WO2020138343A1 - 鋼板 - Google Patents

鋼板 Download PDF

Info

Publication number
WO2020138343A1
WO2020138343A1 PCT/JP2019/051252 JP2019051252W WO2020138343A1 WO 2020138343 A1 WO2020138343 A1 WO 2020138343A1 JP 2019051252 W JP2019051252 W JP 2019051252W WO 2020138343 A1 WO2020138343 A1 WO 2020138343A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
content
annealing
temperature
steel
Prior art date
Application number
PCT/JP2019/051252
Other languages
English (en)
French (fr)
Inventor
林 宏太郎
和政 筒井
上西 朗弘
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980060721.2A priority Critical patent/CN112714800B/zh
Priority to JP2020527137A priority patent/JP6744003B1/ja
Publication of WO2020138343A1 publication Critical patent/WO2020138343A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a steel sheet having excellent formability, specifically, a steel sheet having a high Mn content and having excellent work hardening characteristics and high strength.
  • TRIP Transformation Induced Plasticity
  • Residual austenite is obtained by concentrating C in austenite so that austenite does not transform into another structure even at room temperature.
  • a carbide precipitation suppressing element such as Si and Al
  • Si and Al carbide precipitation suppressing element
  • the austenite is further stabilized and the amount of retained austenite can be increased, and as a result, a steel sheet excellent in both strength and elongation characteristics can be manufactured.
  • Non-Patent Document 1 a steel to which Mn of more than 4.0% is added has been proposed (for example, Non-Patent Document 1). Since the above steel contains a large amount of Mn, the effect of reducing the weight of the members used is also remarkable. However, the steel requires a long heating process such as box annealing. Therefore, the material design in a short-time heating process such as continuous annealing suitable for manufacturing a high-strength steel sheet for use as a member for automobiles has not been sufficiently studied, and the requirement for enhancing the elongation property in that case has not been clarified.
  • the steel with added more than 4.0% of Mn is cold-rolled, heated for a short time of 300 seconds to 1200 seconds, and the ferrite is controlled to be 30% to 80% in area %, whereby the elongation property is improved.
  • a steel sheet with significantly improved for example, Patent Document 2.
  • Patent Document 2 a steel sheet having a high Mn content and contains a large amount of unrecrystallized ferrite, it has poor work hardening characteristics. That is, a steel sheet having a high Mn concentration and having such a structure containing ferrite cannot have both the strength (for example, tensile strength) required for automobile steel sheets and work hardening characteristics.
  • Patent Documents 3 to 5 a method for producing a steel sheet and a plated steel sheet including a step of performing various heat treatments on a steel sheet containing a relatively large amount of Mn in order to obtain desired characteristics suitable for use as an automobile member is proposed.
  • Patent Documents 3 to 5 a steel sheet containing Mn in an amount of more than 4.00% and less than 9.00% and having a high content of Mn and having excellent uniform elongation characteristics and high strength has been proposed (Patent Document 6).
  • the present inventors have controlled the chemical composition to provide tempered martensite of 25 to 25% by area in the steel sheet. 90% and 10 to 50% of retained austenite are included, and the rolling direction is 20 ⁇ m and the plate thickness method is 20 ⁇ m at the 1/4 position of the thickness from the surface of the steel plate so that the Mn distribution in the steel plate becomes extremely uneven. It was found that it is effective to set the standard deviation of Mn concentration in the range of 0.30% by mass or more.
  • the steel sheet of the present disclosure is made based on the above findings, and the gist thereof is as follows.
  • the chemical composition is% by mass, C: over 0.10 to 0.45%, Si: 0.001 to 2.50%, Mn: over 4.00 to 8.00%, sol.
  • the metallographic structure at the 1/4 position of the thickness from the surface contains, in area %, tempered martensite: 25 to 90% and retained austenite: 10 to 50%, A steel sheet having a standard deviation of Mn concentration of 0.30 mass% or
  • the chemical composition is% by mass, Cr: 0.01 to 0.50%, Ti: 0.005 to 0.300%, Nb: 0.005 to 0.300%, V: 0.005 to 0.300%, and B: 0.0001 to 0.010%
  • the steel sheet according to (1) containing one or more selected from the group consisting of: (3) The steel sheet according to (1) or (2), which has a hot-dip galvanized layer on the surface of the steel sheet. (4) The steel sheet according to (1) or (2), which has a galvannealed layer on the surface of the steel sheet.
  • FIG. 1 is a graph showing a plot of the standard deviation of the Mn concentration against the holding temperature before hot rolling.
  • FIG. 2 is a graph showing a plot of work hardening characteristics (n value) against the holding temperature before hot rolling.
  • Mn is microsegregated in the metal structure. More specifically, Mn tends to segregate parallel to the sheet thickness direction during melting, and as a result, this segregation site forms a band-like structure (Mn band) parallel to the rolled surface after rolling. May be.
  • the band-shaped structure causes remarkable anisotropy in the mechanical properties of the obtained steel sheet, and is not preferable from the viewpoint of bending properties and hole expandability. Therefore, it is a general technical idea to suppress microsegregation of Mn in the metal structure as much as possible in order to achieve uniform mechanical properties of the steel plate by making the metal structure of the steel plate uniform.
  • the slab heating temperature is set high (for example, 1200° C. or higher).
  • the slab heating temperature is set high (for example, 1200° C. or higher).
  • all of the steel sheets specifically disclosed in Patent Document 6 are slab heated (holding before hot rolling) at 1250°C.
  • the present inventors conducted various studies to improve work hardening characteristics (n value) while maintaining high strength in a steel sheet having a high Mn content, and as a result, the above-mentioned conventional technical idea. It was found that it is important to control the concentration distribution of Mn contained in the steel sheet unevenly by setting the slab heating temperature (holding temperature before hot rolling) low unlike the above. More specifically, the present inventors performed hot rolling, cold rolling, annealing, cooling, and final annealing after performing slab heating at a low temperature. Cementite is generated in the metal structure by the final annealing, and Mn is distributed to this cementite. Then, the Mn-distributed cementite is dissolved to form austenite.
  • the present inventors have found that stable austenite is generated and work hardening characteristics are improved. Further, in order for the steel sheet of the present disclosure containing more than 4.00% by mass of Mn to sufficiently promote the Mn microsegregation, the present inventors have typically performed 1200 at such a high Mn content. It has been found that it is important to set the slab heating temperature (holding temperature before hot rolling) set to 1°C or higher to less than 1100°C.
  • the slab heating temperature is set to less than 1100° C. in order to promote Mn segregation, and the predetermined heat is further applied.
  • C is a very important element for increasing the strength of steel and ensuring retained austenite. In order to obtain a sufficient amount of retained austenite, a C content exceeding 0.10% is required. On the other hand, if C is contained excessively, it becomes difficult to weld the steel sheet. Therefore, the upper limit of C content is set to 0.45%.
  • the lower limit of the C content is preferably 0.15%, more preferably 0.20%.
  • the tensile strength (TS) is 1180 MPa or more without impairing the work hardening characteristics. It becomes possible to obtain a high strength steel plate.
  • the upper limit of the C content is preferably 0.40%, more preferably 0.35%.
  • Si is an element effective in strengthening tempered martensite, homogenizing the structure, and improving workability. Further, Si also has a function of suppressing precipitation of cementite and promoting retention of austenite. In order to obtain the above effect, a Si content of 0.001% or more is required. On the other hand, if Si is excessively contained, the plating property and the chemical conversion treatment property of the steel sheet are impaired, so the upper limit of the Si content was set to 2.50%.
  • the lower limit of the Si content is preferably 0.01%, more preferably 0.30%, further preferably 0.50%. By setting the lower limit of the Si content to the above range, it is possible to promote the retained austenite and further improve the work hardening characteristics of the steel sheet.
  • the upper limit of the Si content is preferably 2.10%, more preferably 1.70%.
  • Mn is an element that stabilizes austenite and enhances hardenability. Further, in the steel sheet of the present disclosure, Mn is distributed in austenite to further stabilize austenite. More than 4.00% Mn is required to stabilize austenite at room temperature. On the other hand, if the steel sheet contains excessive Mn, the toughness is impaired, so the upper limit of the Mn content was set to 8.00%.
  • the lower limit of the Mn content is preferably 4.30%, more preferably 4.80%.
  • the upper limit of the Mn content is preferably 7.50%, more preferably 7.20%.
  • Al is a deoxidizing agent, sol. It is necessary to contain 0.001% or more of Al. In addition, Al widens the two-phase temperature range during annealing, and therefore has the effect of improving the material stability. The larger the Al content, the greater the effect. However, if Al is excessively contained, surface properties, paintability, weldability, etc. are deteriorated. The upper limit of Al was 1.50%.
  • the lower limit of the Al content is preferably 0.005%, more preferably 0.01% and even more preferably 0.02%. sol.
  • the upper limit of the Al content is preferably 1.20%, more preferably 1.00%. sol.
  • P 0.100% or less
  • P is an impurity, and if the steel sheet contains P excessively, it impairs toughness and weldability. Therefore, the upper limit of the P content is set to 0.100%.
  • the upper limit of the P content is preferably 0.050%, more preferably 0.030%, still more preferably 0.020%. Since the steel sheet according to the present embodiment does not require P, the lower limit value of P content is 0%.
  • the P content may be more than 0% or 0.001% or more, but the smaller the P content is, the more preferable.
  • S is an impurity, and if the steel sheet contains S in excess, MnS stretched by hot rolling is generated, resulting in deterioration of formability such as bendability and hole expandability. Therefore, the upper limit of the S content is 0.010%.
  • the upper limit of the S content is preferably 0.007%, more preferably 0.003%. Since the steel sheet according to the present embodiment does not require S, the lower limit value of S content is 0%.
  • the S content may be more than 0% or 0.001% or more, but the smaller the S content is, the more preferable.
  • N is an impurity, and if the steel sheet contains 0.050% or more of N, it causes deterioration of toughness. Therefore, the N content is less than 0.050%.
  • the upper limit of the N content is preferably 0.010%, more preferably 0.006%. Since the steel sheet according to the present embodiment does not require N, the lower limit value of N content is 0%.
  • the N content may be more than 0% or 0.003% or more, but the smaller the N content is, the more preferable.
  • O is an impurity, and if the steel sheet contains 0.020% or more of O, ductility is deteriorated. Therefore, the O content is set to less than 0.020%.
  • the upper limit of the O content is preferably 0.010%, more preferably 0.005%, further preferably 0.003%. Since the steel sheet according to the present embodiment does not require O, the lower limit of the O content is 0%.
  • the O content may be more than 0% or 0.001% or more, but the smaller the O content is, the more preferable.
  • the steel sheet of the present embodiment further comprises one or more selected from the group consisting of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi. You may contain 2 or more types. However, the steel sheet according to the present embodiment does not necessarily require Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi. , W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi may not be contained, that is, the lower limit of the content may be 0%. ..
  • Cr, Mo, W, Cu, and Ni are not essential elements for the steel sheet according to this embodiment.
  • Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet, and thus may be contained.
  • the steel sheet may contain 0.01% or more of each one or two or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni. , 0.05% or more, or 0.10% or more.
  • the upper limit of the content of Cr is set to 0.50%, and Mo
  • the upper limit of the content of each of W, Cu, and Ni is set to 2.00%.
  • the upper limit of the Cr content may be 0.40% or 0.30%, and the upper limits of the respective contents of Mo, W, Cu, and Ni are 1.50% and 1.20%. Alternatively, it may be 1.00%.
  • Ti, Nb, and V are not essential elements for the steel sheet according to this embodiment.
  • the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, and V.
  • the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is set to 0.300%, preferably 0.250%, more preferably 0.200. %, and more preferably 0.150%.
  • B, Ca, Mg, Zr, and REM are not essential elements for the steel sheet of the present disclosure.
  • B, Ca, Mg, Zr, and REM improve the hole expandability of the steel sheet.
  • the lower limit of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001%, more preferably 0. 001%.
  • the upper limit of the content of each of these elements is set to 0.010%, preferably 0.005%, and B, Ca, Mg, Zr, and REM are used. It is preferable to set the total content of one or more elements selected from the group consisting of 0.030% or less, preferably 0.020% or less.
  • REM means one or more elements selected from the elements contained in Sc, Y, Te, Se, Ag and lanthanoids.
  • Sb, Sn, and Bi are not essential elements for the steel sheet of the present disclosure.
  • Sb, Sn, and Bi prevent Mn, Si, and/or Al and other easily oxidizable elements in the steel sheet from diffusing on the surface of the steel sheet to form oxides, and improve the surface properties and plating properties of the steel sheet. Increase.
  • the lower limit of the content of each of one or more elements selected from the group consisting of Sb, Sn, and Bi is preferably 0.0005%, more preferably 0.001%.
  • the upper limit of the content of each of these elements is set to 0.050%, preferably 0.040%.
  • the steel sheet of the present disclosure includes, for example, Cr: 0.01 to 0.50%, Ti: 0.005 to 0.300%, Nb: 0.005 to 0.300%, among the arbitrary elements described above.
  • One or two or more selected from the group consisting of V: 0.005 to 0.300% and B: 0.0001 to 0.010% may be contained.
  • the balance other than the above elements consists of iron and impurities.
  • impurity means an element that is mixed in when a steel sheet is industrially manufactured, including raw materials such as ore and scrap, and various factors in the manufacturing process. Such impurities are not limited to those not intentionally added.
  • the metal structure in the L cross section at the 1/4 position (also referred to as 1/4 t portion) of the thickness from the surface of the steel sheet according to the present embodiment is 25% to 90% tempered martensite and 10% to 50% in area %. Including residual austenite.
  • the L cross section means a plane obtained by cutting the steel plate in parallel with the rolling direction and perpendicularly to the steel plate surface.
  • the L cross section in the present embodiment is a surface cut so as to pass through the center of the steel sheet in the width direction.
  • the balance structure of the metal structure other than the tempered martensite and the retained austenite is not particularly limited.
  • the balance structure include ferrite, bainite, fresh martensite, and tempered bainite.
  • the area fraction of each metal structure changes depending on the annealing conditions and affects the materials such as strength, work hardening characteristics, and hole expandability. Since the required material varies depending on, for example, automobile parts, the annealing conditions may be selected as necessary and the structure fraction may be controlled within the above range.
  • ⁇ Measurement of metal structure of steel sheet is performed as follows. After mirror-polishing the L-section of the steel sheet, the polished surface was corroded with 3% Nital (3% nitric acid-ethanol solution), and the microstructure at 1/4 the thickness of the steel sheet surface was observed with a scanning electron microscope. To do. Then, by analyzing the observed image, the area% of each structure of tempered martensite, ferrite, retained austenite, bainite, and fresh martensite is measured. Regarding retained austenite and fresh martensite, first, using a scanning electron microscope, 0.1 mm in length (length in the plate thickness direction) ⁇ 0.3 mm in width (length in the rolling direction) at a position 1 ⁇ 4 of the thickness from the surface.
  • a microstructure image in the range of 5000) is acquired at a magnification of 5000 times, and the acquired structure image is analyzed to measure the total area% of retained austenite and fresh martensite.
  • the area% of retained austenite is measured by the line diffraction method.
  • MoK ⁇ rays are used for the incident X-rays, and the ⁇ 110 ⁇ , ⁇ 200 ⁇ of the integrated intensity of the peaks of the ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , and ⁇ 311 ⁇ planes of the retained austenite, ⁇ 110 ⁇ and ⁇ 200 ⁇ of the ferrite.
  • the volume ratio of retained austenite is determined, the volume ratio is regarded as the same as the area ratio, and the average value of these is calculated as the area of the retained austenite.
  • Rate Furthermore, the area% of fresh martensite is calculated by subtracting the area% of retained austenite from the total area% of retained austenite and fresh martensite.
  • the ferrite phase is distinguished as a gray base structure, and the austenite phase and the martensite phase are distinguished as a white structure.
  • the tempered martensite phase looks white like the fresh martensite phase, but the one in which a substructure is confirmed in the crystal grains is discriminated as the tempered martensite phase.
  • Martensite and bainite are distinguished by observing the above-mentioned microstructure image (magnification: 5000 times) using a scanning electron microscope, and distinguishing cementite from the lath interface or inside the lath as bainite.
  • Tempered martensite is a structure that increases the strength of the steel sheet and improves the ductility.
  • the area ratio of tempered martensite is set to 25 to 90% in order to maintain both strength and ductility within a desired strength level range.
  • the lower limit of the area ratio of tempered martensite is preferably 30%, more preferably 35%, further preferably 40%.
  • the upper limit of the area ratio of tempered martensite is preferably 87%, more preferably 80%.
  • Retained austenite is a structure that enhances the ductility and formability of a steel sheet, especially the work hardening characteristics of the steel sheet, by transformation-induced plasticity. Retained austenite can be transformed into martensite by bulging, drawing, stretch-flanging, or bending accompanied by tensile deformation, and therefore contributes to the improvement of the strength of the steel sheet. In order to obtain these effects, the steel sheet according to this embodiment needs to contain retained austenite in an area ratio of 10% or more in the metal structure. The lower limit of the area ratio of retained austenite is preferably 15%, more preferably 20%.
  • the area ratio of retained austenite is the upper limit of the retained austenite content. If the Mn content exceeds 8.0%, the retained austenite can be made to exceed 50% in area ratio, but in this case, casting of the steel sheet becomes difficult. From the viewpoint of improving the toughness, the area ratio of retained austenite is preferably 40% or less.
  • the amount of ferrite in the metal structure is small.
  • the toughness can be improved by reducing the ferrite content in the metal structure.
  • the area ratio of ferrite in the metal structure is preferably 3% or less.
  • the area ratio of ferrite is more preferably 1% or less, and further preferably 0%. Therefore, in the steel sheet according to this embodiment, for example, the area ratio of ferrite may be 0 to 3%, 0 to 2%, or 0 to 1%.
  • the area ratio of bainite in the metal structure is preferably 5% or less, more preferably 3% or less.
  • the area ratio of bainite is more preferably 1% or less, and further preferably 0%. Therefore, in the steel sheet according to the present embodiment, for example, the area ratio of bainite may be 0 to 5%, 0 to 3%, or 0 to 1%.
  • the amount of fresh martensite in the metal structure is small.
  • Fresh martensite is martensite that has not been tempered.
  • Fresh martensite has a hard structure and is effective in securing the strength of the steel sheet.
  • the area ratio of fresh martensite may be 0%, but from the viewpoint of increasing the strength of the steel plate while maintaining the hole expandability, the metal structure of the steel plate is an area ratio, preferably 1% or more, More preferably, it contains 2% or more, and further preferably 3% or more of fresh martensite.
  • the upper limit of the content of fresh martensite is preferably 65%, more preferably 55%, further preferably 45%, and most preferably 20% in terms of area ratio from the viewpoint of ensuring hole expandability. Therefore, in the steel sheet according to the present embodiment, for example, the area ratio of fresh martensite is 0 to 65%, 0 to 20%, 1 to 65%, 1 to 20%, 2 to 65%, 2 to 20%, and 3 to 20%. It may be ⁇ 65%, or 3 ⁇ 20%.
  • Tempered bainite may be included as the balance structure other than tempered martensite, ferrite, retained austenite, bainite, and fresh martensite.
  • the area ratio of the tempered bainite can be obtained from an observation image obtained by a scanning electron microscope as in the measurement of the area ratios of the tempered martensite, ferrite, retained austenite, bainite, and fresh martensite. It is preferable that the area ratio of the tempered bainite in the steel sheet is small, and for example, 10% or less, 7% or less, or 5% or less is preferable. In the steel sheet according to the present embodiment, tempered bainite may not be included, so the lower limit of the area ratio of tempered bainite may be 0%.
  • the area ratio of tempered bainite may be 0 to 10%, 0 to 7%, or 0 to 5%.
  • the tempered bainite and the bainite are discriminated from each other in the same manner as the above-mentioned discrimination between the martensite and the tempered martensite.
  • the standard deviation of the Mn concentration at the 1/4 position of the thickness from the surface of the steel sheet according to this embodiment is 0.30 mass% or more.
  • the position of 1/4 of the thickness from the surface of the steel sheet is measured by an electron probe microanalyzer (EPMA) to measure the standard deviation of the Mn concentration.
  • the measurement conditions are an acceleration voltage of 15 kV, a magnification of 5000, and a distribution image in the range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction. More specifically, the measurement interval is set to 0.1 ⁇ m, and the Mn concentration at 40401 points is measured.
  • the standard deviation of the Mn concentration at the 1/4 position of the thickness from the surface of the steel sheet is calculated based on the Mn concentrations obtained from all the measurement points.
  • the standard deviation of the Mn concentration in the steel sheet of the present disclosure is measured in the region in which a plurality of such metallographic structures are mixed.
  • the steel sheet according to this embodiment needs to be controlled to have a standard deviation of Mn concentration of 0.30 mass% or more.
  • the lower limit of the standard deviation of Mn concentration is preferably 0.35% by mass.
  • the standard deviation of the Mn concentration is an index showing how much Mn segregates in the steel sheet when the steel sheet is microscopically observed.
  • the standard deviation of the Mn concentration to 0.30 mass% or more as in the present invention, it becomes possible to microscopically segregate (distribute) the distribution of Mn in the steel sheet, resulting in stable austenite. Are generated, and the work hardening characteristics (n value) are improved.
  • the tensile strength (TS) of the steel sheet according to the present embodiment is preferably 780 MPa or more, more preferably 1000 MPa or more, still more preferably 1180 MPa or more.
  • the upper limit value of TS of the steel sheet according to this embodiment is not particularly limited, but is, for example, 2500 MPa or 2000 MPa.
  • the tensile test is performed by the method specified in JIS-Z2241:2011 using a JIS No. 5 tensile test piece, and the crosshead test speed of the tensile test is 30 mm/min.
  • the n value is preferably 0.10 or more, more preferably 0.15 or more, and further preferably 0.18 or more.
  • the upper limit of the n value is not particularly limited, but is, for example, 0.30, 0.25, or 0.20.
  • the n value is a true strain interval of 4 to 7%, the true stresses at true strains of 4% and 7% are obtained, and the difference between the logarithms of both true stresses is the difference between the logarithms of both true strains. The value divided by.
  • the standard deviation of the Mn concentration is 0.35 mass% or more, and when the area ratio of retained austenite is 15% or more, the n value is 0.15 or more. More preferably, when the standard deviation of the Mn concentration is 0.35 mass% or more and the area ratio of retained austenite is 20% or more, the n value is 0.18 or more.
  • the uniform elongation test for measuring the n value is performed by the method specified in JIS-Z2241:2011 using a JIS No. 5 test piece having a parallel part length of 50 mm. The crosshead test speed of the uniform elongation test is 30 mm/min. And
  • the steel sheet of the present disclosure has high strength, good work hardening characteristics, and excellent formability, and thus is suitable for use in structural parts of automobiles such as pillars. Further, since the steel sheet of the present disclosure has a high Mn concentration, it contributes to the weight reduction of automobiles, and therefore the industrial contribution is extremely remarkable.
  • a hot-dip galvanized layer or an alloyed hot-dip galvanized layer can be provided on the surface of the steel sheet depending on the application.
  • the steel sheet according to the present embodiment the steel having the above-described chemical composition is melted by a conventional method, cast to produce a slab or steel ingot, which is heated and hot rolled, the hot rolled steel sheet obtained Is pickled, cold-rolled, and annealed.
  • Hot rolling may be performed on a normal continuous hot rolling line.
  • annealing can be performed in a continuous annealing line, and this method has excellent productivity. It may be performed in either an annealing furnace or a continuous annealing line as long as the conditions described below are satisfied. Further, skin pass rolling may be performed on the steel sheet after cold rolling.
  • the heating conditions of the steel material to be hot-rolled, the heat treatment conditions after cold rolling, and particularly the annealing conditions are performed within the ranges shown below.
  • the molten steel may be one produced by an ordinary blast furnace method, and like the steel produced by the electric furnace method, the raw material contains a large amount of scrap. May be included in.
  • the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
  • the above slab or steel ingot is heated and hot rolled.
  • the temperature of the steel material to be hot-rolled is 1000 to less than 1100°C.
  • the time to be kept in the temperature range of 1000 to less than 1100° C. before hot rolling is set to 900 to 7200 seconds.
  • the holding temperature of the steel material subjected to hot rolling is preferably 1000 to less than 1100°C.
  • the temperature of the steel material subjected to hot rolling is set to 1000° C. or higher.
  • the distribution of Mn is nonuniformly controlled, and the work hardening characteristic of steel is improved.
  • the time for holding the material in the temperature range of 1000 to less than 1100° C. before hot rolling is preferably 900 seconds or more, more preferably 1800 seconds or more. Further, in order to make the Mn distribution non-uniform, it is preferably 7200 seconds or less, and more preferably 5400 seconds or less.
  • it may be subjected to a holding treatment at 1000 to less than 1100°C for 7200 seconds and then subjected to hot rolling.
  • the starting temperature for finishing rolling is preferably 700 to 1000°C.
  • the finish rolling start temperature is more preferably 750°C or higher, and further preferably 800°C or higher.
  • the finish rolling start temperature is more preferably 950°C or lower.
  • the hot-rolled steel sheet obtained by finish rolling can be cooled, wound, and made into a coil.
  • the coiling temperature after cooling is preferably 700° C. or lower. By setting the coiling temperature to 700° C. or lower, internal oxidation is suppressed and subsequent pickling becomes easy.
  • the coiling temperature is more preferably 650°C or lower, and further preferably 600°C or lower.
  • the hot rolled sheet may be tempered at 300 to 600° C. after being cooled to room temperature and before cold rolling.
  • the hot-rolled steel sheet is subjected to pickling by a conventional method and then cold-rolled to obtain a cold-rolled steel sheet.
  • the reduction ratio of cold rolling is 20% or more. From the viewpoint of suppressing breakage during cold rolling, the reduction ratio of cold rolling is preferably 70% or less.
  • the cold-rolled steel sheet obtained through the hot rolling step and the cold rolling step is heated and held in a temperature range of 680° C. or higher for 10 seconds or longer, and then from the temperature held in the temperature range of 680° C. or higher.
  • a temperature range up to 500° C. or lower is cooled at an average cooling rate of 2° C./sec or more, cooled to room temperature, and then heated again, and held at a temperature range of 600° C. to less than Ac 3 point for 5 to 300 seconds.
  • the heat treatment of the cold rolled steel sheet is preferably performed in a reducing atmosphere, more preferably a reducing atmosphere containing nitrogen and hydrogen, for example, a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the temperature is maintained in the temperature range of 100 to 500° C. for 10 to 1000 seconds, then cooled to room temperature, then heated again, and maintained in the temperature range of 600° C. to less than Ac 3 point for 5 to 300 seconds.
  • the first annealing is performed by maintaining the temperature range of 680° C. or higher for 10 seconds or more.
  • the annealing temperature after cold rolling is preferably 740°C or higher.
  • Ac 3 910-200 ⁇ C+44Si-25Mn+44Al Is obtained, and the Ac 3 point can be calculated using this formula.
  • the upper limit of the annealing temperature after cold rolling is preferably 950°C.
  • the annealing temperature after cold rolling is preferably 800°C or lower. By setting the annealing temperature after cold rolling to 800° C. or lower, the microstructure of the annealed steel sheet can be refined.
  • the annealing time is set to 10 seconds or longer, preferably 40 seconds or longer. From the viewpoint of productivity, the annealing time is preferably set within 300 seconds.
  • Cooling condition after annealing cooling in a temperature range from 680°C to 500°C at an average cooling rate of 2°C/sec or more
  • the temperature range from 680°C to 500°C is cooled at an average cooling rate of 2°C/sec or more.
  • the average cooling rate after annealing is preferably 20° C./sec or more, more preferably 50° C./sec or more, even more preferably 200° C./sec or more, even more preferably 250° C./sec or more.
  • the average cooling rate after annealing is preferably 20° C./sec or more, more preferably 50° C./sec or more, even more preferably 200° C./sec or more, even more preferably 250° C./sec or more.
  • the upper limit of the average cooling rate after annealing is not particularly limited, it is difficult to control the temperature to more than 2000° C./sec even if the water quenching cooling method or the mist injection cooling method is used.
  • the upper limit is 2000°C/sec.
  • the stop temperature of the cooling performed at the average cooling rate in the above range is preferably 450°C or lower, more preferably 350°C or lower, and further preferably 300°C or lower.
  • the final annealing time is set to 5 seconds or longer, preferably 30 seconds or longer, and more preferably 60 seconds or longer in order to promote Mn distribution to austenite and make the Mn distribution non-uniform. Further, in order to leave the tempered martensite, the final annealing time is set within 300 seconds.
  • the heating rate during the final annealing is not particularly limited, but it is preferable that the temperature range from 500° C. to 600° C. is 3 to 6° C./sec when heating to a temperature range of 600° C. to less than the Ac 3 point. The temperature is raised at an average heating rate.
  • the average heating rate By setting the average heating rate to 3° C./sec or more in the temperature range from 500° C. to 600° C., the nucleation of cementite in the metal structure does not become excessive, and Mn distribution to cementite can be sufficiently realized. .. Further, by setting the average heating rate to 6° C./second or less, it is possible to secure a sufficient time for Mn distribution to cementite. From this fact, Mn can be sufficiently distributed to cementite in the metal structure, so that the Mn distribution of austenite obtained by dissolving cementite can be made more nonuniform.
  • the cooling after the final annealing may be performed as it is to room temperature if the steel sheet is not plated. Moreover, when plating a steel plate, it manufactures as follows.
  • the cooling after the final annealing is stopped in the temperature range of 430 to 500° C., and then the cold rolled steel sheet is applied to a hot dip galvanizing bath. It is dipped in and is subjected to hot dip galvanizing.
  • the conditions of the plating bath may be within the usual range. After the plating treatment, it may be cooled to room temperature.
  • an alloyed hot-dip galvanized steel sheet is manufactured by subjecting the surface of the steel sheet to a hot-dip galvanized steel sheet, after the hot-dip galvanizing treatment is applied to the steel sheet, the steel sheet is cooled to room temperature at 450 to 580°C.
  • the galvanizing alloying treatment is performed at a temperature.
  • the alloying treatment conditions may be within the usual range.
  • a high-strength steel sheet having a tensile strength (TS) of preferably 780 MPa or more, more preferably 1180 MPa or more can be obtained.
  • TS tensile strength
  • the steel sheet is used as a material for automobiles, it is possible to reduce the thickness by increasing the strength and contribute to weight reduction. Further, it is possible to obtain a steel sheet which can improve work hardening characteristics and has high strength and excellent work hardening characteristics with an n value of preferably 0.10 or more, more preferably 0.15 or more.
  • the steel sheet produced by the production method of the present disclosure has high strength, good work hardening characteristics, and excellent formability, and thus is suitable for use in structural parts of automobiles such as pillars. Can be used. Further, since the steel sheet of the present disclosure has a high Mn concentration, it contributes to the weight reduction of automobiles, and therefore the industrial contribution is extremely remarkable.
  • the steel sheet of the present disclosure will be described more specifically with reference to examples.
  • the following examples are examples of the steel sheet of the present disclosure, and the steel sheet of the present disclosure is not limited to the aspects of the following examples.
  • the obtained slab was hot-rolled under the conditions shown in Table 2 to produce a hot-rolled steel sheet having a thickness of 2.6 mm, then the obtained hot-rolled steel sheet was pickled and cold-rolled to 1 A cold-rolled steel sheet having a thickness of 0.2 mm was manufactured.
  • the starting temperature of finish rolling was 920° C.
  • the winding temperature was 550° C.
  • the hot-rolled steel sheets according to some examples were tempered at 350 to 500° C.
  • the cold rolling rate was set to 40%.
  • the obtained cold-rolled steel sheet was heat-treated under the conditions shown in Table 3 to produce annealed cold-rolled steel sheet.
  • the heat treatment of the cold rolled steel sheet was performed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the average cooling rate after annealing was 50° C./second, and when the steel sheet temperature was held in the temperature range of 100 to 500° C. after the cooling was stopped, the holding time was 30° C. Seconds.
  • Example No. Regarding the post-cold-annealing of No. 43 after holding at 740° C. for 40 seconds, it was further held at 800° C. for 100 seconds.
  • cold-rolled steel sheets after the final annealing, cooling after annealing was stopped at 460°C, and the cold-rolled steel sheets were immersed in a molten zinc plating bath at 460°C for 2 seconds to melt.
  • a galvanizing process was performed.
  • the plating bath conditions are the same as conventional ones.
  • the temperature was maintained at 460° C. and then cooled to room temperature at an average cooling rate of 10° C./sec. Examples of hot dip galvanizing are shown as “plating” in Table 3.
  • cold-rolled annealed steel sheets after hot dip galvanizing, they were not alloyed to room temperature but subsequently alloyed.
  • the alloy was heated to 520° C., held at 520° C. for 5 seconds for alloying treatment, and then cooled to room temperature at an average cooling rate of 10° C./second.
  • Examples of alloying treatment after the hot dip galvanizing treatment are shown in Table 3 as "alloying".
  • Example No. 45 the cooling of the annealing after cold rolling was stopped at 460° C., and the hot dip galvanizing treatment and the alloying treatment were performed as described above.
  • the thus obtained annealed cold rolled steel sheet was temper-rolled at an elongation of 0.1% to prepare various evaluation steel sheets.
  • the area ratios of tempered martensite, ferrite, retained austenite, bainite, fresh martensite and tempered bainite were calculated from the structure observation by a scanning electron microscope and X-ray diffraction measurement.
  • the L section obtained by cutting the steel plate in parallel with the plate thickness direction and the rolling direction was mirror-polished, and then a microstructure was revealed with 3% Nital, and a 1/4 position from the surface was observed using a scanning electron microscope.
  • the microstructure is observed at a magnification of 5000 times, and by image analysis (Photoshop (registered trademark)) for a range of 0.1 mm ⁇ 0.3 mm, tempered martensite, ferrite, retained austenite, bainite, fresh martensite, and tempered bainite. And the area ratio of the total of retained austenite and fresh martensite were calculated. Further, a test piece having a width of 25 mm and a length of 25 mm was cut out from the obtained steel sheet, and this test piece was subjected to chemical polishing to reduce the plate thickness by 1/4, and the surface of the test piece after chemical polishing was cut.
  • X-ray diffraction analysis using a Co tube was performed three times, the obtained profiles were analyzed, and the area ratio of retained austenite was calculated by averaging each of them, and the total area of retained austenite and fresh martensite was calculated. The area ratio of the retained austenite was subtracted from the ratio to calculate the area ratio of fresh martensite.
  • the ferrite phase is a gray underlying structure
  • the austenite phase and the fresh martensite phase are distinguished as a white structure
  • the substructure is confirmed in the crystal grains.
  • those in which cementite was present at the lath interface or inside the lath were identified as bainite. Further, among bainite, the one in which a substructure was confirmed in the crystal grains was discriminated as tempered bainite.
  • the standard deviation of the Mn concentration is, at the 1/4 position of the thickness from the surface of the steel plate, using EPMA, a distribution image in the range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction is measured at a measurement interval of 0.1 ⁇ m, The standard deviation of Mn concentration was calculated based on each Mn concentration measured at all measurement points.
  • JIS No. 5 tensile test pieces were sampled from the direction perpendicular to the rolling direction of the steel sheet, and the tensile strength (TS) and work hardening characteristics (n value) were measured.
  • the tensile test was performed by the method specified in JIS-Z2241:2011 using a JIS No. 5 tensile test piece.
  • the uniform elongation test was performed by the method specified in JIS-Z2241:2011 using a JIS No. 5 test piece having a parallel portion length of 50 mm.
  • n is set to a value of 4 to 7% in the true strain section, the true stresses at the true strains of 4% and 7% are obtained, and the difference between the logarithms of both true stresses is divided by the difference between the logarithms of both true strains.
  • the crosshead test speed of the tensile test and the uniform elongation test was 30 mm/min.
  • Evaluation results Table 4 shows the results of the above evaluations.
  • an n value of 0.10 or more and a TS of 780 MPa or more were obtained. It should be noted that “unmeasurable” for the n value in Table 4 means that the n value could not be measured because the work-hardening property was significantly lowered.
  • Example No. 1 to 4, 6 to 12, 14 to 17, 19, 22 to 24, 27 to 33 and 36 to 41 have a predetermined chemical composition and are manufactured according to a predetermined manufacturing method, so that a desired metallographic structure can be obtained.
  • the standard deviation of the Mn concentration was 0.30 mass% or more, and as a result, it had excellent properties (strength (TS) and work hardening properties (n value)).
  • Example No. In No. 13 since the C content was insufficient and sufficient retained austenite was not obtained, the strength (TS) and work hardening characteristics (n value) were insufficient.
  • Example No. In No. 20 the final annealing temperature was low, and the desired metallographic structure could not be obtained, so that the work hardening characteristics (n value) were insufficient.
  • the final annealing time was long and sufficient tempered martensite could not be obtained, so that the work hardening characteristics (n value) could not be measured.
  • Example No. In No. 25 the final annealing time was short and the distribution of Mn could not be made sufficiently nonuniform, so that the work hardening characteristics (n value) were insufficient.
  • Example No. In No. 26 the holding temperature before hot rolling was high, and the Mn distribution could not be made sufficiently nonuniform, so that the work hardening characteristics (n value) were insufficient.
  • Example No. In No. 34 the annealing temperature after cold rolling was low, and the distribution of Mn could not be made sufficiently nonuniform, so that the work hardening characteristics (n value) were insufficient.
  • Example No. In No. 25 the final annealing time was long and sufficient tempered martensite could not be obtained, so that the work hardening characteristics (n value) could not be measured.
  • Example No. In No. 25 the final annealing time was
  • Example No. 35 the final annealing temperature was high, and sufficient tempered martensite was not obtained, so that the work hardening characteristics (n value) could not be measured.
  • Example No. 42 since the final annealing was not performed, sufficient tempered martensite was not obtained, and the work hardening characteristic (n value) was insufficient.
  • Example No. Nos. 43 to 45 did not undergo the final annealing, so that sufficient retained austenite could not be obtained, and the work hardening characteristics (n value) could not be measured.
  • the standard deviation of the Mn concentration was 0.30 mass% or more, that is, the Mn concentration distribution could be made non-uniform. Further, according to FIG. 2, it was possible to improve the work hardening characteristics (n value) by making the Mn concentration distribution non-uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、質量%で、C:0.10超~0.45%、Si:0.001~2.50%、Mn:4.00超~8.00%、sol.Al:0.001~1.50%を含有し、表面から厚みの1/4位置における金属組織が、面積%で、焼き戻しマルテンサイト:25~90%、及び残留オーステナイト:10~50%を含み、表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差が0.30質量%以上である鋼板に関する。

Description

鋼板
 本開示は、優れた成形性を有する鋼板に関係し、具体的には優れた加工硬化特性と高強度とを有する含有Mn濃度の高い鋼板に関係する。
 自動車の車体及び部品等の軽量化を達成するために、これらの素材である鋼板の板厚の低減が求められており、それに伴って鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、伸び特性が低下し、鋼板の加工硬化特性が損なわれ、成形性が低下する。したがって、自動車用の部材として高強度鋼板を使用するためには、相反する特性である強度と成形性(特に、加工硬化特性)との両方を高める必要がある。
 伸び特性を向上させるために、これまでに、残留オーステナイト(残留γ)の変態誘起塑性を利用した、いわゆるTRIP(Transformation Induced Plasticity)鋼が提案されている(例えば、特許文献1)。
 残留オーステナイトは、Cをオーステナイト中に濃化させることによって、オーステナイトが室温でも他の組織に変態しないようにすることによって得られる。オーステナイトを安定化させる技術として、Si及びAl等の炭化物析出抑制元素を鋼板に含有させて、鋼板の製造段階において鋼板に生じるベイナイト変態の間にオーステナイト中にCを濃化させることが提案されている。この技術では、鋼板に含有させるC含有量が多ければ、オーステナイトがさらに安定化し、残留オーステナイト量を増やすことができ、その結果、強度と伸び特性との両方が優れた鋼板を造ることができる。しかしながら、鋼板が自動車等の構造部材に使用される場合、鋼板に溶接が行われることが多いが、鋼板中のC含有量が多いと溶接の施工性が低下する。したがって、より少ないC含有量で、鋼板の伸び特性と強度、すなわち鋼板の加工硬化特性と強度との両方を向上することが望まれている。
 また、残留オーステナイト量が上記TRIP鋼よりも多く、延性が上記TRIP鋼を超える鋼板として、4.0%超のMnを添加した鋼が提案されている(例えば、非特許文献1)。上記鋼は多量のMnを含有するので、その使用部材に対する軽量化効果も顕著である。しかしながら、上記鋼は箱焼鈍のような長時間加熱プロセスを要件としている。そのため、自動車用の部材に供する高強度鋼板の製造に適する連続焼鈍のような短時間加熱プロセスにおける材料設計は十分に検討されておらず、その場合の伸び特性を高める要件は明らかでなかった。
 また、4.0%超のMnを添加した鋼を冷間圧延し、300秒間~1200秒間の短時間加熱を施し、面積%で、フェライトを30%~80%に制御することによって、伸び特性が著しく改善された鋼板が開示されている(例えば、特許文献2)。しかし、このような鋼板は、含有Mn濃度が高く、未再結晶フェライトを多く含むので、加工硬化特性が劣る。すなわち、このようなフェライトを含む組織を有する含有Mn濃度の高い鋼板は、自動車用鋼板に求められる強度(例えば、引張強度)と加工硬化特性とを兼備し得るものではない。
 これに関連して、比較的多いMnを含む鋼板に対し、自動車用部材として使用するのに好適な所望の特性を得るために様々な熱処理を行う工程を含む鋼板及びめっき鋼板の製造方法が提案されている(例えば、特許文献3~5)。また、4.00%超9.00%未満のMnを含み、優れた均一伸び特性及び高強度を有する含有Mn濃度の高い鋼板が提案されている(特許文献6)。
特開平5-59429号公報 特開2012-237054号公報 特開2018-21233号公報 特開2017-53001号公報 特開2007-70660号公報 国際公開第2018/131722号
古川敬、松村理、熱処理、日本国、日本熱処理協会、平成9年、第37号巻、第4号、p.204
 したがって、優れた加工硬化特性及び高強度を有する含有Mn濃度の高い鋼板が望まれている。
 含有Mn濃度の高い鋼板において、優れた加工硬化特性と高強度とを確保するために、本発明者らは、化学組成を制御し、鋼板中に、面積%で、焼き戻しマルテンサイトを25~90%、及び残留オーステナイトを10~50%含ませ、鋼板中のMn分布が極めて不均一な状態になるように、鋼板の表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差を0.30質量%以上にすることが有効であると知見した。
 本開示の鋼板は上記知見に基づいてなされたものであり、その要旨は以下のとおりである。
 (1)
 化学組成が、質量%で、
 C:0.10超~0.45%、
 Si:0.001~2.50%、
 Mn:4.00超~8.00%、
 sol.Al:0.001~1.50%、
 P:0.100%以下、
 S:0.010%以下、
 N:0.050%未満、
 O:0.020%未満、
 Cr:0~0.50%、
 Mo:0~2.00%、
 W:0~2.00%、
 Cu:0~2.00%、
 Ni:0~2.00%、
 Ti:0~0.300%、
 Nb:0~0.300%、
 V:0~0.300%、
 B:0~0.010%、
 Ca:0~0.010%、
 Mg:0~0.010%、
 Zr:0~0.010%、
 REM:0~0.010%、
 Sb:0~0.050%、
 Sn:0~0.050%、
 Bi:0~0.050%、及び
 残部:鉄及び不純物であり、
 表面から厚みの1/4位置における金属組織が、面積%で、焼き戻しマルテンサイト:25~90%、及び残留オーステナイト:10~50%を含み、
 表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差が0.30質量%以上である、鋼板。
 (2)
 前記化学組成が、質量%で、
 Cr:0.01~0.50%、
 Ti:0.005~0.300%、
 Nb:0.005~0.300%、
 V:0.005~0.300%、及び
 B:0.0001~0.010%
 からなる群から選択される1種又は2種以上を含有する、(1)に記載の鋼板。
 (3)
 前記鋼板の表面に溶融亜鉛めっき層を有する、(1)又は(2)に記載の鋼板。
 (4)
 前記鋼板の表面に合金化溶融亜鉛めっき層を有する、(1)又は(2)に記載の鋼板。
 本開示によれば、優れた加工硬化特性及び高強度を有する含有Mn濃度の高い鋼板を提供することができる。
図1は、熱間圧延前の保持温度に対するMn濃度の標準偏差のプロットを示すグラフである。 図2は、熱間圧延前の保持温度に対する加工硬化特性(n値)のプロットを示すグラフである。
 以下、本開示の鋼板の実施形態の例を説明する。
 Mnは金属組織中でミクロ偏析することが一般的に知られている。より詳細には、Mnは溶製の際に板厚方向と平行に偏析する傾向があり、その結果、この偏析部位が、圧延された後に圧延面に平行なバンド状の組織(Mnバンド)となる場合がある。当該バンド状の組織は、得られる鋼板の機械的特性に顕著な異方性をもたらすため、曲げ特性や穴広げ性の観点からは好ましくない。よって、鋼板の金属組織の均一化により鋼板の機械的特性の均一化を達成するために、金属組織中のMnのミクロ偏析を可能な限り抑制するというのが通常の技術思想である。このMnのミクロ偏析を効果的に抑制するための有効な手段として、スラブ加熱温度(熱間圧延前の保持温度)を高く設定することが挙げられる。また、上述したMnのミクロ偏析はMn含有量が高いほど顕著に起こるため、金属組織の均一化のために、Mn含有量が高い鋼板を製造する際のスラブ加熱温度は通常よりもさらに高く設定する必要がある。したがって、本開示の鋼板のような4.00質量%超という高濃度Mnを含有する鋼板を製造する際は、スラブ加熱温度は高く(例えば1200℃以上で)設定される。例えば、特許文献6で具体的に開示された鋼板は全て1250℃でスラブ加熱(熱間圧延前の保持)を行っている。
 本発明者らは、高いMn含有量を有する鋼板において、高強度を維持しつつ、加工硬化特性(n値)を改善させるために様々な検討を行った結果、上述のような従来の技術思想と異なり、スラブ加熱温度(熱間圧延前の保持温度)を低く設定することで、鋼板に含有されるMnの濃度分布を不均一に制御することが重要であることを見出した。より具体的には、本発明者らは、低温でスラブ加熱を行った後に熱間圧延と冷間圧延と焼鈍と冷却と最終焼鈍とを行った。当該最終焼鈍により金属組織中にセメンタイトが生成し、このセメンタイトにMnが分配される。そして、Mn分配されたセメンタイトは溶解してオーステナイトを生成する。当該オーステナイトへのMn分配を促進することで、鋼板中のMn濃度分布が不均一となり、Mnの分布がミクロ的に偏析する。このようにして、本発明者らは安定なオーステナイトを生成させ、加工硬化特性が向上することを見出した。また、本発明者らは、4.00質量%超のMnを含む本開示の鋼板が十分にMnのミクロ偏析を促進するには、このような高Mn含有量においては、典型的には1200℃以上に設定されるスラブ加熱温度(熱間圧延前の保持温度)を1100℃未満とすることが重要であることを見出した。以上のように、本発明によれば、高いMn含有量を有する鋼板において、従来の技術思想と異なり、Mn偏析を促進すべくスラブ加熱温度を1100℃未満に設定して、さらに、所定の熱履歴を与えることで、従来技術と比較して優れた加工硬化特性及び高強度を有する含有Mn濃度の高い鋼板を得ることが可能となる。
 1.化学組成
 本開示の鋼板の化学組成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。鋼板の化学組成において、「~」を用いて表される数値範囲は、「超」又は「未満」が用いられる場合を除き、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 (C:0.10超~0.45%)
 Cは、鋼の強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分な残留オーステナイト量を得るためには、0.10%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接が困難になるので、C含有量の上限を0.45%とした。
 C含有量の下限値は、好ましくは0.15%、より好ましくは0.20%である。C含有量を0.15%以上にして、さらに、後述する焼き戻しマルテンサイトの面積率を30~87%に制御することによって、加工硬化特性を損なわずに引張強度(TS)が1180MPa以上という高強度の鋼板を得ることが可能になる。C含有量の上限値は、好ましくは0.40%、より好ましくは0.35%である。
 (Si:0.001~2.50%)
 Siは、焼き戻しマルテンサイトを強化し、組織を均一化し、加工性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進する作用も有する。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板のメッキ性や化成処理性を損なうので、Si含有量の上限値を2.50%とした。
 Si含有量の下限値は、好ましくは0.01%、より好ましくは0.30%、さらに好ましくは0.50%である。Si含有量の下限値を上記範囲にすることによって、オーステナイトの残留を促進し、鋼板の加工硬化特性をさらに向上することができる。Si含有量の上限値は、好ましくは2.10%、より好ましくは1.70%である。
 (Mn:4.00超~8.00%)
 Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。また、本開示の鋼板においては、Mnをオーステナイト中に分配させ、よりオーステナイトを安定化させる。室温でオーステナイトを安定化させるためには、4.00%超のMnが必要である。一方、鋼板がMnを過剰に含有すると靭性を損なうので、Mn含有量の上限を8.00%とした。
 Mn含有量の下限値は、好ましくは4.30%、より好ましくは4.80%である。Mn含有量の上限値は、好ましくは7.50%、より好ましくは7.20%である。Si含有量が0.30%以上である場合、Mn含有量を好ましい範囲に制御すると、オーステナイトの残留を促進する効果は著しく向上する。
 (sol.Al:0.001~1.50%)
 Alは、脱酸剤であるため、sol.Alを0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相温度域を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、及び溶接性などの劣化を招くので、sol.Alの上限を1.50%とした。
 sol.Al含有量の下限値は、好ましくは0.005%、より好ましくは0.01%、さらに好ましくは0.02%である。sol.Al含有量の上限値は、好ましくは1.20%、より好ましくは1.00%である。sol.Al含有量の下限値及び上限値を上記範囲にすることによって、脱酸効果及び材質安定向上効果と、表面性状、塗装性、及び溶接性とのバランスがより良好になる。
 (P:0.100%以下)
 Pは不純物であり、鋼板がPを過剰に含有すると靭性や溶接性を損なう。したがって、P含有量の上限を0.100%とする。P含有量の上限値は、好ましくは0.050%、より好ましくは0.030%、さらに好ましくは0.020%である。本実施形態に係る鋼板はPを必要としないので、P含有量の下限値は0%である。P含有量は0%超又は0.001%以上でもよいが、P含有量は少ないほど好ましい。
 (S:0.010%以下)
 Sは不純物であり、鋼板がSを過剰に含有すると、熱間圧延によって伸張したMnSが生成し、曲げ性及び穴広げ性などの成形性の劣化を招く。したがって、S含有量の上限を0.010%とする。S含有量の上限値は、好ましくは0.007%、より好ましくは0.003%である。本実施形態に係る鋼板はSを必要としないので、S含有量の下限値は0%である。S含有量を0%超又は0.001%以上としてもよいが、S含有量は少ないほど好ましい。
 (N:0.050%未満)
 Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性の劣化を招く。したがって、N含有量を0.050%未満とする。N含有量の上限値は、好ましくは0.010%、より好ましくは0.006%である。本実施形態に係る鋼板はNを必要としないので、N含有量の下限値は0%である。N含有量を0%超又は0.003%以上としてもよいが、N含有量は少ないほど好ましい。
 (O:0.020%未満)
 Oは不純物であり、鋼板が0.020%以上のOを含有すると延性の劣化を招く。したがって、O含有量を0.020%未満とする。O含有量の上限値は、好ましくは0.010%、より好ましくは0.005%、さらに好ましくは0.003%である。本実施形態に係る鋼板はOを必要としないので、O含有量の下限値は0%である。O含有量を0%超又は0.001%以上としてもよいが、O含有量は少ないほど好ましい。
 本実施形態の鋼板は、更に、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiからなる群から選択される1種又は2種以上を含有してもよい。しかしながら、本実施形態に係る鋼板はCr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiを必ずしも必要としないので、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiを含有しなくてもよい、すなわち含有量の下限値は0%であってもよい。
 (Cr:0~0.50%)
 (Mo:0~2.00%)
 (W:0~2.00%)
 (Cu:0~2.00%)
 (Ni:0~2.00%)
 Cr、Mo、W、Cu、及びNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではない。しかしながら、Cr、Mo、W、Cu、及びNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上含有してもよく、0.05%以上又は0.10%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有すると、熱延時の表面傷が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれの含有量のうち、Crの含有量の上限値を0.50%とし、Mo、W、Cu、及びNiのそれぞれの含有量の上限値を2.00%とする。Crの含有量の上限値は0.40%又は0.30%であってもよく、Mo、W、Cu、及びNiのそれぞれの含有量の上限値は、1.50%、1.20%又は1.00%であってもよい。
 (Ti:0~0.300%)
 (Nb:0~0.300%)
 (V:0~0.300%)
 Ti、Nb、及びVは、本実施形態に係る鋼板に必須の元素ではない。しかし、Ti、Nb、及びVは、微細な炭化物、窒化物又は炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、及びVからなる群から選択される1種又は2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、及びVからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を0.005%とすることが好ましく、0.010%とすることがより好ましく、0.030%とすることがさらに好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti、Nb、及びVからなる群から選択される1種又は2種以上の元素それぞれの含有量の上限値を0.300%とし、好ましくは0.250%、より好ましくは0.200%、さらに好ましくは0.150%とする。
 (B:0~0.010%)
 (Ca:0~0.010%)
 (Mg:0~0.010%)
 (Zr:0~0.010%)
 (REM:0~0.010%)
 B、Ca、Mg、Zr、及びREMは、本開示の鋼板に必須の元素ではない。しかしながら、B、Ca、Mg、Zr、及びREMは、鋼板の穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、及びREMからなる群から選択される1種又は2種以上の元素それぞれの下限値を好ましくは0.0001%、より好ましくは0.001%とする。しかし、過剰量のこれら元素は、鋼板の加工性を劣化させるので、これら元素それぞれの含有量の上限を0.010%、好ましくは0.005%とし、B、Ca、Mg、Zr、及びREMからなる群から選択される1種又は2種以上の元素の含有量の合計を0.030%以下、好ましくは0.020%以下とすることが好ましい。なお、本明細書においてREMとは、Sc、Y、Te、Se、Agおよびランタノイドに含まれる元素から選択される1種又は2種以上の元素を意味する。
 (Sb:0~0.050%)
 (Sn:0~0.050%)
 (Bi:0~0.050%)
 Sb、Sn、及びBiは、本開示の鋼板に必須の元素ではない。しかしながら、Sb、Sn、及びBiは、鋼板中のMn、Si、及び/又はAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、及びBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%、より好ましくは0.001%とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%とし、好ましくは0.040%とする。
 本開示の鋼板は、上で説明した任意元素のうち、例えば、Cr:0.01~0.50%、Ti:0.005~0.300%、Nb:0.005~0.300%、V:0.005~0.300%、及びB:0.0001~0.010%からなる群から選択される1種又は2種以上を含有してもよい。
 本実施形態の鋼板において、上記元素以外の残部は鉄及び不純物からなる。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料をはじめとして、製造工程の種々の要因等によって混入する元素を意味する。かかる不純物は、意図的に添加されないものに限定されない。
 2.金属組織
 次に、本実施形態に係る鋼板の金属組織について説明する。
 本実施形態に係る鋼板の表面から厚みの1/4位置(1/4t部ともいう)のL断面における金属組織は、面積%で、25~90%の焼き戻しマルテンサイト、及び10~50%の残留オーステナイトを含む。ここで、L断面とは、圧延方向に平行、かつ、鋼板表面に対して垂直に鋼板を切断した面をいう。本実施形態におけるL断面は、鋼板の幅方向中心を通るように切断した面とする。
 本開示の鋼板において、上記の焼き戻しマルテンサイト及び残留オーステナイト以外の金属組織の残部組織は特に限定されない。残部組織としては、例えば、フェライト、ベイナイト、フレッシュマルテンサイト、及び焼き戻しベイナイトなどが挙げられる。
 各金属組織の面積分率は、焼鈍の条件によって変化し、強度、加工硬化特性、穴広げ性などの材質に影響を与える。要求される材質は、例えば自動車用の部品により変わるため、必要に応じて焼鈍条件を選択し、上記範囲内で組織分率を制御すればよい。
 鋼板の金属組織の測定は以下のように行う。鋼板のL断面を鏡面研磨した後に、その研磨面を3%ナイタール(3%硝酸―エタノール溶液)で腐食し、走査型電子顕微鏡で、鋼板の表面から厚みの1/4位置のミクロ組織を観察する。次いで、その観察画像を解析することで、焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、及びフレッシュマルテンサイトのそれぞれの組織の面積%を測定する。残留オーステナイト及びフレッシュマルテンサイトに関しては、まず、走査型電子顕微鏡を用いて表面から厚みの1/4位置における縦0.1mm(板厚方向の長さ)×横0.3mm(圧延方向の長さ)の範囲のミクロ組織画像を倍率5000倍で取得し、その取得した組織画像を解析することで、残留オーステナイト及びフレッシュマルテンサイトの合計の面積%を測定し、さらに板厚1/4位置でX線回折法により残留オーステナイトの面積%を測定する。具体的には、入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比から残留オーステナイトの体積率を求め、当該体積率を面積率と同一とみなし、これらの平均値を残留オーステナイトの面積率とする。さらに、残留オーステナイト及びフレッシュマルテンサイトの合計の面積%から残留オーステナイトの面積%を差し引いて、フレッシュマルテンサイトの面積%を算出する。また、フェライト相は灰色の下地組織として、オーステナイト相及びマルテンサイト相は白色の組織として、判別する。焼き戻しマルテンサイト相は、フレッシュマルテンサイト相と同様に白色にみえるが、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイト相と判別する。マルテンサイトとベイナイトの判別は、走査型電子顕微鏡を用いて上述のミクロ組織画像(倍率5000倍)を観察し、セメンタイトがラスの界面又はラスの内部に存在しているものをベイナイトと判別する。
 (鋼板の1/4t部の金属組織中の焼き戻しマルテンサイトの面積%:25~90%)
 焼き戻しマルテンサイトは、鋼板の強度を高め、延性を向上させる組織である。目的とする強度レベルの範囲内で、強度と延性との両方を好ましく保つために、焼き戻しマルテンサイトの面積率を25~90%とする。焼き戻しマルテンサイトの面積率の下限値は、好ましくは30%、より好ましくは35%、さらに好ましくは40%である。焼き戻しマルテンサイトの面積率の上限値は、好ましくは87%、より好ましくは80%である。前述したように、C含有量を0.15%以上にして、さらに、前述したように、焼き戻しマルテンサイトの面積率を30~87%に制御することによって、加工硬化特性を損なわずに、引張強度(TS)が1180MPa以上という高強度の鋼板を得ることが可能になる。
 (鋼板の1/4t部の金属組織中の残留オーステナイトの面積%:10~50%)
 本実施形態に係る鋼板においては、金属組織中の残留オーステナイトの量が所定範囲にあることが重要である。残留オーステナイトは、変態誘起塑性によって鋼板の延性及び成形性、特に鋼板の加工硬化特性を高める組織である。残留オーステナイトは、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、又は曲げ加工によってマルテンサイトに変態し得るので、鋼板の強度の向上にも寄与する。これら効果を得るために、本実施形態に係る鋼板は、金属組織中に、面積率で10%以上の残留オーステナイトを含有する必要がある。残留オーステナイトの面積率の下限値は、好ましくは15%、より好ましくは20%である。
 鋼板の1/4t部の金属組織中の残留オーステナイトの面積率は高いほど好ましい。しかしながら、上述した化学組成を有する鋼板では、面積率で50%が残留オーステナイトの含有量の上限となる。8.0%超のMnを含有させれば、残留オーステナイトを面積率で50%超にすることができるが、この場合、鋼板の鋳造が困難になる。靭性向上の観点から、残留オーステナイトの面積率は、好ましくは40%以下である。
 本実施形態に係る鋼板においては、金属組織中のフェライトの量が少ないことが好ましい。金属組織中のフェライト含有量を少なくすることによって、靭性を向上することができる。靭性を向上させるために、金属組織中のフェライトの面積率を3%以下とすることが好ましい。フェライトの面積率は、より好ましくは1%以下とし、さらに好ましくは0%とする。よって、本実施形態に係る鋼板において、例えば、フェライトの面積率は0~3%、0~2%又は0~1%であってもよい。
 本実施形態に係る鋼板においては、金属組織中にベイナイトが存在すると、ベイナイト中に硬質な組織である島状マルテンサイトが内在する。ベイナイト中に島状マルテンサイトが内在すると靭性が低下する。靭性を向上させるために、金属組織中のベイナイトの面積率を5%以下とすることが好ましく、さらに好ましくは3%以下である。ベイナイトの面積率は、より好ましくは1%以下とし、さらに好ましくは0%である。よって、本実施形態に係る鋼板において、例えば、ベイナイトの面積率は0~5%、0~3%又は0~1%であってもよい。
 本実施形態に係る鋼板においては、金属組織中のフレッシュマルテンサイトの量が少ないことが好ましい。フレッシュマルテンサイトとは、焼き戻しされていないマルテンサイトである。フレッシュマルテンサイトは硬質の組織であり、鋼板の強度の確保に有効である。ただし、フレッシュマルテンサイトの含有量が少ないほど、鋼板の穴広げ性が高くなる。したがって、フレッシュマルテンサイトの面積率は0%であってもよいが、穴広げ性を維持しつつ、鋼板の強度を高める観点で、鋼板の金属組織は、面積率で、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上のフレッシュマルテンサイトを含む。フレッシュマルテンサイトの含有量の上限値は、穴広げ性を確保する観点から、面積率で好ましくは65%、より好ましくは55%、さらに好ましくは45%、最も好ましくは20%である。よって、本実施形態に係る鋼板において、例えば、フレッシュマルテンサイトの面積率は0~65%、0~20%、1~65%、1~20%、2~65%、2~20%、3~65%、又は3~20%であってもよい。
 焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、及びフレッシュマルテンサイト以外の残部組織としては、焼き戻しベイナイトを含んでもよい。焼き戻しベイナイトの面積率は、上記の焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、及びフレッシュマルテンサイトの面積率の測定と同様に走査型電子顕微鏡により得られる観察画像から得ることができる。鋼板中の焼き戻しベイナイトの面積率は少ない方が好ましく、例えば、10%以下、7%以下又は5%以下であるとよい。本実施形態に係る鋼板において、焼き戻しベイナイトは含まれなくてもよいため、焼き戻しベイナイトの面積率の下限は0%であってもよい。よって、本実施形態に係る鋼板において、例えば、焼き戻しベイナイトの面積率は0~10%、0~7%又は0~5%であってもよい。なお、焼き戻しベイナイトとベイナイトの判別は、上述したマルテンサイトと焼き戻しマルテンサイトとの判別と同様に行う。
 本実施形態に係る鋼板の表面から厚みの1/4位置におけるMn濃度の標準偏差は0.30質量%以上である。鋼板のL断面を鏡面研磨した後に、鋼板の表面から厚みの1/4位置を電子プローブマイクロアナライザ(EPMA)で測定して、Mn濃度の標準偏差を測定する。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40401か所のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて、鋼板の表面から厚みの1/4位置におけるMn濃度の標準偏差を算出する。試料圧延方向に20μm及び試料板厚方向に20μmの範囲には、特定の相の金属組織のみが存在するのではなく、複数の相の金属組織が存在している。したがって、本開示の鋼板におけるMn濃度の標準偏差は、そのような複数の金属組織が混在する領域で測定される。
 (鋼板の表面から厚みの1/4位置におけるMn濃度の標準偏差:0.30質量%以上)
 Mn濃度の標準偏差が大きいと、安定なオーステナイトが生成し、加工硬化特性が向上する。この効果を得るために、本実施形態に係る鋼板は、0.30質量%以上のMn濃度の標準偏差に制御する必要がある。Mn濃度の標準偏差の下限値は、好ましくは0.35質量%である。Mn濃度の標準偏差は、鋼板をミクロ的に観察した場合に鋼板中でMnがどの程度偏析して存在するかを示す指標である。したがって、本発明のようにMn濃度の標準偏差を0.30質量%以上とすることで、鋼板中のMnの分布をミクロ的に偏析(分配)させることが可能となり、その結果、安定なオーステナイトが生成し、加工硬化特性(n値)が向上する。
 Mn濃度の標準偏差は高いほど好ましい。しかしながら、上述した化学組成を有する鋼板では、0.45質量%がMn濃度の標準偏差の上限となる。
 次に、本実施形態に係る鋼板の機械特性について説明する。
 本実施形態に係る鋼板の引張強度(TS)は、好ましくは780MPa以上、より好ましくは1000MPa以上、さらに好ましくは1180MPa以上である。鋼板のTSが高いほど、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化を達成することができる。本実施形態に係る鋼板のTSの上限値は特に限定されないが、例えば、2500MPa又は2000MPaである。引張試験は、JIS5号引張試験片を用いたJIS-Z2241:2011に規定される方法で行い、引張試験のクロスヘッド試験速度は、30mm/分とする。
 また、本実施形態に係る鋼板をプレス成形に供するためには、加工硬化特性が優れることが望ましい。その場合、n値は、好ましくは0.10以上、より好ましくは0.15以上、さらに好ましくは0.18以上である。また、n値の上限値は特に限定されないが、例えば、0.30、0.25、又は0.20である。本明細書において、n値とは、真ひずみの区間を4~7%とし、真ひずみ4%及び7%における真応力をそれぞれ求め、両真応力の対数の差を両真ひずみの対数の差で除した値をいう。好ましくは、Mn濃度の標準偏差が0.35質量%以上であり、残留オーステナイトの面積率が15%以上となると、n値が0.15以上となる。さらに、より好ましくは、Mn濃度の標準偏差が0.35質量%以上であり、残留オーステナイトの面積率が20%以上となると、n値が0.18以上となる。n値の測定のための均一伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS-Z2241:2011に規定される方法で行い、均一伸び試験のクロスヘッド試験速度は、30mm/分とする。
 本開示の鋼板は上記のように、高強度を有し、さらに加工硬化特性も良好であり、成形性に優れているので、ピラーなどの自動車の構造部品用途に最適である。さらに、本開示の鋼板は含有Mn濃度が高いので、自動車の軽量化にも寄与するので、産業上の貢献が極めて顕著である。なお、本開示の鋼板においては、用途に応じて、鋼板の表面に、溶融亜鉛めっき層又は合金化溶融亜鉛めっき層を設けることができる。
 3.製造方法
 次に、本実施形態に係る鋼板の製造方法について説明する。
 本実施形態に係る鋼板は、上述の化学組成を有する鋼を常法で溶製し、鋳造してスラブ又は鋼塊を作製し、これを加熱して熱間圧延し、得られた熱延鋼板を酸洗した後、冷間圧延し、焼鈍を施して製造する。
 熱間圧延は、通常の連続熱間圧延ラインで行えばよい。本実施形態に係る鋼板の製造方法においては、焼鈍は連続焼鈍ラインで行うことができ、この方法は生産性に優れている。後述する条件を満たせば、焼鈍炉及び連続焼鈍ラインのどちらで行ってもよい。更に、冷延圧延後の鋼板に、スキンパス圧延を行ってもよい。
 本開示の鋼板の金属組織を得るためには、熱間圧延に供する鋼材の加熱条件、さらに、冷延後の熱処理条件、特に焼鈍条件を、以下に示す範囲内で行う。
 本実施形態に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作成された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
 上述のスラブ又は鋼塊を加熱し、熱間圧延を行う。熱間圧延に供する鋼材の温度は、1000~1100℃未満とする。熱間圧延前に1000~1100℃未満の温度域に保持する時間は、900~7200秒間とする。
 (スラブ又は鋼塊の保持温度:1000~1100℃未満)
 熱間圧延に供する鋼材の保持温度は、1000~1100℃未満とすることが好ましい。熱間圧延に供する鋼材の温度を1000℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、熱間圧延に供する鋼材の温度を1100℃未満にすることにより、Mnの分布が不均一に制御され、鋼の加工硬化特性が向上する。
 (スラブ又は鋼塊の保持時間:900~7200秒間)
 熱間圧延前に1000~1100℃未満の温度域に保持する時間は、材質安定性を向上させるためには、900秒間以上とすることが好ましく、1800秒間以上にすることがさらに好ましい。また、Mnの分布を不均一にするために7200秒間以下とすることが好ましく、5400秒間以下とすることがさらに好ましい。なお、直送圧延又は直接圧延を行う場合は、1000~1100℃未満で7200秒間以内の保持処理を施し、熱間圧延に供してもよい。
 仕上圧延開始温度は700~1000℃とすることが好ましい。仕上圧延開始温度を700℃以上とすることにより、圧延時の変形抵抗を小さくすることができる。仕上圧延開始温度は、より好ましくは750℃以上、さらに好ましくは800℃以上である。仕上圧延開始温度を1000℃以下にすることにより、粒界酸化による鋼板の表面性状の劣化を抑制することができる。仕上圧延開始温度は、より好ましくは950℃以下である。
 仕上圧延を行って得られる熱延鋼板を冷却し、巻取り、コイルにすることができる。冷却後の巻取温度を700℃以下とすることが好ましい。巻取温度を700℃以下にすることによって、内部酸化が抑制され、その後の酸洗が容易になる。巻取温度は、より好ましくは650℃以下であり、さらに好ましくは600℃以下である。冷間圧延時の破断を抑制するために、室温まで冷却された後、冷間圧延前に300~600℃で熱延板を焼き戻してもよい。
 熱延鋼板は、常法により酸洗を施された後に、冷間圧延が行われ、冷延鋼板とされる。
 冷間圧延の前であって酸洗の前又は後に0超~5%程度の軽度の圧延を行って形状を修正すると、平坦確保の点で有利となるので好ましい。また、酸洗前に軽度の圧延を行うことにより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性やめっき処理性を向上させる効果がある。
 焼鈍後の鋼板の組織を微細化させる観点から、冷間圧延の圧下率は20%以上とすることが好ましい。冷間圧延中の破断を抑制する観点から、冷間圧延の圧下率は70%以下とすることが好ましい。
 上記熱間圧延工程及び冷間圧延工程を経て得られた冷延鋼板を加熱して、680℃以上の温度域で10秒間以上保持し、その後に、680℃以上の温度域で保持した温度から500℃以下までの温度範囲を平均冷却速度2℃/秒以上で冷却し、室温まで冷却した後、再度加熱して、600℃~Ac3点未満の温度域で5~300秒間保持する。冷延鋼板の熱処理は、好ましくは還元雰囲気、より好ましくは窒素及び水素を含む還元雰囲気、例えば窒素98%及び水素2%の還元雰囲気で行う。還元雰囲気で熱処理することにより、鋼板の表面にスケールが付着するのを防ぐことができ、酸洗浄を要せずにめっき工程にそのまま送ることができる。100~500℃の温度域で10~1000秒間保持し、次いで室温まで冷却し、その後再度加熱して、600℃~Ac3点未満の温度域で5~300秒間保持することが好ましい。
 (冷間圧延後の焼鈍条件:680℃以上の温度域で10秒間以上保持)
 冷間圧延後に、680℃以上の温度域で10秒間以上保持して1回目の焼鈍を行う。冷間圧延後の焼鈍温度を680℃以上にすることにより、鋼板のMn濃度の標準偏差を大きくすることができ、加工硬化特性を向上することができる。なお、冷間圧延後の焼鈍温度は740℃以上であることが好ましい。冷間圧延後の焼鈍温度を740℃以上にすることにより、再結晶を著しく促進することができ、さらに、鋼板中のフェライト含有量を3%以下にすることができる。ここで、加熱速度0.5~50℃/秒で検討した結果、Ac3点として以下の式: 
 Ac3=910-200√C+44Si-25Mn+44Al
 が得られ、この式を用いてAc3点を算出することができる。
 一方で、冷間圧延後の焼鈍温度の上限値は、好ましくは950℃である。焼鈍温度を950℃以下とすることにより、焼鈍炉の損傷を抑制して、生産性を向上させることができる。冷間圧延後の焼鈍温度は800℃以下であることが好ましい。冷間圧延後の焼鈍温度を800℃以下にすることにより、焼鈍後の鋼板中の組織を微細化できる。
 未再結晶を完全に除去し、良好な靭性を安定して確保するために、焼鈍時間を10秒間以上、好ましくは40秒間以上とする。生産性の観点からは、焼鈍時間を300秒間以内とすることが好ましい。
 (焼鈍後の冷却条件:680℃から500℃までの温度範囲を平均冷却速度2℃/秒以上で冷却)
 焼鈍後の冷却において、680℃から500℃までの温度範囲を、平均冷却速度2℃/秒以上で冷却する。焼鈍後の680℃から500℃までの温度範囲の平均冷却速度(以下、焼鈍後の平均冷却速度ともいう)を2℃/秒以上とすることによって、Pの粒界偏析を抑制できる。
 焼鈍後の平均冷却速度は、好ましくは20℃/秒以上、より好ましくは50℃/秒以上、さらに好ましくは200℃/秒以上、さらにより好ましくは250℃/秒以上である。焼鈍後の平均冷却速度を200℃/秒以上とすることにより、臨界冷却速度以上で冷却され、ベイナイトやフェライトの生成を抑制することができるので、最終熱処理後の組織を制御しやすく材質安定性を高めることができる。
 焼鈍後の平均冷却速度の上限は特に限定しないが、水焼入れ冷却法やミスト噴射冷却法を用いても、2000℃/秒超に制御することは難しいので、焼鈍後の平均冷却速度の実質的上限は2000℃/秒になる。
 焼鈍後の冷却において、上記範囲の平均冷却速度で行った冷却の停止温度を、好ましくは450℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下にする。上記範囲の平均冷却速度で冷却し、冷却停止温度を上記温度範囲にすることによって、冷却後の鋼材全体をマルテンサイト主体の組織にすることができる。
 上記焼鈍後の冷却の後、100~500℃の温度域で10~1000秒間保持してもよい。
 (冷却後の最終の焼鈍条件:600℃~Ac3点未満の温度域で5~300秒間保持)
 上記焼鈍の冷却後に、室温まで冷却した後に、再度加熱して、600℃~Ac3点未満(すなわちAc1点~Ac3点未満)の温度域で5~300秒間保持し、最終の焼鈍を行う。本焼鈍の加熱時においてセメンタイトが生成され、このセメンタイトにMnが分配される。Mn分配されたセメンタイトは600℃~Ac3点未満の温度で溶解し、Mnの濃化したオーステナイトが生成される。最終の焼鈍温度を600℃~Ac3点未満にすることにより、オーステナイトの生成が促進され、加工硬化特性が向上する。オーステナイトへのMn分配を促進し、Mnの分布を不均一にするために、最終の焼鈍時間を5秒間以上、好ましくは30秒間以上、より好ましくは60秒間以上とする。また、焼き戻しマルテンサイトを残存させるために、最終の焼鈍時間を300秒間以内とする。最終の焼鈍時の加熱速度については特に限定しないが、好ましくは、600℃~Ac3点未満の温度域に加熱するときに、500℃から600℃までの温度範囲を3~6℃/秒の平均加熱速度で昇温する。500℃から600℃までの温度範囲において平均加熱速度を3℃/秒以上とすることにより、金属組織中のセメンタイトの核生成が過剰となりにくく、セメンタイトへのMn分配を十分に実現することができる。また、平均加熱速度を6℃/秒以下とすることにより、セメンタイトへのMn分配の時間を十分に確保することができる。このことから、金属組織中のセメンタイトへのMn分配を十分に行うことができるので、セメンタイトが溶解して得られるオーステナイトのMnの分布をより不均一とすることができる。
 上記最終の焼鈍後の冷却は、鋼板にめっきしない場合には、そのまま室温まで行われればよい。また、鋼板にめっきする場合には、以下のようにして製造する。
 鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、上記最終の焼鈍後の冷却を430~500℃の温度範囲で停止し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は室温まで冷却すればよい。
 鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450~580℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。
 以上のように鋼板を製造することによって、引張強度(TS)が好ましくは780MPa以上、より好ましくは1180MPa以上の高強度の鋼板を得ることができる。これにより、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与することができる。さらに、加工硬化特性を向上することができ、n値が好ましくは0.10以上、より好ましくは0.15以上である高強度且つ加工硬化特性に優れた鋼板を得ることができる。
 本開示の製造方法により製造される鋼板は上記のように、高強度を有し、さらに加工硬化特性も良好であり、成形性に優れているので、ピラー等の自動車の構造部品用途に好適に用いることができる。さらに、本開示の鋼板は含有Mn濃度が高いので、自動車の軽量化にも寄与するので、産業上の貢献が極めて顕著である。
 本開示の鋼板を、例を参照しながらより具体的に説明する。ただし、以下の例は本開示の鋼板の例であり、本開示の鋼板は以下の例の態様に限定されるものではない。
 1.評価用鋼板の製造
 表1に示す化学組成を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブを得た。
Figure JPOXMLDOC01-appb-T000001
 得られたスラブを表2に示す条件にて熱間圧延し、2.6mm厚の熱延鋼板を製板し、次いで、得られた熱延鋼板を酸洗し、冷間圧延して、1.2mm厚の冷延鋼板を製板した。なお、全ての例に係る熱延鋼板の製造において、仕上圧延の開始温度は920℃、巻取温度は550℃とし、一部の例に係る熱延鋼板を350~500℃で焼き戻した。また、全ての例に係る冷延鋼板の製造において、冷間圧延率は40%とした。
Figure JPOXMLDOC01-appb-T000002
 得られた冷延鋼板について、表3に示す条件の熱処理を施して焼鈍冷延鋼板を作製した。冷延鋼板の熱処理は、窒素98%及び水素2%の還元雰囲気で行った。なお、冷間圧延直後の焼鈍においては、焼鈍後の平均冷却速度は50℃/秒とし、そのうち冷却停止後に100~500℃の温度域で鋼板温度を保持した場合においては、その保持時間は30秒間とした。例No.43の冷延後焼鈍については、740℃で40秒間保持した後、さらに800℃で100秒間保持した。
Figure JPOXMLDOC01-appb-T000003
 一部の焼鈍冷延鋼板例については、最終の焼鈍を行った後、焼鈍後の冷却を460℃で停止し、冷延鋼板を460℃の溶融亜鉛のめっき浴に2秒間浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じである。後述する合金化処理を施さない場合、460℃の保持後に、平均冷却速度10℃/秒で室温まで冷却した。溶融亜鉛めっきを行った例については、表3において「めっき」と示した。
 一部の焼鈍冷延鋼板例については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、続いて合金化処理を施した。520℃まで加熱し、520℃で5秒間保持して合金化処理を行い、その後、平均冷却速度10℃/秒で室温まで冷却した。溶融亜鉛めっき処理後に合金化処理を行った例については、表3において「合金化」と示した。例No.45については、冷延後焼鈍の冷却を460℃で停止し、上記のように溶融亜鉛めっき処理及び合金化処理を行った。
 このようにして得られた焼鈍冷延鋼板を伸び率0.1%で調質圧延し、各種評価用鋼板を準備した。
 2.評価方法
 各例で得られた焼鈍冷延鋼板について、ミクロ組織観察、引張試験、及び均一伸び試験を実施して、焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、フレッシュマルテンサイト及び焼き戻しベイナイトの面積率、Mn濃度の標準偏差、引張強度(TS)、及び加工硬化特性(n値)を評価した。各評価の方法は次のとおりである。
 (金属組織の試験方法)
 焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、フレッシュマルテンサイト及び焼き戻しベイナイトの面積率は、走査型電子顕微鏡による組織観察及びX線回折測定から算出した。鋼板を板厚方向と圧延方向に平行に切断したL断面について、鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、走査型電子顕微鏡を用いて、表面から1/4位置におけるミクロ組織を倍率5000倍で観察し、0.1mm×0.3mmの範囲について画像解析(Photoshop(登録商標))により、焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、フレッシュマルテンサイト及び焼き戻しベイナイトの面積率、並びに残留オーステナイトとフレッシュマルテンサイトとの合計の面積率を算出した。さらに、得られた鋼板から幅25mm、長さ25mmの試験片を切り出し、この試験片に化学研磨を施して板厚1/4分を減厚し、化学研磨後の試験片の表面に対して、Co管球を用いたX線回折分析を3回実施し、得られたプロファイルを解析し、それぞれを平均して残留オーステナイトの面積率を算出し、残留オーステナイトとフレッシュマルテンサイトとの合計の面積率から残留オーステナイトの面積率を差し引いて、フレッシュマルテンサイトの面積率を算出した。また、フェライト相は灰色の下地組織として、オーステナイト相及びフレッシュマルテンサイト相は白色の組織として判別し、フレッシュマルテンサイト相及び焼き戻しマルテンサイト相については、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイト相と判別した。さらに、セメンタイトがラスの界面又はラスの内部に存在しているものをベイナイトと判別した。また、ベイナイトのうち結晶粒内に下部組織が確認されたものを焼き戻しベイナイトと判別した。
 Mn濃度の標準偏差は、鋼板の表面から厚みの1/4位置において、EPMAを用いて試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定間隔0.1μmで測定し、全測定点で測定された各Mn濃度に基づいてMn濃度の標準偏差を算出した。
 (機械的性質の試験方法)
 鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張強度(TS)及び加工硬化特性(n値)を測定した。引張試験は、JIS5号引張試験片を用いたJIS-Z2241:2011に規定される方法で行った。均一伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS-Z2241:2011に規定される方法で行った。n値は真ひずみの区間を4~7%とし、真ひずみ4%及び7%における真応力をそれぞれ求め、両真応力の対数の差を両真ひずみの対数の差で除した値とする。引張試験及び均一伸び試験のクロスヘッド試験速度は、30mm/分で行った。
 3.評価結果
 上記の評価の結果を表4に示す。実施例では、0.10以上のn値、及び780MPa以上のTSが得られた。なお、表4のn値についての「測定できず」とは、加工硬化特性が著しく低くなったため、n値を測定できなかったことを示す。
Figure JPOXMLDOC01-appb-T000004
 例No.1~4、6~12、14~17、19、22~24、27~33及び36~41は、所定の化学組成を有し、所定の製造方法に従って製造されたため、所望の金属組織が得られ、Mn濃度の標準偏差が0.30質量%以上となり、その結果優れた特性(強度(TS)及び加工硬化特性(n値))を有していた。
 例No.5は、熱間圧延前の保持時間が長く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.13は、C含有量が不足し、十分な残留オーステナイトを得られなかったため、強度(TS)及び加工硬化特性(n値)が不十分であった。例No.18は、Mn含有量が不足し、十分な残留オーステナイトを得られなかったため、加工硬化特性(n値)が不十分であった。例No.20は、最終の焼鈍温度が低く、所望の金属組織を得られなかったため、加工硬化特性(n値)が不十分であった。例No.21は、最終の焼鈍時間が長く、十分な焼き戻しマルテンサイトを得られなかったため、加工硬化特性(n値)を測定できなかった。例No.25は、最終の焼鈍時間が短く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.26は、熱間圧延前の保持温度が高く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.34は、冷延後の焼鈍温度が低く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.35は、最終の焼鈍温度が高く、十分な焼き戻しマルテンサイトを得られなかったため、加工硬化特性(n値)を測定できなかった。例No.42は、最終の焼鈍を行わなかったため、十分な焼き戻しマルテンサイトを得られず、加工硬化特性(n値)が不十分であった。例No.43~45は、最終の焼鈍を行わなかったため、十分な残留オーステナイトを得られず、加工硬化特性(n値)を測定できなかった。
 次に、表2及び表3の例No.26の製造条件を基に、熱間圧延前の保持温度のみを変更してMn濃度の標準偏差及び加工硬化特性(n値)の熱間圧延前の保持温度依存性を調べた。熱間圧延前の保持温度に対するMn濃度の標準偏差のプロットを図1に、熱間圧延前の保持温度に対するn値のプロットを図2に示す。
 図1によれば、熱間圧延前の保持温度を1100℃未満とすることによりMn濃度の標準偏差を0.30質量%以上とし、すなわちMnの濃度分布を不均一にすることができた。また、図2によれば、Mnの濃度分布を不均一にすることで、加工硬化特性(n値)を改善することができた。

Claims (4)

  1.  化学組成が、質量%で、
     C:0.10超~0.45%、
     Si:0.001~2.50%、
     Mn:4.00超~8.00%、
     sol.Al:0.001~1.50%、
     P:0.100%以下、
     S:0.010%以下、
     N:0.050%未満、
     O:0.020%未満、
     Cr:0~0.50%、
     Mo:0~2.00%、
     W:0~2.00%、
     Cu:0~2.00%、
     Ni:0~2.00%、
     Ti:0~0.300%、
     Nb:0~0.300%、
     V:0~0.300%、
     B:0~0.010%、
     Ca:0~0.010%、
     Mg:0~0.010%、
     Zr:0~0.010%、
     REM:0~0.010%、
     Sb:0~0.050%、
     Sn:0~0.050%、
     Bi:0~0.050%、及び
     残部:鉄及び不純物であり、
     表面から厚みの1/4位置における金属組織が、面積%で、焼き戻しマルテンサイト:25~90%、及び残留オーステナイト:10~50%を含み、
     表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差が0.30質量%以上である、鋼板。
  2.  前記化学組成が、質量%で、
     Cr:0.01~0.50%、
     Ti:0.005~0.300%、
     Nb:0.005~0.300%、
     V:0.005~0.300%、及び
     B:0.0001~0.010%
     からなる群から選択される1種又は2種以上を含有する、請求項1に記載の鋼板。
  3.  前記鋼板の表面に溶融亜鉛めっき層を有する、請求項1又は2に記載の鋼板。
  4.  前記鋼板の表面に合金化溶融亜鉛めっき層を有する、請求項1又は2に記載の鋼板。
PCT/JP2019/051252 2018-12-27 2019-12-26 鋼板 WO2020138343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980060721.2A CN112714800B (zh) 2018-12-27 2019-12-26 钢板
JP2020527137A JP6744003B1 (ja) 2018-12-27 2019-12-26 鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245654 2018-12-27
JP2018245654 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138343A1 true WO2020138343A1 (ja) 2020-07-02

Family

ID=71127795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051252 WO2020138343A1 (ja) 2018-12-27 2019-12-26 鋼板

Country Status (3)

Country Link
JP (1) JP6744003B1 (ja)
CN (1) CN112714800B (ja)
WO (1) WO2020138343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022054221A1 (ja) * 2020-09-11 2022-03-17

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107636B (zh) * 2021-10-19 2023-02-24 北京科技大学 一种2000MPa级超高强韧轮辐用热轧热成形钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180570A (ja) * 2011-03-02 2012-09-20 Kobe Steel Ltd 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP2016050337A (ja) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 高強度高延性鋼板
JP2016153524A (ja) * 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
JP2017206771A (ja) * 2012-12-27 2017-11-24 ポスコPosco 溶接性に優れた高マンガン耐摩耗鋼及びその製造方法
WO2018019220A1 (zh) * 2016-07-27 2018-02-01 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
WO2018025675A1 (ja) * 2016-08-03 2018-02-08 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP2018178248A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2018216522A1 (ja) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 高強度鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336212B1 (en) * 2015-08-11 2020-07-29 JFE Steel Corporation Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
CN110177896B (zh) * 2017-01-16 2021-09-14 日本制铁株式会社 钢板及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180570A (ja) * 2011-03-02 2012-09-20 Kobe Steel Ltd 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP2017206771A (ja) * 2012-12-27 2017-11-24 ポスコPosco 溶接性に優れた高マンガン耐摩耗鋼及びその製造方法
JP2016050337A (ja) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 高強度高延性鋼板
JP2016153524A (ja) * 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
WO2018019220A1 (zh) * 2016-07-27 2018-02-01 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
WO2018025675A1 (ja) * 2016-08-03 2018-02-08 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP2018178248A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2018216522A1 (ja) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 高強度鋼板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022054221A1 (ja) * 2020-09-11 2022-03-17
JP7417169B2 (ja) 2020-09-11 2024-01-18 日本製鉄株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
JPWO2020138343A1 (ja) 2021-02-18
CN112714800A (zh) 2021-04-27
JP6744003B1 (ja) 2020-08-19
CN112714800B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN110177896B (zh) 钢板及其制造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP4635525B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
WO2017168958A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN111868282B (zh) 钢板
KR20180112817A (ko) 고강도 박강판 및 그의 제조 방법
JP4752522B2 (ja) 深絞り用高強度複合組織型冷延鋼板の製造方法
JP6744003B1 (ja) 鋼板
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP7036274B2 (ja) 鋼板
JP6252709B2 (ja) 温間加工用高強度鋼板およびその製造方法
JP2018003114A (ja) 高強度鋼板およびその製造方法
JP6760543B1 (ja) 鋼板及び鋼板の製造方法
CN111868283B (zh) 钢板
EP4079884A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
EP4079882A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
JP6687171B1 (ja) 鋼板
JP7063414B2 (ja) 鋼板
WO2022054221A1 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020527137

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901653

Country of ref document: EP

Kind code of ref document: A1