WO2022054221A1 - 鋼板およびその製造方法 - Google Patents

鋼板およびその製造方法 Download PDF

Info

Publication number
WO2022054221A1
WO2022054221A1 PCT/JP2020/034421 JP2020034421W WO2022054221A1 WO 2022054221 A1 WO2022054221 A1 WO 2022054221A1 JP 2020034421 W JP2020034421 W JP 2020034421W WO 2022054221 A1 WO2022054221 A1 WO 2022054221A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolling
austenite
temperature
Prior art date
Application number
PCT/JP2020/034421
Other languages
English (en)
French (fr)
Inventor
孝彦 神武
嘉宏 諏訪
宏太郎 林
宏志 海藤
翔平 藪
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080100494.4A priority Critical patent/CN115485405B/zh
Priority to JP2022548333A priority patent/JP7417169B2/ja
Priority to PCT/JP2020/034421 priority patent/WO2022054221A1/ja
Publication of WO2022054221A1 publication Critical patent/WO2022054221A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel sheet and a method for manufacturing the same.
  • Residual austenite is obtained by concentrating and stabilizing C in austenite.
  • C can be concentrated in austenite during the bainite transformation that occurs in the steel sheet in the manufacturing stage of the steel sheet.
  • the austenite can be further stabilized and the amount of retained austenite can be increased. As a result, it is possible to produce a steel sheet having excellent strength and elongation.
  • Non-Patent Document 1 a steel to which Mn of more than 4.0% is added has been proposed (for example, Non-Patent Document 1). Since the steel contains a large amount of Mn, the weight reduction effect on the members used thereof is also remarkable.
  • Patent Document 2 a steel sheet to which Mn of 3.5% or more is added is cold-rolled, heated for a short time of 300 seconds to 1200 seconds, and the ferrite is controlled to 30% to 80% in terms of area ratio. Is disclosed.
  • Non-Patent Document 1 requires a long-time heating process such as box annealing, and improvement in productivity is desired.
  • a short-time heating process such as continuous annealing suitable for the production of high-strength steel sheets for automobile parts has not been sufficiently studied, and the requirements for enhancing the elongation characteristics and impact characteristics in that case are clear. There wasn't.
  • Patent Document 2 describes strength and elongation, it does not consider impact characteristics. Therefore, when the steel sheet described in Patent Document 2 is used for an automobile, sufficient collision safety cannot be ensured.
  • An object of the present invention is to solve the above problems and to provide a steel sheet having high strength and excellent elongation characteristics, bendability, and impact characteristics.
  • the present invention has been made to solve the above problems, and the gist of the following steel sheet and its manufacturing method is.
  • the chemical composition of the steel sheet is mass%.
  • C More than 0.10% and less than 0.55%, Si: 0.001% or more and less than 3.50%, Mn: More than 4.00% and less than 9.00%, sol. Al: 0.001% or more and less than 3.00%, P: 0.100% or less, S: 0.010% or less, N: Less than 0.050%, O: Less than 0.020%, Cr: 0% or more and less than 2.00%, Mo: 0 to 2.00%, W: 0 to 2.00%, Cu: 0 to 2.00%, Ni: 0 to 2.00%, Ti: 0 to 0.300%, Nb: 0 to 0.300%, V: 0 to 0.300%, B: 0 to 0.010%, Ca: 0 to 0.010%, Mg: 0 to 0.010%, Zr: 0 to 0.010%, REM: 0-0.010%, Sb: 0 to 0.050%, Sn: 0 to 0.050%, Bi: 0 to 0.050%, Re
  • Tempering martensite 25-90%, Ferrite: 5% or less, Residual austenite: 10-50%, and bainite: 5% or less, Residual austenite crystal grains having an area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more at a depth of 1/4 of the plate thickness from the surface of the cross section parallel to the rolling direction and the plate thickness direction of the steel sheet.
  • the ratio of the total area of is less than 50% of the total area of the retained austenite.
  • the chemical composition is mass%. Cr: 0.01% or more and less than 2.00%, Mo: 0.01-2.00%, W: 0.01-2.00%, Cu: 0.01-2.00%, and Ni: 0.01-2.00% Contains one or more selected from The steel sheet according to (1) above.
  • the chemical composition is mass%.
  • the chemical composition is mass%.
  • the chemical composition is mass%.
  • Sb 0.0005 to 0.050%
  • Sn 0.0005 to 0.050%
  • Bi 0.0005 to 0.050% Contains one or more selected from The steel sheet according to any one of (1) to (4) above.
  • a hot-dip galvanized layer is provided on the surface of the steel sheet.
  • the steel sheet according to any one of (1) to (5) above.
  • An alloyed hot-dip galvanized layer is provided on the surface of the steel sheet.
  • the steel sheet according to any one of (1) to (5) above.
  • the Charpy impact value at 20 ° C. is 20 J / cm 2 or more.
  • the hot rolling step includes a step of finishing hot rolling using a rolling mill having four or more stands.
  • the decrease in plate thickness before and after the last four stands among the plurality of stands satisfies the following equation (ii).
  • the strain rate at the final stand of the last four stands and the rolling outside temperature at the final stand satisfy the following equation (iii).
  • the mixture was cooled to 750 ° C.
  • the cold rolling step pickling and cold rolling are performed, and the cold rolling step is performed.
  • the primary annealing step after holding for 10 s or more in a temperature range of more than 750 ° C. and Ac 3 points or more, it is cooled to less than 100 ° C.
  • the secondary annealing step after heating to a temperature range of 600 ° C. or higher and less than 3 points of Ac at an average heating rate of 1 to 40 ° C./s and holding for 5 s or more and less than 300 s, the average cooling rate up to 500 ° C. is 5. Cool to a temperature of 500 ° C or lower under conditions of ° C / s or higher, Steel sheet manufacturing method.
  • the hot-dip galvanizing treatment is alloyed in a temperature range of 450 to 620 ° C.
  • C More than 0.10% and less than 0.55% C is an extremely important element for increasing the strength of steel and ensuring retained austenite. In order to obtain a sufficient amount of retained austenite and reduce the variation in Mn concentration between austenite grains, a C content of more than 0.10% is required. On the other hand, if C is excessively contained, the weldability of the steel sheet is lowered. Therefore, the C content is more than 0.10% and less than 0.55%.
  • the C content is preferably 0.12% or more, more preferably 0.15% or more, and even more preferably 0.20% or more.
  • the C content is preferably 0.40% or less, more preferably 0.35% or less.
  • Si 0.001% or more and less than 3.50%
  • Si is an element effective for strengthening tempered martensite, homogenizing the structure, and improving elongation characteristics.
  • Si also has an effect of improving the elongation characteristics of the steel sheet by suppressing the precipitation of cementite and promoting the residual of austenite.
  • the Si content is 0.001% or more and less than 3.50%.
  • the Si content is preferably 0.005% or more, more preferably 0.010% or more.
  • the Si content is preferably 3.00% or less, more preferably 2.50% or less.
  • Mn More than 4.00% and less than 9.00% Mn is an element that stabilizes austenite and enhances hardenability. On the other hand, if the steel sheet contains an excessive amount of Mn, the elongation characteristics, impact characteristics, and bendability are deteriorated. Therefore, the Mn content is set to more than 4.00% and less than 9.00%.
  • the Mn content is preferably 4.80% or more, more preferably 5.00% or more.
  • the Mn content is preferably 8.00% or less, more preferably 7.50% or less.
  • sol. Al 0.001% or more and less than 3.00%
  • Al is a deoxidizing agent, and sol. It is necessary to contain 0.001% or more as Al.
  • Al also has an effect of enhancing material stability in order to widen the temperature range of the two-phase region at the time of annealing. The larger the Al content, the greater the effect, but if the Al is excessively contained, it becomes difficult to maintain the surface texture, paintability, and weldability. Therefore, sol.
  • the Al content is 0.001% or more and less than 3.00%. sol.
  • the Al content is preferably 0.005% or more, more preferably 0.010% or more, and even more preferably 0.020% or more.
  • sol. The Al content is preferably 2.50% or less, and more preferably 1.80% or less.
  • "sol.Al" in this specification means "acid-soluble Al".
  • P 0.100% or less
  • P is an impurity, and if the steel sheet contains an excess of P, the weldability deteriorates. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.050% or less, more preferably 0.030% or less, and even more preferably 0.020% or less.
  • the P content may be 0.001% or more, but since the steel sheet according to the present invention does not require P, it is preferable to reduce it as much as possible.
  • S 0.010% or less
  • S is an impurity, and if the steel sheet contains an excess of S, MnS stretched by hot rolling is generated, and the bendability and hole expandability are deteriorated. Therefore, the S content is 0.010% or less.
  • the S content is preferably 0.007% or less, more preferably 0.003% or less.
  • the S content may be 0.001% or more, but since the steel sheet according to the present invention does not require S, it is preferable to reduce it as much as possible.
  • N Less than 0.050% N is an impurity, and if the steel sheet contains 0.050% or more of N, the low temperature toughness decreases. Therefore, the N content is set to less than 0.050%.
  • the N content is preferably 0.010% or less, more preferably 0.006% or less.
  • the N content may be 0.003% or more, but since the steel sheet according to the present invention does not require N, it is preferable to reduce it as much as possible.
  • O Less than 0.020% O is an impurity, and if the steel sheet contains 0.020% or more of O, the elongation characteristics deteriorate. Therefore, the O content is set to less than 0.020%.
  • the O content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less.
  • the O content may be 0.001% or more, but since the steel sheet according to the present invention does not require O, it is preferable to reduce it as much as possible.
  • the steel sheet of the present invention further comprises the following amounts of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi. It may contain one or more selected from.
  • Cr 0% or more and less than 2.00% Mo: 0 to 2.00% W: 0 to 2.00% Cu: 0 to 2.00% Ni: 0 to 2.00% Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, surface defects are likely to be generated during hot rolling, and further, the strength of the hot rolled steel sheet becomes too high, and the cold rollability may be deteriorated. Therefore, the Cr content is less than 2.00%, the Mo content is 2.00% or less, the W content is 2.00% or less, the Cu content is 2.00% or less, and the Ni content is 2.00%. It shall be as follows.
  • the Cr content is preferably 1.50% or less, 1.00% or less, 0.60% or less, or less than 0.20%.
  • the Mo content is preferably 1.50% or less, 1.00% or less, 0.60% or less, or 0.20% or less.
  • the W content is preferably 1.50% or less, 1.00% or less, 0.50% or less, or 0.10% or less.
  • the Cu content is preferably 1.50% or less, 1.00% or less, 0.60% or less, or 0.20% or less.
  • the Ni content is preferably 1.50% or less, 1.00% or less, 0.70% or less, or 0.40% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.01% or more.
  • Ti, Nb, and V are elements that generate fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Therefore, one or more selected from Ti, Nb, and V may be contained. However, if these elements are excessively contained, the strength of the hot-rolled steel sheet may be excessively increased, and the cold rollability may be deteriorated. Therefore, the Ti content is 0.300% or less, the Nb content is 0.300% or less, and the V content is 0.300% or less.
  • the Ti content is preferably 0.200% or less, or 0.100% or less.
  • the Nb content is preferably 0.200% or less, 0.100% or less, 0.060% or less, or 0.030% or less.
  • the V content is preferably 0.270% or less, 0.250% or less, or 0.220% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.005% or more.
  • B 0 to 0.010% Ca: 0 to 0.010% Mg: 0 to 0.010% Zr: 0 to 0.010% REM: 0 to 0.010%
  • Ca, Mg, Zr, and REM rare earth metals
  • the B content is 0.010% or less
  • the Ca content is 0.010% or less
  • the Mg content is 0.010% or less
  • the Zr content is 0.010% or less
  • the REM content is 0.010%. It shall be as follows.
  • the contents of B, Ca, Mg, Zr, and REM are all preferably 0.008% or less, 0.006% or less, or 0.003% or less.
  • the total content of one or more elements selected from B, Ca, Mg, Zr, and REM may be 0.050% or less, but is preferably 0.030% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.0001% or more, and more preferably 0.001% or more.
  • the REM referred to in the present specification refers to a total of 17 elements of Sc, Y, and lanthanoid, and the REM content refers to the total content of these.
  • REM is also generally supplied as mischmetal, which is an alloy of a plurality of REMs. Therefore, one or more individual elements may be added so that the REM content is within the above range. For example, when added in the form of mischmetal, the REM content is within the above range. It may be contained so as to become.
  • Sb 0 to 0.050%
  • Sn 0 to 0.050%
  • Bi 0 to 0.050%
  • Sb, Sn, and Bi suppress easy-oxidizing elements such as Mn, Si, and / or Al in the steel sheet from being diffused on the surface of the steel sheet to form an oxide, and improve the surface texture and plating property of the steel sheet. Therefore, one or more selected from these elements may be contained. However, even if it is contained in an excessive amount, the above effect is saturated. Therefore, the Sb content is 0.050% or less, the Sn content is 0.050% or less, and the Bi content is 0.050% or less.
  • the contents of Sb, Sn, and Bi are all preferably 0.030% or less, 0.010% or less, 0.006% or less, or 0.003% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.0005% or more, and more preferably 0.001% or more.
  • the balance is Fe and impurities.
  • the "impurities" are unavoidably mixed from the steel raw material or scrap and / or from the steelmaking process, and examples thereof include elements that are allowed as long as they do not impair the characteristics of the steel sheet according to the present invention.
  • the metallographic structure at a depth of 1/4 of the plate thickness from the surface is a structure. It contains 25-90% tempered martensite, 5% or less ferrite, 10-50% retained austenite, and 5% or less baynite. The fraction of each structure varies depending on the annealing conditions and affects the strength, elongation, bendability and impact properties of the steel sheet. The reasons for the limitation of each organization will be explained in detail.
  • Tempering martensite is a structure that enhances the strength of steel sheets and improves elongation and impact properties.
  • the area ratio of tempered martensite is less than 25% or more than 90%, it becomes difficult to obtain sufficient strength, elongation, and impact characteristics. Therefore, the area ratio of tempered martensite is 25 to 90%.
  • the area ratio of tempered martensite is preferably 28% or more, more preferably 50% or more. Further, from the viewpoint of further improving the hydrogen embrittlement resistance, the area ratio of the tempered martensite is preferably 80% or less, more preferably 75% or less.
  • the area ratio of ferrite is set to 5% or less.
  • the area ratio of ferrite is preferably 3% or less, and more preferably 0%.
  • Residual austenite 10-50% Residual austenite enhances the elongation and impact properties of steel sheets due to transformation-induced plasticity.
  • retained austenite can be transformed into martensite by processing accompanied by tensile deformation, which also contributes to the improvement of the strength of the steel sheet. Therefore, the higher the area ratio of retained austenite, the more preferable.
  • the area ratio of retained austenite is limited to 50%. If Mn of more than 9.00% is contained, the area ratio of retained austenite can be made more than 50%, but in this case, the elongation characteristics and castability of the steel sheet are impaired.
  • the area ratio of retained austenite is 10 to 50%.
  • the area ratio of the retained austenite is preferably 18% or more, more preferably 20% or more.
  • the product "TS ⁇ tEL" of the tensile strength and the elongation at break is further improved, and the elongation characteristic is maintained even at a higher strength.
  • Bainite 5% or less
  • MA Martensite-Austenite constituent
  • the area ratio of bainite is 5% or less, preferably 0%.
  • the residual structure other than tempered martensite, ferrite, retained austenite, and bainite in the metal structure of the steel sheet according to the present invention is preferably fresh martensite (that is, untempered martensite).
  • Bainite may also include tempered bainite, but is not distinguished herein.
  • pearlite may be contained, but it is unlikely to be contained, preferably less than 1%, and more preferably 0%.
  • Fresh martensite has a hard structure and is effective in ensuring the strength of steel sheets.
  • the area ratio of fresh martensite is preferably more than 0%, more preferably 1% or more, and even more preferably 3% or more.
  • the area ratio of fresh martensite is preferably 55% or less, more preferably 45% or less, and further preferably 20% or less.
  • the area ratio of fresh martensite is preferably 3% or less.
  • the residual austenite crystal grains having an area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more.
  • the ratio of the total area of is less than 50% of the total area of retained austenite.
  • Retained austenite having a crystal grain area of 1 ⁇ m 2 or more and a crystal grain circularity of 0.1 or more accounts for less than 50% of the total retained austenite, whereby elongation characteristics, impact characteristics and bendability Excellent steel sheet can be obtained.
  • the retained austenite having a large crystal grain area and a large grain circularity occupies 50% or more of the total retained austenite, the elongation property, impact property and bendability of the steel sheet are deteriorated.
  • the Mn concentration in the metal structure at a depth of 1/4 of the plate thickness from the surface of the L cross section satisfies the following formula (i).
  • the meanings of the symbols in the above equation (i) are as follows.
  • C Mn ⁇ Average Mn concentration (% by mass) in retained austenite
  • C Mn ⁇ Average Mn concentration (% by mass) in ferrite and tempered martensite
  • the rvalue of equation (i) is less than 1.2, the Mn concentration distribution becomes uniform and it is possible to suppress the occurrence of a region having high strength locally, so that the bendability of the steel material can be improved. Therefore, it is assumed that the rvalue in equation (i) is less than 1.2. The lower the lvalue of equation (i) is, the more preferable, but since Mn is distributed in retained austenite, the lvalue of equation (i) is 1.0 or more.
  • the area ratio of retained austenite is measured by X-ray diffraction.
  • a test piece having a width of 25 mm (length in the rolling direction), a length of 25 mm (length in the direction perpendicular to rolling), and a thickness in the plate thickness direction as the thickness of the annealed sample is obtained from the center of the main surface of the steel sheet. break the ice.
  • this test piece is chemically polished to reduce the plate thickness by 1/4 minute, and a test piece having a chemically polished surface is obtained. ..
  • X-ray diffraction analysis with a measurement range of 2 ⁇ of 45 to 105 degrees is performed three times on the surface of the test piece using a Co tube.
  • the area ratio of the retained austenite can be obtained.
  • the integrated intensities of the peaks (111), (200), and (220) are obtained, and for the bcc phase, the integrated intensities of the peaks (110), (200), and (211) are obtained.
  • the volume fraction of retained austenite is obtained, and the value is taken as the area fraction of retained austenite.
  • ⁇ Measurement method of area ratio of tempered martensite, ferrite, bainite, and fresh martensite The area ratios of tempered martensite, ferrite, bainite, and fresh martensite are calculated from microstructure observation with a scanning electron microscope (SEM). After mirror polishing the L cross section of the steel sheet, a microstructure is revealed with 3% nital (3% nitric acid-ethanol solution). Then, by SEM, the microstructure in the range of 100 ⁇ m in length (length in the plate thickness direction) ⁇ 300 ⁇ m in width (length in the rolling direction) at a depth of 1/4 of the plate thickness from the surface of the steel plate is observed at a magnification of 5000 times. However, the area ratio of each tissue can be measured.
  • the area ratio is calculated by determining that among the white structures recognized by SEM observation, those whose substructure is confirmed in the crystal grains are tempered martensite. Ferrite is discriminated as a gray base structure and the area ratio is calculated. Bainite is a collection of lath-shaped crystal grains when observed by SEM, and is determined as a structure in which carbides extend in the same direction in the lath, and the area ratio is calculated.
  • Fresh martensite is recognized as a white tissue in the same way as retained austenite when observed by SEM. Therefore, it is difficult to distinguish between retained austenite and fresh martensite by SEM observation, but the residual austenite measured by X-ray diffraction method from the total area ratio of retained austenite and fresh martensite obtained by SEM observation.
  • the area ratio of fresh martensite is calculated by subtracting the area ratio.
  • ⁇ Measurement method of C Mn ⁇ and C Mn ⁇ > C Mn ⁇ / C Mn ⁇ can be measured by EBSP, SEM, and electron probe microanalyzer (EPMA).
  • Retained austenite, ferrite, and tempered martensite can be identified by EBSP and SEM, and C Mn ⁇ and C Mn ⁇ can be measured by EPMA to calculate C Mn ⁇ / C Mn ⁇ .
  • the tensile strength (TS) of the steel sheet according to the present invention is preferably 780 MPa or more, preferably 980 MPa, in order to reduce the plate thickness by increasing the strength and contribute to weight reduction.
  • the above is more preferable, and 1180 MPa or more is further preferable.
  • the elongation at break (tEL) is also excellent.
  • the TS ⁇ tEL of the steel sheet according to the present invention is preferably 25,000 MPa ⁇ % or more, and more preferably 28,000 MPa ⁇ % or more.
  • the steel sheet according to the present invention also has excellent impact characteristics.
  • the steel sheet according to the present invention preferably has an impact value of 20 J / cm 2 or more in a Charpy test at 20 ° C.
  • the steel sheet according to the embodiment of the present invention can be obtained by a manufacturing method including, for example, a casting step, a hot rolling step, a cold rolling step, a primary annealing step and a secondary annealing step shown below. Further, if necessary, a plating step may be further included.
  • the steel sheet according to the present invention is made by melting steel having the above-mentioned chemical composition by a conventional method and casting it to prepare a steel material (hereinafter, also referred to as “slab”).
  • a steel material hereinafter, also referred to as “slab”.
  • the molten steel may be melted by a normal blast furnace method, and the raw material may be a large amount of scrap like steel produced by an electric furnace method. It may be included.
  • the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
  • Hot rolling can be performed using a normal continuous hot rolling line.
  • the hot rolling step includes a rough rolling step and a finishing hot rolling step.
  • the slab to be subjected to the hot rolling step is preferably heated before the hot rolling.
  • the temperature of the slab to be subjected to hot rolling is preferably 1100 to 1300 ° C.
  • "temperature” means the surface temperature of a slab, a hot-rolled steel sheet, or a cold-rolled steel sheet.
  • the holding time in the slab heating temperature range is not particularly limited, but in order to improve the stability of the material, it is preferably 30 min or more, and more preferably 1 hour or more. Further, in order to suppress excessive scale loss, it is preferably 10 hours or less, and more preferably 5 hours or less.
  • the slab may be subjected to hot rolling as it is without being heat-treated.
  • Finishing hot rolling In the finishing hot rolling process, in tandem rolling in which a steel plate is continuously rolled using a rolling mill having four or more stands, the cumulative strain (plate) rolled by the four stands out of the plurality of stands. It is important to control the thickness reduction) and the rolling temperature and strain rate at the final stand. Since the rolling mill is tandem rolling, the strain is accumulated if the strain at the four continuous rolling stands at the rear end is within an appropriate range. Further, in the final stand, by optimizing the strain rate and the rolling temperature, the accumulated strain can cause recrystallization of austenite. Usually, the finishing stand for hot rolling is mainly 6 or 7 steps. Of course, the number of stages is not limited, but in the method for manufacturing a steel sheet according to the present embodiment, the rolling of the last four stages of the plurality of stands is controlled to set the strain amount and the strain rate within an appropriate range.
  • the time between passes the distance between passes / the rolling speed of the stand immediately before the final. Therefore, the inter-pass time and strain rate of all stands can be obtained from the inter-pass distance and the accumulated true strain (thickness reduction).
  • strain is applied under the condition that the following equation (ii) is satisfied. 1.2 ⁇ ln (t 0 / t) ⁇ 2.8 ... (ii)
  • ln (t 0 / t) represents the true strain (logarithmic strain) that accumulates the plate thickness reduction
  • t 0 is the plate thickness (mm) immediately before entering the last four stands
  • t is the last four. It is the plate thickness (mm) immediately after coming out of the stand.
  • the austenite grains in the hot-rolled steel sheet become flat, so that austenite nucleation becomes non-uniform, and after secondary annealing.
  • the area ratio of retained austenite is less than 10%, and in addition, austenite in which Mn concentration tends to proceed is partially generated, and C Mn ⁇ / C Mn ⁇ is 1.2 or more in the final structure after secondary annealing. become.
  • austenite that tends to be locally coarsened is generated, and the ratio of retained austenite having a crystal grain area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more to the total of the retained austenite is 50% or more. It becomes.
  • Equation (iii) is a function of strain rate and temperature Zener-Hollomon factor (Z factor) :.
  • Z ⁇ ⁇ exp (Q / (R (T + 273))) ( ⁇ : Strain rate, T: Rolling outside temperature at the final stand, Q: Apparent activation energy, R: Gas constant) Derived based on.
  • the average grain size of the obtained austenite grains is due to slow strain rate, high rolling temperature, or both.
  • Austenite nucleation becomes non-uniform, and the area ratio of retained austenite becomes less than 10% in the final structure after secondary annealing.
  • C Mn ⁇ / C Mn ⁇ becomes 1.2 or more in the final structure after annealing.
  • austenite that tends to be coarsened locally is generated, and the ratio of retained austenite having a crystal grain area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more to the total retained austenite is 50% or more.
  • the value is 11.0 or more due to restrictions on production equipment.
  • austenite that tends to be coarsened locally is generated, and the ratio of retained austenite having a crystal grain area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more to the total retained austenite is 50% or more.
  • the rolling out side temperature T it is necessary to recrystallize with austenite single phase in order to obtain the equiaxed old austenite grain size.
  • austenite single phase and recrystallization can be achieved. It promotes and makes it easier to obtain equiaxed martensite.
  • Cooling after finish rolling In order to keep the recrystallized austenite structure created by rolling fine, cooling is started within 1.0 s after the completion of rolling at the final stand, and the mixture is cooled to 750 ° C. at an average cooling rate of 100 ° C./s or more.
  • austenite that tends to be coarsened locally is generated, and the ratio of retained austenite having a crystal grain area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more to the total retained austenite is 50% or more.
  • austenite grain growth occurs even during cooling, the austenite grains become coarse, austenite nucleation becomes non-uniform, and the area ratio of retained austenite in the final structure after secondary annealing. Is less than 10%, and in addition, austenite in which Mn concentration tends to proceed is partially generated, and C Mn ⁇ / C Mn ⁇ becomes 1.2 or more in the final structure after secondary annealing. In addition, austenite that tends to be coarsened locally is generated, and the ratio of retained austenite having a crystal grain area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more to the total retained austenite is 50% or more. Become.
  • the upper limit of the cooling rate is not particularly limited, but it is preferably 600 ° C./s or less in consideration of equipment restrictions and the like and in order to make the structure distribution in the plate thickness direction more uniform.
  • the temperature range of 750 ° C. to 300 ° C. is preferably 10 ° C. Cool at an average cooling rate of / s or higher. In order to make the structure uniform after hot rolling, the average cooling rate is preferably 10 ° C./s or higher.
  • the cooling rate from 300 ° C. to the winding temperature described later is not particularly limited, but from the viewpoint of productivity, the cooling rate may be as it is from 750 ° C. to 300 ° C. to the winding temperature.
  • Winding temperature less than 300 ° C
  • the winding temperature after cooling is preferably less than 300 ° C.
  • the winding temperature is more preferably 250 ° C. or lower.
  • the hot-rolled steel sheet may be tempered in a temperature range of 300 to 600 ° C. after being cooled to room temperature and before or after pickling before cold rolling.
  • the hot-rolled steel sheet is pickled by a conventional method and then cold-rolled to obtain a cold-rolled steel sheet.
  • the rolling reduction ratio for cold rolling is preferably 20% or more.
  • the rolling reduction ratio of cold rolling is preferably 70% or less.
  • ⁇ Primary annealing process> The above-mentioned cold-rolled steel sheet is annealed in an austenite single-phase temperature range.
  • This annealing is referred to as "primary annealing" in the present invention.
  • the primary annealing By the primary annealing, the initial structure mainly composed of martensite can be formed, and then the retained austenite of the present application can be formed in the secondary annealing in the temperature range corresponding to the two-phase region of ferrite and austenite. If the primary annealing is omitted and only the secondary annealing is performed, the ferrite fraction increases due to the nucleation and coarsening of ferrite because it is not the initial structure mainly composed of martensite.
  • Annealing is preferably carried out in a reducing atmosphere, for example, in a reducing atmosphere of 98% nitrogen and 2% hydrogen. It also reduces the formation of bainite and ferrite in the final structure.
  • This primary annealing condition preferably satisfies the following range.
  • Annealing may be carried out in either an annealing furnace or a continuous annealing line as long as the conditions described below are satisfied, but preferably, both the first annealing and the second annealing are carried out by using the continuous annealing line.
  • Productivity can be improved.
  • Skin pass rolling may be performed on the steel sheet after cold rolling.
  • Average temperature rise rate 5 to 30 ° C / s
  • the average heating rate from the heating start temperature (room temperature) to the primary annealing temperature is preferably 5 to 30 ° C./s.
  • Productivity can be improved by setting the temperature rise rate in the primary annealing step within this range.
  • Primary annealing temperature Over 750 ° C and Ac 3 points or more
  • the annealing temperature after cold rolling is Ac 3 points or more.
  • the upper limit of the primary annealing temperature is preferably 950 ° C. or lower.
  • Ac 3 points are calculated by the following method.
  • C More than 0.10% and less than 0.55%
  • Si 0.001% or more and less than 3.50%
  • Mn More than 4.00% and less than 9.00%
  • Al 0.001% or more and 3.00
  • Ac 3 points can be calculated using this formula.
  • Ac 3 910-200 ⁇ C + 44Si-25Mn + 44Al ... (iv)
  • each element symbol in the formula represents the content (mass%) of each element contained in the steel.
  • the annealing time to be maintained in the temperature range of over 750 ° C and Ac 3 points or more is set to 10 s or more. .. Further, if the annealing time is less than 10 s, ferrite may remain due to local variations in concentration. From the viewpoint of productivity, it is preferable that the annealing time is 300 s or less.
  • Final cooling temperature less than 100 ° C.
  • the temperature is cooled from the primary annealing temperature to less than 100 ° C.
  • the final cooling temperature is preferably room temperature (50 ° C. or lower).
  • the primary annealing temperature it is preferable to cool at an average cooling rate of 2 to 2000 ° C./s from the primary annealing temperature to the temperature range of 500 ° C. or lower.
  • an average cooling rate of 2 to 2000 ° C./s from the primary annealing temperature is more preferably 600 ° C./s or less in consideration of equipment restrictions and the like.
  • the cooling shutdown temperature in cooling at an average cooling rate of 2 to 2000 ° C / s is 100 ° C or higher.
  • the cooling shutdown temperature is 100 ° C. or higher, it is possible to suppress the generation of strain due to martensitic transformation and improve the flatness of the steel sheet.
  • the holding time in the temperature range of 100 to 500 ° C. is preferably 1000 s or less. It is preferably 300 s or less.
  • the holding temperature By setting the holding temperature to 100 ° C. or higher, the efficiency of the continuous annealing line can be improved. On the other hand, by setting the holding temperature to 500 ° C. or lower, the formation of ferrite can be further suppressed.
  • the annealed steel sheet obtained in the above-mentioned primary annealing step is further annealed in a temperature range corresponding to a two-phase region of ferrite and austenite.
  • This annealing is referred to as "secondary annealing" in the present invention.
  • This secondary annealing condition preferably satisfies the following range.
  • Average heating rate 1-40 ° C / s
  • the average temperature rise rate is set to 1 ° C./s or more in order to reduce the area ratio of ferrite. At an average heating rate of less than 1 ° C./s, nucleation and growth of ferrite progresses and the area of ferrite increases. On the other hand, if the average temperature rise rate is too fast, the driving force for austenite formation becomes large, and austenite is generated from the former austenite grain boundaries instead of martensite, so that coarse austenite is generated.
  • coarse austenite ie, retained austenite with an area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more, reducing the area ratio of the coarse austenite to less than 50% of the total area of the retained austenite. In order to do so, it is necessary to raise the temperature at 40 ° C./s or lower. At an average heating rate of more than 40 ° C./s, coarse austenite is produced and the residual austenite area ratio decreases.
  • the average temperature rise rate is more preferably 2 ° C./s or higher, and even more preferably 3 ° C./s or higher.
  • the average heating rate is preferably less than 40 ° C./s, more preferably less than 20 ° C./s, and even more preferably less than 10 ° C./s.
  • Secondary annealing temperature 600 ° C. or higher and less than 3 points Ac
  • the area ratio of ferrite can be reduced and the elongation characteristics and impact characteristics can be improved. If the secondary annealing temperature is less than 600 ° C., cementite precipitated during the heating of the secondary annealing remains, and the transformation from ferrite to austenite becomes insufficient, so that the area ratio of ferrite becomes high in the final structure.
  • the secondary annealing temperature is Ac 3 or higher, the area ratio of the tempered martensite becomes low because the austeniticization of the martensite structure obtained by the primary annealing progresses remarkably.
  • Secondary annealing holding time 5 s or more and less than 300 s
  • the holding time at the secondary annealing temperature is set to 5 s or more from the viewpoint of dissolving cementite precipitated during heating of the secondary annealing and stably ensuring good impact characteristics.
  • C Mn ⁇ / C Mn ⁇ becomes 1.2 or higher.
  • the Mn content is within the specified range of the present invention, when the holding time at 600 ° C.
  • the holding time at 600 ° C. or higher and less than 3 points of Ac is set to less than 300 s. In this way, the holding time is short, which also contributes to the improvement of productivity.
  • Average cooling rate 5 ° C./s or more
  • the average cooling rate is preferably 500 ° C./s or less.
  • hot-dip galvanized steel sheet is manufactured by hot-dip galvanizing the surface of the steel sheet, cooling after secondary annealing is stopped in the temperature range of 430 to 500 ° C., and then the cold-rolled steel sheet is placed in a hot-dip galvanized bath. Immerse and hot-dip galvanize.
  • the conditions of the plating bath may be within the normal range. After the plating treatment, the mixture is cooled to room temperature at a cooling rate of 5 ° C./s or higher.
  • the temperature is 450 to 620 ° C. after the steel sheet is subjected to hot-dip galvanizing treatment and before the steel sheet is cooled to room temperature.
  • the hot dip galvanizing is alloyed at a temperature, and after the alloying treatment, the hot dip galvanizing is cooled to room temperature at a cooling rate of 5 ° C./s or higher.
  • the alloying treatment conditions may be within the normal range.
  • the steel sheet according to the present embodiment can be obtained.
  • the obtained steel pieces were heated at 1250 ° C. for 1 hour and then hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet.
  • the temperature on the output side of the finish rolling was in the austenite single-phase range in all cases.
  • the cooling rate from 300 ° C. to the winding temperature was the same as the cooling rate from 750 ° C. to 300 ° C.
  • the temperature was maintained at a predetermined temperature corresponding to the winding temperature for 30 minutes, and then the furnace was cooled to room temperature at 10 ° C./h.
  • the obtained hot-rolled steel sheet was pickled and then tempered at the tempering temperature shown in Table 2, and then cold-rolled at a cold rolling ratio to obtain a cold-rolled steel sheet.
  • the tempering time before cold rolling was 1 hour.
  • the obtained cold-rolled steel sheet was annealed twice under the conditions shown in Table 3 to prepare an annealed cold-rolled steel sheet.
  • the two annealings of the cold-rolled steel sheet were carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the average heating rate from the heating start temperature (room temperature) to the annealing temperature in the first annealing was set to 15 ° C./s.
  • the test No. Except for 6 and 10, the mixture was cooled to room temperature (50 ° C. or lower) under the condition that the average cooling rate from the annealing temperature to 100 ° C. was the rate shown in Table 3.
  • Test No. The annealed cold-rolled steel sheets 6 and 10 were cooled to 460 ° C. at the average cooling rate shown in Table 3 after the second annealing, and then cooling was stopped. Then, the cold-rolled steel sheet was immersed in a hot-dip galvanizing bath at 460 ° C. for 2 seconds to perform a hot-dip galvanizing treatment. The conditions of the plating bath were the same as those of the conventional one. Test No. For No. 6, after holding at 460 ° C., the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s.
  • test No. The annealed cold-rolled steel sheet of No. 10 was subjected to a hot-dip galvanizing treatment and then alloyed without being cooled to room temperature. Specifically, it was heated to 520 ° C. and held at 520 ° C. for 5 s for alloying treatment, and then cooled to room temperature at an average cooling rate of 10 ° C./s.
  • the annealed cold-rolled steel sheet thus obtained was tempered and rolled at an elongation rate of 0.1% to prepare various evaluation steel sheets.
  • ⁇ Area ratio of metal structure Area ratios of tempered martensite, ferrite, retained austenite, bainite, and fresh martensite were calculated from microstructural observations by SEM and X-ray diffraction measurements.
  • the L cross section of the steel plate cut parallel to the plate thickness direction and the rolling direction is mirror-polished, then microstructure is exposed with 3% nital, and the magnification is 5000 times by SEM, which is 1/4 of the plate thickness from the surface.
  • the area ratio was calculated. Further, a test piece having a width of 25 mm and a length of 25 mm is cut out from the obtained steel plate, and in order to measure the depth position of 1/4 of the plate thickness from the surface, the test piece is chemically polished to have a plate thickness of 1/4 minute. Was reduced. Then, X-ray diffraction analysis using a Co tube was performed three times on the surface of the test piece after chemical polishing, the obtained profiles were analyzed, and the area ratio of retained austenite was calculated by averaging each of them. did. The area ratio of fresh martensite was calculated by subtracting the area ratio of retained austenite from the total area ratio of retained austenite and fresh martensite obtained by SEM observation.
  • the EBSP data measurement conditions are as follows. An area of 50 ⁇ m ⁇ 50 ⁇ m was observed at a magnification of 500 times with an SEM equipped with an OIM (Orientation Imaging Microscopy) detector at a depth of 1/4 of the plate thickness from the surface of the L cross section of the steel plate, and the measurement interval was 0. The EBSP data was measured at 1 ⁇ m, and the area ratio of the residual austenite crystal grains having an area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more was determined. EBSP data was measured for the five regions by the above method, and the average value was calculated.
  • C Mn ⁇ / C Mn ⁇ > C Mn ⁇ / C Mn ⁇ was measured by EBSP, SEM, and EPMA.
  • EBSP and SEM 50 ⁇ m ⁇ 50 ⁇ m regions were observed at a magnification of 500, EBSP data were measured at a measurement interval of 0.1 ⁇ m, and retained austenite, ferrite, and tempered martensite were identified for the five regions.
  • the identified retained austenite, ferrite and tempered martensite were subjected to point analysis by EPMA measurement at 5 points and 5 regions, respectively, and the measured values were averaged to calculate C Mn ⁇ and C Mn ⁇ , and C Mn ⁇ /.
  • C Mn ⁇ was obtained.
  • ⁇ Tensile test method> The JIS No. 5 tensile test piece was collected from the direction perpendicular to the rolling direction of the steel sheet, the tensile strength (TS) and the elongation at break (tEL) were measured, and TS ⁇ tEL was calculated.
  • the tensile test was carried out by the method specified in JIS Z2241: 2011 using a JIS No. 5 tensile test piece having a parallel portion having a length of 60 mm and a reference point distance of 50 mm for measuring strain.
  • a V-notch test piece was prepared from each steel material after the heat treatment. If the thickness of the test piece is 4.8 mm or more, use it as it is, and if it is less than 4.8 mm, stack the minimum number of sheets to be 4.8 mm or more and screw them together, and then JIS Z2242. : It was subjected to a Charpy impact test according to 2005. The impact characteristics were good when the impact value at 20 ° C. was 20 J / cm 2 or more, and defective when the impact value was less than 20 J / cm 2 .
  • a bending test piece having a width of 20 mm (direction toward the bending ridge) and a length of 50 mm (direction perpendicular to rolling) was produced from each of the annealed steel sheets so that the bending ridge was in the rolling direction.
  • the width direction of the bending test piece is parallel to the bending axis.
  • Table 4 shows the results of the above evaluation. An example in which TS ⁇ tEL of 25,000 MPa ⁇ % or more, good bendability, and good impact characteristics were obtained was evaluated as a steel sheet having excellent elongation characteristics, high strength, excellent bendability, and excellent collision characteristics. ..
  • the steel sheet according to the present invention has high strength, good elongation characteristics and bendability, and also has excellent impact characteristics, so that it is most suitable for structural parts of automobiles such as pillars. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

鋼板の化学組成が、質量%で、C:0.10%超0.55%未満、Si:0.001%以上3.50%未満、Mn:4.00%超9.00%未満、sol.Al:0.001%以上3.00%未満、P:0.100%以下、S:0.010%以下、N:0.050%未満、O:0.020%未満、を含有するものであり、L断面において、表面から板厚の1/4深さ位置における金属組織が、面積率で、焼戻しマルテンサイト:25-90%、フェライト:5%以下、残留オーステナイト:10-50%、ベイナイト:5%以下であり、面積が1μm2以上かつ粒円形度が0.1以上を満たす残留オーステナイト結晶粒の合計面積の割合が、残留オーステナイトの全体の面積に対して50%未満であり、CMnγ/CMnα<1.2を満足する、鋼板。

Description

鋼板およびその製造方法
 本発明は、鋼板およびその製造方法に関する。
 近年、自動車の燃費の向上および衝突安全性の向上を目的に、高強度鋼板の適用による車体軽量化の取り組みが盛んに行われている。しかしながら、一般的に、鋼板の強度が高いほど、成形性、曲げ性、および衝撃特性が低下する。そのため、高強度鋼板の開発において、成形性、曲げ性、および衝撃特性を低下させずに高強度化を図ることは重要な課題である。
 成形性に影響する伸び特性を向上させるために、これまでに、残留オーステナイト(残留γ)の変態誘起塑性を利用した、いわゆるTRIP鋼が提案されている(例えば、特許文献1)。
 残留オーステナイトは、Cをオーステナイト中に濃化させて安定化させることによって得られる。例えば、SiおよびAl等の炭化物析出抑制元素を鋼板に含有させることにより、鋼板の製造段階において鋼板に生じるベイナイト変態の間に、Cをオーステナイト中に濃化させることが可能である。この技術では、鋼板に含有させるC含有量が多ければ、オーステナイトがさらに安定化し、残留オーステナイト量を増やすことができる。そして、その結果、強度と伸びとの両方が優れた鋼板を造ることができる。
 また、残留オーステナイト量が上記TRIP鋼よりも多く、延性が上記TRIP鋼を超える鋼板として、4.0%超のMnを添加した鋼が提案されている(例えば、非特許文献1)。上記鋼は多量のMnを含有するので、その使用部材に対する軽量化効果も顕著である。
 特許文献2には、3.5%以上のMnを添加した鋼を冷間圧延し、300秒~1200秒の短時間加熱を施し、面積率で、フェライトを30%~80%に制御した鋼板が開示されている。
特開平5-59429号公報 特開2012-237054号公報
古川敬、松村理、熱処理、日本国、日本熱処理協会、平成9年、第37号巻、第4号、p.204
 鋼板が構造部材に使用される場合、鋼板に溶接が行われることが多いが、鋼板中のC含有量が多いと溶接性が低下するため、構造部材として使用することに制限がかかる。したがって、C含有量を増加することなく、鋼板の伸びと強度との両方を向上することが望まれている。
 また、非特許文献1に記載の鋼は箱焼鈍のような長時間加熱プロセスを要件としており、生産性の向上が望まれる。しかしながら、自動車用の部材に供する高強度鋼板の製造に適する連続焼鈍のような短時間加熱プロセスにおける材料設計は十分に検討されておらず、その場合の伸び特性および衝撃特性を高める要件は明らかでなかった。
 また、特許文献2には、強度および伸びについては記載があるものの、衝撃特性については考慮がなされていない。そのため、特許文献2に記載の鋼板を自動車用に用いる場合、十分な衝突安全性を確保することができない。
 本発明は上記の課題を解決し、高い強度を有し、かつ伸び特性、曲げ性、および衝撃特性に優れる鋼板を提供することを目的とする。
 本発明は、上記の課題を解決するためになされたものであり、下記の鋼板およびその製造方法を要旨とする。
 (1)鋼板の化学組成が、質量%で、
 C:0.10%超0.55%未満、
 Si:0.001%以上3.50%未満、
 Mn:4.00%超9.00%未満、
 sol.Al:0.001%以上3.00%未満、
 P:0.100%以下、
 S:0.010%以下、
 N:0.050%未満、
 O:0.020%未満、
 Cr:0%以上2.00%未満、
 Mo:0~2.00%、
 W:0~2.00%、
 Cu:0~2.00%、
 Ni:0~2.00%、
 Ti:0~0.300%、
 Nb:0~0.300%、
 V:0~0.300%、
 B:0~0.010%、
 Ca:0~0.010%、
 Mg:0~0.010%、
 Zr:0~0.010%、
 REM:0~0.010%、
 Sb:0~0.050%、
 Sn:0~0.050%、
 Bi:0~0.050%、
 残部:Feおよび不純物であり、
 前記鋼板の圧延方向および板厚方向に平行な断面において、表面から板厚の1/4深さ位置における金属組織が、面積%で、
 焼戻しマルテンサイト:25~90%、
 フェライト:5%以下、
 残留オーステナイト:10~50%、および
 ベイナイト:5%以下であり、
 前記鋼板の圧延方向および板厚方向に平行な断面の表面から板厚の1/4深さ位置において、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の合計面積の割合が、前記残留オーステナイトの全体の面積に対して50%未満であり、
 下記(i)式を満足する、
 鋼板。
 CMnγ/CMnα<1.2   ・・・(i)
 但し、上記(i)式中の記号の意味は以下のとおりである。
 CMnγ:残留オーステナイト中の平均Mn濃度(質量%)
 CMnα:フェライトおよび焼戻しマルテンサイト中の平均Mn濃度(質量%)
 (2)前記化学組成が、質量%で、
 Cr:0.01%以上2.00%未満、
 Mo:0.01~2.00%、
 W:0.01~2.00%、
 Cu:0.01~2.00%、および
 Ni:0.01~2.00%
 から選択される1種以上を含有する、
 上記(1)に記載の鋼板。
 (3)前記化学組成が、質量%で、
 Ti:0.005~0.300%、
 Nb:0.005~0.300%、および
 V:0.005~0.300%
 から選択される1種以上を含有する、
 上記(1)または(2)に記載の鋼板。
 (4)前記化学組成が、質量%で、
 B:0.0001~0.010%、
 Ca:0.0001~0.010%、
 Mg:0.0001~0.010%、
 Zr:0.0001~0.010%、および
 REM:0.0001~0.010%
 から選択される1種以上を含有する、
 上記(1)から(3)までのいずれかに記載の鋼板。
 (5)前記化学組成が、質量%で、
 Sb:0.0005~0.050%、
 Sn:0.0005~0.050%、および
 Bi:0.0005~0.050%
 から選択される1種以上を含有する、
 上記(1)から(4)までのいずれかに記載の鋼板。
 (6)前記鋼板の表面に溶融亜鉛めっき層を有する、
 上記(1)から(5)までのいずれかに記載の鋼板。
 (7)前記鋼板の表面に合金化溶融亜鉛めっき層を有する、
 上記(1)から(5)までのいずれかに記載の鋼板。
 (8)20℃におけるシャルピー衝撃値が20J/cm以上である、
 上記(1)から(7)までのいずれかに記載の鋼板。
 (9)上記(1)から(5)までのいずれかに記載の化学組成を有する鋼材に対して、熱間圧延工程、冷間圧延工程、一次焼鈍工程および二次焼鈍工程を順に行う鋼板の製造工程であって、
 前記熱間圧延工程は、4つ以上の複数のスタンドを有する圧延機を用いて仕上熱間圧延する工程を含み、
 前記仕上熱間圧延する工程において、
 前記複数のスタンドのうち最後の4つのスタンドの前後における板厚減少が、下記(ii)式を満足し、
 前記最後の4つのスタンドの最終スタンドにおけるひずみ速度と前記最終スタンドにおける圧延出側温度とが、下記(iii)式を満足し、
 前記最終スタンドにおける圧延後1.0s以内に100℃/s以上の平均冷却速度で750℃まで冷却し、
 前記冷間圧延工程は、酸洗と冷間圧延とを施し、
 前記一次焼鈍工程において、750℃超かつAc点以上の温度域で10s以上保持した後、100℃未満まで冷却し、
 前記二次焼鈍工程において、1~40℃/sの平均昇温速度で600℃以上Ac点未満の温度域に加熱し、5s以上300s未満保持した後、500℃までの平均冷却速度が5℃/s以上となる条件で500℃以下の温度まで冷却する、
 鋼板の製造方法。
 1.2≦ln(t/t)≦2.8   ・・・(ii)
 11.0≦log(v・exp(33000/(273+T)))≦15.0   ・・・(iii)
 但し、上記式中の各記号の意味は以下のとおりである。
 t:最後の4つのスタンドに入る直前の板厚(mm)
 t:最後の4つのスタンドから出た直後の板厚(mm)
 v:最終スタンドにおけるひずみ速度(/s)
 T:最終スタンドにおける圧延出側温度(℃)
 (10)前記一次焼鈍工程において、750℃超かつAc点以上の温度域で10s以上保持した後、500℃以下の温度域まで2~2000℃/sの平均冷却速度で冷却し、その後、100℃未満の温度域まで冷却する、
 上記(9)に記載の鋼板の製造方法。
 (11)前記一次焼鈍工程において、500℃以下の温度域まで2~2000℃/sの平均冷却速度で冷却した後、100~500℃の温度域で10~1000s保持する、
 上記(10)に記載の鋼板の製造方法。
 (12)前記二次焼鈍工程の後、冷却し、溶融亜鉛めっき処理を施す、
 上記(9)から(11)までのいずれかに記載の鋼板の製造方法。
 (13)前記溶融亜鉛めっき処理を施した後、450~620℃の温度域で前記溶融亜鉛めっきの合金化処理を施す、
 上記(12)に記載の鋼板の製造方法。
 本発明によれば、高い強度、ならびに優れた伸び特性、曲げ性、および衝撃特性を有する鋼板を提供することができる。
 以下、本発明の各要件について詳しく説明する。
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.10%超0.55%未満
 Cは、鋼の強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分量の残留オーステナイトを得て、オーステナイト粒同士のMn濃度のばらつきを小さくするためには、0.10%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接性が低下する。したがって、C含有量は0.10%超0.55%未満とする。C含有量は0.12%以上であるのが好ましく、0.15%以上であるのがより好ましく、0.20%以上であるのがさらに好ましい。また、C含有量は、0.40%以下であるのが好ましく、0.35%以下であるのがより好ましい。
 Si:0.001%以上3.50%未満
 Siは、焼戻しマルテンサイトを強化し、組織を均一化し、伸び特性の改善に有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進することで、鋼板の伸び特性を向上させる作用も有する。一方、Siを過剰に含有させると鋼板のめっき性および化成処理性が低下する。したがって、Si含有量は0.001%以上3.50%未満とする。Si含有量は0.005%以上であるのが好ましく、0.010%以上であるのがより好ましい。また、Si含有量は3.00%以下であるのが好ましく、2.50%以下であるのがより好ましい。
 Mn:4.00%超9.00%未満
 Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。一方、鋼板に過剰のMnを含有させると伸び特性、衝撃特性、および曲げ性を低下させる。したがって、Mn含有量は4.00%超9.00%未満とする。Mn含有量は4.80%以上であるのが好ましく、5.00%以上であるのがより好ましい。また、Mn含有量は8.00%以下であるのが好ましく、7.50%以下であるのがより好ましい。
 sol.Al:0.001%以上3.00%未満
 Alは、脱酸剤であり、sol.Alとして0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相域の温度範囲を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、および溶接性を維持することが難しくなる。したがって、sol.Al含有量は0.001%以上3.00%未満とする。sol.Al含有量は0.005%以上であるのが好ましく、0.010%以上であるのがより好ましく、0.020%以上であるのがさらに好ましい。また、sol.Al含有量は2.50%以下であるのが好ましく、1.80%以下であるのがより好ましい。なお、本明細書にいう「sol.Al」は、「酸可溶性Al」を意味する。
 P:0.100%以下
 Pは不純物であり、鋼板に過剰のPを含有させると、溶接性が低下する。したがって、P含有量は0.100%以下とする。P含有量は0.050%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、P含有量は0.001%以上であってもよいが、本発明に係る鋼板はPを必要としないので、可能な限り低減することが好ましい。
 S:0.010%以下
 Sは不純物であり、鋼板に過剰のSを含有させると、熱間圧延によって伸張したMnSが生成し、曲げ性および穴広げ性が低下する。したがって、S含有量は0.010%以下とする。S含有量は0.007%以下であるのが好ましく、0.003%以下であるのがより好ましい。なお、S含有量は0.001%以上であってもよいが、本発明に係る鋼板はSを必要としないので、可能な限り低減することが好ましい。
 N:0.050%未満
 Nは不純物であり、鋼板に0.050%以上のNを含有させると低温靱性が低下する。したがって、N含有量は0.050%未満とする。N含有量は0.010%以下であるのが好ましく、0.006%以下であるのがより好ましい。なお、N含有量は0.003%以上であってもよいが、本発明に係る鋼板はNを必要としないので、可能な限り低減することが好ましい。
 O:0.020%未満
 Oは不純物であり、鋼板に0.020%以上のOを含有させると伸び特性が低下する。したがって、O含有量は0.020%未満とする。O含有量は0.010%以下であるのが好ましく、0.005%以下であるのがより好ましく、0.003%以下であるのがさらに好ましい。なお、O含有量は0.001%以上であってもよいが、本発明に係る鋼板はOを必要としないので、可能な限り低減することが好ましい。
 本発明の鋼板は、上記の元素に加えてさらに、下記に示す量のCr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、SnおよびBiから選択される1種以上を含有させてもよい。
 Cr:0%以上2.00%未満
 Mo:0~2.00%
 W:0~2.00%
 Cu:0~2.00%
 Ni:0~2.00%
 Cr、Mo、W、Cu、およびNiは、鋼板の強度を向上させる元素である。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱延時の表面疵が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr含有量は2.00%未満、Mo含有量は2.00%以下、W含有量は2.00%以下、Cu含有量は2.00%以下、Ni含有量は2.00%以下とする。
 Cr含有量は1.50%以下、1.00%以下、0.60%以下、または0.20%未満であるのが好ましい。Mo含有量は1.50%以下、1.00%以下、0.60%以下、または0.20%以下であるのが好ましい。W含有量は1.50%以下、1.00%以下、0.50%以下、または0.10%以下であるのが好ましい。Cu含有量は1.50%以下、1.00%以下、0.60%以下、または0.20%以下であるのが好ましい。Ni含有量は1.50%以下、1.00%以下、0.70%以下、または0.40%以下であるのが好ましい。これらの元素の上記効果をより確実に得るためには、上記元素の少なくともいずれかを0.01%以上含有させることが好ましい。
 Ti:0~0.300%
 Nb:0~0.300%
 V:0~0.300%
 Ti、Nb、およびVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、Ti、Nb、およびVから選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti含有量は0.300%以下、Nb含有量は0.300%以下、V含有量は0.300%以下とする。
 Ti含有量は0.200%以下、または0.100%以下であるのが好ましい。Nb含有量は0.200%以下、0.100%以下、0.060%以下、または0.030%以下であるのが好ましい。V含有量は0.270%以下、0.250%以下、または0.220%以下であるのが好ましい。これらの元素の上記効果をより確実に得るためには、上記元素の少なくともいずれかを0.005%以上含有させることが好ましい。
 B:0~0.010%
 Ca:0~0.010%
 Mg:0~0.010%
 Zr:0~0.010%
 REM:0~0.010%
 B、Ca、Mg、Zr、およびREM(希土類金属)は、鋼板の局部延性および穴広げ性を向上させる。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、鋼板の伸び特性を低下させる場合がある。したがって、B含有量は0.010%以下、Ca含有量は0.010%以下、Mg含有量は0.010%以下、Zr含有量は0.010%以下、REM含有量は0.010%以下とする。
 B、Ca、Mg、Zr、およびREMの含有量は、いずれも0.008%以下、0.006%以下、または0.003%以下であるのが好ましい。また、B、Ca、Mg、Zr、およびREMから選択される1種以上の元素の含有量の合計は0.050%以下であればよいが、0.030%以下とすることが好ましい。これらの元素の上記効果をより確実に得るには、上記元素の少なくともいずれかを0.0001%以上含有させることが好ましく、0.001%以上含有させることがより好ましい。
 なお、本明細書にいうREMとは、Sc、Y、およびランタノイドの合計17元素を指し、REM含有量とは、これらの合計含有量を指す。また、REMは一般的には複数種のREMの合金であるミッシュメタルとしても供給されている。このため、個別の元素を1種以上添加してREM含有量が上記の範囲となるように含有させてもよいし、例えば、ミッシュメタルの形で添加して、REM含有量が上記の範囲となるように含有させてもよい。
 Sb:0~0.050%
 Sn:0~0.050%
 Bi:0~0.050%
 Sb、Sn、およびBiは、鋼板中のMn、Si、および/またはAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状およびめっき性を高める。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、過剰に含有させても、上記効果が飽和する。したがって、Sb含有量は0.050%以下、Sn含有量は0.050%以下、Bi含有量は0.050%以下とする。Sb、Sn、およびBiの含有量は、いずれも0.030%以下、0.010%以下、0.006%以下、または0.003%以下であるのが好ましい。これらの元素の上記効果をより確実に得るためには、上記元素の少なくともいずれかを0.0005%以上含有させることが好ましく、0.001%以上含有させることがより好ましい。
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。なお「不純物」とは、鋼原料もしくはスクラップからおよび/または製鋼過程から不可避的に混入するものであり、本発明に係る鋼板の特性を阻害しない範囲で許容される元素が例示される。
 (B)金属組織
 本発明に係る鋼板の金属組織について説明する。なお、以下の説明において面積率についての「%」は、「面積%」を意味する。
 本発明に係る鋼板の圧延方向および板厚方向に平行で、鋼板の中心軸を通る断面(「L断面」ともいう。)において、表面から板厚の1/4深さ位置における金属組織は、25~90%の焼戻しマルテンサイト、5%以下のフェライト、10~50%の残留オーステナイト、および5%以下のベイナイトを含む。各組織の分率は、焼鈍の条件によって変化し、鋼板の強度、伸び特性、曲げ性および衝撃特性に影響を与える。各組織の限定理由について詳しく説明する。
 焼戻しマルテンサイトの面積率:25~90%
 焼戻しマルテンサイトは、鋼板の強度を高め、伸び特性および衝撃特性を向上させる組織である。焼戻しマルテンサイトの面積率が25%未満または90%を超えると、十分な強度、伸び、および衝撃特性を得ることが困難となる。したがって、焼戻しマルテンサイトの面積率は25~90%とする。
 焼戻しマルテンサイトの面積率は28%以上であるのが好ましく、50%以上であるのがより好ましい。また、耐水素脆化特性をより向上させる観点から、焼戻しマルテンサイトの面積率は80%以下であるのが好ましく、75%以下であるのがより好ましい。
 フェライト:5%以下
 金属組織中のフェライトの面積率が多くなると伸び特性および衝撃特性が低下する。したがって、フェライトの面積率は5%以下とする。フェライトの面積率は、3%以下であるのが好ましく、0%であるのがより好ましい。
 残留オーステナイト:10~50%
 残留オーステナイトは、変態誘起塑性によって鋼板の伸び特性および衝撃特性を高める。また、残留オーステナイトは、引張変形を伴う加工等によってマルテンサイトに変態し得るので、鋼板の強度の向上にも寄与する。そのため、残留オーステナイトの面積率は高いほど好ましい。
 しかしながら、上述した化学成分を有する鋼板では、残留オーステナイトの面積率は50%が上限となる。9.00%超のMnを含有させれば、残留オーステナイトの面積率を50%超にすることができるが、この場合、鋼板の伸び特性および鋳造性が損なわれる。
 したがって、残留オーステナイトの面積率は10~50%とする。残留オーステナイトの面積率は、18%以上であるのが好ましく、20%以上であるのがより好ましい。特に、残留オーステナイトの面積率が18%以上になると、引張強さと破断伸びとの積「TS×tEL」がより向上し、伸び特性がより高強度でも維持されるようになる。
 ベイナイト:5%以下
 本発明に係る鋼板においては、金属組織中にベイナイトが存在すると、ベイナイト中に硬質な組織であるMA(Martensite-Austenite constituent)が内在する。MAが内在すると伸び特性および衝撃特性が低下する。鋼板の伸び特性を低下させないために、ベイナイトの面積率を5%以下とし、好ましくは0%である。
 本発明に係る鋼板の金属組織における焼戻しマルテンサイト、フェライト、残留オーステナイト、およびベイナイト以外の残部組織としては、フレッシュマルテンサイト(すなわち、焼戻しされていないマルテンサイト)であることが望ましい。ベイナイトには、焼戻しベイナイトも含まれ得るが、本願明細書においては区別しない。また、パーライトについては、含まれてもよいが、含まれる可能性は低く、好ましくは1%未満であり、より好ましくは0%である。
 フレッシュマルテンサイトは硬質の組織であり、鋼板の強度の確保に有効である。強度を重視する場合には、フレッシュマルテンサイトの面積率は、0%超であるのが好ましく、1%以上であるのがより好ましく、3%以上であるのがさらに好ましい。ただし、フレッシュマルテンサイトの面積率が低いほど、鋼板の曲げ性が高くなる。したがって、曲げ性の点からは、フレッシュマルテンサイトの面積率は、55%以下であるのが好ましく、45%以下であるのがより好ましく、20%以下であるのがさらに好ましい。特に曲げ性を重視する場合は、フレッシュマルテンサイトの面積率は3%以下であることが好ましい。
 また、本発明に係る鋼板のL断面の表面から板厚の1/4深さ位置における金属組織において、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の合計面積の割合が、残留オーステナイトの全体の面積に対して50%未満である。
 結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイトの全体に占める割合が、50%未満であることによって、伸び特性、衝撃特性および曲げ性に優れた鋼板を得ることができる。結晶粒の面積が大きくかつ粒円形度が大きい残留オーステナイトが、残留オーステナイト全体の50%以上を占めると、鋼板の伸び特性、衝撃特性および曲げ性が低下する。
 結晶粒の面積が1μm未満、すなわち結晶の粒径が小さい残留オーステナイトは、フェライト-オーステナイト二相域での焼鈍時に短い時間でMnが均一に濃縮し易く安定性が高いので、高歪側まで変態が遅延する。そのため、伸び特性および衝撃特性に優れた鋼板を得ることができる。
 残留オーステナイトにおいて、結晶粒の面積が1μm以上、すなわち結晶の粒径が大きい残留オーステナイトでも、粒円形度が0.1未満である場合は、結晶粒の多くがマルテンサイト間または焼戻しマルテンサイトラス間に存在するので、周囲からの空間拘束により、高歪域側まで変態が遅延する。そのため、伸び特性および衝撃特性に優れた鋼板を得ることができる。
 さらに、本発明の鋼材において、L断面の表面から板厚の1/4深さ位置における金属組織中のMn濃度が、下記(i)式を満足する。
 CMnγ/CMnα<1.2   ・・・(i)
 但し、上記(i)式中の記号の意味は以下のとおりである。
 CMnγ:残留オーステナイト中の平均Mn濃度(質量%)
 CMnα:フェライトおよび焼戻しマルテンサイト中の平均Mn濃度(質量%)
 (i)式左辺値が1.2未満であると、Mn濃度分布が均一となり、局所的に強度が高い領域が生じることを抑制できるため、鋼材の曲げ性を向上できる。したがって、(i)式左辺値が1.2未満とする。(i)式左辺値は低いほど好ましいが、Mnは残留オーステナイトに分布するので、(i)式左辺値は1.0以上となる。
 金属組織の面積率、残留オーステナイト結晶粒の面積および粒円形度、ならびにCMnγおよびCMnαの算出方法について以下に説明する。
 <残留オーステナイトの面積率の測定方法>
 残留オーステナイトの面積率はX線回折法により測定される。まず、鋼板の主面中央部から幅25mm(圧延方向の長さ)、長さ25mm(圧延直角方向の長さ)、および焼鈍した試料の厚さままの板厚方向の厚みを有する試験片を切り出す。そして、表面から板厚の1/4深さ位置を測定するために、この試験片に化学研磨を施して板厚1/4分を減厚し、化学研磨された表面を有する試験片を得る。試験片の表面に対して、Co管球を用い、測定範囲2θを45~105度とするX線回折分析を3回実施する。このようにして得られた残留オーステナイトのプロファイルを解析し、それぞれを平均することで、残留オーステナイトの面積率が得られる。
 fcc相に関しては、(111)、(200)、(220)の各ピークの積分強度を求め、bcc相に関しては、(110)、(200)、(211)の各ピークの積分強度を求める。それらの積分強度を解析し、3回のX線回折分析結果を平均することで、残留オーステナイトの体積率を求め、その値を残留オーステナイトの面積率とする。
 <焼戻しマルテンサイト、フェライト、ベイナイト、およびフレッシュマルテンサイトの面積率の測定方法>
 焼戻しマルテンサイト、フェライト、ベイナイト、およびフレッシュマルテンサイトの面積率は、走査電子顕微鏡(SEM)による組織観察から算出される。鋼板のL断面を鏡面研磨した後に、3%ナイタール(3%硝酸-エタノール溶液)によりミクロ組織を現出させる。そして、SEMにより倍率5000倍で、鋼板の表面から板厚の1/4深さ位置における縦100μm(板厚方向の長さ)×横300μm(圧延方向の長さ)の範囲のミクロ組織を観察し、それぞれの組織の面積率を測定することができる。
 焼戻しマルテンサイトは、SEMによる観察において認識された白色の組織のうち、結晶粒内に下部組織が確認されたものを焼戻しマルテンサイトと判断することにより面積率を算出する。フェライトは灰色の下地組織として判別して面積率を算出する。ベイナイトは、SEMによる観察において、ラス状の結晶粒の集合であり、ラス内に炭化物が同一方向に延びた組織として判別して、面積率を算出する。
 フレッシュマルテンサイトは、SEMによる観察において残留オーステナイトと同様に白色の組織として認識される。そのため、SEMによる観察では残留オーステナイトとフレッシュマルテンサイトとの区別が難しいが、SEMによる観察で得られた残留オーステナイトとフレッシュマルテンサイトとの合計面積率から、X線回折法より測定された残留オーステナイトの面積率を差し引くことによって、フレッシュマルテンサイトの面積率を算出する。
 <残留オーステナイト結晶粒の面積および粒円形度の測定方法>
 粒円形度および結晶粒の面積は、TSL社製OIM Analysis version 7の標準機能(MapおよびGrain Shape Circularity)を用いて、後方散乱電子回折(EBSP:Electron Back Scatter Diffraction Patterns)分析を行うことによって、測定することができる。粒円形度(Grain shape circularity)は、下記式により求められる。
 粒円形度=4πA/P
 但し、上記式中の記号の意味は以下のとおりである。
 A:結晶粒の面積
 P:結晶粒の周囲長さ
 <CMnγおよびCMnαの測定方法>
 CMnγ/CMnαは、EBSP、SEM、および電子線マイクロアナライザ(EPMA)により測定することができる。EBSPおよびSEMにより、残留オーステナイト、フェライト、および焼戻しマルテンサイトを特定し、EPMAにより、CMnγおよびCMnαを測定して、CMnγ/CMnαを算出することができる。
 (C)機械的特性
 次に、本発明に係る鋼板の機械的特性について説明する。
 鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するため、本発明に係る鋼板の引張強さ(TS)は、780MPa以上であるのが好ましく、980MPa以上であるのがより好ましく、1180MPa以上であるのがさらに好ましい。また、本発明に係る鋼板をプレス成形に供するために、破断伸び(tEL)も優れることが望ましい。本発明に係る鋼板のTS×tELは、25000MPa・%以上であるのが好ましく、28000MPa・%以上であるのがより好ましい。
 本発明に係る鋼板はまた、優れた衝撃特性を有する。本発明に係る鋼板は、20℃でのシャルピー試験の衝撃値が20J/cm以上であることが好ましい。
 (D)製造方法
 次に、本発明に係る鋼板の製造方法について説明する。本発明の一実施形態に係る鋼板は、例えば以下に示す鋳造工程、熱間圧延工程、冷間圧延工程、一次焼鈍工程および二次焼鈍工程を含む製造方法によって得ることができる。また、必要に応じて、めっき工程をさらに含んでもよい。
 <鋳造工程>
 本発明に係る鋼板は、上述の化学組成を有する鋼を常法で溶製し、鋳造して鋼材(以下、「スラブ」ともいう。)を作製する。本発明に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作成された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
 <熱間圧延工程>
 熱間圧延は、通常の連続熱間圧延ラインを用いて行うことができる。熱間圧延工程は、粗圧延工程および仕上熱間圧延工程を含む。
 スラブ加熱温度:1100~1300℃
 熱間圧延工程に供するスラブは、熱間圧延の前に加熱されることが好ましい。熱間圧延に供するスラブの温度を1100℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、熱間圧延に供するスラブの温度を1300℃以下にすることにより、スケールロス増加による歩留まりの低下を抑制することができる。したがって、熱間圧延に供するスラブの温度は、1100~1300℃とすることが好ましい。なお、本願明細書において、「温度」とは、スラブ、熱延鋼板、または冷延鋼板の表面温度を意味する。
 上記スラブ加熱温度域における保持時間は特に制限されないが、材質の安定性を向上させるためには、30min以上とすることが好ましく、1h以上にすることがより好ましい。また、過度のスケールロスを抑制するためには、10h以下とすることが好ましく、5h以下とすることがより好ましい。直送圧延または直接圧延を行う場合は、スラブに加熱処理を施さずにそのまま熱間圧延に供してもよい。
 仕上熱間圧延:
 仕上熱間圧延工程では、4つ以上の複数のスタンドを有する圧延機を用いて連続的に鋼板を圧延するタンデム圧延において、前記複数のスタンドのうち、前記4つのスタンドで圧延する累積ひずみ(板厚減少)と、最終スタンドにおける圧延温度およびひずみ速度とを制御することが重要である。圧延機はタンデム圧延となるため、後端の4つの連続する圧延スタンドでのひずみが適正範囲であればひずみは累積される。また、最終スタンドでは、ひずみ速度と圧延温度とを適正化することによって、累積されたひずみによってオーステナイトの再結晶を起こすことができる。通常、熱間圧延の仕上げスタンドは6段または7段が主流である。もちろん、この段数には限らないが、本実施形態に係る鋼板の製造方法では、その複数のスタンドの内、最後の4段の圧延を制御してひずみ量およびひずみ速度を適正範囲にする。
 鋼板は連結されたタンデム圧延されるため、前記4つ以上のスタンドのうち最終スタンドにおけるひずみ速度が適正化されていれば、最後の4つのスタンドの間のパス間時間(3つ)を、ひずみを累積できる圧延速度と圧下率に調整することができる。すなわち、最終スタンド出側の圧延速度および圧下率が決まれば、その前のスタンドの圧延速度が決まる。例えば、最終1つ前のスタンドの圧延速度=最終スタンドの圧延速度×(1-最終スタンドの圧下率)である。また、パス間時間=パス間距離/最終1つ前のスタンドの圧延速度である。したがって、パス間距離と累積する真ひずみ(板厚減)とから、すべてのスタンドのパス間時間およびひずみ速度を求めることができる。
 最後の4つのスタンドでは、下記(ii)式を満足する条件でひずみを付与する。
 1.2≦ln(t/t)≦2.8   ・・・(ii)
 ここで、ln(t/t)は板厚減を累積する真ひずみ(対数ひずみ)を表し、tは最後の4つのスタンドに入る直前の板厚(mm)、tは最後の4つのスタンドから出た直後の板厚(mm)である。
 ln(t/t)の値が1.2未満では、最終スタンドで再結晶に必要なひずみが付与されず、旧オーステナイト粒のアスペクト比が大きくなる。ln(t/t)の値が2.8超では、板厚減が大きすぎてパス間時間が長くなってしまうため、最終スタンドで十分なひずみが付与されず、再結晶することができなくなり、旧オーステナイト粒のアスペクト比が大きくなる。このように、ln(t/t)の値が1.2未満または2.8超では、熱延鋼板における旧オーステナイト粒が扁平となるので、オーステナイト核生成が不均一となり、二次焼鈍後の最終組織において、残留オーステナイトの面積率が10%未満となり、加えて、Mn濃化が進みやすいオーステナイトが部分的に生じ、二次焼鈍後の最終組織においてCMnγ/CMnαが1.2以上になる。また、局所的に粗大化しやすいオーステナイトが生成し、結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイトの全体に占める割合が、50%以上となる。
 最後の4つのスタンドの最終スタンドでは、ひずみ速度と圧延出側温度とが下記(iii)式を満足する条件で圧延を行う。
 11.0≦log(v・exp(33000/(273+T)))≦15.0  ・・・(iii)
 ここで、vは最終スタンドにおけるひずみ速度(/s)であり、Tは最終スタンドにおける圧延出側温度(℃)である。(iii)式は、ひずみ速度と温度の関数であるZener-Hollomon因子(Z因子):
 Z=ε・exp(Q/(R(T+273)))
 (ε:ひずみ速度、T:最終スタンドにおける圧延出側温度、Q:見かけの活性化エネルギー、R:気体定数)
 に基づいて導出した。
 log(v・exp(33000/(273+T)))の値が11.0未満では、ひずみ速度が遅いか、圧延温度が高いか、またはその両方のために、得られる旧オーステナイト粒の平均粒径が粗大化し、オーステナイト核生成が不均一となり、二次焼鈍後の最終組織において、残留オーステナイトの面積率が10%未満となり、加えて、Mn濃化が進みやすいオーステナイトが部分的に生じ、二次焼鈍後の最終組織においてCMnγ/CMnαが1.2以上になる。また、局所的に粗大化しやすいオーステナイトが生成し、結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイト全体に占める割合が、50%以上となる。また、生産設備上の制約からも、11.0以上の値である。
 log(v・exp(33000/(273+T)))の値が15.0超では、ひずみ速度が速いか、圧延温度が低いか、またはその両方のために、オーステナイトが再結晶できず、熱延鋼板における旧オーステナイト粒径が扁平となり、オーステナイト核生成が不均一となり、二次焼鈍後の最終組織において、残留オーステナイトの面積率が10%未満となり、加えて、Mn濃化が進みやすいオーステナイトが部分的に生じ、二次焼鈍後の最終組織においてCMnγ/CMnαが1.2以上になる。また、局所的に粗大化しやすいオーステナイトが生成し、結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイト全体に占める割合が、50%以上となる。
 ひずみ速度vについては、(iii)式を満足していれば、圧延機の圧延速度など生産設備の制限および生産性低下によるコスト増大がない限り制約はない。
 圧延出側温度Tに関しては、等軸な旧オーステナイト粒径を得るために、オーステナイト単相で再結晶させる必要がある。フェライトが圧延中に発生すると、フェライトによりオーステナイトの再結晶が抑制され、オーステナイトの結晶粒径が扁平になるため、圧延出側は780℃以上で行うことで、オーステナイト単相で、かつ再結晶を促進させ、等軸マルテンサイトが得られやすくなる。
 仕上圧延後の冷却:
 圧延によって作り込んだ再結晶オーステナイト組織を微細に保つため、最終スタンドにおける圧延終了後1.0s以内に冷却を開始し、100℃/s以上の平均冷却速度で750℃まで冷却する。
 圧延後の冷却を開始するまでの時間が1.0sを超えると、再結晶が発現してから冷却開始まで時間がかかるため、オストワルド成長により細粒領域が粗大粒に吸収されて旧オーステナイト粒が粗大となり、オーステナイト核生成が不均一となり、二次焼鈍後の最終組織において、残留オーステナイトの面積率が10%未満となり、加えて、Mn濃化が進みやすいオーステナイトが部分的に生じ、二次焼鈍後の最終組織においてCMnγ/CMnαが1.2以上になる。また、局所的に粗大化しやすいオーステナイトが生成し、結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイト全体に占める割合が、50%以上となる。
 冷却速度が100℃/s未満では、冷却中にもオーステナイトの粒成長が起こり、旧オーステナイト粒が粗大となり、オーステナイト核生成が不均一となり、二次焼鈍後の最終組織において、残留オーステナイトの面積率が10%未満となり、加えて、Mn濃化が進みやすいオーステナイトが部分的に生じ、二次焼鈍後の最終組織においてCMnγ/CMnαが1.2以上になる。また、局所的に粗大化しやすいオーステナイトが生成し、結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイト全体に占める割合が、50%以上となる。
 冷却速度の上限は、特に限定されないが、設備制約等を考慮し、また、板厚方向の組織分布をより均一にするため、600℃/s以下であることが好ましい。
 圧延終了後、粒成長して旧オーステナイト粒が粗大化することを防ぐため、750℃まで100℃/s以上の平均冷却速度で冷却した後、750℃から300℃の温度範囲を好ましくは10℃/s以上の平均冷却速度で冷却する。熱延後組織を均一にするためには、平均冷却速度は好ましくは10℃/s以上である。なお、300℃から後述する巻取温度までの冷却速度については特に制限はされないが、生産性の観点から、750℃から300℃までの冷却速度で、そのまま巻取温度まで冷却してもよい。
 巻取温度:300℃未満
 冷却後の巻取温度を300℃未満とすることが好ましい。巻取温度を300℃未満とすることによって、熱延後の組織を均一にすることができる。巻取温度は、250℃以下であるのがより好ましい。冷延性をより向上させる観点から、室温まで冷却された後、冷間圧延前の酸洗の前または後に、300~600℃の温度範囲で熱延鋼板を焼戻してもよい。
 <冷間圧延工程>
 熱延鋼板は、常法により酸洗を施された後に、冷間圧延が行われ、冷延鋼板とされる。焼鈍後の鋼板の組織を微細化する観点から、冷間圧延の圧下率は20%以上とすることが好ましい。冷間圧延中の破断を抑制する観点から、冷間圧延の圧下率は70%以下とすることが好ましい。
 冷間圧延の前であって酸洗の前または後に0%超~5%程度の軽度の圧延を行って形状を修正すると、平坦確保の点で有利となるので好ましい。また、酸洗前に軽度の圧延を行うことより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性およびめっき処理性を向上させる効果がある。
 <一次焼鈍工程>
 上述した冷延鋼板をオーステナイト単相の温度域で焼鈍を行う。この焼鈍を本発明では「一次焼鈍」と呼ぶ。一次焼鈍によって、マルテンサイト主体の初期組織を形成し、その後のフェライトとオーステナイトとの二相域に相当する温度域における二次焼鈍において、本願の残留オーステナイトを形成することができる。一次焼鈍を省略し二次焼鈍のみを行うと、マルテンサイト主体の初期組織でないため、フェライトが核生成し粗大化することで、フェライト分率が増大する。焼鈍は、還元雰囲気で行われることが好ましく、例えば窒素98%および水素2%の還元雰囲気で行ってもよい。また、最終組織中におけるベイナイトおよびフェライトの生成を低減する。この一次焼鈍条件は以下の範囲を満足することが好ましい。
 焼鈍は、後述する条件を満たせば、焼鈍炉および連続焼鈍ラインのどちらで行ってもよいが、好ましくは1回目の焼鈍および2回目の焼鈍はいずれも、連続焼鈍ラインを用いて行うことにより、生産性を向上することができる。冷延圧延後の鋼板に、スキンパス圧延を行ってもよい。
 平均昇温速度:5~30℃/s
 加熱開始温度(室温)から一次焼鈍温度までの平均昇温速度は、5~30℃/sであるのが好ましい。一次焼鈍工程における昇温速度をこの範囲にすることにより、生産性を向上することができる。
 一次焼鈍温度:750℃超かつAc点以上
 冷間圧延後の焼鈍温度を750℃超にすることにより、二次焼鈍後の鋼板中のフェライトの分布をより均一にすることができ、伸び特性を向上することができる。冷間圧延後の焼鈍温度はAc点以上である。冷間圧延後の焼鈍温度をAc点以上にすることにより、一次焼鈍時のフェライト生成を抑制し二次焼鈍後の最終組織におけるフェライト分率を低減することができる。一次焼鈍時にフェライトが過度に生成されると、二次焼鈍時にオーステナイトの核生成サイトが不均一化し、過度にMn濃化した残留オーステナイトが生成されるおそれがある。一方で、一次焼鈍温度の上限値は、好ましくは950℃以下である。焼鈍温度を950℃以下とすることにより、焼鈍炉の損傷を抑制して、生産性を向上させることができる。
 ここで、Ac点は以下の手法で算出する。C:0.10%超0.55%未満、Si:0.001%以上3.50%未満、Mn:4.00%超9.00%未満、およびAl:0.001%以上3.00%未満を含有する複数種類の冷延鋼板について加熱速度0.5~50℃/sでAc点を計測し検討した結果、Ac点として下記(iv)式を得た。この式を用いてAc点を算出することができる。
 Ac=910-200√C+44Si-25Mn+44Al   ・・・(iv)
 但し、式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を表す。
 一次焼鈍時間:10s以上
 フェライトの生成を抑制し二次焼鈍後の最終組織におけるフェライト分率を低減するために、750℃超かつAc点以上の温度域で保持する焼鈍時間を10s以上とする。また、10s未満の焼鈍時間では、局所的な濃度のばらつきから、フェライトが残存するおそれがある。生産性の観点からは、焼鈍時間を300s以下とすることが好ましい。
 最終冷却温度:100℃未満
 一次焼鈍後の冷却においては、一次焼鈍温度から100℃未満まで冷却する。最終冷却温度を100℃未満にすることにより、ラスマルテンサイト組織を形成することができる。鋼板の搬送時の安全確保の観点から、最終冷却温度は、室温(50℃以下)とすることが好ましい。
 また、一次焼鈍温度から500℃以下の温度範囲まで、2~2000℃/sの平均冷却速度で冷却することが好ましい。焼鈍後の平均冷却速度を2℃/s以上とすることによって、フェライトの生成をより抑制することができる。一方、平均冷却速度を2000℃/s以下とすることにより、冷却停止した後の鋼板温度分布が均一になるので、鋼板の平坦性を向上させることができる。設備制約などを考慮し、一次焼鈍温度から500℃以下の温度範囲までの平均冷却速度は、より好ましくは、600℃/s以下である。
 好ましくは、2~2000℃/sの平均冷却速度での冷却における冷却停止温度を100℃以上とする。冷却停止温度を100℃以上にすることにより、マルテンサイト変態に伴うひずみ発生を抑制でき、鋼板の平坦性を向上させることができる。
 さらに、一次焼鈍温度から500℃以下までの温度範囲を平均冷却速度2~2000℃/sで冷却した後、好ましくは、100~500℃の温度域で10~1000s保持する。100~500℃の温度域における保持時間を10s以上とすることにより、オーステナイトへのC分配が十分に進行して、二次焼鈍前の組織にオーステナイトを生成させることができ、その結果、二次焼鈍後の組織に塊状のオーステナイトが生成することを抑制し、強度特性の変動をより小さくすることができる。一方、上記保持時間が1000s超であっても、上記作用による効果は飽和して、生産性が低下するだけであるため、100~500℃の温度域における保持時間は、好ましくは1000s以下、より好ましくは300s以下である。
 上記保持温度を100℃以上にすることにより、連続焼鈍ラインの効率を向上することができる。一方、保持温度を500℃以下にすることにより、フェライトの生成をより抑制することができる。
 <二次焼鈍工程>
 上述した一次焼鈍工程で得られた焼鈍鋼板に対して、フェライトとオーステナイトとの二相域に相当する温度域でさらに焼鈍する。この焼鈍を本発明では「二次焼鈍」と呼ぶ。二次焼鈍を行うことによって、オーステナイトにCおよび一定量のMnを濃化させることで、残留オーステナイトと焼戻しマルテンサイトを得ることが容易となる。この二次焼鈍条件は、以下の範囲を満足することが好ましい。
 平均昇温速度:1~40℃/s
 平均昇温速度は、フェライトの面積率を低減するため、1℃/s以上とする。1℃/s未満の平均昇温速度では、フェライトの核生成および成長が進み、フェライトの面積が増大する。一方、平均昇温速度が速すぎると、オーステナイトの生成駆動力が大きくなり、マルテンサイトラスではなく旧オーステナイト粒界からオーステナイトが生成するため、粗大な塊状オーステナイトが生成する。粗大な塊状オーステナイト、すなわち、面積が1μm以上かつ粒円形度が0.1以上の残留オーステナイトの生成を抑制して、残留オーステナイトの全体の面積に対する粗大な塊状オーステナイトの面積率を50%未満にするためには、40℃/s以下で昇温する必要がある。40℃/s超の平均昇温速度では、粗大な塊状オーステナイトが生成するとともに、残留オーステナイト面積率が減少する。
 平均昇温速度は、2℃/s以上であるのがより好ましく、3℃/s以上であるのがさらに好ましい。また、平均昇温速度は、40℃/s未満であるのが好ましく、20℃/s未満であるのがより好ましく、10℃/s未満であるのがさらに好ましい。
 二次焼鈍温度:600℃以上Ac点未満
 二次焼鈍温度を600℃以上Ac点未満にすることにより、フェライトの面積率を低減し、伸び特性および衝撃特性を向上することができる。二次焼鈍温度が600℃未満では、二次焼鈍の加熱時に析出したセメンタイトが残存し、フェライトからオーステナイトへの変態が不十分となるため、最終組織においてフェライトの面積率が高くなる。一方、二次焼鈍温度がAc点以上では、一次焼鈍で得たマルテンサイト組織のオーステナイト化が著しく進むために、焼戻しマルテンサイトの面積率が低くなる。
 二次焼鈍保持時間:5s以上300s未満
 二次焼鈍の加熱時に析出したセメンタイトを溶解させ、良好な衝撃特性を安定して確保する観点から、二次焼鈍温度での保持時間を5s以上とする。一方、600℃以上Ac点未満での保持時間が300s以上になると、CMnγ/CMnαが1.2以上になる。また、Mn含有量が本発明の規定範囲内では、600℃以上Ac点未満での保持時間が300s以上になると、加熱により生成したオーステナイトが粗大化し、結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイトが、残留オーステナイト全体に占める割合が、50%以上になる。このため、600℃以上Ac点未満での保持時間を300s未満とする。このように保持時間が短時間であり、生産性の向上にも寄与する。
 平均冷却速度:5℃/s以上
 二次焼鈍後の冷却において、平均冷却速度が低いと、軟質なベイナイトが過度に生成し、熱処理後の鋼材において強度を十分に確保することが困難となる。そのため、500℃までの平均冷却速度が5℃/s以上となる条件で500℃以下の温度まで冷却する。なお、鋼板にめっきしない場合には、そのまま室温まで冷却する。すなわち、焼鈍温度から室温(50℃以下)までの平均冷却速度を5℃/s以上とする。鋼板の焼割れを抑制する観点から、焼鈍温度から室温(50℃以下)までの平均冷却速度は500℃/s以下が好ましい。
 <めっき工程>
 鋼板にめっきする場合には、以下のようにして製造する。
 鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、二次焼鈍後の冷却を430~500℃の温度範囲で停止し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は、5℃/s以上の冷却速度で室温まで冷却する。
 鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450~620℃の温度で溶融亜鉛めっきの合金化処理を行い、合金化処理後、5℃/s以上の冷却速度で室温まで冷却する。合金化処理条件は、通常の範囲内とすればよい。
 以上のように鋼板を製造することによって、本実施形態に係る鋼板を得ることができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 1.評価用鋼板の製造
 表1に示す化学成分を有する鋼を真空溶解炉で溶製し、鋼片を得た。
Figure JPOXMLDOC01-appb-T000001
 得られた鋼片を、1250℃で1h加熱した後、表2に示す条件にて熱間圧延を行い、熱延鋼板を得た。なお、仕上圧延出側温度はいずれの場合もオーステナイト単相域であった。また、300℃から巻取温度までの冷却速度は、750℃から300℃までの冷却速度と同じとした。巻き取りについては、その模擬として、巻取温度に相当する所定の温度で30min保持した後、10℃/hで室温まで炉冷した。得られた熱延鋼板に酸洗後、表2に示す焼戻し温度で焼戻しを施し、続いて冷間圧延率で冷間圧延を施して、冷延鋼板を得た。冷間圧延前の焼戻し時間は、1hとした。
Figure JPOXMLDOC01-appb-T000002
 得られた冷延鋼板について、表3に示す条件の2回の焼鈍を施して焼鈍冷延鋼板を作製した。冷延鋼板の2回の焼鈍は、窒素98%および水素2%の還元雰囲気で行った。1回目の焼鈍における加熱開始温度(室温)から焼鈍温度までの平均昇温速度は、15℃/sとした。2回目の焼鈍において、試験No.6および10を除いて、焼鈍温度から100℃までの平均冷却速度が表3に示す速度となる条件で室温(50℃以下)まで冷却した。
Figure JPOXMLDOC01-appb-T000003
 試験No.6および10の焼鈍冷延鋼板については、2回目の焼鈍後に、表3に示す平均冷却速度で460℃まで冷却した後、冷却を停止した。そして、冷延鋼板を460℃の溶融亜鉛のめっき浴に2s浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じであった。試験No.6については、460℃の保持後に、平均冷却速度10℃/sで室温まで冷却した。
 一方、試験No.10の焼鈍冷延鋼板については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、続いて合金化処理を施した。具体的には、520℃まで加熱し、520℃で5s保持して合金化処理を行い、その後、平均冷却速度10℃/sで室温まで冷却した。
 このようにして得られた焼鈍冷延鋼板を伸び率0.1%で調質圧延し、各種評価用鋼板を準備した。
 2.評価方法
 各例で得られた焼鈍冷延鋼板について、ミクロ組織観察、引張試験、伸び試験、衝撃特性試験、および曲げ試験を実施して、焼戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、およびフレッシュマルテンサイトの面積率、引張強さ、伸び特性、衝撃特性、および曲げ試験を評価した。各評価の方法は次のとおりである。
 <金属組織の面積率>
 焼戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、およびフレッシュマルテンサイトの面積率は、SEMによる組織観察およびX線回折測定から算出した。鋼板を板厚方向と圧延方向に平行に切断したL断面について、鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、SEMにより倍率5000倍で、表面から板厚の1/4深さ位置におけるミクロ組織を観察し、100μm×300μmの範囲について画像解析(Photoshop(登録商標))により、焼戻しマルテンサイト、フェライト、およびベイナイトの面積率、並びに残留オーステナイトとフレッシュマルテンサイトとの合計の面積率を算出した。また、得られた鋼板から幅25mm、長さ25mmの試験片を切り出し、表面から板厚の1/4深さ位置を測定するため、この試験片に化学研磨を施して板厚1/4分を減厚した。そして、化学研磨後の試験片の表面に対して、Co管球を用いたX線回折分析を3回実施し、得られたプロファイルを解析し、それぞれを平均して残留オーステナイトの面積率を算出した。SEM観察により得られた残留オーステナイトとフレッシュマルテンサイトとの合計の面積率から残留オーステナイトの面積率を差し引いて、フレッシュマルテンサイトの面積率を算出した。
 <残留オーステナイト結晶粒の粒円形度および面積>
 結晶粒の粒円形度および面積は、TSL社製OIM Analysis version 7の標準機能(MapおよびGrain Shape Circularity)を用いて、EBSP分析を行うことによって、測定した。
 EBSPデータ測定条件は、以下の通りである。鋼板のL断面の表面から板厚の1/4深さ位置において、OIM(Orientation Imaging Microscopy)検出器を備えたSEMで、50μm×50μmの領域を倍率500倍で観察して、測定間隔0.1μmでEBSPデータを測定し、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の面積率を求めた。5つの領域について前記方法でEBSPデータを測定し、その平均値を算出した。
 <CMnγ/CMnα
 CMnγ/CMnαは、EBSP、SEM、およびEPMAにより測定した。EBSPおよびSEMを用いて、50μm×50μmの領域を倍率500倍で観察して、測定間隔0.1μmでEBSPデータを測定し、5つの領域について残留オーステナイト、フェライト、および焼戻しマルテンサイトを特定した。次いで、特定した残留オーステナイトと、フェライトおよび焼戻しマルテンサイトとについて、EPMA測定による点分析を5点、5つの領域でそれぞれ行い、測定値を平均してCMnγおよびCMnαを算出し、CMnγ/CMnαを求めた。
 <引張試験方法>
 鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張強さ(TS)および破断伸び(tEL)を測定し、TS×tELを算出した。引張試験は、平行部の長さが60mmで、歪を測定する基準となる標点距離が50mmのJIS5号引張試験片を用いて、JIS Z2241:2011に規定される方法で行った。
 <衝撃特性の評価方法>
 熱処理後の各鋼材からVノッチ試験片を作製した。その試験片の厚みが4.8mm以上である場合には、そのまま使用し、4.8mm未満である場合には、4.8mm以上となる最小の枚数を積層してねじ止めした後、JIS Z2242:2005に準じてシャルピー衝撃試験に供した。衝撃特性は、20℃での衝撃値が20J/cm以上の場合を、良好とし、20J/cm未満である場合を、不良とした。
 <曲げ性の評価方法>
 焼鈍後の各鋼板から幅20mm(曲げ稜線となる方向)、長さ50mm(圧延直角の方向)の曲げ試験片を曲げ稜線が圧延方向になるように作製した。曲げ試験片の幅方向が曲げ軸と平行になる。曲げ試験は、JIS Z 2248(2006)のVブロック法に準じて行った。このとき、先端角度90度のV型ポンチを用いて、ポンチ半径R(mm)を試料の板厚t(mm)で除したR/tの値がR/t=2.0および3.0で曲げ試験を行い、R/tの値が3.0および2.0で割れが認められる場合は曲げ性を不良とし、R/tが2.0の条件でのみ割れが認められる場合を良好、R/tが2.0および3.0両方の条件で割れが認められない場合は、さらに良好とした。
 3.評価結果
 上記の評価の結果を表4に示す。25000MPa・%以上のTS×tEL、良好な曲げ性、および良好な衝撃特性が得られた例を、優れた伸び特性、高強度、優れた曲げ性、および優れた衝突特性を有する鋼板として評価した。
Figure JPOXMLDOC01-appb-T000004
 本発明に係る鋼板は上記のように、高強度を有し、伸び特性および曲げ性も良好であり、さらには衝撃特性にも優れているので、ピラーなどの自動車の構造部品用途に最適である。

Claims (13)

  1.  鋼板の化学組成が、質量%で、
     C:0.10%超0.55%未満、
     Si:0.001%以上3.50%未満、
     Mn:4.00%超9.00%未満、
     sol.Al:0.001%以上3.00%未満、
     P:0.100%以下、
     S:0.010%以下、
     N:0.050%未満、
     O:0.020%未満、
     Cr:0%以上2.00%未満、
     Mo:0~2.00%、
     W:0~2.00%、
     Cu:0~2.00%、
     Ni:0~2.00%、
     Ti:0~0.300%、
     Nb:0~0.300%、
     V:0~0.300%、
     B:0~0.010%、
     Ca:0~0.010%、
     Mg:0~0.010%、
     Zr:0~0.010%、
     REM:0~0.010%、
     Sb:0~0.050%、
     Sn:0~0.050%、
     Bi:0~0.050%、
     残部:Feおよび不純物であり、
     前記鋼板の圧延方向および板厚方向に平行な断面において、表面から板厚の1/4深さ位置における金属組織が、面積%で、
     焼戻しマルテンサイト:25~90%、
     フェライト:5%以下、
     残留オーステナイト:10~50%、および
     ベイナイト:5%以下であり、
     前記鋼板の圧延方向および板厚方向に平行な断面の表面から板厚の1/4深さ位置において、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の合計面積の割合が、前記残留オーステナイトの全体の面積に対して50%未満であり、
     下記(i)式を満足する、
     鋼板。
     CMnγ/CMnα<1.2   ・・・(i)
     但し、上記(i)式中の記号の意味は以下のとおりである。
     CMnγ:残留オーステナイト中の平均Mn濃度(質量%)
     CMnα:フェライトおよび焼戻しマルテンサイト中の平均Mn濃度(質量%)
  2.  前記化学組成が、質量%で、
     Cr:0.01%以上2.00%未満、
     Mo:0.01~2.00%、
     W:0.01~2.00%、
     Cu:0.01~2.00%、および
     Ni:0.01~2.00%
     から選択される1種以上を含有する、
     請求項1に記載の鋼板。
  3.  前記化学組成が、質量%で、
     Ti:0.005~0.300%、
     Nb:0.005~0.300%、および
     V:0.005~0.300%
     から選択される1種以上を含有する、
     請求項1または請求項2に記載の鋼板。
  4.  前記化学組成が、質量%で、
     B:0.0001~0.010%、
     Ca:0.0001~0.010%、
     Mg:0.0001~0.010%、
     Zr:0.0001~0.010%、および
     REM:0.0001~0.010%
     から選択される1種以上を含有する、
     請求項1から請求項3までのいずれかに記載の鋼板。
  5.  前記化学組成が、質量%で、
     Sb:0.0005~0.050%、
     Sn:0.0005~0.050%、および
     Bi:0.0005~0.050%
     から選択される1種以上を含有する、
     請求項1から請求項4までのいずれかに記載の鋼板。
  6.  前記鋼板の表面に溶融亜鉛めっき層を有する、
     請求項1から請求項5までのいずれかに記載の鋼板。
  7.  前記鋼板の表面に合金化溶融亜鉛めっき層を有する、
     請求項1から請求項5までのいずれかに記載の鋼板。
  8.  20℃におけるシャルピー衝撃値が20J/cm以上である、
     請求項1から請求項7までのいずれかに記載の鋼板。
  9.  請求項1から請求項5までのいずれかに記載の化学組成を有する鋼材に対して、熱間圧延工程、冷間圧延工程、一次焼鈍工程および二次焼鈍工程を順に行う鋼板の製造工程であって、
     前記熱間圧延工程は、4つ以上の複数のスタンドを有する圧延機を用いて仕上熱間圧延する工程を含み、
     前記仕上熱間圧延する工程において、
     前記複数のスタンドのうち最後の4つのスタンドの前後における板厚減少が、下記(ii)式を満足し、
     前記最後の4つのスタンドの最終スタンドにおけるひずみ速度と前記最終スタンドにおける圧延出側温度とが、下記(iii)式を満足し、
     前記最終スタンドにおける圧延後1.0s以内に100℃/s以上の平均冷却速度で750℃まで冷却し、
     前記冷間圧延工程は、酸洗と冷間圧延とを施し、
     前記一次焼鈍工程において、750℃超かつAc点以上の温度域で10s以上保持した後、100℃未満まで冷却し、
     前記二次焼鈍工程において、1~40℃/sの平均昇温速度で600℃以上Ac点未満の温度域に加熱し、5s以上300s未満保持した後、500℃までの平均冷却速度が5℃/s以上となる条件で500℃以下の温度まで冷却する、
     鋼板の製造方法。
     1.2≦ln(t/t)≦2.8   ・・・(ii)
     11.0≦log(v・exp(33000/(273+T)))≦15.0   ・・・(iii)
     但し、上記式中の各記号の意味は以下のとおりである。
     t:最後の4つのスタンドに入る直前の板厚(mm)
     t:最後の4つのスタンドから出た直後の板厚(mm)
     v:最終スタンドにおけるひずみ速度(/s)
     T:最終スタンドにおける圧延出側温度(℃)
  10.  前記一次焼鈍工程において、750℃超かつAc点以上の温度域で10s以上保持した後、500℃以下の温度域まで2~2000℃/sの平均冷却速度で冷却し、その後、100℃未満の温度域まで冷却する、
     請求項9に記載の鋼板の製造方法。
  11.  前記一次焼鈍工程において、500℃以下の温度域まで2~2000℃/sの平均冷却速度で冷却した後、100~500℃の温度域で10~1000s保持する、
     請求項10に記載の鋼板の製造方法。
  12.  前記二次焼鈍工程の後、冷却し、溶融亜鉛めっき処理を施す、
     請求項9から請求項11までのいずれかに記載の鋼板の製造方法。
  13.  前記溶融亜鉛めっき処理を施した後、450~620℃の温度域で前記溶融亜鉛めっきの合金化処理を施す、
     請求項12に記載の鋼板の製造方法。

     
PCT/JP2020/034421 2020-09-11 2020-09-11 鋼板およびその製造方法 WO2022054221A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080100494.4A CN115485405B (zh) 2020-09-11 2020-09-11 钢板及其制造方法
JP2022548333A JP7417169B2 (ja) 2020-09-11 2020-09-11 鋼板およびその製造方法
PCT/JP2020/034421 WO2022054221A1 (ja) 2020-09-11 2020-09-11 鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034421 WO2022054221A1 (ja) 2020-09-11 2020-09-11 鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022054221A1 true WO2022054221A1 (ja) 2022-03-17

Family

ID=80631421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034421 WO2022054221A1 (ja) 2020-09-11 2020-09-11 鋼板およびその製造方法

Country Status (3)

Country Link
JP (1) JP7417169B2 (ja)
CN (1) CN115485405B (ja)
WO (1) WO2022054221A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151273A1 (ja) * 2017-02-16 2018-08-23 新日鐵住金株式会社 熱間圧延鋼板及びその製造方法
WO2020004661A1 (ja) * 2018-06-29 2020-01-02 日本製鉄株式会社 高強度鋼板およびその製造方法
WO2020017607A1 (ja) * 2018-07-18 2020-01-23 日本製鉄株式会社 鋼板
JP6744003B1 (ja) * 2018-12-27 2020-08-19 日本製鉄株式会社 鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699764B2 (ja) * 2011-04-11 2015-04-15 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
EP3054025B1 (en) * 2013-12-18 2018-02-21 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
CN107636184A (zh) * 2015-06-11 2018-01-26 新日铁住金株式会社 合金化热浸镀锌钢板及其制造方法
KR102197431B1 (ko) * 2016-08-31 2020-12-31 제이에프이 스틸 가부시키가이샤 고강도 냉연 박강판 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151273A1 (ja) * 2017-02-16 2018-08-23 新日鐵住金株式会社 熱間圧延鋼板及びその製造方法
WO2020004661A1 (ja) * 2018-06-29 2020-01-02 日本製鉄株式会社 高強度鋼板およびその製造方法
WO2020017607A1 (ja) * 2018-07-18 2020-01-23 日本製鉄株式会社 鋼板
JP6744003B1 (ja) * 2018-12-27 2020-08-19 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
CN115485405A (zh) 2022-12-16
JPWO2022054221A1 (ja) 2022-03-17
JP7417169B2 (ja) 2024-01-18
CN115485405B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
JP4635525B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
JP5273324B1 (ja) 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
JP5780171B2 (ja) 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
EP3543364A1 (en) High-strength steel sheet and method for producing same
US20180016656A1 (en) High-strength steel sheet and production method therefor
JP7036274B2 (ja) 鋼板
JP4407449B2 (ja) 高強度鋼板およびその製造方法
EP4186987A1 (en) Steel sheet and method for manufacturing same
EP3543365B1 (en) High-strength steel sheet and method for producing same
JP6744003B1 (ja) 鋼板
JP2018003114A (ja) 高強度鋼板およびその製造方法
JP6947334B1 (ja) 高強度鋼板およびその製造方法
JP7006848B1 (ja) 鋼板、部材及びそれらの製造方法
CN111868283B (zh) 钢板
WO2021172298A1 (ja) 鋼板、部材及びそれらの製造方法
WO2021172297A1 (ja) 鋼板、部材及びそれらの製造方法
JP2018003115A (ja) 高強度鋼板およびその製造方法
JP4506380B2 (ja) 高強度鋼板の製造方法
JPWO2021020439A1 (ja) 高強度鋼板、高強度部材及びそれらの製造方法
JP7417169B2 (ja) 鋼板およびその製造方法
JP7364963B2 (ja) 鋼板およびその製造方法
JP4525386B2 (ja) 形状凍結性と深絞り性に優れた高強度鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953286

Country of ref document: EP

Kind code of ref document: A1