WO2013046717A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2013046717A1
WO2013046717A1 PCT/JP2012/006245 JP2012006245W WO2013046717A1 WO 2013046717 A1 WO2013046717 A1 WO 2013046717A1 JP 2012006245 W JP2012006245 W JP 2012006245W WO 2013046717 A1 WO2013046717 A1 WO 2013046717A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
block
tire
tread
notch groove
Prior art date
Application number
PCT/JP2012/006245
Other languages
English (en)
French (fr)
Inventor
越智 直也
賢人 橋本
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47994791&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013046717(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2011212889A external-priority patent/JP5764026B2/ja
Priority claimed from JP2011262689A external-priority patent/JP5715552B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/342,673 priority Critical patent/US9481211B2/en
Priority to EP12836896.6A priority patent/EP2762333B1/en
Priority to CN201280046691.8A priority patent/CN103826873B/zh
Priority to RU2014116906/11A priority patent/RU2581978C2/ru
Publication of WO2013046717A1 publication Critical patent/WO2013046717A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • B60C2011/0369Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire excellent in performance on snow.
  • a pneumatic tire suitable for a snowy road including a snowy road a tire having excellent braking performance (snow braking performance), traction performance (snow traction performance) and turning performance (snow turning performance) on a snowy road is required. .
  • the braking performance, traction performance, turning performance, etc. of the tire are affected by the friction characteristics of the tire. Therefore, in order to improve the tire's snow braking performance, snow traction performance and snow turning performance, it is necessary to improve the tire friction characteristics on the snowy road.
  • the tire on a snowy road As one means for improving the friction characteristics of the tire on a snowy road, it is formed in a groove disposed in the tread portion by improving the force with which the tire grips and solidifies the snow during rolling of the tire. It is known to increase the shear resistance of a snow column (that is, increase the shear force of the snow column). As another means of improving the friction characteristics of tires on snowy roads, it is known to secure the contact area of the tire and to enhance the scratching effect of the road surface by the edge of the block and the edge of the sipe formed in the tread part. It has been.
  • a rectangular block is defined by forming a plurality of main grooves extending along the tire circumferential direction and a plurality of lateral grooves extending along the tire width direction on the tread portion tread surface, and sipes are formed on the blocks.
  • the conventional pneumatic tire formed it was not possible to improve the snow column shear force, ensure the contact area, and improve the scratching effect on the road surface. That is, in the conventional pneumatic tire described above, when the groove depth of the lateral groove is increased in order to increase the snow column shear force, the rigidity of the block in the circumferential direction of the tire decreases, and the angle of collapse of the block at the time of ground contact increases. As a result, the ground contact area cannot be secured.
  • the present invention improves the friction characteristics of the tire on the snowy road by ensuring that the contact area of the tire, the improvement of the scratching effect of the road surface by the edge, and the improvement of the snow column shear force are arranged side by side at a high level.
  • An object of the present invention is to provide a pneumatic tire that is improved in snow performance such as snow braking performance, snow traction performance and snow turning performance.
  • the present invention aims to advantageously solve the above-described problems, and the pneumatic tire according to the present invention is provided in the tire circumferential direction on at least a part of the tread portion tread located between both tread ends.
  • One or more main grooves extending, and / or a plurality of lateral grooves extending in the tire width direction between the main grooves and / or between the main grooves and the tread ends are provided to form a block row of a plurality of blocks.
  • the rigidity (bending rigidity) of the block is achieved.
  • the edge component in particular, the edge component extending along the tire circumferential direction (hereinafter referred to as “tire circumferential edge component”) can be secured while suppressing the reduction of the contact area and the contact area.
  • extending in the tire circumferential direction means extending in the tire circumferential direction, and “extending in the tire circumferential direction” is inclined with respect to a direction parallel to the tire circumferential direction. The case of extending is also included.
  • extending in the tire width direction means extending in the tire width direction, and “extending in the tire width direction” includes a case of extending in a direction parallel to the tire width direction. It is.
  • the rigidity of the block increases from the opening side of the first notch groove toward the end side of the first notch groove, and the second notch groove It is preferable to increase from the opening side toward the terminal end side of the second notch groove. If the rigidity of the block, especially the bending rigidity, is increased from the opening side of the first notch groove and the second notch groove toward the end side, the force to grab snow in the lateral groove while suppressing the reduction of the contact area This is because the snow column shearing force can be further increased by improving the above and the effect of scratching the road surface by the edge can be improved.
  • the groove depths of the first notch groove and the second notch groove are reduced from the opening side toward the terminal side. If the groove depths of the first notch groove and the second notch groove are decreased from the opening side toward the end side, the rigidity of the block is changed from the opening side to the end side of each notch groove using a simple structure. This is because it can be increased.
  • the block has a width direction sipe that intersects the connecting narrow groove and extends in the tire width direction. If a sipe in the width direction is formed in the block, an edge component extending in the tire width direction (hereinafter referred to as “tire width direction edge component”) can be secured, and snow braking performance and snow traction performance can be improved. This is because the drainage performance can be secured. Also, if the width direction sipe intersects the connecting narrow groove, the rigidity of the block is greatly reduced and the ground contact area is reduced compared to the case where the width direction sipe intersects the first notch groove and the second notch groove. This is because the decrease can be suppressed.
  • the first notch groove and the second notch groove extend in the same direction with respect to the tire circumferential direction, and the connecting narrow groove has a tire circumferential direction.
  • the first notch groove and the second notch groove are inclined and extended to the opposite side. If the inclination direction of the first notch groove and the second notch groove is different from the inclination direction of the connection narrow groove, and the first notch groove, the connection narrow groove, and the second notch groove are arranged in a zigzag shape, This is because the edge component in the tire width direction can be ensured, and snow braking performance and snow traction performance can be improved.
  • the “groove extending direction” refers to the center of the groove width when grooves such as the first notch groove, the second notch groove, and the connecting narrow groove extend linearly. The direction in which the line extends is indicated. When the groove is bent and extended, the direction in which the amplitude center line of the groove extends is indicated.
  • the pneumatic tire of the present invention has a land portion row adjacent to the block row across the main groove on the tread portion tread, and is located on the extending direction line of the lateral groove of the land portion row. It is preferable that an extending lateral groove having one end opened in the main groove and the other end terminating in the land portion row is formed in the portion to be formed.
  • the “land portion row” may be a block land portion row made up of a plurality of blocks, or may be a rib-like land portion row extending continuously in the tire circumferential direction. good.
  • the ⁇ lateral groove extending direction line '' refers to the groove width center line of the lateral groove when the lateral groove extends linearly, and when the lateral groove is bent and extended, Refers to the amplitude center line of the transverse groove.
  • the first notch groove extends in a direction orthogonal to a lateral groove located on one side in the tire circumferential direction of the block, and the second notch groove is a tire of the block. It is preferable to extend in a direction perpendicular to the lateral groove located on the other circumferential side. If the first notch groove, the second notch groove and the transverse groove are orthogonal to each other, the snow column shear force at the portion where the transverse groove and the first notch groove or the second notch groove intersect with each other is further increased. This is because the braking performance and snow traction performance can be further improved.
  • the tread portion tread has a shape from the tire equator to the tread end located on one side in the tire width direction and a shape from the tire equator to the tread end located on the other side in the tire width direction.
  • the block is preferably formed on one side in the tire width direction from the tire equator. If the pattern shape of the tread part tread is asymmetric across the tire equator and the above-mentioned block that can improve the performance on snow is formed on one side in the tire width direction, the pattern shape that can improve other performance (for example, performance on ice) This is because it is formed on the other side in the tire width direction so that the performance on snow and the other performance can be balanced.
  • the pneumatic tire of the present invention ensuring the contact area of the tire, improving the scratching effect of the road surface by the edge, and improving the snow column shear force are arranged side by side at a high level, and the friction of the tire on the snowy road By improving the characteristics, the performance of the tire on the snow can be improved.
  • FIG. 3 is a development view of a part of a tread portion of a typical pneumatic tire according to the present invention. It is explanatory drawing explaining the force which acts on a block when the braking force is loaded about one of the blocks of the pneumatic tire shown in FIG. 1, (a) is a tread end side of a tire circumferential direction protrusion part. (B) is an explanatory view when a tire circumferential direction protrusion part is located in the kicking-out end side of a block.
  • FIG. 4 is a development view of a part of a tread portion of another pneumatic tire according to the present invention. FIG. 4 is a cross-sectional view taken along the line II of FIG. It is a partial development view of the tread portion of the pneumatic tire of the comparative example.
  • FIG. 1 is a development view of a part of the tread portion of an example of the pneumatic tire of the present invention.
  • the pneumatic tire shown in FIG. 1 is not particularly limited and can be suitably used as a studless tire.
  • the tread portion tread surface 100 located between the tread ends TE has an asymmetric shape with respect to the tire equator C. That is, in this example pneumatic tire, the pattern shape from the tire equator C to the tread end TE located on one side in the tire width direction (right side in FIG. 1), and the other in the tire width direction from the tire equator C (left side in FIG. 1). The pattern shape up to the tread end TE located at is different.
  • one first main groove 1 extending in the tire circumferential direction between the tire equator C and the tread end TE located on one side in the tire width direction (right side in FIG. 1) of the tread portion tread 100.
  • the first main groove 1 is bent and extended in a zigzag shape in the tire circumferential direction.
  • the 2nd main groove 2 has the expansion part 2a extended along a tire circumferential direction, and a groove width expanded at a predetermined space
  • the lateral grooves 5 are inclined at a predetermined angle with respect to the tire width direction (upward to the left in FIG. 1), and the lug grooves 6 are also formed at a predetermined angle with respect to the tire width direction. It extends at an angle (upward to the left in FIG. 1).
  • the groove width of the lateral groove 5 gradually decreases from the second main groove 2 side toward the first main groove 1 side.
  • the tread portion tread 100 is partitioned by the first main groove 1, the second main groove 2 and the lateral groove 5 from the tire equator C to the tread end TE located on one side in the tire width direction (right side in FIG. 1).
  • a block row 10 including a plurality of blocks 11 to be formed is formed.
  • a shoulder block row 20 including a plurality of shoulder blocks 21 defined by the second main groove 2, the lug groove 6 and the tread end TE is formed on the tread end TE side with respect to the block row 10.
  • the block 11 and the shoulder block 21 have a substantially parallelogram shape.
  • circumferential thick groove 3 extending in the tire circumferential direction
  • One circumferential narrow groove 4 that is positioned on the tread end TE side relative to the circumferential thick groove 3 and extends in the tire circumferential direction
  • a plurality that extends in the tire width direction between the circumferential thick groove 3 and the circumferential narrow groove 4
  • a plurality of bent lateral grooves 8 and a plurality of lug grooves 9 extending in the tire width direction are formed between the circumferential narrow grooves 4 and the tread ends TE.
  • the circumferential thick groove 3 extends along the tire circumferential direction.
  • the circumferential narrow groove 4 has a narrower groove width than the circumferential thick groove 3 and extends linearly along the tire circumferential direction.
  • the bent lateral groove 8 extends in the tire width direction with one bending point that has a convex shape on one side in the tire circumferential direction (downward in FIG. 1).
  • the lug groove 9 extends at a predetermined angle with respect to the tire width direction (upwardly in FIG. 1).
  • the arrow feather block 41 has an arrow feather shape in which the position of the apex is offset to one side in the tire width direction (right side in FIG. 1).
  • the shoulder block 51 has a substantially parallelogram shape.
  • a central lateral groove 7 extending in the tire width direction is formed between the first main groove 1 and the circumferential thick groove 3 at the central portion of the tread portion tread surface 100 (near the tire equator C).
  • the central lateral groove 7 is bent in a zigzag shape, and is inclined at a predetermined angle with respect to the tire width direction (upward to the right in FIG. 1).
  • the central block 31 has a substantially trapezoidal shape.
  • a block 11 constituting the block row 10 located between the first main groove 1 and the second main groove 2 includes a large number (one or more) of sipes 12 extending in the tire width direction, One end of the lateral groove 5 located on one side in the tire circumferential direction (the lower side in FIG. 1) is open, and the other end terminates in the block 11, and the other in the tire circumferential direction of the block 11 (in FIG. 1).
  • a second notch groove 14 having one end opened in the lateral groove 5 positioned on the upper side and the other end terminating in the block 11, and a connecting narrow groove connecting the first notch groove 13 and the second notch groove 14. 15 is formed.
  • the block 11 is formed with a width direction sipe 16 that intersects the connecting narrow groove 15 and extends in the tire width direction.
  • the sipe 12 is not particularly limited and has a zigzag shape in plan view and is also bent in the depth direction.
  • the opening width of the sipe 12 is, for example, 0.3 to 1.0 mm.
  • the sipe 12 is extended in the direction which cross
  • the first notch groove 13 and the second notch groove 14 are linear in a plan view, and extend obliquely to the right in FIG. 1 with respect to the tire circumferential direction. That is, the first notch groove 13 and the second notch groove 14 extend in the upper right direction in FIG.
  • the first notch groove 13 and the second notch groove 14 are orthogonal to the lateral groove 5.
  • the groove width center line of the first notch groove 13 and the groove width center line of the second notch groove 14 are located on the same straight line. That is, the lateral groove 5, the second notch groove 14 of the block 11 located on one side in the tire circumferential direction of the lateral groove 5 (lower side in FIG.
  • the first notch groove 13 of the block 11 that is positioned intersects to form a substantially cross shape.
  • the first notch groove and the second notch groove may each intersect the lateral groove at an angle other than 90 °.
  • the connecting narrow groove 15 has a narrower groove width than the first notch groove 13 and the second notch groove 14, and extends inclined to the left in FIG. 1 with respect to the tire circumferential direction. That is, the connecting narrow groove 15 is inclined to the side opposite to the first notch groove 13 and the second notch groove 14 and extends in the upper left direction in FIG. Therefore, in this block 11, the 1st notch groove 13, the connection fine groove 15, and the 2nd notch groove 14 are arrange
  • the width direction sipe 16 is not particularly limited, and is zigzag in a plan view and is also bent in the depth direction. And the width direction sipe 16 crosses the connecting narrow groove 15 and is inclined with respect to the tire width direction (in FIG. 3, rising to the right).
  • the central block 31 constituting the central block row 30 positioned between the first main groove 1 and the circumferential thick groove 3 of the tread portion tread 100 has a large number of sipes 32 and one end extending in the tire width direction.
  • An extending lateral groove 33 that is open to the first main groove 1 and whose other end terminates in the central block 31 is formed.
  • the sipe 32 is not particularly limited and has a zigzag shape in plan view and is also bent in the depth direction.
  • the extending lateral groove 33 is located on the extending direction line (groove width center line) of the lateral groove 5 that defines the block 11 of the block row 10 adjacent to the central block row 30 with the first main groove 1 interposed therebetween. Yes. That is, the extending lateral groove 33 is at a position where the lateral groove 5 is extended to the central block row 30 side. And the 1st main groove 1, the horizontal groove 5, and the extending
  • the arrow feather block 41 constituting the arrow feather block row 40 positioned between the circumferential thick groove 3 and the circumferential narrow groove 4 of the tread part tread surface 100 includes a first sipe 42 that is linear in a plan view, Three composite sipes comprising the second sipe 43 having a zigzag shape in plan view are formed.
  • the first sipe 42 has one end opened in the circumferential thick groove 3 located on the tire circumferential direction protruding portion 44 side of the arrow feather block 41 with respect to the width center line of the arrow feather block 41 and the other end is arrow feather.
  • the second sipe 43 has one end opened in the circumferential narrow groove 4 located on the opposite side of the widthwise center line of the arrow feather block 41 from the tire circumferential protrusion 44 side of the arrow feather block 41 and the other end. Ends in the Yaha block 41.
  • the composite sipe composed of the first sipe 42 and the second sipe 43 extends in the entire tire width direction of the arrow feather block 41 with an arrangement shape corresponding to the bent lateral groove 8, and a part of the first sipe 42. And a portion of the second sipe 43 overlap in the tire circumferential direction. That is, when a composite sipe comprising the first sipe 42 and the second sipe 43 is projected onto a plane that includes the tire rotation axis and is orthogonal to the block surface, the tire width direction dimension of the projection view and the tire width direction of the arrow feather block 41 The dimensions are equal. In the projection view, the dimension component in the tire width direction of the first sipe 42 and the dimension component in the tire width direction of the second sipe 43 overlap.
  • the shoulder block 51 constituting the row 50 is formed with zigzag horizontal sipe 22 and 52 in plan view extending in the tire width direction and zigzag vertical sipe 23 and 53 in plan view extending in the tire circumferential direction. Yes.
  • the tread portion tread 100 has a plurality of blocks 11 between the tire equator C and the tread end TE located on one side in the tire width direction (right side in FIG. 1). Since the row 10 is formed, it is possible to improve snow performance such as snow brake performance, snow traction performance, and snow turning performance.
  • the block 11 is formed with the first notch groove 13 and the second notch groove 14 having one end opened in the lateral groove 5 and the other end terminating in the block 11, so Snow pillars can be formed in the first and second cutout grooves without escaping in the circumferential direction.
  • the snow pillars formed in the lateral grooves 5 can be struck against the snow pillars formed in the first notch grooves 13 and the second notch grooves 14 to harden the snow pillars in the grooves. Therefore, in the region where the block row 10 is formed, in the lateral groove 5 located on both sides in the tire circumferential direction of the block 11, particularly in a portion where the lateral groove 5 intersects with the first notch groove 13 or the second notch groove 14.
  • first notch groove 13 and the second notch groove 14 terminate in the block 11, compared with the case where the notch groove having a constant groove width is formed over the entire tire circumferential direction of the block 11. In addition, it is possible to suppress a decrease in the ground contact area due to a decrease in the rigidity of the block 11. Further, since the first notch groove 13 and the second notch groove 14 are connected by the connecting narrow groove 15, the edge component, particularly the tire circumferential edge component, is suppressed while suppressing the rigidity of the block 11 from being lowered. And the effect of scratching the road surface in the tire width direction by the edge can be enhanced.
  • the plurality of sipes 12 extending in a zigzag shape are formed, it is possible to sufficiently secure both the tire circumferential direction edge component and the tire width direction edge component and obtain the effect of scratching the road surface by the edge.
  • the extending direction of the sipe 12 and the extending direction of the lateral groove 5 be a direction intersecting with the tire circumferential direction line interposed therebetween. This is because the performance on snow is further improved.
  • the sipe 12 extending in a zigzag shape is formed in the block 11, the area of the sipe can be secured, the drainage performance can be improved, and the on-ice performance and the wet performance can be improved.
  • the small blocks can support each other in the tire circumferential direction with the sipe 12 being input to the block 11, and the overall rigidity of the block 11 can be secured to improve the steering stability.
  • the sipe 16 in the width direction is formed in the block 11, it is possible to secure the edge component in the tire width direction and improve the snow braking performance and the snow traction performance. Moreover, drainage performance can be improved and wet performance can be ensured. Further, in the pneumatic tire of this example, since the width direction sipe 16 and the connecting narrow groove 15 are intersected, the width direction sipe 16 is intersected with the first notch groove 13 and the second notch groove 14 and In comparison, the edge component can be secured and the drainage performance can be improved while suppressing the rigidity of the block 11 from being significantly reduced and the contact area from being reduced.
  • one end is opened to the first main groove 1 in the central block 31 of the central block row 30 adjacent to the block row 10 in the tire width direction with the first main groove 1 interposed therebetween. Since the extended horizontal groove 33 whose end terminates in the central block 31 is formed, a snow column can also be formed in the extended horizontal groove 33 without releasing the snow that has been stepped and solidified in the horizontal groove 5 in the tire width direction. Therefore, it is possible to improve the force for stepping and solidifying the snow at the portion where the lateral groove 5 and the first main groove 1 intersect, and to increase the snow column shear force. In the pneumatic tire of this example, since the extending lateral groove 33 terminates in the central block 31, it is possible to suppress a decrease in rigidity of the central block 31 and to suppress a decrease in steering stability. .
  • the first notch groove 13, the connecting narrow groove 15, and the second notch groove 14 are arranged in the block 11 in a zigzag shape.
  • a direction edge component can be secured, and snow braking performance and snow traction performance can be improved.
  • the groove width of the lateral groove 5 is gradually reduced from the second main groove 2 side toward the first main groove 1 side, so that it is possible to suppress a decrease in rigidity of the block 11, Snow traction performance can be improved effectively.
  • the groove width (opening width) of the first notch groove 13 and the second notch groove 14 is, for example, 6 mm.
  • the length in the extending direction of the first notch groove 13 and the second notch groove 14 is preferably, for example, 25 mm or less.
  • the tire circumferential direction length of the first notch groove 13 and the second notch groove 14 is 1/3 or less of the tire circumferential direction length of the block 11.
  • the first notch groove 13 and the second notch groove 14 is preferably 1.2 mm or more, for example, and the lengths in the extending direction of the first notch groove 13 and the second notch groove 14 are preferably 5 mm or more, for example.
  • the angle formed by the tire width direction line and the lateral groove 5 (that is, the inclination angle of the lateral groove 5 with respect to the tire width direction) is: It is preferable that the angle be 0 ° or more and 45 ° or less. Furthermore, from the viewpoint of increasing the force for stepping and solidifying the snow at the portion where the lateral groove 5 and the first notch groove 13 or the second notch groove 14 intersect, the first notch groove 13 is improved.
  • the angle formed between the extending direction of the second notch groove 14 and the extending direction of the lateral groove 5 is preferably 45 ° or more as measured from the acute angle side, and the first notched groove 13 and the second notched groove 13 It is particularly preferable that the extending direction of the notch groove 14 and the extending direction of the lateral groove 5 are orthogonal to each other.
  • the groove width (opening width) of the connecting narrow groove 15 is preferably set to 1.2 mm or less, for example. From the viewpoint of tire manufacture, the groove width of the connecting narrow groove 15 is preferably 0.3 mm or more.
  • an arrow composed of a plurality of arrow blade blocks 41 on the tread portion tread surface 100 from the tire equator C to the tread end TE located on the other side in the tire width direction (left side in FIG. 1). Since the wing block row 40 is formed, on-ice performances such as on-ice brake performance, on-ice traction performance, and on-ice turning performance can be improved. Therefore, in this example pneumatic tire, the performance on snow is improved on one side of the tread surface 100 (right side in FIG. 1), while the performance on ice is improved on the other side (left side in FIG. 1) of the tread surface 100. Therefore, the performance on snow and the performance on ice can be improved in a well-balanced manner.
  • the on-ice performance is improved as follows. That is, when the tire circumferential direction projecting portion 44 side of the arrow feather block 41 is the stepping end side during tire braking, as shown in the enlarged view of the arrow feather block 41 in FIG. A force acts in a direction (a direction indicated by an arrow in FIG. 2A) in which the wings corresponding to both width ends of the block 41 fall into the central part (the part where the apex of the tire circumferential protrusion 44 is located). Accordingly, the portion of the arrow feather block 41, in particular, the portion where the tire circumferential protrusion 44 is located falls and is difficult to be deformed, so that it is possible to secure a tire contact area.
  • the edge blade block 41 has a sufficient edge component. It is possible to improve the scratching effect of the road surface by the edge of the composite sipe. Further, when the side opposite to the tire circumferential direction protruding portion 44 side of the yaba block 41 is the stepping end side during tire braking, as shown in the enlarged view of the yaba block 41 in FIG.
  • a force acts in the direction in which the shaped arrow feather block 41 opens (the direction indicated by the arrow in FIG. 2B). Therefore, the wing portions (both ends in the tire width direction) of the arrow feather block 41 are slightly collapsed and deformed, and the effect of scratching the road surface (ice road) by the edge of the arrow feather block 41 can be improved. Furthermore, since the composite sipe composed of the first sipe 42 and the second sipe 43 is arranged in the entire area of the yaba block 41 in the tire width direction, the edge blade block 41 has a sufficient edge component. It is possible to improve the scratching effect of the road surface by the edge of the composite sipe.
  • both ends of the yaba block 41 in the tire circumferential direction are provided.
  • the composite sipes positioned between the composite sipes positioned on the respective sides are bottom expanded sipes (so-called flask sipes) having an expanded portion at the bottom.
  • the side wall located on the tire circumferential direction protruding portion 44 side of the yaba block 41 has two side wall portions with different arrangement directions.
  • the arrangement angle toward the apex of the circumferential protrusion 44 is within a range of 15 to 45 ° with respect to the tire width direction. Furthermore, from the viewpoint of enhancing the scratching effect of the road surface by the edge of the arrow feather block 41, the distance for offsetting the apex of the tire circumferential protrusion 44 of the arrow feather block 41 from the width center line of the arrow feather block 41 is It is preferable to be 10 to 30% of the block width of 41.
  • FIG. 3 shows a development view of a part of the tread portion of another example of the pneumatic tire of the present invention.
  • the pneumatic tire shown in FIG. 3 can be suitably used as a studless tire, like the pneumatic tire of the above example.
  • the pneumatic tire shown in FIG. 3 further improves the on-snow performance by further improving the friction characteristics on the snowy road.
  • the configuration of the block 11A defined by the first main groove 1, the second main groove 2, and the lateral groove 5 is different from the configuration of the block 11 of the previous example pneumatic tire.
  • the point and the structure of the arrow feather block 41A defined by the circumferential thick groove 3, the circumferential narrow groove 4 and the bent lateral groove 8 are different from the structure of the arrow feather block 41 of the pneumatic tire of the previous example. Otherwise, it has the same configuration as the pneumatic tire of the previous example.
  • the pneumatic tire block 11A of the other example is different in configuration from the pneumatic tire block 11 of the previous example in the following points.
  • the block 11A includes a third notch groove 17A having one end opened in the second main groove 2 located on one side of the block 11A in the tire width direction (right side in FIG. 3) and the other end terminating in the block 11.
  • the first main groove 1 located on the other side of the block 11A in the tire width direction (left side in FIG. 3) is formed with a fourth notch groove 18A having one end opened and the other end terminated in the block 11A.
  • the width direction sipe 16A extending in the tire width direction intersects the connecting narrow groove 15A between the third notch groove 17A and the fourth notch groove 18A.
  • the rigidity (particularly bending rigidity) of the block increases from the opening side of the first notch groove 13A toward the end side of the first notch groove 13A.
  • the rigidity (particularly bending rigidity) of the block increases from the opening side of the second notch groove 14A toward the end side of the second notch groove 14A. That is, in the block 11A, the rigidity of the block increases from the side of the lateral groove 5 located on both sides of the block 11A in the tire circumferential direction toward the end of the first notch groove 13A or the end of the second notch groove 14A in the tire circumferential direction. It has increased.
  • the side groove 5 side The rigidity of the block is increased from the first notch groove 13A toward the end side of the first notch groove 13A or the second notch groove 14A.
  • the rigidity of the block was changed by changing the groove depth of the first notch groove and the second notch groove.
  • the block The rigidity of the block may be changed by changing the rubber composition used in the block or by changing the arrangement density of sipes formed on the block.
  • the first notch groove 13A and the second notch groove 14A have a groove depth from the opening side to the lateral groove 5 to the terminal side. It is decreasing toward. More specifically, the first notch groove 13 ⁇ / b> A and the second notch groove 14 ⁇ / b> A have a groove depth shallower than the groove depth of the lateral groove 5 at the opening position to the lateral groove 5. The first notch groove 13A and the second notch groove 14A have a groove depth that gradually decreases from the opening position to the lateral groove 5 toward the terminal position in the block 11A.
  • the rigidity (particularly the bending rigidity) of the block 11A gradually increases from the opening side of the first notch groove 13A toward the terminal side of the first notch groove 13A, and the opening of the second notch groove 14A. It gradually increases from the side toward the terminal end side of the second notch groove 14A.
  • the connecting narrow groove 15A has a groove depth substantially equal to the terminal side of the first notch groove 13A and the second notch groove 14A.
  • the width direction sipe 16A has one end in the tire width direction terminating at a location close to the third notch groove 17A and the other end in the tire width direction terminating at a location close to the fourth notch groove 18A.
  • one end in the tire width direction may open to the third notch groove 17A
  • the other end in the tire width direction may open to the fourth notch groove 18A.
  • the opening width of the width direction sipe 16A is set to 0.3 to 1.0 mm, for example.
  • the depth of the width direction sipe 16A is, for example, 3.0 to 8.0 mm.
  • the third cutout groove 17A and the fourth cutout groove 18A are not particularly limited and extend linearly in plan view and inclined with respect to the tire width direction (upward to the right in FIG. 3). .
  • the third notch groove 17A, the fourth notch groove 18A, and the width direction sipe 16A are located on the same straight line.
  • the groove widths of the third notch groove 17A and the fourth notch groove 18A are narrower than the groove widths of the first notch groove 13A and the second notch groove 14A, and are larger than the opening width of the width direction sipe 16A.
  • the groove depths of the third notch groove 17A and the fourth notch groove 18A are shallower than the groove depth of the first main groove 1 and the groove depth of the second main groove 2.
  • the arrow blade block 41A of the pneumatic tire of this other example is different in configuration from the arrow feather block 41 of the previous example of the pneumatic tire in the following points. That is, two composite sipes including a first sipe 42A and a second sipe 43A having a zigzag shape in plan view are formed in the arrow feather block 41A.
  • the pneumatic tire of this other example it is possible to improve on-snow performance such as on-snow brake performance, on-snow traction performance and on-snow turning performance in the same manner as the above-described example pneumatic tire.
  • on-snow performance such as on-snow brake performance, on-snow traction performance and on-snow turning performance in the same manner as the above-described example pneumatic tire.
  • the tread portion tread surface 100A in the same manner as the pneumatic tire of the previous example, while improving the performance on snow on one side of the tread portion tread surface 100A (right side in FIG. 3), the tread portion tread surface 100A is improved.
  • the performance on ice can be improved on the other side (left side in FIG. 3). Therefore, according to the pneumatic tire of this other example, the performance on snow and the performance on ice can be improved in a balanced manner.
  • the rigidity (particularly the bending rigidity) of the block 11A is gradually increased from the opening side (lateral groove 5 side) of the first notch groove 13A toward the end side, and
  • the second notch groove 14A gradually increases from the opening side (lateral groove 5 side) toward the end side. Therefore, in the region where the block row 10A is formed, when traveling on a snowy road, the snow can be sufficiently grasped on the side of the lateral groove 5 where the rigidity of the block is relatively small, and the snow column shear force can be increased.
  • the scratching effect of the road surface by the edge can be improved on the opening side of the first notch groove 13A and the second notch groove 14A, and the first notch groove 13A and the second notch groove can be improved.
  • the rigidity of the block can be secured and the contact area can be prevented from decreasing.
  • the edge component in the tire width direction can be secured and the snow braking performance and the snow traction performance can be improved. Moreover, drainage performance can be improved and wet performance can be ensured. Furthermore, in this example pneumatic tire, since the width direction sipe 16A and the connecting narrow groove 15A intersect, the width direction sipe 16A intersects the first notch groove 13A and the second notch groove 14A. In comparison, the edge component can be secured and the drainage performance can be improved while suppressing the rigidity of the block 11 ⁇ / b> A from significantly decreasing and reducing the contact area.
  • the groove depth (groove depth) on the terminal side of the first notch groove 13A and the second notch groove 14A is preferably 3 mm or less.
  • the groove depth on the terminal side of the first notch groove 13A and the second notch groove 14A is preferably 1 mm or more.
  • the groove depth (maximum value of the groove depth) on the opening side of the first notch groove 13A and the second notch groove 14A is preferably 5 mm or more.
  • the groove depth (maximum value of the groove depth) on the opening side of the first notch groove 13A and the second notch groove 14A is 8 mm or less. It is preferable to do.
  • the pneumatic tire of this invention is not limited to the said example and other examples, A change is suitably carried out to the pneumatic tire of this invention. Can be added. Specifically, the pneumatic tire of the present invention may have a line-symmetric pattern centered on the tire equator.
  • Example 1 A pneumatic tire having a size of 195 / 65R15 having the tread portion tread surface 100 configured as shown in FIG. 1 and having the specifications shown in FIG. 1 was made as a prototype, and performance evaluation was performed by the following method. The results are shown in Table 1. Note that the specifications of the horizontal grooves listed in Table 1 are the specifications of the horizontal grooves 5 that define the blocks 11.
  • ⁇ Snow brake performance> The produced tires were each attached to a rim having a rim size of 15 ⁇ 6 J, and the internal pressure was set to 200 kPa, and the tire was attached to the vehicle. Then, the braking distance from the speed of 40 km / h on the snowy road until full braking was applied to the stationary state was measured, and the average deceleration was calculated from the speed before braking and the braking distance. Then, the average deceleration of Comparative Example 1 was taken as 100 and indexed. In the table, the larger the value, the better the friction characteristics of the tire and the better the brake performance on snow.
  • ⁇ Snow traction performance> The produced tires were each attached to a rim having a rim size of 15 ⁇ 6 J, and the internal pressure was set to 200 kPa, and the tire was attached to the vehicle. Then, the time required for accelerating the accelerator from the speed of 10 km / h to the speed of 45 km / h on the snowy road was measured, and the average acceleration was calculated. Then, the average acceleration of Comparative Example 1 was indexed as 100. In the table, the larger the value, the better the friction characteristics of the tire and the better the snow traction performance.
  • Example 1 is superior in performance on snow compared to the tire of Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

両トレッド端(TE)間に位置するトレッド部踏面(100)の少なくとも一部に、タイヤ周方向に延びる一本以上の主溝(1,2,3,4)と、主溝(1,2,3,4)間および/または主溝(2,4)とトレッド端(TE)間でタイヤ幅方向に延びる複数本の横溝(5)とを配設して、複数個のブロック(11)を区画形成し、且つ、ブロック(11)に、少なくとも一本のサイプ(12,16)を配設してなる空気入りタイヤであって、ブロック(11)のタイヤ周方向一方に位置する横溝(5)に一端が開口し、他端がブロック(11)内で終端する第1切欠き溝(13)と、ブロック(11)のタ イヤ周方向他方に位置する横溝(5)に一端が開口し、他端がブロック(11)内で終端する第2切欠き溝(14)と、第1切欠き溝(13)および第2切欠き溝(14)よりも溝幅が狭く、第1切欠き溝(13)と第2切欠き溝(14)とを連結する連結細溝(15)とをブロック(11)に形成した、雪上性能を向上させた空気入りタイヤを提供する。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関し、特には、雪上性能に優れる空気入りタイヤに関するものである。
 一般に、圧雪路を含む積雪路に好適な空気入りタイヤとして、積雪路におけるブレーキ性能(雪上ブレーキ性能)、トラクション性能(雪上トラクション性能)および旋回性能(雪上旋回性能)に優れるタイヤが求められている。
 ここで、通常、タイヤのブレーキ性能や、トラクション性能や、旋回性能等は、タイヤの摩擦特性の影響を受ける。そのため、タイヤの雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能を向上させるためには、積雪路におけるタイヤの摩擦特性を向上させる必要がある。
 そして、積雪路におけるタイヤの摩擦特性を向上させる一つの手段としては、タイヤの負荷転動時にタイヤが雪を掴んで踏み固める力を向上させることにより、トレッド部に配設した溝内に形成される雪柱のせん断抵抗を高める(即ち、雪柱せん断力を高める)ことが知られている。また、積雪路におけるタイヤの摩擦特性を向上させる他の手段としては、タイヤの接地面積を確保することや、トレッド部に形成したブロックのエッジおよびサイプのエッジによる路面の引っ掻き効果を高めることが知られている。
 しかし、トレッド部踏面に、タイヤ周方向に沿って延びる複数本の主溝と、タイヤ幅方向に沿って延びる複数本の横溝とを形成して矩形のブロックを区画形成し、該ブロックにサイプを形成した従来の空気入りタイヤでは、雪柱せん断力の向上と、接地面積の確保と、路面の引っ掻き効果の向上とを並立させることができなかった。
 即ち、上記従来の空気入りタイヤでは、雪柱せん断力を高めるために横溝の溝深さを深くすると、ブロックのタイヤ周方向の剛性が低下し、接地時のブロックの倒れ込み角度が大きくなってしまうので、接地面積を確保することができない。また、ブロックのエッジやサイプのエッジによる路面の引っ掻き効果を高めるためにトレッド部踏面に形成する溝やサイプの本数を増やすと、ブロックの剛性が低下し、接地時のブロックの倒れ込み角度が大きくなってしまうので、接地面積を確保することができない。
 一方、ブロックの剛性の低下を抑制して接地面積を確保するためには、ブロックに替えてリブ状の陸部をトレッド部踏面に形成したり、サイプの配設密度を所定の範囲内に抑えたりする必要があり(例えば、特許文献1参照)、雪柱せん断力や路面の引っ掻き効果を高めることができない。
特開2001-71713号公報
 そこで、本発明は、タイヤの接地面積の確保と、エッジによる路面の引っ掻き効果の向上と、雪柱せん断力の向上との全てを高い次元で並立させることにより、積雪路におけるタイヤの摩擦特性を高めて、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させた空気入りタイヤを提供することを目的とする。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の空気入りタイヤは、両トレッド端間に位置するトレッド部踏面の少なくとも一部に、タイヤ周方向に延びる一本以上の主溝と、該主溝間および/または主溝とトレッド端間でタイヤ幅方向に延びる複数本の横溝とを配設して、複数個のブロックよりなるブロック列を区画形成し、且つ、前記ブロックに、少なくとも一本のサイプを配設してなる空気入りタイヤであって、前記ブロックのタイヤ周方向一方に位置する横溝に一端が開口し、他端がブロック内で終端する第1切欠き溝と、前記ブロックのタイヤ周方向他方に位置する横溝に一端が開口し、他端がブロック内で終端する第2切欠き溝と、前記第1切欠き溝と前記第2切欠き溝とを連結し、前記第1切欠き溝および前記第2切欠き溝よりも溝幅の狭い連結細溝とを前記ブロックに形成したことを特徴とする。このように、一端が横溝に開口し、他端がブロック内で終端する第1切欠き溝および第2切欠き溝を形成すれば、横溝内、特に横溝と、第1切欠き溝または第2切欠き溝とが交差する部分において雪を踏み固める力を向上させ、雪柱せん断力を高めることができる。また、第1切欠き溝および第2切欠き溝をブロック内で終端させ、且つ、第1切欠き溝と第2切欠き溝とを連結細溝により連結すれば、ブロックの剛性(曲げ剛性)が低下して接地面積が減少するのを抑制しつつ、エッジ成分、特にタイヤ周方向に沿って延びるエッジ成分(以下「タイヤ周方向エッジ成分」という。)を確保することができる。従って、この空気入りタイヤによれば、タイヤの接地面積の確保と、エッジによる路面の引っ掻き効果の向上と、雪柱せん断力の向上との全てを高い次元で並立させ、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させることができる。
 なお、本発明において、「タイヤ周方向に延びる」とは、タイヤ周方向に向かって延びることを指し、「タイヤ周方向に延びる」には、タイヤ周方向と平行な方向に対して傾斜して延びる場合も含まれる。また、「タイヤ幅方向に延びる」とは、タイヤ幅方向に向かって延びることを指し、「タイヤ幅方向に延びる」には、タイヤ幅方向と平行な方向に対して傾斜して延びる場合も含まれる。
 ここで、本発明の空気入りタイヤは、前記ブロックの剛性が、前記第1切欠き溝の開口側から第1切欠き溝の終端側に向かって増加し、且つ、前記第2切欠き溝の開口側から第2切欠き溝の終端側に向かって増加することが好ましい。ブロックの剛性、特に曲げ剛性を、第1切欠き溝および第2切欠き溝の開口側から終端側に向かって増加させれば、接地面積の減少を抑制しつつ、横溝内で雪を掴む力を向上させて雪柱せん断力を更に高めることができると共に、エッジによる路面の引っ掻き効果を向上することができるからである。そして、この空気入りタイヤによれば、タイヤの接地面積の確保と、エッジによる路面の引っ掻き効果の向上と、雪柱せん断力の向上との全てを十分に高い次元で並立させ、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させることができる。
 また、本発明の空気入りタイヤは、前記第1切欠き溝および前記第2切欠き溝の溝深さが、前記開口側から前記終端側に向かって減少していることが好ましい。第1切欠き溝および第2切欠き溝の溝深さを開口側から終端側に向かって減少させれば、簡易な構造を用いてブロックの剛性を各切欠き溝の開口側から終端側に向かって増加させることができるからである。
 更に、本発明の空気入りタイヤは、前記ブロックに、前記連結細溝と交差してタイヤ幅方向に延びる幅方向サイプを有することが好ましい。ブロックに幅方向サイプを形成すれば、タイヤ幅方向に沿って延びるエッジ成分(以下「タイヤ幅方向エッジ成分」という。)を確保して、雪上ブレーキ性能や雪上トラクション性能を向上させることができると共に、排水性能を確保することができるからである。また、幅方向サイプを連結細溝と交差させれば、幅方向サイプを第1切欠き溝や第2切欠き溝と交差させる場合と比較し、ブロックの剛性が大幅に低下して接地面積が減少するのを抑制することができるからである。
 また、本発明の空気入りタイヤは、前記第1切欠き溝および前記第2切欠き溝は、タイヤ周方向に対して同一方向に傾斜して延在し、前記連結細溝は、タイヤ周方向に対して前記第1切欠き溝および前記第2切欠き溝とは反対側に傾斜して延在していることが好ましい。第1切欠き溝および第2切欠き溝の傾斜方向と、連結細溝の傾斜方向とを異ならせ、第1切欠き溝、連結細溝および第2切欠き溝をジグザグ状に配置すれば、タイヤ幅方向エッジ成分を確保し、雪上ブレーキ性能や雪上トラクション性能を向上させることができるからである。
 なお、本発明において、「溝の延在方向」とは、第1切欠き溝や、第2切欠き溝や、連結細溝等の溝が直線状に延びている場合には、溝幅中心線が延在する方向を指し、溝が屈曲して延びている場合には、溝の振幅中心線が延在する方向を指す。
 更に、本発明の空気入りタイヤは、前記トレッド部踏面に、前記主溝を挟んで前記ブロック列に隣接する陸部列を有し、前記陸部列の、前記横溝の延在方向線上に位置する部分に、一端が前記主溝に開口し、他端が陸部列内で終端する延伸横溝が形成されていることが好ましい。延伸横溝を形成すれば、横溝と主溝とが交差する部分において雪を踏み固める力を向上させ、雪柱せん断力を高めることができるので、雪上ブレーキ性能や雪上トラクション性能を向上させることができるからである。また、延伸横溝を陸部列内で終端させれば、陸部列の剛性の低下を抑制して、操縦安定性が低下するのを抑制することができるからである。
 なお、本発明において、「陸部列」は、複数個のブロックよりなるブロック陸部列であっても良いし、タイヤ周方向に連続して延在するリブ状の陸部列であっても良い。また、本発明において、「横溝の延在方向線」とは、横溝が直線状に延びている場合には、横溝の溝幅中心線を指し、横溝が屈曲して延びている場合には、横溝の振幅中心線を指す。
 また、本発明の空気入りタイヤは、前記第1切欠き溝は、前記ブロックのタイヤ周方向一方に位置する横溝と直交する方向に延在し、前記第2切欠き溝は、前記ブロックのタイヤ周方向他方に位置する横溝と直交する方向に延在することが好ましい。第1切欠き溝および第2切欠き溝と、横溝とを直交させれば、横溝と、第1切欠き溝または第2切欠き溝とが交差する部分における雪柱せん断力を更に高め、雪上ブレーキ性能や雪上トラクション性能を更に向上させることができるからである。
 そして、本発明の空気入りタイヤは、前記トレッド部踏面は、タイヤ赤道からタイヤ幅方向一方に位置するトレッド端までの形状と、タイヤ赤道からタイヤ幅方向他方に位置するトレッド端までの形状とが異なり、前記ブロックは、タイヤ赤道からタイヤ幅方向一方側に形成されていることが好ましい。トレッド部踏面のパターン形状を、タイヤ赤道を挟んで非対称とし、雪上性能を向上し得る上記ブロックをタイヤ幅方向一方側に形成すれば、他の性能(例えば氷上性能)を向上し得るパターン形状をタイヤ幅方向他方側に形成して、雪上性能と、他の性能とをバランス良く両立させることができるからである。
 本発明の空気入りタイヤによれば、タイヤの接地面積の確保と、エッジによる路面の引っ掻き効果の向上と、雪柱せん断力の向上との全てを高い次元で並立させ、積雪路におけるタイヤの摩擦特性を高めることにより、タイヤの雪上性能を向上させることができる。
本発明に従う代表的な空気入りタイヤのトレッド部の一部の展開図である。 図1に示す空気入りタイヤのブロックの一つについて、制動力が負荷された際にブロックに働く力を説明する説明図であり、(a)は、タイヤ周方向突出部がブロックの踏み込み端側に位置する場合の説明図であり、(b)は、タイヤ周方向突出部がブロックの蹴り出し端側に位置する場合の説明図である。 本発明に従う別の空気入りタイヤのトレッド部の一部の展開図である。 図3のI-I線に沿う断面図である。 比較例の空気入りタイヤのトレッド部の一部の展開図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、各図において同一の符号を付したものは、同一の構成要素を示すものとする。
 ここに、図1は、本発明の空気入りタイヤの一例のトレッド部の一部の展開図である。そして、図1に示す空気入りタイヤは、特に限定されることなくスタッドレスタイヤとして好適に用いることができる。
 ここで、図1に示すように、この一例の空気入りタイヤは、両トレッド端TE間に位置するトレッド部踏面100が、タイヤ赤道Cを中心として左右非対称な形状をしている。即ち、この一例の空気入りタイヤでは、タイヤ赤道Cからタイヤ幅方向一方(図1では右側)に位置するトレッド端TEまでのパターン形状と、タイヤ赤道Cからタイヤ幅方向他方(図1では左側)に位置するトレッド端TEまでのパターン形状とが異なっている。
 具体的には、トレッド部踏面100の、タイヤ赤道Cからタイヤ幅方向一方(図1では右側)に位置するトレッド端TEまでの間には、タイヤ周方向に延びる1本の第1主溝1と、第1主溝1よりもトレッド端TE側に位置し、タイヤ周方向に延びる1本の第2主溝2と、第1主溝1と第2主溝2との間でタイヤ幅方向に延びる複数本の横溝5と、第2主溝2とトレッド端TEとの間でタイヤ幅方向に延びる複数本のラグ溝6とが形成されている。
 なお、第1主溝1は、タイヤ周方向へジグザグ状に屈曲して延在している。また、第2主溝2は、タイヤ周方向に沿って延在し、且つ、溝幅が拡大する拡大部2aをタイヤ周方向に所定の間隔で有している。更に、横溝5は、タイヤ幅方向に対して所定の角度で傾斜して(図1では左上がりに)延在しており、また、ラグ溝6も、タイヤ幅方向に対して所定の角度で傾斜して(図1では左上がりに)延在している。因みに、横溝5の溝幅は、第2主溝2側から第1主溝1側に向かって漸減している。
 そして、トレッド部踏面100の、タイヤ赤道Cからタイヤ幅方向一方(図1では右側)に位置するトレッド端TEまでの間には、第1主溝1、第2主溝2および横溝5により区画形成される複数個のブロック11よりなるブロック列10が形成されている。また、ブロック列10よりもトレッド端TE側には、第2主溝2、ラグ溝6およびトレッド端TEにより区画形成される複数個のショルダーブロック21よりなるショルダーブロック列20が形成されている。
 なお、トレッド部踏面100の平面視において、ブロック11およびショルダーブロック21は、略平行四辺形状をしている。
 また、トレッド部踏面100の、タイヤ赤道Cからタイヤ幅方向他方(図1では左側)に位置するトレッド端TEまでの間には、タイヤ周方向に延びる1本の周方向太溝3と、周方向太溝3よりもトレッド端TE側に位置し、タイヤ周方向に延びる1本の周方向細溝4と、周方向太溝3と周方向細溝4との間でタイヤ幅方向に延びる複数本の屈曲横溝8と、周方向細溝4とトレッド端TEとの間でタイヤ幅方向に延びる複数本のラグ溝9とが形成されている。
 なお、周方向太溝3はタイヤ周方向に沿って延在している。また、周方向細溝4は、周方向太溝3よりも溝幅が狭く、且つ、タイヤ周方向に沿って直線状に延在している。更に、屈曲横溝8は、タイヤ周方向一方(図1では下方)に凸形状となるような1個の屈曲点をもってタイヤ幅方向に延在している。また、ラグ溝9は、タイヤ幅方向に対して所定の角度で傾斜して(図1では左上がりに)延在している。
 そして、トレッド部踏面100の、タイヤ赤道Cからタイヤ幅方向他方(図1では左側)に位置するトレッド端TEまでの間には、周方向太溝3、周方向細溝4および屈曲横溝8により区画形成される複数個の矢羽ブロック41よりなる矢羽ブロック列40が形成されている。また、矢羽ブロック列40よりもトレッド端TE側には、周方向細溝4、ラグ溝9およびトレッド端TEにより区画形成される複数個のショルダーブロック51よりなるショルダーブロック列50が形成されている。
 なお、トレッド部踏面100の平面視において、矢羽ブロック41は、頂点の位置がタイヤ幅方向一方(図1では右側)にオフセットした矢羽形状をしている。また、ショルダーブロック51は、略平行四辺形状をしている。
 更に、トレッド部踏面100の中央部(タイヤ赤道Cの近傍)には、第1主溝1と周方向太溝3との間でタイヤ幅方向に延びる中央横溝7が形成されている。
 なお、中央横溝7は、ジグザグ状に屈曲し、タイヤ幅方向に対して所定の角度で傾斜して(図1では右上がりに)延在している。
 そして、トレッド部踏面100の中央部(タイヤ赤道Cの近傍)には、第1主溝1、周方向太溝3および中央横溝7により区画形成される複数個の中央ブロック31よりなる中央ブロック列(陸部列)30が形成されている。
 なお、トレッド部踏面100の平面視において、中央ブロック31は、略台形状をしている。
 ここで、第1主溝1と第2主溝2との間に位置するブロック列10を構成するブロック11には、タイヤ幅方向に延びる多数(一本以上)のサイプ12と、ブロック11のタイヤ周方向一方(図1では下側)に位置する横溝5に一端が開口し、他端がブロック11内で終端する第1切欠き溝13と、ブロック11のタイヤ周方向他方(図1では上側)に位置する横溝5に一端が開口し、他端がブロック11内で終端する第2切欠き溝14と、第1切欠き溝13と第2切欠き溝14とを連結する連結細溝15とが形成されている。また、ブロック11には、連結細溝15と交差してタイヤ幅方向に延びる幅方向サイプ16が形成されている。
 サイプ12は、特に限定されることなく、平面視ジグザグ状で、深さ方向にも屈曲している。そして、サイプ12の開口幅は、例えば0.3~1.0mmとされている。なお、サイプ12は、横溝5の延在方向とタイヤ周方向線を挟んで交差する方向に延在している。即ち、サイプ12がタイヤ周方向(或いはタイヤ幅方向)に対して傾斜する方向と、横溝5がタイヤ周方向(或いはタイヤ幅方向)に対して傾斜する方向とは反対方向である。
 第1切欠き溝13および第2切欠き溝14は、平面視直線状で、タイヤ周方向に対して図1では右側に傾斜して延在している。即ち、第1切欠き溝13および第2切欠き溝14は、図1では右上方向に向かって延在している。
 そして、第1切欠き溝13および第2切欠き溝14はそれぞれ、横溝5に直交している。また、タイヤ周方向に互いに隣接するブロック11の間で、第1切欠き溝13の溝幅中心線と、第2切欠き溝14の溝幅中心線とは同一直線上に位置している。即ち、横溝5と、横溝5のタイヤ周方向一方側(図1では下側)に位置するブロック11の第2切欠き溝14と、横溝5のタイヤ周方向他方側(図1では上側)に位置するブロック11の第1切欠き溝13とは、略十字形状となるように交差している。なお、本発明の空気入りタイヤでは、第1切欠き溝および第2切欠き溝はそれぞれ、横溝と90°以外の角度で交差していてもよい。
 連結細溝15は、第1切欠き溝13および第2切欠き溝14よりも溝幅が狭く、タイヤ周方向に対して図1では左側に傾斜して延在している。即ち、連結細溝15は、第1切欠き溝13および第2切欠き溝14とは反対側に傾斜し、図1では左上方向に向かって延在している。そのため、このブロック11では、第1切欠き溝13と、連結細溝15と、第2切欠き溝14とがジグザグ状になるように配置されている。
 幅方向サイプ16は、特に限定されることなく、平面視ジグザグ状で、深さ方向にも屈曲している。そして、幅方向サイプ16は、連結細溝15と交差し、且つ、タイヤ幅方向に対して傾斜して(図3では右上がりに)延在している。
 また、トレッド部踏面100の第1主溝1と周方向太溝3との間に位置する中央ブロック列30を構成する中央ブロック31には、タイヤ幅方向に延びる多数のサイプ32と、一端が第1主溝1に開口し、他端が中央ブロック31内で終端する延伸横溝33とが形成されている。
 ここで、サイプ32は、特に限定されることなく、平面視ジグザグ状で、深さ方向にも屈曲している。
 また、延伸横溝33は、第1主溝1を挟んで中央ブロック列30に隣接するブロック列10のブロック11を区画形成する横溝5の延在方向線(溝幅中心線)上に位置している。即ち、延伸横溝33は、横溝5を中央ブロック列30側まで延長させた位置にある。
 そして、第1主溝1と、横溝5および延伸横溝33とは略X字形状となるように交差している。
 更に、トレッド部踏面100の周方向太溝3と周方向細溝4との間に位置する矢羽ブロック列40を構成する矢羽ブロック41には、平面視直線状の第1サイプ42と、平面視ジグザグ状の第2サイプ43とからなる複合サイプが3本形成されている。
 ここで、第1サイプ42は、矢羽ブロック41の幅中心線よりも矢羽ブロック41のタイヤ周方向突出部44側に位置する周方向太溝3に一端が開口し、他端が矢羽ブロック41内で終端している。また、第2サイプ43は、矢羽ブロック41の幅中心線よりも矢羽ブロック41のタイヤ周方向突出部44側とは反対側に位置する周方向細溝4に一端が開口し、他端が矢羽ブロック41内で終端している。
 そして、第1サイプ42および第2サイプ43よりなる複合サイプは、屈曲横溝8と対応した配設形状で矢羽ブロック41のタイヤ幅方向全域に亘って延びており、第1サイプ42の一部と第2サイプ43の一部とはタイヤ周方向にオーバーラップしている。即ち、第1サイプ42および第2サイプ43よりなる複合サイプを、タイヤ回転軸線を含みブロック表面に直交する平面に投影したとき、投影図のタイヤ幅方向寸法と、矢羽ブロック41のタイヤ幅方向寸法とは等しくなる。また、投影図において、第1サイプ42のタイヤ幅方向寸法成分と第2サイプ43のタイヤ幅方向寸法成分とはオーバーラップする。
 また、トレッド部踏面100の第2主溝2とトレッド端TEとの間に位置するショルダーブロック列20を構成するショルダーブロック21および周方向細溝4とトレッド端TEとの間に位置するショルダーブロック列50を構成するショルダーブロック51には、それぞれ、タイヤ幅方向に延びる平面視ジグザグ状の横サイプ22,52と、タイヤ周方向に延びる平面視ジグザグ状の縦サイプ23,53とが形成されている。
 そして、この一例の空気入りタイヤによれば、トレッド部踏面100の、タイヤ赤道Cからタイヤ幅方向一方(図1では右側)に位置するトレッド端TEまでの間に複数個のブロック11よりなるブロック列10を形成しているので、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させることができる。
 即ち、ブロック11には、一端が横溝5に開口し、他端がブロック11内で終端する第1切欠き溝13および第2切欠き溝14が形成されているので、踏み固めた雪をタイヤ周方向に逃がすことなく、第1切欠き溝および第2切欠き溝内にも雪柱を形成することができる。また、横溝5内に形成した雪柱に対し、第1切欠き溝13内および第2切欠き溝14内に形成した雪柱をぶつけて溝内で雪柱を固めることができる。従って、ブロック列10を形成した領域では、ブロック11のタイヤ周方向両側に位置する横溝5内、特に、横溝5と、第1切欠き溝13または第2切欠き溝14とが交差する部分において、雪を踏み固める力を向上させ、雪柱せん断力を高めることができる。
 また、第1切欠き溝13および第2切欠き溝14はブロック11内で終端しているので、溝幅一定の切欠き溝をブロック11のタイヤ周方向全体に亘って形成した場合と比較し、ブロック11の剛性が低下して接地面積が減少するのを抑制することができる。
 更に、第1切欠き溝13と第2切欠き溝14とを連結細溝15により連結しているので、ブロック11の剛性が低下するのを抑制しつつ、エッジ成分、特にタイヤ周方向エッジ成分を確保して、エッジによるタイヤ幅方向への路面の引っ掻き効果を高めることができる。また、ジグザグ状に延びる複数本のサイプ12を形成しているので、タイヤ周方向エッジ成分およびタイヤ幅方向エッジ成分の双方を十分に確保してエッジによる路面の引っ掻き効果を得ることができる。なお、サイプ12の延在方向と、横溝5の延在方向とは、タイヤ周方向線を挟んで交差する方向とすることが好ましい。雪上性能が更に向上するからである。
 また、ブロック11では、ジグザグ状に延びるサイプ12が形成されているので、サイプの面積を確保し、排水性能を高めて氷上性能やウェット性能を向上させることができる。また、ブロック11への入力時にサイプ12を挟んで小ブロック同士がタイヤ周方向に支え合うことができ、ブロック11の全体の剛性を確保して、操縦安定性を高めることができる。
 そのため、この一例の空気入りタイヤでは、ブロック列10を形成した部分において、タイヤの接地面積の確保と、エッジによる路面の引っ掻き効果の向上と、雪柱せん断力の向上との全てを高い次元で並立させ、積雪路におけるタイヤの摩擦特性を高めることにより、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させることができる。
 また、この一例の空気入りタイヤでは、ブロック11に幅方向サイプ16を形成しているので、タイヤ幅方向エッジ成分を確保して、雪上ブレーキ性能や雪上トラクション性能を向上させることができる。また、排水性能を高めてウェット性能を確保することができる。更に、この一例の空気入りタイヤでは、幅方向サイプ16と連結細溝15とを交差させているので、幅方向サイプ16を第1切欠き溝13や第2切欠き溝14と交差させる場合と比較し、ブロック11の剛性が大幅に低下して接地面積が減少するのを抑制しつつ、エッジ成分の確保および排水性能の向上を達成することができる。
 また、この一例の空気入りタイヤでは、第1主溝1を挟んでブロック列10とタイヤ幅方向に隣接する中央ブロック列30の中央ブロック31に、一端が第1主溝1に開口し、他端が中央ブロック31内で終端する延伸横溝33を形成しているので、横溝5で踏み固めた雪をタイヤ幅方向に逃がすことなく、延伸横溝33内にも雪柱を形成することができる。従って、横溝5と第1主溝1とが交差する部分において雪を踏み固める力を向上させ、雪柱せん断力を高めることができる。なお、この一例の空気入りタイヤでは、延伸横溝33は中央ブロック31内で終端しているので、中央ブロック31の剛性の低下を抑制して、操縦安定性が低下するのを抑制することもできる。
 更に、この一例の空気入りタイヤでは、ブロック11に、第1切欠き溝13と、連結細溝15と、第2切欠き溝14とがジグザグ状になるように配置されているので、タイヤ幅方向エッジ成分を確保し、雪上ブレーキ性能や雪上トラクション性能を向上させることができる。
 また、この一例の空気入りタイヤでは、横溝5の溝幅が、第2主溝2側から第1主溝1側に向かって漸減しているので、ブロック11の剛性の低下を抑制しつつ、雪上トラクション性能を効果的に高めることができる。
 ここで、ブロック11の剛性の低下を十分に抑制して接地面積を十分に確保する観点からは、第1切欠き溝13および第2切欠き溝14の溝幅(開口幅)は、例えば6mm以下とすることが好ましく、第1切欠き溝13および第2切欠き溝14の延在方向長さは、例えば25mm以下とすることが好ましい。更に、第1切欠き溝13および第2切欠き溝14のタイヤ周方向長さは、ブロック11のタイヤ周方向長さの1/3以下とすることが好ましい。また、第1切欠き溝13および第2切欠き溝14内で十分な量の雪を踏み固めて雪柱せん断力を向上する観点からは、第1切欠き溝13および第2切欠き溝14の溝幅(開口幅)は、例えば1.2mm以上とすることが好ましく、第1切欠き溝13および第2切欠き溝14の延在方向長さは、例えば5mm以上とすることが好ましい。
 また、横溝5において雪を踏み固める力を高め、雪柱せん断力を向上する観点からは、タイヤ幅方向線と横溝5とのなす角度(即ち、タイヤ幅方向に対する横溝5の傾斜角度)は、0°以上45°以下とすることが好ましい。
 更に、横溝5と、第1切欠き溝13または第2切欠き溝14とが交差する部分において雪を踏み固める力を高め、雪柱せん断力を向上する観点からは、第1切欠き溝13および第2切欠き溝14の延在方向と、横溝5の延在方向とのなす角度は、鋭角側から測定して45°以上であることが好ましく、第1切欠き溝13および第2切欠き溝14の延在方向と、横溝5の延在方向とは直交することが特に好ましい。
 また、ブロック11の剛性の低下を十分に抑制して接地面積を十分に確保する観点からは、連結細溝15の溝幅(開口幅)は、例えば1.2mm以下とすることが好ましい。なお、タイヤ製造上の観点からは、連結細溝15の溝幅は0.3mm以上とすることが好ましい。
 また、この一例の空気入りタイヤでは、トレッド部踏面100の、タイヤ赤道Cからタイヤ幅方向他方(図1では左側)に位置するトレッド端TEまでの間に複数個の矢羽ブロック41よりなる矢羽ブロック列40を形成しているので、氷上ブレーキ性能、氷上トラクション性能および氷上旋回性能等の氷上性能も向上させることができる。従って、この一例の空気入りタイヤでは、トレッド部踏面100の一方側(図1では右側)で雪上性能を向上させつつ、トレッド部踏面100の他方側(図1では左側)で氷上性能を向上させることができ、雪上性能と氷上性能とをバランス良く向上させることができる。
 ここで、矢羽ブロック列40を形成した領域では、以下のようにして氷上性能が向上する。
 即ち、タイヤ制動時に矢羽ブロック41のタイヤ周方向突出部44側が踏み込み端側となる場合には、図2(a)に矢羽ブロック41の拡大図を示すように、矢羽形状の矢羽ブロック41の両幅端部に相当する羽部が中央部(タイヤ周方向突出部44の頂点が位置する部分)に倒れこむ方向(図2(a)の矢印で示す方向)に力が働く。従って、矢羽ブロック41の特にタイヤ周方向突出部44が位置する部分が倒れ込み変形し難くなるので、タイヤの接地面積を確保することができる。また、矢羽ブロック41の羽部(タイヤ幅方向両端部側)が若干倒れ込み変形するので、矢羽ブロック41のエッジによる路面(氷路)の引っ掻き効果を向上することができる。更に、矢羽ブロック41では、第1サイプ42および第2サイプ43からなる複合サイプが、矢羽ブロック41のタイヤ幅方向全域に位置するように配設されているので、エッジ成分を十分に確保することができ、複合サイプのエッジによる路面の引っ掻き効果を向上することができる。
 また、タイヤ制動時に矢羽ブロック41のタイヤ周方向突出部44側とは反対側が踏み込み端側となる場合には、図2(b)に矢羽ブロック41の拡大図を示すように、矢羽形状の矢羽ブロック41が開く方向(図2(b)に矢印で示す方向)に力が働く。従って、矢羽ブロック41の羽部(タイヤ幅方向両端部側)が若干倒れ込み変形して、矢羽ブロック41のエッジによる路面(氷路)の引っ掻き効果を向上することができる。更に、矢羽ブロック41では、第1サイプ42および第2サイプ43からなる複合サイプが、矢羽ブロック41のタイヤ幅方向全域に位置するように配設されているので、エッジ成分を十分に確保することができ、複合サイプのエッジによる路面の引っ掻き効果を向上することができる。
 なお、氷路とタイヤとの間に発生した水膜を十分に除去し、タイヤを氷路面に密着させてタイヤのグリップ力を十分に確保する観点からは、矢羽ブロック41のタイヤ周方向両端側にそれぞれ位置する複合サイプの間に位置する複合サイプは、底部に拡大部を有する底部拡大サイプ(所謂フラスコサイプ)であることが好ましい。
 また、矢羽ブロック41のエッジによる路面の引っ掻き効果を高める観点からは、矢羽ブロック41の、タイヤ周方向突出部44側に位置する側壁は、配設方向が互いに異なる2つの側壁部分がタイヤ周方向突出部44の頂点に向かう配設角度が、ともにタイヤ幅方向に対し15~45°の範囲内であることが好ましい。
 更に、矢羽ブロック41のエッジによる路面の引っ掻き効果を高める観点からは、矢羽ブロック41のタイヤ周方向突出部44の頂点を矢羽ブロック41の幅中心線からオフセットさせる距離は、矢羽ブロック41のブロック幅の10~30%とすることが好ましい。
 次に、図3に、本発明の空気入りタイヤの他の例のトレッド部の一部の展開図を示す。図3に示す空気入りタイヤは、上記一例の空気入りタイヤと同様に、スタッドレスタイヤとして好適に用いることができる。そして、図3に示す空気入りタイヤは、積雪路における摩擦特性を更に改善して雪上性能を更に高めたものである。
 この他の例の空気入りタイヤは、第1主溝1、第2主溝2および横溝5により区画形成されるブロック11Aの構成が先の一例の空気入りタイヤのブロック11の構成と異なっている点、および、周方向太溝3、周方向細溝4および屈曲横溝8により区画形成される矢羽ブロック41Aの構成が先の一例の空気入りタイヤの矢羽ブロック41の構成と異なっている点以外は、先の一例の空気入りタイヤと同様の構成を有している。
 具体的には、この他の例の空気入りタイヤのブロック11Aは、以下の点において先の一例の空気入りタイヤのブロック11と構成が異なっている。
 即ち、ブロック11Aには、ブロック11Aのタイヤ幅方向一方(図3では右側)に位置する第2主溝2に一端が開口し、他端がブロック11内で終端する第3切欠き溝17Aと、ブロック11Aのタイヤ幅方向他方(図3では左側)に位置する第1主溝1に一端が開口し、他端がブロック11A内で終端する第4切欠き溝18Aとが形成されている。そして、ブロック11Aでは、タイヤ幅方向に延びる幅方向サイプ16Aが、第3切欠き溝17Aと第4切欠き溝18Aとの間で連結細溝15Aと交差している。
 そして、ブロック11Aでは、ブロックの剛性(特に曲げ剛性)が、第1切欠き溝13Aの開口側から第1切欠き溝13Aの終端側に向かって増加している。また、ブロック11Aでは、ブロックの剛性(特に曲げ剛性)が、第2切欠き溝14Aの開口側から第2切欠き溝14Aの終端側に向かって増加している。即ち、ブロック11Aでは、ブロック11Aのタイヤ周方向両側にそれぞれ位置する横溝5側から第1切欠き溝13Aの終端または第2切欠き溝14Aの終端のタイヤ周方向位置に向かってブロックの剛性が増加している。
 具体的には、ブロック11Aでは、後に詳細に説明するように、第1切欠き溝13Aの溝深さおよび第2切欠き溝14Aの溝深さを溝内で変化させることにより、横溝5側から第1切欠き溝13Aの終端側または第2切欠き溝14Aの終端側に向かってブロックの剛性を増加させている。
 なお、この他の例の空気入りタイヤでは、第1切欠き溝および第2切欠き溝の溝深さを変化させることによりブロックの剛性を変化させたが、本発明の空気入りタイヤでは、ブロックに使用するゴム組成物の変更やブロックに形成するサイプの配設密度の変化等によりブロックの剛性を変化させても良い。但し、簡易な構成を用いてブロックの剛性を変化させる観点からは、第1切欠き溝および第2切欠き溝の溝深さを変化させることによりブロックの剛性を変化させることが好ましい。
 ここで、図4に図3のI-I線に沿う断面を示すように、第1切欠き溝13Aおよび第2切欠き溝14Aは、溝深さが、横溝5への開口側から終端側に向かって減少している。より具体的には、第1切欠き溝13Aおよび第2切欠き溝14Aは、横溝5への開口位置において、溝深さが、横溝5の溝深さより浅くなっている。そして、第1切欠き溝13Aおよび第2切欠き溝14Aは、横溝5への開口位置からブロック11A内での終端位置に向かって溝深さが漸減している。
 従って、ブロック11Aの剛性(特に曲げ剛性)は、第1切欠き溝13Aの開口側から第1切欠き溝13Aの終端側に向かって漸増しており、また、第2切欠き溝14Aの開口側から第2切欠き溝14Aの終端側に向かって漸増している。
 そして、図4に示すように、連結細溝15Aは、第1切欠き溝13Aおよび第2切欠き溝14Aの終端側と略等しい溝深さを有している。
 また、幅方向サイプ16Aは、タイヤ幅方向一端が、第3切欠き溝17Aに近接した場所で終端し、タイヤ幅方向他端が第4切欠き溝18Aに近接した場所で終端している。ここで、幅方向サイプ16Aは、タイヤ幅方向一端が第3切欠き溝17Aに開口していてもよく、また、タイヤ幅方向他端が第4切欠き溝18Aに開口していてもよい。なお、幅方向サイプ16Aの開口幅は、例えば0.3~1.0mmとされている。また、幅方向サイプ16Aの深さは、例えば3.0~8.0mmとされている。
 第3切欠き溝17Aおよび第4切欠き溝18Aは、特に限定されることなく、平面視直線状で、タイヤ幅方向に対して傾斜して(図3では右上がりに)延在している。また、第3切欠き溝17Aと、第4切欠き溝18Aと、幅方向サイプ16Aとは同一直線上に位置している。
 そして、第3切欠き溝17Aおよび第4切欠き溝18Aの溝幅は、第1切欠き溝13Aおよび第2切欠き溝14Aの溝幅よりも狭く、且つ、幅方向サイプ16Aの開口幅よりも広くされている。また、第3切欠き溝17Aおよび第4切欠き溝18Aの溝深さは、第1主溝1の溝深さおよび第2主溝2の溝深さよりも浅くされている。
 また、この他の例の空気入りタイヤの矢羽ブロック41Aは、以下の点において先の一例の空気入りタイヤの矢羽ブロック41と構成が異なっている。
 即ち、矢羽ブロック41Aには、平面視ジグザグ状の第1サイプ42Aおよび第2サイプ43Aからなる複合サイプが2本形成されている。
 そして、この他の例の空気入りタイヤによれば、先の一例の空気入りタイヤと同様にして、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させることができる。また、この他の例の空気入りタイヤでは、先の一例の空気入りタイヤと同様にして、トレッド部踏面100Aの一方側(図3では右側)で雪上性能を向上させつつ、トレッド部踏面100Aの他方側(図3では左側)で氷上性能を向上させることができる。従って、この他の例の空気入りタイヤによれば、雪上性能と氷上性能とをバランス良く向上させることができる。
 なお、この他の例の空気入りタイヤでは、ブロック11Aの剛性(特に曲げ剛性)が、第1切欠き溝13Aの開口側(横溝5側)から終端側に向かって漸増しており、且つ、第2切欠き溝14Aの開口側(横溝5側)から終端側に向かって漸増している。従って、ブロック列10Aを形成した領域では、積雪路を走行した際に、ブロックの剛性が比較的小さい横溝5側で雪を十分に掴み、雪柱せん断力を高めることができる。また、ブロック11Aでは、第1切欠き溝13Aおよび第2切欠き溝14Aの開口側で、エッジによる路面の引っ掻き効果を向上することができると共に、第1切欠き溝13Aおよび第2切欠き溝14Aの終端側(即ち、ブロック11Aのタイヤ周方向中央側)で、ブロックの剛性を確保して接地面積が減少するのを抑制することができる。
 そのため、この他の例の空気入りタイヤでは、ブロック列10Aを形成した部分において、タイヤの接地面積の確保と、エッジによる路面の引っ掻き効果の向上と、雪柱せん断力の向上との全てを十分に高い次元で並立させ、積雪路におけるタイヤの摩擦特性を十分に高めることにより、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させることができる。
 なお、この他の例の空気入りタイヤでは、ブロック列10Aを形成した部分において、タイヤの接地面積の確保およびエッジによる路面の引っ掻き効果の向上の双方を達成することができるので、雪上性能以外の性能、例えばドライ性能、ウェット性能、氷上性能、耐摩耗性能なども確保することができる。
 また、この他の例の空気入りタイヤでは、ブロック11Aに幅方向サイプ16Aを形成しているので、タイヤ幅方向エッジ成分を確保して、雪上ブレーキ性能や雪上トラクション性能を向上させることができる。また、排水性能を高めてウェット性能を確保することができる。更に、この一例の空気入りタイヤでは、幅方向サイプ16Aと連結細溝15Aとを交差させているので、幅方向サイプ16Aを第1切欠き溝13Aや第2切欠き溝14Aと交差させる場合と比較し、ブロック11Aの剛性が大幅に低下して接地面積が減少するのを抑制しつつ、エッジ成分の確保および排水性能の向上を達成することができる。
 ここで、ブロック11Aの剛性の低下を十分に抑制して接地面積を十分に確保する観点からは、第1切欠き溝13Aおよび第2切欠き溝14Aの終端側の溝深さ(溝深さの最小値)は、3mm以下とすることが好ましい。なお、第1切欠き溝13Aおよび第2切欠き溝14A内に十分な量の雪柱を形成する観点からは、第1切欠き溝13Aおよび第2切欠き溝14Aの終端側の溝深さ(溝深さの最小値)は、1mm以上とすることが好ましい。
 また、横溝5側で雪を十分に掴み、雪柱せん断力を高める観点からは、第1切欠き溝13Aおよび第2切欠き溝14Aの開口側の溝深さ(溝深さの最大値)は、5mm以上とすることが好ましい。なお、ブロック11の剛性の大幅な低下を抑制する観点からは、第1切欠き溝13Aおよび第2切欠き溝14Aの開口側の溝深さ(溝深さの最大値)は、8mm以下とすることが好ましい。
 なお、この他の例の空気入りタイヤにおいて、上述した以外の構成、例えば、各溝の幅や、長さや、配設角度や、配設形状は、先の一例の空気入りタイヤと同様に構成することができる。
 以上、図面を参照して本発明の実施形態を説明したが、本発明の空気入りタイヤは上記一例および他の例に限定されることは無く、本発明の空気入りタイヤには、適宜変更を加えることができる。具体的には、本発明の空気入りタイヤは、タイヤ赤道を中心とした線対称パターンとしても良い。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
 表1に示す諸元で、図1に示すような構成のトレッド部踏面100を有する、サイズが195/65R15の空気入りタイヤを試作し、下記の方法で性能評価を行った。結果を表1に示す。
 なお、表1に記載の横溝の諸元は、ブロック11を区画形成する横溝5の諸元である。
(比較例1)
 表1に示す諸元で、図5に示すような構成のトレッド部踏面を有する、サイズが195/65R15の空気入りタイヤを試作し、下記の方法で性能評価を行った。結果を表1に示す。
<雪上ブレーキ性能>
 作製したタイヤを、それぞれリムサイズ15×6Jのリムに装着し、内圧を200kPaとして、車両に装着した。そして、圧雪路において40km/hの速度からフルブレーキをかけて静止状態になるまでの制動距離を測定し、フルブレーキ前の速度と制動距離から平均減速度を算出した。そして、比較例1の平均減速度を100として指数化した。表中、値が大きいほどタイヤの摩擦特性が優れており、雪上ブレーキ性能が良好であることを示す。
<雪上トラクション性能>
 作製したタイヤを、それぞれリムサイズ15×6Jのリムに装着し、内圧を200kPaとして、車両に装着した。そして、圧雪路において10km/hの速度からアクセルを踏み込んで45km/hの速度になるまで加速した際に要した時間を測定し、平均加速度を算出した。そして、比較例1の平均加速度を100として指数化した。表中、値が大きいほどタイヤの摩擦特性が優れており、雪上トラクション性能が良好であることを示す。
<雪上操縦安定性能>
 作製したタイヤを、それぞれリムサイズ15×6Jのリムに装着し、内圧を200kPaとして、車両に装着した。そして、圧雪路においてプロのドライバーが発進性、直進性、旋回性を総合的に評価した。そして、比較例1の総合評価を100として指数化した。表中、値が大きいほど雪上操縦安定性能が良好であり、雪上旋回性能等に優れていることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1のタイヤは、比較例1のタイヤに比べて雪上性能に優れていることが分かる。
 本発明によれば、雪上ブレーキ性能、雪上トラクション性能および雪上旋回性能等の雪上性能を向上させた空気入りタイヤを提供することができる。
1 第1主溝
2 第2主溝
3 周方向太溝
4 周方向細溝
5 横溝
6 ラグ溝
7 中央横溝
8 屈曲横溝
9 ラグ溝
10,10A ブロック列
11,11A ブロック
12 サイプ
13,13A 第1切欠き溝
14,14A 第2切欠き溝
15,15A 連結細溝
16A 幅方向サイプ
17A 第3切欠き溝
18A 第4切欠き溝
20 ショルダーブロック列
21 ショルダーブロック
22 横サイプ
23 縦サイプ
30 中央ブロック列(陸部列)
31 中央ブロック
32 サイプ
33 延伸横溝
40,40A 矢羽ブロック列
41,41A 矢羽ブロック
42,42A 第1サイプ
43,43A 第2サイプ
44 タイヤ周方向突出部
50 ショルダーブロック列
51 ショルダーブロック
52 横サイプ
53 縦サイプ
100,100A トレッド部踏面

Claims (8)

  1.  両トレッド端間に位置するトレッド部踏面の少なくとも一部に、タイヤ周方向に延びる一本以上の主溝と、該主溝間および/または主溝とトレッド端間でタイヤ幅方向に延びる複数本の横溝とを配設して、複数個のブロックよりなるブロック列を区画形成し、且つ、前記ブロックに、少なくとも一本のサイプを配設してなる空気入りタイヤであって、
     前記ブロックのタイヤ周方向一方に位置する横溝に一端が開口し、他端がブロック内で終端する第1切欠き溝と、
     前記ブロックのタイヤ周方向他方に位置する横溝に一端が開口し、他端がブロック内で終端する第2切欠き溝と、
     前記第1切欠き溝と前記第2切欠き溝とを連結し、前記第1切欠き溝および前記第2切欠き溝よりも溝幅の狭い連結細溝と、
    を前記ブロックに形成したことを特徴とする、空気入りタイヤ。
  2.  前記ブロックの剛性が、前記第1切欠き溝の開口側から第1切欠き溝の終端側に向かって増加し、且つ、前記第2切欠き溝の開口側から第2切欠き溝の終端側に向かって増加することを特徴とする、請求項1に記載の空気入りタイヤ。
  3.  前記第1切欠き溝および前記第2切欠き溝の溝深さが、前記開口側から前記終端側に向かって減少していることを特徴とする、請求項1または2に記載の空気入りタイヤ。
  4.  前記ブロックに、前記連結細溝と交差してタイヤ幅方向に延びる幅方向サイプを有することを特徴とする、請求項1~3の何れかに記載の空気入りタイヤ。
  5.  前記第1切欠き溝および前記第2切欠き溝は、タイヤ周方向に対して同一方向に傾斜して延在し、
     前記連結細溝は、タイヤ周方向に対して前記第1切欠き溝および前記第2切欠き溝とは反対側に傾斜して延在していることを特徴とする、請求項1~4の何れかに記載の空気入りタイヤ。
  6.  前記トレッド部踏面に、前記主溝を挟んで前記ブロック列に隣接する陸部列を有し、
     前記陸部列の、前記横溝の延在方向線上に位置する部分に、一端が前記主溝に開口し、他端が陸部列内で終端する延伸横溝が形成されていることを特徴とする、請求項1~5の何れかに記載の空気入りタイヤ。
  7.  前記第1切欠き溝は、前記ブロックのタイヤ周方向一方に位置する横溝と直交する方向に延在し、
     前記第2切欠き溝は、前記ブロックのタイヤ周方向他方に位置する横溝と直交する方向に延在することを特徴とする、請求項1~6の何れかに記載の空気入りタイヤ。
  8.  前記トレッド部踏面は、タイヤ赤道からタイヤ幅方向一方に位置するトレッド端までの形状と、タイヤ赤道からタイヤ幅方向他方に位置するトレッド端までの形状とが異なり、
     前記ブロックは、タイヤ赤道からタイヤ幅方向一方側に形成されていることを特徴とする、請求項1~7の何れかに記載の空気入りタイヤ。
     
PCT/JP2012/006245 2011-09-28 2012-09-28 空気入りタイヤ WO2013046717A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/342,673 US9481211B2 (en) 2011-09-28 2012-09-28 Pneumatic tire
EP12836896.6A EP2762333B1 (en) 2011-09-28 2012-09-28 Pneumatic tire
CN201280046691.8A CN103826873B (zh) 2011-09-28 2012-09-28 充气轮胎
RU2014116906/11A RU2581978C2 (ru) 2011-09-28 2012-09-28 Пневматическая шина

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-212889 2011-09-28
JP2011212889A JP5764026B2 (ja) 2011-09-28 2011-09-28 空気入りタイヤ
JP2011262689A JP5715552B2 (ja) 2011-11-30 2011-11-30 空気入りタイヤ
JP2011-262689 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013046717A1 true WO2013046717A1 (ja) 2013-04-04

Family

ID=47994791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006245 WO2013046717A1 (ja) 2011-09-28 2012-09-28 空気入りタイヤ

Country Status (5)

Country Link
US (1) US9481211B2 (ja)
EP (1) EP2762333B1 (ja)
CN (1) CN103826873B (ja)
RU (1) RU2581978C2 (ja)
WO (1) WO2013046717A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104943478A (zh) * 2014-03-25 2015-09-30 住友橡胶工业株式会社 充气轮胎
WO2017082409A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
WO2017082408A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
WO2017082407A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
JP2017088020A (ja) * 2015-11-12 2017-05-25 株式会社ブリヂストン タイヤ
JPWO2017082414A1 (ja) * 2015-11-12 2018-08-30 株式会社ブリヂストン タイヤ
US10179483B2 (en) * 2014-05-01 2019-01-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10214054B2 (en) 2013-07-23 2019-02-26 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160106573A (ko) * 2013-12-24 2016-09-12 브리지스톤 어메리카스 타이어 오퍼레이션스, 엘엘씨 가변 깊이를 갖는 홈을 구비한 타이어
JP5971280B2 (ja) * 2014-06-02 2016-08-17 横浜ゴム株式会社 空気入りタイヤ
JP6585988B2 (ja) * 2015-10-06 2019-10-02 Toyo Tire株式会社 空気入りタイヤ
FR3045490B1 (fr) * 2015-12-16 2017-12-22 Michelin & Cie Pneumatique presentant des proprietes d'usure ameliorees
JP7078389B2 (ja) * 2017-12-13 2022-05-31 Toyo Tire株式会社 空気入りタイヤ
JP6551506B2 (ja) * 2017-12-28 2019-07-31 横浜ゴム株式会社 空気入りタイヤ
JP2019214231A (ja) * 2018-06-11 2019-12-19 株式会社ブリヂストン 空気入りタイヤ
JP7147354B2 (ja) * 2018-08-10 2022-10-05 横浜ゴム株式会社 空気入りタイヤ
JP2022037668A (ja) * 2020-08-25 2022-03-09 住友ゴム工業株式会社 タイヤ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264021A (ja) * 1999-03-16 2000-09-26 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2001071713A (ja) 1999-09-03 2001-03-21 Yokohama Rubber Co Ltd:The 空気入りスタッドレスタイヤ
JP2004098938A (ja) * 2002-09-11 2004-04-02 Bridgestone Corp 空気入りタイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145762B2 (ja) 1991-12-26 2001-03-12 住友ゴム工業株式会社 空気入りタイヤ
JPH061119A (ja) 1992-06-22 1994-01-11 Yokohama Rubber Co Ltd:The 氷雪路用空気入りタイヤ
JP3308988B2 (ja) 1992-07-01 2002-07-29 株式会社ブリヂストン 空気入りタイヤ
IT1276118B1 (it) * 1995-11-13 1997-10-24 Pirelli Pneumatico per autoveicoli con disegno battistrada particolarmente adatto per la marcia su fondi innevati
US6957676B2 (en) * 1999-11-30 2005-10-25 Pirelli Pneumatici S.P.A. Tire for a vehicle wheel including at least two circumferential series of inclined incisions delimiting at least three rows of blocks
JP4776059B2 (ja) 2000-05-15 2011-09-21 株式会社ブリヂストン 空気入りタイヤ及びその装着方法
JP4268034B2 (ja) 2003-12-26 2009-05-27 株式会社ブリヂストン 空気入りタイヤ
JP4800610B2 (ja) 2004-12-07 2011-10-26 株式会社ブリヂストン 空気入りラジアルタイヤ
ATE497888T1 (de) 2006-02-20 2011-02-15 Bridgestone Corp Luftreifen
EP2058144B1 (en) 2006-08-29 2010-12-01 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2009038131A1 (ja) 2007-09-18 2009-03-26 Bridgestone Corporation 空気入りタイヤ
JP4525727B2 (ja) * 2007-10-23 2010-08-18 横浜ゴム株式会社 空気入りタイヤ
JP4631932B2 (ja) * 2008-05-23 2011-02-16 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264021A (ja) * 1999-03-16 2000-09-26 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2001071713A (ja) 1999-09-03 2001-03-21 Yokohama Rubber Co Ltd:The 空気入りスタッドレスタイヤ
JP2004098938A (ja) * 2002-09-11 2004-04-02 Bridgestone Corp 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762333A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214054B2 (en) 2013-07-23 2019-02-26 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN104943478A (zh) * 2014-03-25 2015-09-30 住友橡胶工业株式会社 充气轮胎
CN104943478B (zh) * 2014-03-25 2019-01-08 住友橡胶工业株式会社 充气轮胎
US10179483B2 (en) * 2014-05-01 2019-01-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2017088020A (ja) * 2015-11-12 2017-05-25 株式会社ブリヂストン タイヤ
CN108349322A (zh) * 2015-11-12 2018-07-31 株式会社普利司通 轮胎
JPWO2017082408A1 (ja) * 2015-11-12 2018-08-30 株式会社ブリヂストン タイヤ
JPWO2017082409A1 (ja) * 2015-11-12 2018-08-30 株式会社ブリヂストン タイヤ
JPWO2017082407A1 (ja) * 2015-11-12 2018-08-30 株式会社ブリヂストン タイヤ
JPWO2017082414A1 (ja) * 2015-11-12 2018-08-30 株式会社ブリヂストン タイヤ
EP3375643A4 (en) * 2015-11-12 2018-11-14 Bridgestone Corporation Tire
WO2017082407A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
WO2017082408A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
WO2017082409A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
RU2689045C1 (ru) * 2015-11-12 2019-05-23 Бриджстоун Корпорейшн Шина
RU2706125C1 (ru) * 2015-11-12 2019-11-14 Бриджстоун Корпорейшн Шина

Also Published As

Publication number Publication date
CN103826873A (zh) 2014-05-28
EP2762333A4 (en) 2015-06-24
US9481211B2 (en) 2016-11-01
RU2581978C2 (ru) 2016-04-20
RU2014116906A (ru) 2015-11-10
CN103826873B (zh) 2016-08-17
EP2762333B1 (en) 2017-07-12
EP2762333A1 (en) 2014-08-06
US20140224394A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
WO2013046717A1 (ja) 空気入りタイヤ
JP6127121B2 (ja) 空気入りタイヤ
JP4397956B1 (ja) 空気入りタイヤ
JP6009029B2 (ja) 空気入りタイヤ
JP5675580B2 (ja) 空気入りタイヤ
WO2015190273A1 (ja) タイヤ
WO2011087134A1 (ja) 空気入りタイヤ
JP6139843B2 (ja) 空気入りタイヤ
JP5715552B2 (ja) 空気入りタイヤ
JP6043400B2 (ja) 空気入りタイヤ
JP5759313B2 (ja) 空気入りタイヤ
JP2009067344A (ja) 空気入りタイヤ
JP5624329B2 (ja) 空気入りタイヤ
JP5764026B2 (ja) 空気入りタイヤ
WO2011001814A1 (ja) 空気入りタイヤ
JP5816011B2 (ja) 空気入りタイヤ
JP2002274126A (ja) 空気入りタイヤ
JP5746522B2 (ja) 空気入りタイヤ
JP4589704B2 (ja) 空気入りタイヤ
JP5887392B2 (ja) 空気入りタイヤ
JP2006290194A (ja) 空気入りタイヤ
JP6166987B2 (ja) 空気入りタイヤ
JP5873538B2 (ja) 空気入りタイヤ
WO2015159796A1 (ja) タイヤ
JP2010167989A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14342673

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012836896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836896

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014116906

Country of ref document: RU

Kind code of ref document: A