JP6744003B1 - 鋼板 - Google Patents

鋼板 Download PDF

Info

Publication number
JP6744003B1
JP6744003B1 JP2020527137A JP2020527137A JP6744003B1 JP 6744003 B1 JP6744003 B1 JP 6744003B1 JP 2020527137 A JP2020527137 A JP 2020527137A JP 2020527137 A JP2020527137 A JP 2020527137A JP 6744003 B1 JP6744003 B1 JP 6744003B1
Authority
JP
Japan
Prior art keywords
steel sheet
content
annealing
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527137A
Other languages
English (en)
Other versions
JPWO2020138343A1 (ja
Inventor
林 宏太郎
宏太郎 林
和政 筒井
和政 筒井
上西 朗弘
朗弘 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6744003B1 publication Critical patent/JP6744003B1/ja
Publication of JPWO2020138343A1 publication Critical patent/JPWO2020138343A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、質量%で、C:0.10超〜0.45%、Si:0.001〜2.50%、Mn:4.00超〜8.00%、sol.Al:0.001〜1.50%を含有し、表面から厚みの1/4位置における金属組織が、面積%で、焼き戻しマルテンサイト:25〜90%、及び残留オーステナイト:10〜50%を含み、表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差が0.30質量%以上である鋼板に関する。

Description

本開示は、優れた成形性を有する鋼板に関係し、具体的には優れた加工硬化特性と高強度とを有する含有Mn濃度の高い鋼板に関係する。
自動車の車体及び部品等の軽量化を達成するために、これらの素材である鋼板の板厚の低減が求められており、それに伴って鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、伸び特性が低下し、鋼板の加工硬化特性が損なわれ、成形性が低下する。したがって、自動車用の部材として高強度鋼板を使用するためには、相反する特性である強度と成形性(特に、加工硬化特性)との両方を高める必要がある。
伸び特性を向上させるために、これまでに、残留オーステナイト(残留γ)の変態誘起塑性を利用した、いわゆるTRIP(Transformation Induced Plasticity)鋼が提案されている(例えば、特許文献1)。
残留オーステナイトは、Cをオーステナイト中に濃化させることによって、オーステナイトが室温でも他の組織に変態しないようにすることによって得られる。オーステナイトを安定化させる技術として、Si及びAl等の炭化物析出抑制元素を鋼板に含有させて、鋼板の製造段階において鋼板に生じるベイナイト変態の間にオーステナイト中にCを濃化させることが提案されている。この技術では、鋼板に含有させるC含有量が多ければ、オーステナイトがさらに安定化し、残留オーステナイト量を増やすことができ、その結果、強度と伸び特性との両方が優れた鋼板を造ることができる。しかしながら、鋼板が自動車等の構造部材に使用される場合、鋼板に溶接が行われることが多いが、鋼板中のC含有量が多いと溶接の施工性が低下する。したがって、より少ないC含有量で、鋼板の伸び特性と強度、すなわち鋼板の加工硬化特性と強度との両方を向上することが望まれている。
また、残留オーステナイト量が上記TRIP鋼よりも多く、延性が上記TRIP鋼を超える鋼板として、4.0%超のMnを添加した鋼が提案されている(例えば、非特許文献1)。上記鋼は多量のMnを含有するので、その使用部材に対する軽量化効果も顕著である。しかしながら、上記鋼は箱焼鈍のような長時間加熱プロセスを要件としている。そのため、自動車用の部材に供する高強度鋼板の製造に適する連続焼鈍のような短時間加熱プロセスにおける材料設計は十分に検討されておらず、その場合の伸び特性を高める要件は明らかでなかった。
また、4.0%超のMnを添加した鋼を冷間圧延し、300秒間〜1200秒間の短時間加熱を施し、面積%で、フェライトを30%〜80%に制御することによって、伸び特性が著しく改善された鋼板が開示されている(例えば、特許文献2)。しかし、このような鋼板は、含有Mn濃度が高く、未再結晶フェライトを多く含むので、加工硬化特性が劣る。すなわち、このようなフェライトを含む組織を有する含有Mn濃度の高い鋼板は、自動車用鋼板に求められる強度(例えば、引張強度)と加工硬化特性とを兼備し得るものではない。
これに関連して、比較的多いMnを含む鋼板に対し、自動車用部材として使用するのに好適な所望の特性を得るために様々な熱処理を行う工程を含む鋼板及びめっき鋼板の製造方法が提案されている(例えば、特許文献3〜5)。また、4.00%超9.00%未満のMnを含み、優れた均一伸び特性及び高強度を有する含有Mn濃度の高い鋼板が提案されている(特許文献6)。
特開平5−59429号公報 特開2012−237054号公報 特開2018−21233号公報 特開2017−53001号公報 特開2007−70660号公報 国際公開第2018/131722号
古川敬、松村理、熱処理、日本国、日本熱処理協会、平成9年、第37号巻、第4号、p.204
したがって、優れた加工硬化特性及び高強度を有する含有Mn濃度の高い鋼板が望まれている。
含有Mn濃度の高い鋼板において、優れた加工硬化特性と高強度とを確保するために、本発明者らは、化学組成を制御し、鋼板中に、面積%で、焼き戻しマルテンサイトを25〜90%、及び残留オーステナイトを10〜50%含ませ、鋼板中のMn分布が極めて不均一な状態になるように、鋼板の表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差を0.30質量%以上にすることが有効であると知見した。
本開示の鋼板は上記知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1)
化学組成が、質量%で、
C:0.10超〜0.45%、
Si:0.001〜2.50%、
Mn:4.00超〜8.00%、
sol.Al:0.001〜1.50%、
P:0.100%以下、
S:0.010%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0〜0.50%、
Mo:0〜2.00%、
W:0〜2.00%、
Cu:0〜2.00%、
Ni:0〜2.00%、
Ti:0〜0.300%、
Nb:0〜0.300%、
V:0〜0.300%、
B:0〜0.010%、
Ca:0〜0.010%、
Mg:0〜0.010%、
Zr:0〜0.010%、
REM:0〜0.010%、
Sb:0〜0.050%、
Sn:0〜0.050%、
Bi:0〜0.050%、及び
残部:鉄及び不純物であり、
表面から厚みの1/4位置における金属組織が、面積%で、焼き戻しマルテンサイト:25〜90%、及び残留オーステナイト:10〜50%を含み、
表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差が0.30質量%以上である、鋼板。
(2)
前記化学組成が、質量%で、
Cr:0.01〜0.50%、
Ti:0.005〜0.300%、
Nb:0.005〜0.300%、
V:0.005〜0.300%、及び
B:0.0001〜0.010%
からなる群から選択される1種又は2種以上を含有する、(1)に記載の鋼板。
(3)
前記鋼板の表面に溶融亜鉛めっき層を有する、(1)又は(2)に記載の鋼板。
(4)
前記鋼板の表面に合金化溶融亜鉛めっき層を有する、(1)又は(2)に記載の鋼板。
本開示によれば、優れた加工硬化特性及び高強度を有する含有Mn濃度の高い鋼板を提供することができる。
図1は、熱間圧延前の保持温度に対するMn濃度の標準偏差のプロットを示すグラフである。 図2は、熱間圧延前の保持温度に対する加工硬化特性(n値)のプロットを示すグラフである。
以下、本開示の鋼板の実施形態の例を説明する。
Mnは金属組織中でミクロ偏析することが一般的に知られている。より詳細には、Mnは溶製の際に板厚方向と平行に偏析する傾向があり、その結果、この偏析部位が、圧延された後に圧延面に平行なバンド状の組織(Mnバンド)となる場合がある。当該バンド状の組織は、得られる鋼板の機械的特性に顕著な異方性をもたらすため、曲げ特性や穴広げ性の観点からは好ましくない。よって、鋼板の金属組織の均一化により鋼板の機械的特性の均一化を達成するために、金属組織中のMnのミクロ偏析を可能な限り抑制するというのが通常の技術思想である。このMnのミクロ偏析を効果的に抑制するための有効な手段として、スラブ加熱温度(熱間圧延前の保持温度)を高く設定することが挙げられる。また、上述したMnのミクロ偏析はMn含有量が高いほど顕著に起こるため、金属組織の均一化のために、Mn含有量が高い鋼板を製造する際のスラブ加熱温度は通常よりもさらに高く設定する必要がある。したがって、本開示の鋼板のような4.00質量%超という高濃度Mnを含有する鋼板を製造する際は、スラブ加熱温度は高く(例えば1200℃以上で)設定される。例えば、特許文献6で具体的に開示された鋼板は全て1250℃でスラブ加熱(熱間圧延前の保持)を行っている。
本発明者らは、高いMn含有量を有する鋼板において、高強度を維持しつつ、加工硬化特性(n値)を改善させるために様々な検討を行った結果、上述のような従来の技術思想と異なり、スラブ加熱温度(熱間圧延前の保持温度)を低く設定することで、鋼板に含有されるMnの濃度分布を不均一に制御することが重要であることを見出した。より具体的には、本発明者らは、低温でスラブ加熱を行った後に熱間圧延と冷間圧延と焼鈍と冷却と最終焼鈍とを行った。当該最終焼鈍により金属組織中にセメンタイトが生成し、このセメンタイトにMnが分配される。そして、Mn分配されたセメンタイトは溶解してオーステナイトを生成する。当該オーステナイトへのMn分配を促進することで、鋼板中のMn濃度分布が不均一となり、Mnの分布がミクロ的に偏析する。このようにして、本発明者らは安定なオーステナイトを生成させ、加工硬化特性が向上することを見出した。また、本発明者らは、4.00質量%超のMnを含む本開示の鋼板が十分にMnのミクロ偏析を促進するには、このような高Mn含有量においては、典型的には1200℃以上に設定されるスラブ加熱温度(熱間圧延前の保持温度)を1100℃未満とすることが重要であることを見出した。以上のように、本発明によれば、高いMn含有量を有する鋼板において、従来の技術思想と異なり、Mn偏析を促進すべくスラブ加熱温度を1100℃未満に設定して、さらに、所定の熱履歴を与えることで、従来技術と比較して優れた加工硬化特性及び高強度を有する含有Mn濃度の高い鋼板を得ることが可能となる。
1.化学組成
本開示の鋼板の化学組成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。鋼板の化学組成において、「〜」を用いて表される数値範囲は、「超」又は「未満」が用いられる場合を除き、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
(C:0.10超〜0.45%)
Cは、鋼の強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分な残留オーステナイト量を得るためには、0.10%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接が困難になるので、C含有量の上限を0.45%とした。
C含有量の下限値は、好ましくは0.15%、より好ましくは0.20%である。C含有量を0.15%以上にして、さらに、後述する焼き戻しマルテンサイトの面積率を30〜87%に制御することによって、加工硬化特性を損なわずに引張強度(TS)が1180MPa以上という高強度の鋼板を得ることが可能になる。C含有量の上限値は、好ましくは0.40%、より好ましくは0.35%である。
(Si:0.001〜2.50%)
Siは、焼き戻しマルテンサイトを強化し、組織を均一化し、加工性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進する作用も有する。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板のメッキ性や化成処理性を損なうので、Si含有量の上限値を2.50%とした。
Si含有量の下限値は、好ましくは0.01%、より好ましくは0.30%、さらに好ましくは0.50%である。Si含有量の下限値を上記範囲にすることによって、オーステナイトの残留を促進し、鋼板の加工硬化特性をさらに向上することができる。Si含有量の上限値は、好ましくは2.10%、より好ましくは1.70%である。
(Mn:4.00超〜8.00%)
Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。また、本開示の鋼板においては、Mnをオーステナイト中に分配させ、よりオーステナイトを安定化させる。室温でオーステナイトを安定化させるためには、4.00%超のMnが必要である。一方、鋼板がMnを過剰に含有すると靭性を損なうので、Mn含有量の上限を8.00%とした。
Mn含有量の下限値は、好ましくは4.30%、より好ましくは4.80%である。Mn含有量の上限値は、好ましくは7.50%、より好ましくは7.20%である。Si含有量が0.30%以上である場合、Mn含有量を好ましい範囲に制御すると、オーステナイトの残留を促進する効果は著しく向上する。
(sol.Al:0.001〜1.50%)
Alは、脱酸剤であるため、sol.Alを0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相温度域を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、及び溶接性などの劣化を招くので、sol.Alの上限を1.50%とした。
sol.Al含有量の下限値は、好ましくは0.005%、より好ましくは0.01%、さらに好ましくは0.02%である。sol.Al含有量の上限値は、好ましくは1.20%、より好ましくは1.00%である。sol.Al含有量の下限値及び上限値を上記範囲にすることによって、脱酸効果及び材質安定向上効果と、表面性状、塗装性、及び溶接性とのバランスがより良好になる。
(P:0.100%以下)
Pは不純物であり、鋼板がPを過剰に含有すると靭性や溶接性を損なう。したがって、P含有量の上限を0.100%とする。P含有量の上限値は、好ましくは0.050%、より好ましくは0.030%、さらに好ましくは0.020%である。本実施形態に係る鋼板はPを必要としないので、P含有量の下限値は0%である。P含有量は0%超又は0.001%以上でもよいが、P含有量は少ないほど好ましい。
(S:0.010%以下)
Sは不純物であり、鋼板がSを過剰に含有すると、熱間圧延によって伸張したMnSが生成し、曲げ性及び穴広げ性などの成形性の劣化を招く。したがって、S含有量の上限を0.010%とする。S含有量の上限値は、好ましくは0.007%、より好ましくは0.003%である。本実施形態に係る鋼板はSを必要としないので、S含有量の下限値は0%である。S含有量を0%超又は0.001%以上としてもよいが、S含有量は少ないほど好ましい。
(N:0.050%未満)
Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性の劣化を招く。したがって、N含有量を0.050%未満とする。N含有量の上限値は、好ましくは0.010%、より好ましくは0.006%である。本実施形態に係る鋼板はNを必要としないので、N含有量の下限値は0%である。N含有量を0%超又は0.003%以上としてもよいが、N含有量は少ないほど好ましい。
(O:0.020%未満)
Oは不純物であり、鋼板が0.020%以上のOを含有すると延性の劣化を招く。したがって、O含有量を0.020%未満とする。O含有量の上限値は、好ましくは0.010%、より好ましくは0.005%、さらに好ましくは0.003%である。本実施形態に係る鋼板はOを必要としないので、O含有量の下限値は0%である。O含有量を0%超又は0.001%以上としてもよいが、O含有量は少ないほど好ましい。
本実施形態の鋼板は、更に、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiからなる群から選択される1種又は2種以上を含有してもよい。しかしながら、本実施形態に係る鋼板はCr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiを必ずしも必要としないので、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiを含有しなくてもよい、すなわち含有量の下限値は0%であってもよい。
(Cr:0〜0.50%)
(Mo:0〜2.00%)
(W:0〜2.00%)
(Cu:0〜2.00%)
(Ni:0〜2.00%)
Cr、Mo、W、Cu、及びNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではない。しかしながら、Cr、Mo、W、Cu、及びNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上含有してもよく、0.05%以上又は0.10%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有すると、熱延時の表面傷が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれの含有量のうち、Crの含有量の上限値を0.50%とし、Mo、W、Cu、及びNiのそれぞれの含有量の上限値を2.00%とする。Crの含有量の上限値は0.40%又は0.30%であってもよく、Mo、W、Cu、及びNiのそれぞれの含有量の上限値は、1.50%、1.20%又は1.00%であってもよい。
(Ti:0〜0.300%)
(Nb:0〜0.300%)
(V:0〜0.300%)
Ti、Nb、及びVは、本実施形態に係る鋼板に必須の元素ではない。しかし、Ti、Nb、及びVは、微細な炭化物、窒化物又は炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、及びVからなる群から選択される1種又は2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、及びVからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を0.005%とすることが好ましく、0.010%とすることがより好ましく、0.030%とすることがさらに好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti、Nb、及びVからなる群から選択される1種又は2種以上の元素それぞれの含有量の上限値を0.300%とし、好ましくは0.250%、より好ましくは0.200%、さらに好ましくは0.150%とする。
(B:0〜0.010%)
(Ca:0〜0.010%)
(Mg:0〜0.010%)
(Zr:0〜0.010%)
(REM:0〜0.010%)
B、Ca、Mg、Zr、及びREMは、本開示の鋼板に必須の元素ではない。しかしながら、B、Ca、Mg、Zr、及びREMは、鋼板の穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、及びREMからなる群から選択される1種又は2種以上の元素それぞれの下限値を好ましくは0.0001%、より好ましくは0.001%とする。しかし、過剰量のこれら元素は、鋼板の加工性を劣化させるので、これら元素それぞれの含有量の上限を0.010%、好ましくは0.005%とし、B、Ca、Mg、Zr、及びREMからなる群から選択される1種又は2種以上の元素の含有量の合計を0.030%以下、好ましくは0.020%以下とすることが好ましい。なお、本明細書においてREMとは、Sc、Y、Te、Se、Agおよびランタノイドに含まれる元素から選択される1種又は2種以上の元素を意味する。
(Sb:0〜0.050%)
(Sn:0〜0.050%)
(Bi:0〜0.050%)
Sb、Sn、及びBiは、本開示の鋼板に必須の元素ではない。しかしながら、Sb、Sn、及びBiは、鋼板中のMn、Si、及び/又はAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、及びBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%、より好ましくは0.001%とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%とし、好ましくは0.040%とする。
本開示の鋼板は、上で説明した任意元素のうち、例えば、Cr:0.01〜0.50%、Ti:0.005〜0.300%、Nb:0.005〜0.300%、V:0.005〜0.300%、及びB:0.0001〜0.010%からなる群から選択される1種又は2種以上を含有してもよい。
本実施形態の鋼板において、上記元素以外の残部は鉄及び不純物からなる。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料をはじめとして、製造工程の種々の要因等によって混入する元素を意味する。かかる不純物は、意図的に添加されないものに限定されない。
2.金属組織
次に、本実施形態に係る鋼板の金属組織について説明する。
本実施形態に係る鋼板の表面から厚みの1/4位置(1/4t部ともいう)のL断面における金属組織は、面積%で、25〜90%の焼き戻しマルテンサイト、及び10〜50%の残留オーステナイトを含む。ここで、L断面とは、圧延方向に平行、かつ、鋼板表面に対して垂直に鋼板を切断した面をいう。本実施形態におけるL断面は、鋼板の幅方向中心を通るように切断した面とする。
本開示の鋼板において、上記の焼き戻しマルテンサイト及び残留オーステナイト以外の金属組織の残部組織は特に限定されない。残部組織としては、例えば、フェライト、ベイナイト、フレッシュマルテンサイト、及び焼き戻しベイナイトなどが挙げられる。
各金属組織の面積分率は、焼鈍の条件によって変化し、強度、加工硬化特性、穴広げ性などの材質に影響を与える。要求される材質は、例えば自動車用の部品により変わるため、必要に応じて焼鈍条件を選択し、上記範囲内で組織分率を制御すればよい。
鋼板の金属組織の測定は以下のように行う。鋼板のL断面を鏡面研磨した後に、その研磨面を3%ナイタール(3%硝酸―エタノール溶液)で腐食し、走査型電子顕微鏡で、鋼板の表面から厚みの1/4位置のミクロ組織を観察する。次いで、その観察画像を解析することで、焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、及びフレッシュマルテンサイトのそれぞれの組織の面積%を測定する。残留オーステナイト及びフレッシュマルテンサイトに関しては、まず、走査型電子顕微鏡を用いて表面から厚みの1/4位置における縦0.1mm(板厚方向の長さ)×横0.3mm(圧延方向の長さ)の範囲のミクロ組織画像を倍率5000倍で取得し、その取得した組織画像を解析することで、残留オーステナイト及びフレッシュマルテンサイトの合計の面積%を測定し、さらに板厚1/4位置でX線回折法により残留オーステナイトの面積%を測定する。具体的には、入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比から残留オーステナイトの体積率を求め、当該体積率を面積率と同一とみなし、これらの平均値を残留オーステナイトの面積率とする。さらに、残留オーステナイト及びフレッシュマルテンサイトの合計の面積%から残留オーステナイトの面積%を差し引いて、フレッシュマルテンサイトの面積%を算出する。また、フェライト相は灰色の下地組織として、オーステナイト相及びマルテンサイト相は白色の組織として、判別する。焼き戻しマルテンサイト相は、フレッシュマルテンサイト相と同様に白色にみえるが、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイト相と判別する。マルテンサイトとベイナイトの判別は、走査型電子顕微鏡を用いて上述のミクロ組織画像(倍率5000倍)を観察し、セメンタイトがラスの界面又はラスの内部に存在しているものをベイナイトと判別する。
(鋼板の1/4t部の金属組織中の焼き戻しマルテンサイトの面積%:25〜90%)
焼き戻しマルテンサイトは、鋼板の強度を高め、延性を向上させる組織である。目的とする強度レベルの範囲内で、強度と延性との両方を好ましく保つために、焼き戻しマルテンサイトの面積率を25〜90%とする。焼き戻しマルテンサイトの面積率の下限値は、好ましくは30%、より好ましくは35%、さらに好ましくは40%である。焼き戻しマルテンサイトの面積率の上限値は、好ましくは87%、より好ましくは80%である。前述したように、C含有量を0.15%以上にして、さらに、前述したように、焼き戻しマルテンサイトの面積率を30〜87%に制御することによって、加工硬化特性を損なわずに、引張強度(TS)が1180MPa以上という高強度の鋼板を得ることが可能になる。
(鋼板の1/4t部の金属組織中の残留オーステナイトの面積%:10〜50%)
本実施形態に係る鋼板においては、金属組織中の残留オーステナイトの量が所定範囲にあることが重要である。残留オーステナイトは、変態誘起塑性によって鋼板の延性及び成形性、特に鋼板の加工硬化特性を高める組織である。残留オーステナイトは、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、又は曲げ加工によってマルテンサイトに変態し得るので、鋼板の強度の向上にも寄与する。これら効果を得るために、本実施形態に係る鋼板は、金属組織中に、面積率で10%以上の残留オーステナイトを含有する必要がある。残留オーステナイトの面積率の下限値は、好ましくは15%、より好ましくは20%である。
鋼板の1/4t部の金属組織中の残留オーステナイトの面積率は高いほど好ましい。しかしながら、上述した化学組成を有する鋼板では、面積率で50%が残留オーステナイトの含有量の上限となる。8.0%超のMnを含有させれば、残留オーステナイトを面積率で50%超にすることができるが、この場合、鋼板の鋳造が困難になる。靭性向上の観点から、残留オーステナイトの面積率は、好ましくは40%以下である。
本実施形態に係る鋼板においては、金属組織中のフェライトの量が少ないことが好ましい。金属組織中のフェライト含有量を少なくすることによって、靭性を向上することができる。靭性を向上させるために、金属組織中のフェライトの面積率を3%以下とすることが好ましい。フェライトの面積率は、より好ましくは1%以下とし、さらに好ましくは0%とする。よって、本実施形態に係る鋼板において、例えば、フェライトの面積率は0〜3%、0〜2%又は0〜1%であってもよい。
本実施形態に係る鋼板においては、金属組織中にベイナイトが存在すると、ベイナイト中に硬質な組織である島状マルテンサイトが内在する。ベイナイト中に島状マルテンサイトが内在すると靭性が低下する。靭性を向上させるために、金属組織中のベイナイトの面積率を5%以下とすることが好ましく、さらに好ましくは3%以下である。ベイナイトの面積率は、より好ましくは1%以下とし、さらに好ましくは0%である。よって、本実施形態に係る鋼板において、例えば、ベイナイトの面積率は0〜5%、0〜3%又は0〜1%であってもよい。
本実施形態に係る鋼板においては、金属組織中のフレッシュマルテンサイトの量が少ないことが好ましい。フレッシュマルテンサイトとは、焼き戻しされていないマルテンサイトである。フレッシュマルテンサイトは硬質の組織であり、鋼板の強度の確保に有効である。ただし、フレッシュマルテンサイトの含有量が少ないほど、鋼板の穴広げ性が高くなる。したがって、フレッシュマルテンサイトの面積率は0%であってもよいが、穴広げ性を維持しつつ、鋼板の強度を高める観点で、鋼板の金属組織は、面積率で、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上のフレッシュマルテンサイトを含む。フレッシュマルテンサイトの含有量の上限値は、穴広げ性を確保する観点から、面積率で好ましくは65%、より好ましくは55%、さらに好ましくは45%、最も好ましくは20%である。よって、本実施形態に係る鋼板において、例えば、フレッシュマルテンサイトの面積率は0〜65%、0〜20%、1〜65%、1〜20%、2〜65%、2〜20%、3〜65%、又は3〜20%であってもよい。
焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、及びフレッシュマルテンサイト以外の残部組織としては、焼き戻しベイナイトを含んでもよい。焼き戻しベイナイトの面積率は、上記の焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、及びフレッシュマルテンサイトの面積率の測定と同様に走査型電子顕微鏡により得られる観察画像から得ることができる。鋼板中の焼き戻しベイナイトの面積率は少ない方が好ましく、例えば、10%以下、7%以下又は5%以下であるとよい。本実施形態に係る鋼板において、焼き戻しベイナイトは含まれなくてもよいため、焼き戻しベイナイトの面積率の下限は0%であってもよい。よって、本実施形態に係る鋼板において、例えば、焼き戻しベイナイトの面積率は0〜10%、0〜7%又は0〜5%であってもよい。なお、焼き戻しベイナイトとベイナイトの判別は、上述したマルテンサイトと焼き戻しマルテンサイトとの判別と同様に行う。
本実施形態に係る鋼板の表面から厚みの1/4位置におけるMn濃度の標準偏差は0.30質量%以上である。鋼板のL断面を鏡面研磨した後に、鋼板の表面から厚みの1/4位置を電子プローブマイクロアナライザ(EPMA)で測定して、Mn濃度の標準偏差を測定する。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40401か所のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて、鋼板の表面から厚みの1/4位置におけるMn濃度の標準偏差を算出する。試料圧延方向に20μm及び試料板厚方向に20μmの範囲には、特定の相の金属組織のみが存在するのではなく、複数の相の金属組織が存在している。したがって、本開示の鋼板におけるMn濃度の標準偏差は、そのような複数の金属組織が混在する領域で測定される。
(鋼板の表面から厚みの1/4位置におけるMn濃度の標準偏差:0.30質量%以上)
Mn濃度の標準偏差が大きいと、安定なオーステナイトが生成し、加工硬化特性が向上する。この効果を得るために、本実施形態に係る鋼板は、0.30質量%以上のMn濃度の標準偏差に制御する必要がある。Mn濃度の標準偏差の下限値は、好ましくは0.35質量%である。Mn濃度の標準偏差は、鋼板をミクロ的に観察した場合に鋼板中でMnがどの程度偏析して存在するかを示す指標である。したがって、本発明のようにMn濃度の標準偏差を0.30質量%以上とすることで、鋼板中のMnの分布をミクロ的に偏析(分配)させることが可能となり、その結果、安定なオーステナイトが生成し、加工硬化特性(n値)が向上する。
Mn濃度の標準偏差は高いほど好ましい。しかしながら、上述した化学組成を有する鋼板では、0.45質量%がMn濃度の標準偏差の上限となる。
次に、本実施形態に係る鋼板の機械特性について説明する。
本実施形態に係る鋼板の引張強度(TS)は、好ましくは780MPa以上、より好ましくは1000MPa以上、さらに好ましくは1180MPa以上である。鋼板のTSが高いほど、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化を達成することができる。本実施形態に係る鋼板のTSの上限値は特に限定されないが、例えば、2500MPa又は2000MPaである。引張試験は、JIS5号引張試験片を用いたJIS−Z2241:2011に規定される方法で行い、引張試験のクロスヘッド試験速度は、30mm/分とする。
また、本実施形態に係る鋼板をプレス成形に供するためには、加工硬化特性が優れることが望ましい。その場合、n値は、好ましくは0.10以上、より好ましくは0.15以上、さらに好ましくは0.18以上である。また、n値の上限値は特に限定されないが、例えば、0.30、0.25、又は0.20である。本明細書において、n値とは、真ひずみの区間を4〜7%とし、真ひずみ4%及び7%における真応力をそれぞれ求め、両真応力の対数の差を両真ひずみの対数の差で除した値をいう。好ましくは、Mn濃度の標準偏差が0.35質量%以上であり、残留オーステナイトの面積率が15%以上となると、n値が0.15以上となる。さらに、より好ましくは、Mn濃度の標準偏差が0.35質量%以上であり、残留オーステナイトの面積率が20%以上となると、n値が0.18以上となる。n値の測定のための均一伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS−Z2241:2011に規定される方法で行い、均一伸び試験のクロスヘッド試験速度は、30mm/分とする。
本開示の鋼板は上記のように、高強度を有し、さらに加工硬化特性も良好であり、成形性に優れているので、ピラーなどの自動車の構造部品用途に最適である。さらに、本開示の鋼板は含有Mn濃度が高いので、自動車の軽量化にも寄与するので、産業上の貢献が極めて顕著である。なお、本開示の鋼板においては、用途に応じて、鋼板の表面に、溶融亜鉛めっき層又は合金化溶融亜鉛めっき層を設けることができる。
3.製造方法
次に、本実施形態に係る鋼板の製造方法について説明する。
本実施形態に係る鋼板は、上述の化学組成を有する鋼を常法で溶製し、鋳造してスラブ又は鋼塊を作製し、これを加熱して熱間圧延し、得られた熱延鋼板を酸洗した後、冷間圧延し、焼鈍を施して製造する。
熱間圧延は、通常の連続熱間圧延ラインで行えばよい。本実施形態に係る鋼板の製造方法においては、焼鈍は連続焼鈍ラインで行うことができ、この方法は生産性に優れている。後述する条件を満たせば、焼鈍炉及び連続焼鈍ラインのどちらで行ってもよい。更に、冷延圧延後の鋼板に、スキンパス圧延を行ってもよい。
本開示の鋼板の金属組織を得るためには、熱間圧延に供する鋼材の加熱条件、さらに、冷延後の熱処理条件、特に焼鈍条件を、以下に示す範囲内で行う。
本実施形態に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作成された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
上述のスラブ又は鋼塊を加熱し、熱間圧延を行う。熱間圧延に供する鋼材の温度は、1000〜1100℃未満とする。熱間圧延前に1000〜1100℃未満の温度域に保持する時間は、900〜7200秒間とする。
(スラブ又は鋼塊の保持温度:1000〜1100℃未満)
熱間圧延に供する鋼材の保持温度は、1000〜1100℃未満とすることが好ましい。熱間圧延に供する鋼材の温度を1000℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、熱間圧延に供する鋼材の温度を1100℃未満にすることにより、Mnの分布が不均一に制御され、鋼の加工硬化特性が向上する。
(スラブ又は鋼塊の保持時間:900〜7200秒間)
熱間圧延前に1000〜1100℃未満の温度域に保持する時間は、材質安定性を向上させるためには、900秒間以上とすることが好ましく、1800秒間以上にすることがさらに好ましい。また、Mnの分布を不均一にするために7200秒間以下とすることが好ましく、5400秒間以下とすることがさらに好ましい。なお、直送圧延又は直接圧延を行う場合は、1000〜1100℃未満で7200秒間以内の保持処理を施し、熱間圧延に供してもよい。
仕上圧延開始温度は700〜1000℃とすることが好ましい。仕上圧延開始温度を700℃以上とすることにより、圧延時の変形抵抗を小さくすることができる。仕上圧延開始温度は、より好ましくは750℃以上、さらに好ましくは800℃以上である。仕上圧延開始温度を1000℃以下にすることにより、粒界酸化による鋼板の表面性状の劣化を抑制することができる。仕上圧延開始温度は、より好ましくは950℃以下である。
仕上圧延を行って得られる熱延鋼板を冷却し、巻取り、コイルにすることができる。冷却後の巻取温度を700℃以下とすることが好ましい。巻取温度を700℃以下にすることによって、内部酸化が抑制され、その後の酸洗が容易になる。巻取温度は、より好ましくは650℃以下であり、さらに好ましくは600℃以下である。冷間圧延時の破断を抑制するために、室温まで冷却された後、冷間圧延前に300〜600℃で熱延板を焼き戻してもよい。
熱延鋼板は、常法により酸洗を施された後に、冷間圧延が行われ、冷延鋼板とされる。
冷間圧延の前であって酸洗の前又は後に0超〜5%程度の軽度の圧延を行って形状を修正すると、平坦確保の点で有利となるので好ましい。また、酸洗前に軽度の圧延を行うことにより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性やめっき処理性を向上させる効果がある。
焼鈍後の鋼板の組織を微細化させる観点から、冷間圧延の圧下率は20%以上とすることが好ましい。冷間圧延中の破断を抑制する観点から、冷間圧延の圧下率は70%以下とすることが好ましい。
上記熱間圧延工程及び冷間圧延工程を経て得られた冷延鋼板を加熱して、680℃以上の温度域で10秒間以上保持し、その後に、680℃以上の温度域で保持した温度から500℃以下までの温度範囲を平均冷却速度2℃/秒以上で冷却し、室温まで冷却した後、再度加熱して、600℃〜Ac3点未満の温度域で5〜300秒間保持する。冷延鋼板の熱処理は、好ましくは還元雰囲気、より好ましくは窒素及び水素を含む還元雰囲気、例えば窒素98%及び水素2%の還元雰囲気で行う。還元雰囲気で熱処理することにより、鋼板の表面にスケールが付着するのを防ぐことができ、酸洗浄を要せずにめっき工程にそのまま送ることができる。100〜500℃の温度域で10〜1000秒間保持し、次いで室温まで冷却し、その後再度加熱して、600℃〜Ac3点未満の温度域で5〜300秒間保持することが好ましい。
(冷間圧延後の焼鈍条件:680℃以上の温度域で10秒間以上保持)
冷間圧延後に、680℃以上の温度域で10秒間以上保持して1回目の焼鈍を行う。冷間圧延後の焼鈍温度を680℃以上にすることにより、鋼板のMn濃度の標準偏差を大きくすることができ、加工硬化特性を向上することができる。なお、冷間圧延後の焼鈍温度は740℃以上であることが好ましい。冷間圧延後の焼鈍温度を740℃以上にすることにより、再結晶を著しく促進することができ、さらに、鋼板中のフェライト含有量を3%以下にすることができる。ここで、加熱速度0.5〜50℃/秒で検討した結果、Ac3点として以下の式:
Ac3=910−200√C+44Si−25Mn+44Al
が得られ、この式を用いてAc3点を算出することができる。
一方で、冷間圧延後の焼鈍温度の上限値は、好ましくは950℃である。焼鈍温度を950℃以下とすることにより、焼鈍炉の損傷を抑制して、生産性を向上させることができる。冷間圧延後の焼鈍温度は800℃以下であることが好ましい。冷間圧延後の焼鈍温度を800℃以下にすることにより、焼鈍後の鋼板中の組織を微細化できる。
未再結晶を完全に除去し、良好な靭性を安定して確保するために、焼鈍時間を10秒間以上、好ましくは40秒間以上とする。生産性の観点からは、焼鈍時間を300秒間以内とすることが好ましい。
(焼鈍後の冷却条件:680℃から500℃までの温度範囲を平均冷却速度2℃/秒以上で冷却)
焼鈍後の冷却において、680℃から500℃までの温度範囲を、平均冷却速度2℃/秒以上で冷却する。焼鈍後の680℃から500℃までの温度範囲の平均冷却速度(以下、焼鈍後の平均冷却速度ともいう)を2℃/秒以上とすることによって、Pの粒界偏析を抑制できる。
焼鈍後の平均冷却速度は、好ましくは20℃/秒以上、より好ましくは50℃/秒以上、さらに好ましくは200℃/秒以上、さらにより好ましくは250℃/秒以上である。焼鈍後の平均冷却速度を200℃/秒以上とすることにより、臨界冷却速度以上で冷却され、ベイナイトやフェライトの生成を抑制することができるので、最終熱処理後の組織を制御しやすく材質安定性を高めることができる。
焼鈍後の平均冷却速度の上限は特に限定しないが、水焼入れ冷却法やミスト噴射冷却法を用いても、2000℃/秒超に制御することは難しいので、焼鈍後の平均冷却速度の実質的上限は2000℃/秒になる。
焼鈍後の冷却において、上記範囲の平均冷却速度で行った冷却の停止温度を、好ましくは450℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下にする。上記範囲の平均冷却速度で冷却し、冷却停止温度を上記温度範囲にすることによって、冷却後の鋼材全体をマルテンサイト主体の組織にすることができる。
上記焼鈍後の冷却の後、100〜500℃の温度域で10〜1000秒間保持してもよい。
(冷却後の最終の焼鈍条件:600℃〜Ac3点未満の温度域で5〜300秒間保持)
上記焼鈍の冷却後に、室温まで冷却した後に、再度加熱して、600℃〜Ac3点未満(すなわちAc1点〜Ac3点未満)の温度域で5〜300秒間保持し、最終の焼鈍を行う。本焼鈍の加熱時においてセメンタイトが生成され、このセメンタイトにMnが分配される。Mn分配されたセメンタイトは600℃〜Ac3点未満の温度で溶解し、Mnの濃化したオーステナイトが生成される。最終の焼鈍温度を600℃〜Ac3点未満にすることにより、オーステナイトの生成が促進され、加工硬化特性が向上する。オーステナイトへのMn分配を促進し、Mnの分布を不均一にするために、最終の焼鈍時間を5秒間以上、好ましくは30秒間以上、より好ましくは60秒間以上とする。また、焼き戻しマルテンサイトを残存させるために、最終の焼鈍時間を300秒間以内とする。最終の焼鈍時の加熱速度については特に限定しないが、好ましくは、600℃〜Ac3点未満の温度域に加熱するときに、500℃から600℃までの温度範囲を3〜6℃/秒の平均加熱速度で昇温する。500℃から600℃までの温度範囲において平均加熱速度を3℃/秒以上とすることにより、金属組織中のセメンタイトの核生成が過剰となりにくく、セメンタイトへのMn分配を十分に実現することができる。また、平均加熱速度を6℃/秒以下とすることにより、セメンタイトへのMn分配の時間を十分に確保することができる。このことから、金属組織中のセメンタイトへのMn分配を十分に行うことができるので、セメンタイトが溶解して得られるオーステナイトのMnの分布をより不均一とすることができる。
上記最終の焼鈍後の冷却は、鋼板にめっきしない場合には、そのまま室温まで行われればよい。また、鋼板にめっきする場合には、以下のようにして製造する。
鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、上記最終の焼鈍後の冷却を430〜500℃の温度範囲で停止し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は室温まで冷却すればよい。
鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450〜580℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。
以上のように鋼板を製造することによって、引張強度(TS)が好ましくは780MPa以上、より好ましくは1180MPa以上の高強度の鋼板を得ることができる。これにより、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与することができる。さらに、加工硬化特性を向上することができ、n値が好ましくは0.10以上、より好ましくは0.15以上である高強度且つ加工硬化特性に優れた鋼板を得ることができる。
本開示の製造方法により製造される鋼板は上記のように、高強度を有し、さらに加工硬化特性も良好であり、成形性に優れているので、ピラー等の自動車の構造部品用途に好適に用いることができる。さらに、本開示の鋼板は含有Mn濃度が高いので、自動車の軽量化にも寄与するので、産業上の貢献が極めて顕著である。
本開示の鋼板を、例を参照しながらより具体的に説明する。ただし、以下の例は本開示の鋼板の例であり、本開示の鋼板は以下の例の態様に限定されるものではない。
1.評価用鋼板の製造
表1に示す化学組成を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブを得た。
Figure 0006744003
得られたスラブを表2に示す条件にて熱間圧延し、2.6mm厚の熱延鋼板を製板し、次いで、得られた熱延鋼板を酸洗し、冷間圧延して、1.2mm厚の冷延鋼板を製板した。なお、全ての例に係る熱延鋼板の製造において、仕上圧延の開始温度は920℃、巻取温度は550℃とし、一部の例に係る熱延鋼板を350〜500℃で焼き戻した。また、全ての例に係る冷延鋼板の製造において、冷間圧延率は40%とした。
Figure 0006744003
得られた冷延鋼板について、表3に示す条件の熱処理を施して焼鈍冷延鋼板を作製した。冷延鋼板の熱処理は、窒素98%及び水素2%の還元雰囲気で行った。なお、冷間圧延直後の焼鈍においては、焼鈍後の平均冷却速度は50℃/秒とし、そのうち冷却停止後に100〜500℃の温度域で鋼板温度を保持した場合においては、その保持時間は30秒間とした。例No.43の冷延後焼鈍については、740℃で40秒間保持した後、さらに800℃で100秒間保持した。
Figure 0006744003
一部の焼鈍冷延鋼板例については、最終の焼鈍を行った後、焼鈍後の冷却を460℃で停止し、冷延鋼板を460℃の溶融亜鉛のめっき浴に2秒間浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じである。後述する合金化処理を施さない場合、460℃の保持後に、平均冷却速度10℃/秒で室温まで冷却した。溶融亜鉛めっきを行った例については、表3において「めっき」と示した。
一部の焼鈍冷延鋼板例については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、続いて合金化処理を施した。520℃まで加熱し、520℃で5秒間保持して合金化処理を行い、その後、平均冷却速度10℃/秒で室温まで冷却した。溶融亜鉛めっき処理後に合金化処理を行った例については、表3において「合金化」と示した。例No.45については、冷延後焼鈍の冷却を460℃で停止し、上記のように溶融亜鉛めっき処理及び合金化処理を行った。
このようにして得られた焼鈍冷延鋼板を伸び率0.1%で調質圧延し、各種評価用鋼板を準備した。
2.評価方法
各例で得られた焼鈍冷延鋼板について、ミクロ組織観察、引張試験、及び均一伸び試験を実施して、焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、フレッシュマルテンサイト及び焼き戻しベイナイトの面積率、Mn濃度の標準偏差、引張強度(TS)、及び加工硬化特性(n値)を評価した。各評価の方法は次のとおりである。
(金属組織の試験方法)
焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、フレッシュマルテンサイト及び焼き戻しベイナイトの面積率は、走査型電子顕微鏡による組織観察及びX線回折測定から算出した。鋼板を板厚方向と圧延方向に平行に切断したL断面について、鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、走査型電子顕微鏡を用いて、表面から1/4位置におけるミクロ組織を倍率5000倍で観察し、0.1mm×0.3mmの範囲について画像解析(Photoshop(登録商標))により、焼き戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、フレッシュマルテンサイト及び焼き戻しベイナイトの面積率、並びに残留オーステナイトとフレッシュマルテンサイトとの合計の面積率を算出した。さらに、得られた鋼板から幅25mm、長さ25mmの試験片を切り出し、この試験片に化学研磨を施して板厚1/4分を減厚し、化学研磨後の試験片の表面に対して、Co管球を用いたX線回折分析を3回実施し、得られたプロファイルを解析し、それぞれを平均して残留オーステナイトの面積率を算出し、残留オーステナイトとフレッシュマルテンサイトとの合計の面積率から残留オーステナイトの面積率を差し引いて、フレッシュマルテンサイトの面積率を算出した。また、フェライト相は灰色の下地組織として、オーステナイト相及びフレッシュマルテンサイト相は白色の組織として判別し、フレッシュマルテンサイト相及び焼き戻しマルテンサイト相については、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイト相と判別した。さらに、セメンタイトがラスの界面又はラスの内部に存在しているものをベイナイトと判別した。また、ベイナイトのうち結晶粒内に下部組織が確認されたものを焼き戻しベイナイトと判別した。
Mn濃度の標準偏差は、鋼板の表面から厚みの1/4位置において、EPMAを用いて試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定間隔0.1μmで測定し、全測定点で測定された各Mn濃度に基づいてMn濃度の標準偏差を算出した。
(機械的性質の試験方法)
鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張強度(TS)及び加工硬化特性(n値)を測定した。引張試験は、JIS5号引張試験片を用いたJIS−Z2241:2011に規定される方法で行った。均一伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS−Z2241:2011に規定される方法で行った。n値は真ひずみの区間を4〜7%とし、真ひずみ4%及び7%における真応力をそれぞれ求め、両真応力の対数の差を両真ひずみの対数の差で除した値とする。引張試験及び均一伸び試験のクロスヘッド試験速度は、30mm/分で行った。
3.評価結果
上記の評価の結果を表4に示す。実施例では、0.10以上のn値、及び780MPa以上のTSが得られた。なお、表4のn値についての「測定できず」とは、加工硬化特性が著しく低くなったため、n値を測定できなかったことを示す。
Figure 0006744003
例No.1〜4、6〜12、14〜17、19、22〜24、27〜33及び36〜41は、所定の化学組成を有し、所定の製造方法に従って製造されたため、所望の金属組織が得られ、Mn濃度の標準偏差が0.30質量%以上となり、その結果優れた特性(強度(TS)及び加工硬化特性(n値))を有していた。
例No.5は、熱間圧延前の保持時間が長く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.13は、C含有量が不足し、十分な残留オーステナイトを得られなかったため、強度(TS)及び加工硬化特性(n値)が不十分であった。例No.18は、Mn含有量が不足し、十分な残留オーステナイトを得られなかったため、加工硬化特性(n値)が不十分であった。例No.20は、最終の焼鈍温度が低く、所望の金属組織を得られなかったため、加工硬化特性(n値)が不十分であった。例No.21は、最終の焼鈍時間が長く、十分な焼き戻しマルテンサイトを得られなかったため、加工硬化特性(n値)を測定できなかった。例No.25は、最終の焼鈍時間が短く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.26は、熱間圧延前の保持温度が高く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.34は、冷延後の焼鈍温度が低く、Mnの分布を十分に不均一にできなかったため、加工硬化特性(n値)が不十分であった。例No.35は、最終の焼鈍温度が高く、十分な焼き戻しマルテンサイトを得られなかったため、加工硬化特性(n値)を測定できなかった。例No.42は、最終の焼鈍を行わなかったため、十分な焼き戻しマルテンサイトを得られず、加工硬化特性(n値)が不十分であった。例No.43〜45は、最終の焼鈍を行わなかったため、十分な残留オーステナイトを得られず、加工硬化特性(n値)を測定できなかった。
次に、表2及び表3の例No.26の製造条件を基に、熱間圧延前の保持温度のみを変更してMn濃度の標準偏差及び加工硬化特性(n値)の熱間圧延前の保持温度依存性を調べた。熱間圧延前の保持温度に対するMn濃度の標準偏差のプロットを図1に、熱間圧延前の保持温度に対するn値のプロットを図2に示す。
図1によれば、熱間圧延前の保持温度を1100℃未満とすることによりMn濃度の標準偏差を0.30質量%以上とし、すなわちMnの濃度分布を不均一にすることができた。また、図2によれば、Mnの濃度分布を不均一にすることで、加工硬化特性(n値)を改善することができた。

Claims (4)

  1. 化学組成が、質量%で、
    C:0.10超〜0.45%、
    Si:0.001〜2.50%、
    Mn:4.00超〜8.00%、
    sol.Al:0.001〜1.50%、
    P:0.100%以下、
    S:0.010%以下、
    N:0.050%未満、
    O:0.020%未満、
    Cr:0〜0.50%、
    Mo:0〜2.00%、
    W:0〜2.00%、
    Cu:0〜2.00%、
    Ni:0〜2.00%、
    Ti:0〜0.300%、
    Nb:0〜0.300%、
    V:0〜0.300%、
    B:0〜0.010%、
    Ca:0〜0.010%、
    Mg:0〜0.010%、
    Zr:0〜0.010%、
    REM:0〜0.010%、
    Sb:0〜0.050%、
    Sn:0〜0.050%、
    Bi:0〜0.050%、及び
    残部:鉄及び不純物であり、
    表面から厚みの1/4位置における金属組織が、面積%で、焼き戻しマルテンサイト:25〜90%、及び残留オーステナイト:10〜50%を含み、
    表面から厚みの1/4位置において、圧延方向20μm及び板厚方法20μmの範囲におけるMn濃度の標準偏差が0.30質量%以上である、鋼板。
  2. 前記化学組成が、質量%で、
    Cr:0.01〜0.50%、
    Ti:0.005〜0.300%、
    Nb:0.005〜0.300%、
    V:0.005〜0.300%、及び
    B:0.0001〜0.010%
    からなる群から選択される1種又は2種以上を含有する、請求項1に記載の鋼板。
  3. 前記鋼板の表面に溶融亜鉛めっき層を有する、請求項1又は2に記載の鋼板。
  4. 前記鋼板の表面に合金化溶融亜鉛めっき層を有する、請求項1又は2に記載の鋼板。
JP2020527137A 2018-12-27 2019-12-26 鋼板 Active JP6744003B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018245654 2018-12-27
JP2018245654 2018-12-27
PCT/JP2019/051252 WO2020138343A1 (ja) 2018-12-27 2019-12-26 鋼板

Publications (2)

Publication Number Publication Date
JP6744003B1 true JP6744003B1 (ja) 2020-08-19
JPWO2020138343A1 JPWO2020138343A1 (ja) 2021-02-18

Family

ID=71127795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527137A Active JP6744003B1 (ja) 2018-12-27 2019-12-26 鋼板

Country Status (3)

Country Link
JP (1) JP6744003B1 (ja)
CN (1) CN112714800B (ja)
WO (1) WO2020138343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054221A1 (ja) * 2020-09-11 2022-03-17 日本製鉄株式会社 鋼板およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107636B (zh) * 2021-10-19 2023-02-24 北京科技大学 一种2000MPa级超高强韧轮辐用热轧热成形钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180570A (ja) * 2011-03-02 2012-09-20 Kobe Steel Ltd 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP2016050337A (ja) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 高強度高延性鋼板
JP2016153524A (ja) * 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
JP2017206771A (ja) * 2012-12-27 2017-11-24 ポスコPosco 溶接性に優れた高マンガン耐摩耗鋼及びその製造方法
WO2018019220A1 (zh) * 2016-07-27 2018-02-01 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
WO2018025675A1 (ja) * 2016-08-03 2018-02-08 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP2018178248A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2018216522A1 (ja) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 高強度鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336212B1 (en) * 2015-08-11 2020-07-29 JFE Steel Corporation Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
CN110177896B (zh) * 2017-01-16 2021-09-14 日本制铁株式会社 钢板及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180570A (ja) * 2011-03-02 2012-09-20 Kobe Steel Ltd 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP2017206771A (ja) * 2012-12-27 2017-11-24 ポスコPosco 溶接性に優れた高マンガン耐摩耗鋼及びその製造方法
JP2016050337A (ja) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 高強度高延性鋼板
JP2016153524A (ja) * 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
WO2018019220A1 (zh) * 2016-07-27 2018-02-01 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
WO2018025675A1 (ja) * 2016-08-03 2018-02-08 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP2018178248A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2018216522A1 (ja) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 高強度鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054221A1 (ja) * 2020-09-11 2022-03-17 日本製鉄株式会社 鋼板およびその製造方法
CN115485405A (zh) * 2020-09-11 2022-12-16 日本制铁株式会社 钢板及其制造方法
CN115485405B (zh) * 2020-09-11 2024-01-05 日本制铁株式会社 钢板及其制造方法

Also Published As

Publication number Publication date
JPWO2020138343A1 (ja) 2021-02-18
CN112714800A (zh) 2021-04-27
CN112714800B (zh) 2022-10-04
WO2020138343A1 (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
JP6844627B2 (ja) 鋼板及びその製造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
KR20180112817A (ko) 고강도 박강판 및 그의 제조 방법
CN111868282B (zh) 钢板
JP4752522B2 (ja) 深絞り用高強度複合組織型冷延鋼板の製造方法
JP6744003B1 (ja) 鋼板
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP7036274B2 (ja) 鋼板
JP6252709B2 (ja) 温間加工用高強度鋼板およびその製造方法
JP6683291B2 (ja) 鋼板及び鋼板の製造方法
WO2019194250A1 (ja) 鋼板及び鋼板の製造方法
JP6278161B1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6760543B1 (ja) 鋼板及び鋼板の製造方法
JP6669325B1 (ja) 鋼板
JP7364963B2 (ja) 鋼板およびその製造方法
JP6687171B1 (ja) 鋼板
JP7417169B2 (ja) 鋼板およびその製造方法
JP7063414B2 (ja) 鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200515

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R151 Written notification of patent or utility model registration

Ref document number: 6744003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151