WO2013046625A1 - 感熱転写記録媒体 - Google Patents
感熱転写記録媒体 Download PDFInfo
- Publication number
- WO2013046625A1 WO2013046625A1 PCT/JP2012/006051 JP2012006051W WO2013046625A1 WO 2013046625 A1 WO2013046625 A1 WO 2013046625A1 JP 2012006051 W JP2012006051 W JP 2012006051W WO 2013046625 A1 WO2013046625 A1 WO 2013046625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal transfer
- recording medium
- transfer recording
- layer
- dye
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/392—Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/385—Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
- B41M5/3852—Anthraquinone or naphthoquinone dyes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/42—Intermediate, backcoat, or covering layers
- B41M5/44—Intermediate, backcoat, or covering layers characterised by the macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M2205/00—Printing methods or features related to printing methods; Location or type of the layers
- B41M2205/02—Dye diffusion thermal transfer printing (D2T2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M2205/00—Printing methods or features related to printing methods; Location or type of the layers
- B41M2205/30—Thermal donors, e.g. thermal ribbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M2205/00—Printing methods or features related to printing methods; Location or type of the layers
- B41M2205/34—Both sides of a layer or material are treated, e.g. coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M2205/00—Printing methods or features related to printing methods; Location or type of the layers
- B41M2205/36—Backcoats; Back layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M2205/00—Printing methods or features related to printing methods; Location or type of the layers
- B41M2205/38—Intermediate layers; Layers between substrate and imaging layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/38207—Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
- B41M5/38214—Structural details, e.g. multilayer systems
Definitions
- the present invention relates to a thermal transfer recording medium used in a thermal transfer printer.
- a thermal transfer recording medium is an ink ribbon called a thermal ribbon, which is used in a thermal transfer type printer, and has a thermal transfer layer on one side of the substrate and heat resistance on the other side of the substrate.
- a slipping layer (back coat layer) is provided.
- the heat-sensitive transfer layer is an ink layer, and the ink is sublimated (sublimation transfer method) or melted (melt transfer method) by the heat generated by the thermal head of the printer, and transferred to the transfer target side. is there.
- the sublimation transfer system can easily form full-color images with various functions of the printer, so digital camera self-prints, cards such as identification cards, amusement output, etc. Widely used.
- the thermal transfer recording media having a plurality of thermal transfer layers provided so that protective layers and the like that do not overlap have been widely used.
- Patent Document 1 proposes a thermal transfer sheet having an adhesive layer containing a polyvinylpyrrolidone resin and a modified polyvinylpyrrolidone resin between a base material and a dye layer.
- Patent Document 2 proposes a thermal transfer sheet having an adhesive layer composed of polyvinylpyrrolidone resin or polyvinyl alcohol resin, which is a thermoplastic resin, and colloidal inorganic pigment ultrafine particles, between a base material and a dye layer. Yes.
- Patent Document 3 proposes a thermal transfer sheet having an underlayer composed of a vinylpyrrolidone-vinyl acetate copolymer and colloidal inorganic pigment ultrafine particles between a base material and a dye layer.
- the transfer sensitivity is improved by providing a layer made of a specific material between the base material and the dye layer.
- improved transfer sensitivity it is possible to make the dye layer thinner, which reduces the total amount of dye and leads to cost reduction.
- wrinkles occur due to heat, pressure, etc. when printing on thermal transfer recording media. In some cases, there is a problem that breakage occurs.
- Wrinkles during printing of the thermal transfer recording medium may occur due to sticking between the substrate and the thermal head when the sliding property of the heat resistant slipping layer is insufficient.
- the thermal when the slipping property of the heat resistant slipping layer is greatly different between low energy printing and high energy printing, for example, when the printing part and non-printing part coexist on the same image, the thermal This may be caused by a difference in friction between the head and the heat resistant slipping layer.
- Patent Document 4 a metal soap and a filler component are added to the heat-resistant slipping layer together with the silicone-modified resin to improve the slipping property at the time of high energy printing, and at the time of printing. Thermal transfer sheets that prevent the generation of wrinkles have been proposed.
- water-based thermal transfer image-receiving sheets with a water-based receiving layer tend to have strong adhesion on the image-receiving sheet side. Furthermore, when high energy is applied from the thermal head during printing (high density) and medium energy is applied. It is confirmed that there is a difference in required releasability in the case of medium concentration (medium concentration).
- thermo transfer sheets described in Patent Documents 1 to 3 can cope to some extent.
- an aqueous image receiving sheet there is a tendency to stick even in medium density printing, so a thermal transfer sheet that can sufficiently cope with high density to medium density printing is required.
- Patent Document 5 proposes a thermal transfer sheet having a dye layer containing a dye, a resin binder and a specific amount of a release agent with respect to the resin binder, and having a water content adjusted to 2.5% or less. ing.
- an aqueous receptive layer containing an aqueous binder and a release agent is formed on the substrate via an aqueous hollow particle layer containing an aqueous binder (dissolvable or dispersible in a solvent containing water) and hollow particles.
- an image was formed on the thermal transfer image-receiving sheet by thermal transfer using the thermal transfer recording medium proposed in Patent Document 1, it was not possible to sufficiently suppress density unevenness occurring in the high density portion. Furthermore, it was not possible to sufficiently suppress both the adhesion between the water-based receiving layer and the dye layer generated in the high concentration part to the medium concentration part and the abnormal transfer of the dye layer generated in the medium concentration part.
- the thermal transfer recording medium proposed in Patent Documents 2 and 3 can also be used to transfer an image to the thermal transfer image-receiving sheet on which an aqueous receiving layer is formed by thermal transfer.
- the density unevenness generated in the high density portion could not be sufficiently suppressed.
- Patent Document 1 when printing is performed using the heat-resistant slip layer of the thermal transfer recording medium proposed in Patent Document 4 as the heat-resistant slip layer, Patent Document 1 As compared with the case where printing was performed by each of the thermal transfer recording media proposed in (1) to (3), the printing wrinkles were slightly improved but could not be sufficiently prevented.
- the substrate and binder may absorb moisture depending on the environment during use. Resulting in. Therefore, even when an image is formed by thermal transfer on the thermal transfer image-receiving sheet on which the aqueous receptor layer is formed using the thermal transfer sheet, the adhesion between the aqueous receptor layer and the dye layer that occurs in the high-density part or the medium-density part, Both of the abnormal transfer of the dye layer occurring at the middle density portion could not be sufficiently suppressed.
- the present invention (I) A thermal transfer recording medium that has high transfer sensitivity during high-speed printing, that is, a large cost reduction effect by reducing the amount of dye used in the dye layer, and can prevent abnormal transfer in printing. (II) High transfer sensitivity during high-speed printing, that is, a large cost reduction effect by reducing the amount of dye used in the dye layer, and also due to abnormal transfer in printing and the effects of heat, pressure, etc.
- thermo transfer recording medium that can sufficiently prevent printing wrinkles (III) High transfer sensitivity during high-speed printing, that is, a large cost reduction effect by reducing the amount of dye used in the dye layer, Also, abnormal transfer in printing can be prevented, and an image is formed by thermal transfer on a thermal transfer image-receiving sheet on which an aqueous receiving layer is formed.
- the transfer sensitivity during high-speed printing is high in both the low density area and the high density area, that is, the dye layer Reduces the amount of dye used for printing and provides a thermal transfer recording medium that can greatly reduce costs and prevent wrinkles that occur due to abnormal transfer during printing and the effects of heat and pressure generated during printing (V)
- High transfer sensitivity during high-speed printing that is, by reducing the amount of dye used in the dye layer, the effect of cost reduction is great, and an image is transferred by thermal transfer to a thermal transfer image-receiving sheet on which an aqueous receiving layer is formed. When formed, both the adhesion of the aqueous receiving layer and the dye layer occurring in the high concentration part to the medium concentration part and the abnormal transfer of the dye layer occurring in the medium concentration part are modified. It is an object to provide a thermal transfer recording medium capable of.
- thermo transfer recording medium I In the thermal transfer recording medium according to the present invention, an undercoat layer and a dye layer are sequentially laminated on a base material, and the undercoat layer has a tensile strength measured based on JIS K 7113 of 8 kg / mm 2 or more.
- An undercoat layer-forming coating solution containing polyvinyl alcohol and polyvinylpyrrolidone is applied and dried, and the dye layer is an application for forming a dye layer containing an anthraquinone compound as a heat transferable dye. It is characterized by being formed by applying a liquid and drying.
- this thermal transfer recording medium is referred to as “thermal transfer recording medium I”.
- the coating amount after drying of the undercoat layer expressed by the solid content remaining after the coating solution for forming the undercoat layer is applied and dried, is 0.00. It is preferably from 05 to 0.30 g / m 2 .
- a heat resistant slipping layer is formed on one surface of a substrate, and an undercoat layer and a dye layer are sequentially laminated on the other surface of the substrate.
- the undercoat layer is formed by applying and drying an undercoat layer forming coating solution containing polyvinyl alcohol having a tensile strength of 8 kg / mm 2 or more measured according to JIS K 7113 and polyvinyl pyrrolidone
- the dye layer is formed by applying a coating solution for forming a dye layer containing an anthraquinone compound as a heat transfer dye and drying it, and the average value ⁇ of the surface roughness Ra of the heat resistant slipping layer is The average value ⁇ of the surface roughness Ra of the heat-resistant slipping layer after standing at 150 ° C.
- thermal transfer recording medium II this thermal transfer recording medium is referred to as “thermal transfer recording medium II”.
- the coating amount after drying of the undercoat layer expressed by the solid content remaining after the coating solution for forming the undercoat layer is applied and dried, is 0.00. It is preferably from 05 to 0.30 g / m 2 .
- the thermal transfer recording medium according to the present invention is a thermal transfer recording medium in which an aqueous receptive layer containing an aqueous binder and a release agent is formed via an aqueous hollow particle layer containing an aqueous binder and hollow particles.
- a thermal transfer recording medium for forming an image on an image receiving sheet by thermal transfer wherein an undercoat layer and a dye layer are sequentially laminated on a substrate, and the undercoat layer has a tensile strength measured based on JIS K 7113.
- An undercoat layer forming coating solution containing 8 kg / mm 2 or more of polyvinyl alcohol and polyvinyl pyrrolidone is applied and dried, and the dye layer is used as filler particles and a heat transferable dye.
- thermo transfer recording medium III A dye layer forming coating solution containing an anthraquinone compound is applied and dried, and the three-dimensional surface roughness (SRa) of the dye layer is 0.15 to 0.70 ⁇ m. It is characterized in.
- this thermal transfer recording medium is referred to as “thermal transfer recording medium III”.
- the coating amount of the undercoat layer after drying expressed by the solid content remaining after the coating solution for forming the undercoat layer is applied and dried, is 0.00. It is preferably from 05 to 0.30 g / m 2 .
- the volume average particle diameter of the filler particles is preferably 0.1 to 3.0 ⁇ m.
- thermo transfer recording medium IV In the thermal transfer recording medium according to the present invention, an undercoat layer and a dye layer are sequentially formed on a base material, and the undercoat layer has a tensile strength measured based on JIS K 7113 of 8 kg / mm 2 or more.
- a coating solution for forming an undercoat layer containing polyvinyl alcohol and polyvinyl pyrrolidone is applied and dried, and the dye layer contains an anthraquinone compound as a heat transfer dye, and a resin binder It is formed by applying a coating solution for forming a dye layer containing polyvinyl acetal having a glass transition temperature of 100 ° C. or higher and polyvinyl butyral having a glass transition temperature of 75 ° C. or lower and drying.
- this thermal transfer recording medium is referred to as “thermal transfer recording medium IV”.
- the coating amount after drying of the undercoat layer expressed by the solid content remaining after the coating solution for forming the undercoat layer is applied and dried, is 0.00. It is preferably from 05 to 0.30 g / m 2 .
- the content ratio of polyvinyl acetal having a glass transition temperature of 100 ° C. or higher and polyvinyl butyral having a glass transition temperature of 75 ° C. or lower in the dye layer is polyvinyl acetal.
- Polyvinyl butyral 50/50 to 97/3 is preferable.
- a thermal transfer recording medium is a thermal transfer recording medium in which an aqueous receptive layer containing an aqueous binder and a release agent is formed on a substrate via an aqueous hollow particle layer containing an aqueous binder and hollow particles.
- a thermal transfer recording medium for forming an image on an image receiving sheet by thermal transfer wherein an undercoat layer and a dye layer are sequentially laminated on a substrate, and the undercoat layer has a tensile strength measured based on JIS K 7113.
- An undercoat layer-forming coating solution containing 8 kg / mm 2 or more of polyvinyl alcohol and polyvinyl pyrrolidone is applied and dried.
- At least one of the dye layers has at least 2 as a release agent. It is formed by applying a coating solution for forming a dye layer containing various modified silicone oils and an anthraquinone compound as a heat transferable dye, and drying the coating.
- N'oiru is a number average molecular weight and wherein the 8000 or more non-reactive silicone oil, that the number average molecular weight is from 3000 following reactive silicone oil.
- this thermal transfer recording medium is referred to as “thermal transfer recording medium V”.
- the coating amount of the undercoat layer after drying expressed by the solid content remaining after the coating solution for forming the undercoat layer is applied and dried, is 0.00. It is preferably from 05 to 0.30 g / m 2 .
- the non-reactive silicone oil is preferably a side-chain polyether-modified silicone oil
- the reactive silicone oil is preferably a side-chain diamine-modified silicone oil.
- the thermal transfer recording medium I of the present invention has high transfer sensitivity during high-speed printing, that is, it has a large cost reduction effect by reducing the dye used in the dye layer, and can prevent abnormal transfer in printing. it can.
- the heat-sensitive transfer recording medium II of the present invention has high transfer sensitivity at high-speed printing, that is, a large cost reduction effect by reducing the dye used in the dye layer, and abnormal transfer in printing, heat and pressure, etc. It is possible to sufficiently prevent printing wrinkles that occur due to the influence of the above.
- the thermal transfer recording medium III of the present invention has high transfer sensitivity during high-speed printing, that is, it has a large cost reduction effect by reducing the dye used in the dye layer, and can prevent abnormal transfer in printing. it can. Further, when an image is formed by thermal transfer on a thermal transfer image-receiving sheet in which a water-based receiving layer containing a water-based binder and a release agent is formed on a substrate via a water-based hollow particle layer containing a water-based binder and hollow particles. In addition, poor image quality occurs in the high density area, that is, hue fluctuation occurs when the aqueous receiving layer of the thermal transfer image-receiving sheet, which is the transfer target, is fused to the thermal transfer recording medium. The phenomenon that occurs can be improved.
- the thermal transfer recording medium IV of the present invention has a high transfer sensitivity at high density in both the low density part and the high density part, and the effect of reducing the cost is great by reducing the dye used in the dye layer. It is possible to prevent wrinkles that occur due to the effects of heat, pressure, etc. that occur during transfer and printing.
- the thermal transfer recording medium V of the present invention has a high transfer sensitivity during high-speed printing, that is, the effect of cost reduction is great by reducing the dye used in the dye layer. Further, when an image is formed by thermal transfer on a thermal transfer image-receiving sheet in which a water-based receiving layer containing a water-based binder and a release agent is formed on a substrate via a water-based hollow particle layer containing a water-based binder and hollow particles. In addition, it is possible to improve both the adhesion between the water-based receiving layer and the dye layer generated in the high concentration part to the medium concentration part and the abnormal transfer of the dye layer generated in the medium concentration part.
- FIG. 1 is a sectional side view of a thermal transfer recording medium according to an embodiment of the present invention.
- the thermal transfer recording medium of one embodiment of the present invention is provided with a heat-resistant slipping layer 40 that imparts slidability with a thermal head on one surface of the substrate 10.
- the undercoat layer 20 and the dye layer 30 are sequentially formed on the other surface.
- each of the thermal transfer recording media I to V of the present invention has, for example, the configuration shown in FIG.
- the substrate 10 is required to have heat resistance and strength not to be softened and deformed by heat pressure in thermal transfer.
- the substrate 10 is required to have heat resistance and strength not to be softened and deformed by heat pressure in thermal transfer.
- polyethylene terephthalate, polyethylene naphthalate, polypropylene, cellophane, acetate, polycarbonate, polysulfone, polyimide, polyvinyl alcohol, aromatic polyamide , Synthetic resin films such as aramid and polystyrene, and papers such as condenser paper and paraffin paper can be used alone or in combination.
- a polyethylene terephthalate film is preferable in view of physical properties, workability, cost, and the like.
- the thickness can be in the range of 2 ⁇ m or more and 50 ⁇ m or less in consideration of operability and workability, but in consideration of handling properties such as transfer suitability and workability, it is 2 ⁇ m or more and 9 ⁇ m or less. A degree is preferred.
- the base material 10 it is also possible to perform an adhesion treatment on the surface on which the heat resistant slipping layer 40 and / or the undercoat layer 20 is formed.
- an adhesion treatment known techniques such as corona treatment, flame treatment, ozone treatment, ultraviolet treatment, radiation treatment, roughening treatment, plasma treatment, primer treatment, etc. can be applied, and these treatments are used in combination. You can also In the present invention, it is effective to improve the adhesion between the substrate and the undercoat layer, and it is preferable to use a primer-treated polyethylene terephthalate film from the viewpoint of cost.
- the heat-resistant slipping layer 40 can be handled by a conventionally known layer.
- the coating amount of the heat-resistant slip layer 40 after drying is not particularly limited, but is suitably about 0.1 g / m 2 or more and 2.0 g / m 2 or less.
- the coating amount after drying of the heat resistant slipping layer 40 refers to the solid content remaining after the heat resistant slipping layer forming coating solution is applied and dried. Also, the coating amount after drying of the undercoat layer 20 described later and the coating amount after drying of the dye layer 30 are similarly applied to the coating solution for forming the undercoat layer and the coating solution for forming the dye layer described later, The solid content remaining after drying.
- heat-resistant slipping layer is a polyvinyl butyral resin, polyvinyl acetoacetal resin, polyester resin, vinyl chloride-vinyl acetate copolymer, polyether resin, polybutadiene resin, acrylic polyol, polyurethane acrylate, polyester.
- examples thereof include acrylate, polyether acrylate, epoxy acrylate, nitrocellulose resin, cellulose acetate resin, polyamide resin, polyimide resin, polyamideimide resin, polycarbonate resin, polyacrylic resin, and modified products thereof.
- the undercoat layer 20 is formed as an undercoat layer containing polyvinyl alcohol having a tensile strength of 8 kg / mm 2 or more measured based on the method described in JIS K 7113 “Plastic Tensile Test Method” and polyvinylpyrrolidone.
- the coating liquid is applied and dried.
- the tensile strength measured based on JIS K 7113 is 8 kg / mm 2 or more. If the tensile strength is less than 8 kg / mm 2 , it is difficult to provide high transfer sensitivity during printing.
- Examples of the polyvinyl alcohol having a tensile strength of 8 kg / mm 2 or more include Kuraray Poval PVA-124 (manufactured by Kuraray Co., Ltd.) and Kuraray Poval PVA-145 (manufactured by Kuraray Co., Ltd.).
- Polyvinyl alcohol may be prepared by an ordinary method such as polymerization of vinyl acetate in methanol to obtain a methanol solution of polyvinyl acetate, and then neutralization of a saponified product obtained by saponification with sodium hydroxide or the like. . Further, as described above, the obtained polyvinyl alcohol has only to have a tensile strength measured based on JIS K 7113 of 8 kg / mm 2 or more, and the degree of saponification and the average degree of polymerization are not particularly limited. Those having a saponification degree of about 90 to 99 mol% and an average degree of polymerization of about 2000 to 4500 can be preferably used.
- polyvinylpyrrolidone examples include homopolymers of vinylpyrrolidone such as N-vinyl-2-pyrrolidone and N-vinyl-4-pyrrolidone, and copolymers thereof. Furthermore, modified polyvinyl pyrrolidone resin and the like can be mentioned.
- the modified polyvinyl pyrrolidone resin is a copolymer of an N-vinyl pyrrolidone monomer and another monomer.
- the form of copolymerization is not particularly limited, such as random copolymerization, block copolymerization, and graft copolymerization.
- N-vinyl pyrrolidone monomer refers to N-vinyl pyrrolidone (N-vinyl-2-pyrrolidone, N-vinyl-4-pyrrolidone, etc.) and derivatives thereof. Examples thereof include those having a substituent on the pyrrolidone ring such as -3-methylpyrrolidone, N-vinyl-5-methylpyrrolidone, N-vinyl-3,3,5-trimethylpyrrolidone, and N-vinyl-3-benzylpyrrolidone.
- Examples of the monomer component copolymerized with the N-vinylpyrrolidone monomer include the following vinyl polymerizable monomers.
- (meth) acrylic monomers such as (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, unsaturated carboxylic acids such as fumaric acid, maleic acid, itaconic acid, ethylene
- Examples include propylene, vinyl chloride, vinyl acetate, vinyl alcohol, styrene, vinyl toluene, divinylbenzene, vinylidene chloride, ethylene tetrafluoride, and vinylidene fluoride.
- Polyvinyl alcohol has excellent dye barrier performance among water-soluble polymer compounds, but when laminated alone, the adhesion with the dye layer is insufficient, and there is a concern of abnormal transfer.
- polyvinyl pyrrolidone is inferior to polyvinyl alcohol in terms of dye barrier properties, it has good adhesion to the dye layer, and the above content ratio sufficiently satisfies both the high transfer sensitivity and the performance of preventing abnormal transfer. It becomes possible to do.
- Coating amount after drying of the undercoat layer 20 are not unconditionally limited, 0.05 g / m 2 or more, preferably in the 0.30 g / m 2 or less of the range, and further 0. More preferably, it is in the range of 10 g / m 2 or more and 0.20 g / m 2 or less. If it is less than 0.05 g / m 2 , the transfer sensitivity at the time of high-speed printing is insufficient due to deterioration during lamination of the dye layer, and the adhesion to the substrate or the dye layer may be lowered. On the other hand, if it exceeds 0.30 g / m 2 , the sensitivity of the thermal transfer recording medium I itself is affected, and the transfer sensitivity during high-speed printing may be reduced.
- additives such as inorganic pigment fine particles, isocyanate compounds, silane coupling agents, dispersants, viscosity modifiers, stabilizers and the like can be used as long as the performance is not impaired. .
- the dye layer 30 is formed by preparing a coating solution for forming a dye layer by blending, for example, a binder, a solvent and the like in addition to the heat transferable dye, and applying and drying.
- the dye layer can be composed of a single layer of one color, and a plurality of dye layers containing dyes having different hues can be repeatedly formed on the same surface of the same base material in the surface order.
- the heat transferable dye used for the dye layer 30 is a dye that melts, diffuses or sublimates and transfers by heat.
- examples of the yellow component include Solvent Yellow 56, 16, 30, 93, 33, Disperse Yellow 201, 231, 33, and the like.
- examples of the magenta component include C.I. I. Disperse thread 60, C.I. I. Disperse violet 26, C.I. I. Disperse violet 38, C.I. I. Solvent Red 27, or C.I. I. Solvent Red 19 etc. can be mentioned. In the present invention, among these, C.I. I. It is essential to use an anthraquinone compound represented by Disperse Violet 38 or the like as a heat transfer dye.
- As the cyan component C.I.
- the dye composed of an anthraquinone compound has a higher transfer sensitivity to the image receiving layer than other dyes, and therefore gives high transfer sensitivity, that is, This is because the dye used in the dye layer can be reduced.
- the binder contained in the dye layer 30 may be any conventionally known resin binder, and is not particularly limited, but cellulose such as ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxy cellulose, hydroxypropyl cellulose, cellulose acetate, etc.
- vinyl resins such as polyvinyl alcohol, polyvinyl acetate, polyvinyl acetate, polyvinyl acetal, polyvinyl pyrrolidone, polyacrylamide, polyester resins, styrene-acrylonitrile copolymer resins, phenoxy resins, and the like.
- the dye layer may contain known additives such as a dispersant, a viscosity modifier, and a stabilizer as long as the performance is not impaired.
- the coating amount after drying of the dye layer 30 is not limited in general, but is 0.3 g / m 2 or more from the viewpoint of suppressing abnormal transfer and wrinkling during printing, and suppressing an increase in cost. 1.5 g / m 2 or less is appropriate.
- the heat resistant slipping layer 40, the undercoat layer 20 and the dye layer 30 are respectively known as a heat resistant slipping layer forming coating solution, an undercoat layer forming coating solution and a dye layer forming coating solution. It can be formed by coating by a coating method and drying. Examples of the application method include a gravure coating method, a screen printing method, a spray coating method, and a reverse roll coating method.
- the base material 10 As the base material 10, the same material as the base material 10 constituting the thermal transfer recording medium I can be used. Further, in the base material 10, it is also possible to perform an adhesion treatment on the surface on which the heat-resistant slipping layer 40 and / or the undercoat layer 20 is formed in the same manner as the thermal transfer recording medium I.
- the heat resistant slipping layer 40 has an average value ⁇ of the surface roughness Ra of 0.05 to 0.50 ⁇ m, and the heat resistant slipping layer 40 after standing at 150 ° C. for 10 minutes.
- the average value ⁇ of the surface roughness Ra is 0.00 to 0.80 ⁇ m, and the difference between the average value ⁇ and the average value ⁇ is 0.00 to 0.30 ⁇ m.
- the surface roughness Ra can be measured by various methods such as a normal contact type and a non-contact type. However, in the present invention, a non-contact type measurement method that is hardly affected by the ground and can measure a fine shape is possible.
- the measurement method using a laser microscope was adopted.
- a scanning confocal laser microscope “OLS1100” manufactured by Olympus Corporation was used as a measuring apparatus. In the case of measurement using a laser microscope, since the resolution depends on the numerical aperture of the objective lens, an objective lens having a maximum numerical aperture of 100 times was selected.
- the measured image was divided into 11 parts in the Y-axis direction, and the Ra value at the cut-off value 1/3 in the X-axis direction was measured at each of the divided boundary positions.
- the obtained 10 Ra values were averaged to obtain the Ra value of the heat resistant slipping layer.
- the average value ⁇ is a value before standing at 150 ° C. for 10 minutes, and the average value ⁇ is a value after standing at this condition.
- the heat-resistant slip layer 40 Since the heat-resistant slip layer 40 has certain irregularities, the contact area between the heat-resistant slip layer 40 and the thermal head is reduced, the friction between the two is reduced, and slipperiness is obtained, thereby preventing poor printing. . Therefore, when the average value ⁇ of the surface roughness Ra of the heat-resistant slip layer 40 is less than 0.05 ⁇ m, the heat-resistant slip layer 40 becomes nearly smooth, and the friction between the heat-resistant slip layer 40 and the thermal head increases, resulting in poor printing. . However, if the average value ⁇ of the surface roughness Ra of the heat-resistant slip layer 40 exceeds 0.50 ⁇ m, the unevenness becomes excessively large, resulting in unevenness in the way heat is transmitted from the thermal head, which appears in the printed matter. Will also appear as uneven density.
- the average value ⁇ is preferably 0.10 to 0.40 ⁇ m.
- the average value ⁇ of the surface roughness Ra of the heat resistant slipping layer 40 after standing at 150 ° C. for 10 minutes exceeds 0.80 ⁇ m, the heat from the thermal head is increased with the increase in the unevenness due to heat. As a result, unevenness occurs in the way of transmission, and density unevenness also appears in the printed matter.
- the average value ⁇ is preferably 0.10 to 0.60 ⁇ m.
- the thickness is in the range of .about.0.30 .mu.m, there is no significant difference in surface irregularities between low energy printing and high energy printing, and generation of printing wrinkles can be sufficiently prevented.
- the difference between the average value ⁇ and the average value ⁇ exceeds 0.30 ⁇ m, there is a difference between the friction with the thermal head and the slipperiness, which does not prevent the occurrence of printing wrinkles. In order to satisfy such a surface roughness range, it is necessary to adjust the unevenness of the heat resistant slipping layer 40.
- the difference between the average value ⁇ and the average value ⁇ is preferably 0.00 to 0.25 ⁇ m.
- the heat-resistant slipping layer 40 can be formed by, for example, preparing a heat-resistant slipping layer-forming coating solution by blending various functional additives in a binder resin, and applying and drying. It is preferable to mix.
- By blending the inorganic particles irregularities are formed on the surface of the heat resistant slipping layer 40 and the contact area with the thermal head is reduced, so that the friction with the thermal head is reduced and the lubricity is improved.
- the inorganic particles are hardly changed by heat, certain irregularities are maintained even when printing is performed with high energy, and a certain smoothness is exhibited from low energy printing to high energy printing. That is, it has stable heat resistance and can sufficiently prevent wrinkling during printing.
- cleaning properties of the thermal head can be imparted by blending inorganic particles.
- the average particle size of the inorganic particles varies depending on the thickness of the heat-resistant slip layer 40 to be formed, and is not particularly limited, but is preferably 0.1 to 6.0 ⁇ m, more preferably 0.5 to 4. 0 ⁇ m. If the average particle size of the inorganic particles is less than 0.1 ⁇ m, it may not be possible to form irregularities by being buried in the heat resistant slipping layer 40, and friction with the thermal head may not be reduced. The cleaning performance of the head may also deteriorate.
- the unevenness of the heat-resistant slip layer 40 becomes too large, and heat from the thermal head cannot be sufficiently transmitted in some places, resulting in unevenness and the printed matter. Or may be detached from the heat resistant slipping layer 40 to cause scratches or the like on the marking screen.
- inorganic particles that can be used for the heat resistant slipping layer 40 include silica particles, magnesium oxide, zinc oxide, calcium carbonate, magnesium carbonate, talc, kaolin, clay, and the like.
- the content of inorganic particles in the coating solution for forming a heat resistant slipping layer is preferably 2 to 30% by mass, more preferably 3 to 20% by mass.
- the content of the inorganic particles is less than 2% by mass, the thermal head cleaning effect is insufficient, and the value of the surface roughness Ra becomes small.
- the content of the inorganic particles exceeds 30% by mass, depending on the type of inorganic particles, the film strength of the heat resistant slipping layer 40 itself may be reduced, and the value of the surface roughness Ra is increased. There may be unevenness in the way heat is transferred during printing, and the printed matter may be defective.
- a lubricant for the purpose of improving the lubricity with the thermal head, and two or more lubricants having different melting points may be blended.
- the lubricant is eluted when heat is applied from the thermal head, improving the lubricity and reducing the load on the thermal transfer recording medium II due to heat.
- lubricants having different melting points it is possible to impart stable lubricity from any temperature from low to high temperatures, that is, from low energy printing to high energy printing.
- the content of the lubricant in the coating solution for forming the heat resistant slipping layer is preferably 5 to 25% by mass, more preferably 5 to 15% by mass. If the content of the lubricant is less than 5% by mass, sufficient lubricity may not be exhibited, or depending on the image, sticking to the thermal head may occur due to insufficient lubricant. On the contrary, when the content of the lubricant exceeds 25% by mass, the lubricity may be imparted more than necessary, or the lubricant may be eluted, which may affect the printing.
- the binder resin that can be used for the heat resistant slipping layer 40 for example, the same binder resin as that used for the thermal transfer recording medium I can be mentioned.
- the heat resistant slipping layer 40 may be blended with a crosslinking agent for the purpose of improving heat resistance.
- a crosslinking agent for the purpose of improving heat resistance.
- the cross-linking agent include polyisocyanate, which can be used in combination with acrylic, urethane, and polyester polyol resins, cellulose resins, and acetal resins.
- the coating amount of the heat-resistant slip layer 40 after drying is not generally limited, but is preferably in the range of 0.2 g / m 2 or more and 2.6 g / m 2 or less, and more preferably 0. More preferably, it is in the range of not less than 0.6 g / m 2 and not more than 1.6 g / m 2 . If it is less than 0.2 g / m 2 , the heat resistance is low, and thermal shrinkage during printing tends to occur. On the other hand, if it exceeds 2.6 g / m 2 , the heat from the thermal head is not sufficiently transmitted to the dye layer 30, and it becomes difficult to obtain a print with a desired density.
- the coating amount after drying of the heat resistant slipping layer 40 refers to the solid content remaining after the heat resistant slipping layer forming coating solution is applied and dried. Also, the coating amount after drying of the undercoat layer 20 described later and the coating amount after drying of the dye layer 30 are similarly applied to the coating solution for forming the undercoat layer and the coating solution for forming the dye layer described later, The solid content remaining after drying.
- the undercoat layer 20 can be formed in the same manner as the undercoat layer 20 in the thermal transfer recording medium I.
- the dye layer 30 can also be formed in the same manner as the dye layer 30 in the thermal transfer recording medium I.
- the heat resistant slipping layer 40, the undercoat layer 20 and the dye layer 30 can all be formed by a conventionally known method as in the case of the thermal transfer recording medium I.
- the same material as the base material 10 constituting the thermal transfer recording medium I can be used. Further, in the base material 10, it is also possible to perform an adhesion treatment on the surface on which the heat-resistant slipping layer 40 and / or the undercoat layer 20 is formed in the same manner as the thermal transfer recording medium I.
- the heat resistant slipping layer 40 can be formed in the same manner as the heat resistant slipping layer 40 in the thermal transfer recording medium I.
- the coating amount after drying of the heat resistant slipping layer 40 refers to the solid content remaining after the heat resistant slipping layer forming coating solution is applied and dried.
- the coating amount after drying of the undercoat layer 20 described later and the coating amount after drying of the dye layer 30 are similarly applied to the coating solution for forming the undercoat layer and the coating solution for forming the dye layer described later, The solid content remaining after drying.
- the coating amount after drying of the aqueous hollow particle layer described later and the coating amount after drying of the aqueous receiving layer are similarly applied to the coating solution for forming the aqueous hollow particle layer and the coating solution for forming the aqueous receiving layer described later, respectively. The amount of solid content remaining after drying.
- the undercoat layer 20 can also be formed in the same manner as the undercoat layer 20 in the thermal transfer recording medium I.
- the dye layer 30 is formed by preparing a coating solution for forming a dye layer by blending, for example, a binder, a solvent and the like in addition to the filler particles and the heat transferable dye, and applying and drying.
- the dye layer can be composed of a single layer of one color, and a plurality of dye layers containing dyes having different hues can be repeatedly formed on the same surface of the same base material in the surface order.
- the filler particles are not particularly limited, and known particles such as synthetic resin fine particles and inorganic fine particles can be used.
- the volume average particle diameter of the filler particles there is no particular limitation on the volume average particle diameter of the filler particles, but it is considered that the coating amount after drying of the dye layer 30 is preferably about 0.7 to 1.0 g / m 2 as will be described later. Then, it is preferable that it is the range of 0.1 micrometer or more and 3.0 micrometers or less, More preferably, it is the range of 0.5 micrometer or more and 2.0 micrometers or less.
- With filler particles having a volume average particle size of less than 0.1 ⁇ m it is difficult to obtain the required unevenness of the dye layer.
- filler particles with a volume average particle size of more than 3.0 ⁇ m are used, the filler particles slip off from the dye layer. There is a risk that the print density is lowered.
- the three-dimensional surface roughness (SRa) of the dye layer is essential to be in the range of 0.15 ⁇ m to 0.70 ⁇ m, and preferably in the range of 0.30 ⁇ m to 0.60 ⁇ m. When SRa is less than 0.15 ⁇ m, the surface of the dye layer is too flat, heat fusion occurs during printing, and there is an extremely high risk of uneven density in high density portions.
- Examples of synthetic resin fine particles that can be used include acrylic resin fine particles, silicone resin fine particles, organic polymer compound fine particles obtained by emulsion polymerization of vinyl monomers, and polycondensation such as polyester, polyamide, polyimide, polybenzoxazole, and the like.
- Examples thereof include fine particles of organic polymer compound obtained, fine particles of organic polymer compound obtained by addition condensation of phenol resin, melamine resin, etc.
- silicone resin fine particles are desirable.
- the inorganic fine particles include silica, alumina, titanium oxide, zirconium oxide, tin oxide, tungsten oxide, aluminum silicate (clay, kaolin), talc, attapulgite, sericite, mica, potassium titanate, barium titanate, bentonite. , Zeolite, pyrophyllite, zircon oxide, zircon silicate, hydrotalcite, chrysotile, zonotlite, wollastonite and the like. Further, the inorganic fine particles may be subjected to a surface treatment.
- Examples of the heat transferable dye and binder used in the dye layer 30 include the same heat transferable dye and binder as those used in the thermal transfer recording medium I, respectively.
- the mixing ratio of the heat transferable dye and the binder when forming the dye layer 30 on a mass basis, the known additives contained in the dye layer 30, and the coating amount after drying of the dye layer 30 are also described above. It may be the same as that of the thermal transfer recording medium I.
- the heat resistant slipping layer 40, the undercoat layer 20 and the dye layer 30 can all be formed by a conventionally known method as in the case of the thermal transfer recording medium I.
- thermal transfer image receiving sheet that is a transfer target used in the present invention relating to the thermal transfer recording medium III will be described.
- the thermal transfer image-receiving sheet is obtained by forming an aqueous receptive layer containing an aqueous binder and a release agent on a base material via an aqueous hollow particle layer containing an aqueous binder and hollow particles.
- the substrate used for the thermal transfer image-receiving sheet is not particularly limited, and various materials, layer configurations and sizes can be appropriately selected and used according to the purpose of use. Examples thereof include various papers such as paper, coated paper, and synthetic paper (polypropylene, polystyrene, or a composite material obtained by bonding them with paper).
- aqueous hollow particle layer containing hollow particles and an adhesive component (aqueous binder) is formed on the substrate.
- Thermal transfer printing is performed by heating from a thermal head, and requires good adhesion between the thermal head and the substrate of the image receiving sheet. Since the base material on which the water-based hollow particle layer is formed has cushioning properties, adhesion with the thermal head is improved, and a more uniform image can be obtained at the time of printing.
- a polymer of acrylonitrile, vinylidene chloride, styrene acrylate, or the like is preferably used.
- the method for producing the hollow particles include a method in which a foaming agent such as butane gas is encapsulated in the resin particles and foamed by heating, an emulsion polymerization method, and the like.
- a method of heating and foaming a method using pre-foamed hollow particles obtained by foaming hollow particles in advance by overheat treatment, and a layer containing unfoamed particles by coating or the like, followed by heat treatment such as a drying step
- heat treatment such as a drying step
- the aqueous binder used in the aqueous hollow particle layer is not particularly limited, and examples thereof include water-soluble polyvinyl alcohol, polyvinyl pyrrolidone, vinyl polymers such as vinyl monomer polymers and copolymers, and the like.
- the coating amount of the aqueous hollow particle layer after drying is not generally limited, but is preferably about 5.0 to 40.0 g / m 2 from the viewpoint of imparting sufficient heat insulation and cost.
- aqueous receiving layer containing an aqueous binder and a release agent is formed on the aqueous hollow particle layer formed on the substrate.
- aqueous binder a dyeable resin having high affinity for dyes and good dye dyeability can be suitably used.
- the dyeing resin examples include vinyl chloride resin, urethane resin, polyester resin, polycarbonate resin, polyvinyl acetal resin, polyvinyl butyral resin, polystyrene resin, polyacrylate resin, acrylic resin, and cellulose resin.
- an acrylic resin, a copolymer resin of a vinyl compound monomer and a monomer having a benzotriazole skeleton and / or a benzophenone skeleton, and a urethane resin are preferable because of excellent light resistance of a printed image.
- Urethane resin has a crystalline region in the molecule, and thus abnormal transfer is less likely to occur.
- these dyeing resins used in the present invention are water-soluble or water-dispersed so-called aqueous systems, they are also advantageous in terms of environmental load.
- the receiving layer on the thermal transfer image-receiving sheet and the dye layer of the ink ribbon are superposed and heated with a thermal head, and then the ink ribbon is peeled off from the receiving layer. Release properties from the ribbon are also required.
- a release agent is added to the water-based receiving layer for the purpose of preventing fusion with the ink ribbon and improving printing runnability.
- the release agent to be added include silicone oil, polysiloxane graft acrylic resin, waxes, and fluorine compounds.
- a cross-linking agent to the aqueous receiving layer to improve heat resistance.
- a crosslinking agent a carbodiimide compound, an isocyanate compound, an oxazoline compound, an organic titanium chelate compound, etc. are preferable, for example.
- carbodiimide is highly effective in improving heat resistance, is less likely to cause running problems such as ribbon fusion during printing, and is stable in a coating solution for forming an aqueous receiving layer.
- System crosslinking agents are preferred.
- the coating amount after drying of the aqueous receptive layer is not generally limited, but is preferably 0.5 to 5.0 g / m 2 , more preferably 0.5 to 4.0 g / m 2 . If it is less than 0.5 g / m 2 , the light resistance of the image may be inferior. If it exceeds 5.0 g / m 2 , the dye may diffuse in the aqueous receiving layer and image bleeding may occur.
- auxiliary agents such as wetting agents, dispersing agents, thickeners, antifoaming agents, coloring agents, antistatic agents, preservatives and the like used in the production of general coated paper are used for the aqueous hollow particle layer and the aqueous receiving layer.
- auxiliary agents such as wetting agents, dispersing agents, thickeners, antifoaming agents, coloring agents, antistatic agents, preservatives and the like used in the production of general coated paper are used for the aqueous hollow particle layer and the aqueous receiving layer. Can be added as appropriate.
- the water-based hollow particle layer and the water-based receiving layer are, for example, a known coater such as a bar coater, a gravure coater, a comma coater, a blade coater, an air knife coater, a gate roll coater, a die coater, a curtain coater, and a slide bead coater.
- a predetermined coating solution can be formed for each layer or by coating and drying two or more
- the same material as the base material 10 constituting the thermal transfer recording medium I can be used. Further, in the base material 10, it is also possible to perform an adhesion treatment on the surface on which the heat-resistant slipping layer 40 and / or the undercoat layer 20 is formed in the same manner as the thermal transfer recording medium I.
- the heat resistant slipping layer 40 can be formed in the same manner as the heat resistant slipping layer 40 in the thermal transfer recording medium I.
- the coating amount after drying of the heat resistant slipping layer 40 refers to the solid content remaining after the heat resistant slipping layer forming coating solution is applied and dried. Also, the coating amount after drying of the undercoat layer 20 described later and the coating amount after drying of the dye layer 30 are similarly applied to the coating solution for forming the undercoat layer and the coating solution for forming the dye layer described later, The solid content remaining after drying.
- the undercoat layer 20 can also be formed in the same manner as the undercoat layer 20 in the thermal transfer recording medium I.
- the dye layer 30 is formed by preparing a coating solution for forming a dye layer by blending, for example, a solvent in addition to the heat transferable dye and the resin binder, and applying and drying.
- the dye layer can be composed of a single layer of one color, and a plurality of dye layers containing dyes having different hues can be repeatedly formed on the same surface of the same base material in the surface order.
- Examples of the heat transferable dye used in the dye layer 30 include the same heat transferable dye as that used in the thermal transfer recording medium I.
- the resin binder used for the dye layer 30 is not particularly limited as long as it contains polyvinyl acetal having a glass transition temperature of 100 ° C. or higher and polyvinyl butyral having a glass transition temperature of 75 ° C. or lower. Can also be used.
- Polyvinyl acetal having a glass transition temperature of 100 ° C. or higher has high heat resistance, but when the energy given to the thermal head such as the low density part is small, the dye is difficult to sublimate and obtains sufficient transfer sensitivity in the low density part. Can not be.
- the use of polyvinyl butyral having a glass transition temperature of 75 ° C. or less has the advantage that the dye is easily sublimated, and the transfer sensitivity is particularly high in the low density portion, but the heat resistance is not sufficient, and the image receiving paper side There is a problem that wrinkles occur. Therefore, by combining these two kinds of resins, it is possible to improve the transfer sensitivity of the low density portion and to suppress wrinkles generated during printing.
- Examples of the polyvinyl acetal having a glass transition temperature of 100 ° C. or higher include Denkabutyral # 5000-D (manufactured by Denki Kagaku Kogyo Co., Ltd.) and Denkabutyral # 6000-AS (manufactured by Denki Kagaku Kogyo Co., Ltd.). .
- Examples of polyvinyl butyral having a glass transition temperature of 75 ° C. or lower include Denkabutyral # 3000-1 (manufactured by Denki Kagaku Kogyo Co., Ltd.) and Denka Butyral # 3000-2 (manufactured by Denki Kagaku Kogyo Co., Ltd.). Can be mentioned.
- the content ratio of polyvinyl acetal / polyvinyl butyral exceeds 97/3, there is a fear that the transfer sensitivity at the low density portion at the time of high-speed printing is insufficient.
- polyvinyl butyral when the content ratio of polyvinyl acetal / polyvinyl butyral is less than 50/50, polyvinyl butyral promotes dye sublimation as compared with polyvinyl acetal, so that an increase in transfer sensitivity in a low concentration portion can be realized.
- the heat resistance is not sufficient, and wrinkles may occur during printing. Therefore, by using polyvinyl acetal and polyvinyl butyral as the resin binder in the above content ratio, it is possible to increase the transfer sensitivity of the low density portion and to prevent wrinkles generated during printing.
- the resin binder that can be used for the dye layer 30 other than polyvinyl acetal having a glass transition temperature of 100 ° C. or higher and polyvinyl butyral having a glass transition temperature of 75 ° C. or lower is not particularly limited.
- ethyl cellulose, hydroxyethyl cellulose, ethyl Cellulose resins such as hydroxycellulose, hydroxypropylcellulose, and cellulose acetate
- vinyl resins such as polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, and polyacrylamide
- polyester resins styrene-acrylonitrile copolymer resins, and phenoxy resins. be able to.
- the known additives contained in the dye layer 30 and the coating amount after drying of the dye layer 30 may be the same as those of the thermal transfer recording medium I.
- the heat resistant slipping layer 40, the undercoat layer 20 and the dye layer 30 can all be formed by a conventionally known method as in the case of the thermal transfer recording medium I.
- the same material as the base material 10 constituting the thermal transfer recording medium I can be used. Further, in the base material 10, it is also possible to perform an adhesion treatment on the surface on which the heat-resistant slipping layer 40 and / or the undercoat layer 20 is formed in the same manner as the thermal transfer recording medium I.
- the heat resistant slipping layer 40 can be formed in the same manner as the heat resistant slipping layer 40 in the thermal transfer recording medium I.
- the coating amount after drying of the heat resistant slipping layer 40 refers to the solid content remaining after the coating solution for forming the heat resistant slipping layer is applied and dried.
- the coating amount after drying of the undercoat layer 20 described later and the coating amount after drying of the dye layer 30 are similarly applied respectively to the coating solution for forming the undercoat layer and the coating solution for forming the dye layer described later, The solid content remaining after drying.
- the coating amount after drying of the aqueous hollow particle layer described later and the coating amount after drying of the aqueous receiving layer are similarly applied to the coating solution for forming the aqueous hollow particle layer and the coating solution for forming the aqueous receiving layer described later, respectively. The amount of solid content remaining after drying.
- the undercoat layer 20 can also be formed in the same manner as the undercoat layer 20 in the thermal transfer recording medium I.
- the dye layer 30 is formed by preparing a coating solution for forming a dye layer by blending, for example, a binder, a solvent and the like in addition to the release agent and the heat transfer dye, and applying and drying.
- the dye layer can be composed of a single layer of one color, and a plurality of dye layers containing dyes having different hues can be repeatedly formed on the same surface of the same base material in the surface order.
- the release agent at least two kinds of modified silicone oils composed of a non-reactive silicone oil having a number average molecular weight of 8000 or more and a reactive silicone oil having a number average molecular weight of 3000 or less are used.
- a non-reactive silicone oil having a number average molecular weight of 8000 or more and a reactive silicone oil having a number average molecular weight of 3000 or less are used.
- the release agent that is non-reactive and dispersed in the dye layer is effective. More than 8000 non-reactive silicone oils are required.
- the number-average molecular weight of the non-reactive silicone oil is 8000 to 15000 because the effect of improving the adhesion between the water-based receiving layer and the dye layer generated in the high-concentration part to the medium-concentration part is efficiently expressed. Preferably there is.
- non-reactive silicone oil having a number average molecular weight of 8000 or more examples include, for example, a side-chain polyether-modified silicone oil in which the introduced organic group is a polyether group, and a double-ended type in which the introduced organic group is a long-chain alkyl group. Long chain alkyl-modified silicone oils and the like are mentioned. From the viewpoint that the effect of improving the adhesion between the water-based receiving layer and the dye layer generated in the high-concentration part to the medium-concentration part is greater, the side-chain polyether-modified silicone oil Is particularly preferred.
- the reactive silicone having a number average molecular weight of 3000 or less is effective for improving the abnormal transfer of the dye layer generated in the medium concentration part because the release agent that is reactive and localized on the surface of the dye layer is effective. Oil is needed.
- the number average molecular weight of the reactive silicone oil is preferably 300 to 3000 from the viewpoint that the effect of improving the abnormal transfer of the dye layer occurring at the medium concentration portion is efficiently expressed.
- the reactive silicone oil having a number average molecular weight of 3000 or less include, for example, a side-chain diamine-modified silicone oil in which the introduced organic group is a diamino group, and a double-ended amino-modified silicone oil in which the introduced organic group is an amino group.
- a side chain diamine-modified silicone oil is particularly preferable because the effect of improving the abnormal transfer of the dye layer occurring at the middle concentration portion is greater.
- Examples of the heat transferable dye and binder used in the dye layer 30 include the same heat transferable dye and binder as those used in the thermal transfer recording medium I, respectively.
- the mixing ratio of the heat transferable dye and the binder when forming the dye layer 30 on a mass basis, the known additives contained in the dye layer 30, and the coating amount after drying of the dye layer 30 are also described above. It may be the same as that of the thermal transfer recording medium I.
- the heat resistant slipping layer 40, the undercoat layer 20 and the dye layer 30 can all be formed by a conventionally known method as in the case of the thermal transfer recording medium I.
- thermal transfer image-receiving sheet used as the transfer body used in the present invention relating to the thermal transfer recording medium V the same thermal transfer image-receiving sheet as used in the invention relating to the thermal transfer recording medium III can be used.
- Embodiment I Examples corresponding to thermal transfer recording medium I and comparative examples ⁇ Preparation of substrate with heat-resistant slip layer>
- a base material use a polyethylene terephthalate film with a thickness of 4.5 ⁇ m on one side, and after drying a coating solution for forming a heat-resistant slipping layer having the following composition on the non-adhesive surface by gravure coating. was applied so that the coating amount was 0.5 g / m 2 and dried at 100 ° C. for 1 minute to obtain a substrate with a heat resistant slipping layer.
- the monomer is driven out in a continuous demonomer tower until the amount of residual monomer in the methanol solution reaches 0.06%, methanol is added to adjust the polyvinyl acetate concentration to 50%, and then the vinyl acetate monomer unit 5 mmol of sodium hydroxide was added as a methanol solution and saponification was carried out at 40 ° C. for 90 minutes.
- the produced polyvinyl alcohol-based resin composition was separated by filtration, washed well with methanol and dried in a hot air dryer to obtain the desired polyvinyl alcohol.
- the obtained polyvinyl alcohol had a saponification degree of 94 mol% and an average polymerization degree of 2200.
- a polyvinyl alcohol having a saponification degree of 88 mol% and an average polymerization degree of 2200 was obtained by extracting the solution during the saponification.
- Each of the obtained films was cut into a No. 2 dumbbell shape based on JIS K 7113, a tensile test was performed at a tensile speed of 200 mm / min, and the tensile strength was measured.
- the polyvinyl alcohol having a saponification degree of 94 mol% and an average polymerization degree of 2200 was 8.2 kg / mm 2
- the polyvinyl alcohol having a saponification degree of 88 mol% and an average polymerization degree of 2200 was 6.8 kg / mm 2 .
- a film was prepared in the same manner as described above using a commercially available product Kuraray Poval PVA-117 (manufactured by Kuraray Co., Ltd.), and the tensile strength was measured. As a result, it was 7.4 kg / mm 2 .
- Example I-1 The undercoat layer forming coating liquid I-1 having the following composition is applied to the surface of the substrate with a heat-resistant slip layer by gravure coating so that the coating amount after drying is 0.20 g / m 2.
- the undercoat layer was formed by applying and drying at 100 ° C. for 2 minutes.
- a coating solution I-1 for forming a dye layer having the following composition was applied on the undercoat layer by a gravure coating method so that the coating amount after drying was 0.70 g / m 2 , and 90 ° C. Was dried for 1 minute to form a dye layer, and a thermal transfer recording medium of Example I-1 was obtained.
- ⁇ Coating liquid I-1 for forming the undercoat layer Polyvinyl alcohol (tensile strength: 8.2 kg / mm 2 ) 3.0 parts Polyvinylpyrrolidone (N-vinyl-2-pyrrolidone homopolymer) 2.0 parts pure water 57.0 parts isopropyl alcohol 38.0 parts
- Example I-2 In the heat-sensitive transfer recording medium produced in Example I-1, Example 1 was carried out in the same manner as in Example I-1, except that the undercoat layer was formed with the undercoat layer forming coating solution I-2 having the following composition. A thermal transfer recording medium of I-2 was obtained.
- Example I-3 In the heat-sensitive transfer recording medium produced in Example I-1, Example 1 was carried out in the same manner as Example I-1, except that the undercoat layer was formed with the undercoat layer forming coating solution I-3 having the following composition. A thermal transfer recording medium of I-3 was obtained.
- ⁇ Coating liquid I-3 for forming the undercoat layer Polyvinyl alcohol (tension 8.2 kg / mm 2 ) 1.5 parts Polyvinylpyrrolidone (N-vinyl-2-pyrrolidone homopolymer) 3.5 parts pure water 57.0 parts isopropyl alcohol 38.0 parts
- Example I-4 In the heat-sensitive transfer recording medium produced in Example I-1, the same procedure as in Example I-1 was conducted except that the coating amount after drying of the undercoat layer was 0.03 g / m 2. A thermal transfer recording medium of I-4 was obtained.
- Example I-5 In the heat-sensitive transfer recording medium produced in Example I-1, the same procedure as in Example I-1 was conducted except that the coating amount after drying of the undercoat layer was 0.40 g / m 2. A thermal transfer recording medium of I-5 was obtained.
- Comparative Example I-1 A thermal transfer recording medium of Comparative Example I-1 was obtained in the same manner as in Example I-1, except that the undercoat layer was not formed in the thermal transfer recording medium produced in Example I-1.
- Example I-2 In the thermal transfer recording medium produced in Example I-1, a comparative example was prepared in the same manner as in Example I-1, except that the undercoat layer was formed with the undercoat layer forming coating solution I-4 having the following composition. A thermal transfer recording medium of I-2 was obtained.
- ⁇ Coating liquid I-4 for forming the undercoat layer Polyvinyl alcohol (tensile strength 6.8 kg / mm 2 ) 3.0 parts Polyvinylpyrrolidone (N-vinyl-2-pyrrolidone homopolymer) 2.0 parts pure water 57.0 parts isopropyl alcohol 38.0 parts
- Comparative Example I-3 In the same manner as in Example I-1, except that the dye layer was formed with the dye layer forming coating solution I-2 having the following composition in the heat-sensitive transfer recording medium produced in Example I-1, Comparative Example I- No. 3 thermal transfer recording medium was obtained.
- Example I-4 In the thermal transfer recording medium produced in Example I-1, the undercoat layer was formed with the above-described undercoat layer forming coating solution I-4, and the dye layer was formed into the above-described dye layer forming coating solution I-2.
- a thermal transfer recording medium of Comparative Example I-4 was obtained in the same manner as in Example I-1, except that it was formed.
- Example I-5 In the thermal transfer recording medium produced in Example I-1, a comparative example was prepared in the same manner as in Example I-1, except that the undercoat layer was formed with the undercoat layer forming coating solution I-5 having the following composition. A thermal transfer recording medium of I-5 was obtained.
- Example I-6 In the thermal transfer recording medium produced in Example I-1, a comparative example was prepared in the same manner as in Example I-1, except that the undercoat layer was formed with the undercoat layer forming coating solution I-6 having the following composition. A thermal transfer recording medium of I-6 was obtained.
- Example I-7 In the thermal transfer recording medium produced in Example I-1, a comparative example was prepared in the same manner as in Example I-1, except that the undercoat layer was formed with the undercoat layer forming coating solution I-7 having the following composition. A thermal transfer recording medium of I-7 was obtained.
- a white foamed polyethylene terephthalate film having a thickness of 188 ⁇ m is used as a substrate, and an application layer-forming coating solution having the following composition is applied to one surface of the film by a gravure coating method so that the coating amount after drying is 5.0 g / m 2.
- the material to be transferred for thermal transfer was prepared by applying and drying.
- the printing conditions are as follows. Printing environment: 23 ° C, 50% RH Applied voltage: 29V Line cycle: 0.7msec Print density: main scanning 300 dpi, sub-scanning 300 dpi
- the thermal transfer recording medium of Example I-4 is more closely adhered to the dye layer than the thermal transfer recording medium of Example I-1 because the coating amount of the undercoat layer is less than 0.05 g / m 2. It can be seen that the property is slightly lowered.
- the thermal transfer recording medium of Example I-5 has a slightly lower transfer sensitivity than the thermal transfer recording medium of Example I-1 because the coating amount of the undercoat layer exceeds 0.30 g / m 2. You can see that
- the thermal transfer recording medium of Comparative Example I-2 was obtained by using polyvinyl alcohol having a tensile strength measured in accordance with JIS K 7113 of less than 8 kg / mm 2. It can be seen that the transfer sensitivity is significantly lower than that of the medium.
- the thermal transfer recording medium of Comparative Example I-3 in which the dye layer is composed of a dye not containing an anthraquinone compound, also has a significantly lower transfer sensitivity than the thermal transfer recording medium of Example I-1.
- the thermal transfer recording medium of Comparative Example I-4 which uses polyvinyl alcohol having a tensile strength measured in accordance with JIS K 7113 of less than 8 kg / mm 2 and the dye layer is made of a dye containing no anthraquinone compound, is a comparative example. It can be seen that the transfer sensitivity is further reduced as compared with the thermal transfer recording media of I-2 and I-3.
- the difference is slight.
- the dye layer is made of a dye that does not contain an anthraquinone compound, the effect of the tensile strength of polyvinyl alcohol on the transfer sensitivity is small. From this, the tensile strength of polyvinyl alcohol measured based on JIS K 7113 is 8 kg / mm 2 or more, and by using a heat transferable dye containing an anthraquinone compound in the dye layer, the transfer sensitivity is remarkably high. It can be seen that
- thermo transfer recording medium of Comparative Example I-5 a coating liquid for forming an undercoat layer containing only polyvinyl alcohol was applied and dried to form an undercoat layer.
- the thermal transfer recording medium of Example I-1 was used.
- the adhesion with the dye layer was lowered, and abnormal transfer was observed on the entire surface.
- the thermal transfer recording medium of Comparative Example I-6 the undercoat layer forming coating solution containing only polyvinylpyrrolidone was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example I-1 It can be seen that, although there is no problem with the adhesion to the dye layer, the transfer sensitivity is significantly reduced.
- thermo transfer recording medium of Comparative Example I-7 a commercially available PVA-117 (manufactured by Kuraray Co., Ltd.) was used as the polyvinyl alcohol for the undercoat layer.
- This PVA-117 was based on JIS K 7113. since the measured tensile strength is less than 8 kg / mm 2, the tensile strength compared to example I-1 ⁇ I-5 of the thermal transfer recording medium with 8 kg / mm 2 or more polyvinyl alcohols, transfer sensitivity is low enough It was not satisfactory.
- Embodiment II Examples corresponding to thermal transfer recording medium II and comparative examples ⁇ Preparation of polyvinyl alcohol>
- Example II-1 As a base material, a polyethylene terephthalate film having a thickness of 4.5 ⁇ m on one side and an easy-adhesion treatment was used. On the non-adhesion-treated surface, a coating solution II-1 for forming a heat-resistant slipping layer having the following composition was applied by a gravure coating method. The substrate was coated so that the coating amount after drying was 1.0 g / m 2 and dried at 100 ° C. for 1 minute to obtain a substrate with a heat resistant slipping layer.
- the undercoat layer forming coating solution II-1 having the following composition is applied to the surface of the substrate with a heat resistant slipping layer by a gravure coating method so that the coating amount after drying is 0.20 g / m 2.
- the undercoat layer was formed by applying and drying at 100 ° C. for 2 minutes.
- a coating solution II-1 for forming a dye layer having the following composition was applied by a gravure coating method so that the coating amount after drying was 0.70 g / m 2 , and 90 ° C. Was dried for 1 minute to form a dye layer, and a thermal transfer recording medium of Example II-1 was obtained.
- Example II-2 In the heat-sensitive transfer recording medium produced in Example II-1, Example 2 was carried out in the same manner as Example II-1, except that the undercoat layer was formed with the undercoat layer forming coating solution II-2 having the following composition. A thermal transfer recording medium of II-2 was obtained.
- Example II-3 In the heat-sensitive transfer recording medium produced in Example II-1, Example 2 was carried out in the same manner as Example II-1, except that the undercoat layer was formed with the undercoat layer forming coating solution II-3 having the following composition. A thermal transfer recording medium of II-3 was obtained.
- ⁇ Coating liquid II-3 for forming the undercoat layer Polyvinyl alcohol (tension 8.2 kg / mm 2 ) 1.5 parts Polyvinylpyrrolidone (N-vinyl-2-pyrrolidone homopolymer) 3.5 parts pure water 57.0 parts isopropyl alcohol 38.0 parts
- Example II-4 In the same manner as in Example II-1, except that the coating amount after drying of the undercoat layer was 0.03 g / m 2 in the thermal transfer recording medium produced in Example II-1. A thermal transfer recording medium of II-4 was obtained.
- Example II-5 In the same manner as in Example II-1, except that the coating amount after drying of the undercoat layer was 0.40 g / m 2 in the heat-sensitive transfer recording medium produced in Example II-1. A thermal transfer recording medium of II-5 was obtained.
- Example II-6 In the heat-sensitive transfer recording medium produced in Example II-1, the heat resistant slipping layer was formed in the heat resistant slipping layer forming coating solution II-2 having the following composition, in the same manner as in Example II-1, A thermal transfer recording medium of Example II-6 was obtained.
- ⁇ Coating liquid II-2 for forming a heat resistant slipping layer Acrylic polyol (solid content 50%) 20.0 parts Phosphate ester (melting point 15 ° C.) 2.0 parts Phosphate ester (melting point 70 ° C.) 2.0 parts Zinc stearate (melting point 115 to 125 ° C.) 2.0 parts Talc (average particle size 2.5 ⁇ m) 5.0 parts Talc (average particle size 3.5 ⁇ m) 1.0 part 2,6-Tolylene diisocyanate prepolymer 5.0 parts Toluene 46.0 parts Methyl ethyl ketone 20.0 parts Acetic acid 5.0 parts of ethyl
- Example II-7 In the heat-sensitive transfer recording medium produced in Example II-1, the heat resistant slipping layer was formed in the same manner as in Example II-1 except that the heat resistant slipping layer was formed with a coating solution II-3 having the following composition. A thermal transfer recording medium of Example II-7 was obtained.
- ⁇ Coating liquid II-3 for forming a heat resistant slipping layer Acrylic polyol (solid content 50%) 20.0 parts Phosphate ester (melting point 15 ° C.) 2.0 parts Phosphate ester (melting point 70 ° C.) 2.0 parts Zinc stearate (melting point 115 to 125 ° C.) 2.0 parts Talc (average particle size 2.5 ⁇ m) 1.0 part 2,6-tolylene diisocyanate prepolymer 5.0 parts toluene 47.5 parts methyl ethyl ketone 20.0 parts ethyl acetate 5.0 parts
- Comparative Example II-1 The thermal transfer recording medium of Comparative Example II-1 was obtained in the same manner as in Example II-1, except that the undercoat layer was not formed in the thermal transfer recording medium produced in Example II-1.
- Example II-2 In the thermal transfer recording medium produced in Example II-1, a comparative example was prepared in the same manner as in Example II-1, except that the undercoat layer was formed with the undercoat layer forming coating solution II-4 having the following composition. A thermal transfer recording medium of II-2 was obtained.
- Comparative Example II-3 In the same manner as in Example II-1, except that the dye layer was formed with the dye layer forming coating solution II-2 having the following composition in the heat-sensitive transfer recording medium prepared in Example II-1, Comparative Example II- No. 3 thermal transfer recording medium was obtained.
- Example II-4 In the thermal transfer recording medium produced in Example II-1, the undercoat layer was formed with the above-described undercoat layer forming coating solution II-4, and the dye layer was formed into the above-described dye layer forming coating solution II-2. A thermal transfer recording medium of Comparative Example II-4 was obtained in the same manner as in Example II-1, except that it was formed.
- Example II-5 In the thermal transfer recording medium produced in Example II-1, a comparative example was prepared in the same manner as in Example II-1, except that the undercoat layer was formed with the undercoat layer forming coating solution II-5 having the following composition. A thermal transfer recording medium of II-5 was obtained.
- Example II-6 In the heat-sensitive transfer recording medium produced in Example II-1, a comparative example was prepared in the same manner as in Example II-1, except that the undercoat layer was formed with the undercoat layer forming coating solution II-6 having the following composition. A thermal transfer recording medium of II-6 was obtained.
- Example II-7 In the thermal transfer recording medium produced in Example II-1, a comparative example was prepared in the same manner as in Example II-1, except that the undercoat layer was formed with the undercoat layer forming coating solution II-7 having the following composition. A thermal transfer recording medium of II-7 was obtained.
- ⁇ Coating liquid II-4 for forming a heat resistant slipping layer Acrylic polyol (solid content 50%) 20.0 parts Zinc stearate (melting point 115 to 125 ° C.) 2.0 parts Talc (average particle size 0.6 ⁇ m) 4.0 parts 2,6-tolylene diisocyanate prepolymer 0 parts Toluene 49.5 parts Methyl ethyl ketone 20.0 parts Ethyl acetate 5.0 parts
- ⁇ Coating liquid II-6 for forming heat resistant slipping layer> Acrylic polyol (solid content 50%) 20.0 parts Phosphate ester (melting point 15 ° C) 1.0 part Phosphate ester (melting point 70 ° C) 4.0 parts Zinc stearate (melting point 115 to 125 ° C) 2.0 parts Talc (average particle size 1.0 ⁇ m) 1.0 part Talc (average particle size 2.5 ⁇ m) 4.0 parts 2,6-tolylene diisocyanate prepolymer 5.0 parts Toluene 49.5 parts Methyl ethyl ketone 20.0 parts Acetic acid 5.0 parts of ethyl
- ⁇ Print evaluation> With respect to the thermal transfer recording media of Examples II-1 to II-7 and Comparative Examples II-1 to II-10, the dye layer surface and the transfer target were overlapped, and the dye was transferred using a thermal head to form an image. The maximum reflection density was measured and the printing evaluation was performed. The results are shown in Table 2. The maximum reflection density is a value measured with a spectral densitometer “X-Rite 528” manufactured by X-Rite.
- ⁇ Print wrinkles> For the thermal transfer recording media of Examples II-1 to II-7 and Comparative Examples II-1 to II-10, printing wrinkles were evaluated according to the following criteria. The results are shown in Table 2. ⁇ : No print wrinkles are observed ⁇ : Print wrinkles are very slightly recognized ⁇ : Print wrinkles are recognized over the entire surface Note that, if it is ⁇ or more, it is a practically no problem level.
- the thermal transfer recording media of Examples II-1 to II-7 are clearly faster than the thermal transfer recording media of Comparative Example II-1 without an undercoat layer. It was found that the transfer sensitivity (maximum reflection density) at the time was high, the dye used in the dye layer could be reduced, and the cost reduction effect was great. It was also found that there is no practical problem with the adhesion to the dye layer, abnormal transfer in printing, image wrinkles and image quality of printed matter.
- the adhesion with the dye layer is slightly lowered, and it can be seen that, although it is a level that does not cause any problem in practice, abnormal transfer is recognized only slightly.
- the thermal transfer recording medium of Example II-4 is more closely adhered to the dye layer than the thermal transfer recording medium of Example II-1 because the coating amount of the undercoat layer is less than 0.05 g / m 2. It can be seen that, although the property is slightly lowered and there is no problem in practical use, abnormal transfer is recognized only slightly.
- the thermal transfer recording medium of Example II-5 has a slightly lower transfer sensitivity than the thermal transfer recording medium of Example II-1 because the coating amount of the undercoat layer exceeds 0.30 g / m 2. You can see that
- thermo transfer recording medium of Comparative Example II-2 polyvinyl alcohol having a tensile strength measured based on JIS K 7113 of less than 8 kg / mm 2 was used. As a result, the thermal transfer recording of Example II-1 was used. It can be seen that the transfer sensitivity is significantly lower than that of the medium.
- the thermal transfer recording medium of Comparative Example II-3 in which the dye layer is composed of a dye containing no anthraquinone compound, has a markedly lower transfer sensitivity than the thermal transfer recording medium of Example II-1.
- the thermal transfer recording medium of Comparative Example II-4 which uses polyvinyl alcohol having a tensile strength measured in accordance with JIS K 7113 of less than 8 kg / mm 2 and the dye layer is made of a dye containing no anthraquinone compound, is a comparative example. It can be seen that the transfer sensitivity is further reduced as compared with II-2 and II-3 thermal transfer recording media.
- Comparative Example II-3 using a polyvinyl alcohol having a tensile strength of 8 kg / mm 2 or more measured according to JIS K 7113 and Comparative Example II using a polyvinyl alcohol having a tensile strength of less than 8 kg / mm 2 When the transfer sensitivity is compared with No. 4, the difference is slight.
- the dye layer is made of a dye that does not contain an anthraquinone compound
- the effect of the tensile strength of polyvinyl alcohol on the transfer sensitivity is small.
- the tensile strength of polyvinyl alcohol measured based on JIS K 7113 is 8 kg / mm 2 or more, and by using a heat transferable dye containing an anthraquinone compound in the dye layer, the transfer sensitivity is remarkably high. It can be seen that
- the thermal transfer recording medium of Comparative Example II-5 the undercoat layer forming coating solution containing only polyvinyl alcohol was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example II-1 was used.
- the adhesion with the dye layer was lowered, and abnormal transfer was observed on the entire surface.
- the thermal transfer recording medium of Comparative Example II-6 the undercoat layer forming coating solution containing only polyvinylpyrrolidone was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example II-1 was obtained. It can be seen that, although there is no problem with the adhesion to the dye layer, the transfer sensitivity is significantly reduced.
- thermo transfer recording medium of Comparative Example II-7 commercially available PVA-117 (manufactured by Kuraray Co., Ltd.) was used as the polyvinyl alcohol for the undercoat layer.
- This PVA-117 was based on JIS K 7113. since the measured tensile strength is less than 8 kg / mm 2, the tensile strength compared with the thermal transfer recording medium of example II-1 ⁇ II-7 using 8 kg / mm 2 or more polyvinyl alcohols, transfer sensitivity is low enough It was not satisfactory.
- the average value ⁇ of the surface roughness Ra of the heat-resistant slipping layer is less than 0.05 ⁇ m, so it can be seen that printing wrinkles are recognized on the entire surface.
- Embodiment III Examples corresponding to thermal transfer recording medium III and comparative examples ⁇ Preparation of substrate with heat-resistant slip layer> A substrate with a heat resistant slipping layer was obtained by the same method as in the examples corresponding to the above (I) embodiment I and the comparative examples.
- Example III-1 The undercoat layer forming coating liquid III-1 having the following composition is applied to the surface of the base material with a heat resistant slipping layer by gravure coating so that the coating amount after drying is 0.20 g / m 2.
- the undercoat layer was formed by applying and drying at 100 ° C. for 2 minutes.
- a dye layer forming coating solution III-1 having the following composition was applied by a gravure coating method so that the coating amount after drying was 0.70 g / m 2 , and 90 ° C. Was dried for 1 minute to form a dye layer to obtain a thermal transfer recording medium of Example III-1.
- Example III-2 In the heat-sensitive transfer recording medium produced in Example III-1, an Example was carried out in the same manner as in Example III-1, except that the undercoat layer was formed with the undercoat layer forming coating solution III-2 having the following composition. A thermal transfer recording medium of III-2 was obtained.
- Example III-3 In the heat-sensitive transfer recording medium produced in Example III-1, an Example was carried out in the same manner as in Example III-1, except that the undercoat layer was formed with the undercoat layer forming coating solution III-3 having the following composition. A thermal transfer recording medium of III-3 was obtained.
- Example III-4 In the heat-sensitive transfer recording medium produced in Example III-1, the same procedure as in Example III-1 was carried out except that the coating amount after drying of the undercoat layer was 0.03 g / m 2. A thermal transfer recording medium of III-4 was obtained.
- Example III-5 In the heat-sensitive transfer recording medium produced in Example III-1, the same procedure as in Example III-1 was carried out except that the coating amount after drying of the undercoat layer was 0.40 g / m 2. A thermal transfer recording medium of III-5 was obtained.
- Example III-6 In the heat-sensitive transfer recording medium produced in Example III-1, Example III- was conducted in the same manner as in Example III-1, except that the dye layer was formed with the dye layer forming coating solution III-2 having the following composition. No. 6 thermal transfer recording medium was obtained.
- Example III-7 In the heat-sensitive transfer recording medium produced in Example III-1, Example III- was carried out in the same manner as Example III-1, except that the dye layer was formed with the dye layer-forming coating solution III-3 having the following composition. No. 7 thermal transfer recording medium was obtained.
- Comparative Example III-1 The thermal transfer recording medium of Comparative Example III-1 was obtained in the same manner as in Example III-1, except that the undercoat layer was not formed in the thermal transfer recording medium produced in Example III-1.
- Example III-2 In the heat-sensitive transfer recording medium produced in Example III-1, a comparative example was prepared in the same manner as in Example III-1, except that the undercoat layer was formed with the undercoat layer forming coating solution III-4 having the following composition. A thermal transfer recording medium of III-2 was obtained.
- Comparative Example III-3 In the same manner as in Example III-1, except that the dye layer was formed with the dye layer forming coating solution III-4 having the following composition in the heat-sensitive transfer recording medium prepared in Example III-1, Comparative Example III- No. 3 thermal transfer recording medium was obtained.
- Example III-4 In the thermal transfer recording medium produced in Example III-1, the undercoat layer was formed with the above-described undercoat layer forming coating solution III-4, and the dye layer was formed into the above-described dye layer forming coating solution III-4.
- a thermal transfer recording medium of Comparative Example III-4 was obtained in the same manner as in Example III-1, except that it was formed.
- Example III-5 In the heat-sensitive transfer recording medium produced in Example III-1, a comparative example was prepared in the same manner as in Example III-1, except that the undercoat layer was formed with the undercoat layer forming coating solution III-5 having the following composition. A thermal transfer recording medium of III-5 was obtained.
- Example III-6 In the heat-sensitive transfer recording medium produced in Example III-1, a comparative example was prepared in the same manner as in Example III-1, except that the undercoat layer was formed with the undercoat layer forming coating solution III-6 having the following composition. A thermal transfer recording medium of III-6 was obtained.
- Example III-7 In the heat-sensitive transfer recording medium produced in Example III-1, a comparative example was prepared in the same manner as in Example III-1, except that the undercoat layer was formed with the undercoat layer forming coating solution III-7 having the following composition. A thermal transfer recording medium of III-7 was obtained.
- Comparative Example III-8 In the thermal transfer recording medium produced in Example III-1, Comparative Example III- was performed in the same manner as in Example III-1, except that the dye layer was formed with Dye Layer Forming Coating Liquid III-5 having the following composition. No. 8 thermal transfer recording medium was obtained.
- Comparative Example III-9 Comparative Example III- was conducted in the same manner as Example III-1, except that the dye layer was formed with Dye Layer-Forming Coating Liquid III-6 having the following composition in the thermal transfer recording medium produced in Example III-1. 9 thermal transfer recording media were obtained.
- Comparative Example III-10 In the heat-sensitive transfer recording medium produced in Example III-1, Comparative Example III- was conducted in the same manner as in Example III-1, except that the dye layer was formed with a dye layer-forming coating solution III-7 having the following composition. Ten thermal transfer recording media were obtained.
- Comparative Example III-11 In the same manner as in Example III-1, except that the dye layer was formed with the dye layer forming coating liquid III-8 having the following composition in the heat-sensitive transfer recording medium produced in Example III-1, Comparative Example III- 11 thermal transfer recording media were obtained.
- Comparative Example III-12 In the thermal transfer recording medium produced in Example III-1, Comparative Example III- was conducted in the same manner as in Example III-1, except that the dye layer was formed with the dye layer forming coating solution III-9 having the following composition. 12 thermal transfer recording media were obtained.
- the volume average particle size of the silicone filler particles was measured by a laser diffraction / scattering method using a nanoparticle size distribution measuring device “SALD7100” manufactured by Shimadzu Corporation.
- ⁇ Preparation of thermal transfer image receiving sheet> Using art paper having a basis weight of 180 g / m 2 as a base material, and applying a coating solution for forming an aqueous hollow particle layer having the following composition on the base material by a gravure coating method so that the coating amount after drying becomes 10 g / m 2 After coating and drying, a substrate with an aqueous hollow particle layer was obtained by aging in an environment of 40 ° C. for 1 week.
- Pre-foamed hollow particles (volume average particle diameter 3.2 ⁇ m, volume hollow ratio 85%) made of a copolymer mainly composed of acrylonitrile and methacrylonitrile 45.0 parts
- Polyvinyl alcohol 10.0 parts
- a coating solution for forming an aqueous receptive layer having the following composition was applied by a gravure coating method so that the applied amount after drying was 4 g / m 2, and after drying, the environment at 40 ° C.
- an aqueous receiving layer was formed to obtain a thermal transfer image receiving sheet.
- the printing conditions are as follows. Printing environment: 23 ° C, 50% RH Applied voltage: 29V Line cycle: 0.7msec Print density: main scanning 300 dpi, sub-scanning 300 dpi
- the thermal transfer recording media of Examples III-1 to III-7 are clearly faster than the thermal transfer recording media of Comparative Example III-1 in which no undercoat layer is provided. It was found that the transfer sensitivity at the time was high, the dye used in the dye layer could be reduced, and the cost reduction effect was great. Further, it has been found that there is no practical problem with adhesion to the dye layer, abnormal transfer in printing, and uneven density occurring in a high density portion.
- the thermal transfer recording medium of Example III-4 is more closely adhered to the dye layer than the thermal transfer recording medium of Example III-1 because the coating amount of the undercoat layer is less than 0.05 g / m 2. It can be seen that the property is slightly lowered.
- the thermal transfer recording medium of Example III-5 has a slightly lower transfer sensitivity than the thermal transfer recording medium of Example III-1 because the coating amount of the undercoat layer exceeds 0.30 g / m 2. You can see that
- the thermal transfer recording medium of Example III-6 is smaller than the thermal transfer recording media of Examples III-1 to III-5 and III-7 because the three-dimensional surface roughness (SRa) of the dye layer is small. It can be seen that the occurrence of shading unevenness in the high density portion is slightly recognized.
- the thermal transfer recording medium of Comparative Example III-2 was obtained by using polyvinyl alcohol having a tensile strength of less than 8 kg / mm 2 measured according to JIS K 7113. As a result, the thermal transfer recording medium of Example III-1 was used. It can be seen that the transfer sensitivity is significantly lower than that of the medium.
- the thermal transfer recording medium of Comparative Example III-3 in which the dye layer is composed of a dye containing no anthraquinone compound, has a markedly lower transfer sensitivity than the thermal transfer recording medium of Example III-1.
- the thermal transfer recording medium of Comparative Example III-4 which uses polyvinyl alcohol having a tensile strength measured in accordance with JIS K 7113 of less than 8 kg / mm 2 and the dye layer is made of a dye containing no anthraquinone compound, is a comparative example. It can be seen that the transfer sensitivity is further reduced as compared with III-2 and III-3 thermal transfer recording media.
- Comparative Example III-3 using a polyvinyl alcohol having a tensile strength of 8 kg / mm 2 or more measured according to JIS K 7113 and Comparative Example III- using a polyvinyl alcohol having a tensile strength of less than 8 kg / mm 2 When the transfer sensitivity is compared with No. 4, the difference is slight.
- the dye layer is made of a dye that does not contain an anthraquinone compound
- the effect of the tensile strength of polyvinyl alcohol on the transfer sensitivity is small.
- the tensile strength of polyvinyl alcohol measured based on JIS K 7113 is 8 kg / mm 2 or more, and by using a heat transferable dye containing an anthraquinone compound in the dye layer, the transfer sensitivity is remarkably high. It can be seen that
- the thermal transfer recording medium of Comparative Example III-5 the undercoat layer forming coating solution containing only polyvinyl alcohol was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example III-1 was used.
- the adhesion with the dye layer was lowered, and abnormal transfer was observed on the entire surface.
- the thermal transfer recording medium of Comparative Example III-6 the undercoat layer forming coating solution containing only polyvinylpyrrolidone was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example III-1 was used. It can be seen that, although there is no problem with the adhesion to the dye layer, the transfer sensitivity is significantly reduced.
- thermo transfer recording medium of Comparative Example III-7 a commercially available PVA-117 (manufactured by Kuraray Co., Ltd.) was used as the polyvinyl alcohol for the undercoat layer.
- This PVA-117 was based on JIS K 7113. since the measured tensile strength is less than 8 kg / mm 2, the tensile strength compared with the thermal transfer recording medium of example III-1 ⁇ III-7 with 8 kg / mm 2 or more polyvinyl alcohols, transfer sensitivity is low enough It was not satisfactory.
- the SRa is 0.10 ⁇ m
- the surface of the dye layer is extremely flat, heat fusion occurs during printing, and the high density portion The shading unevenness at was clearly confirmed.
- the volume average particle diameter of the filler particles in the dye layer is as small as 0.02 ⁇ m and the SRa is less than 0.15 ⁇ m. It turns out that it cannot suppress enough.
- the volume average particle diameter of the filler particles in the dye layer is as large as 5.0 ⁇ m and the SRa is larger than 0.70 ⁇ m, so that the transfer sensitivity is lowered. . Further, when the heat-sensitive transfer recording medium after printing was observed with an optical microscope, it was found that the filler particles slipped from the dye layer.
- Embodiment IV Examples corresponding to thermal transfer recording medium IV and comparative examples ⁇ Preparation of substrate with heat-resistant slip layer> A substrate with a heat resistant slipping layer was obtained by the same method as in the examples corresponding to the above (I) embodiment I and the comparative examples.
- Example IV-1 The undercoat layer forming coating solution IV-1 having the following composition is applied to the surface of the base material with a heat resistant slipping layer by gravure coating so that the coating amount after drying is 0.20 g / m 2.
- the undercoat layer was formed by applying and drying at 100 ° C. for 2 minutes.
- a coating solution IV-1 for forming a dye layer having the following composition was applied on the undercoat layer by a gravure coating method so that the coating amount after drying was 0.70 g / m 2 , and 90 ° C. Was dried for 1 minute to form a dye layer, and a thermal transfer recording medium of Example IV-1 was obtained.
- Example IV-2 In the heat-sensitive transfer recording medium produced in Example IV-1, an example was prepared in the same manner as in Example IV-1, except that the undercoat layer was formed with the undercoat layer forming coating solution IV-2 having the following composition. A thermal transfer recording medium of IV-2 was obtained.
- Example IV-3 In the heat-sensitive transfer recording medium produced in Example IV-1, an example was prepared in the same manner as in Example IV-1, except that the undercoat layer was formed with the undercoat layer forming coating solution IV-3 having the following composition. A thermal transfer recording medium of IV-3 was obtained.
- Example IV-4 In the heat-sensitive transfer recording medium produced in Example IV-1, the same procedure as in Example IV-1 was conducted except that the coating amount after drying of the undercoat layer was 0.03 g / m 2. A thermal transfer recording medium of IV-4 was obtained.
- Example IV-5 In the same manner as in Example IV-1, except that the coating amount after drying of the undercoat layer was 0.40 g / m 2 in the thermal transfer recording medium produced in Example IV-1. A thermal transfer recording medium of IV-5 was obtained.
- Example IV-6 In the same manner as in Example IV-1, except that the dye layer was formed with the dye layer forming coating solution IV-2 having the following composition in the heat-sensitive transfer recording medium produced in Example IV-1, Example IV- No. 6 thermal transfer recording medium was obtained.
- Example IV-7 In the same manner as in Example IV-1 except that the dye layer was formed with the dye layer forming coating solution IV-3 having the following composition in the heat-sensitive transfer recording medium produced in Example IV-1, Example IV- No. 7 thermal transfer recording medium was obtained.
- Example IV-8 In the same manner as in Example IV-1, except that the dye layer was formed with the dye layer forming coating solution IV-4 having the following composition in the heat-sensitive transfer recording medium produced in Example IV-1, Example IV- No. 8 thermal transfer recording medium was obtained.
- Example IV-9 In the same manner as in Example IV-1, except that the dye layer was formed with the dye layer forming coating solution IV-5 having the following composition in the heat-sensitive transfer recording medium produced in Example IV-1, Example IV- 9 thermal transfer recording media were obtained.
- Comparative Example IV-1 The thermal transfer recording medium of Comparative Example IV-1 was obtained in the same manner as in Example IV-1, except that the undercoat layer was not formed in the thermal transfer recording medium produced in Example IV-1.
- Example IV-2 In the thermal transfer recording medium produced in Example IV-1, a comparative example was prepared in the same manner as in Example IV-1, except that the undercoat layer was formed with the undercoat layer forming coating solution IV-4 having the following composition. A thermal transfer recording medium of IV-2 was obtained.
- Comparative Example IV-3 In the same manner as in Example IV-1, except that the dye layer was formed with the dye layer forming coating solution IV-6 having the following composition in the heat-sensitive transfer recording medium prepared in Example IV-1, Comparative Example IV- No. 3 thermal transfer recording medium was obtained.
- Example IV-4 In the thermal transfer recording medium produced in Example IV-1, the undercoat layer was formed with the above-described undercoat layer forming coating solution IV-4, and the dye layer was formed into the above-described dye layer forming coating solution IV-6.
- a thermal transfer recording medium of Comparative Example IV-4 was obtained in the same manner as in Example IV-1, except that it was formed.
- Example IV-5 In the thermal transfer recording medium produced in Example IV-1, a comparative example was prepared in the same manner as in Example IV-1, except that the undercoat layer was formed with the undercoat layer forming coating solution IV-5 having the following composition. A thermal transfer recording medium of IV-5 was obtained.
- Example IV-6 In the thermal transfer recording medium produced in Example IV-1, a comparative example was prepared in the same manner as in Example IV-1, except that the undercoat layer was formed with the undercoat layer forming coating solution IV-6 having the following composition. A thermal transfer recording medium of IV-6 was obtained.
- Example IV-7 In the thermal transfer recording medium produced in Example IV-1, a comparative example was prepared in the same manner as in Example IV-1, except that the undercoat layer was formed with the undercoat layer forming coating solution IV-7 having the following composition. A thermal transfer recording medium of IV-7 was obtained.
- Comparative Example IV-8 In the same manner as in Example IV-1, except that the dye layer was formed with the dye layer forming coating solution IV-7 having the following composition in the heat-sensitive transfer recording medium produced in Example IV-1, Comparative Example IV- No. 8 thermal transfer recording medium was obtained.
- the printing conditions are as follows. Printing environment: 23 ° C, 50% RH Applied voltage: 29V Line cycle: 0.7msec Print density: main scanning 300 dpi, sub-scanning 300 dpi
- ⁇ Wrinkles> The thermal transfer recording media of Examples IV-1 to IV-9 and Comparative Examples IV-1 to IV-9 were evaluated for wrinkles according to the following criteria. The results are shown in Table 4. ⁇ : No wrinkles on the transfer body are observed ⁇ : Almost no wrinkles on the transfer body are observed, but slight deformation and elongation of the thermal transfer recording medium are observed ⁇ : Wrinkles of the transfer body are observed on the entire surface It should be noted that if it is ⁇ or more, it is at a level where there is no practical problem.
- the thermal transfer recording medium of Example IV-4 is more closely adhered to the dye layer than the thermal transfer recording medium of Example IV-1 because the coating amount of the undercoat layer is less than 0.05 g / m 2. It can be seen that the property is slightly lowered.
- the thermal transfer recording medium of Example IV-5 has a slightly lower transfer sensitivity than the thermal transfer recording medium of Example IV-1 because the coating amount of the undercoat layer exceeds 0.30 g / m 2. You can see that
- the thermal transfer recording medium of Example IV-6 has a polyvinyl acetal content ratio on a mass basis of polyvinyl acetal having a glass transition temperature of 100 ° C. or higher and polyvinyl butyral having a glass transition temperature of 75 ° C. or lower contained in the dye layer.
- Polyvinyl butyral 95/5, and the polyvinyl butyral ratio is slightly low, which indicates that the transfer sensitivity of the low density portion is slightly lower than that of the thermal transfer recording medium of Example IV-1.
- the thermal transfer recording medium of Example IV-8 has a polyvinyl acetal content ratio based on mass of polyvinyl acetal having a glass transition temperature of 100 ° C. or higher and polyvinyl butyral having a glass transition temperature of 75 ° C. or lower contained in the dye layer.
- / Polyvinyl butyral 50/50, and the polyvinyl butyral ratio is slightly high, indicating that the transfer sensitivity of the low density portion is slightly higher than that of the thermal transfer recording medium of Example IV-1.
- the thermal transfer recording medium of Comparative Example IV-2 was obtained by using polyvinyl alcohol having a tensile strength of less than 8 kg / mm 2 measured based on JIS K 7113. As a result, the thermal transfer recording medium of Example IV-1 was used. It can be seen that the transfer sensitivity is significantly lower than that of the medium.
- the thermal transfer recording medium of Comparative Example IV-4 which uses polyvinyl alcohol having a tensile strength measured in accordance with JIS K 7113 of less than 8 kg / mm 2 and the dye layer is composed of a dye containing no anthraquinone compound, is a comparative example. It can be seen that the transfer sensitivity is further reduced as compared with IV-2 and IV-3 thermal transfer recording media.
- Comparative Example IV-3 using a polyvinyl alcohol having a tensile strength of 8 kg / mm 2 or more measured according to JIS K 7113 and Comparative Example IV- using a polyvinyl alcohol having a tensile strength of less than 8 kg / mm 2 When the transfer sensitivity is compared with No. 4, the difference is slight.
- the dye layer is made of a dye that does not contain an anthraquinone compound
- the effect of the tensile strength of polyvinyl alcohol on the transfer sensitivity is small.
- the tensile strength of polyvinyl alcohol measured based on JIS K 7113 is 8 kg / mm 2 or more, and by using a heat transferable dye containing an anthraquinone compound in the dye layer, the transfer sensitivity is remarkably high. It can be seen that
- thermo transfer recording medium of Comparative Example IV-5 a coating liquid for forming an undercoat layer containing only polyvinyl alcohol was applied and dried to form an undercoat layer.
- the thermal transfer recording medium of Example IV-1 As compared with, the adhesion with the dye layer was lowered, and abnormal transfer was observed on the entire surface.
- the thermal transfer recording medium of Comparative Example IV-6 the undercoat layer forming coating solution containing only polyvinylpyrrolidone was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example IV-1 was obtained. It can be seen that, although there is no problem with the adhesion to the dye layer, the transfer sensitivity is significantly reduced.
- thermo transfer recording medium of Comparative Example IV-7 a commercially available PVA-117 (manufactured by Kuraray Co., Ltd.) was used as the polyvinyl alcohol for the undercoat layer.
- This PVA-117 was based on JIS K 7113. since the measured tensile strength is less than 8 kg / mm 2, the tensile strength compared to example IV-1 ⁇ IV-9 of the thermal transfer recording medium with 8 kg / mm 2 or more polyvinyl alcohols, transfer sensitivity is low enough It was not satisfactory.
- Embodiment V Example corresponding to thermal transfer recording medium V and comparative example ⁇ Preparation of substrate with heat-resistant slip layer> A substrate with a heat resistant slipping layer was obtained by the same method as in the examples corresponding to the above (I) embodiment I and the comparative examples.
- Example V-1 The undercoat layer forming coating solution V-1 having the following composition is applied to the surface of the base material with a heat-resistant slip layer by gravure coating so that the coating amount after drying is 0.20 g / m 2.
- the undercoat layer was formed by applying and drying at 100 ° C. for 2 minutes.
- a dye layer forming coating solution V-1 having the following composition was applied by a gravure coating method so that the coating amount after drying was 0.70 g / m 2 , and 90 ° C. Was dried for 1 minute to form a dye layer, and a thermal transfer recording medium of Example V-1 was obtained.
- Non-reactive silicone oil (Number average molecular weight 8000, side chain polyether-modified silicone oil) 0.1 part reactive silicone oil (number average molecular weight 3000, side chain diamine-modified silicone oil) 0.1 part C.I. I. Solvent Blue 63 (anthraquinone dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- Example V-2 In the heat-sensitive transfer recording medium produced in Example V-1, the same applies as in Example V-1, except that the undercoat layer was formed with the undercoat layer forming coating solution V-2 having the following composition. A thermal transfer recording medium of V-2 was obtained.
- Example V-3 In the heat-sensitive transfer recording medium produced in Example V-1, the same applies as in Example V-1, except that the undercoat layer was formed with the undercoat layer forming coating solution V-3 having the following composition. A thermal transfer recording medium of V-3 was obtained.
- Example V-4 In the heat-sensitive transfer recording medium produced in Example V-1, the same procedure as in Example V-1 was conducted except that the coating amount after drying of the undercoat layer was 0.03 g / m 2. A thermal transfer recording medium of V-4 was obtained.
- Example V-5 In the heat-sensitive transfer recording medium produced in Example V-1, the same applies as in Example V-1, except that the coating amount after drying of the undercoat layer is 0.40 g / m 2. A thermal transfer recording medium of V-5 was obtained.
- Example V-6 In the thermal transfer recording medium produced in Example V-1, Example V- was prepared in the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-2 having the following composition. No. 6 thermal transfer recording medium was obtained.
- Non-reactive silicone oil (number average molecular weight 8000, both-end long chain alkyl-modified silicone oil) 0.1 part reactive silicone oil (number average molecular weight 3000, side chain diamine-modified silicone oil) 0.1 part C.I. I. Solvent Blue 63 (anthraquinone dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- Example V-7 In the thermal transfer recording medium produced in Example V-1, Example V- was prepared in the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-3 having the following composition. No. 7 thermal transfer recording medium was obtained.
- Non-reactive silicone oil (Number average molecular weight 8000, side chain polyether-modified silicone oil) 0.1 part reactive silicone oil (number average molecular weight 3000, both terminal type amino-modified silicone oil) 0.1 part C.I. I. Solvent Blue 63 (anthraquinone dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- Comparative Example V-1 A thermal transfer recording medium of Comparative Example V-1 was obtained in the same manner as in Example V-1, except that the undercoat layer was not formed in the thermal transfer recording medium produced in Example V-1.
- Example V-2 In the thermal transfer recording medium produced in Example V-1, a comparative example was prepared in the same manner as in Example V-1, except that the undercoat layer was formed with the undercoat layer forming coating solution V-4 having the following composition. A thermal transfer recording medium of V-2 was obtained.
- Comparative Example V-3 In the thermal transfer recording medium produced in Example V-1, Comparative Example V- was prepared in the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-4 having the following composition. No. 3 thermal transfer recording medium was obtained.
- Non-reactive silicone oil (Number average molecular weight 8000, side chain polyether modified silicone oil) 0.1 part reactive silicone oil (number average molecular weight 3000, side chain diamine-modified silicone oil) 0.1 part C.I. I. Solvent Blue 266 (azo dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- Example V-4 In the thermal transfer recording medium produced in Example V-1, the undercoat layer was formed with the above-described undercoat layer forming coating solution V-4, and the dye layer was formed into the above-described dye layer forming coating solution V-4.
- a thermal transfer recording medium of Comparative Example V-4 was obtained in the same manner as in Example V-1, except that it was formed.
- Example V-5 In the heat-sensitive transfer recording medium produced in Example V-1, a comparative example was prepared in the same manner as in Example V-1, except that the undercoat layer was formed with the undercoat layer forming coating solution V-5 having the following composition. A thermal transfer recording medium of V-5 was obtained.
- Example V-6 In the thermal transfer recording medium produced in Example V-1, a comparative example was prepared in the same manner as in Example V-1, except that the undercoat layer was formed with the undercoat layer forming coating solution V-6 having the following composition. A thermal transfer recording medium of V-6 was obtained.
- Example V-7 In the thermal transfer recording medium produced in Example V-1, a comparative example was prepared in the same manner as in Example V-1, except that the undercoat layer was formed with the undercoat layer forming coating solution V-7 having the following composition. A thermal transfer recording medium of V-7 was obtained.
- Comparative Example V-8 In the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-5 having the following composition in the heat-sensitive transfer recording medium produced in Example V-1, Comparative Example V- No. 8 thermal transfer recording medium was obtained.
- Non-reactive silicone oil (Number average molecular weight 8000, side chain polyether-modified silicone oil) 0.2 part C.I. I. Solvent Blue 63 (anthraquinone dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- Comparative Example V-9 Comparative Example V- was the same as Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-6 having the following composition in the thermal transfer recording medium produced in Example V-1. 9 thermal transfer recording media were obtained.
- Comparative Example V-10 In the thermal transfer recording medium prepared in Example V-1, Comparative Example V- was prepared in the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-7 having the following composition. Ten thermal transfer recording media were obtained.
- Non-reactive silicone oil (Number average molecular weight 8000, side chain polyether-modified silicone oil) 0.1 part non-reactive silicone oil (number average molecular weight 3000, side chain polyether-modified silicone oil) 0.1 part C.I. I. Solvent Blue 63 (anthraquinone dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- Comparative Example V-11 In the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-8 having the following composition in the heat-sensitive transfer recording medium produced in Example V-1, Comparative Example V- 11 thermal transfer recording media were obtained.
- Comparative Example V-12 In the same manner as in Example V-1, except that the dye layer was formed with the dye layer forming coating solution V-9 having the following composition in the thermal transfer recording medium produced in Example V-1, Comparative Example V- 12 thermal transfer recording media were obtained.
- Non-reactive silicone oil (number average molecular weight 7000, side chain polyether-modified silicone oil) 0.1 part reactive silicone oil (number average molecular weight 4000, side chain diamine-modified silicone oil) 0.1 part C.I. I. Solvent Blue 63 (anthraquinone dye) 6.0 parts Polyvinyl acetal 4.0 parts Toluene 44.9 parts Methyl ethyl ketone 44.9 parts
- thermo transfer image receiving sheet was obtained by the same method as in the example corresponding to the embodiment III and the comparative example.
- the printing conditions are as follows. Printing environment: 23 ° C, 50% RH Applied voltage: 29V Line cycle: 0.7msec Print density: main scanning 300 dpi, sub-scanning 300 dpi
- thermal transfer recording media of Examples V-1 to V-7 are clearly faster than the thermal transfer recording media of Comparative Example V-1 provided with no undercoat layer. It was found that the transfer sensitivity at the time was high, the dye used in the dye layer could be reduced, and the cost reduction effect was great. In addition, it has been found that there is no practical problem with adhesion to the dye layer, abnormal transfer occurring in the middle density area during printing, and adhesion between the water-based receiving layer and the dye layer occurring in the high density area to the middle density area. It was.
- the thermal transfer recording medium of Example V-4 is more closely adhered to the dye layer than the thermal transfer recording medium of Example V-1 because the coating amount of the undercoat layer is less than 0.05 g / m 2. It can be seen that the property is slightly lowered.
- the thermal transfer recording medium of Example V-5 has a slightly lower transfer sensitivity than the thermal transfer recording medium of Example V-1 because the coating amount of the undercoat layer exceeds 0.30 g / m 2. You can see that
- the thermal transfer recording medium of Example V-6 was not the side-chain polyether-modified silicone oil but the long-chain alkyl-modified silicone oil as the non-reactive silicone oil. It can be seen that the occurrence of sticking between the water-based receiving layer and the dye layer is slightly observed in the high density part to the medium density part as compared with the recording medium.
- the heat-sensitive transfer recording medium of Example V-7 was a water-based receiving layer in a high-concentration part or a medium-concentration part, probably because a double-end type amino-modified silicone oil was used as a reactive silicone oil instead of a side chain diamine-modified silicone oil. Although the occurrence of sticking to the dye layer is suppressed, it can be seen that the occurrence of abnormal transfer is slightly observed in the middle density portion as compared with the thermal transfer recording medium of Example V-1.
- the thermal transfer recording medium of Comparative Example V-2 was obtained by using polyvinyl alcohol having a tensile strength measured in accordance with JIS K 7113 of less than 8 kg / mm 2. It can be seen that the transfer sensitivity is significantly lower than that of the medium.
- the thermal transfer recording medium of Comparative Example V-3 in which the dye layer is composed of a dye not containing an anthraquinone compound, has a significantly lower transfer sensitivity than the thermal transfer recording medium of Example V-1.
- the thermal transfer recording medium of Comparative Example V-4 which uses polyvinyl alcohol having a tensile strength of less than 8 kg / mm 2 measured according to JIS K 7113 and the dye layer is made of a dye containing no anthraquinone compound, is a comparative example. It can be seen that the transfer sensitivity is further reduced as compared with the thermal transfer recording media of V-2 and V-3.
- the difference is slight.
- the dye layer is made of a dye that does not contain an anthraquinone compound, the effect of the tensile strength of polyvinyl alcohol on the transfer sensitivity is small. From this, the tensile strength of polyvinyl alcohol measured based on JIS K 7113 is 8 kg / mm 2 or more, and by using a heat transferable dye containing an anthraquinone compound in the dye layer, the transfer sensitivity is remarkably high. It can be seen that
- the thermal transfer recording medium of Comparative Example V-5 the undercoat layer forming coating solution containing only polyvinyl alcohol was applied and dried to form the undercoat layer. As a result, the thermal transfer recording medium of Example V-1 was obtained. As compared with the above, the adhesion with the dye layer was lowered, and abnormal transfer at the middle density portion was observed on the entire surface.
- the thermal transfer recording medium of Comparative Example V-6 the undercoat layer forming coating solution containing only polyvinylpyrrolidone was applied and dried to form the undercoat layer.
- the thermal transfer recording medium of Example V-1 was obtained. It can be seen that, although there is no problem with the adhesion to the dye layer, the transfer sensitivity is significantly reduced.
- thermo transfer recording medium of Comparative Example V-7 a commercially available PVA-117 (manufactured by Kuraray Co., Ltd.) was used as the polyvinyl alcohol for the undercoat layer.
- This PVA-117 was based on JIS K 7113. since the measured tensile strength is less than 8 kg / mm 2, the tensile strength compared with the thermal transfer recording medium of example V-1 ⁇ V-7 with 8 kg / mm 2 or more polyvinyl alcohols, transfer sensitivity is low enough It was not satisfactory.
- the number average molecular weight is 3000.
- the dye layer contains a non-reactive silicone oil rather than a reactive material, abnormal transfer occurs at the middle density portion. It turns out that it cannot suppress enough.
- the thermal transfer recording medium of Comparative Example V-11 has a number average molecular weight of 8000, but is not non-reactive and contains reactive silicone oil in the dye layer. It can be seen that the occurrence of sticking between the receiving layer and the dye layer cannot be sufficiently suppressed.
- the non-reactive silicone oil having a number average molecular weight of less than 8000 and the reactive silicone oil having a number average molecular weight of greater than 3000 are contained in the dye layer. It can be seen that the occurrence of sticking between the water-based receiving layer and the dye layer at the medium concentration portion and the occurrence of abnormal transfer at the medium concentration portion cannot be sufficiently suppressed.
- the thermal transfer recording medium obtained by the present invention can be used in a sublimation transfer printer, and in combination with high speed and high functionality of the printer, various images can be easily formed in full color. It can be widely used for cards such as identification cards and amusement output.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
(I)高速印画時における転写感度が高く、すなわち、染料層に使用する染料を低減することでコストダウンの効果が大きく、また、印画における異常転写を防止することができる感熱転写記録媒体を提供すること
(II)高速印画時における転写感度が高く、すなわち、染料層に使用する染料を低減することでコストダウンの効果が大きく、また、印画における異常転写および熱や圧力等の影響により発生する印画シワを十分に防止することができる感熱転写記録媒体を提供すること
(III)高速印画時における転写感度が高く、すなわち、染料層に使用する染料を低減することでコストダウンの効果が大きく、また、印画における異常転写を防止することができ、しかも水系受容層が形成された熱転写受像シートに熱転写によって画像を形成した際に、高濃度部で発生する濃淡ムラを改善することができる感熱転写記録媒体を提供すること
(IV)高速印画時における転写感度が低濃度部および高濃度部ともに高く、すなわち、染料層に使用する染料を低減することでコストダウンの効果が大きく、また、印画における異常転写および印画の際に生じる熱や圧力等の影響により発生するシワを防止することができる感熱転写記録媒体を提供すること
(V)高速印画時における転写感度が高く、すなわち、染料層に使用する染料を低減することでコストダウンの効果が大きく、しかも水系受容層が形成された熱転写受像シートに熱転写によって画像を形成した際に、高濃度部乃至中濃度部で発生する水系受容層と染料層との貼り付きと、中濃度部で発生する染料層の異常転写との双方を改善することができる感熱転写記録媒体を提供すること
を目的とするものである。
基材10としては、熱転写における熱圧で軟化変形しない耐熱性と強度が必要とされ、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、セロファン、アセテート、ポリカーボネート、ポリサルフォン、ポリイミド、ポリビニルアルコール、芳香族ポリアミド、アラミド、ポリスチレン等の合成樹脂のフィルム、およびコンデンサー紙、パラフィン紙などの紙類等を単独で、または組み合わされた複合体として使用可能である。中でも、物性面、加工性、コスト面などを考慮するとポリエチレンテレフタレートフィルムが好ましい。また、その厚さは、操作性、加工性を考慮し、2μm以上、50μm以下の範囲のものが使用可能であるが、転写適性や加工性等のハンドリング性を考慮すると、2μm以上、9μm以下程度のものが好ましい。
基材10としては、前記感熱転写記録媒体Iを構成する基材10と同様のものを用いることができる。また、基材10においては、耐熱滑性層40または/および下引き層20を形成する面に、前記感熱転写記録媒体Iと同様にして、接着処理を施すことも可能である。
基材10としては、前記感熱転写記録媒体Iを構成する基材10と同様のものを用いることができる。また、基材10においては、耐熱滑性層40または/および下引き層20を形成する面に、前記感熱転写記録媒体Iと同様にして、接着処理を施すことも可能である。
前記基材には、中空粒子と接着成分(水系バインダー)とを含む水系中空粒子層が形成される。熱転写方式の印画は、サーマルヘッドからの加熱により行われ、サーマルヘッドと受像シートの基材との良好な密着性が要求される。水系中空粒子層が形成された基材は、クッション性を有するので、サーマルヘッドとの密着性が向上し、印画の際により均一な画像を得ることが可能である。
基材に形成された水系中空粒子層の上に、水系バインダーと離型剤とを含む水系受容層が形成される。該水系バインダーとしては、染料に対する親和性が高く、染料染着性の良好な染着性樹脂を好適に使用することができる。
前記水系中空粒子層および水系受容層には、一般の塗被紙製造において使用される濡れ剤、分散剤、増粘剤、消泡剤、着色剤、帯電防止剤、防腐剤等の各種助剤を適宜添加することができる。水系中空粒子層および水系受容層は、例えば、バーコーター、グラビアコーター、コンマコーター、ブレードコーター、エアーナイフコーター、ゲートロールコーター、ダイコーター、カーテンコーター、スライドビードコーター等の公知のコーターを使用して、所定の塗布液を各層ごとに、あるいは2層以上を同時に塗工、乾燥して形成することができる。
基材10としては、前記感熱転写記録媒体Iを構成する基材10と同様のものを用いることができる。また、基材10においては、耐熱滑性層40または/および下引き層20を形成する面に、前記感熱転写記録媒体Iと同様にして、接着処理を施すことも可能である。
基材10としては、前記感熱転写記録媒体Iを構成する基材10と同様のものを用いることができる。また、基材10においては、耐熱滑性層40または/および下引き層20を形成する面に、前記感熱転写記録媒体Iと同様にして、接着処理を施すことも可能である。
<耐熱滑性層付き基材の作製>
基材として、厚さ4.5μmの片面易接着処理済ポリエチレンテレフタレートフィルムを使用し、その非易接着処理面に、下記組成の耐熱滑性層形成用塗布液を、グラビアコーティング法により、乾燥後の塗布量が0.5g/m2になるように塗布し、100℃で1分間乾燥することで耐熱滑性層付き基材を得た。
シリコン変性アクリル樹脂(東亜合成(株)製US-350)50.0部
メチルエチルケトン 50.0部
攪拌機、温度計、窒素導入菅、還流冷却器を備えた反応容器中に、酢酸ビニル100部およびメタノール10部を仕込み、窒素ガスをバブリング、脱気し、還流状態になるまで昇温した後、20分間還流させてから、対酢酸ビニルでアゾビスイソブチロニトリルを0.3モル%添加した。次いで、20時間重合させた後、冷却して重合を停止し、ポリ酢酸ビニルのメタノール溶液を得た。重合率は95%であった。次いで、連続脱モノマー塔で該メタノール溶液中の残存モノマー量が0.06%になるまでモノマーを追い出し、メタノールを添加してポリ酢酸ビニル濃度を50%に調整してから、対酢酸ビニルモノマー単位で5ミリモルの水酸化ナトリウムをメタノール溶液で加えて、40℃で90分間ケン化を行った。析出したケン化物を酢酸により中和した後、生成したポリビニルアルコール系樹脂組成物を濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的のポリビニルアルコールを得た。得られたポリビニルアルコールは、ケン化度94モル%、平均重合度2200であった。また、ケン化の途中で溶液を抜き取ることにより、ケン化度88モル%、平均重合度2200のポリビニルアルコールを得た。
得られた各ポリビニルアルコール15.0部を90℃の熱水85.0部中に溶解させ、ガラスシャーレ上に流延し、室温にて24時間乾燥後の厚さが0.06mmのフィルムを得た。得られた各フィルムをJIS K 7113に基づいて2号ダンベル形状に切り抜き、引張速度200mm/分で引張試験を行い、抗張力を測定した。その結果、ケン化度94モル%、平均重合度2200のポリビニルアルコールが8.2kg/mm2、また、ケン化度88モル%、平均重合度2200のポリビニルアルコールが6.8kg/mm2の値を示した。さらに、市販品であるクラレポバールPVA-117((株)クラレ製)を用いて上記と同様にフィルムを作製し、抗張力を測定したところ、7.4kg/mm2であった。
耐熱滑性層付き基材の易接着処理面に、下記組成の下引き層形成用塗布液I-1を、グラビアコーティング法により、乾燥後の塗布量が0.20g/m2になるように塗布し、100℃で2分間乾燥することで、下引き層を形成した。引き続き、その下引き層の上に、下記組成の染料層形成用塗布液I-1を、グラビアコーティング法により、乾燥後の塗布量が0.70g/m2になるように塗布し、90℃で1分間乾燥することで、染料層を形成し、実施例I-1の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例I-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液I-2にて形成した以外は、実施例I-1と同様にして、実施例I-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例I-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液I-3にて形成した以外は、実施例I-1と同様にして、実施例I-3の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 1.5部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
3.5部
純水 57.0部
イソプロピルアルコール 38.0部
実施例I-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.03g/m2になるようにした以外は、実施例I-1と同様にして、実施例I-4の感熱転写記録媒体を得た。
実施例I-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.40g/m2になるようにした以外は、実施例I-1と同様にして、実施例I-5の感熱転写記録媒体を得た。
実施例I-1で作製した感熱転写記録媒体において、下引き層を形成しない以外は、実施例I-1と同様にして、比較例I-1の感熱転写記録媒体を得た。
実施例I-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液I-4にて形成した以外は、実施例I-1と同様にして、比較例I-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力6.8kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例I-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液I-2にて形成した以外は、実施例I-1と同様にして、比較例I-3の感熱転写記録媒体を得た。
C.I.ソルベントブルー266(アゾ系染料) 3.0部
ポリビニルアセタール 2.0部
トルエン 47.5部
メチルエチルケトン 47.5部
実施例I-1で作製した感熱転写記録媒体において、下引き層を上述した下引き層形成用塗布液I-4にて形成し、染料層を上述した染料層形成用塗布液I-2にて形成した以外は、実施例I-1と同様にして、比較例I-4の感熱転写記録媒体を得た。
実施例I-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液I-5にて形成した以外は、実施例I-1と同様にして、比較例I-5の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例I-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液I-6にて形成した以外は、実施例I-1と同様にして、比較例I-6の感熱転写記録媒体を得た。
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例I-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液I-7にて形成した以外は、実施例I-1と同様にして、比較例I-7の感熱転写記録媒体を得た。
ポリビニルアルコール
((株)クラレ製PVA-117、抗張力7.4kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
基材として、厚さ188μmの白色発泡ポリエチレンテレフタレートフィルムを使用し、その一方の面に下記組成の受像層形成用塗布液を、グラビアコーティング法により、乾燥後の塗布量が5.0g/m2になるように塗布し、乾燥することで、感熱転写用の被転写体を作製した。
塩化ビニル-酢酸ビニル-ビニルアルコール共重合体 19.5部
アミノ変性シリコーンオイル 0.5部
トルエン 40.0部
メチルエチルケトン 40.0部
実施例I-1~I-5、比較例I-1~I-7の感熱転写記録媒体について、感熱転写記録媒体の染料層の上に、幅24mm、長さ150mmのセロハンテープを貼り、その後すぐに剥がしたときの、セロハンテープ側への染料層の付着の有無を調べることにより、染料層の密着性を評価した。その結果を表1に示す。
○:染料層の付着が、認められない
△:染料層の付着が、ごく僅かに認められる
×:染料層の付着が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例I-1~I-5、比較例I-1~I-7の感熱転写記録媒体を使用し、サーマルシミュレーターにてベタ印画を行い、最高反射濃度を測定して印画評価を行った。その結果を表1に示す。なお、最高反射濃度はX-Rite社製の分光濃度計「X-Rite528」にて測定した値である。
印画環境:23℃、50%RH
印加電圧:29V
ライン周期:0.7msec
印画密度:主走査300dpi、副走査300dpi
実施例I-1~I-5、比較例I-1~I-7の感熱転写記録媒体について、以下の基準にて異常転写を評価した。その結果を表1に示す。
○:被転写体への異常転写が、認められない
△:被転写体への異常転写が、ごく僅かに認められる
×:被転写体への異常転写が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
<ポリビニルアルコールの調製>
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、ケン化度94モル%、平均重合度2200のポリビニルアルコールと、ケン化度88モル%、平均重合度2200のポリビニルアルコールとを得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、抗張力を測定した。その結果、ケン化度94モル%、平均重合度2200のポリビニルアルコールが8.2kg/mm2、ケン化度88モル%、平均重合度2200のポリビニルアルコールが6.8kg/mm2、クラレポバールPVA-117が7.4kg/mm2であった。
基材として、厚さ4.5μmの片面易接着処理済ポリエチレンテレフタレートフィルムを使用し、その非易接着処理面に、下記組成の耐熱滑性層形成用塗布液II-1を、グラビアコーティング法により、乾燥後の塗布量が1.0g/m2になるように塗布し、100℃で1分間乾燥することで耐熱滑性層付き基材を得た。
アクリルポリオール(固形分50%) 20.0部
リン酸エステル(融点15℃) 2.0部
リン酸エステル(融点70℃) 2.0部
ステアリン酸亜鉛(融点115~125℃) 2.0部
タルク(平均粒子径1.0μm) 1.0部
タルク(平均粒子径2.5μm) 4.0部
2,6-トリレンジイソシアネートプレポリマー 5.0部
トルエン 49.5部
メチルエチルケトン 20.0部
酢酸エチル 5.0部
ポリビニルアルコール(抗張力8.2kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例II-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液II-2にて形成した以外は、実施例II-1と同様にして、実施例II-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例II-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液II-3にて形成した以外は、実施例II-1と同様にして、実施例II-3の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 1.5部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
3.5部
純水 57.0部
イソプロピルアルコール 38.0部
実施例II-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.03g/m2になるようにした以外は、実施例II-1と同様にして、実施例II-4の感熱転写記録媒体を得た。
実施例II-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.40g/m2になるようにした以外は、実施例II-1と同様にして、実施例II-5の感熱転写記録媒体を得た。
実施例II-1で作製した感熱転写記録媒体において、耐熱滑性層を下記組成の耐熱滑性層形成用塗布液II-2にて形成した以外は、実施例II-1と同様にして、実施例II-6の感熱転写記録媒体を得た。
アクリルポリオール(固形分50%) 20.0部
リン酸エステル(融点15℃) 2.0部
リン酸エステル(融点70℃) 2.0部
ステアリン酸亜鉛(融点115~125℃) 2.0部
タルク(平均粒子径2.5μm) 5.0部
タルク(平均粒子径3.5μm) 1.0部
2,6-トリレンジイソシアネートプレポリマー 5.0部
トルエン 46.0部
メチルエチルケトン 20.0部
酢酸エチル 5.0部
実施例II-1で作製した感熱転写記録媒体において、耐熱滑性層を下記組成の耐熱滑性層形成用塗布液II-3にて形成した以外は、実施例II-1と同様にして、実施例II-7の感熱転写記録媒体を得た。
アクリルポリオール(固形分50%) 20.0部
リン酸エステル(融点15℃) 2.0部
リン酸エステル(融点70℃) 2.0部
ステアリン酸亜鉛(融点115~125℃) 2.0部
タルク(平均粒子径2.5μm) 1.0部
2,6-トリレンジイソシアネートプレポリマー 5.0部
トルエン 47.5部
メチルエチルケトン 20.0部
酢酸エチル 5.0部
実施例II-1で作製した感熱転写記録媒体において、下引き層を形成しない以外は、実施例II-1と同様にして、比較例II-1の感熱転写記録媒体を得た。
実施例II-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液II-4にて形成した以外は、実施例II-1と同様にして、比較例II-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力6.8kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例II-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液II-2にて形成した以外は、実施例II-1と同様にして、比較例II-3の感熱転写記録媒体を得た。
C.I.ソルベントブルー266(アゾ系染料) 3.0部
ポリビニルアセタール 2.0部
トルエン 47.5部
メチルエチルケトン 47.5部
実施例II-1で作製した感熱転写記録媒体において、下引き層を上述した下引き層形成用塗布液II-4にて形成し、染料層を上述した染料層形成用塗布液II-2にて形成した以外は、実施例II-1と同様にして、比較例II-4の感熱転写記録媒体を得た。
実施例II-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液II-5にて形成した以外は、実施例II-1と同様にして、比較例II-5の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例II-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液II-6にて形成した以外は、実施例II-1と同様にして、比較例II-6の感熱転写記録媒体を得た。
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例II-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液II-7にて形成した以外は、実施例II-1と同様にして、比較例II-7の感熱転写記録媒体を得た。
ポリビニルアルコール
((株)クラレ製PVA-117、抗張力7.4kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例II-1で作製した感熱転写記録媒体において、耐熱滑性層を下記組成の耐熱滑性層形成用塗布液II-4にて形成した以外は、実施例II-1と同様にして、比較例II-8の感熱転写記録媒体を得た。
アクリルポリオール(固形分50%) 20.0部
ステアリン酸亜鉛(融点115~125℃) 2.0部
タルク(平均粒子径0.6μm) 4.0部
2,6-トリレンジイソシアネートプレポリマー 5.0部
トルエン 49.5部
メチルエチルケトン 20.0部
酢酸エチル 5.0部
実施例II-1で作製した感熱転写記録媒体において、耐熱滑性層を下記組成の耐熱滑性層形成用塗布液II-5にて形成した以外は、実施例II-1と同様にして、比較例II-9の感熱転写記録媒体を得た。
アクリルポリオール(固形分50%) 20.0部
リン酸エステル(融点15℃) 2.0部
リン酸エステル(融点70℃) 2.0部
ステアリン酸亜鉛(融点115~125℃) 2.0部
タルク(平均粒子径2.5μm) 5.0部
タルク(平均粒子径3.5μm) 2.0部
2,6-トリレンジイソシアネートプレポリマー 5.0部
トルエン 46.0部
メチルエチルケトン 20.0部
酢酸エチル 5.0部
実施例II-1で作製した感熱転写記録媒体において、耐熱滑性層を下記組成の耐熱滑性層形成用塗布液II-6にて形成した以外は、実施例II-1と同様にして、比較例II-10の感熱転写記録媒体を得た。
アクリルポリオール(固形分50%) 20.0部
リン酸エステル(融点15℃) 1.0部
リン酸エステル(融点70℃) 4.0部
ステアリン酸亜鉛(融点115~125℃) 2.0部
タルク(平均粒子径1.0μm) 1.0部
タルク(平均粒子径2.5μm) 4.0部
2,6-トリレンジイソシアネートプレポリマー 5.0部
トルエン 49.5部
メチルエチルケトン 20.0部
酢酸エチル 5.0部
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、感熱転写用の被転写体を作製した。
非接触式の測定方法であるレーザ顕微鏡による測定方法を採用し、測定装置としてオリンパス(株)製の走査型共焦点レーザ顕微鏡「OLS1100」を用いた。100倍の対物レンズを選択し、測定した画像をY軸方向に11分割して、分割した境界となる位置で、X軸方向におけるカットオフ値1/3の時のRa値の計測をそれぞれ行った。得られた10点のRa値を平均し、耐熱滑性層のRa値とした。平均値αは、150℃、10分間の条件で静置する前の値で、平均値βは、該条件で静置した後の値である。また、平均値αと平均値βとの差も算出した。その結果を表2に示す。
実施例II-1~II-7、比較例II-1~II-10の感熱転写記録媒体について、感熱転写記録媒体の染料層の上に、幅24mm、長さ150mmのセロハンテープを貼り、その後すぐに剥がしたときの、セロハンテープ側への染料層の付着の有無を調べることにより、染料層の密着性を評価した。その結果を表2に示す。
○:染料層の付着が、認められない
△:染料層の付着が、ごく僅かに認められる
×:染料層の付着が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例II-1~II-7、比較例II-1~II-10の感熱転写記録媒体について、染料層面と被転写体とをそれぞれ重ね、サーマルヘッドを用いて染料を転写させて画像形成を行い、最高反射濃度を測定して印画評価を行った。その結果を表2に示す。なお、最高反射濃度はX-Rite社製の分光濃度計「X-Rite528」にて測定した値である。
実施例II-1~II-7、比較例II-1~II-10の感熱転写記録媒体について、以下の基準にて異常転写を評価した。その結果を表2に示す。
○:被転写体への異常転写が、認められない
△:被転写体への異常転写が、ごく僅かに認められる
×:被転写体への異常転写が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例II-1~II-7、比較例II-1~II-10の感熱転写記録媒体について、以下の基準にて印画シワを評価した。その結果を表2に示す。
○:印画シワが、認められない
△:印画シワが、ごく僅かに認められる
×:印画シワが、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例II-1~II-7、比較例II-1~II-10の感熱転写記録媒体について、以下の基準にて印画物の画質を評価した。その結果を表2に示す。
○:濃度ムラがなく、画質に問題がない
×:濃度ムラが生じ、画質に問題がある
<耐熱滑性層付き基材の作製>
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、耐熱滑性層付き基材を得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、ケン化度94モル%、平均重合度2200のポリビニルアルコールと、ケン化度88モル%、平均重合度2200のポリビニルアルコールとを得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、抗張力を測定した。その結果、ケン化度94モル%、平均重合度2200のポリビニルアルコールが8.2kg/mm2、ケン化度88モル%、平均重合度2200のポリビニルアルコールが6.8kg/mm2、クラレポバールPVA-117が7.4kg/mm2であった。
耐熱滑性層付き基材の易接着処理面に、下記組成の下引き層形成用塗布液III-1を、グラビアコーティング法により、乾燥後の塗布量が0.20g/m2になるように塗布し、100℃で2分間乾燥することで、下引き層を形成した。引き続き、その下引き層の上に、下記組成の染料層形成用塗布液III-1を、グラビアコーティング法により、乾燥後の塗布量が0.70g/m2になるように塗布し、90℃で1分間乾燥することで、染料層を形成し、実施例III-1の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
シリコーンフィラー粒子(体積平均粒子径2.0μm) 0.2部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例III-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液III-2にて形成した以外は、実施例III-1と同様にして、実施例III-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例III-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液III-3にて形成した以外は、実施例III-1と同様にして、実施例III-3の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 1.5部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
3.5部
純水 57.0部
イソプロピルアルコール 38.0部
実施例III-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.03g/m2になるようにした以外は、実施例III-1と同様にして、実施例III-4の感熱転写記録媒体を得た。
実施例III-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.40g/m2になるようにした以外は、実施例III-1と同様にして、実施例III-5の感熱転写記録媒体を得た。
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-2にて形成した以外は、実施例III-1と同様にして、実施例III-6の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径0.7μm) 0.04部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.98部
メチルエチルケトン 44.98部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-3にて形成した以外は、実施例III-1と同様にして、実施例III-7の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径2.0μm) 0.3部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.85部
メチルエチルケトン 44.85部
実施例III-1で作製した感熱転写記録媒体において、下引き層を形成しない以外は、実施例III-1と同様にして、比較例III-1の感熱転写記録媒体を得た。
実施例III-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液III-4にて形成した以外は、実施例III-1と同様にして、比較例III-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力6.8kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-4にて形成した以外は、実施例III-1と同様にして、比較例III-3の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径2.0μm) 0.2部
C.I.ソルベントブルー266(アゾ系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例III-1で作製した感熱転写記録媒体において、下引き層を上述した下引き層形成用塗布液III-4にて形成し、染料層を上述した染料層形成用塗布液III-4にて形成した以外は、実施例III-1と同様にして、比較例III-4の感熱転写記録媒体を得た。
実施例III-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液III-5にて形成した以外は、実施例III-1と同様にして、比較例III-5の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例III-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液III-6にて形成した以外は、実施例III-1と同様にして、比較例III-6の感熱転写記録媒体を得た。
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例III-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液III-7にて形成した以外は、実施例III-1と同様にして、比較例III-7の感熱転写記録媒体を得た。
ポリビニルアルコール
((株)クラレ製PVA-117、抗張力7.4kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-5にて形成した以外は、実施例III-1と同様にして、比較例III-8の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-6にて形成した以外は、実施例III-1と同様にして、比較例III-9の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径0.7μm) 0.02部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.99部
メチルエチルケトン 44.99部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-7にて形成した以外は、実施例III-1と同様にして、比較例III-10の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径2.0μm) 0.4部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.8部
メチルエチルケトン 44.8部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-8にて形成した以外は、実施例III-1と同様にして、比較例III-11の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径0.02μm) 0.2部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例III-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液III-9にて形成した以外は、実施例III-1と同様にして、比較例III-12の感熱転写記録媒体を得た。
シリコーンフィラー粒子(体積平均粒子径5.0μm) 0.2部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
基材として坪量180g/m2のアート紙を用い、該基材に下記組成の水系中空粒子層形成用塗布液を、グラビアコーティング法により、乾燥後の塗布量が10g/m2になるように塗布し、乾燥した後に、40℃の環境下で1週間エージングすることで、水系中空粒子層付き基材を得た。
アクリロニトリルおよびメタクリロニトリルを主成分とする共重合体からなる
既発泡中空粒子(体積平均粒子径3.2μm、体積中空率85%)
45.0部
ポリビニルアルコール 10.0部
塩化ビニル-酢酸ビニル共重合体分散物
(塩化ビニル/酢酸ビニル(質量比)=70/30、ガラス転移温度64℃)
45.0部
水 200.0部
ウレタン樹脂(ガラス転移温度-20℃) 96.0部
会合型ウレタン系増粘剤 1.0部
スルホン酸系界面活性剤 2.0部
シリコーンオイル 1.0部
水 200.0部
実施例III-1~III-7、比較例III-1~III-12の感熱転写記録媒体について、感熱転写記録媒体の染料層の上に、幅24mm、長さ150mmのセロハンテープを貼り、その後すぐに剥がしたときの、セロハンテープ側への染料層の付着の有無を調べることにより、染料層の密着性を評価した。その結果を表3に示す。
○:染料層の付着が、認められない
△:染料層の付着が、ごく僅かに認められる
×:染料層の付着が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例III-1~III-7、比較例III-1~III-12の感熱転写記録媒体について、感熱転写記録媒体の染料層の3次元表面粗さ(SRa)を、オリンパス(株)製の走査型共焦点レーザ顕微鏡「OLS1100」を用いて下記の条件で測定した。その結果を表3に示す。なお、測定および解析条件は以下の通りである。
走査方向:サンプルのMD方向
測定長さ:X方向128μm、Y方向128μm
カットオフ値:1/3
実施例III-1~III-7、比較例III-1~III-12の感熱転写記録媒体を使用し、サーマルシミュレーターにてベタ印画を行い、最高反射濃度を測定して印画評価を行った。その結果を表3に示す。なお、最高反射濃度はX-Rite社製の分光濃度計「X-Rite528」にて測定した値である。
印画環境:23℃、50%RH
印加電圧:29V
ライン周期:0.7msec
印画密度:主走査300dpi、副走査300dpi
実施例III-1~III-7、比較例III-1~III-12の感熱転写記録媒体について、以下の基準にて異常転写を評価した。その結果を表3に示す。
○:被転写体への異常転写が、認められない
△:被転写体への異常転写が、ごく僅かに認められる
×:被転写体への異常転写が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例III-1~III-7、比較例III-1~III-12の感熱転写記録媒体について、以下の基準にて高濃度部で発生する濃淡ムラを評価した。その結果を表3に示す。
○:高濃度部で濃淡ムラが、認められない
△:高濃度部で濃淡ムラが、僅かに認められる
×:高濃度部で濃淡ムラが、はっきりと認められる
なお、△以上であれば実用上問題ないレベルである。
<耐熱滑性層付き基材の作製>
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、耐熱滑性層付き基材を得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、ケン化度94モル%、平均重合度2200のポリビニルアルコールと、ケン化度88モル%、平均重合度2200のポリビニルアルコールとを得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、抗張力を測定した。その結果、ケン化度94モル%、平均重合度2200のポリビニルアルコールが8.2kg/mm2、ケン化度88モル%、平均重合度2200のポリビニルアルコールが6.8kg/mm2、クラレポバールPVA-117が7.4kg/mm2であった。
耐熱滑性層付き基材の易接着処理面に、下記組成の下引き層形成用塗布液IV-1を、グラビアコーティング法により、乾燥後の塗布量が0.20g/m2になるように塗布し、100℃で2分間乾燥することで、下引き層を形成した。引き続き、その下引き層の上に、下記組成の染料層形成用塗布液IV-1を、グラビアコーティング法により、乾燥後の塗布量が0.70g/m2になるように塗布し、90℃で1分間乾燥することで、染料層を形成し、実施例IV-1の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 3.6部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 0.4部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液IV-2にて形成した以外は、実施例IV-1と同様にして、実施例IV-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液IV-3にて形成した以外は、実施例IV-1と同様にして、実施例IV-3の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 1.5部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
3.5部
純水 57.0部
イソプロピルアルコール 38.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.03g/m2になるようにした以外は、実施例IV-1と同様にして、実施例IV-4の感熱転写記録媒体を得た。
実施例IV-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.40g/m2になるようにした以外は、実施例IV-1と同様にして、実施例IV-5の感熱転写記録媒体を得た。
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-2にて形成した以外は、実施例IV-1と同様にして、実施例IV-6の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 3.8部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 0.2部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-3にて形成した以外は、実施例IV-1と同様にして、実施例IV-7の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 3.92部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 0.08部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-4にて形成した以外は、実施例IV-1と同様にして、実施例IV-8の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 2.0部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 2.0部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-5にて形成した以外は、実施例IV-1と同様にして、実施例IV-9の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 1.6部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 2.4部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層を形成しない以外は、実施例IV-1と同様にして、比較例IV-1の感熱転写記録媒体を得た。
実施例IV-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液IV-4にて形成した以外は、実施例IV-1と同様にして、比較例IV-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力6.8kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-6にて形成した以外は、実施例IV-1と同様にして、比較例IV-3の感熱転写記録媒体を得た。
C.I.ソルベントブルー266(アゾ系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 3.6部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 0.4部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層を上述した下引き層形成用塗布液IV-4にて形成し、染料層を上述した染料層形成用塗布液IV-6にて形成した以外は、実施例IV-1と同様にして、比較例IV-4の感熱転写記録媒体を得た。
実施例IV-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液IV-5にて形成した以外は、実施例IV-1と同様にして、比較例IV-5の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液IV-6にて形成した以外は、実施例IV-1と同様にして、比較例IV-6の感熱転写記録媒体を得た。
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例IV-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液IV-7にて形成した以外は、実施例IV-1と同様にして、比較例IV-7の感熱転写記録媒体を得た。
ポリビニルアルコール
((株)クラレ製PVA-117、抗張力7.4kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-7にて形成した以外は、実施例IV-1と同様にして、比較例IV-8の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルブチラール
(電気化学工業(株)製デンカブチラール#3000-1、
ガラス転移温度68℃) 4.0部
トルエン 45.0部
メチルエチルケトン 45.0部
実施例IV-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液IV-8にて形成した以外は、実施例IV-1と同様にして、比較例IV-9の感熱転写記録媒体を得た。
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール
(電気化学工業(株)製デンカブチラール#5000-D、
ガラス転移温度110℃) 4.0部
トルエン 45.0部
メチルエチルケトン 45.0部
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、感熱転写用の被転写体を作製した。
実施例IV-1~IV-9、比較例IV-1~IV-9の感熱転写記録媒体について、感熱転写記録媒体の染料層の上に、幅24mm、長さ150mmのセロハンテープを貼り、その後すぐに剥がしたときの、セロハンテープ側への染料層の付着の有無を調べることにより、染料層の密着性を評価した。その結果を表4に示す。
○:染料層の付着が、認められない
△:染料層の付着が、ごく僅かに認められる
×:染料層の付着が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例IV-1~IV-9、比較例IV-1~IV-9の感熱転写記録媒体を使用し、サーマルシミュレーターにてベタ印画を行い、最高反射濃度である255階調を11分割した各階調の反射濃度を評価した。その結果を表5に示す。なお、低濃度部における転写感度は23~46階調における反射濃度にて、高濃度部における転写感度は255階調における反射濃度にて評価した。また、反射濃度はX-Rite社製の分光濃度計「X-Rite528」にて測定した値である。
印画環境:23℃、50%RH
印加電圧:29V
ライン周期:0.7msec
印画密度:主走査300dpi、副走査300dpi
実施例IV-1~IV-9、比較例IV-1~IV-9の感熱転写記録媒体について、以下の基準にて異常転写を評価した。その結果を表4に示す。
○:被転写体への異常転写が、認められない
△:被転写体への異常転写が、ごく僅かに認められる
×:被転写体への異常転写が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例IV-1~IV-9、比較例IV-1~IV-9の感熱転写記録媒体について、以下の基準にてシワを評価した。その結果を表4に示す。
○:被転写体のシワが、認められない
△:被転写体のシワは殆ど認められないが、感熱転写記録媒体の変形や伸びが僅かに認められる
×:被転写体のシワが、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
<耐熱滑性層付き基材の作製>
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、耐熱滑性層付き基材を得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、ケン化度94モル%、平均重合度2200のポリビニルアルコールと、ケン化度88モル%、平均重合度2200のポリビニルアルコールとを得た。
上記(I)実施の形態Iに対応する実施例とその比較例における方法と同様の方法で、抗張力を測定した。その結果、ケン化度94モル%、平均重合度2200のポリビニルアルコールが8.2kg/mm2、ケン化度88モル%、平均重合度2200のポリビニルアルコールが6.8kg/mm2、クラレポバールPVA-117が7.4kg/mm2であった。
耐熱滑性層付き基材の易接着処理面に、下記組成の下引き層形成用塗布液V-1を、グラビアコーティング法により、乾燥後の塗布量が0.20g/m2になるように塗布し、100℃で2分間乾燥することで、下引き層を形成した。引き続き、その下引き層の上に、下記組成の染料層形成用塗布液V-1を、グラビアコーティング法により、乾燥後の塗布量が0.70g/m2になるように塗布し、90℃で1分間乾燥することで、染料層を形成し、実施例V-1の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
非反応性シリコーンオイル
(数平均分子量8000、側鎖型ポリエーテル変性シリコーンオイル)
0.1部
反応性シリコーンオイル
(数平均分子量3000、側鎖型ジアミン変性シリコーンオイル)
0.1部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液V-2にて形成した以外は、実施例V-1と同様にして、実施例V-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例V-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液V-3にて形成した以外は、実施例V-1と同様にして、実施例V-3の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 1.5部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
3.5部
純水 57.0部
イソプロピルアルコール 38.0部
実施例V-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.03g/m2になるようにした以外は、実施例V-1と同様にして、実施例V-4の感熱転写記録媒体を得た。
実施例V-1で作製した感熱転写記録媒体において、下引き層の乾燥後の塗布量が0.40g/m2になるようにした以外は、実施例V-1と同様にして、実施例V-5の感熱転写記録媒体を得た。
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-2にて形成した以外は、実施例V-1と同様にして、実施例V-6の感熱転写記録媒体を得た。
非反応性シリコーンオイル
(数平均分子量8000、両末端型長鎖アルキル変性シリコーンオイル)
0.1部
反応性シリコーンオイル
(数平均分子量3000、側鎖型ジアミン変性シリコーンオイル)
0.1部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-3にて形成した以外は、実施例V-1と同様にして、実施例V-7の感熱転写記録媒体を得た。
非反応性シリコーンオイル
(数平均分子量8000、側鎖型ポリエーテル変性シリコーンオイル)
0.1部
反応性シリコーンオイル
(数平均分子量3000、両末端型アミノ変性シリコーンオイル)
0.1部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、下引き層を形成しない以外は、実施例V-1と同様にして、比較例V-1の感熱転写記録媒体を得た。
実施例V-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液V-4にて形成した以外は、実施例V-1と同様にして、比較例V-2の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力6.8kg/mm2) 3.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
2.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-4にて形成した以外は、実施例V-1と同様にして、比較例V-3の感熱転写記録媒体を得た。
非反応性シリコーンオイル
(数平均分子量8000、側鎖型ポリエーテル変性シリコーンオイル)
0.1部
反応性シリコーンオイル
(数平均分子量3000、側鎖型ジアミン変性シリコーンオイル)
0.1部
C.I.ソルベントブルー266(アゾ系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、下引き層を上述した下引き層形成用塗布液V-4にて形成し、染料層を上述した染料層形成用塗布液V-4にて形成した以外は、実施例V-1と同様にして、比較例V-4の感熱転写記録媒体を得た。
実施例V-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液V-5にて形成した以外は、実施例V-1と同様にして、比較例V-5の感熱転写記録媒体を得た。
ポリビニルアルコール(抗張力8.2kg/mm2) 5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例V-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液V-6にて形成した以外は、実施例V-1と同様にして、比較例V-6の感熱転写記録媒体を得た。
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
5.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例V-1で作製した感熱転写記録媒体において、下引き層を下記組成の下引き層形成用塗布液V-7にて形成した以外は、実施例V-1と同様にして、比較例V-7の感熱転写記録媒体を得た。
ポリビニルアルコール
((株)クラレ製PVA-117、抗張力7.4kg/mm2) 4.0部
ポリビニルピロリドン(N-ビニル-2-ピロリドンのホモポリマー)
1.0部
純水 57.0部
イソプロピルアルコール 38.0部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-5にて形成した以外は、実施例V-1と同様にして、比較例V-8の感熱転写記録媒体を得た。
非反応性シリコーンオイル
(数平均分子量8000、側鎖型ポリエーテル変性シリコーンオイル)
0.2部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-6にて形成した以外は、実施例V-1と同様にして、比較例V-9の感熱転写記録媒体を得た。
反応性シリコーンオイル
(数平均分子量3000、側鎖型ジアミン変性シリコーンオイル)
0.2部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-7にて形成した以外は、実施例V-1と同様にして、比較例V-10の感熱転写記録媒体を得た。
非反応性シリコーンオイル
(数平均分子量8000、側鎖型ポリエーテル変性シリコーンオイル)
0.1部
非反応性シリコーンオイル
(数平均分子量3000、側鎖型ポリエーテル変性シリコーンオイル)
0.1部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-8にて形成した以外は、実施例V-1と同様にして、比較例V-11の感熱転写記録媒体を得た。
反応性シリコーンオイル
(数平均分子量8000、側鎖型ジアミン変性シリコーンオイル)
0.1部
反応性シリコーンオイル
(数平均分子量3000、側鎖型ジアミン変性シリコーンオイル)
0.1部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
実施例V-1で作製した感熱転写記録媒体において、染料層を下記組成の染料層形成用塗布液V-9にて形成した以外は、実施例V-1と同様にして、比較例V-12の感熱転写記録媒体を得た。
非反応性シリコーンオイル
(数平均分子量7000、側鎖型ポリエーテル変性シリコーンオイル)
0.1部
反応性シリコーンオイル
(数平均分子量4000、側鎖型ジアミン変性シリコーンオイル)
0.1部
C.I.ソルベントブルー63(アントラキノン系染料) 6.0部
ポリビニルアセタール 4.0部
トルエン 44.9部
メチルエチルケトン 44.9部
上記(III)実施の形態IIIに対応する実施例とその比較例における方法と同様の方法で、熱転写受像シートを得た。
実施例V-1~V-7、比較例V-1~V-12の感熱転写記録媒体について、感熱転写記録媒体の染料層の上に、幅24mm、長さ150mmのセロハンテープを貼り、その後すぐに剥がしたときの、セロハンテープ側への染料層の付着の有無を調べることにより、染料層の密着性を評価した。その結果を表6に示す。
○:染料層の付着が、認められない
△:染料層の付着が、ごく僅かに認められる
×:染料層の付着が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例V-1~V-7、比較例V-1~V-12の感熱転写記録媒体を使用し、サーマルシミュレーターにてベタ印画を行い、最高反射濃度を測定して印画評価を行った。その結果を表6に示す。なお、最高反射濃度はX-Rite社製の分光濃度計「X-Rite528」にて測定した値である。
印画環境:23℃、50%RH
印加電圧:29V
ライン周期:0.7msec
印画密度:主走査300dpi、副走査300dpi
実施例V-1~V-7、比較例V-1~V-12の感熱転写記録媒体について、以下の基準にて中濃度部で発生する異常転写を評価した。その結果を表6に示す。
○:被転写体への異常転写が、認められない
△:被転写体への異常転写が、ごく僅かに認められる
×:被転写体への異常転写が、全面で認められる
なお、△以上であれば実用上問題ないレベルである。
実施例V-1~V-7、比較例V-1~V-12の感熱転写記録媒体について、以下の基準にて高濃度部乃至中濃度部で発生する水系受容層と染料層との貼り付きを評価した。その結果を表6に示す。
○:高濃度部乃至中濃度部で貼り付きの痕跡が、認められない
△:高濃度部乃至中濃度部で貼り付きの痕跡が、僅かに認められる
×:高濃度部乃至中濃度部で貼り付きの痕跡が、はっきりと認められる
なお、△以上であれば実用上問題ないレベルである。
20 下引き層
30 染料層
40 耐熱滑性層
Claims (18)
- 基材に下引き層および染料層が順次積層形成され、
前記下引き層が、JIS K 7113に基づいて測定した抗張力が8kg/mm2以上のポリビニルアルコールと、ポリビニルピロリドンとを含む下引き層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記染料層が、熱移行性染料としてアントラキノン系化合物を含む染料層形成用塗布液を塗布し、乾燥して形成されたものであることを特徴とする、感熱転写記録媒体。 - 前記下引き層中のポリビニルアルコールとポリビニルピロリドンとの質量基準での含有比率が、ポリビニルアルコール/ポリビニルピロリドン=4/6~7/3であることを特徴とする、請求項1に記載の感熱転写記録媒体。
- 前記下引き層形成用塗布液を塗布し、乾燥した後に残った固形分量で表される、前記下引き層の乾燥後の塗布量が、0.05~0.30g/m2であることを特徴とする、請求項1または2に記載の感熱転写記録媒体。
- 基材の一方の面に耐熱滑性層が形成され、該基材の他方の面に下引き層および染料層が順次積層形成され、
前記下引き層が、JIS K 7113に基づいて測定した抗張力が8kg/mm2以上のポリビニルアルコールと、ポリビニルピロリドンとを含む下引き層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記染料層が、熱移行性染料としてアントラキノン系化合物を含む染料層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記耐熱滑性層の表面粗さ(Ra)の平均値αが0.05~0.50μmであり、かつ、150℃、10分間の条件で静置した後の該耐熱滑性層の表面粗さ(Ra)の平均値βが0.00~0.80μmであり、
前記平均値αと前記平均値βとの差が0.00~0.30μmであることを特徴とする、感熱転写記録媒体。 - 前記下引き層中のポリビニルアルコールとポリビニルピロリドンとの質量基準での含有比率が、ポリビニルアルコール/ポリビニルピロリドン=4/6~7/3であることを特徴とする、請求項4に記載の感熱転写記録媒体。
- 前記下引き層形成用塗布液を塗布し、乾燥した後に残った固形分量で表される、前記下引き層の乾燥後の塗布量が、0.05~0.30g/m2であることを特徴とする、請求項4または5に記載の感熱転写記録媒体。
- 基材に、水系バインダーと中空粒子とを含む水系中空粒子層を介して、水系バインダーと離型剤とを含む水系受容層が形成された熱転写受像シートに、熱転写によって画像を形成するための感熱転写記録媒体であって、
基材に下引き層および染料層が順次積層形成され、
前記下引き層が、JIS K 7113に基づいて測定した抗張力が8kg/mm2以上のポリビニルアルコールと、ポリビニルピロリドンとを含む下引き層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記染料層が、フィラー粒子と、熱移行性染料としてアントラキノン系化合物とを含む染料層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記染料層の3次元表面粗さ(SRa)が0.15~0.70μmであることを特徴とする、感熱転写記録媒体。 - 前記下引き層中のポリビニルアルコールとポリビニルピロリドンとの質量基準での含有比率が、ポリビニルアルコール/ポリビニルピロリドン=4/6~7/3であることを特徴とする、請求項7に記載の感熱転写記録媒体。
- 前記下引き層形成用塗布液を塗布し、乾燥した後に残った固形分量で表される、前記下引き層の乾燥後の塗布量が、0.05~0.30g/m2であることを特徴とする、請求項7または8に記載の感熱転写記録媒体。
- 前記フィラー粒子の体積平均粒子径が、0.1~3.0μmであることを特徴とする、請求項7~9のいずれか1つに記載の感熱転写記録媒体。
- 基材に下引き層および染料層が順次積層形成され、
前記下引き層が、JIS K 7113に基づいて測定した抗張力が8kg/mm2以上のポリビニルアルコールと、ポリビニルピロリドンとを含む下引き層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記染料層が、熱移行性染料としてアントラキノン系化合物を含み、かつ、樹脂バインダーとしてガラス転移温度が100℃以上のポリビニルアセタールとガラス転移温度が75℃以下のポリビニルブチラールとを含む染料層形成用塗布液を塗布し、乾燥して形成されたものであることを特徴とする、感熱転写記録媒体。 - 前記下引き層中のポリビニルアルコールとポリビニルピロリドンとの質量基準での含有比率が、ポリビニルアルコール/ポリビニルピロリドン=4/6~7/3であることを特徴とする、請求項11に記載の感熱転写記録媒体。
- 前記下引き層形成用塗布液を塗布し、乾燥した後に残った固形分量で表される、前記下引き層の乾燥後の塗布量が、0.05~0.30g/m2であることを特徴とする、請求項11または12に記載の感熱転写記録媒体。
- 前記染料層中のガラス転移温度が100℃以上のポリビニルアセタールとガラス転移温度が75℃以下のポリビニルブチラールとの質量基準での含有比率が、ポリビニルアセタール/ポリビニルブチラール=50/50~97/3であることを特徴とする、請求項11~13のいずれか1つに記載の感熱転写記録媒体。
- 基材に、水系バインダーと中空粒子とを含む水系中空粒子層を介して、水系バインダーと離型剤とを含む水系受容層が形成された熱転写受像シートに、熱転写によって画像を形成するための感熱転写記録媒体であって、
基材に下引き層および染料層が順次積層形成され、
前記下引き層が、JIS K 7113に基づいて測定した抗張力が8kg/mm2以上のポリビニルアルコールと、ポリビニルピロリドンとを含む下引き層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記染料層の少なくとも1つが、離型剤として少なくとも2種の変性シリコーンオイルと、熱移行性染料としてアントラキノン系化合物とを含む染料層形成用塗布液を塗布し、乾燥して形成されたものであり、
前記変性シリコーンオイルが、数平均分子量が8000以上の非反応性シリコーンオイルと、数平均分子量が3000以下の反応性シリコーンオイルとからなることを特徴とする、感熱転写記録媒体。 - 前記下引き層中のポリビニルアルコールとポリビニルピロリドンとの質量基準での含有比率が、ポリビニルアルコール/ポリビニルピロリドン=4/6~7/3であることを特徴とする、請求項15に記載の感熱転写記録媒体。
- 前記下引き層形成用塗布液を塗布し、乾燥した後に残った固形分量で表される、前記下引き層の乾燥後の塗布量が、0.05~0.30g/m2であることを特徴とする、請求項15または16に記載の感熱転写記録媒体。
- 前記非反応性シリコーンオイルが、側鎖型ポリエーテル変性シリコーンオイルであり、前記反応性シリコーンオイルが、側鎖型ジアミン変性シリコーンオイルであることを特徴とする、請求項15~17のいずれか1つに記載の感熱転写記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12837393.3A EP2762324B1 (en) | 2011-09-27 | 2012-09-24 | Heat-sensitive transfer recording medium |
JP2013535890A JP5582375B2 (ja) | 2011-09-27 | 2012-09-24 | 感熱転写記録媒体 |
CN201280046869.9A CN103874584B (zh) | 2011-09-27 | 2012-09-24 | 热敏转印记录介质 |
US14/346,585 US9180714B2 (en) | 2011-09-27 | 2012-09-24 | Heat-sensitive transfer recording medium |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-211270 | 2011-09-27 | ||
JP2011211270 | 2011-09-27 | ||
JP2011-211272 | 2011-09-27 | ||
JP2011-211271 | 2011-09-27 | ||
JP2011211272 | 2011-09-27 | ||
JP2011211271 | 2011-09-27 | ||
JP2011261632 | 2011-11-30 | ||
JP2011-261632 | 2011-11-30 | ||
JP2011265773 | 2011-12-05 | ||
JP2011-265773 | 2011-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013046625A1 true WO2013046625A1 (ja) | 2013-04-04 |
Family
ID=47994709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006051 WO2013046625A1 (ja) | 2011-09-27 | 2012-09-24 | 感熱転写記録媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9180714B2 (ja) |
EP (1) | EP2762324B1 (ja) |
JP (2) | JP5582375B2 (ja) |
CN (1) | CN103874584B (ja) |
TW (1) | TWI579153B (ja) |
WO (1) | WO2013046625A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184319A (ja) * | 2012-03-06 | 2013-09-19 | Toppan Printing Co Ltd | 感熱転写記録媒体 |
JP2013193362A (ja) * | 2012-03-21 | 2013-09-30 | Toppan Printing Co Ltd | 感熱転写記録媒体 |
JP2013193363A (ja) * | 2012-03-21 | 2013-09-30 | Toppan Printing Co Ltd | 感熱転写記録媒体 |
JP2014198467A (ja) * | 2013-03-13 | 2014-10-23 | 凸版印刷株式会社 | 感熱転写記録媒体 |
JP2014237289A (ja) * | 2013-06-10 | 2014-12-18 | 凸版印刷株式会社 | 感熱転写記録媒体 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2762324B1 (en) * | 2011-09-27 | 2016-04-13 | Toppan Printing Co., Ltd. | Heat-sensitive transfer recording medium |
WO2013118459A1 (ja) * | 2012-02-10 | 2013-08-15 | 凸版印刷株式会社 | 感熱転写記録媒体、その製造方法及び感熱転写記録方法 |
JP6717205B2 (ja) | 2015-01-28 | 2020-07-01 | 凸版印刷株式会社 | 感熱転写記録媒体 |
JP6631184B2 (ja) * | 2015-11-17 | 2020-01-15 | 凸版印刷株式会社 | 感熱転写記録媒体 |
EP3424744B1 (en) * | 2016-02-29 | 2021-03-31 | Toppan Printing Co., Ltd. | Thermal transfer recording medium |
CN105667103A (zh) * | 2016-03-04 | 2016-06-15 | 杭州兴甬复合材料有限公司 | 一种热转印色带 |
JP2018144251A (ja) * | 2017-03-01 | 2018-09-20 | 凸版印刷株式会社 | 感熱転写記録媒体 |
JP6885172B2 (ja) * | 2017-04-13 | 2021-06-09 | 凸版印刷株式会社 | 感熱転写記録媒体 |
TWI774073B (zh) * | 2020-09-26 | 2022-08-11 | 合泰材料科技股份有限公司 | 轉印膜及其用途 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05131760A (ja) * | 1991-05-16 | 1993-05-28 | Eastman Kodak Co | 熱染料転写用染料供与素子のための下塗り層用ポリビニルアルコールとポリビニルピロリドンの混合物 |
JP2005231354A (ja) | 2004-01-20 | 2005-09-02 | Dainippon Printing Co Ltd | 熱転写シート |
JP2006150956A (ja) | 2004-11-02 | 2006-06-15 | Dainippon Printing Co Ltd | 熱転写シート |
JP2006248057A (ja) * | 2005-03-10 | 2006-09-21 | Sony Corp | 熱転写シート |
JP2006306017A (ja) | 2005-03-30 | 2006-11-09 | Dainippon Printing Co Ltd | 熱転写シート |
JP2008155612A (ja) | 2006-09-29 | 2008-07-10 | Dainippon Printing Co Ltd | 熱転写シート |
JP2010052297A (ja) * | 2008-08-28 | 2010-03-11 | Fujifilm Corp | 感熱転写シートおよび画像形成方法 |
JP2010058501A (ja) | 2008-08-06 | 2010-03-18 | Dainippon Printing Co Ltd | 熱転写シート |
JP2011073172A (ja) * | 2009-09-29 | 2011-04-14 | Toppan Printing Co Ltd | 昇華性熱転写記録媒体 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1153189A (zh) * | 1995-09-07 | 1997-07-02 | 巴斯福股份公司 | 含次甲基染料和蒽醌染料的染料混合物 |
US6709542B1 (en) * | 1999-09-30 | 2004-03-23 | Toppan Printing Co., Ltd. | Thermal transfer recording medium, image-forming method and image-bearing body |
CN100416307C (zh) * | 2001-12-11 | 2008-09-03 | 富士胶片株式会社 | 滤色片的形成方法 |
JP4917741B2 (ja) | 2003-05-01 | 2012-04-18 | ノードソン コーポレーション | 電極インクの塗布及び乾燥方法 |
EP1698477B1 (en) * | 2003-12-25 | 2009-06-24 | Dai Nippon Printing Co., Ltd. | Thermal transfer sheet |
EP1714793B1 (en) | 2004-01-20 | 2011-05-18 | Dai Nippon Printing Co., Ltd. | Thermal transfer sheet |
KR20070057177A (ko) * | 2004-08-26 | 2007-06-04 | 키모토 컴파니 리미티드 | 장식용 부재 |
KR101176398B1 (ko) | 2004-11-02 | 2012-08-28 | 다이니폰 인사츠 가부시키가이샤 | 열전사 시트 |
JP4693442B2 (ja) | 2005-03-03 | 2011-06-01 | 大日本印刷株式会社 | ガス拡散電極、その製造方法及び電極−電解質膜積層体 |
WO2007066770A1 (ja) | 2005-12-09 | 2007-06-14 | Dai Nippon Printing Co., Ltd. | 熱転写シート |
JP5215538B2 (ja) * | 2006-06-30 | 2013-06-19 | 富士フイルム株式会社 | アゾ色素、着色組成物、感熱転写記録用インクシート、感熱転写記録方法、カラートナー、インクジェット用インクおよびカラーフィルタ |
JP2009043712A (ja) | 2007-07-18 | 2009-02-26 | Toray Ind Inc | 膜電極複合体の製造方法 |
EP2762324B1 (en) * | 2011-09-27 | 2016-04-13 | Toppan Printing Co., Ltd. | Heat-sensitive transfer recording medium |
-
2012
- 2012-09-24 EP EP12837393.3A patent/EP2762324B1/en active Active
- 2012-09-24 CN CN201280046869.9A patent/CN103874584B/zh active Active
- 2012-09-24 US US14/346,585 patent/US9180714B2/en active Active
- 2012-09-24 WO PCT/JP2012/006051 patent/WO2013046625A1/ja active Application Filing
- 2012-09-24 JP JP2013535890A patent/JP5582375B2/ja active Active
- 2012-09-26 TW TW101135209A patent/TWI579153B/zh active
-
2014
- 2014-07-04 JP JP2014138735A patent/JP5979183B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05131760A (ja) * | 1991-05-16 | 1993-05-28 | Eastman Kodak Co | 熱染料転写用染料供与素子のための下塗り層用ポリビニルアルコールとポリビニルピロリドンの混合物 |
JP2005231354A (ja) | 2004-01-20 | 2005-09-02 | Dainippon Printing Co Ltd | 熱転写シート |
JP2006150956A (ja) | 2004-11-02 | 2006-06-15 | Dainippon Printing Co Ltd | 熱転写シート |
JP2006248057A (ja) * | 2005-03-10 | 2006-09-21 | Sony Corp | 熱転写シート |
JP2006306017A (ja) | 2005-03-30 | 2006-11-09 | Dainippon Printing Co Ltd | 熱転写シート |
JP2008155612A (ja) | 2006-09-29 | 2008-07-10 | Dainippon Printing Co Ltd | 熱転写シート |
JP2010058501A (ja) | 2008-08-06 | 2010-03-18 | Dainippon Printing Co Ltd | 熱転写シート |
JP2010052297A (ja) * | 2008-08-28 | 2010-03-11 | Fujifilm Corp | 感熱転写シートおよび画像形成方法 |
JP2011073172A (ja) * | 2009-09-29 | 2011-04-14 | Toppan Printing Co Ltd | 昇華性熱転写記録媒体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2762324A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184319A (ja) * | 2012-03-06 | 2013-09-19 | Toppan Printing Co Ltd | 感熱転写記録媒体 |
JP2013193362A (ja) * | 2012-03-21 | 2013-09-30 | Toppan Printing Co Ltd | 感熱転写記録媒体 |
JP2013193363A (ja) * | 2012-03-21 | 2013-09-30 | Toppan Printing Co Ltd | 感熱転写記録媒体 |
JP2014198467A (ja) * | 2013-03-13 | 2014-10-23 | 凸版印刷株式会社 | 感熱転写記録媒体 |
JP2014237289A (ja) * | 2013-06-10 | 2014-12-18 | 凸版印刷株式会社 | 感熱転写記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
JP2014210439A (ja) | 2014-11-13 |
TWI579153B (zh) | 2017-04-21 |
US20140232808A1 (en) | 2014-08-21 |
EP2762324B1 (en) | 2016-04-13 |
JP5979183B2 (ja) | 2016-08-24 |
TW201323241A (zh) | 2013-06-16 |
US9180714B2 (en) | 2015-11-10 |
EP2762324A1 (en) | 2014-08-06 |
JP5582375B2 (ja) | 2014-09-03 |
CN103874584A (zh) | 2014-06-18 |
CN103874584B (zh) | 2015-08-19 |
EP2762324A4 (en) | 2015-05-27 |
JPWO2013046625A1 (ja) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5979183B2 (ja) | 感熱転写記録媒体 | |
JP5585735B2 (ja) | 感熱転写記録媒体 | |
JP4816518B2 (ja) | 熱転写シート | |
JP4562640B2 (ja) | 熱転写シート | |
JP6183217B2 (ja) | 感熱転写記録媒体、その製造方法及び感熱転写記録方法 | |
JP5691684B2 (ja) | 感熱転写記録媒体 | |
JP2014198419A (ja) | 熱転写受像シートおよびその製造方法 | |
JP2014198418A (ja) | 熱転写受像シートの製造方法 | |
JP5648974B2 (ja) | 感熱転写記録媒体 | |
JP5924057B2 (ja) | 感熱転写記録媒体 | |
JP2014069463A (ja) | 熱転写受像シートおよび画像形成方法 | |
JP2013071378A (ja) | 熱転写受像シートおよびその製造方法 | |
JP5640847B2 (ja) | 感熱転写記録媒体 | |
JP5924056B2 (ja) | 感熱転写記録媒体 | |
JP2014237289A (ja) | 感熱転写記録媒体 | |
JP2013208860A (ja) | 熱転写受像シートおよびその製造方法 | |
JP2010234733A (ja) | 熱転写シート | |
JP6090645B2 (ja) | 熱転写受像シート | |
JP5733629B2 (ja) | 熱転写受像シート | |
JP2014065246A (ja) | 熱転写システムおよび印画物の製造方法 | |
JP2013184319A (ja) | 感熱転写記録媒体 | |
JP2014069460A (ja) | 熱転写受像シート | |
JP2013075470A (ja) | 熱転写受像シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837393 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013535890 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14346585 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012837393 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |