WO2013046933A1 - 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法 - Google Patents

架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法 Download PDF

Info

Publication number
WO2013046933A1
WO2013046933A1 PCT/JP2012/070016 JP2012070016W WO2013046933A1 WO 2013046933 A1 WO2013046933 A1 WO 2013046933A1 JP 2012070016 W JP2012070016 W JP 2012070016W WO 2013046933 A1 WO2013046933 A1 WO 2013046933A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
fluororesin
copolymer
crosslinkable
crosslinking
Prior art date
Application number
PCT/JP2012/070016
Other languages
English (en)
French (fr)
Inventor
泰宏 中野
柳口 富彦
隆宏 北原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201280047820.5A priority Critical patent/CN103842429B/zh
Priority to EP12835333.1A priority patent/EP2765159B1/en
Priority to US14/241,267 priority patent/US9102817B2/en
Publication of WO2013046933A1 publication Critical patent/WO2013046933A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2315/00Characterised by the use of rubber derivatives
    • C08J2315/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a crosslinkable fluororubber composition, a fluororubber molded product obtained by crosslinking it, and a method for producing the same. These are suitable as various sealing materials, sliding parts, non-adhesive parts, and parts having a water / oil repellent surface.
  • Fluorororubber is widely used in various fields such as the automobile industry, semiconductor industry, and chemical industry because it exhibits excellent chemical resistance, solvent resistance, and heat resistance.
  • engines and peripherals are used in the automobile industry. It is used as a hose, a sealing material, etc. used for devices, AT devices, fuel systems and peripheral devices.
  • rubber is inherently elastomeric and therefore has a high coefficient of friction and stickiness on the surface of the molded product, and improvements have been sought for applications that require low friction such as sliding members.
  • Patent Document 1 includes fluororubber (A) and fluororesin (B) as a crosslinkable composition that has excellent mechanical strength and can provide a low-friction fluororubber molded product.
  • the rubber (A) and the fluororesin (B) are disclosed as a crosslinkable fluororubber composition obtained by co-coagulation of the fluororubber (A) and the fluororesin (B).
  • Patent Document 2 describes that at least one fluoroelastomer [fluoroelastomer (A)] is disclosed as a composition for facilitating processing and improving mold release behavior, mold contamination, and the surface condition of molded parts. At least one melt-processable per (halo) fluoropolymer [polymer (F)] having a melting point of at most 250 ° C. (relative to the fluoroelastomer (A)) of at most 250 ° C .; A fluoroelastomer composition comprising at least one (per) fluoropolyether [(per) fluoropolyether (E)] is disclosed.
  • the present invention provides a crosslinkable fluororubber composition capable of providing a fluororubber molded product having both low compression set and low friction on the surface of the molded product, a molded product obtained by crosslinking the same, and the above molded product
  • An object of the present invention is to provide a method of producing
  • the crosslinkable fluororubber composition of the present invention for example, even if the mixing ratio of the fluororesin is increased in order to improve the low friction property, the compression molding strain inherent in the fluororubber is impaired. There is an advantage that a molded product with a small compression set can be obtained even if the mixing ratio of the fluororesin is the same.
  • the present invention is a crosslinkable fluororubber composition
  • a fluororubber (A) and a fluororesin (B) wherein the fluororesin (B) comprises a tetrafluoroethylene unit (a) and a hexafluoropropylene unit.
  • a copolymer (B1) consisting of (b), wherein (a) / (b) is 80.0 to 87.3 / 12.7 to 20.0 in molar ratio, or tetrafluoroethylene units ( a), a hexafluoropropylene unit (b), and a polymerized unit (c) based on a monomer copolymerizable with tetrafluoroethylene and hexafluoropropylene, wherein (a) / (b) is 80.0 90.0 / 10.0 to 20.0, and (c) / ⁇ (a) + (b) ⁇ is 0.1 to 10.0 / 90.0 to 99.9 in molar ratio.
  • a crosslinkable film characterized by being a copolymer (B2). The elementary rubber composition.
  • the crosslinkable fluororubber composition of the present invention comprises a co-coagulated powder obtained by co-coagulation of fluororubber (A) and fluororesin (B), and the fluororesin (B) contains co-coagulated powder. It is one of the preferable forms that it is a combination (B1).
  • the crosslinkable fluororubber composition of the present invention also comprises a co-coagulated powder obtained by co-coagulation of fluororubber (A) and fluororesin (B).
  • the polymer (B2) is also one of preferred forms.
  • the present invention further comprises (I) a step of co-coagulating the fluororubber (A) and the fluororesin (B) to obtain a co-coagulated powder, and then obtaining the crosslinkable fluororubber composition, (II) cross-linking Forming a cross-linked fluororubber composition and cross-linking to obtain a cross-linked molded product, and (III) heating the cross-linked molded product to a temperature equal to or higher than the melting point of the fluororesin (B).
  • the present invention also relates to a method for producing a fluororubber molded article including a heat treatment step to be obtained.
  • the crosslinkable fluororubber composition of the present invention has the above-described configuration, it is possible to provide a fluororubber molded product having both low compression set and low friction on the surface of the molded product.
  • the fluororubber molded article of the present invention has both low compression set and low friction on the surface of the molded article, and has water / oil repellency on the sealing material, sliding member, non-adhesive member or surface. It is useful as a molded product.
  • (A) is a fluorine shape of convex portions rubber molded article having a perspective view schematically showing, (b) the convex portions by a plane including a straight line B 1 and the line B 2 perpendicular to the surface of (a) 31 is a cross-sectional view of the a cross-sectional view taken along (c) is a plane including a surface parallel to the straight line C 1 and the line C 2 of the (a).
  • the crosslinkable fluororubber composition of the present invention is a crosslinkable fluororubber composition containing a fluororubber (A) and a fluororesin (B).
  • the crosslinkable fluorororubber composition of the present invention is a method of mixing powders obtained by coagulating each of fluororubber (A) and fluororesin (B), melting fluororubber (A) and fluororesin (B). It can be obtained by a method of kneading, a method of co-coagulating the fluororubber (A) and the fluororesin (B), or the like.
  • the crosslinkable fluororubber composition of the present invention is preferably composed of a co-coagulated powder obtained by co-coagulation of the fluororubber (A) and the fluororesin (B).
  • the crosslinkable fluororubber composition of the present invention comprises a co-coagulated powder obtained by co-coagulation of fluororubber (A) and fluororesin (B), so that the fluororesin (B) is crosslinkable fluororubber. It is expected to be uniformly dispersed in the composition. Accordingly, it is considered that the fluororubber molded product obtained by crosslinking the crosslinkable fluororubber composition of the present invention has a smaller compression set and can provide an excellent low friction fluororubber molded product. It is done. Also, non-adhesiveness and water / oil repellency are excellent.
  • Examples of the co-coagulation method include: (i) a method in which an aqueous dispersion of fluororubber (A) and an aqueous dispersion of fluororesin (B) are mixed and then coagulated; (ii) fluororubber ( A method in which the powder of A) is coagulated after being added to the aqueous dispersion of fluororesin (B), and (iii) the powder of fluororesin (B) is coagulated after being added to the aqueous dispersion of fluororubber (A).
  • the method of analyzing is mentioned.
  • the above method (i) is particularly preferable in that each resin is easily dispersed uniformly.
  • fluororubber (A) and fluororesin (B) coagulate after mixing an aqueous dispersion of fluororubber (A) and an aqueous dispersion of fluororesin (B), and then collect the coagulated product. And it is preferably obtained by drying as desired.
  • Fluoro rubber (A) usually comprises an amorphous polymer having fluorine atoms bonded to carbon atoms constituting the main chain and having rubber elasticity.
  • the fluororubber (A) may be composed of one kind of polymer, or may be composed of two or more kinds of polymers.
  • the fluororubber (A) is composed of vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, VdF / HFP / tetrafluoroethylene (TFE) copolymer, TFE / propylene copolymer, TFE / propylene / VdF.
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • Copolymer ethylene / HFP copolymer, ethylene / HFP / VdF copolymer, ethylene / HFP / TFE copolymer, VdF / TFE / perfluoro (alkyl vinyl ether) (PAVE) copolymer, and VdF / It is preferably at least one selected from the group consisting of chlorotrifluoroethylene (CTFE) copolymers.
  • CTFE chlorotrifluoroethylene
  • fluororubber made of a copolymer containing VdF units is preferable.
  • VdF-based fluororubber made of a copolymer containing the vinylidene fluoride (VdF) unit will be described.
  • VdF-based fluororubber is a fluororubber containing at least polymerized units derived from vinylidene fluoride.
  • the copolymer containing a VdF unit is preferably a copolymer containing a VdF unit and a copolymer unit derived from a fluorine-containing ethylenic monomer (excluding the VdF unit).
  • the copolymer containing a VdF unit preferably further contains a copolymer unit derived from a monomer copolymerizable with VdF and a fluorine-containing ethylenic monomer.
  • the copolymer containing VdF units preferably contains 30 to 90 mol% of VdF units and 70 to 10 mol% of copolymerized units derived from a fluorine-containing ethylenic monomer. More preferably, it contains 30 to 85 mol% of VdF units and 70 to 15 mol% of copolymerized units derived from a fluorine-containing ethylenic monomer, and 30 to 80 mol of VdF units and 70 to 20 mol% of fluorine-containing units. More preferably, it contains a copolymer unit derived from an ethylenic monomer.
  • the copolymerized unit derived from the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer is 0 to 10 mol based on the total amount of the VdF unit and the copolymerized unit derived from the fluorine-containing ethylenic monomer. % Is preferred.
  • a fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 carbon atoms, or 1 to 2 atoms selected from the group consisting of H, Cl, Br and I
  • a fluorine-containing monomer such as a fluorovinyl ether represented by (C) represents a cyclic fluoroalkyl group having 5 or 6 carbon atoms.
  • at least one selected from the group consisting of fluorovinyl ether represented by formula (1), TFE, HFP and PAVE is preferable, and at least selected from the group consisting of TFE, HFP and PAVE One type is more preferable.
  • CF 2 CFO (CF 2 CFY 1 O) p — (CF 2 CF 2 CF 2 O) q —R f (2) (Wherein Y 1 represents F or CF 3 , R f represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5 and q represents an integer of 0 to 5). ) Is preferable.
  • the PAVE is preferably perfluoro (methyl vinyl ether) or perfluoro (propyl vinyl ether), and more preferably perfluoro (methyl vinyl ether). These can be used alone or in any combination.
  • Examples of the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer include ethylene, propylene, alkyl vinyl ether and the like.
  • Such a copolymer containing VdF units include a VdF / HFP copolymer, a VdF / HFP / TFE copolymer, a VdF / CTFE copolymer, a VdF / CTFE / TFE copolymer, and a VdF.
  • / PAVE copolymer, VdF / TFE / PAVE copolymer, VdF / HFP / PAVE copolymer, VdF / HFP / TFE / PAVE copolymer and the like are preferable. These copolymers may be used alone or in combination of two or more.
  • copolymers containing VdF units at least one selected from the group consisting of VdF / HFP copolymers and VdF / HFP / TFE copolymers from the viewpoint of heat resistance and non-adhesiveness.
  • the copolymer is particularly preferred.
  • These copolymers preferably satisfy the ratio of the VdF unit and the copolymerized unit derived from the fluorinated ethylenic monomer in the copolymer containing the VdF unit.
  • the VdF / HFP copolymer preferably has a VdF / HFP molar ratio of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20, still more preferably 60 to 80 / 40-20.
  • VdF / HFP / TFE copolymer VdF / HFP / TFE having a molar ratio of 40 to 80/10 to 35/10 to 35 is preferable.
  • VdF / PAVE copolymer VdF / PAVE having a molar ratio of 65 to 90/10 to 35 is preferable.
  • VdF / TFE / PAVE copolymer VdF / TFE / PAVE having a molar ratio of 40 to 80/3 to 40/15 to 35 is preferable.
  • the VdF / HFP / PAVE copolymer preferably has a VdF / HFP / PAVE molar ratio of 65 to 90/3 to 25/3 to 25.
  • the VdF / HFP / TFE / PAVE copolymer preferably has a VdF / HFP / TFE / PAVE molar ratio of 40 to 90/0 to 25/0 to 40/3 to 35, more preferably 40 to 80/3 to 25/3 to 40/3 to 25.
  • the fluororubber (A) is also preferably made of a copolymer containing a copolymer unit derived from a monomer that provides a crosslinking site.
  • Examples of the monomer that gives a crosslinking site include perfluoro (6,6-dihydro-6-iodo-3-oxa-1-) described in JP-B-5-63482 and JP-A-7-316234.
  • Hexene) and perfluoro (5-iodo-3-oxa-1-pentene) -containing monomers bromine-containing monomers described in JP-A-4-505341, JP-A-4-505345, Examples include cyano group-containing monomers, carboxyl group-containing monomers, and alkoxycarbonyl group-containing monomers as described in JP-T-5-500070.
  • the fluorororubber (A) is also preferably a fluororubber having an iodine atom or a bromine atom at the end of the main chain.
  • Fluororubber having iodine atom or bromine atom at the main chain end is produced by adding a radical initiator in the presence of a halogen compound in an aqueous medium in the absence of oxygen and performing emulsion polymerization of the monomer. it can.
  • halogen compound used include, for example, the general formula: R 2 I x Br y (Wherein x and y are each an integer of 0 to 2 and satisfy 1 ⁇ x + y ⁇ 2, and R 2 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms, carbon A saturated or unsaturated chlorofluorohydrocarbon group having 1 to 16 carbon atoms, or a hydrocarbon group having 1 to 3 carbon atoms, which may contain an oxygen atom).
  • halogen compound examples include 1,3-diiodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo-2,4-dichloro.
  • 1,4-diiodoperfluorobutane or diiodomethane from the viewpoints of polymerization reactivity, crosslinking reactivity, availability, and the like.
  • the fluororubber (A) has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of preferably 5 to 140, more preferably 10 to 120, and more preferably 20 to 100 from the viewpoint of good processability. More preferably.
  • the crosslinking system of the fluororubber (A) for example, at least one selected from the group consisting of a peroxide crosslinking system and a polyol crosslinking system is preferable. From the viewpoint of chemical resistance, a peroxide crosslinking system is preferred, and from the viewpoint of heat resistance, a polyol crosslinking system is preferred.
  • the crosslinkable fluororubber composition may contain a crosslinking agent used in each crosslinking system.
  • the amount of the crosslinking agent may be appropriately selected depending on the type of the crosslinking agent and the like, but is preferably 0.2 to 5.0 parts by mass, more preferably 0 to 100 parts by mass of the fluororubber (A). .3 to 3.0 parts by mass.
  • Peroxide crosslinking can be performed by using a peroxide-crosslinkable fluororubber and an organic peroxide as a crosslinking agent.
  • the fluorororubber capable of peroxide crosslinking is not particularly limited as long as it is a fluororubber having a site capable of peroxide crosslinking.
  • the peroxide-crosslinkable site is not particularly limited, and examples thereof include an iodine atom and a bromine atom.
  • the organic peroxide may be an organic peroxide that can easily generate a peroxy radical in the presence of heat or a redox system.
  • 1,1-bis (t-butylperoxy) -3 5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t- Butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne -3, benzoyl peroxide, t-butyl peroxybenzene, t-butyl peroxymaleic acid, t-butyl peroxyisopropyl carbonate
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3 are preferable.
  • the compounding amount of the organic peroxide is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the cross-linkable fluororubber composition preferably contains a cross-linking aid.
  • the crosslinking aid include triallyl cyanurate, triallyl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N′-m-phenylenebismaleimide, dipropargyl terephthalate, diallyl phthalate, Tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro-2-propenyl) -1,3,5-triazine-2 , 4,6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodecafluorohexane, hexaallylphosphoramide, N, N, N-diallylacrylamide, 1,6-div
  • the amount of the crosslinking aid is 0.01 to 10 parts by mass, preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinking aid is less than 0.01 parts by mass, the mechanical properties are deteriorated and the sealing property is inferior.
  • the amount exceeds 10 parts by mass the heat resistance is inferior and the durability of the fluororubber molded product also tends to be reduced. .
  • Polyol crosslinking can be performed by using a polyol-crosslinkable fluororubber and a polyhydroxy compound as a crosslinking agent.
  • the polyol-crosslinkable fluorororubber is not particularly limited as long as it is a fluororubber having a polyol-crosslinkable site.
  • the polyol-crosslinkable site is not particularly limited, and examples thereof include a site having a vinylidene fluoride (VdF) unit.
  • Examples of the method for introducing the crosslinking site include a method of copolymerizing a monomer that gives a crosslinking site during the polymerization of the fluororubber.
  • polyhydroxy compound a polyhydroxy aromatic compound is preferably used from the viewpoint of excellent heat resistance.
  • the polyhydroxy aromatic compound is not particularly limited.
  • 2,2-bis (4-hydroxyphenyl) propane hereinafter referred to as bisphenol A
  • 2,2-bis (4-hydroxyphenyl) perfluoropropane (Hereinafter referred to as bisphenol AF)
  • resorcin 1,3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl, 4,4 ′ -Dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone, catechol, 2,2-bis (4-hydroxyphenyl) butane (hereinafter referred to as bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, , 2-Bis (4-hydroxyphenyl) Tetrafluorodichloropropane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphen
  • polyhydroxy aromatic compounds may be an alkali metal salt, an alkaline earth metal salt or the like, but when the copolymer is coagulated using an acid, it is preferable not to use the metal salt.
  • the compounding amount of the polyhydroxy aromatic compound is 0.1 to 15 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinkable fluororubber composition preferably contains a crosslinking accelerator.
  • a crosslinking accelerator accelerates
  • crosslinking accelerator examples include onium compounds.
  • onium compounds ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and 1 It is preferably at least one selected from the group consisting of functional amine compounds, and more preferably at least one selected from the group consisting of quaternary ammonium salts and quaternary phosphonium salts.
  • the quaternary ammonium salt is not particularly limited.
  • the quaternary phosphonium salt is not particularly limited.
  • tetrabutylphosphonium chloride benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltributylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl.
  • BTPPC benzyltriphenylphosphonium chloride
  • BTPPC benzyltriphenylphosphonium chloride
  • BTPPC benzyltriphenylphosphonium chloride
  • crosslinking accelerator a quaternary ammonium salt or a quaternary phosphonium salt and a bisphenol AF solid solution, or a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 can be used.
  • the blending amount of the crosslinking accelerator is preferably 0.01 to 8 parts by mass, more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinking accelerator is less than 0.01 parts by mass, the crosslinking of the fluororubber does not proceed sufficiently, and the heat resistance and the like of the resulting fluororubber molded product may be lowered. If the amount exceeds 8 parts by mass, the moldability of the crosslinkable fluororubber composition may be lowered, the elongation in mechanical properties may be lowered, and the sealing property tends to be lowered.
  • the fluororesin (B) is a copolymer composed of tetrafluoroethylene units and hexafluoropropylene units having a specific composition.
  • the fluororesin (B) having a specific composition the low friction property of the surface of the molded product obtained from the crosslinkable fluororubber composition of the present invention can be improved, and at the same time, the low compression set of the molded product. Can be improved.
  • the wear resistance and non-adhesiveness of the surface of the molded product can be improved.
  • a copolymer composed of a tetrafluoroethylene unit and a hexafluoropropylene unit is also preferable from the viewpoint of excellent compatibility with the fluororubber (A) and excellent heat resistance of the fluororubber molded product.
  • the fluororubber molded product of the present invention is used as a hose or the like used in a fuel system in the automobile field or the like, it is also preferable in that excellent fuel barrier properties are exhibited.
  • the fluororesin (B) is a polymer composed only of tetrafluoroethylene (TFE) units (a) and hexafluoropropylene (HFP) units (b), the TFE units (a) / HFP units (b) It is a copolymer (B1) having a ratio of 80.0 to 87.3 / 12.7 to 20.0.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • the fluororesin (B1) has a molar ratio of (8) to 87.0 / 13.0 in terms of (a) / (b) from the viewpoint of further reducing the compression set and improving the mechanical properties. 13.0 to 18.0, preferably 83.0 to 86.5 / 13.5 to 17.0, more preferably 83.0 to 86.0 / 14.0 to 17.0. Is more preferable. If (a) / (b) is too large, the compression set of the obtained fluororubber molded product may not be sufficiently reduced. If (a) / (b) is too small, the mechanical properties tend to decrease.
  • the fluororesin (B) has a molar ratio (a) / (b) of 80.0 to 90.0 / 10.0 to 20.0, and (c) / ⁇ (a ) + (B) ⁇ is a copolymer (B2) having a molar ratio of 0.1 to 10.0 / 90.0 to 99.9 (where ⁇ (a) + (b) ⁇ (It means the total of tetrafluoroethylene unit (a) and hexafluoropropylene unit (b).) (A) / (b) is a molar ratio of 80.0 to 90.0 / 10.0 to 20.0, and (c) / ⁇ (a) + (b) ⁇ is a molar ratio of 0.00.
  • the compression set is remarkably reduced.
  • the fluororesin (B2) has a molar ratio of (8) to 88.0 / 12.0 in terms of (a) / (b) from the viewpoint of further reducing the compression set and improving the mechanical properties. It is preferably ⁇ 18.0, more preferably 84.0 to 88.0 / 12.0 to 16.0. If the TFE unit (a) / HFP unit (b) is too large, the compression set of the obtained fluororubber molded product may not be sufficiently reduced. Further, the melting point becomes too high, and the moldability tends to decrease. If the TFE unit (a) / HFP unit (b) is too small, the mechanical properties tend to decrease.
  • (c) / ⁇ (a) + (b) ⁇ is preferably 0.3 to 8.0 / 92.0 to 99.7 in terms of molar ratio.
  • the PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, and more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE.
  • alkyl perfluorovinyl ether derivative those in which Rf 7 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCH 2 —CF 2 CF 3 is more preferable.
  • the polymerized unit (c) based on a monomer copolymerizable with tetrafluoroethylene and hexafluoropropylene is preferably a perfluoro (alkyl vinyl ether) unit.
  • the fluororesin (B2) is more preferably a copolymer composed only of tetrafluoroethylene units, hexafluoropropylene units, and perfluoro (alkyl vinyl ether) units.
  • the fluororesin (B) preferably has a melting point of 210 ° C. or lower.
  • the melting point of the fluororesin (B) is preferably not less than the crosslinking temperature of the fluororubber (A), more preferably 130 to 210 ° C., further preferably 150 to 200 ° C., and 160 to 190 ° C. It is particularly preferred that If the melting point of the fluororesin (B) is less than 130 ° C., the fluororesin (B) may bleed out on the surface during cross-linking molding, and a fluororubber molded product having a sufficient number of protrusions may not be obtained. As a result, sufficient low friction, wear resistance, and non-adhesiveness may not be obtained. When it exceeds 210 ° C., the storage elastic modulus of the fluororesin becomes high, and the low compression set of the fluororubber molded product may be impaired.
  • the fluororesin (B) preferably has a melt flow rate [MFR] of 0.1 g / 10 min or more. If the MFR is less than 0.1 g / 10 min, it may be difficult to deposit the fluororesin (B) on the surface of the fluororubber molded article.
  • the fluororesin (B) preferably has a storage elastic modulus (E ′) at 70 ° C. of 10 to 160 MPa as measured by dynamic viscoelasticity from the viewpoint of reducing the compression set of the fluororubber molded article.
  • the storage elastic modulus is a value measured at 70 ° C. by dynamic viscoelasticity measurement. More specifically, a sample having a length of 30 mm, a width of 5 mm, and a thickness of 0.5 mm was pulled in a tensile mode, a grip width of 20 mm, and a measurement temperature of 25 ° C. to 200 ° C. It is a value measured under conditions of a speed of 2 ° C./min and a frequency of 1 Hz.
  • a preferable storage elastic modulus (E ′) at 70 ° C. is 10 to 160 MPa, a more preferable storage elastic modulus (E ′) is 20 to 140 MPa, and a further preferable storage elastic modulus (E ′) is 30 to 100 MPa.
  • the crosslinkable fluororubber composition of the present invention may contain at least one polyfunctional compound in order to improve the compatibility between the fluororesin (B) and the fluororubber (A).
  • the polyfunctional compound is a compound having two or more functional groups having the same or different structures in one molecule.
  • the fluorororubber (A) is preferably 60 to 97% by mass of the crosslinkable fluororubber composition. If the amount of fluororubber is too small, there is a possibility that a fluororubber molded product having properties as a rubber cannot be obtained, and if there is too much fluororubber (A), a low friction fluororubber molded product may not be obtained. .
  • the crosslinkable fluororubber composition of the present invention has a volume ratio of fluororubber (A) to fluororesin (B) (fluororubber (A) / fluororesin (B)) of 97/3 to 60/40. Is preferred. If the amount of the fluororesin (B) is too small, the molded product surface may not have sufficient low friction, wear resistance and non-adhesiveness. On the other hand, if the amount of the fluororesin (B) is too large, the compression set May not be sufficiently reduced.
  • the volume ratio (A) / (B) should be 95/5 to 65/35 from the viewpoints of low compression set, good surface friction, wear resistance, and non-stickiness. More preferably, it is 90/10 to 70/30.
  • the crosslinkable fluororubber composition of the present invention is a usual compounding agent blended in the fluororubber as necessary, for example, a filler, a processing aid, a plasticizer, a colorant, a stabilizer, an adhesion aid, a release agent.
  • Various additives such as additives, conductivity imparting agents, thermal conductivity imparting agents, surface non-adhesives, flexibility imparting agents, heat resistance improvers, flame retardants, and the like, What is necessary is just to use in the range which does not impair the effect of this invention.
  • the crosslinkable fluororubber composition of the present invention does not contain a fluorine-containing thermoplastic elastomer.
  • the fluororubber molded article of the present invention is obtained by crosslinking the crosslinkable fluororubber composition containing the fluororubber (A) and the fluororesin (B).
  • the fluororubber molded product of the present invention is not limited as long as it is obtained by crosslinking the crosslinkable fluororubber composition containing the fluororubber (A) and the fluororesin (B). It is preferable that For example, a crosslinked product obtained by crosslinking a crosslinkable fluororubber composition containing a co-coagulated powder obtained by co-coagulation of fluororubber (A) and a fluororesin (B) having a specific composition.
  • the surface of the obtained fluororubber molded article is excellent in low friction, non-adhesiveness and water / oil repellency, and a fluororubber molded article having a small compression set is obtained.
  • the fluororubber molded article of the present invention preferably has a convex portion on the surface. Due to the presence of the convex portions on the surface of the fluororubber molded article, excellent low friction properties, wear resistance and non-adhesiveness are exhibited.
  • a convex part consists of a fluororesin (B) substantially contained in a crosslinkable fluorororubber composition.
  • a convex part can be formed by depositing the fluororesin (B) contained in the said crosslinkable fluororubber composition on the surface by the method mentioned later, for example.
  • the convex part does not have a clear interface with the fluororubber molded product body, and the convex part and the fluororubber molded product are configured integrally. The effect that it is hard to do can be enjoyed more reliably.
  • the convex portion is substantially made of the fluororesin (B) contained in the crosslinkable fluororubber composition indicates that the peak derived from the fluororubber (A) and the peak derived from the fluororesin (B) are obtained by IR analysis or ESCA analysis. It can be shown by determining the peak ratio.
  • FIGS. 1A to 1C schematically depict a minute region on the surface of the fluororubber molded article.
  • a convex portion 31 having a substantially conical shape (cone shape) is formed on the surface of the fluororubber molded product.
  • the height of the convex portion 31 refers to the height of the portion protruding from the surface of the fluororubber molded product (see H in FIG. 1B). Further, the bottom cross-sectional area of the convex portion 31 is the convex portion 31 observed on a plane obtained by cutting the convex portion 31 along a plane parallel to the surface of the fluororubber molded product (a plane including the straight lines C1 and C2) (FIG. 1). (C) refers to the value of the area in the cross section.
  • region which has a convex part is 0.03 (3%) or more with respect to the surface area of a fluororubber molded article.
  • a more preferable area ratio is 0.15 (15%) or more, and further preferably 0.30 (30%) or more.
  • the area ratio of the region having the convex portion on the surface of the fluororubber molded product refers to the ratio of the area occupied by the convex portion in the cut surface for evaluating the bottom cross-sectional area of the convex portion.
  • the volume ratio of the fluororesin (B) is preferably 0.03 to 0.40 (3 to 40% by volume) with respect to the fluororubber molded article.
  • the lower limit of the volume ratio is more preferably 0.05 (5% by volume), and still more preferably 0.10 (10% by volume).
  • the upper limit of the volume ratio is more preferably 0.35 (35% by volume), and still more preferably 0.30 (30% by volume).
  • the fluororesin (B) is a copolymer comprising polymerized units based on tetrafluoroethylene and polymerized units based on hexafluoropropylene, and has excellent heat resistance.
  • the said volume ratio is the same as the volume ratio of the fluororesin in a crosslinkable fluororubber composition.
  • the convex part preferably has a bottom sectional area of 0.1 to 2000 ⁇ m 2 .
  • the bottom cross-sectional area of the convex portion is within this range, wear resistance, low friction and non-adhesiveness are excellent.
  • a more preferable bottom cross-sectional area is 0.3 to 1500 ⁇ m 2
  • a still more preferable bottom cross-sectional area is 0.5 to 1000 ⁇ m 2 .
  • the standard deviation of the height of the convex part is preferably 0.300 or less. When in this range, wear resistance, low friction and non-adhesiveness are more excellent.
  • the number of convex portions is preferably 500 to 60000 pieces / mm 2 . When in this range, wear resistance, low friction and non-adhesiveness are more excellent.
  • the area ratio of the convex region, the height of the convex portion, the cross-sectional area of the bottom of the convex portion, the number of convex portions, etc. are analyzed using, for example, a color 3D laser microscope (VK-9700) manufactured by Keyence Corporation. WinRooF Ver. It can be calculated using 6.4.0.
  • the area ratio of the region having the convex part is obtained as the ratio of the total cross-sectional area to the total cross-sectional area value obtained by calculating the bottom cross-sectional area of the convex part.
  • the number of convex portions is obtained by converting the number of convex portions in the measurement region into a number per 1 mm 2 .
  • the fluorororubber molded product of the present invention utilizes its low compression set, low surface friction, non-adhesiveness, water and oil repellency (high contact angle), sealing material, sliding member, non-adhesive It is useful as a sex member.
  • the following molded products can be exemplified, but are not limited thereto.
  • Sealing material In semiconductor-related fields such as semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, plasma panel manufacturing equipment, plasma addressed liquid crystal panels, field emission display panels, solar cell substrates, etc., O (square) -rings, packings, gaskets, diaphragms, and other various types Examples thereof include a sealing material, and these can be used for a CVD apparatus, a dry etching apparatus, a wet etching apparatus, an oxidation diffusion apparatus, a sputtering apparatus, an ashing apparatus, a cleaning apparatus, an ion implantation apparatus, and an exhaust apparatus.
  • O-rings for gate valves quartz-window O-rings, chamber O-rings, gate O-rings, bell jar O-rings, coupling O-rings, pump O-rings, It can be used as diaphragms, O-rings for semiconductor gas control devices, O-rings for resist developers, stripping solutions, and other various sealing materials.
  • sealing material used in the fuel system and peripheral devices include O (square) -rings, packings, and diaphragms.
  • engine head gasket metal gasket, oil pan gasket, crankshaft seal, camshaft seal, valve stem seal, manifold packing, oxygen sensor seal, injector O-ring, injector packing, fuel pump O-ring, Diaphragm, crankshaft seal, gearbox seal, power piston seal, cylinder liner seal, valve stem seal, automatic transmission front pump seal, rear axle pinion seal, universal joint gasket, speedometer pinion seal, foot brake Piston cup, torque transmission O-ring, oil seal, exhaust gas reburner seal, bearing seal, carburetor sensor die It can be used as Fulham like.
  • valves In the chemical plant field, there are valves, packings, diaphragms, O (square) -rings, various sealing materials, etc., and these can be used in the manufacturing process of chemical products such as pharmaceuticals, agricultural chemicals, paints, and resins.
  • Seals packing for high-temperature vacuum dryers, roller seals for papermaking belts, fuel cell seals, wind tunnel joint seals, gas chromatography, packing for pH meter tube connections, analytical instruments, physics and chemistry instrument seals, diaphragms, valve parts Etc. can be used.
  • the field of photography such as a developing machine
  • the field of printing such as a printing machine
  • the field of painting such as a painting facility
  • it can be used as a seal or valve part of a dry copying machine.
  • it can use for the various rolls of the said field
  • valves In the field of food plant equipment, there are valves, packings, diaphragms, O (square) -rings, various sealing materials, etc., which can be used in food production processes. Specifically, it can be used as a seal for a plate heat exchanger, a solenoid valve seal for a vending machine, or the like.
  • the fuel cell field specifically, it is used as a sealing material between electrodes and separators, a seal for hydrogen / oxygen / product water piping, and the like.
  • seal material for clean equipment such as a gasket for a magnetic recording device (hard disk drive), a seal ring material for a semiconductor storage device or a device storage such as a wafer.
  • a sealing material for fuel cells such as packing used between fuel cell electrodes or surrounding piping.
  • Sliding member In the automotive field, piston rings, shaft seals, valve stem seals, crankshaft seals, camshaft seals, oil seals and the like can be mentioned. In general, there is a fluororubber product used for a portion that slides in contact with another material.
  • Non-adhesive material For example, hard disk crash stoppers in the computer field.
  • Fields that utilize water and oil repellency Examples include automobile wiper blades and outdoor tent pulling cloths.
  • the method for producing a fluororubber molded article of the present invention is (I) a step of co-coagulating the fluororubber (A) and the fluororesin (B) to obtain a co-coagulated powder, and then obtaining the crosslinkable fluororubber composition; (II) a crosslinkable fluororubber composition Forming and crosslinking to obtain a crosslinked molded product, and (III) a heat treatment step of heating the crosslinked molded product to a temperature equal to or higher than the melting point of the fluororesin (B) to obtain a fluororubber molded product. .
  • This process is a process of obtaining the said crosslinkable fluororubber composition after co-coagulating fluororubber (A) and fluororesin (B) and obtaining co-coagulated powder.
  • Examples of the co-coagulation method include (i) a method of coagulating after mixing an aqueous dispersion of fluororubber (A) and an aqueous dispersion of fluororesin (B), and (ii) fluororubber ( A method of coagulating after adding the powder of A) to the fluororesin (B), (iii) a method of coagulating after adding the powder of the fluororesin (B) to the aqueous dispersion of the fluororubber (A) Can be mentioned.
  • the above method (i) is particularly preferable in that each resin is easily dispersed uniformly.
  • the coagulation in the coagulation methods (i) to (iii) can be performed using, for example, a flocculant.
  • a flocculant is not particularly limited, and examples thereof include aluminum salts such as aluminum sulfate and alum, calcium salts such as calcium sulfate, magnesium salts such as magnesium sulfate, sodium chloride and potassium chloride.
  • Known aggregating agents such as valent cation salts can be mentioned.
  • the pH may be adjusted by adding an acid or an alkali in order to promote aggregation.
  • the co-coagulated powder is obtained by co-coagulating the fluororubber (A) and the fluororesin (B).
  • the step of obtaining a crosslinkable fluororubber composition by mixing the co-coagulated powder and the crosslinking agent is also preferred.
  • the co-coagulated powder and the crosslinking agent can be mixed by a conventionally known method.
  • the co-coagulated powder and the crosslinking agent may be mixed using an open roll at a time and temperature sufficient to sufficiently mix them.
  • This step is a step for producing a crosslinked molded product by molding and crosslinking the crosslinkable fluororubber composition obtained in the mixing step (I).
  • the order of molding and crosslinking is not limited, and may be crosslinked after molding, may be molded after crosslinking, or may be molded and crosslinked simultaneously.
  • a method of crosslinking after extrusion molding is appropriate, and in the case of a deformed molded product, a method of performing a molding process such as cutting after obtaining a block-shaped crosslinked product can be adopted.
  • a relatively simple molded product such as a piston ring or an oil seal, it is a common practice to simultaneously perform molding and crosslinking simultaneously with a mold or the like.
  • Examples of the molding method include, but are not limited to, an extrusion molding method, a pressure molding method using a mold, an injection molding method, and the like.
  • crosslinking method a steam crosslinking method, a pressure molding method, a radiation crosslinking method, or a usual method in which a crosslinking reaction is started by heating can be employed.
  • a crosslinking reaction by heating is preferred from the viewpoint that the transition of the fluororesin to the surface layer of the crosslinkable fluororubber composition occurs smoothly.
  • the method and conditions for molding and crosslinking of the crosslinkable fluororubber composition may be within the range of known methods and conditions for the molding and crosslinking employed.
  • the temperature at which crosslinking is performed is not less than the crosslinking temperature of the fluororubber (A) and is preferably less than the melting point of the fluororesin (B). If the crosslinking is performed at a melting point or higher of the fluororesin (B), the fluororesin (B) may bleed out on the surface at the time of cross-linking molding, and a molded product having a large number of projections may not be obtained. More preferably, the crosslinking temperature is less than 5 ° C. lower than the melting point of the fluororesin (B) and not less than the crosslinking temperature of the fluororubber (A).
  • the crosslinking time is, for example, 1 minute to 24 hours, and may be appropriately determined depending on the type of crosslinking agent used.
  • a post-treatment process called secondary crosslinking may be performed, as described in the next heat treatment process (III).
  • the conventional secondary cross-linking step is different from the forming cross-linking step (II) and the heat treatment step (III) in the present invention.
  • the heat treatment step (III) in the present invention is a treatment step performed to increase the ratio of the fluororesin on the surface of the cross-linked molded product.
  • the melting point of the fluororesin (B) is higher than the fluororubber (A) and A temperature lower than the thermal decomposition temperature of the fluororesin (B) is employed as the heating temperature.
  • the heating temperature When the heating temperature is lower than the melting point, the ratio of the fluororesin on the surface of the crosslinked molded product is not sufficiently high.
  • the temperature In order to avoid thermal decomposition of fluororubber and fluororesin, the temperature must be lower than the lower thermal decomposition temperature of fluororubber (A) or fluororesin (B).
  • a preferable heating temperature is a temperature that is higher by 5 ° C. or more than the melting point of the fluororesin from the viewpoint of easily reducing friction in a short time.
  • the above upper limit temperature is the case of ordinary fluoro rubber, and in the case of fluoro rubber having super heat resistance, since the upper limit temperature is the decomposition temperature of fluoro rubber having super heat resistance, the above upper limit temperature is not limited to this. .
  • the heating temperature is closely related to the heating time.
  • the heating temperature is relatively close to the lower limit, the heating is performed for a relatively long time, and when the heating temperature is relatively close to the upper limit, the heating is relatively short.
  • the heating time may be appropriately set in relation to the heating temperature.
  • the fluororubber may be thermally deteriorated. It is practically practical up to 96 hours, except for the case where is used.
  • the heat treatment time is preferably 1 minute to 72 hours, more preferably 1 minute to 48 hours, and more preferably 1 minute to 24 hours from the viewpoint of good productivity.
  • it is 12 hours or more.
  • the conventional secondary cross-linking completely decomposes the cross-linking agent remaining at the end of the primary cross-linking to complete the cross-linking of the fluororubber, thereby improving the mechanical properties and compression set properties of the cross-linked molded product. This is a process to be performed.
  • the conventional secondary crosslinking conditions that do not assume the coexistence of the fluororesin (B) are present in the secondary crosslinking even if the crosslinking conditions accidentally overlap with the heating conditions of the heat treatment step in the present invention.
  • Is not used as a factor for setting the crosslinking conditions but only the heating conditions within the range of the purpose of completion of crosslinking of the fluororubber (complete decomposition of the crosslinking agent) are employed, and the fluororesin (B) is blended.
  • the conditions for heat softening or melting the fluororesin (B) in a crosslinked rubber cannot be derived.
  • the remaining crosslinking agent may be decomposed to complete the crosslinking of the fluororubber (A).
  • the crosslinking of the fluororubber (A) in the heat treatment step (III) is only secondary. It is only a natural effect.
  • the production method of the present invention it is possible to obtain a fluororubber molded article in which the characteristics of the fluororesin, such as low friction, non-adhesiveness, and water / oil repellency, are significantly improved from those not subjected to heat treatment.
  • the properties of fluororubber can be exhibited in areas other than the surface region, and fluorine as a whole has excellent balance in all of the low compression set, low friction, non-adhesiveness, and water / oil repellency.
  • a rubber molded product is obtained.
  • the obtained fluororubber molded article does not have a clear interface state between the fluororesin and the fluororubber, the area rich in the fluororesin on the surface does not fall off or peel off, and the surface of the conventional fluororubber is protected from the Excellent durability compared to fluororubber molded products modified by resin application and adhesion.
  • MFR Melt flow rate of fluororesin [MFR] MFR is based on ASTM D3307-01 and uses a melt indexer (manufactured by Toyo Seiki Co., Ltd.) at 280 ° C. under a load of 5 kg, the mass of the polymer flowing out from a nozzle having an inner diameter of 2 mm and a length of 8 mm per 10 minutes ( g / 10 min) was defined as MFR.
  • the storage elastic modulus is a value measured at 70 ° C. by dynamic viscoelasticity measurement.
  • a sample having a length of 30 mm, a width of 5 mm, and a thickness of 0.25 mm is pulled in a tensile mode using a dynamic viscoelastic device DVA220 manufactured by IT-Measurement Control Co., Ltd.
  • the measurement was performed under the conditions of a grip width of 20 mm, a measurement temperature of 25 ° C. to 200 ° C., a temperature increase rate of 2 ° C./min, and a frequency of 1 Hz.
  • Thermal decomposition start temperature of fluororesin (1% mass loss temperature)
  • the thermal decomposition starting temperature was defined as the temperature at which the mass of the fluororesin subjected to the heating test using a differential thermal / thermogravimetric measuring apparatus [TG-DTA] decreased by 1% by mass.
  • Tb Tensile strength at break
  • the number of convex portions is obtained by using, for example, a color 3D laser microscope (VK-9700) manufactured by Keyence Corporation and using WinRooF Ver. Calculated using 6.4.0.
  • the area ratio of the region having the convex part is obtained as the ratio of the total cross-sectional area to the total cross-sectional area value obtained by calculating the bottom cross-sectional area of the convex part.
  • the number of convex portions is obtained by converting the number of convex portions in the measurement region into a number per 1 mm 2 .
  • Carbon black (MT carbon manufactured by Cancarb: N990)
  • HFP hexafluoropropylene
  • the obtained polymer had the following composition and physical properties.
  • TFE / HFP 84.7 / 15.3 (molar ratio) Melting point: 186 ° C MFR: 7.5 g / 10 min (280 ° C., 5 kg)
  • HFP hexafluoropropylene
  • PPVE perfluoro (propyl) vinyl ether
  • TFE perfluoro (propyl) vinyl ether
  • 16 g of a 3.0% by mass ammonium persulfate aqueous solution was injected as a polymerization initiator to initiate polymerization.
  • the obtained polymer had the following composition and physical properties.
  • TFE / HFP / PPVE 85.5 / 13.5 / 1.0 (molar ratio) Melting point: 188 ° C MFR: 8.1 g / 10 min (280 ° C., 5 kg)
  • HFP hexafluoropropylene
  • the obtained polymer had the following composition and physical properties.
  • TFE / HFP 87.9 / 12.1 (molar ratio) Melting point: 215 ° C MFR: 6.8 g / 10 min (280 ° C., 5 kg) Storage elastic modulus at 70 ° C. (E ′): 167 MPa Thermal decomposition start temperature (1% mass loss temperature): 398 ° C.
  • Example 1 The FEP aqueous dispersion (B1) and the fluororubber dispersion (A1) of Synthesis Example 1 were mixed in a solution in which 500 cc of water and 4 g of magnesium chloride were previously mixed in a 1 L mixer, and the solid content was 75/25 (by volume). 400 cc of a solution previously mixed so as to be (fluororubber / FEP) was added, mixed for 5 minutes with a mixer, and co-coagulated. After co-coagulation, the solid content was taken out and dried in a drying oven at 120 ° C. for 24 hours, and then a predetermined compound shown in Table 1 was mixed with an open roll to obtain a crosslinkable fluororubber composition.
  • Example 2 A test molded article was obtained in the same manner as in Example 1 except that the FEP aqueous dispersion (B2) of Synthesis Example 2 was used instead of the FEP aqueous dispersion (B1) of Synthesis Example 1. Table 1 shows the physical properties of the molded product.
  • Reference example 1 A test molded article was obtained in the same manner as in Example 1 except that the FEP aqueous dispersion of Reference Synthesis Example 1 was used instead of the FEP aqueous dispersion (B1) of Synthesis Example 1. Table 1 shows the physical properties of the molded product.
  • the fluororubber molded product of the present invention can be particularly suitably used as a sealing material, a sliding member, and a non-adhesive member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

  本発明は、低圧縮永久歪性と、成形品表面の低摩擦性とを兼ね備えるフッ素ゴム成形品を与え得る架橋性フッ素ゴム組成物、それを架橋して得られる成形品、及び、上記成形品を製造する方法を提供することを目的とする。 本発明は、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性フッ素ゴム組成物であって、前記フッ素樹脂(B)は、テトラフルオロエチレン単位(a)及びヘキサフルオロプロピレン単位(b)のみからなり、(a)/(b)が、モル比で80.0~87.3/12.7~20.0である共重合体(B1)、又は、テトラフルオロエチレン単位(a)、ヘキサフルオロプロピレン単位(b)、並びに、テトラフルオロエチレン及びヘキサフルオロプロピレンと共重合可能な単量体に基づく重合単位(c)からなり、(a)/(b)が、80.0~90.0/10.0~20.0であり、(c)/{(a)+(b)}が、モル比で0.1~10.0/90.0~99.9である共重合体(B2)であることを特徴とする架橋性フッ素ゴム組成物である。 

Description

架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法
本発明は、架橋性フッ素ゴム組成物、それを架橋して得られるフッ素ゴム成形品およびその製造方法に関する。これらは各種のシール材や摺動部品、非粘着部品、撥水撥油性表面を有する部品として好適である。
フッ素ゴムは、優れた耐薬品性、耐溶剤性及び耐熱性を示すことから、自動車工業、半導体工業、化学工業等の各種分野において広く使用されており、たとえば、自動車産業においては、エンジンならびに周辺装置、AT装置、燃料系統ならびに周辺装置などに使用されるホース、シール材等として使用されている。
しかしながら、ゴムは本来そのエラストマー性により、成形品表面の摩擦係数や粘着性が高く、摺動部材等の低摩擦性が要求される用途では改善が求められていた。
そのような中で、特許文献1には、機械的強度に優れ、低摩擦性のフッ素ゴム成形品を与え得る架橋性組成物として、フッ素ゴム(A)及びフッ素樹脂(B)を含み、フッ素ゴム(A)及びフッ素樹脂(B)は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られたものである架橋性フッ素ゴム組成物が開示されている。
ところで、特許文献2には、加工が容易となり、離型挙動、金型の汚れおよび成形部品の表面状態を改善するための組成物として、少なくとも1種のフルオロエラストマー[フルオロエラストマー(A)];(フルオロエラストマー(A)に対して)0.1~25phrの、高くとも250℃の融点を有する少なくとも1種の溶融加工可能なペル(ハロ)フルオロポリマー[ポリマー(F)];場合によっては、少なくとも1種の(ペル)フルオロポリエーテル[(ペル)フルオロポリエーテル(E)]、を含むフルオロエラストマー組成物が開示されている。
国際公開第2011/002080号パンフレット 特表2011-504955号公報
本発明は、低圧縮永久歪性と、成形品表面の低摩擦性とを兼ね備えるフッ素ゴム成形品を与え得る架橋性フッ素ゴム組成物、それを架橋して得られる成形品、及び、上記成形品を製造する方法を提供することを目的とする。
従来の技術は、もっぱら、フッ素ゴムとフッ素樹脂との混合割合を最適化したり、特許文献1に記載された技術のように、フッ素ゴムとフッ素樹脂との混合方法を改良したりすることにより、成形品の特性を向上させようとするものであり、フッ素樹脂を構成するモノマーの組成に着目した技術開発はなされてこなかった。本発明者らは、成形品に要求される特性のなかでも、特に低圧縮永久歪及び低摩擦性を両立させるための手段を鋭意検討したところ、驚くべきことに、特定の組成を有するフッ素樹脂を採用すると、得られる成形品の圧縮成形歪が飛躍的に小さくなり、同時に低摩擦性も実現できることを見出し、本発明を完成するに至った。
本発明の架橋性フッ素ゴム組成物には、従来の技術に比べて、例えば、低摩擦性を向上させるためにフッ素樹脂の混合割合を増加させてもフッ素ゴムが本来有する圧縮成形歪が損なわれにくかったり、フッ素樹脂の混合割合が同じであっても圧縮永久歪が小さい成形品が得られたりするなどの利点がある。
すなわち、本発明は、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性フッ素ゴム組成物であって、前記フッ素樹脂(B)は、テトラフルオロエチレン単位(a)及びヘキサフルオロプロピレン単位(b)のみからなり、(a)/(b)が、モル比で80.0~87.3/12.7~20.0である共重合体(B1)、又は、テトラフルオロエチレン単位(a)、ヘキサフルオロプロピレン単位(b)、並びに、テトラフルオロエチレン及びヘキサフルオロプロピレンと共重合可能な単量体に基づく重合単位(c)からなり、(a)/(b)が、80.0~90.0/10.0~20.0であり、(c)/{(a)+(b)}が、モル比で0.1~10.0/90.0~99.9である共重合体(B2)であることを特徴とする架橋性フッ素ゴム組成物である。
本発明の架橋性フッ素ゴム組成物としては、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られた共凝析粉末からなり、前記フッ素樹脂(B)は、共重合体(B1)であることが好ましい形態の一つである。
本発明の架橋性フッ素ゴム組成物としてはまた、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られた共凝析粉末からなり、前記フッ素樹脂(B)は、共重合体(B2)であることも好ましい形態の一つである。
本発明は更に、(I)フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得た後、上記架橋性フッ素ゴム組成物を得る工程、(II)架橋性フッ素ゴム組成物を成形し、架橋して、架橋成形品を得る成形架橋工程、及び、(III)架橋成形品をフッ素樹脂(B)の融点以上の温度に加熱してフッ素ゴム成形品を得る熱処理工程を含むフッ素ゴム成形品の製造方法にも関する。
本発明の架橋性フッ素ゴム組成物は、上記構成を有することから、低圧縮永久歪性と、成形品表面の低摩擦性とを兼ね備えるフッ素ゴム成形品を提供することができる。本発明のフッ素ゴム成形品は、低圧縮永久歪性と、成形品表面の低摩擦性とを兼ね備えるものであり、シール材、摺動部材、非粘着性部材または表面に撥水撥油性を有する成形品として有用である。
(a)は、フッ素ゴム成形品が有する凸部の形状を模式的に示す斜視図であり、(b)は(a)の表面に垂直な直線Bと直線Bを含む平面で凸部31を切断した断面図であり、(c)は(a)の表面と平行な直線Cと直線Cを含む平面で切断した断面図である。
本発明の架橋性フッ素ゴム組成物は、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性フッ素ゴム組成物である。本発明の架橋性フッ素ゴム組成物は、フッ素ゴム(A)とフッ素樹脂(B)の各々を単独で凝析した粉末を粉末混合する方法、フッ素ゴム(A)とフッ素樹脂(B)を溶融混練する方法、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析する方法等により得ることができる。
フッ素樹脂(B)が架橋性フッ素ゴム組成物中に均一に分散し、より圧縮永久歪が小さく、より優れた低摩擦性、非粘着性及び撥水撥油性を有するフッ素ゴム成形品を得ることができる観点から、本発明の架橋性フッ素ゴム組成物は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られた共凝析粉末からなるものが好ましい。
本発明の架橋性フッ素ゴム組成物は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析させて得られる共凝析粉末からなることによって、フッ素樹脂(B)が架橋性フッ素ゴム組成物中に均一に分散していると予想される。これによって、本発明の架橋性フッ素ゴム組成物を架橋して得られたフッ素ゴム成形品は、圧縮永久歪がより小さく、更に優れた低摩擦性のフッ素ゴム成形品を得ることができると考えられる。また、非粘着性及び撥水撥油性も優れたものとなる。
上記共凝析の方法としては、例えば、(i)フッ素ゴム(A)の水性分散液と、フッ素樹脂(B)の水性分散液とを混合した後に凝析させる方法、(ii)フッ素ゴム(A)の粉末を、フッ素樹脂(B)の水性分散液に添加した後に凝析させる方法、(iii)フッ素樹脂(B)の粉末を、フッ素ゴム(A)の水性分散液に添加した後に凝析させる方法が挙げられる。
上記共凝析の方法としては、特に各樹脂が均一に分散し易い点で、上記(i)の方法が好ましい。特に、フッ素ゴム(A)及びフッ素樹脂(B)は、フッ素ゴム(A)の水性分散液と、フッ素樹脂(B)の水性分散液とを混合した後に凝析し、次いで凝析物を回収し、所望により乾燥させることにより得られたものであることが好ましい。
(A)フッ素ゴム
フッ素ゴム(A)は、通常、主鎖を構成する炭素原子に結合しているフッ素原子を有し、且つゴム弾性を有する非晶質の重合体からなる。上記フッ素ゴム(A)は、1種の重合体からなるものであってもよいし、2種以上の重合体からなるものであってもよい。
フッ素ゴム(A)は、ビニリデンフルオライド(VdF)/ヘキサフルオロプロピレン(HFP)共重合体、VdF/HFP/テトラフルオロエチレン(TFE)共重合体、TFE/プロピレン共重合体、TFE/プロピレン/VdF共重合体、エチレン/HFP共重合体、エチレン/HFP/VdF共重合体、エチレン/HFP/TFE共重合体、VdF/TFE/パーフルオロ(アルキルビニルエーテル)(PAVE)共重合体、及び、VdF/クロロトリフルオロエチレン(CTFE)共重合体からなる群より選択される少なくとも1種であることが好ましい。中でも、VdF単位を含む共重合体からなるフッ素ゴムが好ましい。
上記ビニリデンフルオライド(VdF)単位を含む共重合体からなるフッ素ゴム(以下、「VdF系フッ素ゴム」ともいう。)について説明する。VdF系フッ素ゴムは、少なくともビニリデンフルオライドに由来する重合単位を含むフッ素ゴムである。
VdF単位を含む共重合体としては、VdF単位及び含フッ素エチレン性単量体由来の共重合単位(但し、VdF単位は除く。)を含む共重合体であることが好ましい。VdF単位を含む共重合体は、更に、VdF及び含フッ素エチレン性単量体と共重合可能な単量体由来の共重合単位を含むことも好ましい。
VdF単位を含む共重合体としては、30~90モル%のVdF単位及び70~10モル%の含フッ素エチレン性単量体由来の共重合単位を含むことが好ましい。30~85モル%のVdF単位及び70~15モル%の含フッ素エチレン性単量体由来の共重合単位を含むことがより好ましく、30~80モルのVdF単位及び70~20モル%の含フッ素エチレン性単量体由来の共重合単位を含むことが更に好ましい。VdF及び含フッ素エチレン性単量体と共重合可能な単量体由来の共重合単位は、VdF単位と含フッ素エチレン性単量体由来の共重合単位の合計量に対して、0~10モル%であることが好ましい。
含フッ素エチレン性単量体としては、たとえばTFE、CTFE、トリフルオロエチレン、HFP、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、PAVE、フッ化ビニル、下記一般式(1):
CFX=CXOCFOR   (1)
(式中、Xは、同一又は異なり、H、F又はCFを表し、Rは、直鎖又は分岐した、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5又は6の環状フルオロアルキル基を表す。)で表されるフルオロビニルエーテルなどの含フッ素単量体があげられる。これらのなかでも、式(1)で表されるフルオロビニルエーテル、TFE、HFP及びPAVEからなる群より選択される少なくとも1種であることが好ましく、TFE、HFP及びPAVEからなる群より選択される少なくとも1種であることがより好ましい。
上記PAVEとしては、一般式(2):
CF=CFO(CFCFYO)-(CFCFCFO)-R  (2)
(式中、YはF又はCFを表し、Rは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)であることが好ましい。
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)又はパーフルオロ(プロピルビニルエーテル)であることがより好ましく、パーフルオロ(メチルビニルエーテル)であることが更に好ましい。これらをそれぞれ単独で、または任意に組み合わせて用いることができる。
VdF及び含フッ素エチレン性単量体と共重合可能な単量体としては、たとえばエチレン、プロピレン、アルキルビニルエーテルなどがあげられる。
このようなVdF単位を含む共重合体として、具体的には、VdF/HFP共重合体、VdF/HFP/TFE共重合体、VdF/CTFE共重合体、VdF/CTFE/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、VdF/HFP/TFE/PAVE共重合体などが好ましい。これらの共重合体は、単独で用いてもよいし、2種以上を併用してもよい。これらのVdF単位を含む共重合体のなかでも、耐熱性、非粘着性の点から、VdF/HFP共重合体、及び、VdF/HFP/TFE共重合体からなる群より選択される少なくとも1種の共重合体がとくに好ましい。これらの共重合体は、上記のVdF単位を含む共重合体における、VdF単位及び含フッ素エチレン性単量体由来の共重合単位の割合を満足することが好ましい。
VdF/HFP共重合体としては、VdF/HFPが、モル比で45~85/55~15であるものが好ましく、より好ましくは50~80/50~20であり、さらに好ましくは60~80/40~20である。
VdF/HFP/TFE共重合体としては、VdF/HFP/TFEが、モル比で40~80/10~35/10~35のものが好ましい。
VdF/PAVE共重合体としては、VdF/PAVEが、モル比で65~90/10~35のものが好ましい。
VdF/TFE/PAVE共重合体としては、VdF/TFE/PAVEが、モル比で40~80/3~40/15~35のものが好ましい。
VdF/HFP/PAVE共重合体としては、VdF/HFP/PAVEが、モル比で65~90/3~25/3~25のものが好ましい。
VdF/HFP/TFE/PAVE共重合体としては、VdF/HFP/TFE/PAVEが、モル比で40~90/0~25/0~40/3~35のものが好ましく、より好ましくは40~80/3~25/3~40/3~25である。
上記フッ素ゴム(A)は、架橋部位を与えるモノマー由来の共重合単位を含む共重合体からなることも好ましい。架橋部位を与えるモノマーとしては、たとえば特公平5-63482号公報、特開平7-316234号公報に記載されているようなパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)やパーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのヨウ素含有モノマー、特表平4-505341号公報に記載されている臭素含有モノマー、特表平4-505345号公報、特表平5-500070号公報に記載されているようなシアノ基含有モノマー、カルボキシル基含有モノマー、アルコキシカルボニル基含有モノマーなどがあげられる。
フッ素ゴム(A)は、主鎖末端にヨウ素原子又は臭素原子を有するフッ素ゴムであることも好ましい。主鎖末端にヨウ素原子又は臭素原子を有するフッ素ゴムは、実質的に無酸素下で、水媒体中でハロゲン化合物の存在下に、ラジカル開始剤を添加してモノマーの乳化重合を行うことにより製造できる。使用するハロゲン化合物の代表例としては、たとえば、一般式:
Br
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは、炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基、炭素数1~16の飽和もしくは不飽和のクロロフルオロ炭化水素基、又は、炭素数1~3の炭化水素基であり、これらは酸素原子を含んでいてもよい)で表される化合物があげられる。
ハロゲン化合物としては、たとえば1,3-ジヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2-ヨードエチル)および(2-ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4-ジヨードパーフルオロブタンまたはジヨードメタンを用いるのが好ましい。
フッ素ゴム(A)は、加工性が良好な点から、ムーニー粘度(ML1+10(121℃))が5~140であることが好ましく、10~120であることがより好ましく、20~100であることが更に好ましい。
上記フッ素ゴム(A)の架橋系としては、例えば、パーオキサイド架橋系、及び、ポリオール架橋系からなる群より選択される少なくとも1種が好ましい。
耐薬品性の観点からはパーオキサイド架橋系が好ましく、耐熱性の観点からはポリオール架橋系が好ましい。上記架橋性フッ素ゴム組成物は、それぞれの架橋系において使用される架橋剤を含むものであってよい。架橋剤の配合量は、架橋剤の種類等によって適宜選択すればよいが、フッ素ゴム(A)100質量部に対して0.2~5.0質量部であることが好ましく、より好ましくは0.3~3.0質量部である。
パーオキサイド架橋は、パーオキサイド架橋可能なフッ素ゴム及び架橋剤として有機過酸化物を使用することにより行うことができる。
パーオキサイド架橋可能なフッ素ゴムとしては特に限定されず、パーオキサイド架橋可能な部位を有するフッ素ゴムであればよい。上記パーオキサイド架橋可能な部位としては特に限定されず、例えば、ヨウ素原子、臭素原子等を挙げることができる。
有機過酸化物としては、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生し得る有機過酸化物であればよく、たとえば1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエイトなどをあげることができる。これらの中でも、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3が好ましい。
有機過酸化物の配合量は、フッ素ゴム(A)100質量部に対して0.1~15質量部が好ましく、より好ましくは0.3~5質量部である。
架橋剤が有機過酸化物である場合、上記架橋性フッ素ゴム組成物は架橋助剤を含むことが好ましい。架橋助剤としては、例えば、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N′-m-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン-2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロヘキサン、ヘキサアリルホスホルアミド、N,N,N′,N′-テトラアリルフタルアミド、N,N,N′,N′-テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6-トリビニルメチルトリシロキサン、トリ(5-ノルボルネン-2-メチレン)シアヌレート、トリアリルホスファイトなどがあげられる。これらの中でも、架橋性及び機械物性、シール性が優れる点から、トリアリルイソシアヌレート(TAIC)が好ましい。
架橋助剤の配合量は、フッ素ゴム(A)100質量部に対して0.01~10質量部であり、好ましくは0.1~5.0質量部である。架橋助剤が、0.01質量部より少ないと、機械物性が低下し、シール性が劣り、10質量部をこえると、耐熱性に劣り、フッ素ゴム成形品の耐久性も低下する傾向がある。
ポリオール架橋は、ポリオール架橋可能なフッ素ゴム及び架橋剤としてポリヒドロキシ化合物を使用することにより行うことができる。
上記ポリオール架橋可能なフッ素ゴムとしては特に限定されず、ポリオール架橋可能な部位を有するフッ素ゴムであればよい。上記ポリオール架橋可能な部位としては特に限定されず、例えば、フッ化ビニリデン(VdF)単位を有する部位等を挙げることができる。上記架橋部位を導入する方法としては、フッ素ゴムの重合時に架橋部位を与える単量体を共重合する方法等が挙げられる。
ポリヒドロキシ化合物としては、耐熱性に優れる点からポリヒドロキシ芳香族化合物が好適に用いられる。
上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン(以下、ビスフェノールAFという)、レゾルシン、1,3-ジヒドロキシベンゼン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシスチルベン、2,6-ジヒドロキシアントラセン、ヒドロキノン、カテコール、2,2-ビス(4-ヒドロキシフェニル)ブタン(以下、ビスフェノールBという)、4,4-ビス(4-ヒドロキシフェニル)吉草酸、2,2-ビス(4-ヒドロキシフェニル)テトラフルオロジクロロプロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルケトン、トリ(4-ヒドロキシフェニル)メタン、3,3’,5,5’-テトラクロロビスフェノールA、3,3’,5,5’-テトラブロモビスフェノールAなどがあげられる。これらのポリヒドロキシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよいが、酸を用いて共重合体を凝析した場合は、上記金属塩は用いないことが好ましい。ポリヒドロキシ芳香族化合物の配合量は、フッ素ゴム(A)100質量部に対して、0.1~15質量部、好ましくは0.5~5質量部である。
架橋剤がポリヒドロキシ化合物である場合、上記架橋性フッ素ゴム組成物は架橋促進剤を含むことが好ましい。架橋促進剤は、ポリマー主鎖の脱フッ酸反応における分子内二重結合の生成と、生成した二重結合へのポリヒドロキシ化合物の付加を促進する。
架橋促進剤としては、オニウム化合物があげられ、オニウム化合物のなかでも、第4級アンモニウム塩等のアンモニウム化合物、第4級ホスホニウム塩等のホスホニウム化合物、オキソニウム化合物、スルホニウム化合物、環状アミン、及び、1官能性アミン化合物からなる群より選択される少なくとも1種であることが好ましく、第4級アンモニウム塩及び第4級ホスホニウム塩からなる群より選択される少なくとも1種であることがより好ましい。
第4級アンモニウム塩としては特に限定されず、たとえば、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライド、8-テトラコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライド、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライド(以下、DBU-Bとする)、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロライドなどがあげられる。これらの中でも、架橋性、機械物性、及び、シール性の点から、DBU-Bが好ましい。
また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロライド、ベンジルトリフェニルホスホニウムクロライド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロライド、ベンジルトリブチルホスホニウムクロライド、トリブチルアリルホスホニウムクロライド、トリブチル-2-メトキシプロピルホスホニウムクロライド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロライドなどをあげることができ、これらの中でも、架橋性、機械物性、及び、シール性の点から、ベンジルトリフェニルホスホニウムクロライド(BTPPC)が好ましい。
また、架橋促進剤として、第4級アンモニウム塩又は第4級ホスホニウム塩とビスフェノールAFの固溶体、特開平11-147891号公報に開示されている塩素フリー架橋促進剤を用いることもできる。
架橋促進剤の配合量は、フッ素ゴム(A)100質量部に対して、0.01~8質量部であることが好ましく、より好ましくは0.02~5質量部である。架橋促進剤が、0.01質量部未満であると、フッ素ゴムの架橋が充分に進行せず、得られるフッ素ゴム成形品の耐熱性等が低下するおそれがある。8質量部をこえると、上記架橋性フッ素ゴム組成物の成形加工性が低下するおそれや、機械物性における伸びが低下し、シール性も低下する傾向がある。
(B)フッ素樹脂
フッ素樹脂(B)は、特定の組成を有するテトラフルオロエチレン単位及びヘキサフルオロプロピレン単位からなる共重合体である。特定の組成を有するフッ素樹脂(B)を用いることで、本発明の架橋性フッ素ゴム組成物から得られる成形品表面の低摩擦性を向上させることができ、同時に、成形品の低圧縮永久歪性を向上させることができる。また、成形品表面の耐摩耗性、非粘着性も向上させることができる。
テトラフルオロエチレン単位及びヘキサフルオロプロピレン単位からなる共重合体は、フッ素ゴム(A)との相溶性に優れる点、フッ素ゴム成形品の耐熱性が優れたものとなる点からも好ましい。また、自動車分野等の燃料系統に使用されるホース等として本発明のフッ素ゴム成形品を使用する場合、優れた燃料バリア性が発現する点でも好ましい。
フッ素樹脂(B)がテトラフルオロエチレン(TFE)単位(a)及びヘキサフルオロプロピレン(HFP)単位(b)のみからなる重合体である場合、TFE単位(a)/HFP単位(b)が、モル比で80.0~87.3/12.7~20.0である共重合体(B1)である。上記の特定範囲の組成を有するフッ素樹脂(B)を用いると、得られるフッ素ゴム成形品の圧縮永久歪が顕著に低下する。
フッ素樹脂(B1)は、圧縮永久歪をより小さくする観点、機械物性を優れたものとする観点から、(a)/(b)が、モル比で82.0~87.0/13.0~18.0であることが好ましく、83.0~86.5/13.5~17.0であることがより好ましく、83.0~86.0/14.0~17.0であることが更に好ましい。(a)/(b)が大きすぎると、得られるフッ素ゴム成形品の圧縮永久歪が十分に小さくならないおそれがある。(a)/(b)が小さすぎると、機械物性が低下する傾向がある。
フッ素樹脂(B)が、テトラフルオロエチレン単位(a)、ヘキサフルオロプロピレン単位(b)、並びに、テトラフルオロエチレン及びヘキサフルオロプロピレンと共重合可能な単量体に基づく重合単位(c)からなる共重合体である場合、フッ素樹脂(B)は、(a)/(b)が、モル比で80.0~90.0/10.0~20.0であり、(c)/{(a)+(b)}が、モル比で0.1~10.0/90.0~99.9である共重合体(B2)である(なお、{(a)+(b)}は、テトラフルオロエチレン単位(a)とヘキサフルオロプロピレン単位(b)との合計を意味する。)。(a)/(b)が、モル比で80.0~90.0/10.0~20.0であり、(c)/{(a)+(b)}が、モル比で0.1~10.0/90.0~99.9であることによって、圧縮永久歪が顕著に小さくなる。
フッ素樹脂(B2)は、圧縮永久歪をより小さくする観点、機械物性を優れたものとする観点から、(a)/(b)が、モル比で82.0~88.0/12.0~18.0であることが好ましく、84.0~88.0/12.0~16.0であることがより好ましい。TFE単位(a)/HFP単位(b)が大きすぎると、得られるフッ素ゴム成形品の圧縮永久歪が十分に小さくならないおそれがある。また、融点が高くなりすぎて、成形性が低下する傾向がある。TFE単位(a)/HFP単位(b)が小さすぎると、機械物性が低下する傾向がある。
フッ素樹脂(B2)は、(c)/{(a)+(b)}が、モル比で0.3~8.0/92.0~99.7であることが好ましい。
TFE及びHFPと共重合可能な単量体としては、下記式:
CF=CF-ORf
(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕、下記式:
CX=CX(CF
(式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、及び、下記式:
CF=CF-OCH-Rf
(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられ、なかでも、PAVEであることが好ましい。
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)からなる群より選択される少なくとも1種であることが好ましく、なかでも、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることがより好ましい。
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCH-CFCFがより好ましい。
フッ素樹脂(B2)において、テトラフルオロエチレン及びヘキサフルオロプロピレンと共重合可能な単量体に基づく重合単位(c)は、パーフルオロ(アルキルビニルエーテル)単位であることが好ましい。そして、フッ素樹脂(B2)は、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位のみからなる共重合体であることがより好ましい。
フッ素樹脂(B)は、融点が210℃以下であることが好ましい。フッ素樹脂(B)の融点は、フッ素ゴム(A)の架橋温度以上であることが好ましく、130~210℃であることがより好ましく、150~200℃であることが更に好ましく、160~190℃であることが特に好ましい。フッ素樹脂(B)の融点が、130℃未満であると、架橋成形時にフッ素樹脂(B)が表面にブリードアウトして、充分な数の凸部を有するフッ素ゴム成形品を得られないおそれがあり、その結果、十分な低摩擦性、耐摩耗性、非粘着性が得られないおそれがある。210℃を超えると、フッ素樹脂の貯蔵弾性率が高くなりフッ素ゴム成形品の低圧縮永久歪性が損なわれる恐れがある。
フッ素樹脂(B)は、メルトフローレート〔MFR〕が0.1g/10分以上であることが好ましい。MFRが0.1g/10分未満であるとフッ素ゴム成形品の表面にフッ素樹脂(B)を析出させることが困難になるおそれがある。
フッ素樹脂(B)は、フッ素ゴム成形品の圧縮永久歪を小さくする観点から、動的粘弾性測定による70℃における貯蔵弾性率(E’)が10~160MPaであることが好ましい。
上記貯蔵弾性率は、動的粘弾性測定により70℃で測定する値である。より具体的には、アイティ-計測制御社製動的粘弾性装置DVA220で長さ30mm、巾5mm、厚み0.5mmのサンプルを引張モード、つかみ幅20mm、測定温度25℃から200℃、昇温速度2℃/min、周波数1Hzの条件で測定する値である。70℃における好ましい貯蔵弾性率(E’)は10~160MPaであり、より好ましい貯蔵弾性率(E’)は20~140MPaであり、さらに好ましい貯蔵弾性率(E’)は30~100MPaである。
本発明の架橋性フッ素ゴム組成物は、フッ素樹脂(B)とフッ素ゴム(A)との相溶性向上のため、少なくとも1種の多官能化合物を添加してもよい。多官能化合物とは、1つの分子中に同一または異なる構造の2つ以上の官能基を有する化合物である。
多官能化合物が有する官能基としては、カルボニル基、カルボキシル基、ハロホルミル基、アミド基、オレフィン基、アミノ基、イソシアネート基、ヒドロキシ基、エポキシ基等、一般に反応性を有することが知られている官能基であれば任意に用いることができる。これらの官能基を有する化合物は、フッ素ゴム(A)との親和性が高いだけではなく、フッ素樹脂(B)が持つ反応性を有することが知られている官能基とも反応し、さらに相溶性が向上することが期待される。
フッ素ゴム(A)は、架橋性フッ素ゴム組成物の60~97質量%であることが好ましい。フッ素ゴムが少なすぎるとゴムとしての特性を有するフッ素ゴム成形品を得ることができないおそれがあり、フッ素ゴム(A)が多すぎると低摩擦性のフッ素ゴム成形品を得ることができないおそれがある。
本発明の架橋性フッ素ゴム組成物は、フッ素ゴム(A)とフッ素樹脂(B)との体積比(フッ素ゴム(A)/フッ素樹脂(B))が97/3~60/40であることが好ましい。フッ素樹脂(B)が少なすぎると、成形品表面の低摩擦性、耐摩耗性及び非粘着性が充分に得られないおそれがあり、一方、フッ素樹脂(B)が多すぎると、圧縮永久歪が十分に低下しないおそれがある。低圧縮永久歪性と、表面の低摩擦性、耐摩耗性及び非粘着性の両方が良好な点から、体積比(A)/(B)は、95/5~65/35であることがより好ましく、90/10~70/30であることがさらに好ましい。
本発明の架橋性フッ素ゴム組成物は、必要に応じてフッ素ゴム中に配合される通常の配合剤、たとえば充填剤、加工助剤、可塑剤、着色剤、安定剤、接着助剤、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤などの各種添加剤を配合することができ、これらの添加剤、配合剤は、本発明の効果を損なわない範囲で使用すればよい。
なお、本発明の架橋性フッ素ゴム組成物は、含フッ素熱可塑性エラストマーは含まない。
本発明のフッ素ゴム成形品は、フッ素ゴム(A)とフッ素樹脂(B)とを含む上記架橋性フッ素ゴム組成物を架橋することにより得られるものである。
本発明のフッ素ゴム成形品は、上記架橋性フッ素ゴム組成物から得られるものであるため、圧縮永久歪が小さく、更に、優れた低摩擦性を有するものである。また、耐摩耗性及び非粘着性にも優れる。
更に、フッ素樹脂とフッ素ゴムの明確な界面状態が存在しないので、表面のフッ素樹脂に富む領域が脱落や剥離することもなく、耐久性にも優れている。
本発明のフッ素ゴム成形品は、フッ素ゴム(A)とフッ素樹脂(B)とを含む上記架橋性フッ素ゴム組成物を架橋して得られるものであれば限定されないが、後述する形成方法により得られるものであることが好ましい。
例えば、フッ素ゴム(A)と特定の組成を有するフッ素樹脂(B)とを共凝析することによって得られた共凝析粉末を含む架橋性フッ素ゴム組成物を架橋させて得られる架橋物を、さらに特定の条件下に熱処理すると、得られるフッ素ゴム成形品表面が低摩擦性、非粘着性及び撥水・撥油性に優れるとともに、圧縮永久歪も小さいフッ素ゴム成形品が得られる。
本発明のフッ素ゴム成形品は、表面に凸部を有することが好ましい。凸部がフッ素ゴム成形品の表面に存在していることにより、優れた低摩擦性、耐摩耗性及び非粘着性を示す。
凸部は、実質的に架橋性フッ素ゴム組成物に含まれるフッ素樹脂(B)からなることが好ましい。凸部は、例えば後述する方法により、上記架橋性フッ素ゴム組成物に含まれるフッ素樹脂(B)を表面に析出させて形成することができる。
凸部は、フッ素ゴム成形品本体との間に明確な界面等が存在せず、上記凸部とフッ素ゴム成形品が一体的に構成されていることとなり、上記凸部が脱落したり、欠損したりしにくいとの効果をより確実に享受することができる。
凸部が実質的に上記架橋性フッ素ゴム組成物に含まれるフッ素樹脂(B)からなることは、IR分析やESCA分析によってフッ素ゴム(A)由来のピークとフッ素樹脂(B)由来のピークのピーク比を求めることで示すことができる。例えば、凸部を有する領域において、IR分析によって、フッ素ゴム(A)由来の特性吸収のピークとフッ素樹脂(B)由来の特性吸収のピークとの比(成分由来ピーク比)を、凸部と凸部外のそれぞれの部分で測定し、(凸部ピーク/凸部外ピーク=ピーク比)が、1.2以上、好ましくは1.5以上であればよい。
凸部の形状について、図面を参照しながらもう少し詳しく説明する。
図1(a)は、フッ素ゴム成形品が有する凸部の形状を模式的に示す斜視図であり、(b)は(a)の表面に垂直な直線Bと直線Bを含む平面で凸部31を切断した断面図であり、(c)は(a)の表面と平行な直線Cと直線Cを含む平面で切断した断面図である。そして、図1(a)~(c)には、フッ素ゴム成形品の表面の微小領域を模式的に描画している。フッ素ゴム成形品の表面には、図1(a)~(c)に示すように、例えば、略円錐形状(コーン形状)の凸部31が形成されている。
ここで、凸部31の高さとは、フッ素ゴム成形品の表面から突出した部分の高さをいう(図1(b)中、H参照)。また、凸部31の底部断面積とは、凸部31を、フッ素ゴム成形品表面と平行な平面(直線C1と直線C2を含む平面)で切断した面において観察される凸部31(図1(c)参照)の断面に於ける面積の値をいう。
フッ素ゴム成形品は、フッ素ゴム成形品の表面積に対して、凸部を有する領域の面積比が0.03(3%)以上であることが好ましい。より好ましい面積比は、0.15(15%)以上であり、0.30(30%)以上が更に好ましい。上記フッ素ゴム成形品の表面における、凸部を有する領域の面積比は、上記凸部の底部断面積を評価する切断面において、凸部が占める面積の比率をいう。
本発明のフッ素ゴム成形品において、フッ素樹脂(B)の体積比は、上記フッ素ゴム成形品に対して0.03~0.40(3~40体積%)であることが好ましい。体積比の下限は、0.05(5体積%)であることがより好ましく、0.10(10体積%)であることが更に好ましい。体積比の上限は、0.35(35体積%)であることがより好ましく、0.30(30体積%)であることが更に好ましい。上記フッ素樹脂(B)はテトラフルオロエチレンに基づく重合単位とヘキサフルオロプロピレンに基づく重合単位とからなる共重合体であり、優れた耐熱性を有する。従って、成形架橋工程や熱処理工程によって分解することがないので、上記体積比は、架橋性フッ素ゴム組成物におけるフッ素樹脂の体積割合と同一と推測できる。
凸部を有する領域の面積比が、フッ素樹脂(B)の体積比の1.2倍以上であることが好ましく、1.3倍以上であることがより好ましい。本発明のフッ素ゴム成形品は、フッ素ゴム成形品の表面における凸部を有する領域の比率が、フッ素ゴム成形品のフッ素樹脂(B)の体積比よりも高く、架橋性フッ素ゴム組成物におけるフッ素樹脂(B)の体積比よりも高くなる。
本発明のフッ素ゴム成形品は、この特徴によりフッ素樹脂の混合割合が小さくても、フッ素ゴムの欠点であった耐摩耗性、低摩擦性及び非粘着性が改善され、また、フッ素ゴムの利点が損なわれることもなく、圧縮永久歪が小さいものとなる。なお、上記凸部を有する領域の面積比は、使用する用途によって、フッ素ゴム成形品が低摩擦性、耐摩耗性、又は、非粘着性が必要とされる部分において達成されていれば、本発明の効果は十分に奏される。
上記凸部は、高さが0.1~30.0μmであることが好ましい。凸部の高さがこの範囲にあると、低摩擦性、耐摩耗性及び非粘着性が優れる。より好ましい高さは、0.3~20.0μmであり、更に好ましくは、0.5~10.0μmである。
上記凸部は、底部断面積が0.1~2000μmであることが好ましい。凸部の底部断面積がこの範囲にあると、耐摩耗性、低摩擦性及び非粘着性が優れる。より好ましい底部断面積は、0.3~1500μmであり、更に好ましい底部断面積は、0.5~1000μmである。
本発明のフッ素ゴム成形品は、上記凸部の高さの標準偏差が0.300以下であることが好ましい。この範囲にあると、耐摩耗性、低摩擦性及び非粘着性がより優れる。
フッ素ゴム成形品は、凸部の個数が500~60000個/mmであることが好ましい。この範囲にあると、耐摩耗性、低摩擦性及び非粘着性がより優れる。
凸部を有する領域の面積比、凸部の高さ、凸部の底部断面積、凸部の個数等は、例えば、キーエンス社製、カラー3Dレーザー顕微鏡(VK-9700)を用い、解析ソフトとして三谷商事株式会社製のWinRooF Ver.6.4.0を用いて算出することができる。凸部を有する領域の面積比は、凸部の底部断面積を求め、断面積合計の値が、測定全領域面積に占める割合として求められる。凸部の個数は、測定領域中の凸部の個数を1mm当たりの数に換算したものである。
本発明のフッ素ゴム成形品において、上記凸部はフッ素ゴム成形品の表面の一部に形成されていればよく、フッ素ゴム成形品の表面には該凸部が形成されていない領域を有していてもよい。例えば、耐摩耗性、低摩擦性、非粘着性等が要求されない部分には、上記凸部が形成されている必要はない。
本発明のフッ素ゴム成形品は、その低圧縮永久歪性と、表面の低摩擦性、非粘着性、撥水撥油性(高接触角)を利用して、シール材、摺動部材、非粘着性部材などとして有用である。
具体的には、つぎの成形品が例示できるが、これらに限定されるものではない。
シール材:
半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマアドレス液晶パネル、フィールドエミッションディスプレイパネル、太陽電池基板等の半導体関連分野では、O(角)-リング、パッキン、ガスケット、ダイアフラム、その他の各種シール材等があげられ、これらはCVD装置、ドライエッチング装置、ウェットエッチング装置、酸化拡散装置、スパッタリング装置、アッシング装置、洗浄装置、イオン注入装置、排気装置に用いることができる。具体的には、ゲートバルブのO-リング、クォーツウィンドウのO-リング、チャンバーのO-リング、ゲートのO-リング、ベルジャーのO-リング、カップリングのO-リング、ポンプのO-リング、ダイアフラム、半導体用ガス制御装置のO-リング、レジスト現像液、剥離液用のO-リング、その他の各種シール材として用いることができる。
自動車分野では、エンジンならびに周辺装置に用いるガスケット、シャフトシール、バルブステムシール、各種シール材や、AT装置の各種シール材に用いることができる。燃料系統ならびに周辺装置に用いるシール材としては、O(角)-リング、パッキン、ダイアフラムなどがあげられる。具体的には、エンジンヘッドガスケット、メタルガスケット、オイルパンガスケット、クランクシャフトシール、カムシャフトシール、バルブステムシール、マニホールドパッキン、酸素センサー用シール、インジェクターO-リング、インジェクターパッキン、燃料ポンプO-リング、ダイアフラム、クランクシャフトシール、ギアボックスシール、パワーピストンパッキン、シリンダーライナーのシール、バルブステムのシール、自動変速機のフロントポンプシール、リアーアクスルピニオンシール、ユニバーサルジョイントのガスケット、スピードメーターのピニオンシール、フートブレーキのピストンカップ、トルク伝達のO-リング、オイルシール、排ガス再燃焼装置のシール、ベアリングシール、キャブレターのセンサー用ダイアフラム等として用いることができる。
航空機分野、ロケット分野および船舶分野では、ダイアフラム、O(角)-リング、バルブ、パッキン、各種シール材等があげられ、これらは燃料系統に用いることができる。具体的には、航空機分野では、ジェットエンジンバルブステムシール、ガスケットおよびO-リング、ローテーティングシャフトシール、油圧機器のガスケット、防火壁シール等に用いられ、船舶分野では、スクリューのプロペラシャフト船尾シール、ディーゼルエンジンの吸排気用バルブステムシール、バタフライバルブのバルブシール、バタフライ弁の軸シール等に用いられる。
化学プラント分野では、バルブ、パッキン、ダイアフラム、O(角)-リング、各種シール材等があげられ、これらは医薬、農薬、塗料、樹脂等化学品製造工程に用いることができる。具体的には、化学薬品用ポンプ、流動計、配管のシール、熱交換器のシール、硫酸製造装置のガラス冷却器パッキング、農薬散布機、農薬移送ポンプのシール、ガス配管のシール、メッキ液用シール、高温真空乾燥機のパッキン、製紙用ベルトのコロシール、燃料電池のシール、風洞のジョイントシール、ガスクロマトグラフィー、pHメーターのチューブ結合部のパッキン、分析機器、理化学機器のシール、ダイアフラム、弁部品等として用いることができる。
現像機等の写真分野、印刷機械等の印刷分野および塗装設備等の塗装分野では、乾式複写機のシール、弁部品等として用いることができる。
また、上記分野の各種ロールに用いることができる。
食品プラント機器分野では、バルブ、パッキン、ダイアフラム、O(角)-リング、各種シール材等があげられ、食品製造工程に用いることができる。具体的には、プレート式熱交換器のシール、自動販売機の電磁弁シール等として用いることができる。
原子力プラント機器分野では、パッキン、O-リング、ダイアフラム、バルブ、各種シール材等があげられる。
一般工業分野では、パッキング、O-リング、ダイアフラム、バルブ、各種シール材等があげられる。具体的には、油圧、潤滑機械のシール、ベアリングシール、ドライクリーニング機器の窓、その他のシール、六フッ化ウランの濃縮装置のシール、サイクロトロンのシール(真空)バルブ、自動包装機のシール、空気中の亜硫酸ガス、塩素ガス分析用ポンプのダイアフラム(公害測定器)等に用いられる。
電気分野では、具体的には、新幹線の絶縁油キャップ、液封型トランスのベンチングシール等として用いられる。
燃料電池分野では、具体的には、電極、セパレーター間のシール材や水素・酸素・生成水配管のシール等として用いられる。
電子部品分野では、具体的には、放熱材原料、電磁波シールド材原料、コンピュータのハードディスクドライブのガスケット等に用いられる。
現場施工型の成形に用いることが可能なものとしては特に限定されず、例えばエンジンのオイルパンのガスケット、磁気記録装置用のガスケット、クリーンルーム用フィルターユニットのシーリング剤等があげられる。
また、磁気記録装置(ハードディスクドライブ)用のガスケット、半導体製造装置やウェハー等のデバイス保管庫等のシールリング材等のクリーン設備用シール材に特に好適に用いられる。
さらに、燃料電池セル電極間やその周辺配管等に用いられるパッキン等の燃料電池用のシール材等にも特に好適に用いられる。
摺動部材:
自動車関連分野では、ピストンリング、シャフトシール、バルブステムシール、クランクシャフトシール、カムシャフトシール、オイルシールなどがあげられる。
一般に、他材と接触して摺動を行う部位に用いられるフッ素ゴム製品があげられる。
非粘着性部材:
コンピュータ分野での、ハードディスククラッシュストッパーなどがあげられる。
撥水撥油性を利用する分野:
自動車のワイパーブレード、屋外テントの引き布などがあげられる。
つぎに本発明のフッ素ゴム成形品の製造方法について説明する。
本発明のフッ素ゴム成形品の製造方法は、
(I)フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得た後、上記架橋性フッ素ゴム組成物を得る工程、(II)架橋性フッ素ゴム組成物を成形し、架橋して、架橋成形品を得る成形架橋工程、及び、(III)架橋成形品をフッ素樹脂(B)の融点以上の温度に加熱してフッ素ゴム成形品を得る熱処理工程を含む。
以下、各工程について説明する。
(I)工程
この工程は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得た後、上記架橋性フッ素ゴム組成物を得る工程である。
上記共凝析の方法としては、例えば、(i)フッ素ゴム(A)の水性分散液と、フッ素樹脂(B)の水性分散液とを混合した後に凝析する方法、(ii)フッ素ゴム(A)の粉末を、フッ素樹脂(B)に添加した後に凝析する方法、(iii)フッ素樹脂(B)の粉末を、フッ素ゴム(A)の水性分散液に添加した後に凝析する方法が挙げられる。
上記共凝析の方法としては、特に各樹脂が均一に分散し易い点で、上記(i)の方法が好ましい。
上記(i)~(iii)の凝析方法における凝析は、例えば、凝集剤を用いて行うことができる。このような凝集剤としては、特に限定されるものではないが、例えば、硫酸アルミニウム、ミョウバン等のアルミニウム塩、硫酸カルシウム等のカルシウム塩、硫酸マグネシウム等のマグネシウム塩、塩化ナトリウムや塩化カリウム等の一価カチオン塩等の公知の凝集剤が挙げられる。凝集剤により凝析を行う際、凝集を促進させるために酸又はアルカリを添加してpHを調整してもよい。
フッ素ゴム(A)の架橋系によっては架橋剤が必要であるので、工程(I)は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得た後、共凝析粉末と架橋剤とを混合することにより架橋性フッ素ゴム組成物を得る工程であることも好ましい。
共凝析粉末と架橋剤との混合は従来公知の方法により行うことができる。例えば、オープンロールを使用して共凝析粉末と架橋剤とが充分に混合される程度の時間及び温度で混合すればよい。
(II)成形架橋工程
この工程は、混合工程(I)で得られた架橋性フッ素ゴム組成物を成形し架橋して架橋成形品を製造する工程である。成形及び架橋の順序は限定されず、成形した後架橋してもよいし、架橋した後成形してもよいし、成形と架橋とを同時に行ってもよい。
たとえばホース、長尺板ものなどの場合は押出成形した後架橋する方法が適切であり、異形の成形品の場合は、ブロック状の架橋物を得た後切削などの成形処理を施す方法も採れる。また、ピストンリングやオイルシールなどの比較的単純な成形品の場合、金型などで成形と架橋を同時に並行して行うことも通常行われている方法である。
成形方法としては、たとえば押出成形法、金型などによる加圧成形法、インジェクション成形法などが例示できるが、これらに限定されるものではない。
架橋方法も、スチーム架橋法、加圧成形法、放射線架橋法、加熱により架橋反応が開始される通常の方法が採用できる。本発明においては、フッ素樹脂の架橋性フッ素ゴム組成物の表面層への移行がスムーズに起こる点から、加熱による架橋反応が好適である。
架橋性フッ素ゴム組成物の成形及び架橋の方法及び条件は、採用する成形及び架橋において公知の方法及び条件の範囲内でよい。
架橋を行う温度は、フッ素ゴム(A)の架橋温度以上であり、フッ素樹脂(B)の融点未満であることが好ましい。架橋をフッ素樹脂(B)の融点以上で行うと、架橋成形時にフッ素樹脂(B)が表面にブリードアウトし、多数の凸部を有する成形品を得ることができないおそれがある。架橋を行う温度は、フッ素樹脂(B)の融点より5℃低い温度未満であり、かつフッ素ゴム(A)の架橋温度以上であることがより好ましい。架橋時間としては、例えば、1分間~24時間であり、使用する架橋剤などの種類により適宜決定すればよい。
また、ゴムの架橋において、最初の架橋処理(1次架橋という)を施した後に2次架橋と称される後処理工程を施すことがあるが、つぎの熱処理工程(III)で説明するように、従来の2次架橋工程と本発明における成形架橋工程(II)及び熱処理工程(III)とは異なる処理工程である。
(III)熱処理工程
この工程では、成形架橋工程(II)で得られた架橋成形品をフッ素樹脂(B)の融点以上の温度に加熱してフッ素ゴム成型品を得る。
本発明における熱処理工程(III)は、架橋成形品表面のフッ素樹脂比率を高めるために行う処理工程であり、この目的に即して、フッ素樹脂(B)の融点以上かつフッ素ゴム(A)及びフッ素樹脂(B)の熱分解温度未満の温度が加熱温度として採用される。
加熱温度が融点よりも低い場合は、架橋成形品表面のフッ素樹脂比率が十分に高くならない。フッ素ゴム及びフッ素樹脂の熱分解を回避するために、フッ素ゴム(A)またはフッ素樹脂(B)のいずれか低い方の熱分解温度未満の温度でなければならない。好ましい加熱温度は、短時間で低摩擦化が容易な点から、フッ素樹脂の融点より5℃以上高い温度である。
上記の上限温度は通常のフッ素ゴムの場合であり、超耐熱性を有するフッ素ゴムの場合は、上限温度は超耐熱性を有するフッ素ゴムの分解温度であるので、上記上限温度はこの限りではない。
熱処理工程(III)において、加熱温度は加熱時間と密接に関係しており、加熱温度が比較的下限に近い温度では比較的長時間加熱を行い、比較的上限に近い加熱温度では比較的短い加熱時間を採用することが好ましい。このように加熱時間は加熱温度との関係で適宜設定すればよいが、加熱処理をあまり長時間行うとフッ素ゴムが熱劣化することがあるので、加熱処理時間は、耐熱性に優れたフッ素ゴムを使用する場合を除いて実用上実用上96時間までである。通常、加熱処理時間は1分間~72時間が好ましく、1分間~48時間がより好ましく、生産性が良好な点から1分間~24時間がより好ましいが、摩擦係数を充分に低下させたい場合は12時間以上であることが好ましい。
ところで、従来行われている2次架橋は1次架橋終了時に残存している架橋剤を完全に分解してフッ素ゴムの架橋を完結し、架橋成形品の機械的特性や圧縮永久ひずみ特性を向上させるために行なう処理である。
したがって、フッ素樹脂(B)の共存を想定していない従来の2次架橋条件は、その架橋条件が偶発的に本発明における熱処理工程の加熱条件と重なるとしても、2次架橋ではフッ素樹脂の存在を架橋条件設定の要因として考慮せずにフッ素ゴムの架橋の完結(架橋剤の完全分解)という目的の範囲内での加熱条件が採用されているにすぎず、フッ素樹脂(B)を配合した場合にゴム架橋物(ゴム未架橋物ではない)中でフッ素樹脂(B)を加熱軟化または溶融する条件を導き出せるものではない。
なお、本発明における成形架橋工程(II)において、フッ素ゴム(A)の架橋を完結させるため(架橋剤を完全に分解するため)の2次架橋を行ってもよい。
また、熱処理工程(III)において、残存する架橋剤の分解が起こりフッ素ゴム(A)の架橋が完結する場合もあるが、熱処理工程(III)におけるかかるフッ素ゴム(A)の架橋はあくまで副次的な効果にすぎない。
本発明の製造方法によれば、フッ素樹脂の特性、たとえば低摩擦性や非粘着性、撥水撥油性が、熱処理をしないものより、格段に向上したフッ素ゴム成形品を得ることができる。しかも、表面領域以外では逆にフッ素ゴムの特性が発揮でき、フッ素ゴム成形品全体として、低圧縮永久歪性、低摩擦性、非粘着性、撥水撥油性のいずれにもバランスよく優れたフッ素ゴム成形品が得られる。さらに、得られるフッ素ゴム成形品には、フッ素樹脂とフッ素ゴムの明確な界面状態が存在しないので、表面のフッ素樹脂に富む領域が脱落や剥離することもなく、従来のフッ素ゴムの表面をフッ素樹脂の塗布や接着で改質したフッ素ゴム成形品に比べて耐久性に優れている。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
本明細書における各種の特性については、つぎの方法で測定した。
(1)フッ素樹脂の単量体組成
核磁気共鳴装置AC300(Bruker-Biospin社製)を用い、測定温度を(ポリマーの融点+50)℃として19F-NMR測定を行い求めた。
(2)フッ素樹脂の融点
示差走査熱量計RDC220(Seiko Instruments社製)を用い、ASTM D-4591に準拠して、昇温速度10℃/分にて熱測定を行い、一度融点ピークの吸熱終了温度+30℃になったら、降温速度-10℃/分で50℃まで降温させ、再度昇温速度10℃/分で吸熱終了温度+30℃まで昇温させ、得られた吸熱曲線のピークから融点を求めた。
(3)フッ素樹脂のメルトフローレート〔MFR〕
MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、280℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)をMFRとした。
(4)フッ素樹脂の貯蔵弾性率(E’)
貯蔵弾性率は、動的粘弾性測定により70℃で測定する値であり、アイティ-計測制御社製動的粘弾性装置DVA220で長さ30mm、巾5mm、厚み0.25mmのサンプルを引張モード、つかみ幅20mm、測定温度25℃から200℃、昇温速度2℃/min、周波数1Hzの条件で測定した。
(5)フッ素樹脂の熱分解開始温度(1%質量減温度)
熱分解開始温度は、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供したフッ素樹脂の質量が1質量%減少する時の温度を熱分解開始温度とした。
(6)架橋(加硫)特性
キュラストメーターII型(JSR(株)製)にて最低トルク(ML)、最高トルク(MH)、誘導時間(T10)および最適加硫時間(T90)を測定した。
(7)100%モジュラス(M100)
JIS K6251に準じて測定した。
(8)引張破断強度(Tb)
JIS K6251に準じて測定した。
(9)引張破断伸び(Eb)
JIS K6251に準じて測定した。
(10)硬度(ショアA)
JIS K6253に準じ、デュロメータ タイプAにて測定した(ピーク値)。
(11)動摩擦係数
レスカ社製フリクションプレーヤーFPR2000で、加重20g(Pinは、φ5mm材質SUJ2)、回転モード、回転数120rpm、回転半径10mmで測定を行い、回転後5分以上経過した後、安定した際の摩擦係数を読み取り、その数値を動摩擦係数とした。
(12)圧縮永久歪
JIS K6262に準じて200℃×70h後の圧縮永久歪を測定した。
(13)凸部を有する領域の面積比、凸部の高さ、凸部の底部断面積、凸部の個数
凸部を有する領域の面積比、凸部の高さ、凸部の底部断面積、凸部の個数等は、例えば、キーエンス社製、カラー3Dレーザー顕微鏡(VK-9700)を用い、解析ソフトとして三谷商事株式会社製のWinRooF Ver.6.4.0を用いて算出した。凸部を有する領域の面積比は、凸部の底部断面積を求め、断面積合計の値が、測定全領域面積に占める割合として求められる。凸部の個数は、測定領域中の凸部の個数を1mm当たりの数に換算したものである。
また、表および明細書中の使用材料は、それぞれ次に示すものである。
フッ素ゴム(A)
ポリオール架橋可能な2元フッ素ゴム(ダイキン工業(株)製のG7400BP)
(充填剤)
カーボンブラック(Cancarb社製のMTカーボン:N990)
(架橋剤)
ビスフェノールAF 特級試薬 和光純薬工業(株)製
BTPPC     特級試薬 和光純薬工業(株)製
(架橋助剤)
酸化マグネシウム  協和化学工業(株)製 MA150
水酸化カルシウム  近江化学工業(株)製 CALDIC2000
合成例1 フッ素樹脂(B1)
攪拌機を備えた内容積3Lのステンレス製オートクレーブに、脱イオン水1767g、含フッ素アリルエーテル化合物としてCH=CFCF-O-(CF(CF)CFO)-CF(CF)-COONHの50%水溶液を0.283g(脱イオン水量の80ppmに相当する量)を、含フッ素アニオン性界面活性剤としてF(CFCOONHの50%水溶液を3.53g(脱イオン水量の1000ppmに相当する量)を仕込んだ。オートクレーブ内を真空引きし、窒素置換した後、ヘキサフルオロプロピレン〔HFP〕を3.5MPaになるように導入し、95℃まで昇温した。引き続き、HFP、TFEを圧力が4.0MPaになるまで導入した。引き続き、重合開始剤として3.0質量%の過硫酸アンモニウム水溶液16gを圧入して重合を開始した。重合開始剤を圧入した後、5分経った時点で圧力低下が始まるので、重合槽圧力を4.0MPaに保つようにTFE/HFP=91/9(モル比)の混合ガスを供給して重合を継続した。また、重合速度を維持するため、重合開始時から定常的に3.0質量%の過硫酸アンモニウム水溶液を圧入し、重合終了時までトータル35gを追加した。重合開始5時間後に攪拌を停止してモノマーガスを放出し、反応を停止させた。その後、室温まで冷却して白色のTFE/HFP共重合体〔FEP〕ディスパージョン(エマルション)2200gを得た。得られたエマルションの一部を乾燥して固形分濃度を測定したところ、20.1%であった。
得られたディスパージョン300gを2倍に希釈し、硫酸アルミニウムを加えて凝析し、スラリーを濾別した。回収したスラリーに1Lのイオン交換水を加えて再分散させた後、再び濾別して洗浄した。この洗浄工程をさらに3回繰り返した。引き続き110℃で乾燥して58gのポリマーを得た。
得られたポリマーは以下の組成及び物性を有していた。
TFE/HFP=84.7/15.3(モル比)
融点:186℃
MFR:7.5g/10min(280℃、5kg)
70℃における貯蔵弾性率(E´):59MPa
熱分解開始温度(1%質量減温度):371℃
合成例2 フッ素樹脂(B2)
攪拌機を備えた内容積3Lのステンレス製オートクレーブに、脱イオン水1767g、含フッ素アリルエーテル化合物としてCH=CFCF-O-(CF(CF)CFO)-CF(CF)-COONHの50%水溶液を0.283g(脱イオン水量の80ppmに相当する量)を、含フッ素アニオン性界面活性剤としてF(CFCOONHの50%水溶液を3.53g(脱イオン水量の1000ppmに相当する量)を仕込んだ。オートクレーブ内を真空引きし、窒素置換した後、ヘキサフルオロプロピレン〔HFP〕を3.5MPaになるように導入し、パーフルオロ(プロピル)ビニルエーテル〔PPVE〕を17g圧入し、95℃まで昇温した。引き続き、HFP、TFEを圧力が4.0MPaになるまで導入した。引き続き、重合開始剤として3.0質量%の過硫酸アンモニウム水溶液16gを圧入して重合を開始した。重合開始剤を圧入した後、5分経った時点で圧力低下が始まるので、重合槽圧力を4.0MPaに保つようにTFE/HFP=91/9(モル比)の混合ガスを供給して重合を継続した。また、重合速度を維持するため、重合開始時から定常的に3.0質量%の過硫酸アンモニウム水溶液を圧入し、重合終了時までトータル35gを追加した。重合開始5時間後に攪拌を停止してモノマーガスを放出し、反応を停止させた。その後、室温まで冷却して白色のTFE/HFP/PPVE共重合体〔FEP〕ディスパージョン(エマルション)2210gを得た。
得られたエマルションの一部を乾燥して固形分濃度を測定したところ、20.3%であった。
得られたディスパージョン300gを2倍に希釈し、硫酸アルミニウムを加えて凝析し、スラリーを濾別した。回収したスラリーに1Lのイオン交換水を加えて再分散させた後、再び濾別して洗浄した。この洗浄工程をさらに3回繰り返した。
引き続き110℃で乾燥して55gのポリマーを得た。
得られたポリマーは以下の組成及び物性を有していた。
TFE/HFP/PPVE=85.5/13.5/1.0(モル比)
融点:188℃
MFR:8.1g/10min(280℃、5kg)
70℃における貯蔵弾性率(E´):68MPa
熱分解開始温度(1%質量減温度):369℃
参考合成例1
攪拌機を備えた内容積3Lのステンレス製オートクレーブに、脱イオン水1767g、含フッ素アリルエーテル化合物としてCH=CFCF-O-(CF(CF)CFO)-CF(CF)-COONHの50%水溶液を0.283g(脱イオン水量の80ppmに相当する量)を、含フッ素アニオン性界面活性剤としてF(CFCOONHの50%水溶液を3.53g(脱イオン水量の1000ppmに相当する量)を仕込んだ。オートクレーブ内を真空引きし、窒素置換した後、ヘキサフルオロプロピレン〔HFP〕を3.4MPaになるように導入し、95℃まで昇温した。引き続き、HFP、TFEを圧力が4.2MPaになるまで導入した。引き続き、重合開始剤として3.0質量%の過硫酸アンモニウム水溶液16gを圧入して重合を開始した。重合開始剤を圧入した後、5分経った時点で圧力低下が始まるので、重合槽圧力を4.2MPaに保つようにTFE/HFP=91/9(モル比)の混合ガスを供給して重合を継続した。また、重合速度を維持するため、重合開始時から定常的に3.0質量%の過硫酸アンモニウム水溶液を圧入し、重合終了時までトータル35gを追加した。重合開始2時間後に攪拌を停止してモノマーガスを放出し、反応を停止させた。その後、室温まで冷却して白色のTFE/HFP共重合体〔FEP〕ディスパージョン(エマルション)2192gを得た。得られたエマルションの一部を乾燥して固形分濃度を測定したところ、20.1%であった。
得られたディスパージョン300gを2倍に希釈し、硫酸アルミニウムを加えて凝析し、スラリーを濾別した。回収したスラリーに1Lのイオン交換水を加えて再分散させた後、再び濾別して洗浄した。この洗浄工程をさらに3回繰り返した。引き続き110℃で乾燥して58gのポリマーを得た。
得られたポリマーは以下の組成及び物性を有していた。
TFE/HFP=87.9/12.1(モル比)
融点:215℃
MFR:6.8g/10min(280℃、5kg)
70℃における貯蔵弾性率(E´):167MPa
熱分解開始温度(1%質量減温度):398℃
実施例1
容量1Lのミキサー内に、水500ccと塩化マグネシウム4gをあらかじめ混合した溶液に合成例1のFEP水性ディスパージョン(B1)とフッ素ゴムディスパージョン(A1)とを固形分が体積比で75/25(フッ素ゴム/FEP)となるようにあらかじめ混合した溶液400ccを投入し、ミキサーにて5分間混合し、共凝析した。
共凝析後、固形分を取り出し、120℃×24時間乾燥炉で乾燥させた後、オープンロールにて表1に示す所定の配合物を混合して、架橋性フッ素ゴム組成物とした。その後、成形金型内で、180℃、5分間、40kg/cmの加圧下で架橋して、一次架橋成形品を得た。その後、一次架橋成形品を230℃に維持された加熱炉中に24時間入れて加熱処理を行うことで、試験成形品を得た。表1に成形品の物性を示す。
実施例2
合成例1のFEP水性ディスパージョン(B1)の代わりに合成例2のFEP水性ディスパージョン(B2)を用いたこと以外は、実施例1と同様の方法で試験成形品を得た。表1に成形品の物性を示す。
参考例1
合成例1のFEP水性ディスパージョン(B1)の代わりに参考合成例1のFEP水性ディスパージョンを用いたこと以外は、実施例1と同様の方法で試験成形品を得た。表1に成形品の物性を示す。
Figure JPOXMLDOC01-appb-T000001
本発明のフッ素ゴム成形品は、シール材、摺動部材、非粘着性部材として特に好適に利用可能である。
30:フッ素ゴム成形品
31:凸部

Claims (15)

  1. フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性フッ素ゴム組成物であって、
    前記フッ素樹脂(B)は、
    テトラフルオロエチレン単位(a)及びヘキサフルオロプロピレン単位(b)のみからなり、(a)/(b)が、モル比で80.0~87.3/12.7~20.0である共重合体(B1)、又は、
    テトラフルオロエチレン単位(a)、ヘキサフルオロプロピレン単位(b)、並びに、テトラフルオロエチレン及びヘキサフルオロプロピレンと共重合可能な単量体に基づく重合単位(c)からなり、(a)/(b)が、モル比で80.0~90.0/10.0~20.0であり、(c)/{(a)+(b)}が、モル比で0.1~10.0/90.0~99.9である共重合体(B2)
    であることを特徴とする架橋性フッ素ゴム組成物。
  2. フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られた共凝析粉末からなり、
    前記フッ素樹脂(B)は、共重合体(B1)である
    請求項1記載の架橋性フッ素ゴム組成物。
  3. フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られた共凝析粉末からなり、
    前記フッ素樹脂(B)は、共重合体(B2)である
    請求項1記載の架橋性フッ素ゴム組成物。
  4. 重合単位(c)は、パーフルオロ(アルキルビニルエーテル)単位である
    請求項1又は3記載の架橋性フッ素ゴム組成物。
  5. フッ素樹脂(B)は、動的粘弾性測定による70℃における貯蔵弾性率(E’)が10~160MPaの範囲である請求項1、2、3又は4記載の架橋性フッ素ゴム組成物。
  6. フッ素樹脂(B)は、融点が210℃以下である請求項1、2、3、4又は5記載の架橋性フッ素ゴム組成物。
  7. フッ素ゴム(A)は、ビニリデンフルオライド/ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン共重合体、テトラフルオロエチレン/プロピレン/ビニリデンフルオライド共重合体、エチレン/ヘキサフルオロプロピレン共重合体、エチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体、エチレン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、ビニリデンフルオライド/テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、及び、ビニリデンフルオライド/クロロトリフルオロエチレン共重合体からなる群より選択される少なくとも1種である
    請求項1、2、3、4、5又は6記載の架橋性フッ素ゴム組成物。
  8. フッ素ゴム(A)は、架橋部位を与えるモノマー由来の共重合単位を含む請求項1、2、3、4、5、6又は7記載の架橋性フッ素ゴム組成物。
  9. 請求項1、2、3、4、5、6、7又は8記載の架橋性フッ素ゴム組成物を架橋して得られるフッ素ゴム成形品。
  10. (I)フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得た後、請求項1、2、3、4、5、6、7又は8記載の架橋性フッ素ゴム組成物を得る工程、
    (II)架橋性フッ素ゴム組成物を成形し、架橋して、架橋成形品を得る成形架橋工程、及び、
    (III)架橋成形品をフッ素樹脂(B)の融点以上の温度に加熱してフッ素ゴム成形品を得る熱処理工程
    を含むことを特徴とするフッ素ゴム成形品の製造方法。
  11. 請求項10記載の製造方法により得られるフッ素ゴム成形品。
  12. シール材である請求項9又は11記載のフッ素ゴム成形品。
  13. 摺動部材である請求項9又は11記載のフッ素ゴム成形品。
  14. 非粘着性部材である請求項9又は11記載のフッ素ゴム成形品。
  15. 表面に撥水撥油性を有する請求項9又は11記載のフッ素ゴム成形品。
     
PCT/JP2012/070016 2011-09-30 2012-08-06 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法 WO2013046933A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280047820.5A CN103842429B (zh) 2011-09-30 2012-08-06 交联性氟橡胶组合物、氟橡胶成型品及其制造方法
EP12835333.1A EP2765159B1 (en) 2011-09-30 2012-08-06 Crosslinkable fluorine rubber composition, fluorine rubber molded article, and method for producing same
US14/241,267 US9102817B2 (en) 2011-09-30 2012-08-06 Crosslinkable fluorine rubber composition, fluorine rubber molded article, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218352 2011-09-30
JP2011-218352 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046933A1 true WO2013046933A1 (ja) 2013-04-04

Family

ID=47994985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070016 WO2013046933A1 (ja) 2011-09-30 2012-08-06 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法

Country Status (5)

Country Link
US (1) US9102817B2 (ja)
EP (1) EP2765159B1 (ja)
JP (2) JP2013082888A (ja)
CN (1) CN103842429B (ja)
WO (1) WO2013046933A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088461A4 (en) * 2013-12-27 2017-08-16 Nippon Valqua Industries, Ltd. Fluorine rubber composition, crosslinked rubber molded body and method for producing same
JPWO2020251056A1 (ja) * 2019-06-14 2020-12-17

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412735B1 (en) * 2009-03-23 2014-04-30 Daikin Industries, Ltd. Fluororesin and riser pipe
JP5880685B2 (ja) * 2012-03-13 2016-03-09 ダイキン工業株式会社 自動車用フィラーキャップ
JP6187265B2 (ja) 2013-03-26 2017-08-30 富士ゼロックス株式会社 表面保護膜
JP6464797B2 (ja) * 2014-02-17 2019-02-06 ダイキン工業株式会社 成形体
JPWO2015141442A1 (ja) * 2014-03-18 2017-04-06 株式会社リケン シール部材及びその製造方法
JP2017197690A (ja) * 2016-04-28 2017-11-02 ダイキン工業株式会社 共重合体及び成形体の製造方法
EP3510099A1 (en) * 2016-09-07 2019-07-17 Solvay Specialty Polymers Italy S.p.A. Fluorine-containing thermoplastic elastomer composition
JP6153684B1 (ja) 2017-04-03 2017-06-28 伸和コントロールズ株式会社 酸素、水素及び水に対する耐久性を有する電磁弁
JP6890081B2 (ja) * 2017-11-06 2021-06-18 三菱電線工業株式会社 シール材用ゴム材料及びそれを用いたシール材
WO2019189214A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 電波吸収材料および電波吸収シート
US11787927B2 (en) * 2018-07-13 2023-10-17 Daikin Industries, Ltd. Thermoplastic resin composition and method for producing same
KR20210150359A (ko) * 2019-04-03 2021-12-10 에이지씨 가부시키가이샤 함불소 탄성 공중합체 조성물, 불소 고무 및 이들의 제조 방법
CN113825795B (zh) * 2019-05-20 2023-07-18 大金工业株式会社 含氟弹性体组合物和物品
CN111333766A (zh) * 2020-04-24 2020-06-26 四川道弘科技有限公司 二元过氧氟橡胶及制备方法和智能穿戴材料及制备方法
WO2022071531A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、被圧縮部材および被覆電線
CN112409731B (zh) * 2020-10-21 2023-02-24 浙江巨化技术中心有限公司 一种3d打印用含氟树脂组合物及其制备方法
WO2022181843A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
CN113943467B (zh) * 2021-10-18 2022-10-21 上海道氟实业有限公司 一种氟橡胶组合物及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505341A (ja) 1989-05-19 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するブロモ含有パーフルオロポリマー類の製造
JPH05500070A (ja) 1989-05-19 1993-01-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類
JPH0563482B2 (ja) 1985-03-28 1993-09-10 Daikin Ind Ltd
JPH07316234A (ja) 1994-05-18 1995-12-05 Ausimont Spa Oリングの製造に特に適した新規の過酸化物硬化性のフッ化エラストマー
WO2000053675A1 (fr) * 1999-03-10 2000-09-14 Daikin Industries, Ltd. Composition d'elastomere fluore vulcanisable a base d'eau et article revetu d'elastomere fluore
WO2009020182A1 (ja) * 2007-08-08 2009-02-12 Daikin Industries, Ltd. 含フッ素樹脂および架橋フッ素ゴムを含む熱可塑性樹脂組成物
WO2009057744A1 (ja) * 2007-10-31 2009-05-07 Daikin Industries, Ltd. フッ素ゴム加硫用水性組成物および被覆物品
WO2011002080A1 (ja) 2009-07-03 2011-01-06 ダイキン工業株式会社 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製法
JP2011504955A (ja) 2007-11-30 2011-02-17 ソルヴェイ・ソレクシス・エッセ・ピ・ア フルオロエラストマー組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543394A (en) * 1983-08-15 1985-09-24 E. I. Du Pont De Nemours And Company Fluoroelastomer having improved compression set resistance
CN1154684C (zh) * 1997-01-10 2004-06-23 日本华尔卡工业株式会社 表面改性橡胶的制造方法、表面改性橡胶及其密封材料
US6310141B1 (en) * 2000-06-27 2001-10-30 Dyneon Llc Fluoropolymer-containing compositions
CN101679756A (zh) 2007-05-16 2010-03-24 大金工业株式会社 交联的含氟弹性体微粒及其制造法以及组合物
EP2325252B1 (en) * 2008-09-09 2014-11-12 Daikin Industries, Ltd. Method for producing fluorine rubber crosslinked molded body
JP2011185355A (ja) * 2010-03-08 2011-09-22 Honda Motor Co Ltd 自動車バルブ用部材
ES2622005T3 (es) * 2011-01-05 2017-07-05 Daikin Industries, Ltd. Artículo moldeado de caucho fluorado

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563482B2 (ja) 1985-03-28 1993-09-10 Daikin Ind Ltd
JPH04505341A (ja) 1989-05-19 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するブロモ含有パーフルオロポリマー類の製造
JPH04505345A (ja) 1989-05-19 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類の製造
JPH05500070A (ja) 1989-05-19 1993-01-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類
JPH07316234A (ja) 1994-05-18 1995-12-05 Ausimont Spa Oリングの製造に特に適した新規の過酸化物硬化性のフッ化エラストマー
WO2000053675A1 (fr) * 1999-03-10 2000-09-14 Daikin Industries, Ltd. Composition d'elastomere fluore vulcanisable a base d'eau et article revetu d'elastomere fluore
WO2009020182A1 (ja) * 2007-08-08 2009-02-12 Daikin Industries, Ltd. 含フッ素樹脂および架橋フッ素ゴムを含む熱可塑性樹脂組成物
WO2009057744A1 (ja) * 2007-10-31 2009-05-07 Daikin Industries, Ltd. フッ素ゴム加硫用水性組成物および被覆物品
JP2011504955A (ja) 2007-11-30 2011-02-17 ソルヴェイ・ソレクシス・エッセ・ピ・ア フルオロエラストマー組成物
WO2011002080A1 (ja) 2009-07-03 2011-01-06 ダイキン工業株式会社 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765159A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088461A4 (en) * 2013-12-27 2017-08-16 Nippon Valqua Industries, Ltd. Fluorine rubber composition, crosslinked rubber molded body and method for producing same
JPWO2020251056A1 (ja) * 2019-06-14 2020-12-17
WO2020251056A1 (ja) * 2019-06-14 2020-12-17 ダイキン工業株式会社 電気化学デバイス用被圧縮部材

Also Published As

Publication number Publication date
JP2013082888A (ja) 2013-05-09
EP2765159A1 (en) 2014-08-13
JP5644913B2 (ja) 2014-12-24
US9102817B2 (en) 2015-08-11
CN103842429B (zh) 2016-08-24
CN103842429A (zh) 2014-06-04
EP2765159B1 (en) 2017-02-15
JP2013224451A (ja) 2013-10-31
US20140378616A1 (en) 2014-12-25
EP2765159A4 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5644913B2 (ja) 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法
JP5598530B2 (ja) 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製法
JP5293805B2 (ja) フッ素ゴム成形品
JP5500175B2 (ja) 含フッ素エラストマー、架橋性組成物及び架橋ゴム成形品
JP4910704B2 (ja) 熱可塑性重合体組成物
EP2325252B1 (en) Method for producing fluorine rubber crosslinked molded body
KR20070089204A (ko) 열가소성 중합체 조성물
US20190055382A1 (en) Fluororubber composition and molded article
JP2011012212A (ja) フッ素ゴム成形品の製造方法及びフッ素ゴム成形品
JP6163809B2 (ja) フッ素ゴム組成物
JP2013056979A (ja) 架橋性フッ素ゴム組成物、及び、フッ素ゴム成形品
JP2016090013A (ja) オイルシール
JP2010059311A (ja) 架橋性フッ素ゴム組成物
JP2013067774A (ja) 架橋性フッ素ゴム組成物、及び、フッ素ゴム成形品
JP2015152123A (ja) オイルシール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14241267

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012835333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012835333

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE