WO2010061728A1 - 光学素子の製造方法及び成形金型 - Google Patents

光学素子の製造方法及び成形金型 Download PDF

Info

Publication number
WO2010061728A1
WO2010061728A1 PCT/JP2009/069177 JP2009069177W WO2010061728A1 WO 2010061728 A1 WO2010061728 A1 WO 2010061728A1 JP 2009069177 W JP2009069177 W JP 2009069177W WO 2010061728 A1 WO2010061728 A1 WO 2010061728A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
resin
optical element
gate portion
molding
Prior art date
Application number
PCT/JP2009/069177
Other languages
English (en)
French (fr)
Inventor
泰宏 齊木
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN2009801466650A priority Critical patent/CN102223994A/zh
Priority to JP2010540442A priority patent/JPWO2010061728A1/ja
Publication of WO2010061728A1 publication Critical patent/WO2010061728A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • B29C45/2711Gate inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/38Cutting-off equipment for sprues or ingates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an optical element manufacturing method and a molding die.
  • a lens with a high NA with an image-side numerical aperture NA of 0.8 or more such as an objective lens for an optical pickup device or an imaging lens for a mobile phone
  • NA numerical aperture
  • the optical performance of the lens must be molded accurately. It is desirable not to provide a stress concentration mold member that narrows the flow path.
  • an object of the present invention is to provide a method for manufacturing an optical element such as a lens capable of forming a stress concentration portion while preventing deterioration of the fluidity of the resin at the gate portion.
  • Another object of the present invention is to provide a molding die suitable for carrying out the above-described optical element manufacturing method.
  • an optical element manufacturing method is an optical element corresponding to an optical element among molded products formed in a mold part composed of a first mold and a second mold.
  • the stress concentration portion refers to a notch-shaped portion formed near the gate portion of the molded product. That is, it refers to a portion (dent) where stress is concentrated to break.
  • the shape of the gate portion is a cylindrical shape. In this case, stable resin fluidity in the gate portion can be ensured.
  • the notch molding member is advanced and retracted into the resin circulation space at the gate portion by a variable mechanism.
  • the notch molding member is retracted by the variable mechanism, so that the resin can be filled without hindering the resin fluidity.
  • the stress concentration portion of a desired size can be formed in a part of the gate portion by advancing the notch forming member by a variable mechanism.
  • the notch forming member is advanced and retracted from a pair of opposing side surface portions of the gate portion.
  • the stress concentration part which made the flow-path cross-section narrower can be formed by providing the notch forming member in a pair of opposing side surface parts of the gate part.
  • the notch molding member is inserted before the gate seal after the resin is filled in the resin molding space and the resin circulation space.
  • the resin in the gate portion is not cured, the resin deformation load in the gate portion is reduced, and the notch molding member can be easily inserted.
  • the inserted notch forming member reduces the cross-sectional area of the gate portion, so that the gate seal can be formed earlier than usual.
  • the notch molding member is inserted after the gate seal after the resin is filled in the resin molding space and the resin circulation space.
  • inserting the notch molding member after the gate seal makes it difficult for the pressure at the time of insertion of the notch molding member to be transmitted to the resin molding space side, thereby minimizing the effect of pressure on the optical element. it can.
  • the notched molding member is held in a state where it is inserted into the resin flow space side until the molded product is released from the first mold, and the molded product is removed from the first mold. It is also used as an ejector pin for projecting a molded product when releasing the mold. In this case, by combining the notch molding member and the ejector pin, the notch molding member is not pushed forward and backward until it is released, so that the notch molding member is not easily removed from the mold part. And deformation of the optical element can be prevented.
  • the notch forming member is formed of a heat insulating material.
  • the heat of the resin is difficult to escape due to the heat insulating material, it does not lead to rapid curing, so that the resin can be cured while relaxing the stress even if a notch molding member is inserted.
  • the notch forming member may be partially formed of a heat insulating material.
  • the molding die according to the present invention can be connected to an injection nozzle of an injection molding machine and corresponds to a sprue portion corresponding to a sprue portion of a molded product, and extends radially from the sprue portion and corresponds to a plurality of runner portions of the molded product.
  • a runner portion, a gate portion provided at the tip of the runner portion and corresponding to the gate portion of the molded product, an optical element portion provided at the tip of the gate portion and corresponding to the optical element of the molded product, and a resin in the gate portion A notch molding member that can be advanced and retracted toward the flow space side, and a convex portion is formed on a part of the gate portion when the notch molding member enters the resin flow space side at the gate portion.
  • the resin fluidity is prevented by the notch molding member during resin filling by inserting the notch molding member into the resin flow path space after filling the resin molding space with the resin. Can be prevented.
  • a stress concentration part can be formed in a part of gate part, preventing the deterioration of the performance of an optical element.
  • FIG. 1st Embodiment It is a sectional side view explaining the structure of the shaping die of 1st Embodiment.
  • (A), (B) is an expanded sectional view of the molding die of FIG. (A) is sectional drawing of a molded article, (B) is a sectional side view of a lens. It is a front view explaining a shaping
  • (A) to (C) are views for explaining an optical element molding die according to a third embodiment.
  • (A), (B) is a figure explaining the optical element shaping die of 4th Embodiment. It is a figure which shows the modification of operation
  • FIG. 1 is a side sectional view for explaining the structure of the molding die 40
  • FIG. 2A is an enlarged sectional view of a P1 portion of FIG. 1
  • FIG. It is an expanded sectional view of the gate part GP.
  • 3A is a cross-sectional view of a molded product MP molded by the molding die 40 shown in FIG. 1
  • FIG. 3B is a diagram of the lens OL cut from the molded product MP of FIG. It is a sectional side view.
  • the molding die 40 of this embodiment includes a fixed die 41 and a movable die 42.
  • the fixed mold 41 and the movable mold 42 can be opened and closed with the parting line PL as a boundary.
  • a resin for molding the lens OL shown in FIG. 3 (B) is obtained by mold-clamping the fixed mold 41 and the movable mold 42 together.
  • a mold space CV that is a molding space is formed, and a flow path portion FC that is a resin distribution space for supplying resin to each mold space CV is formed.
  • the mold space CV includes a main body space CV1 sandwiched between a pair of optical transfer surfaces S1 and S2, and a flange space CV2 surrounded by a pair of peripheral transfer surfaces S3 and S4.
  • the flow path portion FC is configured by a sprue portion SN, a runner portion RN, and a gate portion GN of the molded product MP, a runner portion RP, and a gate portion GP.
  • the molded product MP injection-molded by the molding die 40 includes a plurality of lenses OL, and the resin filling space corresponding to the molded product MP is formed from the sprue portion SP.
  • the runner portion RP is branched into a plurality of portions, and the mold space CV communicates with the leading end portion of each branched runner portion RP via the gate portion GP.
  • Each runner portion RP, each gate portion GP, and each mold space CV are arranged at equal distances from the center of each sprue portion SP.
  • An extended sprue portion SS corresponding to an extended sprue SQ described later is formed on the runner portion RP facing the sprue portion SP.
  • a mold space CV which is a space between both molds 41 and 42, corresponds to the shape of a lens OL (see FIG. 3 and the like) as an optical element of the molded product MP.
  • the lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction.
  • the center portion OLa corresponds to the main body space CV1
  • the flange portion OLb corresponds to the flange space CV2.
  • This lens OL is an objective lens for an optical pickup device, for example, has a high thickness deviation ratio (a state in which the thickness of the optical element has changed abruptly), is compatible with BD, DVD and CD, and is used for BD. It is a lens that satisfies NA 0.85 with respect to a light flux having a wavelength.
  • the fixed mold 41 has a circular optical transfer surface S1 corresponding to the optical surface OS1 of the lens OL on the mold surface facing the movable mold 42, and the lens OL.
  • a grooved runner recess S7 A sprue portion SP for injecting resin is formed at the center of the fixed mold 41 (see FIG. 1).
  • the movable mold 42 has a circular optical transfer surface S2 that is a portion corresponding to the optical surface OS2 of the lens OL on the mold surface facing the fixed mold 41, and the lens OL.
  • An extension sprue portion SS is formed at the center of the fixed mold 41 (see FIG. 1).
  • the movable mold 42 further includes an insertion hole 44 and a notch forming member 45.
  • the insertion hole 44 has a structure for inserting the notch forming member 45, and the rear end surface side (A side in FIG. 1) of the movable mold 42 from the vicinity of the boundary between the mold space CV and the gate portion GP. It is a columnar space formed so as to penetrate through. As shown in FIG. 2A, the insertion hole 44 includes a small-diameter insertion hole 44a on the gate recess S6 side and a large-diameter insertion hole 44b on the rear end surface side of the movable mold 42, and the gate recess S6. The side is getting thinner step by step. Further, the length in the AB direction of the small-diameter insertion hole 44 a of the insertion hole 44 is set so that the notch-forming member 45 can advance and retreat in the insertion hole 44. It is shorter than the length of.
  • the notch forming member 45 is provided in the gate recess S6 of the movable mold 42, that is, a part of the gate portion GP, and is for forming the stress concentration portion CN in the gate portion GN of the molded product MP. .
  • the notch molding member 45 is composed of a small diameter portion 45a on the gate recess S6 side and a large diameter portion 45b on the rear end face side of the movable mold 42, and the gate recess S6 side is stepwise. It has a cylindrical shape that becomes thinner.
  • the notch forming member 45 enters the gate portion GP and forms a cylindrical convex portion on the gate portion GP.
  • the notch molding member 45 described later is formed of a heat insulating material so that the resin in the vicinity of the notch molding member 45 is not rapidly cured.
  • the heat insulating material is a low heat conductive material having a lower thermal conductivity than this.
  • a metal material such as 6-4Ti
  • a resin material such as polyimide
  • a ceramic such as zirconia or alumina
  • the notch forming member 45 is inserted into the insertion hole 44 as described above, and can advance and retreat within the insertion hole 44.
  • the outer diameter of the small diameter portion 45 a substantially matches the inner diameter of the small diameter insertion hole portion 44 a of the insertion hole portion 44
  • the outer diameter of the large diameter portion 45 b is the inner diameter of the large diameter insertion hole portion 44 b of the insertion hole portion 44. Is approximately the same.
  • the boundary K between the notch forming member 45 and the insertion hole 44 in the vicinity of the gate portion GP is a gap that does not allow the resin injected into the mold space CV or the like to enter.
  • the base of the notch forming member 45 is connected to a variable mechanism 50 provided outside the movable mold 42, and the notch forming member 45 can be moved back and forth by the variable mechanism 50. It is possible.
  • the variable mechanism 50 advances and retracts the notch molding member 45 in accordance with the timing of resin inflow into the mold space CV. Specifically, during resin filling, as shown in FIG. 2 (A), the movable die is moved by retracting the small-diameter portion 45a of the notch molding member 45 until the tip surface thereof coincides with the surface position of the gate portion GP. 42. On the other hand, after filling the resin, as shown in FIG. 2B, the small-diameter portion 45a is advanced into the gate portion GP so that the tip surface protrudes from the surface position of the gate portion GP, and cut into the molded product MP. A notch, that is, a convex portion F1 for forming the stress concentration portion CN is formed.
  • the length in the diameter direction perpendicular to the parting line PL of the gate portion GP of the convex portion F1 is, for example, not more than half of the diameter of the gate portion GP (preferably not less than 1/10 and not more than 1/3 of the diameter of the gate portion GP). ). If the length is longer than that, a difference in friction occurs between the lens OL and the runner portion RN when the molded product MP is taken out, and stress concentrates on the stress concentration portion CN. If it does so, a deformation
  • the notch forming member 45 has a function as an eject pin.
  • the notch forming member 45 as an eject pin is operated by a variable mechanism 50 in FIG. 4 described later, and advances to the fixed mold 41 side (B side in FIG. 1) or on the opposite side (A side in FIG. 1). It can be retreated.
  • FIG. 4 is a front view illustrating a molding apparatus for carrying out the manufacturing method of the present embodiment.
  • the illustrated molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce a molded product MP, a take-out device 20 that is an accessory part that takes out the molded product MP from the injection molding machine 10, and a molding apparatus 100. And a control device 30 for comprehensively controlling the operation of each unit constituting the.
  • the injection molding machine 10 includes a fixed platen 11, a movable platen 12, a mold clamping plate 13, an opening / closing drive device 15, and an injection device 16.
  • the injection molding machine 10 enables molding by sandwiching a movable mold 42 and a fixed mold 41 between the movable platen 12 and the fixed platen 11 and clamping both molds 41 and 42.
  • mold opening and mold closing are in the horizontal direction.
  • An injection molding machine that opens and closes the mold in the vertical direction may be used.
  • the fixed platen 11 is fixed to the center of the support frame 14 so as to face the movable platen 12, and supports the take-out device 20 on the upper part thereof.
  • the stationary platen 11 detachably supports the stationary mold 41. Note that the fixed platen 11 is fixed to the mold clamping plate 13 via a tie bar so that it can withstand the pressure of mold clamping during molding.
  • the movable platen 12 is supported by a slide guide 15a so as to be movable back and forth with respect to the fixed platen 11.
  • the movable platen 12 detachably supports the movable mold 42.
  • a variable mechanism 50 is incorporated in the movable platen 12.
  • the notch forming member 45 as the eject pin shown in FIG. 1 is operated from the variable mechanism 50 to push the lens OL of the molded product MP in the movable die 42 toward the fixed die 41, and the take-out device 20 Enable transfer.
  • the variable mechanism 50 is configured to fix the runner portion (not shown) of the molded product MP in the movable mold 42 by an eject pin (not shown) that mechanically operates in conjunction with a notch forming member 45 as an eject pin. Extrude to the mold 41 side.
  • the mold clamping machine 13 is fixed to the end of the support frame 14.
  • the mold clamping machine 13 supports the movable board 12 from the back via the power transmission part 15d of the opening / closing drive device 15 at the time of mold clamping.
  • the opening / closing drive device 15 includes a slide guide 15a, a power transmission unit 15d, and an actuator 15e.
  • the slide guide 15a supports the movable platen 12 and enables a smooth reciprocating movement in the advancing / retreating direction of the movable platen 12 with respect to the fixed platen 11.
  • the power transmission unit 15 d expands and contracts by receiving a driving force from an actuator 15 e that operates under the control of the control device 30.
  • the movable platen 12 moves toward and away from the fixed platen 11 and moves freely.
  • the fixed platen 11 and the movable platen 12 move toward and away from each other, and the fixed die 41 is movable. Mold clamping and mold opening with the mold 42 are performed.
  • the injection device 16 includes a cylinder 16a, a raw material reservoir 16b, a screw 16c, and a resin injection end 16d.
  • the injection device 16 operates at an appropriate timing under the control of the control device 30, and can discharge the molten resin from the resin injection end 16d in a temperature-controlled state.
  • the injection device 16 can detachably connect the resin injection end 16d of the cylinder 16a to the sprue portion SP (see FIG. 1) of the fixed platen 11, and is movable with the fixed mold 41 via the fixed platen 11.
  • the molten resin can be supplied at a desired timing to the flow path portion FC communicating with the mold space CV (see FIG. 1) formed in a state where the mold 42 is clamped.
  • the temperature adjusting device 17 is a part that adjusts the temperature of the molds 41 and 42 of the injection molding machine 10.
  • the temperature adjustment device 17 has a temperature adjustment circuit, and the temperature of the fixed mold 41 and the movable mold 42 can be adjusted. Specifically, for example, the fixed mold 41 and the movable mold 42 are heated to a necessary temperature by supplying a temperature adjusting medium to a fluid circulation path provided in the fixed platen 11 and the movable platen 12. The temperature may be adjusted using a heater or the like without using a medium.
  • the take-out device 20 includes a hand 21 that can hold the molded product MP and a three-dimensional drive device 22 that moves the hand 21 three-dimensionally.
  • the take-out device 20 operates at an appropriate timing under the control of the control device 30.
  • the molded product MP remaining in the movable die 42 after the fixed die 41 and the movable die 42 are separated from each other and opened. It has a role of gripping and carrying it out.
  • the control device 30 includes an opening / closing control unit 31, an injection device control unit 32, an ejector control unit 33, and a take-out device control unit 34.
  • the opening / closing control unit 31 enables the molds 41 and 42 to be clamped and opened by operating the actuator 15e.
  • the injection device controller 32 causes the resin to be injected at a desired pressure into the mold space CV formed between the molds 41 and 42 by operating the screw 16c and the like.
  • the ejector control unit 33 operates the variable mechanism 50 to push out the molded product MP remaining on the movable mold 42 from the movable mold 42 when the mold is opened.
  • the take-out device control unit 34 operates the take-out device 20 to grip the molded product MP remaining in the movable mold 42 after mold opening and mold release and carry it out of the injection molding machine 10.
  • FIG. 5 is a front view for explaining the structure of the ultrasonic breaking device 70.
  • the ultrasonic breaking device 70 includes a fixed table 71, an ultrasonic vibration horn 72, an elevating mechanism 73, an ultrasonic vibration device 74, and an ultrasonic vibration control device 75.
  • the fixed table 71 is a cylindrical table on which the molded product MP molded by the molding apparatus 100 is placed.
  • a mounting plate 76 formed of an elastic member such as rubber is provided on the upper end surface of the fixed table 71.
  • a clearance hole 76a for inserting an extension sprue SQ formed below the molded product MP is formed in the center of the fixed table 71 and the mounting plate 76.
  • the ultrasonic vibration horn 72 is a bottomed cylindrical ultrasonic vibration transmission portion provided coaxially with the fixed table 71.
  • the lower end surface 72 b of the ultrasonic vibration horn 72 is an annular contact plane orthogonal to the long axis PX of the ultrasonic vibration horn 72.
  • a sprue insertion hole 72 a into which the sprue SN of the molded product MP can be inserted is provided at the lower central portion of the ultrasonic vibration horn 72.
  • the center of the sprue insertion hole 72a of the ultrasonic vibration horn 72 and the center of the escape hole 76a of the fixed table 71 are coincident.
  • the ultrasonic vibration horn 72 is connected to the lifting mechanism 73 and the ultrasonic vibration device 74, and is lifted and lowered on the fixed table 71 by the lifting mechanism 73, and ultrasonic vibration is given by the ultrasonic vibration device 74.
  • the amplitude of the ultrasonic vibration by the ultrasonic vibration device 74 is controlled by the ultrasonic vibration control device 75.
  • FIG. 6 is a flowchart conceptually illustrating the operation of the molding apparatus 100 shown in FIG. 4 and the operation of the ultrasonic breaking apparatus 70 shown in FIG.
  • the temperature adjusting device 17 of the molding apparatus 100 is operated to heat both molds 41 and 42 to a temperature suitable for molding (step S10).
  • the opening / closing drive device 15 is operated to advance the movable platen 12 to start mold closing (step S11).
  • the movable platen 12 moves to the fixed platen 11 side to the die contact position where the fixed die 41 and the movable die 42 are in contact with each other, and the die closing is completed.
  • mold clamping is performed to clamp the fixed mold 41 and the movable mold 42 with necessary pressure (step S12).
  • step S13 first step.
  • a filling process is performed in which the mold space CV between the clamped fixed mold 41 and the movable mold 42 is filled with resin.
  • the injection molding machine 10 keeps the resin pressure in the mold space CV at a required level.
  • the variable mechanism 50 is operated to insert the notch forming member 45 into the gate part GP and form the convex part F1 on the gate part GP. (See FIG. 2B).
  • the stress concentration part CN is formed in the gate part GN of the molded product MP (step S14: second step).
  • the notch forming member 45 inserted into the gate portion GP is held as it is until it functions as an ejector pin when the molded product MP is released.
  • the mold space CV and the flow path portion FC are appropriately heated by the temperature adjusting device 17, and the molten resin supplied from the injection device 16 is gradually cooled. It waits for solidification to be completed (step S15).
  • the mold clamping is finished, and the opening / closing drive device 15 is operated to perform mold opening for retracting the movable platen 12 (step S16).
  • the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated.
  • the molded product MP that is, the lens OL is released from the fixed mold 41 while being held by the movable mold 42.
  • variable mechanism 50 is operated to eject the molded product MP (step S17). Specifically, the notch forming member 45 as an eject pin is advanced to the B side in FIG. 1, and the gate portion GN is pushed out along the AB direction with good balance. Further, the sprue portion SN and the like of the molded product MP are released from the movable mold 42 by mechanical protrusion by other eject pins (not shown) performed in conjunction with each other.
  • the take-out device 20 is operated, and a proper position of the projected molded product MP is gripped by the hand 21 and carried out to the outside (step S18). At this time, the lens OL is not separated from the molded product MP.
  • the removed molded product MP is carried into the ultrasonic breaking device 70 and set in the ultrasonic breaking device 70 as shown in FIG. 5 (step S19). That is, the molded product MP is placed on the fixed table 71 of the ultrasonic breaking device 70 and fixed by the ultrasonic vibration horn 72 lowered by the operation of the lifting mechanism 73. As a result, the runner portion RN of the molded product MP is sandwiched between the lower end surface 72 b of the ultrasonic vibration horn 72 and the mounting plate 76. In this state, the lower end surface 72b is in contact with the plurality of runner portions RN at equidistant positions from the center of the sprue portion SN of the molded product MP.
  • step S20 third step.
  • the lens OL is separated from the molded product MP almost simultaneously.
  • the notch molding member 45 is inserted into the gate portion GP after the mold space CV is filled with the resin. It is possible to prevent the stress strain from remaining in the lens OL without disturbing the flow of the lens. Thereby, deterioration of the performance of the lens OL can be prevented.
  • the gate portion GP In the case of the conventional manufacturing method, in order to form the stress concentration portion CN for breaking by ultrasonic waves, the gate portion GP needs to be tapered at a certain angle or more (Japanese Patent Laid-Open No. 2002-240108). See the official gazette). However, in order to maintain the angle of the gate portion GP to the optical element, the optical element must be minimized or the runner portion must be made large and thick. In this case, minimizing the optical element is a restriction on the size of the optical element. Further, increasing the gate portion affects the deterioration of the cycle time.
  • a high NA lens for example, NA 0.7 or more
  • a lens with a high thickness ratio a lens in which the thickness of the molded part has changed abruptly
  • the molded product MP is removed from the molding die 40 with the lens OL attached to the molded product MP in order to ensure the accuracy of the lens and efficiently collect a plurality of lenses. It is necessary to release the mold. Therefore, since the lens OL falls if the gate is cut in the molding die as in the prior art, it is not preferable to completely block the gate portion with the notch molding member 45, for example.
  • the notch molding member 45 provided near the gate part GP is changed and inserted into the gate part GP side. Is done.
  • the resin is pushed by that amount, and a molded product MP having a stress concentration portion CN is formed. Due to such a configuration, the gate portion GP is not narrowed at the time of resin injection, and the width of the gate portion GP can be ensured. Since the injected resin enters without any obstacle, the lens OL has characteristics.
  • the stress concentration portion CN is formed after the resin is filled, the stress concentration portion CN can be provided only in the vicinity of the gate portion GP. Therefore, an optical element having a high deviation ratio such as an objective lens for an optical pickup device and an imaging lens for a mobile phone can be manufactured with high accuracy.
  • the shape of the gate portion GN can be freely designed.
  • the notch molding member 45 can variably adjust the cross section of the gate portion GP. Therefore, by inserting the convex portion F1 before the gate seal, the gate seal can be performed by rapid cooling.
  • the molding die according to the second embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
  • FIG. 7A is a cross-sectional view around the mold space CV of the molding die 140 composed of the fixed die 41 and the movable die 42, and FIG. 7B shows the gate when the stress concentration portion is formed. It is sectional drawing of the part GP.
  • the fixed mold 41 is provided with an insertion hole 44A and a notch forming member 45A.
  • the movable mold 42 is provided with an insertion hole 44B and a notch forming member 45B.
  • the insertion holes 44A and 44B and the notch forming members 45A and 45B of the molds 41 and 42 are arranged at positions facing each other.
  • the insertion hole 44B and the notch forming member 45B of the movable mold 42 correspond to the insertion hole 44 and the notch forming member 45 of the first embodiment.
  • the insertion hole 44A and the notch forming member 45A of the fixed mold 41 have the same structure as the insertion hole 44 and the notch forming member 45 of the first embodiment.
  • a separate variable mechanism is also connected to the notch forming member 45A, and the notch forming member 45A can advance and retreat in the insertion hole 44A.
  • the notch forming members 45A and 45B enter the gate portion GP, and form a pair of opposed convex portions F1 on the gate portion GP as shown in FIG. 7B. Thereby, the stress concentration part which made the flow path cross-section thinner can be formed.
  • the total length in the diameter direction perpendicular to the parting line PL of the gate portion GP of the pair of convex portions F1 is, for example, less than half the diameter of the gate portion GP (preferably 1 / diameter of the diameter of the gate portion GP). 10 to 1/3).
  • the molding die according to the third embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
  • FIG. 8A is a view of the movable mold 42 around the mold space CV of the molding mold 240 constituted by the fixed mold 41 and the movable mold 42 as seen from the fixed mold 41 side.
  • FIG. 8B is a CC cross-sectional view of the gate portion GP before the stress concentration portion is formed
  • FIG. 8C is a CC cross-sectional view of the gate portion GP when the stress concentration portion is formed.
  • the movable mold 42 is provided with two insertion holes 44C and 44D and two notch forming members 45C and 45D perpendicular to the parting line PL with the gate portion GP interposed therebetween.
  • the insertion holes 44C and 44D and the notch forming members 45C and 45D are arranged at positions facing each other with the gate portion GP interposed therebetween.
  • the shapes of the insertion hole portions 44C and 44D and the notch forming members 45C and 45D are triangular prisms, and the flat surface portion E1 substantially coincides with the tangent line of the gate recess portion S6 of the gate portion GP. Further, the shapes of the insertion holes 44C and 44D and the notch forming members 45C and 45D are triangular on the center side of the gate portion GP when viewed from the fixed mold 41 side (see FIG. 8A). ). In the present embodiment, the shape of the gate portion GP is such that the side portions of the gate portion GP are notched forming members 45C so that the notched members 45C and 45D are inserted into the gate portion GP when the stress concentration portion is formed. , 45D (see FIG. 8B, etc.).
  • the notch forming members 45C and 45D enter the gate portion GP, and form a pair of opposed convex portions F1 on the gate portion GP as shown in FIG. 8C. Thereby, the stress concentration part which made the flow path cross-section thinner can be formed.
  • the total length of the pair of convex portions F1 in the diametrical direction parallel to the parting line PL of the gate portion GP is, for example, not more than half of the diameter of the gate portion GP (preferably 1 / diameter of the diameter of the gate portion GP). 10 to 1/3).
  • the molding die according to the fourth embodiment will be described below. Note that the molding die according to the fourth embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
  • FIG. 9A is a view of the movable mold 42 around the mold space CV of the molding mold 340 composed of the fixed mold 41 and the movable mold 42 as seen from the fixed mold 41 side.
  • (B) is CC sectional drawing of the gate part GP at the time of stress concentration part formation.
  • the movable mold 42 is provided with one insertion hole 44 and a notch forming member 45.
  • the center axis QX of the insertion hole 44 and the notch forming member 45 is perpendicular to the parting line PL and is orthogonal to the center axis TX of the gate portion GP.
  • the diameters of the insertion hole 44 and the notch molding member 45 are smaller than the diameter of the gate portion GP so that the lens OL is not cut when the molded product MP is released.
  • the notch forming member 45 enters the gate portion GP and forms a convex portion F1 that connects the pair of side surfaces of the gate portion GP as shown in FIG. 9B.
  • the length of the convex portion F1 in the diametrical direction parallel to the parting line PL of the gate portion GP is, for example, not more than half the diameter of the gate portion GP (preferably not less than 1/10 of the diameter of the gate portion GP and 1 / 3 or less).
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the notch forming member 45 is inserted into the gate part GP before the gate seal, but as shown in FIG. 10, the notch forming member 45 is inserted into the gate part GP after the gate seal.
  • the gate seal standby (step S21) is performed after the resin injection (step S13), and the stress concentration portion is formed after the resin of the gate portion GP is cured to some extent (step S14).
  • the gate portion GN is hardened to some extent, even if pressure is applied to the notch forming member 45, the influence of the pressure on the lens OL can be reduced.
  • the shape of the tip of the notch forming member 45 is not limited to that shown in the above embodiment, and the cross-sectional shape can be a triangle, a circle, or the like, or the tip can be a pointed shape, a bulb, or the like.
  • the shape of the mold space CV provided in the molding die 40 or the like composed of the fixed die 41 and the movable die 42 is not limited to the illustrated shape, and can be various shapes. That is, the shape of the mold space CV is merely an example, and can be appropriately changed according to the use of the lens OL.
  • the injection molding machine 10 may be, for example, a hydraulic type or an electric type as long as it can open and close the molding die 40 and the like.
  • the lens OL is not limited to plastic, and a glass lens can be manufactured by the molding apparatus 100 incorporating the same molds 41 and 42 and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 型空間CVに樹脂を充填後に切欠き成形用部材45をゲート部分GPに挿入することにより、成形品MPのゲート部GNの一部に応力集中部CNを形成することができる。この際、型空間CVに樹脂を充填後に切欠き成形用部材45がゲート部分GPに設けられるため、樹脂充填中に切欠き成形用部材45が樹脂の流動を妨げることを防ぐことができる。そのため、レンズOL内に応力歪みが残ることを抑えることができ、レンズOLの性能の悪化を防ぐことができる。

Description

光学素子の製造方法及び成形金型
 本発明は、光学素子の製造方法及び成形金型に関する。
 光学素子の製造方法として、第1の金型と第2の金型とによって形成されたキャビティ(金型部)内に樹脂を射出して成形を行い、金型部から成形品を離型した後に、超音波ゲート破断法により応力が集中する成形品のゲート部を破断するものが存在する(例えば、特許文献1参照)。この方法は、複数の光学素子を同時カットできる点で優れている。
特開2002-240108号公報
 しかしながら、特許文献1のような方法では、ゲート部に対応する金型部のゲート部分に応力集中部を形成する必要があり、例えばゲート部形状を光学素子に向かって小さくした先細り形状となる金型部材を予め金型部に設ける必要がある。そのため、この金型部材によりゲート部分を流れる樹脂の流動性が悪化するという問題がある。また、応力集中部のための金型部材を金型部に設けると、成形した際に光学素子側に応力が残るため光学素子の性能が悪化するという問題がある。特に、例えば光ピックアップ装置用の対物レンズや携帯電話用の撮像レンズ等の像側開口数NAが0.8以上の高NAのレンズの成形においては、レンズを精度よく成形しないとレンズの光学性能に顕著に影響するという問題があり、流路を狭める応力集中用の金型部材を設けないことが望ましい。
 そこで、本発明は、ゲート部分の樹脂の流動性悪化を防ぎつつ、応力集中部を形成することができるレンズ等の光学素子の製造方法を提供することを目的とする。
 また、本発明は、上記光学素子の製造方法の実施に適する成形金型を提供することを目的とする。
 上記課題を解決するため、本発明に係る光学素子の製造方法は、第1金型と第2金型とで構成される金型部内に形成された成形品のうち光学素子に対応する光学素子部分の樹脂成形空間に、溶融させた樹脂を射出する第1工程と、樹脂を光学素子部分の樹脂成形空間に充填した後であって、第1金型と第2金型との型開きまでの間に、光学素子部分に連通するとともに金型部内に形成された成形品のゲート部に対応するゲート部分の一部において凸部を有する切欠き成形用部材を、ゲート部分において樹脂流通空間側に挿入し成形を行う第2工程と、第1金型と第2金型とを離間し、第1金型及び第2金型から成形品を取り出した後、超音波破断装置により成形品から光学素子を切断する第3工程と、を備える。
 上記光学素子の製造方法によれば、第2工程において、樹脂成形空間に樹脂を充填後に切欠き成形用部材を樹脂流路空間に挿入することにより、成形品のゲート部の一部に応力集中部を形成することができる。この際、樹脂成形空間に樹脂を充填後に切欠き成形用部材が樹脂流路空間に設けられるため、樹脂充填中に切欠き成形用部材が樹脂の流動を妨げることを防ぐことができる。そのため、光学素子内に応力歪みが残ることを抑えることができ、光学素子の性能の悪化を防ぐことができる。ここで、応力集中部とは、成形品のゲート部付近にできる切欠き状の部分のことをいう。すなわち、破断をさせるために応力を集中させる部分(凹み)をいう。
 本発明の具体的な態様又は観点では、ゲート部分の形状は、円柱状であることを特徴とする。この場合、ゲート部分における安定した樹脂流動性を確保することができる。
 本発明の別の態様では、切欠き成形用部材は、可変機構によってゲート部分において樹脂流通空間に進退することを特徴とする。この場合、樹脂成形空間及び樹脂流通空間内に樹脂が充填されるまで、可変機構によって切欠き成形用部材を後退させることで、樹脂流動性を妨げることなく樹脂を充填することができる。また、樹脂を充填後は可変機構によって切欠き成形用部材を前進させることで、ゲート部の一部に所望のサイズの応力集中部を形成することができる。
 本発明のさらに別の態様では、切欠き成形用部材は、ゲート部分の一対の対向する側面部分から進退することを特徴とする。この場合、ゲート部分の一対の対向する側面部分に切欠き成形用部材を設けることにより、より流路断面を細くした応力集中部を形成することができる。
 本発明のさらに別の態様では、切欠き成形用部材は、樹脂が樹脂成形空間及び樹脂流通空間内に充填された後、ゲートシール前に挿入されることを特徴とする。この場合、ゲート部分の樹脂が硬化していないため、ゲート部分における樹脂変形の負荷が少なくなり切欠き成形用部材を容易に挿入することができる。また、挿入した切欠き成形用部材によりゲート部分の断面積が小さくなりゲートシールを通常よりも早く形成することができる。
 本発明のさらに別の態様では、切欠き成形用部材は、樹脂が樹脂成形空間及び樹脂流通空間内に充填された後、ゲートシール後に挿入されることを特徴とする。この場合、ゲートシール後に切欠き成形用部材を挿入することにより、切欠き成形用部材の挿入時の圧力が樹脂成形空間側に伝わりにくくなり、光学素子への圧力の影響を極力少なくすることができる。
 本発明のさらに別の態様では、切欠き成形用部材は、第1金型から成形品が離型されるまで樹脂流通空間側に挿入された状態で保持され、成形品を第1金型から離型させる際に成形品を突き出すエジェクタピンとして兼用されることを特徴とする。この場合、切欠き成形用部材とエジェクタピンとを兼用にすることにより、離型まで切欠き成形用部材を押し込んだまま進退させないことで、切欠き成形用部材の金型部からの抜けが悪くなることや光学素子の変形を防止することができる。
 本発明のさらに別の態様では、切欠き成形用部材は、断熱材で形成されていることを特徴とする。この場合、断熱材により樹脂の熱が逃げにくく急激な硬化に至らないため、切欠き成形用部材を挿入しても応力を緩和しつつ樹脂を硬化させることができる。なお、切欠き成形用部材は部分的に断熱材で形成されていてもよい。
 本発明に係る成形金型は、射出成形機の射出ノズルに接続可能であるとともに成形品のスプル部に対応するスプル部分と、スプル部分から放射線状に延びるとともに成形品の複数のランナ部に対応するランナ部分と、ランナ部分の先に設けられるとともに成形品のゲート部に対応するゲート部分と、ゲート部分の先に設けられるとともに成形品の光学素子に対応する光学素子部分と、ゲート部分において樹脂流通空間側に進退可能な切欠き成形用部材と、を備え、切欠き成形用部材がゲート部分において樹脂流通空間側に進入した状態においてゲート部分の一部に凸部が形成される。
 上記成形金型によれば、樹脂成形空間に樹脂を充填後に切欠き成形用部材を樹脂流路空間に挿入することにより、樹脂充填中に切欠き成形用部材によって樹脂流動性が妨げられるのを防ぐことができる。これにより、光学素子の性能の悪化を防ぎつつ、ゲート部の一部に応力集中部を形成することができる。
第1実施形態の成形金型の構造を説明する側断面図である。 (A)、(B)は、図1の成形金型の拡大断面図である。 (A)は、成形品の断面図であり、(B)は、レンズの側断面図である。 成形装置を説明する正面図である。 超音波破断装置を説明する正面図である。 図4の成形装置及び図5の超音波破断装置の動作を説明するフローチャートである。 (A)、(B)は、第2実施形態の光学素子成形金型を説明する図である。 (A)~(C)は、第3実施形態の光学素子成形金型を説明する図である。 (A)、(B)は、第4実施形態の光学素子成形金型を説明する図である。 図6の成形装置及び超音波破断装置の動作の変形例を示す図である。
 〔第1実施形態〕
 以下、本発明の第1実施形態である光学素子の製造方法及び成形金型について、図面を参照しつつ説明する。
 図1は、成形金型40の構造を説明する側断面図であり、図2(A)は、図1のP1部分の拡大断面図であり、図2(B)は、応力集中部形成時のゲート部分GPの拡大断面図である。図3(A)は、図1に示す成形金型40によって成形される成形品MPの断面図であり、図3(B)は、図3(A)の成形品MPから切断したレンズOLの側断面図である。
 図1に示すように、本実施形態の成形金型40は、固定金型41と可動金型42とを備える。固定金型41と可動金型42とは、パーティングラインPLを境として開閉可能になっている。
 図1及び図2(A)に示すように、固定金型41と可動金型42とを型合わせして型締めを行うことにより、図3(B)に示すレンズOLを成形するための樹脂成形空間である型空間CVが形成されるとともに、各型空間CVに樹脂を供給するための樹脂流通空間である流路部分FCが形成される。型空間CVは、一対の光学転写面S1,S2に挟まれた本体空間CV1と、一対の周縁転写面S3,S4に囲まれたフランジ空間CV2とを備える。また、流路部分FCは、成形品MPのスプル部SNと、ランナ部RNと、ゲート部GNとにそれぞれ対応するスプル部分SPと、ランナ部分RPと、ゲート部分GPとで構成される。図面では省略しているが、この成形金型40によって射出成形される成形品MPは、複数のレンズOLを含むものであり、成形品MPに対応する樹脂充填用の空間は、スプル部分SPからランナ部分RPが複数に分岐し、分岐した各ランナ部分RPの先端部にゲート部分GPを介して型空間CVが連通する構造となっている。各ランナ部分RPと、各ゲート部分GPと、各型空間CVとは、各スプル部分SPの中心から等距離に配置されている。なお、スプル部分SPに対向するランナ部分RPには後述する延長スプルSQに対応する延長スプル部分SSが形成されている。
 両金型41,42に挟まれた空間である型空間CVは、成形品MPの光学素子としてのレンズOL(図3等参照)の形状に対応するものとなっている。レンズOLは、プラスチック製で、光学的機能を有する光学的機能部としての中心部OLaと、中心部OLaから外径方向に延在する環状のフランジ部OLbとを備える。中心部OLaは、本体空間CV1に対応し、フランジ部OLbは、フランジ空間CV2に対応する。このレンズOLは、例えば光ピックアップ装置用の対物レンズであり、偏肉比(光学素子の肉厚が急激に変化した状態)が高く、BD、DVD及びCDに対して互換可能で、BD用の波長の光束に対してNA0.85を満たすレンズである。
 図2(A)に示すように、固定金型41は、可動金型42に対向する型面に、レンズOLの光学面OS1に対応する部分である円形の光学転写面S1と、レンズOLのフランジ部FL1に対応する部分であり光学転写面S1の外周を囲うような環状の周縁転写面S3と、ゲート部分GPに対応する部分であるゲート凹部S5と、ランナ部分RPに対応する部分である溝状のランナ凹部S7とを備える。また、固定金型41の中央には、樹脂を注入するためのスプル部分SPが形成されている(図1参照)。
 可動金型42は、固定金型41の場合と同様に、固定金型41に対向する型面に、レンズOLの光学面OS2に対応する部分である円形の光学転写面S2と、レンズOLのフランジ部FL2に対応する部分であり光学転写面S2の外周を囲うような環状の周縁転写面S4と、ゲート部分GPに対応する部分であるゲート凹部S6と、ランナ部分RPに対応する部分である溝状のランナ凹部S8とを備える。また、固定金型41の中央には、延長スプル部分SSが形成されている(図1参照)。
 また、図1に示すように、可動金型42は、挿入孔部44と、切欠き成形用部材45とをさらに備える。
 挿入孔部44は、切欠き成形用部材45を挿入するための構造となっており、型空間CVとゲート部分GPとの境界付近から可動金型42の後端面側(図1のA側)に貫通して形成された円柱状の空間である。図2(A)に示すように、挿入孔部44は、ゲート凹部S6側の小径挿入孔部44aと可動金型42の後端面側の大径挿入孔部44bとで構成され、ゲート凹部S6側が段階的に細くなっている。また、切欠き成形用部材45が挿入孔部44内を進退可能となるように、挿入孔部44の小径挿入孔部44aのAB方向の長さは、切欠き成形用部材45の小径部45aの長さより短くなっている。
 切欠き成形用部材45は、可動金型42のゲート凹部S6、すなわちゲート部分GPの一部に設けられており、成形品MPのゲート部GNに応力集中部CNを形成するためのものである。図2(A)に示すように、切欠き成形用部材45は、ゲート凹部S6側の小径部45aと可動金型42後端面側の大径部45bとで構成され、ゲート凹部S6側が段階的に細くなる円柱状の形状となっている。切欠き成形用部材45は、応力集中部CNを形成する際に、ゲート部分GPに進入し、ゲート部分GPに円柱状の凸部を形成する。なお、後述する切欠き成形用部材45は、切欠き成形用部材45付近の樹脂が急激に硬化しないようにするため、断熱材で形成されている。断熱材は、例えば、周囲の可動金型42が低炭素鋼やステンレス鋼等で形成されている場合、これよりも熱伝導率の低い低熱伝導材料である。低熱伝導材料には、例えば6-4Ti等の金属材料、ポリイミド等の樹脂材料、ジルコニアやアルミナ等のセラミックスが用いられる。
 切欠き成形用部材45は、上述のように挿入孔部44に挿入されており、挿入孔部44内で進退可能となっている。ここで、小径部45aの外径は、挿入孔部44の小径挿入孔部44aの内径と略一致し、大径部45bの外径は、挿入孔部44の大径挿入孔部44bの内径と略一致する。また、ゲート部分GP付近における切欠き成形用部材45と挿入孔部44との境界Kは、型空間CV等に注入した樹脂が入り込まない程度の隙間となっている。
 図1に示すように、切欠き成形用部材45の根元は、可動金型42の外部に設けられた可変機構50に連結されており、可変機構50によって切欠き成形用部材45の進退動作が可能となっている。
 可変機構50は、型空間CV内への樹脂流入のタイミングに合わせて、切欠き成形用部材45を進退させる。具体的には、樹脂充填中は、図2(A)に示すように、切欠き成形用部材45の小径部45aをその先端面がゲート部分GPの面位置と一致するまで退避させ可動金型42内に配置する。一方、樹脂充填後は、図2(B)に示すように、小径部45aをその先端面がゲート部分GPの面位置よりも突起するようにゲート部分GP内に進入させ、成形品MPに切欠き、すなわち応力集中部CNを形成するための凸部F1を形成する。この凸部F1のゲート部分GPのパーティングラインPLに垂直な直径方向の長さは、例えば、ゲート部分GPの直径の半分以下(好ましくはゲート部分GPの直径の1/10以上1/3以下)となっている。それ以上の長さとなると、成形品MPの取り出し時にレンズOLとランナ部RN等に摩擦の差が生じ、応力集中部CNに応力が集中することとなる。そうすると、レンズOLやその周辺に変形や破損が生じてしまい、レンズOLを成形品MPとともに取り出せなくなったり、レンズ性能に影響が生じてしまったりする可能性が高まる。
 また、切欠き成形用部材45は、エジェクトピンとしての機能を有する。エジェクトピンとしての切欠き成形用部材45は、後述する図4の可変機構50により動作され、固定金型41側(図1のB側)に前進したり反対側(図1のA側)に後退させたりすることができる。
 図4は、本実施形態の製造方法を実施するための成形装置を説明する正面図である。図示の成形装置100は、射出成形を行って成形品MPを作製する本体部分である射出成形機10と、射出成形機10から成形品MPを取り出す付属部分である取出し装置20と、成形装置100を構成する各部の動作を統括的に制御する制御装置30とを備える。
 射出成形機10は、固定盤11と、可動盤12と、型締め盤13と、開閉駆動装置15と、射出装置16とを備える。射出成形機10は、可動盤12と固定盤11との間に可動金型42と固定金型41とを挟持して両金型41,42を型締めすることにより成形を可能にする。ここで、射出成形機10は、型開き及び型閉じが横方向となっている。なお、縦方向に型開き及び型閉じするタイプの射出成形機を用いてもよい。
 固定盤11は、可動盤12に対向して支持フレーム14の中央に固定されており、取出し装置20をその上部に支持する。固定盤11は、固定金型41を着脱可能に支持している。なお、固定盤11は、タイバーを介して型締め盤13に固定されており、成形時の型締めの圧力に耐え得るようになっている。
 可動盤12は、スライドガイド15aによって固定盤11に対して進退移動可能に支持されている。可動盤12は、可動金型42を着脱可能に支持している。可動盤12には、可変機構50が組み込まれている。この可変機構50より図1のエジェクトピンとしての切欠き成形用部材45を動作させ、可動金型42内の成形品MPのレンズOLを固定金型41側に押し出すことができ、取出し装置20による移送を可能にする。また、可変機構50は、可動金型42内の成形品MPの不図示のランナ部を、エジェクトピンとしての切欠き成形用部材45に連動してメカニカルに動作する不図示のエジェクトピンによって固定金型41側に押し出す。
 型締め盤13は、支持フレーム14の端部に固定されている。型締め盤13は、型締めに際して、開閉駆動装置15の動力伝達部15dを介して可動盤12をその背後から支持する。
 開閉駆動装置15は、スライドガイド15aと、動力伝達部15dと、アクチュエータ15eとを備える。スライドガイド15aは、可動盤12を支持するとともに可動盤12の固定盤11に対する進退方向に関する滑らかな往復移動を可能にしている。動力伝達部15dは、制御装置30の制御下で動作するアクチュエータ15eからの駆動力を受けて伸縮する。これにより、固定盤11に対して可動盤12が近接したり離間したり自在に進退移動し、結果的に、固定盤11と可動盤12とを互いに近接・離間して固定金型41と可動金型42との型締め及び型開きを行う。
 射出装置16は、シリンダ16a、原料貯留部16b、スクリュ16c、樹脂射出端16dを備える。射出装置16は、制御装置30の制御下で適当なタイミングで動作するものであり、樹脂射出端16dから温度制御された状態で溶融樹脂を吐出することができる。射出装置16は、シリンダ16aの樹脂射出端16dを固定盤11のスプル部分SP(図1参照)に対して分離可能に接続することができ、固定盤11を介して、固定金型41と可動金型42とを型締めした状態で形成される型空間CV(図1参照)に連通する流路部分FCに対して溶融樹脂を所望のタイミングで供給することができる。
 温度調節装置17は、射出成形機10の金型41,42の温度を調節する部分である。温度調節装置17は、温調回路を有しており、固定金型41と可動金型42との温度調節が可能になっている。具体的には、例えば固定盤11と可動盤12とに設けた流体循環路に温度調節媒体を供給することにより、固定金型41と可動金型42とを必要な温度まで加熱する。なお、媒体を用いずにヒータ等を用いて温度調節をしてもよい。
 取出し装置20は、成形品MPを把持することができるハンド21と、ハンド21を3次元的に移動させる3次元駆動装置22とを備える。取出し装置20は、制御装置30の制御下で適当なタイミングで動作するものであり、固定金型41と可動金型42とを離間させて型開きした後に、可動金型42に残る成形品MPを把持して外部に搬出する役割を有する。
 制御装置30は、開閉制御部31と、射出装置制御部32と、エジェクタ制御部33と、取出し装置制御部34とを備える。開閉制御部31は、アクチュエータ15eを動作させることによって両金型41,42の型締めや型開きを可能にする。射出装置制御部32は、スクリュ16c等を動作させることによって両金型41,42間に形成された型空間CV中に所望の圧力で樹脂を注入させる。エジェクタ制御部33は、可変機構50を動作させることによって型開き時に可動金型42に残る成形品MPを可動金型42内から押し出させる。取出し装置制御部34は、取出し装置20を動作させることによって型開き及び離型後に可動金型42に残る成形品MPを把持して射出成形機10外に搬出させる。
 図5は、超音波破断装置70の構造を説明する正面図である。
 超音波破断装置70は、固定テーブル71と、超音波振動ホーン72と、昇降機構73と、超音波振動装置74と、超音波振動制御装置75とを備える。
 固定テーブル71は、成形装置100によって成形された成形品MPを載置する円筒状の台である。固定テーブル71の上端面には、ゴム等の弾性部材で形成された載置板76が設けられている。固定テーブル71と載置板76と中心部には、成形品MPの下方に形成された延長スプルSQを挿入する逃げ穴76aが形成されている。この延長スプルSQを逃げ穴76aに挿入することにより、成形品MPのスプル部SNが上方に向いた状態で載置された状態となる。
 超音波振動ホーン72は、固定テーブル71の同軸上に設けられた有底円筒形状の超音波振動伝達部である。超音波振動ホーン72の下端面72bは、超音波振動ホーン72の長軸PXに直交する環状の当接平面となっている。超音波振動ホーン72の下方中心部には、成形品MPのスプル部SNを挿入可能なスプル挿入穴72aが設けられている。なお、超音波振動ホーン72のスプル挿入穴72aの中心と固定テーブル71の逃げ穴76aの中心は一致している。
 超音波振動ホーン72は、昇降機構73と超音波振動装置74に接続されており、昇降機構73により固定テーブル71上で昇降し、超音波振動装置74により超音波振動が与えられる。この超音波振動装置74による超音波振動の振幅等は超音波振動制御装置75によって制御されている。
 図6は、図4に示す成形装置100の動作及び図5に示す超音波破断装置70の動作を概念的に説明するフローチャートである。
 まず、成形装置100の温度調節装置17を動作させ、両金型41,42を成形に適する温度まで加熱する(ステップS10)。
 次に、開閉駆動装置15を動作させ、可動盤12を前進させて型閉じを開始させる(ステップS11)。開閉駆動装置15の閉動作を継続することにより、固定金型41と可動金型42とが接触する型当たり位置まで可動盤12が固定盤11側に移動して型閉じが完了し、開閉駆動装置15の閉動作を更に継続することにより、固定金型41と可動金型42とを必要な圧力で締め付ける型締めが行われる(ステップS12)。
 型締め後、射出成形機10において、射出装置16を動作させて、型締めされた固定金型41と可動金型42との間の型空間CV中に、加熱された溶融樹脂を必要な圧力で注入する射出を行わせる(ステップS13:第1工程)。これにより、型締めされた固定金型41と可動金型42との間の型空間CV中に樹脂が充填される充填工程が行われる。
 充填工程後、射出成形機10は、型空間CV中の樹脂圧を必要なレベルに保つ。この際、ゲート部分GPの樹脂が硬化する前、すなわちゲートシール前に、可変機構50を動作させ、ゲート部分GP内に切欠き成形用部材45を挿入し、ゲート部分GPに凸部F1を形成する(図2(B)参照)。これにより、成形品MPのゲート部GNに応力集中部CNが形成される(ステップS14:第2工程)。なお、ゲート部分GPに挿入した切欠き成形用部材45は、成形品MPの離型時にエジェエクタピンとして機能するまで、そのままの状態で保持される。
 成形金型40は、温度調節装置17により、型空間CVや流路部分FCが適度に加熱されており、射出装置16から供給される溶融樹脂が緩やかに冷却され、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ(ステップS15)。
 成形完了後、型締めを終了し、開閉駆動装置15を動作させて、可動盤12を後退させる型開きが行われる(ステップS16)。これに伴って、可動金型42が後退し、固定金型41と可動金型42とが離間する。この結果、成形品MP、すなわちレンズOLは、可動金型42に保持された状態で固定金型41から離型される。
 次に、射出成形機10において、可変機構50を動作させて、成形品MPの突き出しを行わせる(ステップS17)。具体的には、エジェクトピンとしての切欠き成形用部材45を図1のB側に前進させ、ゲート部GNをAB方向に沿ってバランス良く押し出す。また、成形品MPのスプル部SN等は、連動して行われる他のエジェクトピン(不図示)によるメカニカルな突き出しによって可動金型42から離型される。
 成形品MPを可動金型42から離型した後、取出し装置20を動作させて、突き出された成形品MPの適所をハンド21で把持して外部に搬出する(ステップS18)。この際、レンズOLは成形品MPから切り離されていない状態である。
 次に、取り出された成形品MPは、超音波破断装置70に搬入され、図5に示すように超音波破断装置70にセットされる(ステップS19)。すなわち、成形品MPは、超音波破断装置70の固定テーブル71上に載置され、昇降機構73の動作により降下した超音波振動ホーン72により固定される。これにより、超音波振動ホーン72の下端面72bと載置板76との間に成形品MPのランナ部RNが挟着される。この状態において、下端面72bは、成形品MPのスプル部SNの中心からの等距離位置で複数のランナ部RNに接触している。
 成形品MPを超音波破断装置70にセットした後、超音波振動装置74を介して超音波振動ホーン72に超音波振動を与え、応力集中部CNを形成した成形品MPのゲート部GNを応力集中部CNの位置で破断する(ステップS20:第3工程)。この際、複数のランナ部RNがスプル部SNから等距離に下端面72bに接触しているため、レンズOLは、ほとんど同時に成形品MPから分離される。
 以上説明した光学素子成形金型及び光学素子の製造方法によれば、型空間CVに樹脂を充填後に切欠き成形用部材45をゲート部分GPに挿入することにより、切欠き成形用部材45が樹脂の流動を妨げず、レンズOL内に応力歪みが残ることを抑えることができる。これにより、レンズOLの性能の悪化を防ぐことができる。
 なお、従来型の製造方法の場合、超音波による破断のための応力集中部CNを形成させるためには、ゲート部分GPが一定以上の角度で先細りになる必要がある(特開2002-240108号公報参照)。しかし、ゲート部分GPの光学素子への角度を維持しようとするためには、光学素子を極小とするか、もしくはランナ部分を大きく太くしなくてはならない。この場合、光学素子を極小とすることは光学素子のサイズの制約となる。また、ゲート部分を大きくすることはサイクルタイムの悪化に影響する。すなわち、ゲート部分を大きくするとゲートシールに影響し、樹脂が冷えないと成形品が成形金型から取り出せないためサイクルタイムが悪くなる。また、別の従来型の製造方法のように、金型内でゲート部分に切れ目を入れる等しても(特開平6-305745号公報参照)、樹脂流動性が悪くなり光学素子の性能が悪化する。そのため、特に例えば光ピックアップ装置用対物レンズや携帯電話用撮像レンズといった偏肉比の高いレンズ(成形部品の肉厚が急激に変化したレンズ)である高NAレンズ(例えば、NA0.7以上)等が作製できない。高NAレンズを成形する場合、応力集中部の流動性が悪くなり、樹脂が応力集中部の一点に集中するため歪みが生じやすくなる。ゲート部付近の歪みや変形は、非点収差に影響を与えるため、レンズの性能が悪くなる。
 また、レンズOLのような光学レンズの場合、レンズの精度の確保や複数のレンズの効率のよい回収といった理由から、成形品MPにレンズOLがついた状態で成形品MPを成形金型40から離型する必要がある。そのため、従来のように成形金型内でゲートカットしてしまうとレンズOLが落下してしまうため、例えば切欠き成形用部材45でゲート部分を完全に塞いでしまうのは好ましくない。
 一方、本発明に係る光学素子の製造方法において、型空間CV及びゲート部分GPに樹脂を充填した後、ゲート部分GP付近に設けられた切欠き成形用部材45が可変しゲート部分GP側に挿入される。樹脂はその分押しのけられ、応力集中部CNを有する成形品MPが成形される。このような構成となっているため、樹脂射出時にはゲート部分GPが狭くなることがなくゲート部分GPの広さを確保することができ、障害がなく射出された樹脂が入り込むためレンズOLには特性を劣化させるような影響が生じにくくなる。また、樹脂充填後に応力集中部CNができるため、ゲート部分GP付近のみ応力集中部CNを設けることができる。そのため、光ピックアップ装置用対物レンズや携帯電話用撮像レンズ等の偏肉比の高い光学素子を精度よく作製することができる。
 また、本発明では、切欠き成形用部材45を樹脂充填後に挿入するため、ゲート部GNの形状を自由に設計することができる。
 また、切欠き成形用部材45は、可変にゲート部分GPの断面を調節することができる。そのため、ゲートシール前に凸部F1を挿入することにより急冷させゲートシールさせることができる。
 以上のことにより、例えばBD用レンズやHD-DVD用レンズといった曲率が大きいレンズを製造する場合に光学面の転写性を向上することができる。また、光路差付与構造を有する光学素子や小径の光学素子の製造についても同様である。
 〔第2実施形態〕
 以下、第2実施形態に係る成形金型について説明する。なお、第2実施形態に係る成形金型は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図7(A)は、固定金型41と可動金型42とで構成される成形金型140の型空間CV周辺の断面図であり、図7(B)は、応力集中部形成時のゲート部分GPの断面図である。
 第2実施形態において、固定金型41には、挿入孔部44Aと切欠き成形用部材45Aとが設けられている。また、可動金型42には、挿入孔部44Bと切欠き成形用部材45Bとが設けられている。両金型41,42の挿入孔部44A,44Bと切欠き成形用部材45A,45Bは互いに対向する位置に配置されている。ここで、可動金型42の挿入孔部44Bと切欠き成形用部材45Bは、第1実施形態の挿入孔部44と切欠き成形用部材45に対応する。一方、固定金型41の挿入孔部44Aと切欠き成形用部材45Aは、第1実施形態の挿入孔部44と切欠き成形用部材45と同様の構造となっている。本実施形態では、切欠き成形用部材45Aにも別途可変機構が連結され、切欠き成形用部材45Aは挿入孔部44A内を進退可能となっている。
 応力集中部形成時において、切欠き成形用部材45A,45Bはゲート部分GPに進入し、図7(B)に示すように、ゲート部分GPに一対の対向する凸部F1を形成する。これにより、より流路断面を細くした応力集中部を形成することができる。なお、この一対の凸部F1のゲート部分GPのパーティングラインPLに垂直な直径方向の合計の長さは、例えば、ゲート部分GPの直径の半分以下(好ましくはゲート部分GPの直径の1/10以上1/3以下)となっている。
 〔第3実施形態〕
 以下、第3実施形態に係る成形金型について説明する。なお、第3実施形態に係る成形金型は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図8(A)は、固定金型41と可動金型42とで構成される成形金型240の型空間CV周辺の可動金型42を固定金型41側から見た図であり、図8(B)は、応力集中部形成前のゲート部分GPのCC断面図であり、図8(C)は、応力集中部形成時のゲート部分GPのCC断面図である。
 第3実施形態において、可動金型42には、ゲート部分GPを挟んで2つの挿入孔部44C,44Dと2つの切欠き成形用部材45C,45DとがパーティングラインPLに垂直に設けられている。言い換えると、挿入孔部44C,44Dと切欠き成形用部材45C,45Dとは、ゲート部分GPを挟んで互いに対向する位置に配置されている。
 挿入孔部44C,44Dと切欠き成形用部材45C,45Dの形状は、三角柱であり、その平面部E1はゲート部分GPのゲート凹部S6の接線と略一致する。また、挿入孔部44C,44Dと切欠き成形用部材45C,45Dの形状は、固定金型41側から見ると、ゲート部分GPの中心側で三角形状となっている(図8(A)参照)。なお、本実施形態において、ゲート部分GPの形状は、応力集中部形成時に切欠き成形用部材45C,45Dがゲート部分GPに挿入されるよう、ゲート部分GPの側面部分が切欠き成形用部材45C,45Dの形状に沿ったものとなっている(図8(B)等参照)。
 応力集中部形成時において、切欠き成形用部材45C,45Dはゲート部分GPに進入し、図8(C)に示すようにゲート部分GPに一対の対向する凸部F1を形成する。これにより、より流路断面を細くした応力集中部を形成することができる。なお、この一対の凸部F1のゲート部分GPのパーティングラインPLに平行な直径方向の合計の長さは、例えば、ゲート部分GPの直径の半分以下(好ましくはゲート部分GPの直径の1/10以上1/3以下)となっている。
 〔第4実施形態〕
 以下、第4実施形態に係る成形金型について説明する。なお、第4実施形態に係る成形金型は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図9(A)は、固定金型41と可動金型42とで構成される成形金型340の型空間CV周辺の可動金型42を固定金型41側から見た図であり、図9(B)は、応力集中部形成時のゲート部分GPのCC断面図である。第4実施形態において、可動金型42には、1つの挿入孔部44と切欠き成形用部材45とが設けられている。挿入孔部44と切欠き成形用部材45の中心軸QXは、パーティングラインPLに垂直であり、ゲート部分GPの中心軸TXと直交する。挿入孔部44と切欠き成形用部材45の直径は、成形品MPの離型時にレンズOLが切断されないようにゲート部分GPの直径よりも小さいものとなっている。
 応力集中部形成時において、切欠き成形用部材45はゲート部分GPに進入し、図9(B)に示すようにゲート部分GPの一対の側面を結ぶような凸部F1を形成する。なお、この凸部F1のゲート部分GPのパーティングラインPLに平行な直径方向の長さは、例えば、ゲート部分GPの直径の半分以下(好ましくはゲート部分GPの直径の1/10以上1/3以下)となっている。
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上記実施形態において、ゲートシール前に切欠き成形用部材45をゲート部分GPに挿入したが、図10に示すように、ゲートシール後に切欠き成形用部材45をゲート部分GPに挿入してもよい。具体的には、樹脂注入(ステップS13)後にゲートシール待機(ステップS21)を行い、ゲート部分GPの樹脂がある程度硬化した後に応力集中部を形成する(ステップS14)。この場合、ゲート部GNがある程度固まっているため、切欠き成形用部材45に圧力をかけてもレンズOLへの圧力の影響を低減することができる。
 また、切欠き成形用部材45の先端の形状は、上記実施形態に示したものに限らず、断面形状を三角形や円形等としたり、先端部分を尖状や球状等にしたりすることができる。
 また、上記実施形態において、固定金型41及び可動金型42で構成される成形金型40等に設ける型空間CVの形状は、図示のものに限らず、様々な形状とすることができる。すなわち、型空間CVの形状は、単なる例示であり、レンズOLの用途等に応じて適宜変更することができる。
 また、上記実施形態において、射出成形機10は、成形金型40等を開閉できるものであれば、例えば油圧式でも電動式でもよい。
 また、上記実施形態において、レンズOLは、プラスチック製に限らず、同様の金型41,42等を組み込んだ成形装置100によってガラスレンズを製造することができる。
 10 射出成形機
 11 固定盤
 12 可動盤
 15 開閉駆動装置
 16 射出装置
 17 温度調節装置
 20 取出し装置
 30 制御装置
 40,140,240,340 成形金型
 41 固定金型
 42 可動金型
 44,44A,44B,44C,44D 挿入孔部
 45,45A,45B,45C,45D 切欠き成形用部材
 50 可変機構
 70 超音波破断装置
 100 成形装置
 CV 型空間
 FC 流路部分
 GP ゲート部分
 RP ランナ部分
 SP スプル部分
 OL レンズ
 MP 成形品
 GN ゲート部
 RN ランナ部
 SN スプル部
 CN 応力集中部
 PL パーティングライン

Claims (13)

  1.  第1金型と第2金型とで構成される金型部内に形成された成形品のうち光学素子に対応する光学素子部分の樹脂成形空間に、溶融させた樹脂を射出する第1工程と、
     樹脂を前記光学素子部分の樹脂成形空間に充填した後であって、前記第1金型と前記第2金型との型開きまでの間に、前記光学素子部分に連通するとともに前記金型部内に形成された前記成形品のゲート部に対応するゲート部分の一部において凸部を有する切欠き成形用部材を、前記ゲート部分において樹脂流通空間側に挿入し成形を行う第2工程と、
     前記第1金型と前記第2金型とを離間し、前記第1金型及び前記第2金型から前記成形品を取り出した後、超音波破断装置により前記成形品から前記光学素子を切断する第3工程と、
    を備えることを特徴とする光学素子の製造方法。
  2.  前記ゲート部分の形状は、円柱状であることを特徴とする請求項1に記載の光学素子の製造方法。
  3.  前記切欠き成形用部材は、可変機構によって前記ゲート部分において前記樹脂流通空間に進退することを特徴とする請求項1又は請求項2に記載の光学素子の製造方法。
  4.  前記切欠き成形用部材は、前記ゲート部分の一対の対向する側面部分から進退することを特徴とする請求項1から請求項3までのいずれか一項に記載の光学素子の製造方法。
  5.  前記切欠き成形用部材は、樹脂が前記樹脂成形空間及び前記樹脂流通空間内に充填された後、ゲートシール前に挿入されることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学素子の製造方法。
  6.  前記切欠き成形用部材は、樹脂が前記樹脂成形空間及び前記樹脂流通空間内に充填された後、ゲートシール後に挿入されることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学素子の製造方法。
  7.  前記切欠き成形用部材は、前記第1金型から前記成形品が離型されるまで前記樹脂流通空間側に挿入された状態で保持され、前記成形品を前記第1金型から離型させる際に前記成形品を突き出すエジェクタピンとして兼用されることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学素子の製造方法。
  8.  前記切欠き成形用部材は、断熱材で形成されていることを特徴とする請求項1から請求項7までのいずれか一項に記載の光学素子の製造方法。
  9.  射出成形機の射出ノズルに接続可能であるとともに成形品のスプル部に対応するスプル部分と、
     前記スプル部分から放射線状に延びるとともに前記成形品の複数のランナ部に対応するランナ部分と、
     前記ランナ部分の先に設けられるとともに前記成形品のゲート部に対応するゲート部分と、
     前記ゲート部分の先に設けられるとともに前記成形品の光学素子に対応する光学素子部分と、
     前記ゲート部分において樹脂流通空間側に進退可能な切欠き成形用部材と、
    を備え、
     前記切欠き成形用部材が前記ゲート部分において樹脂流通空間側に進入した状態において前記ゲート部分の一部に凸部が形成されることを特徴とする成形金型。
  10.  前記ゲート部分の形状は、円柱状であることを特徴とする請求項9に記載の成形金型。
  11.  前記切欠き成形用部材は、可変機構によって前記ゲート部分において樹脂流通空間側に進退することを特徴とする請求項9又は請求項10に記載の成形金型。
  12.  前記切欠き成形用部材は、前記ゲート部分の一対の対向する側面部分から進退することを特徴とする請求項9から請求項11までのいずれか一項に記載の成形金型。
  13.  前記切欠き成形用部材は、断熱材で形成されていることを特徴とする請求項9から請求項12までのいずれか一項に記載の成形金型。
PCT/JP2009/069177 2008-11-27 2009-11-11 光学素子の製造方法及び成形金型 WO2010061728A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801466650A CN102223994A (zh) 2008-11-27 2009-11-11 光学元件制造方法及成型模具
JP2010540442A JPWO2010061728A1 (ja) 2008-11-27 2009-11-11 光学素子の製造方法及び成形金型

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-302249 2008-11-27
JP2008302249 2008-11-27

Publications (1)

Publication Number Publication Date
WO2010061728A1 true WO2010061728A1 (ja) 2010-06-03

Family

ID=42225607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069177 WO2010061728A1 (ja) 2008-11-27 2009-11-11 光学素子の製造方法及び成形金型

Country Status (3)

Country Link
JP (1) JPWO2010061728A1 (ja)
CN (1) CN102223994A (ja)
WO (1) WO2010061728A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136073A (ja) * 2010-12-24 2012-07-19 Yazaki Corp 自動車用室内照明灯レンズ用金型成型方法および室内照明灯レンズ
WO2016136861A1 (ja) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 成形装置及び成形方法
JP2021037679A (ja) * 2019-09-02 2021-03-11 日本碍子株式会社 成形体の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109641379B (zh) * 2016-09-05 2021-03-26 松下知识产权经营株式会社 冷却块及无流道注射成形装置
KR102546859B1 (ko) * 2016-12-27 2023-06-22 미쓰비시 엔지니어링-플라스틱스 코포레이션 성형품 및 성형품의 제조 방법
CN109974583B (zh) * 2019-04-11 2024-03-26 南京信息工程大学 一种非接触光学元件表面面形测量装置及方法
JP7145246B2 (ja) * 2021-01-15 2022-09-30 本田技研工業株式会社 射出成形装置及び該射出成形装置で得られる成形品のエジェクト方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281714A (ja) * 1995-04-17 1996-10-29 Nissei Plastics Ind Co ランナーレス金型
JP2002240108A (ja) * 2000-08-25 2002-08-28 Asahi Optical Co Ltd プラスチックレンズを有する成形終了品、及び成形終了品からのプラスチックレンズの破断分離方法
JP2003218140A (ja) * 2002-01-23 2003-07-31 Towa Corp ゲート処理方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281714A (ja) * 1995-04-17 1996-10-29 Nissei Plastics Ind Co ランナーレス金型
JP2002240108A (ja) * 2000-08-25 2002-08-28 Asahi Optical Co Ltd プラスチックレンズを有する成形終了品、及び成形終了品からのプラスチックレンズの破断分離方法
JP2003218140A (ja) * 2002-01-23 2003-07-31 Towa Corp ゲート処理方法及び装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136073A (ja) * 2010-12-24 2012-07-19 Yazaki Corp 自動車用室内照明灯レンズ用金型成型方法および室内照明灯レンズ
WO2012086851A3 (en) * 2010-12-24 2012-08-16 Yazaki Corporation Metal mold forming method for indoor illuminating lamp lens for motor vehicle and indoor illuminating lamp lens
CN103237645A (zh) * 2010-12-24 2013-08-07 矢崎总业株式会社 用于机动车辆用室内照明灯透镜的金属模具成型方法和室内照明灯透镜
KR101458731B1 (ko) * 2010-12-24 2014-11-05 야자키 소교 가부시키가이샤 자동차용 실내조명 램프 렌즈를 위한 금형성형방법 및 실내조명 램프 렌즈
US9682521B2 (en) 2010-12-24 2017-06-20 Yazaki Corporation Metal mold forming method for indoor illuminating lamp lens for motor vehicle and indoor illuminating lamp lens
WO2016136861A1 (ja) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 成形装置及び成形方法
JP2021037679A (ja) * 2019-09-02 2021-03-11 日本碍子株式会社 成形体の製造方法

Also Published As

Publication number Publication date
CN102223994A (zh) 2011-10-19
JPWO2010061728A1 (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2010061728A1 (ja) 光学素子の製造方法及び成形金型
WO2009122862A1 (ja) 光学素子の製造方法、光学素子成形金型、及び光学素子
JP2008307882A (ja) 導光板の成形金型および成形方法
JP4047917B1 (ja) 導光板の成形金型
JP5723617B2 (ja) 射出成形装置、成形型、及び射出成形品の製造方法
JP5267253B2 (ja) レンズ用成形金型、及びレンズの製造方法
KR20090122349A (ko) 플라스틱 렌즈 성형 방법
JP4780621B2 (ja) 導光板の射出プレス成形方法
JP2010082838A (ja) レンズ製造方法
US9895832B2 (en) Method of manufacturing plastic lens, and method for manufacturing mold for forming optical lens
JP5062836B2 (ja) 導光板の成形方法
JP5071794B2 (ja) 薄板状光学用成形品の射出プレス成形方法
JP2008230005A (ja) プラスチックレンズ成形方法およびレンズプリフォーム
JP2010083025A (ja) 光学素子の製造方法及び光学素子成形金型
JP2009241297A (ja) 光学素子の製造方法、光学素子成形金型、及び光学素子
WO2013047289A1 (ja) 光学素子の製造方法、及び、成形金型
WO2011040180A1 (ja) 成形金型
JP2012206338A (ja) 光学素子の製造方法
WO2013146871A1 (ja) 熱可塑性樹脂製品の製造方法及び装置
JP2014061601A (ja) 光学素子の製造方法
US9914252B2 (en) Molding die, optical element manufacturing method, and optical element
JP2013169691A (ja) 成形装置及び光学素子の製造方法
JP2011245735A (ja) Ledレンズの製造方法
JP6015746B2 (ja) 光学素子の製造方法、成形装置、及び取出装置
JP5704513B2 (ja) 成形装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146665.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010540442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828976

Country of ref document: EP

Kind code of ref document: A1