JP2010083025A - 光学素子の製造方法及び光学素子成形金型 - Google Patents

光学素子の製造方法及び光学素子成形金型 Download PDF

Info

Publication number
JP2010083025A
JP2010083025A JP2008255270A JP2008255270A JP2010083025A JP 2010083025 A JP2010083025 A JP 2010083025A JP 2008255270 A JP2008255270 A JP 2008255270A JP 2008255270 A JP2008255270 A JP 2008255270A JP 2010083025 A JP2010083025 A JP 2010083025A
Authority
JP
Japan
Prior art keywords
mold
optical element
gas
gas compression
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008255270A
Other languages
English (en)
Inventor
Tomohiko Tagawa
知彦 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008255270A priority Critical patent/JP2010083025A/ja
Publication of JP2010083025A publication Critical patent/JP2010083025A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光学面の変形を抑えつつ、成形金型からの離型を確実に行うことができる光学素子の製造方法を提供すること。
【解決手段】樹脂成形品MPのレンズOLの突き出し工程において、圧縮された気体を可動金型42の先端面先端に設けられた開口73から流出させることにより、レンズOLを可動金型42から容易に突き出すことができる。気体を収容する気体圧縮室71が、可動金型42のコア型62内部に設けられているため、気体圧縮室71内の気体の温度と可動金型42の温度とが正確に等しい状態となり、圧縮した気体とレンズOLとの温度差が低減し、温度差に起因するレンズOLの変形を防ぐことができる。これにより、可動金型42からレンズOLを精度よく離型することができる。
【選択図】図1

Description

本発明は、レンズ等の光学素子の製造方法及びかかる製造方法に用いられる光学素子成形金型に関する。
光学素子の製造方法として、第1の金型と第2の金型とによって形成されたキャビティ内に樹脂を射出し成形した後に、第2の金型を後退させる型開きを行うとともに、第2の金型の外部に設けた空気供給装置から成形品突き出し用の気体を送り出す手法を用い、第2の金型に残った成形品の光学機能部を第1の金型側に押し出すことにより、第2の金型から成形品を離型させるものが存在する(例えば、特許文献1参照)。
特開2008−44124号公報
しかしながら、特許文献1のような方法において、外部から送られる気体の温度は、金型温度と近似的に同じであっても、これを正確に同じにすることは非常に困難である。そのため、金型から流出した気体の温度と成形品の温度との間に温度差があることに起因して成形品が変形するおそれがある。
また、通常、気体が圧縮され、金型から押し出されるとき、気体が流れる部分の体積に応じて突き出しに使用される気体の最小限の量が決まる。特許文献1のように金型外部から気体を送り出す場合、気体が流れる部分の体積は成形品を突き出すのに必要な量以上となると考えられる。そのため、気体を成形品に吹き付け過ぎることとなり、成形品の歪み等の不良を引き出す可能性がある。
また、特許文献1の金型は、光学面に相当する成形面近傍で通気孔を構成する2つの金型部材が一部接している構成となっていることから、成形品の光学面が変形するおそれがある。
そこで、本発明は、光学面の変形を抑えつつ、成形金型からの離型を確実に行うことができる光学素子の製造方法を提供することを目的とする。
また、本発明は、上記光学素子の製造方法の実施に適する光学素子成形金型を提供することを目的とする。
上記課題を解決するため、本発明に係る光学素子の製造方法は、第1金型と第2金型とで構成される一対の金型で光学素子を成形する第1工程と、第1金型と第2金型とを離間することにより、第1金型から光学素子を離型する第2工程と、第2金型の内部に設けられた気体圧縮室に収容された気体を圧縮し、第2金型内に設けられた流路を介して第2金型の先端に設けられた開口から圧縮された気体を流出させることにより、第2金型から光学素子を突き出し離型する第3工程と、を備える。
上記製造方法によれば、第3工程において、圧縮された気体を第2金型の先端に設けられた開口から流出させることにより、成形した光学素子を第2金型から容易に突き出すことができる。ここで、離型に使用される気体の全容量を少なくとも収容する気体圧縮室が、第2金型内部に設けられているため、気体圧縮室内の気体の温度と第2金型の温度とが正確に等しい状態となり、圧縮した気体と光学素子との温度差が低減し、温度差に起因する光学素子の変形を防ぐことができる。また、転写面に近接する第2金型の内部に気体圧縮室を設けることにより、気体圧縮室を省スペースとすることができ、気体圧縮室内の少ない気体を圧縮することにより光学素子に当たる気体を最小限に抑えることができる。これにより、第2金型から光学素子を精度よく離型することができる。
本発明の具体的な態様又は観点では、第2金型の先端は、光学素子の光学面を形成するための光学面成形面と、光学素子のフランジ面を形成するためのフランジ面成形面とを有し、開口は、フランジ面成形面に設けられている。この場合、フランジ面成形面に開口を設けることにより、成形された光学素子の光学面にバリ等が発生することを防ぐことができる。これにより、高精度な光学面を有する光学素子(例えば、プラスチックレンズ)を作製することができる。
本発明の別の態様では、第2金型は、光学面成形面とフランジ面成形面の少なくとも一部とを有するコア型と、コア型を固定する外周型とを備える。この場合、コア型を外周型に固定することにより、個別に作製された両金型の配置関係を安定して維持することができる。これにより、形状のばらつきの小さい、高精度な光学素子を作製することができる。また、例えば、コマ収差の影響の少ない光学素子を作製することができる。
本発明のさらに別の態様では、コア型は、外周型の内周部と離間して設けられており、開口は、コア型と外周型との隙間として形成されている。この場合、コア型と外周型との隙間を開口とすることにより、金型に穴を開けることなく開口を形成することができる。
本発明のさらに別の態様では、第2金型の先端は、光学素子の光学面を形成するための光学面成形面と、光学素子のフランジ面を形成するためのフランジ面成形面とを有し、開口は、光学素子の中心部に対応する光学面成形面に設けられている。この場合、光学素子の中心部に対応する光学面成形面に開口を設けることにより、光学素子をバランス良く突き出すことができ、光学素子の光学特性への影響を少なくすることができる。
本発明のさらに別の態様では、第3工程において、気体圧縮室内の気体の温度は、第2金型の温度に等しい。この場合、気体圧縮室内の気体の温度と成形した光学素子の温度との差が低減し、光学素子が変形し、歪みが発生することを防ぐことができる。
本発明のさらに別の態様では、第2金型は、気体圧縮室内の気体を圧縮する気体圧縮機構の少なくとも一部を内蔵する。この場合、第2金型内に気体圧縮機構の少なくとも一部を内蔵させることにより、気体圧縮機構をコンパクトにすることができる。
本発明のさらに別の態様では、気体圧縮機構は、気体圧縮室内で移動する可動部材と、気体圧縮室内で可動部材と気体圧縮室の内壁の一部との間に挟持されて伸縮可能なバネとを有する。この場合、可動部材をバネに抗して動作させることにより、気体圧縮室内の気体を効率よく圧縮することができる。なお、可動部材を放すと、可動部材はバネによって元の位置に復帰する。
本発明のさらに別の態様では、第3工程において、気体圧縮機構は、電気制御により動作する。この場合、気体の圧縮に対する突き出しの時間差と、第2金型から光学素子を取り出すタイミングとを調整することができる。
本発明のさらに別の態様では、気体圧縮機構は、エジェクトピンをさらに有し、エジェクトピンは、第3工程において、前進した状態で可動部材に設けた通気孔をシールする。この場合、通気孔を設けた可動部材をエジェクトピンでシールすることにより、気体圧縮室内の気体を簡易に効率よく圧縮することができる。また、エジェクトピンを後退させてエジェクトピンと可動部材とを離間させることにより、容易に気体圧縮室を開放することができる。
本発明のさらに別の態様では、第3工程において、気体圧縮機構は、エジェクトピンの進退駆動により動作し、エジェクトピンが前進したときに気体を押し出す。この場合、エジェクトピンを駆動することにより、気体圧縮室内を圧縮又は開放することができる。
本発明のさらに別の態様では、第1工程において、一対の金型で形成されるキャビティ内に樹脂を注入することにより、光学素子の成形を行う。
本発明のさらに別の態様では、第1金型は、固定金型であり、第2金型は、可動金型であることを特徴とする。この場合、可動金型側にコア型や気体圧縮機構等が組み込まれることになる。
本発明のさらに別の態様では、光学素子は、光ピックアップ装置用の対物レンズであることを特徴とする。この場合、本発明の光学素子の製造方法により、レンズ形状の変形及びコマ収差の発生や変動を抑えた高性能のレンズを提供することができる。特に、高性能の光ピックアップ用の対物レンズ、具体的には380〜420nmのレーザ光を用い像側開口数NA0.75以上の高NAレンズ(具体的には、例えばブルーレイディスク(BD;Blu‐Ray Disc)の記録又は再生に少なくとも使用される対物レンズ)において、従来型の可動によりコア金型等を突き出す方法では光学性能劣化が生じ易いという問題があるが、これを効果的に防止することが可能となる。
本発明に係る光学素子成形金型は、一対の金型により光学素子を成形する光学素子成形金型であって、一方の金型内に、気体を収容及び圧縮するための気体圧縮室と、圧縮させた気体を流出させるための開口と、気体圧縮室と開口とを連通させる流路と、を有する。
上記光学素子成形金型によれば、圧縮された気体を開口から流出させることにより、成形した光学素子を第2金型から容易に突き出すことができる。気体を収容する気体圧縮室が、第2金型内部に設けられているため、気体圧縮室内の気体の温度と第2金型の温度とが簡易な手法で正確に等しい状態となり、圧縮した気体と光学素子との温度差が低減し、温度差に起因する光学素子の変形を防ぐことができる。以上のように、本発明の光学素子成形金型を用いることにより、高NAの対物レンズ等を効率よく製造することができる。
〔第1実施形態〕
以下、本発明の第1実施形態である光学素子成形金型と光学素子の製造方法とについて、図面を参照しつつ説明する。
図1は、固定金型と可動金型とで構成される光学素子成形金型の構造を説明する側断面図であり、図2は、図1のP1部分の拡大断面図である。また、図3は、図1の金型によって射出成形されるレンズの側面図である。
固定金型41と可動金型42とは、パーティングラインPLを境として開閉可能になっている。両金型41,42に挟まれた空間であるキャビティCVは、成形品である光学素子としてのレンズOL(図3等参照)の形状に対応するものとなっている。レンズOLは、プラスチック製で、光学的機能を有する光学的機能部としての中心部OLaと、中心部OLaから外径方向に延在する環状のフランジ部OLbとを備える。このレンズOLは、光ピックアップ装置用の対物レンズであり、BD、DVD及びCDに対して互換可能で、BD用の波長の光束に対してNA0.85を満たすレンズである。
固定金型41は、固定側の入れ子としてのコア型52と、固定側の入れ子を支持して一体に固定することを可能とした構造を有する外周型51と、外周型51及びコア型52を一体に固定する取付板53とを備える。
外周型51は、パーティングラインPLを形成する端面51aを有する。また、外周型51の先端には、キャビティCVを画成するためのフランジ面成形面56bが形成されている(図2参照)。このフランジ面成形面56bは、レンズOLのフランジ部OLbのフランジ面F1、すなわち一方の環状端面を成形する転写面である。また、外周型51内部には、コア型52を挿入支持する円柱状の貫通孔であるコア挿通孔55が形成されている。
コア型52は、コア挿通孔55に嵌合可能な円筒状の外周側面を有しており、コア型52の先端には、キャビティCVを画成するための光学面成形面56aが設けられている。この光学面成形面56aは、凹面であり、レンズOLの中心部OLaの一方の光学面Saを成形する転写面である。
可動金型42は、可動側の入れ子としてのコア型62と、可動側の入れ子を支持し、かつ一体に固定することを可能とした構造を有する外周型61と、外周型61及びコア型62を一体に固定する取付板63と、コア型62内に設けた気体圧縮室71中の気体を圧縮させるための気体圧縮機構72と、気体圧縮機構72で圧縮させた気体圧縮室71中の気体をキャビティCV側へ流出させるための開口73とを備える(図1及び図2参照)。この可動金型42は、軸AXに沿って移動可能になっており、固定金型41に対して開閉動作する。
外周型61は、パーティングラインPLを形成する端面61aを有する。また、外周型61内部には、コア型62を挿入支持するためのコア挿通孔65が形成されている。ここで、コア挿通孔65は、同軸で径を変化させた段差を有し、可動金型42の先端側で先細りに加工された貫通孔である。外周型61の先端には、キャビティCVを画成するためのフランジ面成形面66b及びフランジ側面成形面66cが形成されている(図2参照)。フランジ面成形面66bは、レンズOLのフランジ部OLbのフランジ面F2の外縁、すなわち一方の環状端面の外縁を成形する転写面である。また、フランジ側面成形面66cは、レンズOLのフランジ部OLbのフランジ側面F3、すなわち環状外周面を成形する転写面である。
コア型62は、コア挿通孔65に根元側で嵌合するように挿入可能であり、同軸で径を変化させた段差を有し、コア型62の先端側で先細りの外周側面を有しており、コア型62の先端には、キャビティCVを画成するための光学面成形面66aとフランジ面成形面66dとが設けられている(図2参照)。光学面成形面66aは、凹面であり、レンズOLの中心部OLaの一方の光学面Sbを成形する転写面である。また、フランジ面成形面66dは、レンズOLのフランジ部OLbのフランジ面F2の内縁側、すなわち一方の環状端面の内縁側を成形する転写面である。
コア型62の先端側の外周側面62cは、外周型61の先端側の内周側面61cと微小な一定間隔をおいて離間して設けられており、この離間した部分の先端部は、後述する気体圧縮室71から圧縮された気体が流出する環状のスリットである開口73となっている。この開口73は、コア型62の周囲に一様に延在する環状のスリットとして形成されている。開口73は、気体よりも粘度の高い樹脂が外周型61とコア型62との間(後述する流路74a)内に入り込まない程度のスリット幅(例えば、3〜25μm)となっている。
可動金型42の先端付近では、外周型61とコア型62とを組み込んだ際に流路74aに相当する筒状の空間が形成される。流路74aは、開口73から軸AX方向に一定距離、開口73と同じ形状及び大きさ、つまり同じスリット幅で延びており、その後、気体圧縮室71側に向かって半径方向の隙間幅が除々に広くなっている。
コア型62の中心部には、気体圧縮室71と、この気体圧縮室71から延びる流路74bとが同軸上に連結して形成されている。また、コア型62の先端側の小径部には、軸心の流路74bと周囲の流路74aとを連結するため、軸AXに直交する方向に延びる2つの通路74cが形成されている。
コア型62の段差部とコア挿通孔65の段差部との間には、環状のO−リング67が設けられており、可動金型42内部においてコア型62と外周型61とが密閉された状態となっている。つまり、O−リング67を用いたシールにより、流路74aの気体が可動金型42の裏面側に漏れ出すことを防止している。O−リング67は、例えばゴム等の弾性部材で形成されている。
なお、図面では省略しているが、コア型62の根元側端面と取付板63前面との間にはスペーサを介在させることができる。これにより、コア型62の光学面成形面66aと、これに対向するコア型52の光学面成形面56aとの間隔を精密に調整できるようになっている。
気体圧縮室71は、可動金型42の内部、具体的には、コア型62の内部に設けられて軸AXに沿って延びる円筒状の空間である。気体圧縮室71の内部には、成形されたレンズOLを突き出すための気体が収納されている。気体圧縮室71内に一定時間以上保持された気体の温度は、可動金型42、特にコア型62の温度と略等しくなっている。
気体圧縮室71の後方端には入口71bが設けられ、前方端には出口71cが設けられている。後方の入口71bは、非圧縮時において開口しており、圧縮時にエジェクトピン72dにより塞がれ、密閉状態となる。なお、気体圧縮室71内の体積(気体が流れる部分の体積に相当)は、レンズOLを可動金型42から離型可能な量であり、例えばキャビティCVのうちパーティングラインPLから可動金型42側の空間の体積の300〜400倍程度が好ましい。
気体圧縮機構72は、可動部材72aとバネ72bとバネ支持部材72cとエジェクトピン72dとで構成される。上記構成のうち可動部材72aとバネ72bとバネ支持部材72cは、気体圧縮室71内に設けられており、エジェクトピン72dは、軸AXに沿って気体圧縮室71の内外に進退可能に設置されている。
可動部材72aは、気体圧縮室71の入口71bを部分的に封止する部材であり、バネ72b及びエジェクトピン72dの動作に伴って気体圧縮室71内を摺動可能となっている。可動部材72aは、円筒形の弾性部材であり、その外周が気体圧縮室71の内壁と密着して略同径となっている。可動部材72aの中心部には軸AXに沿って延びる通気孔a1が形成されており、通気孔a1の直径はエジェクトピン72dの直径より小さくなっている。
バネ72bは、一方の端部が気体圧縮室71の出口71cの周囲に固定され、他方の端部がバネ支持部材72cに固定されている。バネ72bは、気体圧縮室71の内径よりも小さいコイル径を有しており、可動部材72aのストロークに対応させて気体圧縮室71内で伸縮可能な程度の長さとなっている。つまり、バネ72bは、エジェクトピン72dの前進駆動により、軸AXに沿って必要距離だけ収縮する。一方、バネ72bは、エジェクトピン72dの後退により、除々に伸長し、定常状態(図1に示す状態)に戻る。なお、可動部材72aのストロークは、気体圧縮室71内の気体の圧縮率を与え、開口73から流出させる気体の量を与える。
バネ支持部材72cは、図1のB側の凹部b1でバネ72bを保持し、図1のA側で可動部材72aの凹部b2に固定されている。バネ支持部材72cの中心部には通気孔a2が軸AXに沿って可動部材72aと同心に形成されている。なお、バネ支持部材72cは、O−リング67よりも硬い材料で形成されている。
エジェクトピン72dは、気体圧縮室71の入口71b付近に設けられている。エジェクトピン72dの直径は、気体圧縮室71の内径より小さく、可動部材72aの通気孔a1の直径よりも大きいものとなっている。
エジェクトピン72dは、後述する図4のエジェクタ45により動作され、固定金型41側(B側)に前進したり反対側(A側)に後退させたりすることができる。エジェクトピン72dは、気体圧縮時において軸AXに沿って前進し、定常状態の可動部材72aの表面にエジェクトピン72dの先端面c1が密着して通気孔a1を塞ぎ、気体圧縮室71内を密閉状態にする。一方、エジェクトピン72dは、開放時において軸AXに沿って後退し、定常状態で後退を停止した可動部材72aの表面から先端面c1が離れて通気孔a1を開放し、気体圧縮室71内を開放状態にする。
図4は、本実施形態の製造方法を実施するための成形装置を説明する正面図である。図示の成形装置100は、射出成形を行って樹脂成形品MPを作製する本体部分である射出成形機10と、射出成形機10から樹脂成形品MPを取り出す付属部分である取出し装置20と、成形装置100を構成する各部の動作を統括的に制御する制御装置30とを備える。
射出成形機10は、可動盤11と、固定盤12と、型締め盤13と、開閉駆動装置15と、射出装置16とを備える。射出成形機10は、可動盤11と固定盤12との間に可動金型42と固定金型41とを挟持して両金型41,42を型締めすることにより成形を可能にする。
可動盤11は、スライドガイド15aによって固定盤12に対して進退移動可能に支持されている。可動盤11は、可動金型42を着脱可能に支持している。可動盤11には、エジェクタ45が組み込まれている。このエジェクタ45より図1のエジェクトピン72dを動作させ、気体圧縮室71内の気体を圧縮させ、圧縮されて適度の圧力状態の気体を開口73から流出させる。これにより、可動金型42内の樹脂成形品MPのレンズOLを固定金型41側に押し出すことができ、取出し装置20による移送を可能にする。また、エジェクタ45は、可動金型42内の樹脂成形品MPの不図示のランナを、エジェクトピン72dに連動してメカニカルに動作する不図示のエジェクトピンによって固定金型41側に押し出す。なお、樹脂成形品MPは、図3に示すレンズOLを複数備えるものであり、これら複数のレンズOLは、成形時に付随して形成されるスプルやランナ(不図示)を介して互いに連結されている。
固定盤12は、可動盤11に対向して支持フレーム14の中央に固定されており、取出し装置20をその上部に支持する。固定盤12は、固定金型41を着脱可能に支持している。なお、固定盤12は、タイバーを介して型締め盤13に固定されており、成形時の型締めの圧力に耐え得るようになっている。
型締め盤13は、支持フレーム14の端部に固定されている。型締め盤13は、型締めに際して、開閉駆動装置15の動力伝達部15dを介して可動盤11をその背後から支持する。
開閉駆動装置15は、スライドガイド15aと、動力伝達部15dと、アクチュエータ15eとを備える。スライドガイド15aは、可動盤11を支持して固定盤12に対する進退方向に関する滑らかな往復移動を可能にしている。動力伝達部15dは、制御装置30の制御下で動作するアクチュエータ15eからの駆動力を受けて伸縮する。これにより、型締め盤13に対して可動盤11が近接したり離間したり自在に進退移動し、結果的に、可動盤11と固定盤12とを互いに近接・離間して固定金型41と可動金型42との型締め及び型開きを行う。
射出装置16は、シリンダ16a、原料貯留部16b、スクリュ駆動部16c等を備える。射出装置16は、制御装置30の制御下で適当なタイミングで動作するものであり、樹脂射出ノズル16dから温度制御された状態で溶融樹脂を射出することができる。射出装置16は、固定金型41と可動金型42とを型締めした状態で、固定金型41に設けたスプルの開口に樹脂射出ノズル16dを接触させ、キャビティCV(図1参照)に連通する流路空間に対してシリンダ16a中の溶融樹脂を所望のタイミングで供給することができる。
取出し装置20は、樹脂成形品MPを把持することができるハンド21と、ハンド21を3次元的に移動させる3次元駆動装置22とを備える。取出し装置20は、制御装置30の制御下で適当なタイミングで動作するものであり、固定金型41と可動金型42とを離間させて型開きした後に、可動金型42に残る樹脂成形品MPを把持して外部に搬出する役割を有する。
制御装置30は、開閉制御部31と、射出装置制御部32と、エジェクタ制御部33と、取出し装置制御部34とを備える。開閉制御部31は、アクチュエータ15eを動作させることによって両金型41,42の型締めや型開きを可能にする。射出装置制御部32は、スクリュ駆動部16c等を動作させることによって両金型41,42間に形成されたキャビティCV中に所望の圧力で樹脂を注入させる。エジェクタ制御部33は、エジェクタ45を動作させることによって型開き時に可動金型42に残る樹脂成形品MPを、圧縮気体と機械機構とによって可動金型42内から押し出させる。取出し装置制御部34は、取出し装置20を動作させることによって型開き及び離型後に可動金型42に残る樹脂成形品MPを把持して射出成形機10外に搬出させる。
金型温度調節機46は、両金型41,42中に形成されているジャケット(不図示)に温度制御された熱媒体を循環させる。これにより、成形時に両金型41,42の温度を適切な温度に保つことができる。この際、両金型41,42に埋め込まれた温度センサ(不図示)によって両金型41,42の温度を監視することもできる。
図5は、図4に示す成形装置100の動作を概念的に説明するフローチャートである。まず、金型温度調節機46により、両金型41,42を成形に適する温度まで加熱する(ステップS10)。これにより、両金型41,42においてキャビティCVを形成する金型部分の表面やその近傍の温度を、例えば射出装置16から供給される溶融樹脂のガラス転移温度よりも50℃低い温度以上であって同ガラス転移温度よりも10℃高い温度以下に加熱保持した状態とする。
次に、開閉駆動装置15を動作させ、可動盤11を前進させて型閉じを開始させる(ステップS11)。開閉駆動装置15の閉動作を継続することにより、固定金型41と可動金型42とが接触する型当たり位置まで可動盤11が固定盤12側に移動して型閉じが完了し、開閉駆動装置15の閉動作を更に継続することにより、固定金型41と可動金型42とを必要な圧力で締め付ける型締めが行われる(ステップS12)。
次に、射出成形機10において、射出装置16を動作させて、型締めされた固定金型41と可動金型42との間のキャビティCV中に、必要な圧力で溶融樹脂を注入する射出を行わせる(ステップS13)。そして、射出成形機10は、キャビティCV中の樹脂圧を保つ。
溶融樹脂をキャビティCVに導入した後は、図6(A)に示すように、キャビティCV中の溶融樹脂が放熱によって徐々に冷却されるので、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ(ステップS14)。
次に、射出成形機10において、図6(B)に示すように、開閉駆動装置15を動作させて、可動盤11を後退させる型開きが行われる(ステップS15)。これに伴って、可動金型42が後退し、固定金型41と可動金型42とが離間する。この結果、樹脂成形品MPすなわちレンズOLは、可動金型42に保持された状態で固定金型41から離型される。
次に、射出成形機10において、図6(C)に示すように、エジェクタ45を動作させて、気体圧縮機構72による樹脂成形品MPの突き出しを行わせる(ステップS16)。具体的には、エジェクトピン72dの前進により気体圧縮室71内の気体を圧縮させ、圧縮させた気体を流路74bと通路74cと流路74aとを介し開口73から流出させて、レンズOLのフランジ部OLbを軸AXに沿ってバランス良く押し出す。この結果、樹脂成形品MPのうちレンズOLが、圧縮された気体により固定金型41側に押し出されて、レンズOL延いては樹脂成形品MPが可動金型42から離型される。この際、レンズOLのフランジ面F2に圧縮された気体がバランス良く当たるため、レンズOLが軸AXに沿って傾かないで押し出され、レンズOLの光学面Sbが変形されることなく精密な形状に維持される。なお、樹脂成形品MPのスプル部分等は、連動して行われるメカニカルな突き出しによって可動金型42から離型される。
最後に、取出し装置20を動作させて、圧縮された気体によって突き出された樹脂成形品MPの適所をハンド21で把持して外部に搬出する(ステップS17)。
以上説明した第1実施形態の光学素子成形金型及び製造方法によれば、樹脂成形品MPのレンズOLの突き出し工程において、圧縮された気体を可動金型42の先端に設けられた開口73から流出させることにより、レンズOLを可動金型42から容易に突き出すことができる。気体を収容する気体圧縮室71が、可動金型42のコア型62内部に設けられているため、気体圧縮室71内の気体の温度と可動金型42の温度とが正確に等しい状態となり、圧縮した気体とレンズOLとの温度差が低減し、温度差に起因するレンズOLの変形を防ぐことができる。また、転写面に近接するコア型62の内部に気体圧縮室71を設けることにより、気体圧縮室71を省スペースとすることができ、気体圧縮室71内の少ない気体を圧縮することによりレンズOLに当たる気体を最小限に抑えることができる。これにより、可動金型42からレンズOLを精度よく離型することができる。
また、フランジ面成形面66d上に開口73を設けることにより、レンズOLの光学面Sbにバリ等が発生することを防ぐことができる。これにより、高精度な光学面Sbを有するレンズOLを作製することができる。
また、コア型62を外周型61に固定することにより、個別に作製された両金型61,62の配置関係を安定して維持することができる。これにより、形状のばらつきの小さい、高精度なレンズOLを作製することができる。
〔第2実施形態〕
以下、第2実施形態に係る光学素子成形金型と光学素子の製造方法とについて説明する。なお、第2実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
図7は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。
可動金型42は、可動側の入れ子としてのコア型62と、可動側の入れ子を支持し、かつ一体に固定することを可能とした構造を有する外周型61と、外周型61及びコア型62を一体に固定する取付板(不図示)と、コア型62内に設けた気体圧縮室(不図示)中の気体を圧縮させるための気体圧縮機構(不図示)と、気体圧縮機構で圧縮させた気体圧縮室中の気体をキャビティCV側へ流出させるための開口73とを備える。なお、コア型62の先端側の外周側面62cは、外周型61の先端側の内周側面61cと密着しており、樹脂が外周型61とコア型62との間に入り込まないようになっている。
外周型61の先端には、キャビティCVを画成するためのフランジ側面成形面66cが形成されている。フランジ側面成形面66cは、レンズOLのフランジ部OLbのフランジ側面F3、すなわち環状外周面を成形する転写面である(図3参照)。
一方、コア型62の先端には、キャビティCVを画成するための光学面成形面66aとフランジ面成形面166dとが設けられている。光学面成形面66aは、凹面であり、レンズOLの中心部OLaの一方の光学面Sbを成形する転写面である(図3参照)。また、フランジ面成形面166dは、レンズOLのフランジ部OLbのフランジ面F2、すなわち一方の環状端面を成形する転写面である(図3参照)。
本実施形態において、開口73及び流路174aは、コア型62の先端側内部に形成されている。具体的には、開口73は、光学面成形面66aの中心部分に形成されており、流路174aは、開口73から延びて気体圧縮室の出口に連通している。
開口73の形状は、円形であり、樹脂がコア型62内に入り込まない程度の大きさとなっている。
流路174aは、筒状の空間であり、開口73から軸AX方向に一定距離、開口73と同じ形状及び大きさ、つまり同じ径で延びており、その後、気体圧縮室側に向かって半径方向の隙間径が除々に広くなっている。
以上説明した第2実施形態の光学素子成形金型及び製造方法によれば、レンズOLの中心部に対応する光学面成形面66aに開口73を設けることにより、レンズOLをバランス良く突き出すことができ、レンズOLの光学特性への影響を少なくすることができる。
以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、図2等に示す流路74a,74b,174a、通路74cの形状は、単なる例示であり、樹脂が入り込まない形状であればよく、図8に示すような形状でもよい。
また、上記実施形態において、開口73は、コア型62の周囲に環状に形成されているとしたが、図9に示すように、フランジ面成形面66d上にその円周に沿って複数の孔状の開口73を設けるようにしてもよい。なお、開口73の形状及び大きさは、気体圧縮室71の体積や気体の必要圧力等により決まるものであり、図2、図7、図9等に示す開口73の形状及び大きさは単なる例示である。
また、上記実施形態において、エジェクトピン72dの動作は進退速度や時間等が一様である必要はなく、開口73の形状等やレンズOLの離型のタイミングや圧力のかけ方等に応じて適宜変則的な動作をさせてもよい。例えば、モータの動作タイミングや速度を変える等の電気制御によりエジェクトピン72dの動作を例えば段階的に変化させる。これにより、気体の圧縮に対する突き出しの時間差と、可動金型42からレンズOLを取り出すタイミングとを調整することができる。また、加圧工程の圧力変動パターンを変化させることもできる。
また、上記実施形態において、気体圧縮機構72は、バネ72bの伸縮による動作機構としたが、バネ72bを用いずに弁等を進退させる動作機構としたり、T字のピンを用いたりしてもよい。
また、上記実施形態において、外周型61とコア型62との間にO−リング67を設けたが、気体の漏れを防止するものであれば、ゴム等の弾性部材に限らず、グリス等を用いてもよい。
また、上記実施形態において、固定金型41及び可動金型42で構成される金型に設けるキャビティCVは1つに限らず、複数とすることができる。つまり、例えば外周型51中にコア型52を複数埋め込むことができ、これに対応させて、可動金型42中にコア型62を複数埋め込むことができる。この場合、両金型41,42を利用した1ショットの成形によって複数個のレンズOLを得ることができる。
また、上記実施形態において、図1等に示すコア型52の先端側の光学面成形面56aの形状や、コア型62の先端側の光学面成形面66aの形状は、単なる例示であり、レンズOLの用途等に応じて適宜変更することができる。例えば両光学面成形面56a,66aの形状を入れ替えて可動金型42側に曲率が大きい面が形成されたレンズを成形することもできる。
また、上記実施形態において、レンズOLは、プラスチック製に限らず、同様の金型41,42等を組み込んだ成形装置100によってガラスレンズを製造することができる。
第1実施形態の固定金型及び可動金型の構造を説明する側断面図である。 図1の金型の一部拡大端面図である。 図1の金型によって成形されるレンズの側面図である。 図1に示す光学素子成形金型を組み込んだ成形装置を説明する正面図である。 図4の成形装置の動作を説明するフローチャートである。 (A)〜(C)は、図1に示す光学素子成形金型における離型を説明する概念図である。 第2実施形態の固定金型及び可動金型の構造を説明する側断面図である。 図1の開口の変形例である。 図1の開口の別の変形例である。
符号の説明
10…射出成形機、 11…可動盤、 12…固定盤、 15…開閉駆動装置、 16…射出装置、 30…制御装置、 41…固定金型、 42…可動金型、 45…エジェクタ、 46…金型温度調節機、 51,61…外周型、 52,62…コア型、 56b,66b,66d,166d…フランジ面成形面、 66c…フランジ側面成形面、 56a,66a…光学面成形面、 71…気体圧縮室、 72…気体圧縮機構、 72a…可動部材、 72b…バネ、 72c…バネ支持部材、 72d…エジェクトピン、 73…開口、 74a,74b,174a…流路、 74c…通路、 100…成形装置、 AX…軸、 CV…キャビティ、 F1,F2…フランジ面、 F3…フランジ側面、 Sa,Sb…光学面、 MP…樹脂成形品、 OL…レンズ、 PL…パーティングライン

Claims (24)

  1. 第1金型と第2金型とで構成される一対の金型で光学素子を成形する第1工程と、
    前記第1金型と前記第2金型とを離間することにより、前記第1金型から前記光学素子を離型する第2工程と、
    前記第2金型の内部に設けられた気体圧縮室に収容された気体を圧縮し、前記第2金型内に設けられた流路を介して前記第2金型の先端に設けられた開口から圧縮された気体を流出させることにより、前記第2金型から前記光学素子を突き出し離型する第3工程と、
    を備えることを特徴とする光学素子の製造方法。
  2. 前記第2金型の先端は、前記光学素子の光学面を形成するための光学面成形面と、前記光学素子のフランジ面を形成するためのフランジ面成形面とを有し、
    前記開口は、前記フランジ面成形面に設けられていることを特徴とする請求項1に記載の光学素子の製造方法。
  3. 前記第2金型は、前記光学面成形面と前記フランジ面成形面の少なくとも一部とを有するコア型と、前記コア型を固定する外周型とを備えることを特徴とする請求項2に記載の光学素子の製造方法。
  4. 前記コア型は、前記外周型の内周部と離間して設けられており、
    前記開口は、前記コア型と前記外周型との隙間として形成されていることを特徴とする請求項3に記載の光学素子の製造方法。
  5. 前記第2金型の先端は、前記光学素子の光学面を形成するための光学面成形面と、前記光学素子のフランジ面を形成するためのフランジ面成形面とを有し、
    前記開口は、前記光学素子の中心部に対応する前記光学面成形面に設けられていることを特徴とする請求項1に記載の光学素子の製造方法。
  6. 前記第3工程において、前記気体圧縮室内の気体の温度は、前記第2金型の温度に等しいことを特徴とする請求項1から請求項5までのいずれか一項に記載の光学素子の製造方法。
  7. 前記第2金型は、前記気体圧縮室内の気体を圧縮する気体圧縮機構の少なくとも一部を内蔵することを特徴とする請求項1から請求項6までのいずれか一項に記載の光学素子の製造方法。
  8. 前記気体圧縮機構は、前記気体圧縮室内で移動する可動部材と、前記気体圧縮室内で前記可動部材と前記気体圧縮室の内壁の一部との間に挟持されて伸縮可能なバネとを有することを特徴とする請求項7に記載の光学素子の製造方法。
  9. 前記第3工程において、前記気体圧縮機構は、電気制御により動作することを特徴とする請求項7及び請求項8のいずれか一項に記載の光学素子の製造方法。
  10. 前記気体圧縮機構は、エジェクトピンをさらに有し、
    前記エジェクトピンは、前記第3工程において、前進した状態で前記可動部材に設けた通気孔をシールすることを特徴とする請求項8及び請求項9のいずれか一項に記載の光学素子の製造方法。
  11. 前記第3工程において、前記気体圧縮機構は、前記エジェクトピンの進退駆動により動作し、前記エジェクトピンが前進したときに気体を押し出すことを特徴とする請求項10に記載の光学素子の製造方法。
  12. 前記第1工程において、前記一対の金型で形成されるキャビティ内に樹脂を注入することにより、前記光学素子の成形を行うことを特徴とする請求項1から請求項11までのいずれか一項に記載の光学素子の製造方法。
  13. 前記第1金型は、固定金型であり、前記第2金型は、可動金型であることを特徴とする請求項1から請求項12までのいずれか一項に記載の光学素子の製造方法。
  14. 前記光学素子は、光ピックアップ装置用の対物レンズであることを特徴とする請求項1から請求項13までのいずれか一項に記載の光学素子の製造方法。
  15. 一対の金型により光学素子を成形する光学素子成形金型であって、
    一方の金型内に、気体を収容及び圧縮するための気体圧縮室と、圧縮させた気体を流出させるための開口と、前記気体圧縮室と前記開口とを連通させる流路と、を有することを特徴とする光学素子成形金型。
  16. 前記第2金型の先端は、前記光学素子の光学面を形成するための光学面成形面と、前記光学素子のフランジ面を形成するためのフランジ面成形面とを有し、
    前記開口は、前記フランジ面成形面に設けられていることを特徴とする請求項15に記載の光学素子成形金型。
  17. 前記第2金型は、前記光学面成形面と前記フランジ面成形面の少なくとも一部とを有するコア型と、前記コア型を固定する外周型とを備えることを特徴とする請求項16に記載の光学素子成形金型。
  18. 前記コア型は、前記外周型の内周部と離間して設けられており、
    前記開口は、前記コア型と前記外周型との隙間として形成されていることを特徴とする請求項17に記載の光学素子成形金型。
  19. 前記第2金型の先端は、前記光学素子の光学面を形成するための光学面成形面と、前記光学素子のフランジ面を形成するためのフランジ面成形面とを有し、
    前記開口は、前記光学素子の中心部に対応する前記光学面成形面に設けられていることを特徴とする請求項15に記載の光学素子成形金型。
  20. 前記気体圧縮室内の気体の温度は、前記第2金型の温度に等しいことを特徴とする請求項15から請求項19までのいずれか一項に記載の光学素子成形金型。
  21. 前記第2金型は、前記気体圧縮室内の気体を圧縮する気体圧縮機構の少なくとも一部を内蔵することを特徴とする請求項15から請求項20までのいずれか一項に記載の光学素子成形金型。
  22. 前記気体圧縮機構は、前記気体圧縮室内で移動する可動部材と、前記気体圧縮室内で前記可動部材と前記気体圧縮室の内壁の一部との間に挟持されて伸縮可能なバネとを有することを特徴とする請求項21に記載の光学素子成形金型。
  23. 前記第1金型は、固定金型であり、前記第2金型は、可動金型であることを特徴とする請求項15から請求項22までのいずれか一項に記載の光学素子成形金型。
  24. 前記光学素子は、光ピックアップ装置用の対物レンズであることを特徴とする請求項15から請求項23までのいずれか一項に記載の光学素子成形金型。
JP2008255270A 2008-09-30 2008-09-30 光学素子の製造方法及び光学素子成形金型 Pending JP2010083025A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008255270A JP2010083025A (ja) 2008-09-30 2008-09-30 光学素子の製造方法及び光学素子成形金型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008255270A JP2010083025A (ja) 2008-09-30 2008-09-30 光学素子の製造方法及び光学素子成形金型

Publications (1)

Publication Number Publication Date
JP2010083025A true JP2010083025A (ja) 2010-04-15

Family

ID=42247460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008255270A Pending JP2010083025A (ja) 2008-09-30 2008-09-30 光学素子の製造方法及び光学素子成形金型

Country Status (1)

Country Link
JP (1) JP2010083025A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111748A1 (ja) * 2011-02-16 2012-08-23 コニカミノルタオプト株式会社 光学素子の製造方法及び光学素子
CN103302813A (zh) * 2013-06-20 2013-09-18 钟灿秋 塑胶产品负压注塑成型模具及其方法
CN109228176A (zh) * 2018-10-31 2019-01-18 晋江嘉豪模具有限公司 一种可降解pla注塑模具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111748A1 (ja) * 2011-02-16 2012-08-23 コニカミノルタオプト株式会社 光学素子の製造方法及び光学素子
JP5120525B2 (ja) * 2011-02-16 2013-01-16 コニカミノルタアドバンストレイヤー株式会社 光学素子の製造方法及び光学素子
JPWO2012111748A1 (ja) * 2011-02-16 2014-07-07 コニカミノルタアドバンストレイヤー株式会社 光学素子の製造方法及び光学素子
CN103302813A (zh) * 2013-06-20 2013-09-18 钟灿秋 塑胶产品负压注塑成型模具及其方法
CN109228176A (zh) * 2018-10-31 2019-01-18 晋江嘉豪模具有限公司 一种可降解pla注塑模具

Similar Documents

Publication Publication Date Title
WO2009122862A1 (ja) 光学素子の製造方法、光学素子成形金型、及び光学素子
JP4525868B2 (ja) 光ピックアップ用対物レンズの製造方法及び光ピックアップ用対物レンズの成形金型、並びに、光ピックアップ用対物レンズ
EP1661684B1 (en) Ejector with internal fluid path and moulding method
JP5713021B2 (ja) 光学素子の製造方法
JP2010083025A (ja) 光学素子の製造方法及び光学素子成形金型
WO2010061728A1 (ja) 光学素子の製造方法及び成形金型
JP5267253B2 (ja) レンズ用成形金型、及びレンズの製造方法
WO2011037038A1 (ja) 成形金型及び成形方法
WO2009122819A1 (ja) 光学素子成形金型及び光学素子の製造方法
JP2010082838A (ja) レンズ製造方法
JP2010221516A (ja) 成形金型、成形方法、及び光学素子
JP4495585B2 (ja) 樹脂レンズの成形型
JP2014069470A (ja) 光学素子及び成形金型
WO2013047289A1 (ja) 光学素子の製造方法、及び、成形金型
JP2013169691A (ja) 成形装置及び光学素子の製造方法
JP2013159015A (ja) 成形用金型及び光学素子の製造方法
JP2011110810A (ja) 成形金型及び成形方法
JP2003291178A (ja) 成形用金型装置
JP2009241297A (ja) 光学素子の製造方法、光学素子成形金型、及び光学素子
WO2013146871A1 (ja) 熱可塑性樹脂製品の製造方法及び装置
JP2013208884A (ja) 成形金型及び光学素子の製造方法
WO2011040180A1 (ja) 成形金型
JP2014061597A (ja) 成形装置及び光学素子の製造方法
WO2013047274A1 (ja) 成形金型及び光学素子の製造方法
JP2014061601A (ja) 光学素子の製造方法