) |
CA (1) | CA2850045C (ja) |
ES (1) | ES2712809T3 (ja) |
MX (1) | MX2014003713A (ja) |
PL (1) | PL2762590T3 (ja) |
TW (1) | TWI447262B (ja) |
WO (1) | WO2013047836A1 (ja) |
ZA (1) | ZA201402216B (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014185395A (ja) * | 2012-04-23 | 2014-10-02 | Kobe Steel Ltd | ホットスタンプ用亜鉛めっき鋼板の製造方法 |
WO2015019558A1 (ja) * | 2013-08-09 | 2015-02-12 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP2016008310A (ja) * | 2014-06-23 | 2016-01-18 | 新日鐵住金株式会社 | 冷延鋼板及びその製造方法 |
JP2016191125A (ja) * | 2015-03-31 | 2016-11-10 | 新日鐵住金株式会社 | 延性および伸びフランジ性に優れた高強度冷延鋼板、高強度合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 |
JP2017075394A (ja) * | 2015-10-16 | 2017-04-20 | 株式会社神戸製鋼所 | 高強度溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法 |
JP6323617B1 (ja) * | 2017-02-10 | 2018-05-16 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
WO2018092735A1 (ja) * | 2016-11-15 | 2018-05-24 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板 |
WO2018146828A1 (ja) * | 2017-02-10 | 2018-08-16 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
JP2019505690A (ja) * | 2015-12-21 | 2019-02-28 | アルセロールミタル | 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板 |
JP2019505692A (ja) * | 2015-12-21 | 2019-02-28 | アルセロールミタル | 改善された強度、延性及び成形加工性を有する鋼板を製造するための方法 |
JP6525114B1 (ja) * | 2017-11-29 | 2019-06-05 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
WO2019106894A1 (ja) * | 2017-11-29 | 2019-06-06 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
WO2019189842A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法 |
JP2019533083A (ja) * | 2016-09-26 | 2019-11-14 | ポスコPosco | 耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板、熱間成形部材及びその製造方法 |
JP2020122213A (ja) * | 2019-01-29 | 2020-08-13 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2021002422A1 (ja) * | 2019-07-02 | 2021-01-07 | 日本製鉄株式会社 | ホットスタンプ成形体 |
WO2021002415A1 (ja) * | 2019-07-02 | 2021-01-07 | 日本製鉄株式会社 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体 |
WO2021153177A1 (ja) * | 2020-01-31 | 2021-08-05 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ部品及びホットスタンプ部品の製造方法 |
JP2022513695A (ja) * | 2018-12-03 | 2022-02-09 | ポスコ | 水素脆性に対する抵抗性に優れた熱間プレス成形部材及びその製造方法 |
WO2022230402A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 合金化溶融亜鉛めっき鋼板 |
WO2022230064A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
JP2023505445A (ja) * | 2019-12-03 | 2023-02-09 | ポスコホールディングス インコーポレーティッド | 電気抵抗スポット溶接部の疲労強度に優れた亜鉛めっき鋼板、及びその製造方法 |
JP2023505444A (ja) * | 2019-12-03 | 2023-02-09 | ポスコホールディングス インコーポレーティッド | 表面品質及びスポット溶接性に優れた亜鉛めっき鋼板、並びにその製造方法 |
CN115768915A (zh) * | 2020-06-30 | 2023-03-07 | 杰富意钢铁株式会社 | 镀锌钢板、构件和它们的制造方法 |
US11685963B2 (en) | 2018-05-01 | 2023-06-27 | Nippon Steel Corporation | Zinc-plated steel sheet and manufacturing method thereof |
EP4265809A4 (en) * | 2020-12-18 | 2024-04-10 | POSCO Co., Ltd | HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET HAVING EXCELLENT SURFACE QUALITY AND ELECTRICAL RESISTANCE SPOT WELDABILITY, AND METHOD FOR MANUFACTURING SAME |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5852690B2 (ja) * | 2013-04-26 | 2016-02-03 | 株式会社神戸製鋼所 | ホットスタンプ用合金化溶融亜鉛めっき鋼板 |
MX2016016129A (es) * | 2014-06-06 | 2017-03-28 | Arcelormittal | Hoja de acero galvanizada multifasica de alta resistencia, metodo de produccion y uso. |
WO2016020714A1 (en) * | 2014-08-07 | 2016-02-11 | Arcelormittal | Method for producing a coated steel sheet having improved strength, ductility and formability |
JP6282576B2 (ja) * | 2014-11-21 | 2018-02-21 | 株式会社神戸製鋼所 | 高強度高延性鋼板 |
KR101647224B1 (ko) * | 2014-12-23 | 2016-08-10 | 주식회사 포스코 | 표면품질, 도금밀착성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법 |
CN107148488B (zh) * | 2015-01-07 | 2020-02-07 | Posco公司 | 拉伸强度为1300Mpa以上的超高强度镀覆钢板及其制造方法 |
CN105239074B (zh) * | 2015-06-10 | 2018-02-13 | 浙江连翔五金科技股份有限公司 | 电缆桥架表面处理方法 |
CN107849652B (zh) * | 2015-07-31 | 2020-04-03 | 日本制铁株式会社 | 加工诱发相变型复合组织钢板及其制造方法 |
CN108291283B (zh) * | 2015-11-26 | 2020-07-10 | 杰富意钢铁株式会社 | 高强度热浸镀锌钢板及用于其的热轧钢板和冷轧钢板的制造方法、高强度热浸镀锌钢板 |
EP3409808B1 (en) * | 2016-01-27 | 2020-03-04 | JFE Steel Corporation | High-yield ratio high-strength galvanized steel sheet, and method for producing same |
JP6249113B2 (ja) * | 2016-01-27 | 2017-12-20 | Jfeスチール株式会社 | 高降伏比型高強度亜鉛めっき鋼板及びその製造方法 |
US20190048436A1 (en) * | 2016-02-18 | 2019-02-14 | Jfe Steel Corporation | High-strength cold rolled steel sheet and method of producing same |
TWI598158B (zh) * | 2016-09-02 | 2017-09-11 | China Steel Corp | Wire production method that dynamically adjusts cooling rate |
WO2018062342A1 (ja) | 2016-09-30 | 2018-04-05 | Jfeスチール株式会社 | 高強度めっき鋼板及びその製造方法 |
WO2018115936A1 (en) | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
US11028458B2 (en) * | 2017-01-27 | 2021-06-08 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
KR102336669B1 (ko) * | 2017-04-21 | 2021-12-07 | 닛폰세이테츠 가부시키가이샤 | 고강도 용융 아연 도금 강판 및 그 제조 방법 |
WO2018203097A1 (en) * | 2017-05-05 | 2018-11-08 | Arcelormittal | A method for the manufacturing of liquid metal embrittlement resistant galvannealed steel sheet |
WO2018234839A1 (en) * | 2017-06-20 | 2018-12-27 | Arcelormittal | ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY |
CN111279007B (zh) * | 2017-10-24 | 2023-01-24 | 安赛乐米塔尔公司 | 用于制造镀锌扩散退火钢板的方法 |
MA50898A (fr) * | 2017-11-17 | 2021-04-07 | Arcelormittal | Procédé pour la fabrication d'une tôle d'acier revêtue de zinc résistant à la fragilisation par métal liquide |
US11913118B2 (en) | 2018-03-01 | 2024-02-27 | Nucor Corporation | Zinc alloy coated press-hardenable steels and method of manufacturing the same |
WO2019169199A1 (en) * | 2018-03-01 | 2019-09-06 | Nucor Corporation | Zinc-based alloy coating for steel and methods |
JP6635236B1 (ja) * | 2018-03-19 | 2020-01-22 | 日本製鉄株式会社 | 高強度冷延鋼板およびその製造方法 |
KR102503913B1 (ko) * | 2019-01-30 | 2023-02-27 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
CN112143993B (zh) * | 2019-06-26 | 2023-06-02 | 宝山钢铁股份有限公司 | 具备镀后除氢功能的连续热镀锌镀工艺方法及设备 |
WO2021084304A1 (en) * | 2019-10-30 | 2021-05-06 | Arcelormittal | A press hardening method |
WO2021084302A1 (en) * | 2019-10-30 | 2021-05-06 | Arcelormittal | A press hardening method |
WO2021145310A1 (ja) * | 2020-01-14 | 2021-07-22 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
WO2021154240A1 (en) | 2020-01-29 | 2021-08-05 | Nucor Corporation | Zinc alloy coating layer of press-hardenable steel |
KR20220124766A (ko) * | 2020-02-13 | 2022-09-14 | 닛폰세이테츠 가부시키가이샤 | 접합 부품 및 그 제조 방법 |
CN111378896B (zh) * | 2020-03-24 | 2021-02-26 | 江阴兴澄特种钢铁有限公司 | 一种高强度耐候型建筑桥梁用钢板及其制造方法 |
CN114032457A (zh) * | 2021-10-18 | 2022-02-11 | 首钢集团有限公司 | 一种连续热浸镀锌高强钢板及其制造方法 |
CN114875336A (zh) * | 2022-05-31 | 2022-08-09 | 山东钢铁集团日照有限公司 | 一种增塑性热镀锌复相钢的生产调控方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JPH11293383A (ja) | 1998-04-09 | 1999-10-26 | Nippon Steel Corp | 水素性欠陥の少ない厚鋼板およびその製造方法 |
JP2002018531A (ja) | 2000-07-06 | 2002-01-22 | Sumitomo Metal Ind Ltd | 金属板の熱間プレス成形方法 |
JP2007231373A (ja) * | 2006-03-01 | 2007-09-13 | Nippon Steel Corp | 溶接部の耐水素脆性に優れる高強度鋼板及びその製造方法 |
JP2008024980A (ja) * | 2006-07-20 | 2008-02-07 | Nippon Steel Corp | 高強度合金化溶融亜鉛めっき鋼板及びその製造方法 |
WO2010103936A1 (ja) * | 2009-03-10 | 2010-09-16 | Jfeスチール株式会社 | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2011065591A1 (ja) * | 2009-11-30 | 2011-06-03 | 新日本製鐵株式会社 | 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法 |
JP2011111673A (ja) * | 2009-11-30 | 2011-06-09 | Nippon Steel Corp | 機械切断特性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4299430B2 (ja) | 2000-02-21 | 2009-07-22 | 新日本製鐵株式会社 | 亜鉛メッキ密着性および成形性の優れた高強度薄鋼板とその製造方法 |
DE60220191T2 (de) * | 2001-06-06 | 2008-01-17 | Nippon Steel Corp. | Hochfestes feuerverzinktes galvanisiertes stahlblech und feuerverzinktes geglühtes stahlblech mit ermüdungsfestigkeit,korrosionsbeständigkeit,duktilität und plattierungshaftung,nach starker verformung und verfahren zu dessen herstellung |
JP4057466B2 (ja) | 2003-05-27 | 2008-03-05 | 住友ゴム工業株式会社 | タイヤトレッド用ゴム組成物およびそれを用いたタイヤ |
JP4214006B2 (ja) | 2003-06-19 | 2009-01-28 | 新日本製鐵株式会社 | 成形性に優れた高強度鋼板およびその製造方法 |
JP4445365B2 (ja) * | 2004-10-06 | 2010-04-07 | 新日本製鐵株式会社 | 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法 |
CA2640646C (en) | 2006-01-30 | 2011-07-26 | Nippon Steel Corporation | High strength hot-dip galvanized steel sheet and high strength hot-dip galvannealed steel sheet and methods of production and apparatuses for production of the same |
JP2007270176A (ja) * | 2006-03-30 | 2007-10-18 | Nippon Steel Corp | 表面外観及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板 |
EP2009128A1 (en) * | 2007-06-29 | 2008-12-31 | ArcelorMittal France | Galvanized or galvannealed silicon steel |
JP5119903B2 (ja) | 2007-12-20 | 2013-01-16 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP5365217B2 (ja) * | 2008-01-31 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5167487B2 (ja) | 2008-02-19 | 2013-03-21 | Jfeスチール株式会社 | 延性に優れる高強度鋼板およびその製造方法 |
JP4431185B2 (ja) * | 2008-06-13 | 2010-03-10 | 新日本製鐵株式会社 | 伸びフランジ性と疲労特性に優れた高強度鋼板およびその溶鋼の溶製方法 |
JP5418047B2 (ja) | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP4737319B2 (ja) * | 2009-06-17 | 2011-07-27 | Jfeスチール株式会社 | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 |
JP5521520B2 (ja) * | 2009-12-03 | 2014-06-18 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
-
2012
- 2012-09-28 WO PCT/JP2012/075244 patent/WO2013047836A1/ja active Application Filing
- 2012-09-28 PL PL12836743T patent/PL2762590T3/pl unknown
- 2012-09-28 JP JP2013513432A patent/JP5376090B2/ja active Active
- 2012-09-28 US US14/347,120 patent/US9970092B2/en active Active
- 2012-09-28 EP EP12836743.0A patent/EP2762590B1/en active Active
- 2012-09-28 KR KR1020147008474A patent/KR101606658B1/ko active IP Right Grant
- 2012-09-28 MX MX2014003713A patent/MX2014003713A/es active IP Right Grant
- 2012-09-28 ES ES12836743T patent/ES2712809T3/es active Active
- 2012-09-28 BR BR112014007432-1A patent/BR112014007432B1/pt not_active IP Right Cessation
- 2012-09-28 CA CA2850045A patent/CA2850045C/en not_active Expired - Fee Related
- 2012-09-28 TW TW101136122A patent/TWI447262B/zh not_active IP Right Cessation
- 2012-09-28 CN CN201280047117.4A patent/CN103827335B/zh active Active
-
2014
- 2014-03-25 ZA ZA2014/02216A patent/ZA201402216B/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JPH11293383A (ja) | 1998-04-09 | 1999-10-26 | Nippon Steel Corp | 水素性欠陥の少ない厚鋼板およびその製造方法 |
JP2002018531A (ja) | 2000-07-06 | 2002-01-22 | Sumitomo Metal Ind Ltd | 金属板の熱間プレス成形方法 |
JP2007231373A (ja) * | 2006-03-01 | 2007-09-13 | Nippon Steel Corp | 溶接部の耐水素脆性に優れる高強度鋼板及びその製造方法 |
JP2008024980A (ja) * | 2006-07-20 | 2008-02-07 | Nippon Steel Corp | 高強度合金化溶融亜鉛めっき鋼板及びその製造方法 |
WO2010103936A1 (ja) * | 2009-03-10 | 2010-09-16 | Jfeスチール株式会社 | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2011065591A1 (ja) * | 2009-11-30 | 2011-06-03 | 新日本製鐵株式会社 | 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法 |
JP2011111673A (ja) * | 2009-11-30 | 2011-06-09 | Nippon Steel Corp | 機械切断特性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法 |
Non-Patent Citations (4)
Title |
---|
"New Developments in Elucidation of Hydrogen Embrittlement", January 1997, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 1839 - 1842 |
CAMP-ISIJ, vol. 5, no. 6, pages 1839 - 1842 |
MATERIA, BULLETIN OF THE JAPAN INSTITUTE OF METALS, vol. 44, no. 3, 2005, pages 254 - 256 |
YAMAZAKI ET AL., IRON AND STEEL INSTITUTE OF JAPAN, October 1992 (1992-10-01) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014185395A (ja) * | 2012-04-23 | 2014-10-02 | Kobe Steel Ltd | ホットスタンプ用亜鉛めっき鋼板の製造方法 |
WO2015019558A1 (ja) * | 2013-08-09 | 2015-02-12 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP2015034327A (ja) * | 2013-08-09 | 2015-02-19 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP2016008310A (ja) * | 2014-06-23 | 2016-01-18 | 新日鐵住金株式会社 | 冷延鋼板及びその製造方法 |
JP2016191125A (ja) * | 2015-03-31 | 2016-11-10 | 新日鐵住金株式会社 | 延性および伸びフランジ性に優れた高強度冷延鋼板、高強度合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 |
JP2017075394A (ja) * | 2015-10-16 | 2017-04-20 | 株式会社神戸製鋼所 | 高強度溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法 |
JP2019505690A (ja) * | 2015-12-21 | 2019-02-28 | アルセロールミタル | 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板 |
US12054799B2 (en) | 2015-12-21 | 2024-08-06 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
US12084738B2 (en) | 2015-12-21 | 2024-09-10 | Arcelormittal | Method for producing a steel sheet having improved strength, ductility and formability |
JP2019505692A (ja) * | 2015-12-21 | 2019-02-28 | アルセロールミタル | 改善された強度、延性及び成形加工性を有する鋼板を製造するための方法 |
US11788166B2 (en) | 2016-09-26 | 2023-10-17 | Posco Co., Ltd | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
JP2019533083A (ja) * | 2016-09-26 | 2019-11-14 | ポスコPosco | 耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板、熱間成形部材及びその製造方法 |
US11624100B2 (en) | 2016-09-26 | 2023-04-11 | Posco Co., Ltd | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
US11441205B2 (en) | 2016-09-26 | 2022-09-13 | Posco | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
US12049679B2 (en) | 2016-09-26 | 2024-07-30 | Posco Co., Ltd | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
WO2018092735A1 (ja) * | 2016-11-15 | 2018-05-24 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板 |
JP2018080362A (ja) * | 2016-11-15 | 2018-05-24 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板 |
JP6323617B1 (ja) * | 2017-02-10 | 2018-05-16 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
US11180823B2 (en) | 2017-02-10 | 2021-11-23 | Jfe Steel Corporation | High-strength galvanized steel sheet and method for producing the same |
WO2018146828A1 (ja) * | 2017-02-10 | 2018-08-16 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
JP6525114B1 (ja) * | 2017-11-29 | 2019-06-05 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
WO2019106895A1 (ja) * | 2017-11-29 | 2019-06-06 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
US11427880B2 (en) | 2017-11-29 | 2022-08-30 | Jfe Steel Corporation | High-strength galvanized steel sheet and method for manufacturing same |
JP6544494B1 (ja) * | 2017-11-29 | 2019-07-17 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
JP2019099922A (ja) * | 2017-11-29 | 2019-06-24 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板 |
WO2019106894A1 (ja) * | 2017-11-29 | 2019-06-06 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
US11408059B2 (en) | 2017-11-29 | 2022-08-09 | Jfe Steel Corporation | High-strength galvanized steel sheet and method for manufacturing same |
US11795531B2 (en) | 2018-03-30 | 2023-10-24 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
WO2019189842A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法 |
JP2020045568A (ja) * | 2018-03-30 | 2020-03-26 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板の製造方法、及び高強度部材の製造方法 |
JP6631760B1 (ja) * | 2018-03-30 | 2020-01-15 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板および高強度部材 |
US11685963B2 (en) | 2018-05-01 | 2023-06-27 | Nippon Steel Corporation | Zinc-plated steel sheet and manufacturing method thereof |
JP7216358B2 (ja) | 2018-12-03 | 2023-02-01 | ポスコホールディングス インコーポレーティッド | 水素脆性に対する抵抗性に優れた熱間プレス成形部材及びその製造方法 |
JP2022513695A (ja) * | 2018-12-03 | 2022-02-09 | ポスコ | 水素脆性に対する抵抗性に優れた熱間プレス成形部材及びその製造方法 |
US11993825B2 (en) | 2018-12-03 | 2024-05-28 | Posco Co., Ltd | Hot press forming member having excellent resistance to hydrogen embrittlement, and method for manufacturing same |
JP7056631B2 (ja) | 2019-01-29 | 2022-04-19 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2020122213A (ja) * | 2019-01-29 | 2020-08-13 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
CN113811630A (zh) * | 2019-07-02 | 2021-12-17 | 日本制铁株式会社 | 热压成形体 |
WO2021002422A1 (ja) * | 2019-07-02 | 2021-01-07 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JP7160204B2 (ja) | 2019-07-02 | 2022-10-25 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JP7160203B2 (ja) | 2019-07-02 | 2022-10-25 | 日本製鉄株式会社 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体 |
CN113811630B (zh) * | 2019-07-02 | 2022-07-12 | 日本制铁株式会社 | 热压成形体 |
JPWO2021002422A1 (ja) * | 2019-07-02 | 2021-01-07 | ||
WO2021002415A1 (ja) * | 2019-07-02 | 2021-01-07 | 日本製鉄株式会社 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体 |
JPWO2021002415A1 (ja) * | 2019-07-02 | 2021-01-07 | ||
US11981973B2 (en) | 2019-12-03 | 2024-05-14 | Posco | Zinc plated steel sheet having excellent fatigue strength of electrical resistance spot welds, and manufacturing method thereof |
JP2023505445A (ja) * | 2019-12-03 | 2023-02-09 | ポスコホールディングス インコーポレーティッド | 電気抵抗スポット溶接部の疲労強度に優れた亜鉛めっき鋼板、及びその製造方法 |
JP2023505444A (ja) * | 2019-12-03 | 2023-02-09 | ポスコホールディングス インコーポレーティッド | 表面品質及びスポット溶接性に優れた亜鉛めっき鋼板、並びにその製造方法 |
US12054801B2 (en) | 2019-12-03 | 2024-08-06 | Posco | Zinc plated steel sheet having excellent surface quality and spot weldability, and manufacturing method therefor |
JP2021120483A (ja) * | 2020-01-31 | 2021-08-19 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ部品及びホットスタンプ部品の製造方法 |
JP7443635B2 (ja) | 2020-01-31 | 2024-03-06 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ部品及びホットスタンプ部品の製造方法 |
WO2021153177A1 (ja) * | 2020-01-31 | 2021-08-05 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ部品及びホットスタンプ部品の製造方法 |
CN115768915B (zh) * | 2020-06-30 | 2024-02-23 | 杰富意钢铁株式会社 | 镀锌钢板、构件和它们的制造方法 |
CN115768915A (zh) * | 2020-06-30 | 2023-03-07 | 杰富意钢铁株式会社 | 镀锌钢板、构件和它们的制造方法 |
EP4265809A4 (en) * | 2020-12-18 | 2024-04-10 | POSCO Co., Ltd | HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET HAVING EXCELLENT SURFACE QUALITY AND ELECTRICAL RESISTANCE SPOT WELDABILITY, AND METHOD FOR MANUFACTURING SAME |
WO2022230402A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 合金化溶融亜鉛めっき鋼板 |
WO2022230064A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
Also Published As
Publication number | Publication date |
---|---|
CN103827335B (zh) | 2015-10-21 |
JPWO2013047836A1 (ja) | 2015-03-30 |
ES2712809T3 (es) | 2019-05-14 |
EP2762590A1 (en) | 2014-08-06 |
US20140234658A1 (en) | 2014-08-21 |
US9970092B2 (en) | 2018-05-15 |
JP5376090B2 (ja) | 2013-12-25 |
TW201323656A (zh) | 2013-06-16 |
BR112014007432A2 (pt) | 2017-04-04 |
BR112014007432B1 (pt) | 2019-04-02 |
KR20140076559A (ko) | 2014-06-20 |
EP2762590B1 (en) | 2018-12-12 |
CA2850045A1 (en) | 2013-04-04 |
TWI447262B (zh) | 2014-08-01 |
RU2014117661A (ru) | 2015-11-10 |
KR101606658B1 (ko) | 2016-03-25 |
PL2762590T3 (pl) | 2019-05-31 |
CN103827335A (zh) | 2014-05-28 |
CA2850045C (en) | 2016-04-12 |
ZA201402216B (en) | 2015-09-30 |
EP2762590A4 (en) | 2015-10-21 |
MX2014003713A (es) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5376090B2 (ja) | 亜鉛めっき鋼板及びその製造方法 | |
JP5569647B2 (ja) | 溶融亜鉛めっき鋼板及びその製造方法 | |
KR101445813B1 (ko) | 내수소취화 특성이 우수한 인장 최대 강도가 900 MPa 이상인 고강도 강판 및 그 제조 방법 | |
RU2418090C2 (ru) | Лист высокопрочной стали, обладающий повышенной пластичностью, и способ его производства | |
JP4317384B2 (ja) | 耐水素脆化、溶接性および穴拡げ性に優れた高強度亜鉛めっき鋼板とその製造方法 | |
JPWO2019106895A1 (ja) | 高強度亜鉛めっき鋼板およびその製造方法 | |
JP4926814B2 (ja) | 降伏点伸びを制御した高強度鋼板とその製造方法 | |
KR20180133508A (ko) | 도금 강판 및 그의 제조 방법 | |
WO2017168958A1 (ja) | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 | |
JPWO2020026594A1 (ja) | 高強度熱延めっき鋼板及びその製造方法 | |
WO2017009938A1 (ja) | 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 | |
WO2017009936A1 (ja) | 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 | |
WO2020138343A1 (ja) | 鋼板 | |
JP2015147961A (ja) | 高強度薄鋼板およびその製造方法 | |
JP2007270341A (ja) | 溶融亜鉛めっき鋼板の製造方法 | |
WO2019142559A1 (ja) | 高強度合金化電気亜鉛めっき鋼板およびその製造方法 | |
RU2574568C2 (ru) | Стальной лист с гальваническим покрытием и способ его изготовления | |
JP2004269947A (ja) | 加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法 | |
CN118140000A (zh) | 钢板 | |
JP2013127098A (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013513432 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12836743 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2850045 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14347120 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012836743 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/003713 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20147008474 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014117661 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014007432 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014007432 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140327 |