WO2013047289A1 - 光学素子の製造方法、及び、成形金型 - Google Patents

光学素子の製造方法、及び、成形金型 Download PDF

Info

Publication number
WO2013047289A1
WO2013047289A1 PCT/JP2012/073910 JP2012073910W WO2013047289A1 WO 2013047289 A1 WO2013047289 A1 WO 2013047289A1 JP 2012073910 W JP2012073910 W JP 2012073910W WO 2013047289 A1 WO2013047289 A1 WO 2013047289A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
transfer
support portion
peripheral support
optical
Prior art date
Application number
PCT/JP2012/073910
Other languages
English (en)
French (fr)
Inventor
下間剛
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013047289A1 publication Critical patent/WO2013047289A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/36Moulds having means for locating or centering cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method for manufacturing an objective lens and other optical elements incorporated in an optical pickup device and the like, and a molding die used for manufacturing such optical elements.
  • a cavity attached to a fixed side die and a movable side die are inserted by a support block which is inserted between the fixed side die and the movable side die and is exchangeable.
  • a support block which is inserted between the fixed side die and the movable side die and is exchangeable.
  • the entire gap functions as a gas vent, and the gas generated from the resin can be discharged out of the mold.
  • Patent Document 1 if an air vent groove is provided as in Patent Document 1, a step of removing the air vent portion after molding is required, which causes an increase in manufacturing cost.
  • an object of the present invention is to provide an optical element manufacturing method and a molding die that do not require removal of a soot air vent portion and the like, and that facilitates mold maintenance and reliability assurance.
  • a method for manufacturing an optical element according to the present invention includes a first mold having a first transfer surface for forming one first optical surface of the optical elements, and the other of the optical elements. And a second mold having a second transfer surface for forming the second optical surface.
  • the method of manufacturing an optical element by molding the optical element with a molding die comprising: Of these, a first core support having a first core portion having a first transfer surface corresponding to the first optical surface at a tip, and a first end surface disposed around the first core portion and extending around the first transfer surface. And a first mold plate disposed around the first peripheral support portion and having a first mold matching surface extending around the first end face, and the second mold is the second of the optical elements.
  • a second core portion having a second transfer surface corresponding to the optical surface at the tip, and arranged around the second core portion.
  • a second peripheral support portion having a second end surface extending around the second transfer surface, and a second mold-matching surface disposed around the second peripheral support portion and extending around the second end surface.
  • the first transfer surface and the second transfer surface are separated from each other by separating the first end surface and the second end surface at the time of mold clamping for closely contacting the first template and the second template.
  • a gap for selectively allowing gas to pass therethrough is provided.
  • the gas is generated around the first transfer surface and the second transfer surface by separating the first end surface and the second end surface at the time of clamping the first mold plate and the second mold plate in close contact with each other. Therefore, it is possible to remove residual gas from the entire outer peripheral portion of the optical element while preventing formation of a portion to be removed such as burrs. For this reason, the cavity between the first transfer surface and the second transfer surface can be sufficiently exhausted, and good transferability can be ensured. Since the resin can be prevented from leaking out of the gap by adjusting the gap width, it is not necessary to remove burrs from the molded product, and the mold is clamped by bringing the first mold plate and the second mold plate into close contact with each other. There is no need for frequent maintenance as in the case of using a support block, and the accuracy of the obtained optical element can be increased.
  • the optical element is an objective lens for a high-NA optical pickup device having an NA of 0.7 or more
  • the first transfer surface or the second transfer surface has a large depression, but the first transfer surface becomes large.
  • the demand for shape transfer accuracy by the surface or the second transfer surface is increased. Therefore, when the first end face and the second end face are separated from each other at the time of mold clamping as described above, it is possible to reliably remove residual gas from the cavity while preventing formation of burrs and the like, and a high NA type optical pickup device.
  • Objective lens can be formed easily and with high accuracy. Further, it can be suitably used not only for an objective lens for an optical pickup device but also for a holder-integrated lens.
  • the holder-integrated lens is a lens used in the fields of cameras, illumination, light transmission, and the like, and is a resin lens in which a lens portion and a holder portion are integrally molded. Even in such a holder-integrated lens, residual gas can be reliably removed from the cavity, and the holder-integrated lens can be molded with high accuracy.
  • the gap width (or) GW between the first end face and the second end face is: 2 ⁇ m ⁇ GW ⁇ 10 ⁇ m It is.
  • the residual gas can be reliably discharged from the cavity through the gap, and it is possible to reliably prevent the resin from protruding from the cavity into the surrounding gap to form burrs or the like.
  • the first mold includes a plurality of sets of first transfer portions on the first template, with the first core portion and the first peripheral support portion as a set of first transfer portions.
  • the second mold has a plurality of sets of second facing each of the plurality of sets of first transfer portions, with the second core plate and the second peripheral support portion as a set of second transfer portions on the second mold plate.
  • a transfer section is provided. In this case, a plurality of optical elements can be manufactured collectively.
  • the inside of the cavity is decompressed before and during filling of the molding resin with respect to the inside of the cavity formed between the first transfer surface and the second transfer surface.
  • the transfer property of the resin to the mold can be improved.
  • At least one of a step between the first transfer surface and the first mold mating surface and a step between the second transfer surface and the second mold mating surface is measured by a height gauge. By doing so, the interval between the first transfer surface and the second transfer surface is adjusted. In this case, the distance between the first transfer surface and the second transfer surface can be easily adjusted.
  • At least one of the height position of the first end surface of the first peripheral support portion and the height position of the second end surface of the second peripheral support portion is set to the first peripheral support portion or the first peripheral support portion. 2. Adjust by exchanging the spacer fixed to the bottom of the surrounding support. In this case, since the distance between the first end surface and the second end surface can be finely adjusted according to the viscosity of the molding resin, the resin protrudes from the cavity into the surrounding gap, and thus, burrs and the like are formed. It can be surely prevented.
  • the molding die according to the present invention forms a first mold having a first transfer surface for forming one first optical surface of the optical elements and the other second optical surface of the optical elements.
  • a first mold part having a first transfer surface corresponding to the first optical surface of the optical element at the tip thereof.
  • a first peripheral support portion having a first end surface disposed around the first core portion and extending around the first transfer surface; and disposed around the first peripheral support portion and around the first end surface
  • a first mold plate having a first mold mating surface extending to the second mold, wherein the second mold has a second core portion having a second transfer surface at the tip corresponding to the second optical surface of the optical element;
  • a second peripheral support portion disposed around the two core portions and having a second end surface extending around the second transfer surface;
  • a second mold plate disposed around the surrounding support portion and having a second mold mating surface extending around the second end surface, wherein the first end surface and the second end surface are the first mold plate and the second mold plate.
  • the gap width (or) GW between the first end surface and the second end surface is: 2 ⁇ m ⁇ GW ⁇ 10 ⁇ m It is.
  • the first die includes a plurality of sets of the first mold plate, the first core portion and the first peripheral support portion as a set of first transfer portions.
  • the second mold is provided with a first transfer portion, and the second mold is opposed to a plurality of sets of first transfer portions, with the second core portion and the second peripheral support portion as a set of second transfer portions.
  • a sub air vent portion is provided in at least one of the first template and the second template corresponding to the periphery of the molded product portion extending from the optical element. In this case, it is possible to more reliably prevent gas from accumulating in the cavity.
  • a concave shape is provided around at least one of the first end surface and the second end surface and spaced apart from the first transfer surface and the second transfer surface. In this case, the exhaust efficiency of the residual gas in the cavity can be increased.
  • FIG. 2A and 2B are a sectional view and an end view of the first mold
  • FIGS. 2C and 2D are a sectional view and an end view of the second mold.
  • 3A is an enlarged sectional view for explaining a molding space in the molding die
  • FIG. 3B is a diagram for explaining a flow path in the molding die
  • FIG. 3C is injection-molded by the apparatus of FIG. It is a side view of a lens.
  • FIG. 4A is a partially enlarged cross-sectional view for explaining the structure of a molding die
  • FIG. 4B is an enlarged cross-sectional view of a main part of the molding die.
  • FIG. 6A is an end view of the first mold constituting the molding die of the second embodiment
  • FIG. 6B is an end view of the second mold constituting the molding die of the second embodiment
  • FIG. 7A is an end view of a first mold constituting the molding die of the third embodiment
  • FIG. 7B is an end view of a second mold constituting the molding die of the third embodiment
  • FIG. 8A is a plan view of a molded product obtained by the manufacturing method of the third embodiment
  • FIG. 8B is a side view of the molded product obtained by the manufacturing method of the third embodiment.
  • the molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce a resin molded product MP, and an extraction part that takes out the resin molded product MP from the injection molding machine 10.
  • molding apparatus 100 are provided.
  • the injection molding machine 10 is a horizontal molding machine, and includes a molding die 40, a fixed platen 11, a movable platen 12, a mold clamping plate 13, a support frame 14, an opening / closing drive unit 15, and an injection unit 16. Is provided.
  • the injection molding machine 10 clamps both molds 41 and 42 by sandwiching a first mold 41 and a second mold 42 constituting the molding mold 40 between the fixed platen 11 and the movable platen 12. At the same time, molding can be performed by injecting resin between the molds 41 and 42.
  • die 42 comprise the molding die which forms the space for shaping
  • the fixed platen 11 is also called a platen, is fixed to the approximate center of the support frame 14 so as to face the movable platen 12, and supports the take-out device 20 on the top thereof.
  • An inner side 11a of the fixed platen (platen) 11 faces the inner side 12a of the movable platen 12, and supports the second mold 42 in a detachable manner.
  • the fixed platen 11 is formed with an opening 11b through which a later-described nozzle 16d is passed. Note that the fixed platen 11 is fixed to the mold clamping plate 13 via a tie bar so that it can withstand the pressure of mold clamping during molding.
  • the movable platen 12 is also called a platen, and is supported by a linear guide 15a so as to be movable back and forth with respect to the fixed platen 11.
  • An inner side 12a of the movable platen (platen) 12 faces the inner side 11a of the fixed platen 11, and supports the first mold 41 in a detachable manner.
  • an ejector driving unit 45 is incorporated in the movable platen 12. The ejector driving unit 45 is configured to push the resin molded product MP attached to the first mold 41 to the second mold 42 side in order to release the mold.
  • the mold clamping machine 13 is fixed to the end of the support frame 14.
  • the mold clamping machine 13 supports the movable board 12 from the back via the power transmission part 15d of the opening / closing drive device 15 at the time of mold clamping.
  • the opening / closing drive device 15 includes a linear guide 15a, a power transmission unit 15d, and an actuator 15e.
  • the linear guide 15 a supports the movable platen 12 and enables the movable platen 12 to smoothly reciprocate with respect to the advancing and retreating direction with respect to the fixed platen 11.
  • the power transmission unit 15 d expands and contracts by receiving a driving force from an actuator 15 e that operates under the control of the control device 30.
  • the movable platen 12 moves forward and backward freely with respect to the mold clamping plate 13, close to or away from the mold clamping plate 13.
  • the fixed platen 11 and the movable platen 12 can be brought close to or separated from each other, and the first mold 41 and the second mold 42 can be clamped or opened.
  • the injection device 16 includes a cylinder 16a, a raw material storage unit 16b, a screw drive unit 16c, and the like.
  • the injection device 16 operates at an appropriate timing under the control of the control device 30, and can inject the molten resin from the resin injection nozzle 16d in a temperature-controlled state.
  • the injection device 16 brings the nozzle 16d into contact with a sprue bush 77 (see FIG. 2C), which will be described later, through the opening 11b of the stationary platen 11.
  • the molten resin in the cylinder 16a can be supplied at a desired timing and pressure to a flow path space FC (see FIG. 3B) described later.
  • a mold temperature controller 96 attached to the injection molding machine 10 circulates a temperature-controlled heat medium in both molds (molding molds) 41 and 42. Thereby, the temperature of both metal mold
  • a decompression device 97 provided along with the injection molding machine 10 decompresses a molding space formed between both molds (molding molds) 41 and 42, specifically, a cavity to be described later, and collects gas. Can be prevented.
  • the take-out device 20 includes a hand 21 that can hold the resin molded product MP and a three-dimensional drive device 22 that moves the hand 21 three-dimensionally.
  • the take-out device 20 operates at an appropriate timing under the control of the control device 30, and remains in the second die 42 after the first die 41 and the second die 42 are separated and opened. It has the role of gripping the resin molded product MP and carrying it out.
  • the control device 30 includes an opening / closing control unit 31, an injection device control unit 32, a decompression device control unit 33, an ejector control unit 34, and a take-out device control unit 35.
  • the opening / closing control unit 31 allows the molds (molding molds) 41 and 42 to be closed, clamped, opened, and the like by operating the actuator 15e.
  • the injection device control unit 32 causes the resin to be injected at a desired pressure into the molding space formed between the molds 41 and 42 by operating the screw driving unit 16c and the like.
  • the decompression device control unit 33 operates the decompression device 97 at an appropriate timing to transfer the resin to the resin by decompressing the molding space when the resin is injected into the molding space between the molds 41 and 42 clamped.
  • the ejector control unit 34 operates the ejector driving unit 45 to push out the resin molded product MP remaining in the first mold 41 when the mold is opened from the first mold 41 to release the mold.
  • the take-out device control unit 35 operates the take-out device 20 to grip the resin molded product MP remaining in the first mold 41 after mold opening and mold release and carry it out of the injection molding machine 10.
  • FIG. 2A is a side sectional view for explaining the structure of the first mold 41 on the movable side
  • FIG. 2B is an end view of the first mold 41
  • FIG. 2C is a side sectional view for explaining the structure of the second mold 42 on the fixed side
  • FIG. 2D is an end view of the second mold 42.
  • the first mold 41 and the second mold 42 are mold-matched with the parting surfaces PS1 and PS2, and as shown in FIG. 3A, the product portion of the resin molded product MP of FIG. Cavities CV for molding the lens LP are formed at four places, and as shown in FIG. 3B, flow path spaces FC for supplying resin to the cavities CV are formed.
  • the cavity CV includes a main body space CV1 sandwiched between a pair of transfer surfaces S1 and S2, and a flange space CV2 surrounded by the pair of transfer surfaces S3 and S4.
  • the transfer surfaces S1 and S2 are for forming the optical surfaces OS1 and OS2 of the lens LP of the resin molded product MP shown in FIG. 3C, and correspond to the end surfaces of the mirror cores 51 and 61 described later.
  • a fine transfer surface FP is formed on one transfer surface S2, and one optical surface OS1 of the lens LP has a fine structure.
  • the transfer surfaces S3 and S4 are for forming the flange portion FL of the lens LP, and correspond to the inner peripheral side of the end surfaces of the peripheral support portions 52 and 62 described later.
  • a lens LP shown in FIG. 3C is an objective lens for an optical pickup device, for example, and corresponds to the standard of a high NA type objective lens such as BD having an NA of 0.7 or more.
  • the lens LP shown in the figure is an objective lens for a BD / DVD / CD 3-compatible optical pickup device, and the optical surface OS1 has the fine structure as described above.
  • the channel space FC is branched into four from the sprue portion SS to the runner portion RS.
  • the first mold 41 includes a first mold plate 53 as a peripheral portion on the movable side, a first receiving plate 54 that supports the first mold plate 53 from the back, and a first receiving plate.
  • First mounting plate 71 that supports 54 from behind, a first mirror core 51 as a core portion on the movable side, a first peripheral support portion 52 that holds the first mirror core 51 from the periphery, and a first mirror core 51
  • a movable pin 73 that allows the mold to be released, a movable pin 74 that protrudes and releases the cold slug portion CS (see FIG. 3B) of the resin molded product MP, and a forward and backward movement that moves the movable pins 73 and 74 forward and backward.
  • the mechanism part 75 is provided.
  • the first mold plate 53 includes a cold slug recess 41a corresponding to the cold slug portion CS of the flow path space FC shown in FIG. 3B and a runner recess 41b corresponding to the runner portion RS of the flow path space FC. And a gate recess 41c corresponding to the gate portion GS of the flow path space FC and a lens recess 41d corresponding to the cavity CV forming the lens LP.
  • a pin hole 53g for inserting the movable pin 74 extends into the cold slug recess 41a.
  • the gate recess 41 c is formed on the end surface of the first peripheral support portion 52, and the lens recess 41 d is formed on the end surface of the first mirror surface core 51.
  • a portion of the end surface of the first peripheral support portion 52 where the gate recess 41c or the like is not formed is a flat first end surface 52a.
  • first mold 41 a plurality of sets of first transfer portions TA1, TA2, TA3, TA4 with the first mirror core 51 and the first peripheral support portion 52 as a set of first transfer portions.
  • first mold 41 is provided with a groove-like air vent 47 extending radially outward from each first peripheral support portion 52 to the outside of the first mold plate 53.
  • the air vent 47 is for preventing gas from accumulating in the cavity CV, and communicates with an annular exhaust path 48 surrounding the entire transfer portions TA1, TA2, TA3, TA4.
  • a facing surface 48 b is provided at a position facing the concave circumferential groove 48 a of the second mold 42.
  • the circumferential groove portion 48a and the facing surface 48b become an annular exhaust passage 48 disposed between the mold plate 53 and the mold plate 63 when the first mold 41 and the second mold 42 are clamped.
  • the annular exhaust passage 48 is connected to the decompression device 97 of FIG.
  • the first mirror core 51 includes a cylindrical rod portion 51a and a disc-shaped base portion 51b.
  • the tip 51c of the rod portion 51a can be slightly displaced in the direction perpendicular to the axis AX and moves in the direction of the axis AX with a slight gap between the tip 51c and the small diameter hole 52i formed in the first peripheral support portion 52. It is inserted as possible.
  • the base 51b is inserted through the large-diameter hole 52j formed in the first peripheral support portion 52 so as to be slightly displaceable in a direction perpendicular to the axis AX and movable in the axis AX direction. .
  • the return spring 68 mounted around the rod portion 51a urges the first mirror core 51 toward the base 51b at the base, and ensures that the first mirror core 51 is held in the first periphery support portion 52. It is supposed to be.
  • the tip surface of the first mirror core 51 is provided with an optical surface forming surface 56a and a flange forming surface 56b in order to define a cavity CV.
  • the optical surface forming surface 56a is a relatively shallow concave surface, and is a transfer surface S1 that molds one optical surface OS2 of the central portion OP of the lens LP shown in FIG. 3C (see FIG. 3A).
  • the flange forming surface 56b is an annular flat surface and is a transfer surface S3 that molds the other flange surface F2 of the flange portion FL of the lens LP (see FIG. 3A).
  • the first peripheral support portion 52 is cylindrical and has an insertion hole 52 h for holding the first mirror core 51 in the first peripheral support portion 52.
  • the insertion hole 52h has a two-stage structure having a small-diameter hole 52i as an opening on the tip side and a large-diameter hole 52j on the root side.
  • one large cylinder may be formed by overlapping two cylinders, and in this case, the surfaces facing each cylinder may be replaced with the first end face and the second end face.
  • a spacer 81 is provided behind the first peripheral support portion 52 in the first mold 41.
  • the spacer 81 is fixed to the bottom of the first peripheral support portion 52.
  • the spacer 81 is for adjusting the height position of the first end surface 52a of the first peripheral support portion 52, and can be appropriately replaced.
  • the spacer 81 is selected from a spacer set including a large number of spacers having different thicknesses, for example, in units of several ⁇ m to several tens of ⁇ m. By changing the spacer 81 selected from the spacer set, the height position of the first end surface 52a of the first peripheral support portion 52 can be finely adjusted precisely.
  • a cylindrical through hole 57a for inserting and supporting the first peripheral support portion 52 is formed in the first template 53.
  • the first template 53 has an end surface 53a corresponding to the parting surface (second mold mating surface) PS1 that forms the parting line PL.
  • the second mold 42 includes a second mold plate 63 as a peripheral portion on the fixed side, a second mounting plate 64 that supports the second mold plate 63 from the back, and a core on the fixed side.
  • a second mirror surface core 61 as a part, a second peripheral support portion 62 that holds the second mirror surface core 61 from the periphery, and a sprue bush 77 are provided.
  • the second mold plate 63 includes a sprue bush hole 42a into which the sprue bush 77 is inserted, a runner recess 42b corresponding to the runner portion RS of the flow path space FC shown in FIG. 3B, and the flow path space FC.
  • the gate surface 42 c is formed on the end surface of the second peripheral support portion 62
  • the lens recess 42 d is formed on the end surface of the second mirror surface core 61.
  • a portion of the end surface of the second peripheral support portion 62 where the gate surface 42c or the like is not formed is a flat second end surface 62a.
  • a plurality of sets of second transfer portions TA1, TA2, TA3, and TA4 that face TA4 are provided.
  • the second mold 42 is provided with a groove-like air vent 47 extending radially outward from each second peripheral support portion 62 to the outside of the second mold plate 63.
  • the air vent 47 is for preventing gas from accumulating in the cavity CV, and communicates with an annular exhaust path 48 surrounding the entire transfer portions TA1, TA2, TA3, TA4.
  • a concave circumferential groove 48 a is provided on the end surface 63 a of the mold plate 63 of the second mold 42 at a position facing the facing surface 48 b of the first mold 41.
  • the circumferential groove 48a and the opposing surface 48b are annularly arranged between the mold plate 53 and the mold plate 63 when the first mold 41 and the second mold 42 are clamped.
  • the exhaust passage 48 is formed.
  • the annular exhaust path 48 is connected to a decompression device 97 via a connection portion 49 and decompressed.
  • the air vent 47 is also formed in the first peripheral support portion 52 of the first mold 41.
  • the sprue bushing 77 is inserted and fixed in the sprue bushing hole 42 a of the second template 63 and the sprue bushing hole 64 a of the second mounting plate 64.
  • the sprue portion SS formed in the sprue bush 77 corresponds to a space that forms a sprue portion (not shown) of the resin molded product MP in the flow path space FC of FIG. 3B.
  • the second mirror surface core 61 includes a columnar rod portion 61a and a disk-shaped base portion 61b, like the first mirror surface core 51. As shown in FIG. The distal end 61c of the rod portion 61a is inserted in a state having a slight gap with the small diameter hole 62i formed in the second peripheral support portion 62. The base 61b is inserted in a state having a slight gap in a large-diameter hole 62j formed in the second peripheral support portion 62. As shown in the figure, a return spring 68 mounted around the rod portion 61a can be provided to ensure relative movement, but the rod portion 61a and the base portion 61b can also be fixed to each other.
  • the tip surface of the second mirror surface core 61 is provided with an optical surface forming surface 66a and a flange forming surface 66b in order to define a cavity CV.
  • the optical surface forming surface 66a is a relatively deep concave surface, and is a transfer surface S2 that molds one optical surface OS1 of the central portion OP of the lens LP shown in FIG. 3C (see FIG. 3A).
  • the flange forming surface 66b is an annular flat surface and is a transfer surface S4 that molds the other flange surface F1 of the flange portion FL of the lens LP (see FIG. 3A).
  • the second peripheral support part 62 is cylindrical, like the first peripheral support part 52, and has an insertion hole 62h for holding the second mirror surface core 61 in the second peripheral support part 62.
  • the insertion hole 62h has a two-stage structure having a small diameter hole 62i as an opening on the tip side and a large diameter hole 62j on the root side.
  • a spacer 82 is provided behind the second peripheral support portion 62 in the second mold 42.
  • the spacer 82 is fixed to the bottom of the second peripheral support portion 62.
  • the spacer 82 is for adjusting the height position of the second end surface 62a of the second peripheral support portion 62 as in the case of the first peripheral support portion 52, and can be appropriately replaced.
  • a spacer 81 may be provided only on one of the first peripheral support portion 52 and the second peripheral support portion 62 to adjust the height of the end surfaces 52a and 62a only on one side.
  • the second template 63 is formed with a cylindrical through hole 67a for inserting and supporting the second peripheral support portion 62.
  • the second mold plate 63 has an end face 63a corresponding to the parting surface (second mold mating surface) PS2 that forms the parting line PL.
  • FIG. 4B shows a state of the boundary AR between the first peripheral support portion 52 provided in the first mold 41 and the second peripheral support portion 62 provided in the second mold 42.
  • a narrow gap GA is formed between the movable first surrounding support portion 52 and the fixed second surrounding support portion 62.
  • the gap GA is formed in a ring shape between the first peripheral support portion 52 and the second peripheral support portion 62, and is disposed so as to surround the cavity CV from the periphery.
  • the first end surface 52a of the movable first peripheral support portion 52 is disposed so as to recede from the end surface 53a of the template 53 corresponding to the parting surface PS1 or the mold matching surface.
  • the step between the end face 52a and the end face 53a of the template 53 is G1.
  • the second end surface 62a of the second peripheral support portion 62 on the fixed side is disposed so as to recede from the end surface 63a of the template 63 corresponding to the parting surface PS2 or the mold matching surface.
  • the step between the second end face 62a and the end face 63a of the template 63 is G2.
  • the gap width GW of the gap GA formed between the first peripheral support portion 52 and the second peripheral support portion 62 is 2 ⁇ m or more and less than 10 ⁇ m.
  • the gap width GW is less than 10 ⁇ m, it is possible to prevent molten resin or the like in the cavity CV from protruding into the gap GA, and it is possible to prevent burrs corresponding to the gap GA from remaining around the lens LP. That is, the gap GA between the peripheral support portions 52 and 62 selectively allows gas to pass around the cavity CV defined by the fixed-side optical surface forming surface 56a and the movable-side optical surface forming surface 66a.
  • the step G1 between the first transfer surface S1 and the parting surface (first mold matching surface) PS1, and the second transfer surface S2 The step G2 with the parting surface (second mold matching surface) PS2 is indirectly measured, and the distance between the first transfer surface S1 and the second transfer surface S2 can be adjusted.
  • FIG. 5 is a flowchart for conceptually explaining the operation of the molding apparatus 100 shown in FIG.
  • the mold temperature controller 96 heats both molds 41 and 42 to a temperature suitable for molding (step S10).
  • the opening / closing drive device 15 is operated to advance the movable platen 12 to start mold closing (step S11).
  • the movable platen 12 moves to the fixed platen 11 side to the die contact position where the second die 42 and the first die 41 are in contact with each other, and the die closing is completed.
  • mold clamping is performed to clamp the second mold 42 and the first mold 41 with necessary pressure (step S12).
  • the decompression device 97 is operated to start decompression in the cavity CV between the second mold 42 and the first mold 41 that are clamped (step S13).
  • the injection device 16 is operated to inject the molten resin into the cavity CV between the clamped second mold 42 and the first mold 41 at a necessary pressure (step S14). ).
  • the injection molding machine 10 maintains the resin pressure in the cavity CV. Thereby, unnecessary gas in the cavity CV is discharged to the outside from the gap GA between the pair of peripheral support portions 52 and 62. However, the resin in the cavity CV is prevented from leaking outside by adjusting the gap GA.
  • the cavity temperature CV and the flow path space FC see FIG.
  • the mold temperature controller 96 are appropriately heated by the mold temperature controller 96, and the molten resin supplied from the injection device 16 is slowly cooled and is not discharged.
  • the molten resin can be quickly introduced into the cavity CV while suppressing the occurrence of hindrance to fluidity due to uniform cooling or excessive rapid cooling, and an appropriate cooling of the resin within the cavity CV can be achieved. Can do. Note that after the molten resin is introduced into the cavity CV, the molten resin in the cavity CV is gradually cooled by heat radiation, so that the molten resin is solidified with the cooling and waits for completion of molding (step S15). . Gas is discharged from the heated molten resin, but is discharged to the outside from the cavity CV through the gap GA, so that transfer defects on the optical surface can be suppressed.
  • the opening / closing drive device 15 is operated to perform mold opening for retracting the movable platen 12 (step S16).
  • the first mold 41 is retracted, and the second mold 42 and the first mold 41 are separated.
  • the resin molded product MP that is, the lens LP is released from the second mold 42 while being held by the first mold 41.
  • the ejector driving unit 45 is operated to cause the resin molded product MP, that is, the lens LP to be ejected by the movable pins 73 and 74 (step S17).
  • the lens LP in the resin molded product MP is urged toward the tip surface of the first mirror core 51 and pushed out toward the second mold 42, and is released from the first mold 41.
  • the take-out device 20 is operated so that the appropriate position of the resin molded product MP protruded by the movable pins 73 and 74 driven by the ejector drive unit 45 is grasped by the hand 21 and carried out to the outside (step S18). ).
  • the first end surface 52a and the second end surface 62a are separated from each other when the first mold plate 53 and the second mold plate 63 are clamped.
  • a gap for selectively passing gas is provided around the optical surface forming surface 56a, which is the first transfer surface S1, and the optical surface forming surface 66a, which is the second transfer surface S2. Residual gas can be extracted from the entire outer periphery of the lens LP while preventing the formation of the power portion. Therefore, the cavity CV between the optical surface forming surface 56a, which is the first transfer surface S1, and the optical surface forming surface 66a, which is the second transfer surface S2, can be exhausted sufficiently to ensure good transferability.
  • the resin can be prevented from leaking from the gap GA by adjusting the gap width GW, it is not necessary to remove burrs from the resin molded product MP, and the first mold plate 53 and the second mold plate 63 are brought into close contact with each other. Since the mold clamping is performed, it is not necessary to perform maintenance frequently as in the case of using a support block, and the accuracy of the obtained lens LP can be improved.
  • Table 1 explains the relationship between the gap width GW and the quality of the resin molded product MP.
  • the leftmost column in Table 1 shows a step G1 that is the amount of retreat of the first end surface 52a of the first peripheral support portion 52 from the parting surface PS1, and the parting surface PS2 of the second end surface 62a of the second peripheral support portion 62.
  • a step G ⁇ b> 2 that is the amount of retreat from is shown.
  • the evaluation of the resin molded product MP was performed with respect to transferability by the transfer surface and formation of burrs on the parting surfaces PS1 and PS2.
  • the transmitted wavefronts of four lenses LP obtained with a four-piece mold are measured with an interferometer, RMS (Reast Mean Square) wavefront aberration is evaluated, and the RMS wavefront aberration is 0.07 ⁇ rms or more.
  • the quality was judged based on the number of lenses.
  • the determination criteria for burr formation differ depending on the type of lens LP, but whether the burr amount is 15 ⁇ m or more as a standard specification was judged as good or bad.
  • the steps G1 and G2 were 0 ⁇ m, so that the transferability could not be determined (“ ⁇ ” mark). Conversely, when the steps G1 and G2 are 10 ⁇ m or more, the determination of the burr amount becomes impossible (“ ⁇ ” mark). Further, when the steps G1 and G2 were larger than 0 ⁇ m and smaller than 1 ⁇ m, the determination of the burr amount was good (“ ⁇ ” mark), and the transferability could be determined (“ ⁇ ” mark). When the steps G1 and G2 were 1 ⁇ m or more and less than 5 ⁇ m, the transferability was judged well (“ ⁇ ” mark), and the burr amount was judged well (“ ⁇ ” mark). When the steps G1 and G2 were 5 ⁇ m or more and less than 10 ⁇ m, the transferability was judged good (“ ⁇ ” mark), and the burr amount could be judged (“ ⁇ ” mark).
  • the ratio of the step G1 formed by retreating the first end surface 52a of the first peripheral support portion 52 to the step G2 formed by retreating the second end surface 62a of the second peripheral support portion 62 is appropriately determined.
  • the other step G2 is the gap width GW of the gap GA
  • the other step G1 is the gap width GW of the gap GA.
  • the first end surface 52a of the first peripheral support portion 52 on the movable side protrudes from the end surface 53a, which is the mold mating surface of the template 53, and the second end surface 62a of the second peripheral support portion 62 on the fixed side.
  • the gap GA can also be formed by retreating from the end face 63a, which is the mold mating face of the mold plate 63, more than the protruding amount of the end face 52a.
  • first peripheral support 52 and the first mirror core 51 are separated in the first mold 41, and the second peripheral support 62 and the second mirror core 61 are separated in the second mold 42. Are separated from each other, but one of them can be integrated without separating the peripheral support portion and the mirror core. That is, at least one of the first surrounding support part 52 and the second surrounding support part 62 can be omitted.
  • the first peripheral support 52 and the first mirror core 51 only need to exist as a part of the first mold 41, and it is not essential that they are combined as separate parts.
  • the first mirror surface core 51 can be integrated.
  • the second peripheral support portion 62 and the second mirror core 61 exist as part of the second mold 42, and it is not essential that they are combined as separate parts.
  • the two mirror cores 61 can be integrated.
  • a groove 148a is formed as a concave shape on the second end face 62a of the second peripheral support portion 62 of the second mold 42, and An opposing surface 148 b is provided on the first end surface 52 a of the first peripheral support portion 52.
  • the groove 148a and the opposed surface 148b are provided around the first end surface 52a and the second end surface 62a, and the first transfer surface S1 including the optical surface forming surface 56a and the like, the first transfer surface S1 including the optical surface forming surface 66a and the like. 2 Separated from the transfer surface S2.
  • the groove portion 148a and the facing surface 148b are formed in an annular shape that is disposed between the first peripheral support portion 52 and the second peripheral support portion 62 when the first mold 41 and the second mold 42 are clamped. Airway 148 is formed.
  • the deaeration path 148 communicates with a connection path 147 (corresponding to the air vent 47 of the first embodiment) on the opposite side of the gate recess 41c, and can be decompressed by the decompression device 97 during or before molding. It has become.
  • the groove portion 148a is formed in the second end surface 62a which is one of the first end surface 52a and the second end surface 62a, and the groove portion 148a can function as the deaeration path 148.
  • the exhaust efficiency of the residual gas in the CV can be increased.
  • the runner recess 41b and the gate recess 41c are formed on the second end surface 62a of the second peripheral support portion 62 of the second mold 42 and the end surface 63a of the template 63.
  • an air vent recess 248 having a depth of about 0.01 to 0.1 mm is formed.
  • the air vent recess 248 is provided so as to spread around the runner portion RS and the gate portion GS (see FIG. 3B) corresponding to the runner recess 41b and the gate recess 41c, and the residual gas in the runner portion RS and the gate portion GS. Can be prevented from flowing into the cavity CV. That is, the air vent recess 248 functions as a sub air vent for the flow path space FC.
  • FIG. 8A is a plan view of the manufactured resin molded product MP
  • FIG. 8B is a side view of the manufactured resin molded product MP.
  • burrs BA are formed around the runner portion RP and the gate portion GP, but no burrs are formed on the lens LP, and the lens LP can be formed by simply removing the gate portion GP. Complete.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the shape and size of the lens LP are examples, and can be changed as appropriate according to the application.
  • the groove of the air vent 47 is provided in the first mold 41 and the second mold 42, but the groove is provided only in one of the first and second molds 41, 42. Also good.
  • the mold side not provided with a groove is a flat facing surface.

Abstract

 エアーベント部等の除去を不要とし、金型のメンテナンスや信頼性確保が容易な光学素子の製造方法等を提供することを目的とする。第1型板(53)と第2型板(63)とを密着させる型締め時に、第1端面(52a)と第2端面(62a)とを離間させることによって、第1転写面(S1)である光学面形成面(56a)と第2転写面(S2)である光学面形成面(66a)との周囲にガスを選択的に通過させる隙間を設けるので、バリ等の除去すべき部分の形成を防止しつつレンズ(LP)の外周部全体から残留ガスを抜くことができる。このため、第1転写面(S1)である光学面形成面(56a)と、第2転写面(S2)である光学面形成面(66a)との間のキャビティ(CV)を十分に排気でき、良好な転写性を確保することができる。

Description

光学素子の製造方法、及び、成形金型
 本発明は、光ピックアップ装置等に組み込まれる対物レンズその他の光学素子の製造方法、及び、かかる光学素子の製造に用いられる成形金型に関する。
 光学素子の製造方法として、金型のフランジ成形部の一部から型合わせ面に沿って延びるエアーベント溝を設けたものが存在する(特許文献1参照)。この場合、成形後にゲート部とエアーベント部とがレンズ周辺に残るので、ゲート部とエアーベント部とを後工程にて除去している。
 また、光学素子の製造方法ではなくキャップの製造方法であるが、固定側型と可動側型との間に挿入され交換可能なサポートブロックにより、固定側型に取り付けたキャビティと、可動側型に取り付けたコアとの間に、5~25μmの隙間を形成するものが存在する(特許文献2参照)。射出成形時には、この隙間全体がガスベントとして機能し、樹脂から発生したガスを金型外に排出することができる。
特願2006-316847号公報 特開2003-53798号公報
 しかし、特許文献1のようにエアーベント溝を設けると、成形後にエアーベント部を除去する工程が必要となり、製造コスト上昇の原因となる。
 また、特許文献2のようにサポートブロックを用いると、サポートブロックの磨耗対策や調整が必要となり、金型のメンテナンスや信頼性確保が容易でない。
 そこで、本発明は、 エアーベント部等の除去を不要とし、金型のメンテナンスや信頼性確保が容易な光学素子の製造方法、及び、成形金型を提供することを目的とする。
 上記課題を解決するため、本発明に係る光学素子の製造方法は、光学素子のうち一方の第1光学面を形成するための第1転写面を有する第1金型と、光学素子のうち他方の第2光学面を形成するための第2転写面を有する第2金型とを備える成形金型によって光学素子を成形する光学素子の製造方法であって、第1金型は、光学素子のうち第1光学面に対応する第1転写面を先端に有する第1コア部と、第1コア部の周囲に配置されるとともに第1転写面の周囲に延びる第1端面を有する第1周囲支持部と、第1周囲支持部の周囲に配置されるとともに第1端面の周囲に延びる第1型合わせ面を有する第1型板と、を含み、第2金型は、光学素子のうち第2光学面に対応する第2転写面を先端に有する第2コア部と、第2コア部の周囲に配置されるとともに第2転写面の周囲に延びる第2端面を有する第2周囲支持部と、第2周囲支持部の周囲に配置されるとともに第2端面の周囲に延びる第2型合わせ面を有する第2型板と、を含み、第1型板と第2型板とを密着させる型締め時に、第1端面と第2端面とを離間させることによって、第1転写面と第2転写面との周囲にガスを選択的に通過させる隙間を設ける。
 上記製造方法では、第1型板と第2型板とを密着させる型締め時に、第1端面と第2端面とを離間させることによって、第1転写面と第2転写面との周囲にガスを選択的に通過させる隙間を設けるので、バリ等の除去すべき部分の形成を防止しつつ光学素子の外周部全体から残留ガスを抜くことができる。このため、第1転写面と第2転写面との間のキャビティを十分に排気でき、良好な転写性を確保することができる。なお、隙間幅の調整によって隙間から樹脂が漏れ出すことを防止できるので、成形品からバリを除去する必要がなく、第1型板と第2型板とを密着させて型締めを行うので、サポートブロックを用いる場合のように頻繁にメンテナンスを行う必要がなく、得られる光学素子の精度を高めることができる。
 特に、光学素子が、NAが0.7以上の高NA型の光ピックアップ装置用の対物レンズである場合、第1転写面又は第2転写面の窪みが大きくなるにも関わらず、第1転写面又は第2転写面による形状転写精度に対する要求が高まる。よって、上記のように型締め時に、第1端面と第2端面とを離間させる場合、バリ等の形成を防止しつつキャビティから残留ガスを確実に抜くことができ、高NA型の光ピックアップ装置用の対物レンズを簡易かつ高精度で形成することができる。また、光ピックアップ装置用対物レンズだけでなく、ホルダー一体型レンズ等にも好適に使用することができる。ホルダー一体型レンズはカメラや照明や光伝送等の分野で用いられるレンズで、レンズ部とホルダー部とを一体成形した樹脂製レンズである。そのようなホルダー一体型レンズにおいてもキャビティから残留ガスを確実に抜くことができ、ホルダー一体型レンズを高精度に成形することができる。
 本発明の具体的な態様又は側面では、上記光学素子の製造方法において、第1端面と第2端面との隙間幅(又は)GWは、
 2μm≦GW<10μm
である。この場合、キャビティから隙間を介して残留ガスを確実に排出させることができ、キャビティから周囲の隙間に樹脂がはみ出してバリ等を形成することを確実に防止することができる。
 本発明の別の側面では、第1金型は、第1型板に、第1コア部と第1周囲支持部とを一組の第1転写部として、複数組の第1転写部を備え、第2金型は、第2型板に、第2コア部と第2周囲支持部とを一組の第2転写部として、複数組の第1転写部にそれぞれ対向する複数組の第2転写部を備える。この場合、複数の光学素子を一括して作製することができる。
 本発明のさらに別の側面では、第1転写面と第2転写面との間に形成されたキャビティ内に対して、成形用の樹脂の充填前及び充填中に、キャビティ内を減圧する。この場合、樹脂の射出工程で、キャビティ内の樹脂の流動を邪魔するガスが存在しないため、樹脂の金型への転写性を良好にすることができる。

 本発明のさらに別の側面では、第1転写面と第1型合わせ面との段差と、第2転写面と第2型合わせ面との段差との少なくとも一方を、ハイトゲージ(height gauge)によって測定することによって、第1転写面と第2転写面との間隔を調整する。この場合、第1転写面と第2転写面との間隔調整が容易になる。
 本発明のさらに別の側面では、第1周囲支持部の第1端面の高さ位置と、第2周囲支持部の第2端面の高さ位置との少なくとも一方を、第1周囲支持部又は第2周囲支持部の底部に固定されたスペーサーを交換することにより調整する。この場合、成形用の樹脂の粘度等に合わせて第1端面と第2端面との間隔を微調整することができるので、キャビティから周囲の隙間に樹脂がはみ出してバリ等を形成することをより確実に防止することができる。
 本発明に係る成形金型は、光学素子のうち一方の第1光学面を形成するための第1転写面を有する第1金型と、光学素子のうち他方の第2光学面を形成するための第2転写面を有する第2金型とを備える成形金型であって、第1金型は、光学素子のうち第1光学面に対応する第1転写面を先端に有する第1コア部と、第1コア部の周囲に配置されるとともに第1転写面の周囲に延びる第1端面を有する第1周囲支持部と、第1周囲支持部の周囲に配置されるとともに第1端面の周囲に延びる第1型合わせ面を有する第1型板と、を含み、第2金型は、光学素子のうち第2光学面に対応する第2転写面を先端に有する第2コア部と、第2コア部の周囲に配置されるとともに第2転写面の周囲に延びる第2端面を有する第2周囲支持部と、第2周囲支持部の周囲に配置されるとともに第2端面の周囲に延びる第2型合わせ面を有する第2型板と、を含み、第1端面と第2端面とは、第1型板と第2型板とを密着させた状態で、互いに離間し、第1転写面と第2転写面との周囲にガスを選択的に通過させる隙間を有する。
 本発明の具体的な態様又は側面では、上記成形金型において、第1端面と第2端面との隙間幅(又は)GWは、
 2μm≦GW<10μm
である。
 本発明の別の側面では、上記成形金型において、第1金型は、第1型板に、第1コア部と第1周囲支持部とを一組の第1転写部として、複数組の第1転写部を備え、第2金型は、第2型板に、第2コア部と第2周囲支持部とを一組の第2転写部として、複数組の第1転写部にそれぞれ対向する複数組の第2転写部を備える。
 本発明のさらに別の側面では、光学素子から延びる成形品部分の周囲に対応させて、第1型板と第2型板との少なくとも一方にサブエアーベント部を設ける。この場合、キャビティ中にガスが溜まることをさらに確実に防止することができる。
 本発明のさらに別の側面では、第1端面と第2端面との少なくとも一方の周りに、第1転写面と第2転写面とから離間して、凹形状を設けている。この場合、キャビティ内の残留ガスの排出効率を高めることができる。
第1実施形態に係る成形金型を組み込んだ成形装置の概念図である。 図2A及び2Bは、第1の金型の断面図及び端面図であり、図2C及び2Dは、第2の金型の断面図及び端面図である。 図3Aは、成形金型内の成形空間を説明する拡大断面図であり、図3Bは、成形金型内の流路を説明する図であり、図3Cは図1の装置によって射出成形されるレンズの側面図である。 図4Aは、成形金型の構造を説明する部分拡大断面図であり、図4Bは、成形金型の要部拡大断面図である。 第1実施形態に係る光学素子の製造方法を説明する概念図である。 図6Aは、第2実施形態の成形金型を構成する第1金型の端面図であり、図6Bは、第2実施形態の成形金型を構成する第2金型の端面図である。 図7Aは、第3実施形態の成形金型を構成する第1金型の端面図であり、図7Bは、第3実施形態の成形金型を構成する第2金型の端面図である。 図8Aは、第3実施形態の製造方法によって得られる成形品の平面図であり、図8Bは、第3実施形態の製造方法によって得られる成形品の側面図である。
 〔第1実施形態〕
 以下、本発明の第1実施形態に係る射出成形用の成形装置について、図面を参照しつつ説明する。
 図1に示すように、成形装置100は、射出成形を行って樹脂成形品MPを作製する本体部分である射出成形機10と、射出成形機10から樹脂成形品MPを取り出す付属部分である取出装置20と、成形装置100を構成する各部の動作を統括的に制御する制御装置30とを備える。
 射出成形機10は、横型の成形機であり、成形金型40と、固定盤11と、可動盤12と、型締め盤13と、支持フレーム14と、開閉駆動装置15と、射出装置16とを備える。射出成形機10は、固定盤11と可動盤12との間に成形金型40を構成する第1金型41と第2金型42とを挟持して両金型41,42を型締めするとともに両金型41,42間に樹脂を射出することにより成形を可能にする。ここで、第1金型41と第2金型42とは、成形用の空間を形成する成形金型を構成する。
 固定盤11は、プラテンとも呼ばれ、可動盤12に対向して支持フレーム14の略中央に固定され、取出装置20をその上部に支持する。固定盤(プラテン)11の内側11aは、可動盤12の内側12aに対向しており、第2金型42を着脱可能に支持している。固定盤11には、後述するノズル16dを通す開口11bが形成されている。なお、固定盤11は、タイバーを介して型締め盤13に固定されており、成形時の型締めの圧力に耐え得るようになっている。
 可動盤12は、プラテンとも呼ばれ、リニアガイド15aによって固定盤11に対して進退移動可能に支持されている。可動盤(プラテン)12の内側12aは、固定盤11の内側11aに対向しており、第1金型41を着脱可能に支持している。なお、可動盤12には、エジェクター駆動部45が組み込まれている。このエジェクター駆動部45は、第1金型41に付着した樹脂成形品MPを離型するために第2金型42側に押し出すものである。
 型締め盤13は、支持フレーム14の端部に固定されている。型締め盤13は、型締めに際して、開閉駆動装置15の動力伝達部15dを介して可動盤12をその背後から支持する。
 開閉駆動装置15は、リニアガイド15aと、動力伝達部15dと、アクチュエーター15eとを備える。リニアガイド15aは、可動盤12を支持しつつ、固定盤11に対する進退方向に関して可動盤12の滑らかな往復移動を可能にしている。動力伝達部15dは、制御装置30の制御下で動作するアクチュエーター15eからの駆動力を受けて伸縮する。これにより、型締め盤13に対して可動盤12が近接したり離間したり自在に進退移動する。結果的に、固定盤11と可動盤12とを互いに近接又は離間させることができ、第1金型41と第2金型42との型締め又は型開きを行うことができる。
 射出装置16は、シリンダー16a、原料貯留部16b、スクリュー駆動部16c等を備える。射出装置16は、制御装置30の制御下で適当なタイミングで動作するものであり、樹脂射出用のノズル16dから温度制御された状態で溶融樹脂を射出することができる。射出装置16は、第1金型41と第2金型42とを型締めした状態において、固定盤11の開口11bを介して後述するスプルーブッシュ77(図2C参照)にノズル16dを接触させることにより、後述する流路空間FC(図3B参照)に対してシリンダー16a中の溶融樹脂を所望のタイミング及び圧力で供給することができる。
 射出成形機10に付随して設けられた金型温度調節機96は、両金型(成形金型)41,42中に温度制御された熱媒体を循環させる。これにより、成形時に両金型41,42の温度を適切な温度に保つことができる。射出成形機10に付随して設けられた減圧装置97は、両金型(成形金型)41,42間に形成される成形空間、具体的には後述するキャビティを減圧してガスが溜まることを防止できる。
 取出装置20は、樹脂成形品MPを把持することができるハンド21と、ハンド21を3次元的に移動させる3次元駆動装置22とを備える。取出装置20は、制御装置30の制御下で適当なタイミングで動作するものであり、第1金型41と第2金型42とを離間させて型開きした後に、第2金型42に残る樹脂成形品MPを把持して外部に搬出する役割を有する。
 制御装置30は、開閉制御部31と、射出装置制御部32と、減圧装置制御部33と、エジェクター制御部34と、取出装置制御部35とを備える。開閉制御部31は、アクチュエーター15eを動作させることによって両金型(成形金型)41,42の型閉じ、型締め、型開き等を可能にする。射出装置制御部32は、スクリュー駆動部16c等を動作させることによって両金型41,42間に形成された成形空間中に所望の圧力で樹脂を注入させる。減圧装置制御部33は、減圧装置97を適当なタイミングで動作させることによって型締めされた両金型41,42間の成形空間に樹脂を注入する際に成形空間を減圧することで樹脂に対する転写性を向上させる。エジェクター制御部34は、エジェクター駆動部45を動作させることによって型開き時に第1金型41に残る樹脂成形品MPを第1金型41内から押し出させて離型を行わせる。取出装置制御部35は、取出装置20を動作させることによって型開き及び離型後に第1金型41に残る樹脂成形品MPを把持して射出成形機10外に搬出させる。
 図2Aは、可動側の第1金型41の構造を説明する側断面図であり、図2Bは、第1金型41の端面図である。また、図2Cは、固定側の第2金型42の構造を説明する側断面図であり、図2Dは、第2金型42の端面図である。
 第1金型41と第2金型42とをパーティング面PS1,PS2で型合わせして型締めを行うことにより、図3Aに示すように、図1の樹脂成形品MPの製品部分であるレンズLPを成形するためのキャビティCVが4箇所に形成されるとともに、図3Bに示すように、各キャビティCVに樹脂を供給するための流路空間FCが形成される。
 図3Aにおいて、キャビティCVは、一対の転写面S1,S2に挟まれた本体空間CV1と、一対の転写面S3,S4に囲まれたフランジ空間CV2とを備える。ここで、転写面S1,S2は、図3Cに示す樹脂成形品MPのレンズLPの光学面OS1,OS2を形成するためのもので、後述する鏡面コア51,61の端面に対応している。この場合、一方の転写面S2には、例えば微細構造の転写面FPが形成されており、レンズLPの一方の光学面OS1は、微細構造を備えるものとなる。一方、転写面S3,S4は、レンズLPのフランジ部FLを形成するためのもので、後述する周囲支持部52,62の端面の内周側に対応している。
 図3Cに示すレンズLPは、例えば光ピックアップ装置用の対物レンズであり、NAが0.7以上であるBD等の高NA型の対物レンズの規格に対応している。なお、図示のレンズLPは、BD/DVD/CDの3互換型の光ピックアップ装置用の対物レンズであり、光学面OS1に上述のような微細な構造が設けられている。
 図3Bに示す流路空間FCの先端部は、ランナー部分RS及びゲート部分GSを介してキャビティCVにそれぞれ連通している。なお、図3Bでは省略しているが、流路空間FCは、スプルー部分SSからランナー部分RSにかけて4つに分岐されている。
 図2A等に示すように、第1金型41は、可動側の周辺部分としての第1型板53と、第1型板53を背後から支持する第1受板54と、第1受板54を背後から支持する第1取付板71と、可動側のコア部分としての第1鏡面コア51と、第1鏡面コア51を周囲から保持する第1周囲支持部52と、第1鏡面コア51を突き出して離型を可能にする可動ピン73と、樹脂成形品MPのコールドスラグ部分CS(図3B参照)等を突き出して離型する可動ピン74と、可動ピン73,74を進退移動させる進退機構部75とを備える。
 第1金型41において、第1型板53は、図3Bに示す流路空間FCのコールドスラグ部分CSに対応するコールドスラグ凹部41aと、流路空間FCのランナー部分RSに対応するランナー凹部41bと、流路空間FCのゲート部分GSに対応するゲート凹部41cと、レンズLPを形成するキャビティCVに対応するレンズ凹部41dとを備える。このうち、コールドスラグ凹部41aには、可動ピン74を挿入するピン孔53gが延びる。ゲート凹部41cは、第1周囲支持部52の端面に形成されており、レンズ凹部41dは、第1鏡面コア51の端面に形成されている。第1周囲支持部52の端面のうちゲート凹部41c等が形成されていない部分は、平坦な第1端面52aとなっている。
 図2Bに示すように、第1金型41において、第1鏡面コア51と第1周囲支持部52とを一組の第1転写部として複数組の第1転写部TA1,TA2,TA3,TA4が設けられている。また、第1金型41には、各第1周囲支持部52から半径方向に第1型板53の外側に延びる溝状のエアーベント47が設けられている。エアーベント47は、キャビティCV中にガスが溜まることを防止するためのものであり、転写部TA1,TA2,TA3,TA4全体を囲む環状の排気路48に連通する。第1金型41の型板53の端面53aには、第2金型42の凹形状の周溝部48aに対向する位置に対向面48bが設けられている。これら周溝部48a及び対向面48bは、第1金型41と第2金型42とを型締めした際に、型板53と型板63との間に配置される環状の排気路48となる。この環状の排気路48は、接続部49を介して図1の減圧装置97に接続され、適量減圧されている。
 図4Aに拡大して示すように、第1鏡面コア51は、円柱状のロッド部51aと、円板状の基部51bとを備える。ロッド部51aの先端51cは、第1周囲支持部52に形成された小径孔52iとの間に僅かな隙間を有する状態で軸AXに垂直な方向に微小変位可能、かつ、軸AX方向に移動可能に挿通されている。基部51bは、第1周囲支持部52に形成された大径孔52jに僅かな隙間を有する状態で軸AXに垂直な方向に微小変位可能、かつ、軸AX方向に移動可能に挿通されている。ロッド部51aの周囲に装着された戻しバネ68は、第1鏡面コア51を根元の基部51b側に付勢しており、第1周囲支持部52内における第1鏡面コア51の保持を確実なものとしている。
 第1鏡面コア51の先端面には、キャビティCVを画成するため、光学面形成面56aとフランジ形成面56bとが設けられている。光学面形成面56aは、比較的浅い凹面であり、図3Cに示すレンズLPの中心部OPの一方の光学面OS2を成形する転写面S1である(図3A参照)。フランジ形成面56bは、環状の平面であり、レンズLPのフランジ部FLの他方のフランジ面F2を成形する転写面S3である(図3A参照)。
 第1周囲支持部52は、筒状で、第1鏡面コア51を第1周囲支持部52内に保持するための挿通孔52hを有する。この挿通孔52hは、先端側に開口としての小径孔52iを有し、根元側に大径孔52jを有する2段構造となっている。なお、第1周囲支持部52を複数の部材により構成してもよい。例えば、二つの筒を重ねることにより一つの大きな筒としてもよく、その場合にそれぞれの筒が対向している面を第1端面、第2端面に置き換えて考えてもよい。
 図4Aに示すように、第1金型41において、第1周囲支持部52の背後にスペーサー81が設けられている。スペーサー81は、第1周囲支持部52の底部に固定されている。スペーサー81は、第1周囲支持部52の第1端面52aの高さ位置を調整するためのものであり、適宜交換することができる。スペーサー81は、例えば数μm~数十μm単位で厚みの異なる多数のスペーサーを含むスペーサーセットから選択される。スペーサーセットから選択するスペーサー81を変更することにより、第1周囲支持部52の第1端面52aの高さ位置を精密に微調整できるようになっている。
 その他、第1型板53には、第1周囲支持部52を挿入支持する円柱状の貫通孔57aが形成されている。また、第1型板53は、パーティングラインPLを形成するパーティング面(第2型合わせ面)PS1に相当する端面53aを有する。
 図2C等に示すように、第2金型42は、固定側の周辺部分としての第2型板63と、第2型板63を背後から支持する第2取付板64と、固定側のコア部分としての第2鏡面コア61と、第2鏡面コア61を周囲から保持する第2周囲支持部62と、スプルーブッシュ77とを備える。
 第2金型42において、第2型板63は、スプルーブッシュ77を挿入するスプルーブッシュ孔42aと、図3Bに示す流路空間FCのランナー部分RSに対応するランナー凹部42bと、流路空間FCのゲート部分GSに対応するゲート面42cと、レンズLPを形成するキャビティCVに対応するレンズ凹部42dとを備える。このうち、ゲート面42cは、第2周囲支持部62の端面に形成されており、レンズ凹部42dは、第2鏡面コア61の端面に形成されている。第2周囲支持部62の端面のうちゲート面42c等が形成されていない部分は、平坦な第2端面62aとなっている。
 図2Dに示すように、第2金型42において、第2鏡面コア61と第2周囲支持部62とを一組の第2転写部として、複数組の第1転写部TA1,TA2,TA3,TA4にそれぞれ対向する複数組の第2転写部TA1,TA2,TA3,TA4が設けられている。また、第2金型42には、各第2周囲支持部62から半径方向に第2型板63の外側に延びる溝状のエアーベント47が設けられている。エアーベント47は、キャビティCV中にガスが溜まることを防止するためのものであり、転写部TA1,TA2,TA3,TA4全体を囲む環状の排気路48に連通する。第2金型42の型板63の端面63aには、第1金型41の対向面48bに対向する位置に凹形状の周溝部48aが設けられている。既に説明したように、これら周溝部48a及び対向面48bは、第1金型41と第2金型42とを型締めした際に、型板53と型板63との間に配置される環状の排気路48となる。この環状の排気路48は、接続部49を介して減圧装置97に接続され、減圧されている。なお、エアーベント47は、第1金型41の第1周囲支持部52にも形成されており、第2金型42と第1金型41とを型閉じして型締めした際には、一体的に通気路として機能する。
 スプルーブッシュ77は、第2型板63のスプルーブッシュ孔42aと第2取付板64のスプルーブッシュ孔64aとに挿入されて固定されている。スプルーブッシュ77内に形成されたスプルー部分SSは、図3Bの流路空間FCのうち、樹脂成形品MPの不図示のスプルー部分を形成する空間に対応するものとなっている。
 図4Aに拡大して示すように、第2鏡面コア61は、第1鏡面コア51と同様に、円柱状のロッド部61aと、円板状の基部61bとを備える。ロッド部61aの先端61cは、第2周囲支持部62に形成された小径孔62iとの間に僅かな隙間を有する状態で挿通されている。基部61bは、第2周囲支持部62に形成された大径孔62jに僅かな隙間を有する状態で挿通されている。図示のように、ロッド部61aの周囲に装着された戻しバネ68を設けて相対的な移動を確保することもできるが、ロッド部61aと基部61bとを互いに固定することもできる。
 第2鏡面コア61の先端面には、キャビティCVを画成するため、光学面形成面66aとフランジ形成面66bとが設けられている。光学面形成面66aは、比較的深い凹面であり、図3Cに示すレンズLPの中心部OPの一方の光学面OS1を成形する転写面S2である(図3A参照)。フランジ形成面66bは、環状の平面であり、レンズLPのフランジ部FLの他方のフランジ面F1を成形する転写面S4である(図3A参照)。
 第2周囲支持部62は、第1周囲支持部52と同様に、筒状で、第2鏡面コア61を第2周囲支持部62内に保持するための挿通孔62hを有する。この挿通孔62hは、先端側に開口としての小径孔62iを有し、根元側に大径孔62jを有する2段構造となっている。
 図4Aに示すように、第2金型42において、第2周囲支持部62の背後にスペーサー82が設けられている。スペーサー82は、第2周囲支持部62の底部に固定されている。スペーサー82は、第1周囲支持部52の場合と同様に第2周囲支持部62の第2端面62aの高さ位置を調整するためのものであり、適宜交換することができる。なお、第1周囲支持部52と第2周囲支持部62との一方にのみ、例えばスペーサー81を設けて片側だけで端面52a,62aの高さ調整をすることもできる。
 その他、第2型板63には、第2周囲支持部62を挿入支持する円柱状の貫通孔67aが形成されている。また、第2型板63は、パーティングラインPLを形成するパーティング面(第2型合わせ面)PS2に相当する端面63aを有する。
 図4Bに、第1金型41に設けた第1周囲支持部52と、第2金型42に設けた第2周囲支持部62との境界部ARの状態を示す。
 可動側の第1周囲支持部52と、固定側の第2周囲支持部62との間には、狭い隙間GAが形成されている。この隙間GAは、図示を省略するが、第1周囲支持部52と第2周囲支持部62との間の全体に亘って環状に形成されており、キャビティCVを周囲から囲むように配置されている。可動側の第1周囲支持部52の第1端面52aは、パーティング面PS1又は型合わせ面に相当する型板53の端面53aから後退して配置されており、第1周囲支持部52の第1端面52aと型板53の端面53aとの段差は、G1となっている。また、固定側の第2周囲支持部62の第2端面62aは、パーティング面PS2又は型合わせ面に相当する型板63の端面63aから後退して配置されており、第2周囲支持部62の第2端面62aと型板63の端面63aとの段差は、G2となっている。結果的に、第1周囲支持部52と第2周囲支持部62との間に形成される隙間GAの隙間幅GWは、2μm以上であって、10μm未満となっている。隙間幅GWを2μm以上とすることで、キャビティCV内に残留するガスをエアーベント47と排気路48とを介して金型41,42の外部に確実に排出させることができる。また、隙間幅GWを10μm未満とすることで、キャビティCV内の溶融樹脂等が隙間GAにはみ出すことを防止でき、隙間GAに対応するバリがレンズLPの周囲に残ることを防止できる。つまり、周囲支持部52,62間の隙間GAは、固定側の光学面形成面56aと可動側の光学面形成面66aとによって画成されるキャビティCVの周囲にガスを選択的に通過させる役割を有する。
 第1金型41における第1周囲支持部52の第1端面52aと型板53の端面53aとの段差G1は、第1金型41を射出成形機10に搭載した状態で表面段差として測定することも不可能ではないが、十分な精度を確保することは容易でない。従って、第1周囲支持部52や型板53を分離して個別に厚みを測ることで、段差G1(=型板53の厚さ-第1周囲支持部52の厚さ)の精密な計測が可能である。第1周囲支持部52や型板53の厚みは、ハイトゲージによって測定される。
 同様に、第2金型42における第2周囲支持部62の第2端面62aと型板63の端面63aとの段差G2も、第2金型42を射出成形機10に搭載した状態で表面段差として測定することも不可能ではないが、第2周囲支持部62や型板63を分離して個別に厚みを測ることで、段差G2(=型板63の厚さ-第2周囲支持部62の厚さ)の精密な計測が可能である。第2周囲支持部62や型板63の厚みは、ハイトゲージによって測定される。
 以上のように各部材52,53,62,63を個別に測定することにより、第1転写面S1とパーティング面(第1型合わせ面)PS1との段差G1と、第2転写面S2とパーティング面(第2型合わせ面)PS2との段差G2とが間接的に測定され、第1転写面S1と第2転写面S2との間隔を調整することができる。
 以下、レンズLPの製造方法について説明する。
 図5は、図1等に示す成形装置100の動作を概念的に説明するフローチャートである。まず、金型温度調節機96により、両金型41,42を成形に適する温度まで加熱する(ステップS10)。次に、開閉駆動装置15を動作させ、可動盤12を前進させて型閉じを開始させる(ステップS11)。開閉駆動装置15の閉動作を継続することにより、第2金型42と第1金型41とが接触する型当たり位置まで可動盤12が固定盤11側に移動して型閉じが完了し、開閉駆動装置15の閉動作を更に継続することにより、第2金型42と第1金型41とを必要な圧力で締め付ける型締めが行われる(ステップS12)。
 次に、減圧装置97を動作させて、型締めされた第2金型42と第1金型41との間のキャビティCV中の減圧を開始する(ステップS13)。その後、射出装置16を動作させて、型締めされた第2金型42と第1金型41との間のキャビティCV中に、必要な圧力で溶融樹脂を注入する射出を行わせる(ステップS14)。そして、射出成形機10は、キャビティCV中の樹脂圧を保つ。これにより、キャビティCV中の不要なガスが一対の周囲支持部52,62間の隙間GAから外部に排出される。ただし、隙間GAの間隔調整によって、キャビティCV中の樹脂が外部に漏れ出すことが防止される。樹脂の射出後は、金型温度調節機96により、キャビティCVや流路空間FC(図3B参照)が適度に加熱されており、射出装置16から供給される溶融樹脂が緩やかに冷却され、不均一な冷却や過度の急冷によって流動性に支障が生じることを抑制しながら、溶融樹脂をキャビティCV内に速やかに導入することができ、キャビティCV内での樹脂の適度な除冷を達成することができる。なお、溶融樹脂をキャビティCVに導入した後は、キャビティCV中の溶融樹脂が放熱によって徐々に冷却されるので、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ(ステップS15)。加熱された溶融樹脂からは、ガスが排出されるが、キャビティCVから隙間GAを介して外部に排出されるので、光学面の転写不良を抑えることができる。
 次に、射出成形機10において、開閉駆動装置15を動作させて、可動盤12を後退させる型開きが行われる(ステップS16)。これに伴って、第1金型41が後退し、第2金型42と第1金型41とが離間する。この結果、樹脂成形品MPすなわちレンズLPは、第1金型41に保持された状態で第2金型42から離型される。
 次に、射出成形機10において、エジェクター駆動部45を動作させて、可動ピン73,74による樹脂成形品MPすなわちレンズLPの突き出しを行わせる(ステップS17)。この結果、樹脂成形品MPのうちレンズLPは、第1鏡面コア51の先端面に付勢されて第2金型42側に押し出されて、第1金型41から離型される。
 最後に、取出装置20を動作させて、エジェクター駆動部45に駆動されて動作する可動ピン73,74によって突き出された樹脂成形品MPの適所をハンド21で把持して外部に搬出する(ステップS18)。
 以上のように、本実施形態の製造方法又は成形金型によれば、第1型板53と第2型板63とを密着させる型締め時に、第1端面52aと第2端面62aとを離間させることによって、第1転写面S1である光学面形成面56aと第2転写面S2である光学面形成面66aとの周囲にガスを選択的に通過させる隙間を設けるので、バリ等の除去すべき部分の形成を防止しつつレンズLPの外周部全体から残留ガスを抜くことができる。このため、第1転写面S1である光学面形成面56aと、第2転写面S2である光学面形成面66aとの間のキャビティCVを十分に排気でき、良好な転写性を確保することができる。なお、隙間幅GWの調整によって隙間GAから樹脂が漏れ出すことを防止できるので、樹脂成形品MPからバリを除去する必要がなく、第1型板53と第2型板63とを密着させて型締めを行うので、サポートブロックを用いる場合のように頻繁にメンテナンスを行う必要がなく、得られるレンズLPの精度を高めることができる。
〔実施例〕
 以下、第1周囲支持部52と第2周囲支持部62との間の隙間幅GWの具体的な実施例について説明する。以下の表1は、隙間幅GWと樹脂成形品MPの良否との関係を説明するものである。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
表1の左端の欄は、第1周囲支持部52の第1端面52aのパーティング面PS1からの後退量である段差G1と、第2周囲支持部62の第2端面62aのパーティング面PS2からの後退量である段差G2とを示している。なお、この場合、可動側の段差G1と固定側の段差G2とは等しくなっており、段差G1,G2=GW/2となっている。樹脂成形品MPの評価は、転写面による転写性とパーティング面PS1,PS2でのバリの形成とについて行った。転写性は、4個取りの金型で得た4つのレンズLPの透過波面を干渉計によって計測し、RMS(Reast Mean Square)波面収差の評価を行い、RMS波面収差が0.07λrms以上となるレンズ数に基づいて、良否を判断した。バリの形成は、レンズLPの品種によって判定基準は異なるが、標準的な仕様としてバリ量が15μm以上か否かで、良否を判断した。
 結果は、表1からも明らかなように、段差G1,G2が0μmとなることで、転写性の判定が不可(「×」印)となった。逆に、段差G1,G2が10μm以上となることで、バリ量の判定が不可(「×」印)となった。また、段差G1,G2が0μmより大きく1μm未満では、バリ量の判定が良好(「○」印)であり、転写性の判定が可(「△」印)となった。段差G1,G2が1μm以上5μm未満では、転写性の判定が良好(「○」印)であり、バリ量の判定も良好(「○」印)であった。段差G1,G2が5μm以上10μm未満では、転写性の判定が良好(「○」印)であり、バリ量の判定が可(「△」印)となった。
 なお、第1周囲支持部52の第1端面52aが後退して形成される段差G1と、第2周囲支持部62の第2端面62aが後退して形成される段差G2との比は、適宜変更することができる。例えば、可動側の段差G1をゼロとした場合、他方の段差G2が隙間GAの隙間幅GWになり、固定側の段差G2をゼロとした場合、他方の段差G1が隙間GAの隙間幅GWになる。極端な例では、可動側の第1周囲支持部52の第1端面52aを、型板53の型合わせ面である端面53aから突出させ、固定側の第2周囲支持部62の第2端面62aを、端面52aの突出量以上に型板63の型合わせ面である端面63aから後退させることによっても、隙間GAを形成することができる。
 また、以上の説明では、第1金型41において、第1周囲支持部52と第1鏡面コア51とが分離され、第2金型42において、第2周囲支持部62と第2鏡面コア61とが分離されているが、これらのうち一方については、周囲支持部と鏡面コアとを分離せず、一体とすることができる。つまり、第1周囲支持部52と第2周囲支持部62とのうち少なくとも一方については、省略することができる。
 また、第1周囲支持部52と第1鏡面コア51とは、第1金型41の部分として存在すれば足り、両者が別部品として組み合わせられることは必須でなく、第1周囲支持部52と第1鏡面コア51とを一体化した部品とすることができる。また、第2周囲支持部62と第2鏡面コア61とも、第2金型42の部分として存在すれば足り、両者が別部品として組み合わせられることは必須でなく、第2周囲支持部62と第2鏡面コア61とを一体化した部品とすることができる。
 〔第2実施形態〕
 以下、第2実施形態に係る光学素子用の成形金型等について説明する。なお、第2実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図6A及び6Bに示すように、第2実施形態の場合、第2金型42の第2周囲支持部62の第2端面62aにおいて、溝部148aが凹形状として形成され、第1金型41の第1周囲支持部52の第1端面52aにおいて、対向面148bが設けられている。これら溝部148a及び対向面148bは、第1端面52aと第2端面62aとの周りに設けられており、光学面形成面56a等からなる第1転写面S1や光学面形成面66a等からなる第2転写面S2から離間している。溝部148a及び対向面148bは、第1金型41と第2金型42とを型締めした際に、第1周囲支持部52と第2周囲支持部62との間に配置される環状の脱気路148となる。この脱気路148は、ゲート凹部41cの反対側で連結路147(第1実施形態のエアーベント47に対応)に連通しており、成形中又は成形前において、減圧装置97による減圧が可能になっている。
 本実施形態の場合、第1端面52aと第2端面62aとのうち一方である第2端面62aに溝部148aが形成されており、溝部148aを脱気路148として機能させることができるので、キャビティCV内の残留ガスの排出効率を高めることができる。
 〔第3実施形態〕
 以下、第3実施形態に係る光学素子用の成形金型等について説明する。なお、第3実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図7A及び7B等に示すように、第3実施形態の場合、第2金型42の第2周囲支持部62の第2端面62aや型板63の端面63aにおいて、ランナー凹部41bやゲート凹部41c等に沿って例えば0.01~0.1mm程度の深さを有するエアーベント凹部248が形成されている。エアーベント凹部248は、ランナー凹部41bやゲート凹部41cに対応するランナー部分RS及びゲート部分GS(図3B参照)の周囲に広がるように設けられており、ランナー部分RS及びゲート部分GS内の残留ガスがキャビティCV内に流れ込むことを防止することができる。つまり、エアーベント凹部248は、流路空間FC用のサブエアーベント部として機能している。
 図8Aは、製造された樹脂成形品MPの平面図であり、図8Bは、製造された樹脂成形品MPの側面図である。図からも明らかなように、ランナー部RPやゲート部GPの周囲にバリBAが形成されているが、レンズLPにはバリが形成されておらず、ゲート部GPを除去するだけでレンズLPが完成する。
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上記実施形態において、レンズLPの形状や大きさは例示であり、用途に応じて適宜変更することができる。
 また、上記実施形態において、第1金型41と第2金型42とにエアーベント47の溝を設けたが、第1及び第2金型41,42のいずれか一方のみに溝を設けてもよい。この場合、溝を設けていない金型側が平坦な対向面となる。

Claims (11)

  1.  光学素子のうち一方の第1光学面を形成するための第1転写面を有する第1金型と、前記光学素子のうち他方の第2光学面を形成するための第2転写面を有する第2金型とを備える成形金型によって光学素子を成形する光学素子の製造方法であって、
     前記第1金型は、前記光学素子のうち第1光学面に対応する第1転写面を先端に有する第1コア部と、前記第1コア部の周囲に配置されるとともに前記第1転写面の周囲に延びる第1端面を有する第1周囲支持部と、前記第1周囲支持部の周囲に配置されるとともに前記第1端面の周囲に延びる第1型合わせ面を有する第1型板と、を含み、
     前記第2金型は、前記光学素子のうち第2光学面に対応する第2転写面を先端に有する第2コア部と、前記第2コア部の周囲に配置されるとともに前記第2転写面の周囲に延びる第2端面を有する第2周囲支持部と、前記第2周囲支持部の周囲に配置されるとともに前記第2端面の周囲に延びる第2型合わせ面を有する第2型板と、を含み、
     前記第1型板と前記第2型板とを密着させる型締め時に、前記第1端面と前記第2端面とを離間させることによって、前記第1転写面と前記第2転写面との周囲にガスを選択的に通過させる隙間を設ける光学素子の製造方法。
  2.  前記第1端面と前記第2端面との隙間幅GWは、
     2μm≦GW<10μm
    である、請求項1に記載の光学素子の製造方法。
  3.  前記第1金型は、前記第1型板に、前記第1コア部と前記第1周囲支持部とを一組の第1転写部として、複数組の第1転写部を備え、
     前記第2金型は、前記第2型板に、前記第2コア部と前記第2周囲支持部とを一組の第2転写部として、前記複数組の第1転写部にそれぞれ対向する複数組の第2転写部を備える、請求項1及び2のいずれか一項に記載の光学素子の製造方法。
  4.  前記第1転写面と前記第2転写面との間に形成されたキャビティ内に対して、成形用の樹脂の充填前及び充填中に、前記キャビティ内を減圧する、請求項1から3までのいずれか一項に記載の光学素子の製造方法。



  5.  前記第1転写面と前記第1型合わせ面との段差と、第2転写面と前記第2型合わせ面との段差との少なくとも一方を、ハイトゲージによって測定することによって、前記第1転写面と前記第2転写面との間隔を調整する、請求項1から4までのいずれか一項に記載の光学素子の製造方法。
  6.  前記第1周囲支持部の前記第1端面の高さ位置と、前記第2周囲支持部の前記第2端面の高さ位置との少なくとも一方を、前記第1周囲支持部又は前記第2周囲支持部の底部に固定されたスペーサーを交換することにより調整する、請求項1から5までのいずれか一項に記載の光学素子の製造方法。
  7.  光学素子のうち一方の第1光学面を形成するための第1転写面を有する第1金型と、前記光学素子のうち他方の第2光学面を形成するための第2転写面を有する第2金型とを備える成形金型であって、
     前記第1金型は、前記光学素子のうち第1光学面に対応する第1転写面を先端に有する第1コア部と、前記第1コア部の周囲に配置されるとともに前記第1転写面の周囲に延びる第1端面を有する第1周囲支持部と、前記第1周囲支持部の周囲に配置されるとともに前記第1端面の周囲に延びる第1型合わせ面を有する第1型板と、を含み、
     前記第2金型は、前記光学素子のうち第2光学面に対応する第2転写面を先端に有する第2コア部と、前記第2コア部の周囲に配置されるとともに前記第2転写面の周囲に延びる第2端面を有する第2周囲支持部と、前記第2周囲支持部の周囲に配置されるとともに前記第2端面の周囲に延びる第2型合わせ面を有する第2型板と、を含み、
     前記第1端面と前記第2端面とは、前記第1型板と前記第2型板とを密着させた状態で、互いに離間し、前記第1転写面と前記第2転写面との周囲にガスを選択的に通過させる隙間を有する成形金型。
  8.  前記第1端面と前記第2端面との隙間幅GWは、
     2μm≦GW<10μm
    である、請求項7に記載の成形金型。
  9.  前記第1金型は、前記第1型板に、前記第1コア部と前記第1周囲支持部とを一組の第1転写部として、複数組の第1転写部を備え、
     前記第2金型は、前記第2型板に、前記第2コア部と前記第2周囲支持部とを一組の第2転写部として、前記複数組の第1転写部にそれぞれ対向する複数組の第2転写部を備える、請求項7及び8のいずれか一項に記載の成形金型。
  10.  前記光学素子から延びる成形品部分の周囲に対応させて、前記第1型板と前記第2型板との少なくとも一方にサブエアーベント部を設ける、請求項7から9までのいずれか一項に記載の成形金型。
  11.  前記第1端面と前記第2端面との少なくとも一方の周りに、前記第1転写面と前記第2転写面とから離間して、凹形状を設けた、請求項7から10までのいずれか一項に記載の成形金型。
PCT/JP2012/073910 2011-09-30 2012-09-19 光学素子の製造方法、及び、成形金型 WO2013047289A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218787 2011-09-30
JP2011218787 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047289A1 true WO2013047289A1 (ja) 2013-04-04

Family

ID=47995321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073910 WO2013047289A1 (ja) 2011-09-30 2012-09-19 光学素子の製造方法、及び、成形金型

Country Status (1)

Country Link
WO (1) WO2013047289A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054097A1 (ja) * 2021-09-29 2023-04-06 株式会社カネカ 射出成形体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164516A (ja) * 1988-12-19 1990-06-25 Hitachi Ltd プラスチック凹レンズの成形方法及び成形金型
JPH03293107A (ja) * 1990-04-12 1991-12-24 Fuji Photo Film Co Ltd 光デイスクの製造方法及びその金型
JP2002283405A (ja) * 2001-03-27 2002-10-03 Mitsubishi Materials Corp 光ディスク成形用金型装置
JP2003053798A (ja) * 2001-08-09 2003-02-26 Fuji Photo Film Co Ltd 射出成形用金型及び射出成形方法
JP2004098538A (ja) * 2002-09-11 2004-04-02 Konica Minolta Holdings Inc プラスチック製光学素子の製造方法、成形型、及び光学素子
WO2008053692A1 (fr) * 2006-11-01 2008-05-08 Konica Minolta Opto, Inc. Elément optique, matrice métallique de moulage de résine et procédé de fabrication d'un élément optique
JP2012161952A (ja) * 2011-02-04 2012-08-30 Hoya Corp 射出成形装置、成形型、及び射出成形品の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164516A (ja) * 1988-12-19 1990-06-25 Hitachi Ltd プラスチック凹レンズの成形方法及び成形金型
JPH03293107A (ja) * 1990-04-12 1991-12-24 Fuji Photo Film Co Ltd 光デイスクの製造方法及びその金型
JP2002283405A (ja) * 2001-03-27 2002-10-03 Mitsubishi Materials Corp 光ディスク成形用金型装置
JP2003053798A (ja) * 2001-08-09 2003-02-26 Fuji Photo Film Co Ltd 射出成形用金型及び射出成形方法
JP2004098538A (ja) * 2002-09-11 2004-04-02 Konica Minolta Holdings Inc プラスチック製光学素子の製造方法、成形型、及び光学素子
WO2008053692A1 (fr) * 2006-11-01 2008-05-08 Konica Minolta Opto, Inc. Elément optique, matrice métallique de moulage de résine et procédé de fabrication d'un élément optique
JP2012161952A (ja) * 2011-02-04 2012-08-30 Hoya Corp 射出成形装置、成形型、及び射出成形品の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054097A1 (ja) * 2021-09-29 2023-04-06 株式会社カネカ 射出成形体の製造方法

Similar Documents

Publication Publication Date Title
WO2009122862A1 (ja) 光学素子の製造方法、光学素子成形金型、及び光学素子
WO2010061728A1 (ja) 光学素子の製造方法及び成形金型
WO2012043224A1 (ja) 光学素子の製造方法
JP5267253B2 (ja) レンズ用成形金型、及びレンズの製造方法
WO2014010560A1 (ja) 成形品の成形金型構造および成形品の製造方法
WO2013047289A1 (ja) 光学素子の製造方法、及び、成形金型
WO2009122819A1 (ja) 光学素子成形金型及び光学素子の製造方法
JP2010082838A (ja) レンズ製造方法
JPWO2011037038A1 (ja) 成形金型及び成形方法
JP2010083025A (ja) 光学素子の製造方法及び光学素子成形金型
US11117296B2 (en) Molding tool
JP2008230005A (ja) プラスチックレンズ成形方法およびレンズプリフォーム
WO2011040180A1 (ja) 成形金型
JP5369474B2 (ja) 成形金型
JP2013159015A (ja) 成形用金型及び光学素子の製造方法
JP2013169691A (ja) 成形装置及び光学素子の製造方法
JP2014061597A (ja) 成形装置及び光学素子の製造方法
WO2013146871A1 (ja) 熱可塑性樹脂製品の製造方法及び装置
JP2009241297A (ja) 光学素子の製造方法、光学素子成形金型、及び光学素子
JP2008087407A (ja) 射出成形方法
JP2011110810A (ja) 成形金型及び成形方法
JP2012206338A (ja) 光学素子の製造方法
JP5018287B2 (ja) 射出成形用金型装置
JP2014061601A (ja) 光学素子の製造方法
JP2012158088A (ja) 光学素子の製造方法及び成形金型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP