WO2013042316A1 - 指向性スピーカ - Google Patents

指向性スピーカ Download PDF

Info

Publication number
WO2013042316A1
WO2013042316A1 PCT/JP2012/005396 JP2012005396W WO2013042316A1 WO 2013042316 A1 WO2013042316 A1 WO 2013042316A1 JP 2012005396 W JP2012005396 W JP 2012005396W WO 2013042316 A1 WO2013042316 A1 WO 2013042316A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
piezoelectric element
directional speaker
beams
present
Prior art date
Application number
PCT/JP2012/005396
Other languages
English (en)
French (fr)
Inventor
今野 文靖
武田 克
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12833078.4A priority Critical patent/EP2760224B1/en
Priority to JP2013506366A priority patent/JP5288080B1/ja
Priority to CN201280045554.2A priority patent/CN103814586B/zh
Priority to US14/237,481 priority patent/US9253578B2/en
Publication of WO2013042316A1 publication Critical patent/WO2013042316A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/20Securing diaphragm or cone resiliently to support by flexible material, springs, cords, or strands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/027Diaphragms comprising metallic materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/204Material aspects of the outer suspension of loudspeaker diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/207Shape aspects of the outer suspension of loudspeaker diaphragms

Definitions

  • the present invention relates to a directional speaker in which audio information is transmitted only to a specific subject.
  • directional speakers are used to transmit voice information only to specific subjects.
  • the directional speaker superimposes an audible sound signal as audio information on a carrier wave in an ultrasonic wave area and inputs it to the piezoelectric element to vibrate the diaphragm provided with the piezoelectric element to generate a sound wave.
  • a structural cross-sectional view of this directional speaker is shown in FIG.
  • a piezoelectric element 105 is attached to the diaphragm 103 of the directional speaker 101 as a vibration source.
  • the vibrating plate 103 has a structure in which the insulating adhesive 111 is attached to the tip of the electrode 109 fixed to the base 107. Furthermore, the piezoelectric element 105 is connected to each electrode 109 by a lead wire 113.
  • a signal in which an audible sound signal is superimposed on a carrier wave in the ultrasonic wave region from an external electric circuit is input to the piezoelectric element 105 through the electrode 109 and the lead wire 113,
  • the element 105 and the diaphragm 103 vibrate to transmit voice information only to a specific target person, that is, a user such as an electronic device.
  • the present invention is a directional speaker that vibrates a diaphragm provided with a piezoelectric element to generate an acoustic wave by superimposing an audible sound signal on a carrier wave in an ultrasonic wave range and inputting the sound signal into the piezoelectric element.
  • the diaphragm is fixed to the fixing portion via a plurality of beams provided on the outer periphery of the diaphragm.
  • FIG. 1 is an exploded perspective view of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2A is a top view of a vibrating portion of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2B is a perspective view at the time of vibration of the vibration section of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 3 is an assembled perspective view of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 4 is a top view of another configuration of the vibration section of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2A is a top view of a vibrating portion of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2B is a perspective view at the time of vibration of the vibration section
  • FIG. 5 is a top view of another configuration of the vibration section of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 6 is a top view of another configuration of the vibration section of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 7A is a top view of a vibrating portion of the directional speaker in accordance with the second exemplary embodiment of the present invention.
  • FIG. 7B is a perspective view at the time of vibration of the vibration section of the directional speaker in accordance with the second exemplary embodiment of the present invention.
  • FIG. 8 is a top view of a vibrating portion of the directional speaker in accordance with the third exemplary embodiment of the present invention.
  • FIG. 9A is a top view of a piezoelectric element of a vibration section of the directional speaker in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 9B is a top view of the diaphragm of the vibration section of the directional speaker in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 9C is a top view of a vibrating portion of the directional speaker in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of the directional speaker in the fifth embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the directional speaker in the sixth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a conventional directional speaker.
  • the diaphragm 103 to which the piezoelectric element 105 is attached is attached to the tip of the electrode 109 with the insulating adhesive 111. Therefore, the periphery of the diaphragm 103 is a free end.
  • the insulating adhesive 111 has low rigidity. Therefore, when a signal is input to the piezoelectric element 105, the diaphragm 103 vibrates in the vertical direction in FIG. 12 with the portion attached with the insulating adhesive 111 as a node.
  • the diaphragm 103 located between the electrodes 109 is bent downward, the free end is bent upward, and the portion of the diaphragm 103 located between the electrodes 109 is bent upward.
  • the free end bends downward. Sound waves are generated by such an operation.
  • the diaphragm 103 vibrates, stress is repeatedly applied to the insulating adhesive 111. In such a state, when the deterioration of the insulating adhesive 111 progresses due to the influence of ambient temperature and humidity, etc., the diaphragm 103 may be peeled off from the tip of the electrode 109.
  • the insulating adhesive 111 is replaced with a more rigid material such as metal bonding and fixed, the possibility of peeling is reduced. However, since the vibration of the free end hardly occurs, the sound pressure is reduced accordingly.
  • FIG. 1 is an exploded perspective view of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2A is a top view of a vibrating portion of the directional speaker in accordance with the first embodiment of the present invention
  • FIG. 2B is a perspective view of the vibrating portion of the directional speaker in accordance with the first embodiment of the present invention.
  • FIG. 3 is an assembled perspective view of the directional speaker in accordance with the first exemplary embodiment of the present invention.
  • 4 to 6 are top views of other configurations of the vibrating portion of the directional loudspeaker in accordance with the first exemplary embodiment of the present invention.
  • the directional speaker includes a vibrating unit 11, a holder 23, and a base 25.
  • the vibrating portion 11 is configured of a vibrating plate 13 having a disk shape, a piezoelectric element 15, a plurality of beams 17, and a fixing portion 19.
  • a gap between adjacent beams 17 is called a slit 21.
  • the diaphragm 13 is within the range of the circle shown by the thin dotted line in the inner side of FIG. 1 in the vibrating portion 11, and the fixed portion 19 is from the circle shown in the outer thin dotted line in FIG. Defined as the range of
  • a plurality (eight in FIG. 1) of beams 17 exist, and they are provided along at the outer periphery of the diaphragm 13 at least at a part of the outer periphery of the diaphragm 13. Further, the plurality of beams 17 extend in the plane direction of the diaphragm 13, that is, in the direction of the same plane as the plane of the diaphragm 13.
  • the other end of the beam 17 is fixed to the fixing portion 19.
  • the diaphragm 13, the plurality of beams 17, and the fixing portion 19 are integrally formed by pressing a metal plate such as aluminum.
  • a metal plate such as aluminum.
  • the processing method of integral formation is not limited to press processing, It may be processing by etching. In this case, when the beam 17 is small or the shape is complicated, it can be processed with high accuracy.
  • the piezoelectric element 15 is formed on the upper surface of the diaphragm 13 obtained in this manner. As shown in FIG. 2A, the piezoelectric element 15 is circular, and its diameter is slightly smaller than the diameter of the diaphragm 13.
  • the beam 17 holds the diaphragm 13 firmly in order to obtain high reliability.
  • the beam 17 itself also bends to further expand the displacement of the diaphragm 13. That is, the beam 17 has a role of raising the sound pressure. Therefore, although the displacement expansion of the diaphragm 13 becomes possible by providing the beam 17, in order to obtain a more effective displacement expansion, the length of the beam 17 is set to the diaphragm 13 and the fixing portion in this embodiment. The distance between them and 19 is set to be longer than the shortest distance between them. Therefore, as shown in FIG.
  • the beam 17 is formed in a spiral shape in the diagonal direction from the diaphragm 13 to the fixing portion 19.
  • the diaphragm 17 can be displaced in the twisting direction by the beam 17 as well as the beam 17 becomes longer, the displacement can be expanded as a whole. If the sound pressure is larger than necessary, the sound pressure can also be adjusted by changing the angle of the beam 17 or providing the beam 17 at the shortest distance between the diaphragm 13 and the fixed portion 19.
  • FIG. 2B the perspective view at the time of driving the vibration part 11 is shown to FIG. 2B.
  • the expansion of the diaphragm 13 and the piezoelectric element 15 and the deflection of the beam 17 are exaggeratingly shown.
  • the beam 17 also bows upward accordingly.
  • the displacement of the diaphragm 13 due to the deflection of the beam 17 is expanded, and high sound pressure can be obtained.
  • the beam 17 also has the following features.
  • the distance of the portion fixed to the fixing portion 19 of the adjacent beams 17, that is, the width of the slit 21 in the fixing portion 19 indicated by the arrow in FIG. 2A fixes the respective beams 17 to the fixing portion 19 It is made to be substantially zero within the accuracy.
  • the term "fixing accuracy” as used herein refers to the accuracy of pressing and etching.
  • such a shape of the beam 17 has a shape in which the shape of the slit 21 is along the outer periphery of the diaphragm 13 (dotted line in FIG. 2A) on the diaphragm 13 side.
  • this corresponds to the absence of a portion along the inner circumference (dotted line outside of FIG. 2A) of the fixing portion 19.
  • the slits 21 hardly exist in the fixing portion 19, so the rigidity of the fixing portion 19 of the beam 17 can be enhanced. Therefore, even if the deflection of the beam 17 due to the vibration of the diaphragm 13 is repeatedly applied, the possibility of the beam 17 breaking at the fixing portion 19 can be reduced, and the reliability can be further enhanced.
  • the specific shape of the beam 17 varies depending on the material and thickness used for the beam 17, the signal characteristics to be input, the required reliability, the sound pressure, and the like, and thus may be appropriately determined through simulation or trial production.
  • the vibrating portion 11 configured as described above is fixed to one end of the holding body 23 by the fixing portion 19.
  • the holding body 23 has a cylindrical shape made of metal.
  • the fixing portion 19 is a portion to which almost no vibration from the diaphragm 13 is transmitted, there is very little possibility that the sound pressure is reduced even if the fixing portion 19 is firmly fixed to the holding body 23. Therefore, the fixing portion 19 is welded to the holder 23 in order to obtain high reliability.
  • joining of both is not limited to welding, For example, the adhesive agent etc. with which soldering, high reliability were ensured, etc. may be sufficient.
  • the other end of the holder 23 is fixed to a metal disk-shaped base 25.
  • the method of welding or adhesion can be applied as described above for fixing the two.
  • Two electrodes 29 are fixed to the base 25 via an insulator 27.
  • the two electrodes 29 penetrate the base 25, and the terminals 31A and 31B are formed by flat plate processing of the tip of the electrode 29 on the base 25 side.
  • the base part of the metal package by the metal case (can) marketed, for example can be used as such a base 25.
  • FIG. 1 A perspective view of the directional speaker thus assembled is shown in FIG.
  • Lead wires 33A are bonded to the surface of the piezoelectric element 15.
  • the other end of the lead wire 33A is connected to the terminal 31A.
  • the piezoelectric element 15 is formed on the upper surface of the diaphragm 13 made of metal, the back surface (contact surface with the diaphragm 13) of the piezoelectric element 15 is electrically connected to the fixing portion 19 through the beam 17. Therefore, one end of the lead wire 33B is connected to the fixed portion 19 which is extremely less affected by the vibration of the diaphragm 13.
  • the other end of the lead 33B is connected to the terminal 31B.
  • These connections are made by wire bonding.
  • the connection is not limited to wire bonding.
  • a flexible cable may be used as the lead wires 33A and 33B, or a combination of a wire and a flexible cable may be used. If it is
  • a signal can be input to the piezoelectric element 15 from the electrode 29. That is, the diaphragm 13 provided with the piezoelectric element 15 can be vibrated by inputting a signal obtained by superimposing an audible sound signal on a carrier wave in the ultrasonic wave region from the electrode 29 to the piezoelectric element 15. As a result, since a directional sound wave is generated, it becomes possible to transmit voice information only to a specific subject.
  • the diaphragm 13 is held by the plurality of beams 17 provided on at least a part of the outer periphery of the diaphragm 13, so that it is not necessary to use the conventional insulating adhesive. Therefore, it becomes difficult to be influenced by the ambient temperature and humidity, and high reliability can be obtained. Further, since the beam 17 itself is bent, the entire vibration plate 13 can be vibrated even if the vibration plate 13 is held by the beam 17, so high sound pressure can be obtained. Therefore, a high sound pressure directional speaker with high reliability can be realized.
  • the diaphragm 13, the plurality of beams 17, and the fixing portion 19 are integrally formed, they may be separately formed. That is, they may be separately formed, and the diaphragm 13 and one end of the beam 17, and the other end of the beam 17 and the fixing portion 19 may be firmly fixed by welding, soldering, adhesion or the like.
  • the respective materials can be made different.
  • the diaphragm 13 is made of a material having good adhesion to the piezoelectric element 15
  • the beam 17 is made of a flexible material
  • the fixing part 19 is made of a highly rigid material
  • the diaphragm 13, the plurality of beams 17, and the fixing portion 19 are integrally formed of the same material, optimum reliability and sound pressure may not be obtained with respect to input signal characteristics and the like. In such a case, by using a separate configuration, it is possible to configure a directional speaker that achieves both high reliability and high sound pressure.
  • the piezoelectric element 15 is formed only on the upper surface of the diaphragm 13 in the present embodiment, the same effect as in the case of forming the upper surface (high reliability and high noise can be obtained even if formed on the lower surface (back surface) of the diaphragm 13 Pressure) is obtained.
  • the piezoelectric elements 15 may be formed on both sides of the vibrating plate 13, or a plurality of piezoelectric elements 15 may be formed so as to be laminated in different polarization directions. As described above, in the case where a plurality of piezoelectric elements 15 are formed, by connecting them in electrical parallel, it is possible to lower the voltage for obtaining the same sound pressure, and the circuit configuration is simplified. . Also, if the same voltage is applied, the sound pressure can be increased. Thus, by forming a plurality of piezoelectric elements 15, in addition to the effects of high reliability and high sound pressure in the present embodiment, an effect that cost reduction by simplification of the circuit and further high sound pressure can be realized is also possible. can get.
  • the piezoelectric element 15 may be provided with a resonator having the conventional configuration described in FIG. However, it is necessary to consider the position of the lead wire 33 so that the resonator does not abut on the lead wire 33.
  • the shape of the beam 17 was made into the spiral shape from the diaphragm 13 to the fixing part 19 in this embodiment, it is not limited to this.
  • the beam 17 may be configured as a straight line.
  • the shape of the slit 21 is simplified, the accuracy can be ensured even by press processing. Therefore, in addition to high reliability and high sound pressure, cost reduction is also possible.
  • the slit 21 is formed along both the inner periphery (dotted line outside of FIG. 4) of the fixing portion 19 and the outer periphery (dotted line inside of FIG. 4) of the diaphragm 13. . That is, as shown to FIG. 2A, it becomes a shape different from the slit 21 in which the part along the inner periphery (dotted line of the outer side of FIG. 2A) in the fixing
  • the configuration of FIG. 4 may be used rather than the configuration of the slit 21 of FIG. 2A in the range where the reliability and sound pressure are secured. Sometimes it can be achieved. Therefore, in addition to the reliability and the sound pressure, cost reduction may be taken into consideration, and what shape of the beam 17 should be determined in a comprehensive manner.
  • the angles of the linear beams 17 may be alternately reversed.
  • the slit 21 having a large area is formed as compared with FIGS. 2A and 4. Therefore, in addition to the effect obtained by the configuration of FIG. 4, two lead wires 33 joined to the upper surface of the piezoelectric element 15 and the fixing portion 19 can be taken out from the slit 21 to the lower surface. Therefore, the two terminals 31A and 31B can be provided inside the holder 23 fixed to the base 25 in FIG. 1, and the directional speaker can be miniaturized.
  • a part of the beam 17 may be formed along the circumference of the vibrating plate 13 or the fixing portion 19.
  • the beam 17 since the beam 17 has a crank shape, the beam 17 can be made longer than in FIGS. 2A, 4 and 5. Therefore, the deflection of the beam 17 can be further increased when the diaphragm 13 vibrates. This configuration is effective when additional high sound pressure is required.
  • FIG. 7A is a top view of a vibrating portion of the directional speaker in accordance with the second embodiment of the present invention
  • FIG. 7B is a perspective view of the vibrating portion of the directional speaker in accordance with the second embodiment of the present invention.
  • the same components as in the first embodiment are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the characteristic feature of the present embodiment is that, in the plurality of beams 17, the distance of the portion of the adjacent beams 17 fixed to the diaphragm 13, that is, the width of the slit 21 in the diaphragm 13 indicated by the arrow in FIG. It is to be substantially zero within the fixing accuracy of each beam 17 to the diaphragm 13.
  • the fixing accuracy referred to here is the accuracy of press processing or etching processing.
  • such a shape of the beam 17 has a shape in which the shape of the slit 21 is along the inner periphery (dotted line outside of FIG. 7A) of the fixing portion 19 on the fixing portion 19 side.
  • this corresponds to the absence of a portion along the outer periphery (dotted line in FIG. 7A) of the diaphragm 13.
  • This shape is opposite to the shape of the slit 21 of FIG. 2A described in the first embodiment.
  • the slits 21 hardly exist in the diaphragm 13. Therefore, the rigidity of the diaphragm 13 of the beam 17 can be most enhanced. Accordingly, in the case where stress is concentrated on the root portion of the beam 17 in the diaphragm 13 by the vibration of the diaphragm 13 in the required drive characteristics of the directional speaker, the root of the beam 17 is configured as shown in FIG. 7A. It is possible to reduce the possibility of part breakage and to obtain further high reliability. That is, when the vibrating plate 13 is vibrated, as shown in FIG.
  • the specific shape of the beam 17 depends on the material and thickness used for the beam 17, the signal characteristics to be input, the required reliability and the sound pressure, etc. As it changes, it may be determined appropriately through simulation and trial production.
  • FIG. 8 is a top view of a vibrating portion of the directional speaker in accordance with the third exemplary embodiment of the present invention.
  • the same components as in the first embodiment are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the characteristic features of the present embodiment are as follows. That is, in the plurality of beams 17, the distance of the portion fixed to the fixing portion 19 of the adjacent beams 17, that is, the width of the slit 21 in the fixing portion 19 is substantially within the accuracy of fixing each beam 17 to the fixing portion 19. It becomes 0. Moreover, in the plurality of beams 17, the distance of the portion of the adjacent beams 17 fixed to the diaphragm 13, that is, the width of the slits 21 in the diaphragm 13 is substantially within the accuracy of fixing each beam 17 to the diaphragm 13. It becomes 0.
  • the shape of the beam 17 of the present embodiment is a shape having both the features of the first embodiment and the second embodiment, and as shown by the arrows in FIG. It has become.
  • the slit 21 does not have a portion along the outer periphery (dotted line in FIG. 8) of the diaphragm 13 and does not have a portion along the inner periphery (dotted line on the outside of FIG. 8) of the fixed portion 19. .
  • the specific shape of the beam 17 is the material and thickness used for the beam 17, the signal characteristics to be input, and the required reliability. Because it changes depending on the sound pressure, etc., it may be determined appropriately through simulation or trial production.
  • FIG. 9A is a top view of a piezoelectric element of a vibration unit of a directional speaker according to a fourth embodiment of the present invention
  • FIG. 9B is a top view of a diaphragm of the vibration unit of the directional speaker according to the fourth embodiment of the present invention
  • FIG. 9C shows a top view of the vibration part of the directional speaker in the fourth embodiment of the present invention.
  • the same components as in the first embodiment are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the piezoelectric element 15 approaches the beam 17 at the portion of the diaphragm 13 to which the beam 17 is fixed, that is, at the root of the beam 17 with respect to the diaphragm 13. .
  • the shape of the piezoelectric element 15 is all circular, but in the present embodiment, as shown by thin dotted lines in FIG. ) Is provided with a piezoelectric element protrusion 35.
  • the piezoelectric element protruding portion 35 is a portion that protrudes outside the circular shape (the shape shown by the thick dotted line in FIG. 9A) in the piezoelectric element 15 according to the first to third embodiments.
  • FIG. 9B a top view of the diaphragm 13 before the piezoelectric element 15 is formed is shown in FIG. 9B.
  • the slit 21 of the third embodiment there is a portion along the outer periphery (dotted line inside of FIG. 9B) of the diaphragm 13 and the inner periphery of the fixed portion 19 (dotted line outside of FIG. 9B)
  • the shape of the slit 21 there is also a portion along the. This is because, in the configuration of the present embodiment, when vibrating the diaphragm 13, the diaphragm 13 is vibrated under the condition that the possibility of breakage of the root portion of the beam 17 in both the diaphragm 13 and the fixing portion 19 is extremely low. It is because it is done.
  • the slit 21 can be enlarged as in FIGS. 4 and 5, so the processing for forming the slit 21 becomes easy, and the cost can be reduced. Furthermore, by making the beam 17 spiral, the beam 17 can be made longer, and the deflection of the beam 17 becomes larger, so the sound pressure can be increased accordingly.
  • the portion with the beam 17 and the portion without the beam 17 alternately exist on the outer periphery of the diaphragm 13 (dotted line in the inside of FIG. 9B).
  • four beams 17 are formed, so there are four portions with beams 17 and four portions without beams 17.
  • the piezoelectric element 15 is made to approach the portion where the beam 17 is present. That is, when the piezoelectric element 15 is formed on the diaphragm 13 so that the piezoelectric element protrusion 35 in FIG. 9A corresponds to the portion with the beam 17, as shown in FIG. 9C, the piezoelectric element 15 approaches the portion with the beam 17 Do. When the diaphragm 13 is vibrated by such a piezoelectric element 15, more stress is applied to the part of the beam 17 by the piezoelectric element protrusion 35 to the beam 17.
  • the high reliability described in the first to third embodiments can be obtained, and the diaphragm 13 close to the beam 17 that is hard to vibrate can also be vibrated, and a directional speaker that can obtain further high sound pressure Can be realized.
  • the piezoelectric element protrusion 35 described in the present embodiment is not limited to the configuration of the vibrating portion 11 of FIG. 9C, and may be applied to the configurations of FIGS. 2A and 4 to 8.
  • the configuration of FIGS. 2A and 4 to 6 in which the portion with and without the beam 17 clearly exists on the outer periphery of the diaphragm 13 is preferable.
  • the piezoelectric element protrusion 35 may be provided in the configuration of the shape and arrangement of the beams 17 and the slits 21 other than those shown in FIGS. 2A and 4 to 9C. These also provide the same effects as the configuration shown in FIG. 9C.
  • FIG. 10 is an exploded perspective view of the directional speaker in the fifth embodiment of the present invention.
  • the same components as in the first embodiment are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the configuration that is the feature of the present embodiment is that the vibrating portion 11 and the holding body 23 in the first embodiment are integrated.
  • the diaphragm 13, the beam 17, and the fixing portion 19 are integrally formed on the upper surface of the metal cap 37, and a piezoelectric element (shown in FIG. 10) is formed on the back surface of the diaphragm 13. It is assumed that the system is provided with Then, the whole of them is referred to as a vibrating portion 11.
  • the shape and arrangement of the diaphragm 13, the beam 17, and the slit 21 are the same as those in FIG. 2A. Further, although not shown in FIG. 10, one end of a lead wire 33 is joined to the surface of the piezoelectric element.
  • the other end of the lead wire 33 is connected to the terminal 31A.
  • the terminal 31B is directly fixed to the metal base 25 without the insulator 27 interposed. Therefore, the cap 37 is electrically connected to the electrode 29 by overlapping the cap 37 on the base 25 and welding the bent portion provided at the lower end of the cap 37 to the base 25.
  • the piezoelectric element is formed on the back surface of the diaphragm 13 integrally formed on the upper surface of the cap 37. Therefore, the bonding surface of the piezoelectric element with the vibrating plate 13 is electrically connected to the electrode 29. Therefore, only one lead 33 is sufficient.
  • the possibility of disconnection of the lead wire 33 is reduced to half as compared with the first embodiment, so the reliability is enhanced. Furthermore, since the holder 23 is not required, cost reduction can be achieved, and since the lead wire 33 is disposed inside the cap 37, miniaturization can also be achieved.
  • the other configuration (the shape and arrangement of the beam 17 and the slit 21) is the same as that of FIG. 1 as described above.
  • the effect of pressure can also be obtained as in the first embodiment.
  • the second lead wire 33 may be connected between the fixing portion 19 or the inner surface of the cap 37 and the terminal 31B.
  • the shapes and the arrangement of the beams 17 and the slits 21 described in the present embodiment are not limited to those shown in FIG. 10, and may have the configurations described in FIGS. 4 to 9C. Further, the shape and arrangement of the beams 17 and the slits 21 other than those shown in FIGS. 4 to 9C may be employed. These also provide the same effects as the configuration shown in FIG.
  • the piezoelectric element provided with the piezoelectric element protrusion 35 described in the fourth embodiment may be used. Thereby, the same effect as that of the fourth embodiment can be obtained.
  • FIG. 11 is an exploded perspective view of the directional speaker in the sixth embodiment of the present invention.
  • the same components as in the first embodiment are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the feature of the present embodiment is characterized in that a plurality of (here, seven) diaphragms 13 are integrally formed together with the beams 17 and the slits 21 on one metal plate as a substrate, and each diaphragm 13 is formed.
  • the piezoelectric element 15 is provided on the upper surface of the All parts of the metal plate other than the diaphragm 13, the beam 17 and the slit 21 are fixed parts 19. Accordingly, in FIG. 11, a plurality of combinations of the diaphragm 13 and the plurality of beams 17 are provided in the fixing portion 19.
  • the metal plate and the seven piezoelectric elements 15 constitute a vibrating portion 11.
  • the shape and arrangement of the diaphragm 13, the beam 17, and the slit 21 per one place are the same as in FIG.
  • the lead wires 33A are joined to the respective piezoelectric elements 15 of the vibration unit 11. These become one and are connected to the input terminal 39A. Further, one end of the lead wire 33 ⁇ / b> B is electrically connected to a part of the fixing portion 19 in the vibrating portion 11. The other end of the lead 33B is electrically connected to the input terminal 39B. With such a configuration, the seven piezoelectric elements 15 are electrically connected in parallel.
  • the fixing portion 19 of the vibrating portion 11 is fixed to the holding portion 41.
  • the hollow portion 43 has a bottom in order to emit the sound wave in only one direction (upward in the case of FIG. 10).
  • the holding portion 41 may be made of metal, but in the present embodiment, it may be made of resin because the electric conductivity in the holding portion 41 is unnecessary.
  • the holding portion 41 is made of resin, an adhesive is used to fix the fixing portion 19. In this case, almost no vibration is transmitted from the vibrating plate 13 to the fixing portion 19 and bonding can be performed over the entire area on the upper surface of the holding portion 41 where the hollow portion 43 does not exist, so the possibility of peeling is reduced. Therefore, even if the holding portion 41 is made of resin, the reliability is high. Furthermore, in the case of resin, since the cavity 43 can be manufactured by injection molding, the cost can be reduced.
  • the holding portion 41 is made of metal, welding can be performed with the fixing portion 19 of the vibrating portion 11, so that higher reliability can be obtained. Furthermore, by screwing the lead wire 33B connected to the fixing portion 19 into, for example, the thick holding portion 41 and strongly connecting it, the possibility of disconnection of the lead wire 33B can be reduced, and from this point as well, high reliability can be obtained. Be Therefore, from the viewpoint of the required reliability and cost, an appropriate material may be selected as the holding portion 41 as appropriate.
  • the diaphragm 13 provided with the piezoelectric element 15 by inputting to the seven piezoelectric elements 15 a signal obtained by superimposing an audible sound signal on the carrier wave in the ultrasonic wave region from the input terminals 39A and 39B. Each vibrate.
  • sharp directional sound waves are emitted in the same direction (upward in FIG. 10) from seven locations, high sound pressure voice information can be transmitted only to a specific subject.
  • the number of diaphragms 13 is not limited to seven. Even if the number of diaphragms 13 is increased or decreased to obtain the required sound pressure. Good.
  • the outer shapes of the vibrating portion 11 and the holding portion 41 are not limited to the octagonal shape shown in FIG. 11, and may be any shape such as a circle.
  • the shape and arrangement of the beam 17 and the slit 21 in the present embodiment are not limited to the configuration of FIG. 11, and may be the configuration described in FIGS. 4 to 9C. Further, the shape and arrangement of the beams 17 and the slits 21 other than those shown in FIGS. 4 to 9C may be employed. Also by these, the same effect as the configuration shown in FIG. 11 can be obtained.
  • the piezoelectric element 15 provided with the piezoelectric element protruding portion 35 described in the fourth embodiment may be used. Thereby, the same effect as that of the fourth embodiment can be obtained.
  • the piezoelectric elements 15 may be formed on both sides of the diaphragm 13 or may be stacked. As a result, it is possible to further increase the sound pressure and to drive the piezoelectric element 15 at a low voltage.
  • a high sound pressure directional speaker with high reliability can be obtained by reducing the removability of the diaphragm 13. That is, the diaphragm 13 is held by the plurality of beams 17 by being fixed to the fixing portion 19 via the plurality of beams 17 provided on at least a part of the outer periphery of the diaphragm 13. Ru. Therefore, the beam 17 can also be flexed in response to the vibration of the diaphragm 13. Therefore, it is not necessary to use the insulating adhesive to obtain the sound pressure including the deflection of the free end of the diaphragm 13 as in the prior art, and it is not necessary to use the insulating adhesive. Increase. Further, since the beam 17 itself is bent, the entire vibration plate 13 can be vibrated even if the vibration plate 13 is held by the beam 17, so high sound pressure can be obtained. Therefore, a high sound pressure directional speaker with high reliability can be realized.
  • a directional speaker with high reliability and high sound pressure can be obtained, and therefore, it is particularly useful as a directional speaker or the like that transmits audio information only to a specific target person.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 超音波域の搬送波に可聴音信号を重畳して圧電素子に入力することにより、圧電素子が設けられた振動板を振動させ音波を発生する指向性スピーカにおいて、振動板が、振動板の外周に設けられた複数の梁を介して固定部に固定されている。

Description

指向性スピーカ
 本発明は、音声情報が特定の対象者にのみ伝達される指向性スピーカに関する。
 従来、音声情報を特定の対象者にのみ伝達させるために、指向性スピーカが用いられている。指向性スピーカは、超音波域の搬送波に音声情報となる可聴音信号を重畳して圧電素子に入力し、圧電素子が設けられた振動板を振動させ音波を発生する。この指向性スピーカの構造断面図を図12に示す。
 指向性スピーカ101の振動板103には振動発生源として圧電素子105が貼り付けられている。振動板103はベース107に固定した電極109の先端部に絶縁性接着剤111を用いて貼り付けられた構造を有する。さらに、圧電素子105はリード線113により各電極109と接続されている。なお、指向性スピーカ101からの音圧を大きくするために共振子115を貼り付けてもよい(例えば特許文献1)。
 このような構成により、外部の電気回路(図示せず)から超音波域の搬送波に可聴音信号を重畳した信号を、電極109、リード線113を介して圧電素子105に入力することで、圧電素子105と振動板103が振動し、音声情報を特定の対象者、すなわち電子機器等の使用者のみに伝えることができる。
特開2006-245731号公報
 本発明は、超音波域の搬送波に可聴音信号を重畳して圧電素子に入力することにより、圧電素子が設けられた振動板を振動させ音波を発生する指向性スピーカである。この指向性スピーカにおいて、振動板が、振動板の外周に設けた複数の梁を介して固定部に固定されている。
図1は、本発明の実施の形態1における指向性スピーカの分解斜視図である。 図2Aは、本発明の実施の形態1における指向性スピーカの振動部の上面図である。 図2Bは、本発明の実施の形態1における指向性スピーカの振動部の振動時の斜視図である。 図3は、本発明の実施の形態1における指向性スピーカの組立斜視図である。 図4は、本発明の実施の形態1における指向性スピーカの振動部の他の構成の上面図である。 図5は、本発明の実施の形態1における指向性スピーカの振動部の他の構成の上面図である。 図6は、本発明の実施の形態1における指向性スピーカの振動部の他の構成の上面図である。 図7Aは、本発明の実施の形態2における指向性スピーカの振動部の上面図である。 図7Bは、本発明の実施の形態2における指向性スピーカの振動部の振動時の斜視図である。 図8は、本発明の実施の形態3における指向性スピーカの振動部の上面図である。 図9Aは、本発明の実施の形態4における指向性スピーカの振動部の圧電素子の上面図である。 図9Bは、本発明の実施の形態4における指向性スピーカの振動部の振動板の上面図である。 図9Cは、本発明の実施の形態4における指向性スピーカの振動部の上面図である。 図10は、本発明の実施の形態5における指向性スピーカの分解斜視図である。 図11は、本発明の実施の形態6における指向性スピーカの分解斜視図である。 図12は、従来の指向性スピーカの断面図である。
 本発明の実施の形態の説明に先駆け、図12に示す従来の構成における問題点を説明する。
 図12に示すような指向性スピーカ101では、圧電素子105が貼付された振動板103が電極109の先端に絶縁性接着剤111で貼り付けられている。従って、振動板103の周囲は自由端となる。また、絶縁性接着剤111は剛性が低い。そのため、圧電素子105に信号が入力されると、振動板103は絶縁性接着剤111で貼り付けられた部分を節として図12の上下方向に振動板103が振動する。すなわち、振動板103における電極109の間に位置する部分が下方向にたわめば、自由端は上方向にたわみ、振動板103における電極109の間に位置する部分が上方向にたわめば、自由端は下方向にたわむ。このような動作により音波を発生している。しかし、振動板103が振動することにより、絶縁性接着剤111には繰り返し応力が印加される。このような状態で、周囲の温湿度の影響などにより絶縁性接着剤111の劣化が進行すると、振動板103が電極109の先端から剥離してしまう可能性がある。
 これに対し、絶縁性接着剤111を金属接合などの、より高剛性な材料に替えて固着すると、剥離の可能性は低減される。しかしながら、自由端の振動が起こりにくくなるため、その分、音圧が低下してしまう。
 以下、このような課題を解決する本発明の実施の形態について図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1における指向性スピーカの分解斜視図である。図2Aは、本発明の実施の形態1における指向性スピーカの振動部の上面図、図2Bは、本発明の実施の形態1における指向性スピーカの振動部の振動時の斜視図をそれぞれ示す。図3は、本発明の実施の形態1における指向性スピーカの組立斜視図である。図4~図6は、それぞれ本発明の実施の形態1における指向性スピーカの振動部の他の構成の上面図である。
 指向性スピーカは、図1に示すように、振動部11と、保持体23と、ベース25とを備える。振動部11は、円板形状を有する振動板13、圧電素子15、複数の梁17、および固定部19で構成されている。隣り合う梁17の隙間をスリット21と呼ぶ。また、振動板13は振動部11における図1の内側の細点線で示した円の範囲内であり、固定部19は振動部11における図1の外側の細点線で示した円から最外周までの範囲であると定義する。
 ここで、梁17は複数個(図1では8個)存在し、それらが振動板13の外周に沿って、振動板13の外周の少なくとも一部に設けられている。また、複数の梁17は振動板13の面方向、すなわち、振動板13の面と同じ面の方向に延びている。
 また、梁17の他端は固定部19に固定されている。具体的には、振動板13、複数の梁17、および固定部19はアルミニウム等の金属板をプレス加工により一体で形成されている。これにより、振動板13と梁17、および梁17と固定部19の結合が強固となる上、絶縁性接着剤等を使用する必要がないため、剥離が発生せず信頼性が高くなる。なお、一体形成の加工方法はプレス加工に限定されるものではなく、エッチングによる加工でもよい。この場合は梁17が小さい場合や形状が複雑な場合に高精度に加工できる。
 このようにして得られた振動板13の上面に圧電素子15が形成されている。なお、図2Aに示すように、圧電素子15は円形であり、その直径は振動板13の直径より僅かに小さい。
 ここで、梁17の詳細について説明する。梁17は高信頼性を得るために振動板13を強固に保持する。また、圧電素子15に信号が入力されることにより振動板13が振動した際に、梁17自身もたわむことで振動板13の変位をさらに拡大させる。すなわち、梁17は、音圧を上げる役割を有する。ゆえに、梁17を設けたことで、振動板13の変位拡大が可能となるが、さらに効果的な変位拡大を得るために、本実施の形態では梁17の長さを振動板13と固定部19との間隔、すなわち両者の最短距離より長くしている。そのため、図2Aに示すように梁17は振動板13から固定部19まで斜め方向に渦巻状に形成されている。これにより、梁17が長くなる上に、振動板13が梁17によりねじれ方向にも変位することができるので、全体的に、変位の拡大が可能となる。なお、音圧が必要以上に大きい場合は、梁17の角度を変えたり、振動板13と固定部19との最短距離に梁17を設けたりすることで音圧を調整することもできる。
 次に、振動部11を駆動した場合の斜視図を図2Bに示す。なお、振動板13と圧電素子15の膨らみ、および梁17のたわみは実際よりも誇張して示している。振動板13が図2Bの上方向に膨らむと、それに応じて梁17も上方向にたわんでいることがわかる。その結果、梁17のたわみによる振動板13の変位が拡大され、高音圧が得られる。
 さらに、梁17は次のような特徴も有する。複数の梁17において、隣り合う梁17の固定部19に固定される部分の距離、すなわち図2Aの矢印で示す固定部19におけるスリット21の幅が、それぞれの梁17の固定部19への固定精度内で実質的に0となるようにしている。ここで言う固定精度とは、プレス加工やエッチング加工の精度のことである。
 このような梁17の形状は、図2Aに示すように、スリット21の形状が、振動板13側では、振動板13の外周(図2Aの内側の点線)に沿っている部分があるのに対し、固定部19の内周(図2Aの外側の点線)に沿っている部分がないことに相当する。
 これにより、固定部19に対してはスリット21がほとんど存在しないことになるので、梁17の固定部19における剛性を高めることができる。従って、振動板13の振動による梁17のたわみが繰り返し印加されても、固定部19において梁17が破断する可能性を低減することができ、さらに信頼性が高くなる。
 なお、梁17の具体的な形状は、梁17に用いる材料や厚み、入力される信号特性、必要とされる信頼性や音圧などにより変わるので、シミュレーションや試作を通して適宜決定すればよい。
 ここで図1に戻り、上記のようにして構成された振動部11は、固定部19で保持体23の一端に固着されている。ここで、保持体23は金属製の円筒形状を有する。また、固定部19は振動板13による振動がほとんど伝達しない部分であるので、保持体23に対して強固に固着しても音圧が低下する可能性は極めて少ない。ゆえに、高信頼性を得るために固定部19は保持体23に対し溶接接合されている。なお、両者の接合は溶接に限定されるものではなく、例えば半田付けや高信頼性が確保された接着剤等であってもよい。
 保持体23の他端は金属製の円板形状のベース25に固着されている。ここで、両者の固着は上記したように溶接や接着の手法が適用できる。ベース25には絶縁体27を介して2本の電極29が固定されている。2本の電極29はベース25を貫通しており、電極29のベース25側の先端を平板加工することにより、端子31A、31Bが形成されている。なお、このようなベース25として、例えば市販されている金属ケース(キャン)による金属パッケージのベース部分を用いることができる。
 このようにして組み立てた指向性スピーカの斜視図を図3に示す。圧電素子15の表面にはリード線33Aが接合されている。リード線33Aの他端は端子31Aに接続される。また、圧電素子15は金属製の振動板13の上面に形成されているので、圧電素子15の裏面(振動板13との接触面)は梁17を通して固定部19と電気的に繋がっている。従って、振動板13の振動の影響が極めて少ない固定部19にリード線33Bの一端が接続されている。また、リード線33Bの他端は端子31Bに接続される。これらの接続はワイヤボンディングによりなされている。なお、接続はワイヤボンディングに限定されるものではなく、例えばフレキシブルケーブルをリード線33A、33Bとして使用したり、ワイヤとフレキシブルケーブルを併用したりする構成など、振動板13の振動を大きく妨げない構成であればよい。
 このような構成とすることで、圧電素子15へは電極29から信号を入力することができる。すなわち、超音波域の搬送波に可聴音信号を重畳した信号を電極29から圧電素子15に入力することにより、圧電素子15が設けられた振動板13を振動させることができる。その結果、指向性の鋭い音波を発生するので、音声情報を特定の対象者にのみ伝達させることが可能となる。
 以上の構成、動作により、振動板13が、振動板13の外周の少なくとも一部に設けた複数の梁17で保持されるので、従来の絶縁性接着剤を使用する必要がなくなる。よって、周囲の温湿度などに影響されにくくなり、高信頼性が得られる。さらに、梁17自身がたわむことで、振動板13が梁17に保持されていても振動板13全体の振動が可能となるため、高音圧を得ることができる。従って、高信頼性を備えた高音圧な指向性スピーカを実現できる。
 なお、本実施の形態では振動板13、複数の梁17、および固定部19は一体で形成する構成としたが、それぞれ別体構成でもよい。すなわち、これらを別体で形成し、振動板13と梁17の一端、および梁17の他端と固定部19を溶接や半田付け、接着等により強固に固着するようにしてもよい。これにより、それぞれの材質を異なるものとすることができるので、例えば振動板13は圧電素子15と密着性がよい材料に、梁17はたわみやすい材料に、固定部19は剛性の高い材料に、というように、それぞれ最適設計できる。また、振動板13、複数の梁17、および固定部19を同一材料で一体形成すると、入力される信号特性などに対し、最適な信頼性や音圧が得られない場合がある。そのような場合は、別体構成とすることで、高信頼性と高音圧を両立させた指向性スピーカを構成することができる。
 また、本実施の形態では圧電素子15は振動板13の上面のみに形成しているが、振動板13の下面(裏面)に形成しても上面形成の場合と同様の効果(高信頼かつ高音圧)が得られる。
 さらに、圧電素子15を振動板13の、両面に形成してもよいし、複数の圧電素子15を分極方向が異なるように積層して形成してもよい。このように、圧電素子15を複数形成する場合は、それぞれを電気的に並列になるように接続することで、同じ音圧を得るための電圧を下げることができ、回路構成が簡素化される。また、同じ電圧を印加すると、音圧を上げることができる。このように、圧電素子15を複数形成することにより、本実施の形態における高信頼かつ高音圧の効果に加え、回路の簡素化による低コスト化や、さらなる高音圧化が可能になるという効果も得られる。
 また、音圧をさらに高めたい場合には、圧電素子15に、図12で説明した従来の構成の共振子を設けてもよい。但し、共振子がリード線33に当接しないように、リード線33の位置を考慮する必要がある。
 また、本実施の形態では梁17の形状を振動板13から固定部19への渦巻状としたが、これに限定されるものではない。例えば図4における振動部11の上面図に示すように、梁17を直線で構成するようにしてもよい。この場合はスリット21の形状が簡単になるので、プレス加工でも精度が確保できる。従って、高信頼性と高音圧化に加え、低コスト化も可能となる。
 なお、図4の構成では、固定部19における内周(図4の外側の点線)と振動板13の外周(図4の内側の点線)の両方に沿ってスリット21が形成される構成となる。すなわち、図2Aに示すように、固定部19における内周(図2Aの外側の点線)に沿った部分がほとんど存在しないスリット21とは異なる形状となる。しかし、必要とされる信頼性や音圧によっては、必ずしも図2Aのスリット21の構成とせず、信頼性と音圧が確保される範囲において、むしろ図4の構成とした方が低コスト化を達成できる場合もある。従って、信頼性と音圧に加え、低コスト化も加味し総合的にどのような梁17の形状にするかを決定すればよい。
 同様に、図5に示す振動部11のように、直線状の梁17の角度を交互に反転するようにしてもよい。この場合、図2Aや図4に比べて大面積のスリット21が形成される。従って、図4の構成で得られる効果に加え、さらに圧電素子15の上面と固定部19に接合する2本のリード線33をスリット21から下面に取り出せる。そのため、図1におけるベース25に固着した保持体23の内部に2つの端子31A、31Bを設けることができ、指向性スピーカを小型化できる。
 さらに、図6に示す振動部11のように、梁17の一部を振動板13や固定部19の円周に沿って形成する構成としてもよい。この場合、梁17がクランク状になるので、図2A、図4、および図5に比べて梁17を長くできる。従って、振動板13の振動時における梁17のたわみをさらに大きくできる。この構成は、さらなる高音圧が必要な場合に有効である。
 (実施の形態2)
 図7Aは、本発明の実施の形態2における指向性スピーカの振動部の上面図、図7Bは、本発明の実施の形態2における指向性スピーカの振動部の振動時の斜視図をそれぞれ示す。本実施の形態において、実施の形態1と同じ構成には同じ符号を付して詳細な説明を省略する。
 本実施の形態における特徴となる構成は、複数の梁17において、隣り合う梁17の振動板13に固定される部分の距離、すなわち図7Aの矢印で示す振動板13におけるスリット21の幅が、それぞれの梁17の振動板13への固定精度内で実質的に0となるようにしたことである。なお、実施の形態1と同様に、ここで言う固定精度とは、プレス加工やエッチング加工の精度のことである。
 このような梁17の形状は、図7Aに示すように、スリット21の形状が、固定部19側では、固定部19の内周(図7Aの外側の点線)に沿っている部分があるのに対し、振動板13の外周(図7Aの内側の点線)に沿っている部分がないことに相当する。この形状は実施の形態1で述べた図2Aのスリット21の形状と逆になっている。
 このような形状とすることで、振動板13に対してはスリット21がほとんど存在しないことになるので、梁17の振動板13における剛性を最も高めることができる。従って、必要とされる指向性スピーカの駆動特性において、振動板13の振動により、振動板13における梁17の付け根部分に応力集中する場合には、図7Aの構成とすることで梁17の付け根部分が破断する可能性を低減することができ、さらなる高信頼性が得られる。すなわち、振動板13を振動させた場合、図7Bに示すように圧電素子15と振動板13が上方向に膨らむと、それに応じて梁17も上方にたわむが、梁17の幅は振動板13に対する付け根部分が最も広いので、付け根部分に応力集中する駆動特性であっても信頼性を高めることができる。
 なお、本実施の形態においても実施の形態1と同様に、梁17の具体的な形状は、梁17に用いる材料や厚み、入力される信号特性、必要とされる信頼性や音圧などにより変わるので、シミュレーションや試作を通して適宜決定すればよい。
 以上の構成、動作により、振動板13における梁17の付け根部分が破断する可能性を低減することができるので、さらに高信頼性を有する高音圧指向性スピーカを実現できる。
 (実施の形態3)
 図8は、本発明の実施の形態3における指向性スピーカの振動部の上面図である。本実施の形態において、実施の形態1と同じ構成には同じ符号を付して詳細な説明を省略する。
 本実施の形態における特徴となる構成は、以下の通りである。すなわち、複数の梁17において、隣り合う梁17の固定部19に固定される部分の距離、すなわち固定部19におけるスリット21の幅が、それぞれの梁17の固定部19への固定精度内で実質的に0となる。しかも、複数の梁17において、隣り合う梁17の振動板13に固定される部分の距離、すなわち振動板13におけるスリット21の幅が、それぞれの梁17の振動板13への固定精度内で実質的に0となる。換言すると、本実施の形態の梁17の形状は、実施の形態1と実施の形態2の特徴を併せ持つ形状となり、図8の矢印で示すように、スリット21の両端の幅が実質的に0になっている。従って、スリット21は振動板13の外周(図8の内側の点線)に沿った部分がなく、かつ、固定部19の内周(図8の外側の点線)に沿った部分がない形状となる。
 このような構成とすることにより、振動板13の外周と固定部19の内周にはスリット21がほとんど存在しないことになるので、梁17の振動板13、および固定部19における剛性を両方とも高めることができる。その結果、振動板13の振動による梁17のたわみが繰り返し印加されても、振動板13と固定部19において梁17の付け根部分が破断する可能性を低減することができ、さらに信頼性が高くなる。
 なお、本実施の形態においても実施の形態1、実施の形態2と同様に、梁17の具体的な形状は、梁17に用いる材料や厚み、入力される信号特性、必要とされる信頼性や音圧などにより変わるので、シミュレーションや試作を通して適宜決定すればよい。
 以上の構成、動作により、振動板13と固定部19の両方における梁17の付け根部分が破断する可能性を低減することができるので、さらに高信頼性を有する高音圧指向性スピーカを実現できる。
 (実施の形態4)
 図9Aは、本発明の実施の形態4における指向性スピーカの振動部の圧電素子の上面図、図9Bは、本発明の実施の形態4における指向性スピーカの振動部の振動板の上面図、図9Cは、本発明の実施の形態4における指向性スピーカの振動部の上面図をそれぞれ示す。本実施の形態において、実施の形態1と同じ構成には同じ符号を付して詳細な説明を省略する。
 本実施の形態における特徴となる構成は、振動板13の梁17が固定される部分、すなわち振動板13に対する梁17の付け根部分において、圧電素子15が梁17に接近する形状としたことである。具体的には次のような構成となる。まず、実施の形態1~3では圧電素子15の形状はいずれも円形状であったが、本実施の形態では図9Aの細点線に示すように、圧電素子15の一部(ここでは4ヶ所)に圧電素子突出部35を設けている。圧電素子突出部35は実施の形態1~3の圧電素子15における円形状(図9Aの太点線で示す形状)に対して、それよりも外側に突出する部分である。
 次に、圧電素子15を形成する前の振動板13の上面図を図9Bに示す。ここでは、実施の形態3のスリット21と異なり、振動板13の外周(図9Bの内側の点線)に沿った部分が存在し、かつ、固定部19の内周(図9Bの外側の点線)に沿った部分も存在するスリット21の形状としている。これは、本実施の形態の構成では振動板13を振動させる際に、振動板13と固定部19の両方における梁17の付け根部分が破断する可能性が極めて低い条件で振動板13を振動させるようにしているためである。このように構成すると、図4、図5と同様に、スリット21を大きくできるので、スリット21を形成する加工が容易になり、低コスト化できる。さらに、梁17を渦巻状にすることで、梁17を長くすることができ、梁17のたわみが大きくなるので、その分、音圧を上げることができる。
 一方で、振動板13の外周(図9Bの内側の点線)には梁17がある部分とない部分が交互に存在する。なお、図9Bの構成では梁17が4つ形成されているので、梁17がある部分が4ヶ所、梁17がない部分が4ヶ所となる。
 このような振動板13を振動させる場合、梁17がある部分とない部分とでは後者が自由端であるのに対し、前者は梁17で拘束されるので、剛性が異なる。従って、円形状の圧電素子15を用いると、指向性スピーカの仕様によっては所望の駆動特性が得られない可能性がある。
 そこで、本実施の形態では振動板13の外周において、梁17がある部分とない部分が存在する場合は、梁17のある部分に圧電素子15を接近させるようにしている。すなわち、図9Aの圧電素子突出部35が梁17のある部分に対応するように圧電素子15を振動板13に形成すると、図9Cに示すように、梁17のある部分に圧電素子15が接近する。このような圧電素子15で振動板13を振動させると、梁17のある部分には圧電素子突出部35により梁17に対してさらに多くの応力が印加される。これにより、剛性の違いによる振動板13の振動の不均一さを低減できるとともに、圧電素子突出部35の分、音圧が上がるので、所望の駆動特性を得ることが可能となる。
 以上の構成、動作により、実施の形態1~3で述べた高信頼性が得られるとともに、振動しにくい梁17に近い振動板13も振動させることができ、さらなる高音圧が得られる指向性スピーカを実現できる。
 なお、本実施の形態で述べた圧電素子突出部35は図9Cの振動部11の構成に限定されるものではなく、図2A、および図4~図8の構成に適用してもよい。特に、振動板13の外周において、梁17がある部分とない部分が明確に存在する図2A、図4~図6の構成に好適である。また、図2A、図4~図9Cに示した以外の梁17やスリット21の形状、配置の構成に圧電素子突出部35を設けてもよい。これらによっても、図9Cに示す構成と同等の効果が得られる。
 (実施の形態5)
 図10は、本発明の実施の形態5における指向性スピーカの分解斜視図である。本実施の形態において、実施の形態1と同じ構成には同じ符号を付して詳細な説明を省略する。
 本実施の形態における特徴となる構成は、実施の形態1における振動部11と保持体23を一体化した点である。具体的には、図10に示すように、金属製のキャップ37の上面に振動板13、梁17、固定部19を一体形成するとともに、振動板13の裏面に圧電素子(図10では図示せず)を設けた構成としている。そして、これら全体を振動部11とする。なお、振動板13、梁17、およびスリット21の形状、配置は図2Aと同じである。また、図10には図示されないが、圧電素子の表面にはリード線33の一端が接合されている。
 リード線33の他端は端子31Aに接続される。一方、端子31Bは図1の構成と異なり、金属製のベース25に絶縁体27を介さず直接固定されている。従って、キャップ37をベース25に重ね、キャップ37の下端に設けた曲げ部分をベース25と溶接することで、キャップ37は電極29と電気的に接続されることになる。また、上記したように圧電素子はキャップ37の上面に一体形成された振動板13の裏面に形成される。従って、圧電素子の振動板13との接合面は電極29と電気的に接続されることになる。ゆえに、リード線33は1本でよい。その結果、リード線33の断線可能性が実施の形態1に比べ半減するので、信頼性が高まる。さらに、保持体23が不要となるため低コスト化が可能になる上に、リード線33がキャップ37の内部に配されるので小型化も可能となる。
 なお、実施の形態1と比べ圧電素子の位置が異なっているが、それ以外の構成(梁17やスリット21の形状、配置)は上記したように図1と同じであるので、梁17による高音圧の効果も実施の形態1と同様に得られる。
 以上の構成、動作により、実施の形態1で述べた通り、高音圧が得られるとともに、梁17で振動板13を保持する構成による高信頼性に加え、リード線33の断線可能性が低減することで、さらなる高信頼な指向性スピーカを実現できる。
 なお、本実施の形態ではリード線33を1本のみ使用する構成としているが、これは実施の形態1と同様に2本使用する構成としてもよい。この場合、2本目のリード線33は固定部19、またはキャップ37の内面と、端子31Bとの間を接続すればよい。このような構成とすることにより、リード線33の断線可能性が実施の形態1と同様になるものの、高信頼性を有し高音圧化が可能な指向性スピーカが得られる。
 また、本実施の形態で説明した梁17やスリット21の形状、配置は図10のものに限らず、図4~図9Cで説明した構成のものでもよい。また、図4~図9Cに示した以外の梁17やスリット21の形状、配置であってもよい。これらによっても、図10に示す構成と同等の効果が得られる。
 また、本実施の形態においても、実施の形態4で述べた圧電素子突出部35を設けた圧電素子を用いてもよい。これにより、実施の形態4と同等の効果が得られる。
 (実施の形態6)
 図11は、本発明の実施の形態6における指向性スピーカの分解斜視図である。本実施の形態において、実施の形態1と同じ構成には同じ符号を付して詳細な説明を省略する。
 本実施の形態における特徴となる構成は、基板である1枚の金属板の上に複数(ここでは7個)の振動板13を、梁17とスリット21とともに一体形成し、それぞれの振動板13の上面に圧電素子15を設けた点である。なお、この金属板における振動板13、梁17、およびスリット21以外の部分は全て固定部19となる。従って、図11では固定部19に振動板13と複数の梁17の組合せを複数個、設けた構成となる。そして、この金属板と7個の圧電素子15により振動部11が構成される。なお、1ヶ所あたりの振動板13、梁17、およびスリット21の形状、配置は図1と同じである。
 振動部11の各圧電素子15には、それぞれリード線33Aが接合される。これらは1本になり、入力端子39Aに接続される。また、リード線33Bの一端は振動部11における固定部19の一部に電気的に接続される。そして、リード線33Bの他端は入力端子39Bに電気的に接続される。このような構成とすることで、7個の圧電素子15は電気的に並列接続される。
 振動部11の固定部19は保持部41に固定される。ここで、保持部41には各振動板13と対向する位置で、固定部19の内周(例えば図2Aの外側の細点線)の直径を持つ有底の空洞部43が複数(図11では7個)設けられている。なお、空洞部43を有底としているのは、音波を一方向(図10の場合は上方向)のみに放射するためである。
 このような構成により、固定部19を保持部41に固定すると、振動板13、梁17、およびスリット21が、それぞれの空洞部43の上面に位置する。従って、本実施の形態では例えば実施の形態1で述べた指向性スピーカを7個一体で形成した構成となる。なお、保持部41は金属製としてもよいが、本実施の形態では保持部41における電気伝導性が不要なため樹脂製としてもよい。
 ここで、保持部41を樹脂製とすれば、固定部19との固定は接着剤を用いることになる。この場合、固定部19には振動板13からほとんど振動が伝わらない上、保持部41の上面における空洞部43が存在しない全面積に接着できるので、剥離の可能性が低減される。ゆえに、保持部41を樹脂製としても信頼性が高い。さらに、樹脂製の場合、空洞部43を射出成型で作製できるので、低コスト化できる。
 一方、保持部41を金属製とすれば、振動部11の固定部19と溶接接合ができるので、一層の高信頼性が得られる。さらに、固定部19に接続されるリード線33Bを例えば肉厚の保持部41にねじ込んで強固に接続することで、リード線33Bの断線可能性を低減でき、この点からも高信頼性が得られる。従って、必要とされる信頼性やコストの観点から、保持部41として最適な材料を適宜選択すればよい。
 このような指向性スピーカにおいて、入力端子39A、39Bから超音波域の搬送波に可聴音信号を重畳した信号を7個の圧電素子15に入力することにより、圧電素子15が設けられた振動板13がそれぞれ振動する。その結果、指向性の鋭い音波が7ヶ所から同方向(図10では上方向)に放射されるので、高音圧な音声情報を特定の対象者にのみ伝達させることが可能となる。
 以上の構成、動作により、振動板13の梁17による保持構造で高信頼性が得られるとともに、梁17のたわみによる高音圧化が複数の振動板13それぞれで得られる。そのため、一層音圧を高めた指向性スピーカを実現できる。
 なお、本実施の形態では7個の振動板13を設ける構成としたが、7個に限定されるものではなく、必要とする音圧が得られるように振動板13の数を増減してもよい。さらに、振動部11と保持部41の外形も図11に示す八角形に限定されるものではなく、円形など任意の形状としてもよい。
 また、本実施の形態における梁17とスリット21の形状、配置は図11の構成に限定されるものではなく、図4~図9Cで説明した構成のものでもよい。また、図4~図9Cに示した以外の梁17やスリット21の形状、配置であってもよい。これらによっても、図11に示す構成と同等の効果が得られる。
 また、本実施の形態においても、実施の形態4で述べた圧電素子突出部35を設けた圧電素子15を用いてもよい。これにより、実施の形態4と同等の効果が得られる。
 また、実施の形態2~6においても、実施の形態1で述べたように、圧電素子15を振動板13の両面に形成したり、圧電素子15を積層する構成としてもよい。これにより、さらなる高音圧化や、圧電素子15の低電圧駆動が可能となる。
 以上説明した実施の形態によれば、振動板13の剥離可能性を低減し、高信頼性を備えた高音圧な指向性スピーカが得られる。すなわち、振動板13が、振動板13の外周の少なくとも一部に設けた複数の梁17を介して固定部19に固定される構成とすることにより、振動板13は複数の梁17で保持される。そのため、振動板13の振動に応じて梁17もたわむことができる。従って、従来のように絶縁性接着剤を使用して振動板13の自由端のたわみも含め音圧を稼ぐ構成とする必要がなくなり、絶縁性接着剤を使用しなくてもよくなるため、信頼性が高まる。さらに、梁17自身がたわむことで、振動板13が梁17に保持されていても振動板13全体の振動が可能となるため、高音圧を得ることができる。ゆえに、高信頼性を備えた高音圧な指向性スピーカを実現できる。
 本発明によれば、高信頼性、高音圧の指向性スピーカが得られるので、特に、特定の対象者にのみ音声情報を伝達する指向性スピーカ等として有用である。
11 振動部
13 振動板
15 圧電素子
17 梁
19 固定部
21 スリット
23 保持体
25 ベース
27 絶縁体
29 電極
31A,31B 端子
33,33A,33B リード線
35 圧電素子突出部
37 キャップ
39A,39B 入力端子
41 保持部
43 空洞部

Claims (7)

  1. 振動板と、前記振動板の上面および下面の少なくとも一方に形成された圧電素子と、前記振動板の外周の少なくとも一部に設けられた複数の梁と、前記複数の梁の外側に設けられた固定部とを有する振動部を備えた指向性スピーカ。
  2. 前記振動板、複数の梁、および固定部は一体で形成される請求項1に記載の指向性スピーカ。
  3. 前記梁の長さは前記振動板と前記固定部との間隔より長い請求項1に記載の指向性スピーカ。
  4. 複数の前記梁において、隣り合う前記梁の前記振動板に固定される部分の距離が、それぞれの前記梁の前記振動板への固定精度内で実質的に0となっている請求項1に記載の指向性スピーカ。
  5. 複数の前記梁において、隣り合う前記梁の前記固定部に固定される部分の距離が、それぞれの前記梁の前記固定部への固定精度内で実質的に0となっている請求項1に記載の指向性スピーカ。
  6. 前記振動板の前記梁が固定される部分に対応して、前記圧電素子に突出部を設けた請求項1に記載の指向性スピーカ。
  7. 同一基板上に前記振動板と前記複数の梁の組合せが複数組形成され、前記基板が前記固定部である請求項1に記載の指向性スピーカ。
PCT/JP2012/005396 2011-09-22 2012-08-28 指向性スピーカ WO2013042316A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12833078.4A EP2760224B1 (en) 2011-09-22 2012-08-28 Directional loudspeaker
JP2013506366A JP5288080B1 (ja) 2011-09-22 2012-08-28 指向性スピーカ
CN201280045554.2A CN103814586B (zh) 2011-09-22 2012-08-28 指向性扬声器
US14/237,481 US9253578B2 (en) 2011-09-22 2012-08-28 Directional loudspeaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011206921 2011-09-22
JP2011-206921 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042316A1 true WO2013042316A1 (ja) 2013-03-28

Family

ID=47914110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005396 WO2013042316A1 (ja) 2011-09-22 2012-08-28 指向性スピーカ

Country Status (5)

Country Link
US (1) US9253578B2 (ja)
EP (1) EP2760224B1 (ja)
JP (1) JP5288080B1 (ja)
CN (1) CN103814586B (ja)
WO (1) WO2013042316A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170697A (ja) * 2017-03-30 2018-11-01 新日本無線株式会社 圧電素子
WO2020136994A1 (ja) * 2018-12-27 2020-07-02 株式会社村田製作所 圧電トランスデューサ
WO2021033376A1 (ja) * 2019-08-22 2021-02-25 株式会社村田製作所 圧電振動板および圧電発音部品
WO2022219717A1 (ja) * 2021-04-13 2022-10-20 三菱電機株式会社 超音波トランスデューサ、測距装置および超音波トランスデューサの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219630A1 (de) 2014-09-26 2016-03-31 Sennheiser Electronic Gmbh & Co. Kg Elektrodynamischer Schallwandler
JP6790981B2 (ja) * 2017-04-13 2020-11-25 I−Pex株式会社 スピーカ素子及びアレイスピーカ
US11234063B2 (en) * 2019-04-09 2022-01-25 Bose Corporation Low profile loudspeakers
CN117560607B (zh) * 2023-12-29 2024-04-05 汉得利(常州)电子股份有限公司 一种超声扬声器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104892U (ja) * 1979-01-16 1980-07-22
JPS58157293A (ja) * 1982-03-15 1983-09-19 Mitsubishi Electric Corp スピ−カ用振動板
JPS5911600U (ja) * 1982-07-12 1984-01-24 松下電器産業株式会社 圧電振動子
JPS6365393U (ja) * 1986-10-20 1988-04-30
JPH09284897A (ja) * 1996-04-17 1997-10-31 Yamaha Corp 電気音響変換器
JP2000350293A (ja) * 1999-03-29 2000-12-15 Taiyo Yuden Co Ltd 圧電振動体、圧電音響装置及びその製造方法
JP2001197594A (ja) * 1999-10-28 2001-07-19 Murata Mfg Co Ltd 超音波振動装置
JP2006245731A (ja) 2005-03-01 2006-09-14 Citizen Watch Co Ltd 指向性スピーカー
JP2007104650A (ja) * 2005-09-12 2007-04-19 Ngk Insulators Ltd スピーカ及びセンサ
JP2010157886A (ja) * 2008-12-26 2010-07-15 Panasonic Electric Works Co Ltd 圧電音響装置
JP2012134599A (ja) * 2010-12-20 2012-07-12 Nec Casio Mobile Communications Ltd 発振装置および電子機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638207A (en) 1986-03-19 1987-01-20 Pennwalt Corporation Piezoelectric polymeric film balloon speaker
FR2821422B1 (fr) 2001-02-23 2003-05-23 Sagem Resonateur mecanique planaire sensible selon un axe perpendiculaire a son plan
GB0115074D0 (en) 2001-06-20 2001-08-15 1 Ltd Sensors using an electro-active device
US6978032B2 (en) * 2001-11-29 2005-12-20 Matsushita Electric Industrial Co., Ltd. Piezoelectric speaker
US6713944B2 (en) * 2002-01-02 2004-03-30 Omron Corporation Actuator and method of manufacturing a strain element
US7801570B2 (en) * 2003-04-15 2010-09-21 Ipventure, Inc. Directional speaker for portable electronic device
WO2005067346A1 (ja) 2003-12-26 2005-07-21 Nec Corporation 圧電アクチュエータ
JP4655889B2 (ja) 2005-11-02 2011-03-23 コスモギア株式会社 骨伝導スピーカー
EP2373057B1 (en) 2008-12-26 2020-02-26 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric speaker, piezoelectric audio device employing piezoelectric speaker, and sensor with alert device attached
JP5327317B2 (ja) * 2009-05-11 2013-10-30 日本電気株式会社 圧電アクチュエータおよび音響部品
CN102106160B (zh) * 2009-05-25 2014-12-31 松下电器产业株式会社 压电式音响变换器
JP5884048B2 (ja) * 2010-12-02 2016-03-15 パナソニックIpマネジメント株式会社 圧電スピーカおよび圧電スピーカアレイ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104892U (ja) * 1979-01-16 1980-07-22
JPS58157293A (ja) * 1982-03-15 1983-09-19 Mitsubishi Electric Corp スピ−カ用振動板
JPS5911600U (ja) * 1982-07-12 1984-01-24 松下電器産業株式会社 圧電振動子
JPS6365393U (ja) * 1986-10-20 1988-04-30
JPH09284897A (ja) * 1996-04-17 1997-10-31 Yamaha Corp 電気音響変換器
JP2000350293A (ja) * 1999-03-29 2000-12-15 Taiyo Yuden Co Ltd 圧電振動体、圧電音響装置及びその製造方法
JP2001197594A (ja) * 1999-10-28 2001-07-19 Murata Mfg Co Ltd 超音波振動装置
JP2006245731A (ja) 2005-03-01 2006-09-14 Citizen Watch Co Ltd 指向性スピーカー
JP2007104650A (ja) * 2005-09-12 2007-04-19 Ngk Insulators Ltd スピーカ及びセンサ
JP2010157886A (ja) * 2008-12-26 2010-07-15 Panasonic Electric Works Co Ltd 圧電音響装置
JP2012134599A (ja) * 2010-12-20 2012-07-12 Nec Casio Mobile Communications Ltd 発振装置および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2760224A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170697A (ja) * 2017-03-30 2018-11-01 新日本無線株式会社 圧電素子
WO2020136994A1 (ja) * 2018-12-27 2020-07-02 株式会社村田製作所 圧電トランスデューサ
DE112019006444T5 (de) 2018-12-27 2021-09-02 Murata Manufacturing Co., Ltd. Piezoelektrischer wandler
WO2021033376A1 (ja) * 2019-08-22 2021-02-25 株式会社村田製作所 圧電振動板および圧電発音部品
WO2022219717A1 (ja) * 2021-04-13 2022-10-20 三菱電機株式会社 超音波トランスデューサ、測距装置および超音波トランスデューサの製造方法

Also Published As

Publication number Publication date
JP5288080B1 (ja) 2013-09-11
EP2760224A1 (en) 2014-07-30
US9253578B2 (en) 2016-02-02
CN103814586B (zh) 2016-10-26
JPWO2013042316A1 (ja) 2015-03-26
CN103814586A (zh) 2014-05-21
EP2760224B1 (en) 2017-01-18
US20140153750A1 (en) 2014-06-05
EP2760224A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2013042316A1 (ja) 指向性スピーカ
JP4766052B2 (ja) 電気音響変換器
EP2178312A1 (en) Directional silicon condenser microphone having additional back chamber
US20150041930A1 (en) Acoustic transducer
JP4185946B2 (ja) 圧電型電気音響変換器
WO2017221762A1 (ja) 電気音響変換装置
US6502662B1 (en) Speaker having a hemispherical vibrator
JP5677780B2 (ja) 超音波送受信器
JP5525351B2 (ja) 圧電発音体
JP2004015767A (ja) 圧電発音体およびこの圧電発音体を用いた圧電型電気音響変換器
JP5461074B2 (ja) コンデンサマイクロホンユニットおよびコンデンサマイクロホン
JP2014082572A (ja) 電気音響変換器
JPWO2004030406A1 (ja) 電気音響変換器
JP2007324957A (ja) 圧電振動子
TWI803124B (zh) 具多重振動部的微機電裝置
JP6274385B2 (ja) 超音波素子およびパラメトリックスピーカ
JP2023028693A (ja) 超音波トランスデューサ
US20230362550A1 (en) Electroacoustic transducer
JP2012039329A (ja) 超音波送受信器
WO2023203879A1 (ja) 超音波トランスデューサおよびその製造方法
WO2023095829A1 (ja) 超音波トランスデューサ
JP2008079230A (ja) 圧電発音器
WO2020027138A1 (ja) Memsデバイス
JP3309682B2 (ja) 圧電発音体
JPH11355892A (ja) 圧電振動板およびこの圧電振動板を用いた圧電音響部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013506366

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833078

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012833078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012833078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237481

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE