WO2023203879A1 - 超音波トランスデューサおよびその製造方法 - Google Patents

超音波トランスデューサおよびその製造方法 Download PDF

Info

Publication number
WO2023203879A1
WO2023203879A1 PCT/JP2023/007065 JP2023007065W WO2023203879A1 WO 2023203879 A1 WO2023203879 A1 WO 2023203879A1 JP 2023007065 W JP2023007065 W JP 2023007065W WO 2023203879 A1 WO2023203879 A1 WO 2023203879A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
circuit board
printed circuit
flexible printed
filler
Prior art date
Application number
PCT/JP2023/007065
Other languages
English (en)
French (fr)
Inventor
智昭 松下
隆之 島本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2024516112A priority Critical patent/JPWO2023203879A1/ja
Publication of WO2023203879A1 publication Critical patent/WO2023203879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to an ultrasonic transducer and a method for manufacturing the same.
  • Patent Document 1 As a prior art document disclosing the configuration of an ultrasonic sensor, there is International Publication No. 2013/051525 (Patent Document 1).
  • the ultrasonic sensor described in Patent Document 1 includes a case, a piezoelectric element, a pin terminal, a band-shaped flexible substrate, and a damping material.
  • the case has a bottom plate and side walls.
  • the piezoelectric element is arranged on the bottom plate within the case.
  • One tip of the pin terminal is placed inside the opening of the case, and the other tip is placed outside the case.
  • the flexible substrate has a first end connected to one tip of the pin terminal and a second end connected to the piezoelectric element.
  • the damping material seals one tip of the pin terminal and the flexible substrate within the case.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an ultrasonic transducer and a method for manufacturing the same, which have improved acoustic characteristics by making a filler sufficiently absorb ultrasonic vibrations. do.
  • the ultrasonic transducer includes a bottomed cylindrical case, a piezoelectric element, a terminal member, a strip-shaped flexible printed circuit board, a first filler, and a second filler.
  • the case has a bottom and sidewalls.
  • the piezoelectric element has a first main surface and a second main surface, and the second main surface is attached to the bottom inside the case.
  • the terminal member has a first end located inside the case and a second end located outside the case.
  • the flexible printed circuit board electrically connects the piezoelectric element and the first end of the terminal member.
  • the first filler is filled so as to fill the bottom side of the case.
  • the second filler is filled in the case so as to fill the first filler.
  • the flexible printed circuit board includes a first surface, a second surface, and a third surface.
  • the first surface portion has a first electrode electrically connected to the piezoelectric element, and extends in contact with the first main surface of the piezoelectric element.
  • the second surface portion curves up from the edge of the first surface portion adjacent to the side wall portion and extends along the side wall portion of the case.
  • the third surface has a second electrode electrically connected to the first end of the terminal member, is bent in an S-shape from the upper end of the second surface, and faces the first surface with a space therebetween. There is. At least a portion of the first surface portion and the second surface portion near the first surface portion is buried in the first filler.
  • the acoustic characteristics of the ultrasonic transducer can be improved by allowing the filler to sufficiently absorb ultrasonic vibrations.
  • FIG. 1 is a longitudinal cross-sectional view of an ultrasonic transducer according to Embodiment 1 of the present invention.
  • 1 is a flowchart showing a method for manufacturing an ultrasonic transducer according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a state in which a piezoelectric element and a flexible printed circuit board included in the ultrasonic transducer according to Embodiment 1 of the present invention are connected.
  • FIG. 2 is a longitudinal cross-sectional view showing a state in which a piezoelectric element included in the ultrasonic transducer according to Embodiment 1 of the present invention is attached to the bottom of a case.
  • FIG. 3 is a longitudinal cross-sectional view showing a state in which a first filler included in the ultrasonic transducer according to Embodiment 1 of the present invention is filled inside a case.
  • FIG. 2 is a longitudinal cross-sectional view showing a state in which a terminal member included in the ultrasonic transducer according to Embodiment 1 of the present invention is connected to a flexible printed circuit board.
  • FIG. 3 is a longitudinal cross-sectional view showing a state in which the first end of the terminal member is arranged inside the case by bending the flexible printed circuit board included in the ultrasonic transducer according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal cross-sectional view of an ultrasonic transducer according to Embodiment 2 of the present invention.
  • the direction along the bottom of the case is the DR1 direction
  • the height direction of the case is the DR2 direction.
  • FIG. 1 is a longitudinal cross-sectional view of an ultrasonic transducer according to Embodiment 1 of the present invention.
  • an ultrasonic transducer 100 according to this embodiment is, for example, an ultrasonic sensor.
  • the ultrasonic transducer 100 includes a cylindrical case 110 with a bottom, a piezoelectric element 120, a terminal member 130, a strip-shaped flexible printed circuit board 140, a first filler 150, and a second filler. material 160.
  • the case 110 has a bottom portion 111 and a side wall portion 112.
  • the bottom portion 111 of this embodiment has a disk-like shape when viewed from the DR2 direction.
  • the diameter of the bottom portion 111 is, for example, 14.0 mm or more and 15.5 mm or less.
  • the shape of the bottom portion 111 is not limited to a disk shape, but may be a rectangular plate shape, a polygonal plate shape, or the like.
  • the side wall portion 112 extends upward from the periphery of the bottom portion 111.
  • the height H1 of the case 110 from the outer bottom surface of the bottom portion 111 located on the outer surface of the case 110 to the upper end of the side wall portion 112 is, for example, 9.0 mm.
  • the case 110 is made of a conductive material.
  • case 110 is made of, for example, an aluminum alloy.
  • the material constituting the case 110 is not limited to a conductive material, and may be an insulating material.
  • Case 110 is formed by forging, for example.
  • the piezoelectric element 120 includes a piezoelectric body made of ceramic, for example.
  • the piezoelectric body included in the piezoelectric element 120 is made of PZT (lead zirconate titanate) ceramics.
  • PZT lead zirconate titanate
  • the piezoelectric body included in the piezoelectric element 120 is not limited to PZT-based ceramics, and may be other piezoelectric materials.
  • a unimorph type piezoelectric vibrator is configured by pasting the piezoelectric element 120 on the bottom portion 111.
  • the piezoelectric element 120 may be a bimorph piezoelectric vibrator or a multimorph piezoelectric vibrator.
  • the piezoelectric element 120 is provided with a pair of electrodes (not shown). By applying a voltage to the pair of electrodes, the piezoelectric element 120 is driven and vibrates. When the piezoelectric element 120 vibrates, the bottom portion 111 vibrates.
  • the piezoelectric element 120 when the bottom portion 111 of the case 110 vibrates by receiving ultrasonic waves from the outside, the piezoelectric element 120 also vibrates along with this vibration.
  • the ultrasonic waves are converted into electrical signals by the piezoelectric element 120 by generating charges as the piezoelectric element 120 vibrates.
  • the electrical signal is transmitted to the outside through a pair of electrodes.
  • the piezoelectric element 120 is arranged at approximately the center of the case 110 in the DR1 direction.
  • the piezoelectric element 120 includes a first main surface 121 and a second main surface 122.
  • the first main surface 121 and the second main surface 122 are opposed to each other.
  • the second main surface 122 is attached to the bottom portion 111 inside the case 110.
  • piezoelectric element 120 is bonded to bottom 111 with epoxy resin.
  • the ratio of the width of the internal space of the case 110 to the width of the piezoelectric element 120 is 1.1 times or more. This ratio allows piezoelectric element 120 to be attached to bottom 111 of case 110 without overloading flexible printed circuit board 140, which will be described later.
  • the terminal member 130 in this embodiment is a pin terminal.
  • Terminal member 130 includes a first end 131 , a second end 132 , and a support member 133 .
  • the first end 131 is arranged inside the case 110.
  • the second end 132 is located outside the case 110.
  • the support member 133 supports the first end 131 and the second end 132.
  • Each of the first end 131, the second end 132, and the support member 133 is made of a conductive material.
  • the flexible printed circuit board 140 electrically connects the piezoelectric element 120 and the first end 131 of the terminal member 130.
  • the flexible printed circuit board 140 is provided with electrical wiring for applying a voltage to the piezoelectric element 120, a signal line for transmitting an electrical signal generated in the piezoelectric element 120, and the like.
  • the flexible printed circuit board 140 includes a first surface portion 141, a second surface portion 142, and a third surface portion 143.
  • the first surface portion 141 extends while being in contact with the first main surface 121 of the piezoelectric element 120.
  • the first surface portion 141 extends along the DR1 direction.
  • the first surface portion 141 has a first electrode 145 electrically connected to the piezoelectric element 120.
  • the first electrode 145 is connected to the first main surface 121 of the piezoelectric element 120 by soldering, for example.
  • the second surface portion 142 curves and stands up from the edge of the first surface portion 141 adjacent to the side wall portion 112 and extends along the side wall portion 112 of the case 110.
  • the second surface portion 142 is in direct contact with the side wall portion 112.
  • the second surface portion 142 may extend along the side wall portion 112 while leaving a gap with respect to the side wall portion 112.
  • the second surface portion 142 in this embodiment is mainly configured in a straight line shape, but may be curved to the extent that the piezoelectric element 120 and the second surface portion 142 are not lined up in the DR2 direction.
  • the flexible printed circuit board 140 near the piezoelectric element 120 has a portion that is fixed linearly within the case 110, it is easy to position the flexible printed circuit board 140. This suppresses variations in the position of the first filler 150 filling a portion of the flexible printed circuit board 140, which will be described later. As a result, it is possible to suppress variations in the sound absorption properties of the first filler 150 that absorb ultrasonic vibrations emitted from the piezoelectric element 120, thereby suppressing variations in the acoustic properties of the ultrasonic transducer 100 with respect to ultrasonic vibrations. be able to.
  • the curvature R of the second surface portion 142 of the portion of the flexible printed circuit board 140 located at the boundary with the edge of the first surface portion 141 is 0.8 (1/mm) or more and 2.9 (1/mm) or less. . Thereby, overload on the portion located at the boundary between the first surface portion 141 and the second surface portion 142 can be suppressed, and the second surface portion 142 can be made to directly contact and run along the side wall portion 112.
  • the third surface portion 143 is bent in an S-shape from the upper end of the second surface portion 142 and faces the first surface portion 141 with an interval therebetween.
  • the third surface portion 143 is bent in an S-shape along the DR1 direction.
  • the third surface portion 143 is not limited to a shape bent in an S-shape, and may have a linear shape along the DR1 direction, a meandering shape, or the like.
  • the third surface portion 143 has a second electrode 146 electrically connected to the first end portion 131 of the terminal member 130.
  • the second electrode 146 is connected to the first end 131 of the terminal member 130 by soldering, for example.
  • the first electrode 145 and the second electrode 146 are arranged on one of the front and back surfaces of the flexible printed circuit board 140.
  • the first electrode 145 and the second electrode 146 are arranged on the surface. It is located.
  • the flexible printed circuit board 140 When providing the first electrode 145 and the second electrode 146 on the flexible printed circuit board 140, if the first electrode 145 and the second electrode 146 are arranged separately on the front and back surfaces of the flexible printed circuit board 140, the flexible printed circuit board 140 The manufacturing process for providing the first electrode 145 and the second electrode 146 is a plurality of steps. This complicates the manufacturing process and increases manufacturing costs. On the other hand, when the first electrode 145 and the second electrode 146 are arranged on either the front surface or the back surface of the flexible printed circuit board 140, the manufacturing process of providing the first electrode 145 and the second electrode 146 on the flexible printed circuit board 140 Since the steps can be performed in one process, the flexible printed circuit board 140 can be manufactured at low cost.
  • the first filler 150 is filled in the case 110 so as to fill the bottom 111 side. Piezoelectric element 120 and a portion of flexible printed circuit board 140 are buried in first filler 150 . Specifically, in the flexible printed circuit board 140 , at least the portions of the first surface portion 141 and the second surface portion 142 closer to the first surface portion 141 are buried in the first filler 150 .
  • the first filler 150 is made of foamed silicone resin.
  • the first filler 150 is formed by curing liquid silicone resin.
  • the first filler 150 has a height H2 from the outer bottom surface of the bottom portion 111 located on the outer surface of the case 110 to the upper end of the first filler 150.
  • the ratio of the height H2 of the first filler 150 to the height H1 of the case 110 in the height direction (DR2 direction) perpendicular to the bottom portion 111 is 0.3 times or more and 0.7 times or less.
  • the second filler 160 is filled in the case 110 so as to fill the first filler 150 .
  • the second filler 160 is made of silicone resin.
  • the second filler 160 may be made of a resin material such as urethane resin.
  • FIG. 2 is a flowchart showing a method for manufacturing an ultrasonic transducer according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a piezoelectric element included in the ultrasonic transducer according to Embodiment 1 of the present invention and a flexible printed circuit board are connected.
  • FIG. 4 is a longitudinal cross-sectional view showing a state in which the piezoelectric element included in the ultrasonic transducer according to Embodiment 1 of the present invention is attached to the bottom of the case.
  • FIG. 5 is a longitudinal cross-sectional view showing a state in which the first filler included in the ultrasonic transducer according to Embodiment 1 of the present invention is filled inside the case.
  • FIG. 3 is a cross-sectional view showing a state in which a piezoelectric element included in the ultrasonic transducer according to Embodiment 1 of the present invention and a flexible printed circuit board are connected.
  • FIG. 6 is a longitudinal cross-sectional view showing a state in which the terminal member included in the ultrasonic transducer according to Embodiment 1 of the present invention is connected to a flexible printed circuit board.
  • FIG. 7 is a longitudinal cross-sectional view showing a state in which the first end of the terminal member is arranged inside the case by bending the flexible printed circuit board included in the ultrasonic transducer according to Embodiment 1 of the present invention.
  • the first electrode 145 of the flexible printed circuit board 140 is connected to the first main surface 121 of the piezoelectric element 120 (step S1).
  • the second main surface 122 of the piezoelectric element 120 to which the flexible printed circuit board 140 is connected is attached to the bottom part 111, and the flexible printed circuit board 140 is brought into contact with the side wall part 112.
  • the second electrode 146 is placed outside the case 110 while being bent (step S2). As a result, a first surface portion 141 is formed in the flexible printed circuit board 140.
  • the side wall section 112 can support the flexible printed circuit board 140, so that variations in the position of the second electrode 146 of the flexible printed circuit board 140 are suppressed.
  • the positional accuracy of the second electrode 146 can be set to ⁇ 0.2 mm or less with respect to the designed position. This suppresses variations in the mutual connection positions when the flexible printed circuit board 140 and the terminal member 130 are connected, which will be described later. Easy to do.
  • a first filler 150 is filled so as to fill the bottom 111 side of the case 110, and a part of the flexible printed circuit board 140 is fixed (step S3).
  • the first filler 150 can be formed by potting. In potting, a liquid silicone resin is applied to each of the piezoelectric element 120 and the flexible printed circuit board 140 in the case 110, and then the liquid silicone resin is cured. Thereby, the first filler 150 can be provided in close contact with the piezoelectric element 120 and the flexible printed circuit board 140, regardless of the shapes of the piezoelectric element 120 and the flexible printed circuit board 140.
  • the second electrode 146 of the flexible printed circuit board 140 is connected to the first end 131 of the terminal member 130 on the outside of the case 110 (step S4). Since a part of the flexible printed circuit board 140 is fixed by the first filler 150, distortion of the entire flexible printed circuit board 140 is suppressed. Note that when the surface of the flexible printed circuit board 140 connected to the piezoelectric element 120 and the first end 131 of the terminal member 130 is the front surface, the first end 131 may be connected to the back surface of the flexible printed circuit board 140. .
  • the periphery of the second electrode 146 is The space is secured without any obstacles.
  • the second electrode 146 and the first end 131 are connected by soldering using automated equipment, interference between the terminal member 130 and the flexible printed circuit board 140 with the components of the automated equipment is suppressed.
  • the connection between electrode 146 and first end 131 can be automated.
  • step S5 the portion of the flexible printed circuit board 140 placed inside the case 110 and exposed from the first filler 150 is bent.
  • the part of the flexible printed circuit board 140 buried in the first filler 150 can maintain its shape while the first The portion of the flexible printed circuit board 140 exposed from the filler 150 is bent. As a result, a second surface portion 142 and a third surface portion 143 are formed in the flexible printed circuit board 140.
  • a second filler is used to fill the bent portions exposed from the first filler 150 in the case 110 and the first filler 150 of the flexible printed circuit board 140. 160 is filled (Step S6).
  • the ultrasonic transducer 100 can be manufactured through the steps described above.
  • Table 1 shows the ratio of the height H2 of the first filler 150 to the height H1 of the case 110 and the arrangement when the piezoelectric element 120 and the flexible printed circuit board 140 are arranged in the case 110, based on the results of the first experimental example. This is a summary of the relationship with the quality judgment of the condition.
  • the piezoelectric element 120 and the flexible printed circuit board 140 could be placed inside the case 110 without any problem.
  • the ratio is 0.8, there is insufficient space within the case 110 when bending the flexible printed circuit board 140 and placing it inside the case 110, so the entire flexible printed circuit board 140 is placed inside the case 110. cannot be accommodated.
  • the ratio can be measured by, for example, observing an ultrasonic transducer cut in a longitudinal section using an optical microscope or the like.
  • Table 2 summarizes the relationship between the curvature R of the boundary between the first surface part 141 and the second surface part 142 in the flexible printed circuit board 140 and the quality determination of the arrangement state of the flexible printed circuit board 140, based on the results of the second experimental example. It is.
  • the flexible printed circuit board 140 could be placed inside the case 110 without any problem. .
  • the flexible printed circuit board 140 will be in an inclined state within the case 110, and the flexible printed circuit board 140 cannot be placed along the side wall portion 112. Therefore, the position of the flexible printed circuit board 140 within the case 110 cannot be determined, and the connection between the second electrode 146 and the first end 131 cannot be automated.
  • curvature R when the curvature R was 5.0, stress concentration occurred on the piezoelectric element 120 from the first surface portion 141 formed by bending the flexible printed circuit board 140. As a result, a conduction failure occurred between the piezoelectric element 120 and the flexible printed circuit board 140.
  • the curvature R can be measured by, for example, observing an ultrasonic transducer cut in a longitudinal section using an optical microscope or the like.
  • the second surface portion 142 of the flexible printed circuit board 140 curves and stands up from the edge of the first surface portion 141 adjacent to the side wall portion 112, and the case 110
  • the proportion of the first filler 150 disposed directly above the piezoelectric element 120 can be increased. It can be absorbed by the filler 150. As a result, the sound absorption properties of the first filler 150 can be fully exhibited, so that the acoustic properties of the ultrasonic transducer 100 can be improved.
  • the second surface portion 142 is fixed to the first filler 150 while extending along the side wall portion 112, so that the flexible printed circuit board 140 is fixed to the first filler 150. It is possible to suppress variations in the position of a portion of the piezoelectric element 120. Therefore, variations in the position of the first filler 150 covering a portion of the flexible printed circuit board 140 closer to the piezoelectric element 120 can be suppressed. As a result, variations in the sound absorption properties of the first filler 150 can be suppressed.
  • the flexible printed circuit board 140 can be easily positioned within the case 110. Variations in the sound absorption properties of the first filler 150 can be suppressed. Therefore, variations in the position of the first filler 150 covering a portion of the flexible printed circuit board 140 closer to the piezoelectric element 120 can be suppressed. As a result, variations in the sound absorption properties of the first filler 150 can be suppressed.
  • the first electrode 145 and the second electrode 146 are arranged on one of the front and back surfaces of the flexible printed circuit board 140. Since the first electrode 145 and the second electrode 146 can be formed on the printed circuit board 140 in the same manufacturing process, the manufacturing process of the flexible printed circuit board 140 can be simplified and the flexible printed circuit board 140 can be manufactured at low cost. can.
  • the ratio of the height H2 of the first filler 150 to the height H1 of the case 110 in the height direction (DR2 direction) perpendicular to the bottom portion 111 is set to 0.
  • the first end portion 131 can be accommodated in the case 110 while maintaining the sound absorption characteristics of the first filler 150.
  • the curvature R of the second surface portion 142 of the portion of the flexible printed circuit board 140 located at the boundary with the edge of the first surface portion 141 is set to 0.8(1 /mm) or more and 2.9 (1/mm) or less, the curvature required to keep the flexible printed circuit board 140 upright within the case 110 while suppressing the overload applied when bending the flexible printed circuit board 140. can be configured.
  • a portion of the flexible printed circuit board 140 near the piezoelectric element 120 is fixed by the first filler 150 while extending along the side wall portion 112.
  • the second electrode 146 and the first end 131 can be connected while securing a space around the second electrode 146. This can prevent the terminal member 130 and the flexible printed circuit board 140 from interfering with the components of the automation equipment, so that the connection between the second electrode 146 and the first end 131 can be automated.
  • the ultrasonic transducer 100 can be efficiently manufactured.
  • Embodiment 2 an ultrasonic transducer according to Embodiment 2 of the present invention will be described with reference to the drawings.
  • the ultrasonic transducer according to Embodiment 2 of the present invention is different from the ultrasonic transducer 100 according to Embodiment 1 of the present invention because the configuration of the terminal member is different from the ultrasonic transducer 100 according to Embodiment 1 of the present invention. Descriptions of similar configurations will not be repeated.
  • FIG. 8 is a longitudinal cross-sectional view of an ultrasonic transducer according to Embodiment 2 of the present invention.
  • an ultrasonic transducer 200 according to Embodiment 2 of the present invention includes a cylindrical case 110 with a bottom, a piezoelectric element 120, a terminal member 230, a band-shaped flexible printed circuit board 240, and a bottomed cylindrical case 110.
  • the first filler 150 and the second filler 160 are provided.
  • Terminal member 230 in this embodiment is a lead terminal.
  • the flexible printed circuit board 240 includes a first surface portion 241, a second surface portion 242, and a third surface portion 243.
  • the third surface portion 243 has a second electrode 246 electrically connected to the terminal member 230.
  • the second electrode 246 is connected to the terminal member 230 by soldering, for example.
  • the second surface portion 242 of the flexible printed circuit board 240 curves and stands up from the edge of the first surface portion 241 adjacent to the side wall portion 112, and the case 110
  • the proportion of the first filler 150 disposed directly above the piezoelectric element 120 can be increased. It can be absorbed by the filler 150. As a result, the sound absorption properties of the first filler 150 can be fully exhibited.
  • the terminal member 230 is a lead terminal
  • the third surface portion 243 of the flexible printed circuit board 240 can be The degree of freedom for bending can be improved.
  • the flexible printed circuit board is a first surface portion having a first electrode electrically connected to the piezoelectric element and extending in contact with the first main surface of the piezoelectric element; a second surface portion that curves up from an edge of the first surface portion adjacent to the side wall portion and extends along the side wall portion of the case; A third electrode having a second electrode electrically connected to the first end of the terminal member, bent in an S-shape from the
  • ⁇ 3> The ultrasonic transducer according to ⁇ 1> or ⁇ 2>, wherein the first electrode and the second electrode are arranged on one of a front surface and a back surface of the flexible printed circuit board.
  • ⁇ 4> Any one of ⁇ 1> to ⁇ 3>, wherein the ratio of the height of the first filler to the height of the case in the height direction perpendicular to the bottom is 0.3 times or more and 0.7 times or less.
  • ⁇ 5> The curvature of the second surface portion of the flexible printed circuit board located at the boundary with the edge of the first surface portion is 0.8 (1/mm) or more and 2.9 (1/mm) or less. , the ultrasonic transducer according to any one of ⁇ 1> to ⁇ 4>.
  • a method for manufacturing an ultrasonic transducer comprising: a second filler filled in the case; connecting the first electrode of the flexible printed circuit board to the first main surface of the piezoelectric element; The second main surface of the piezoelectric element connected to the flexible printed circuit board is attached to the bottom, and the second electrode is placed outside the case while the flexible printed circuit board is brought into contact with the side wall and bent.
  • the process of fixing a part of the flexible printed circuit board by filling the first filler so as to fill the bottom side of the case; connecting the second electrode of the flexible printed circuit board to the first end of the terminal member on the outside of the case; The first end of the terminal member to which the flexible printed circuit board is connected is placed inside the case while the second end of the terminal member is located outside the case, and the first end is removed from the first filling material. bending the exposed portion of the flexible printed circuit board; filling the first filler in the case and the second filler so as to fill the curved portions exposed from the first filler of the flexible printed circuit board. Production method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

フレキシブルプリント基板(140)は、第1面部(141)と、第2面部(142)と、第3面部(143)とを含む。第1面部(141)は、圧電素子(120)に電気的に接続された第1電極(145)を有し、圧電素子(120)の第1主面(121)に接しつつ延在している。第2面部(142)は、第1面部(141)の側壁部(112)に近接している縁から湾曲して立ち上がり、ケース(110)の側壁部(112)に沿って延在している。第3面部(143)は、端子部材(130)の第1端部(131)に電気的に接続された第2電極(146)を有し、第2面部(142)の上端からS字状に曲折して第1面部(141)と間隔をあけて面している。第1面部(141)および、第2面部(142)の少なくとも第1面部(141)寄りの部分は、第1充填材(150)中に埋まっている。

Description

超音波トランスデューサおよびその製造方法
 本発明は、超音波トランスデューサおよびその製造方法に関する。
 超音波センサの構成を開示した先行技術文献として、国際公開第2013/051525号(特許文献1)がある。特許文献1に記載された超音波センサは、ケースと、圧電素子と、ピン端子と、帯状のフレキシブル基板と、制振材とを備える。ケースは、底板と側壁とを有する。圧電素子は、ケース内で底板上に配置されている。ピン端子は、一方の先端部がケースの開口内に配置されており、他方の先端部がケースの外部に配置されている。フレキシブル基板は、ピン端子の一方の先端部に接続されている第1端と、圧電素子に接続されている第2端とを有している。制振材は、ケース内でのピン端子の一方の先端部とフレキシブル基板とを封止している。
国際公開第2013/051525号
 特許文献1に記載された超音波センサにおいては、フレキシブルプリント基板のうちの圧電素子寄りの一部が圧電素子の直上に配置されている。この場合、フレキシブルプリント基板の当該一部が、ケース内に充填された充填材による圧電素子から発振される超音波振動の吸収を阻害する可能性がある。このため、充填材に超音波振動を十分に吸収させることにより、超音波センサの音響特性を向上させる余地がある。
 本発明は上記の問題点に鑑みてなされたものであって、充填材に超音波振動を十分に吸収させることにより音響特性が向上した、超音波トランスデューサおよびその製造方法を提供することを目的とする。
 本発明に基づく超音波トランスデューサは、有底筒状のケースと、圧電素子と、端子部材と、帯状のフレキシブルプリント基板と、第1充填材と、第2充填材とを備える。ケースは、底部および側壁部を有する。圧電素子は、第1主面および第2主面を有し、ケースの内側において第2主面が底部に貼り付けられている。端子部材は、ケースの内側に配置された第1端部およびケースの外側に配置された第2端部を有する。フレキシブルプリント基板は、圧電素子と端子部材の第1端部とを電気的に接続する。第1充填材は、ケース内の底部側を埋めるように充填されている。第2充填材は、ケース内の第1充填材を埋めるように充填されている。フレキシブルプリント基板は、第1面部と、第2面部と、第3面部とを含む。第1面部は、圧電素子に電気的に接続された第1電極を有し、圧電素子の第1主面に接しつつ延在している。第2面部は、第1面部の側壁部に近接している縁から湾曲して立ち上がり、ケースの側壁部に沿って延在している。第3面部は、端子部材の第1端部に電気的に接続された第2電極を有し、第2面部の上端からS字状に曲折して第1面部と間隔をあけて面している。第1面部および、第2面部の少なくとも第1面部寄りの部分は、第1充填材中に埋まっている。
 本発明によれば、充填材に超音波振動を十分に吸収させることにより、超音波トランスデューサの音響特性を向上させることができる。
本発明の実施の形態1に係る超音波トランスデューサの縦断面図である。 本発明の実施の形態1に係る超音波トランスデューサの製造方法を示すフローチャートである。 本発明の実施の形態1に係る超音波トランスデューサが備える圧電素子とフレキシブルプリント基板とが接続された状態を示す断面図である。 本発明の実施の形態1に係る超音波トランスデューサが備える圧電素子がケースの底部に貼り付けられた状態を示す縦断面図である。 本発明の実施の形態1に係る超音波トランスデューサが備える第1充填材がケースの内部に充填された状態を示す縦断面図である。 本発明の実施の形態1に係る超音波トランスデューサが備える端子部材がフレキシブルプリント基板に接続された状態を示す縦断面図である。 本発明の実施の形態1に係る超音波トランスデューサが備えるフレキシブルプリント基板を曲折させることにより端子部材の第1端部がケースの内部に配置された状態を示す縦断面図である。 本発明の実施の形態2に係る超音波トランスデューサの縦断面図である。
 以下、本発明の各実施の形態に係る超音波トランスデューサについて図を参照して説明する。以下の実施の形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 なお、図面においては、ケースの底部に沿う方向をDR1方向、ケースの高さ方向をDR2方向とする。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る超音波トランスデューサの縦断面図である。図1に示すように、本実施の形態に係る超音波トランスデューサ100は、たとえば、超音波センサである。
 図1に示すように、超音波トランスデューサ100は、有底筒状のケース110と、圧電素子120と、端子部材130と、帯状のフレキシブルプリント基板140と、第1充填材150と、第2充填材160とを備える。
 ケース110は、底部111と、側壁部112とを有している。本実施の形態の底部111は、DR2方向から見て、円板状の形状を有している。底部111の直径は、たとえば、14.0mm以上15.5mm以下である。なお、底部111の形状は、円板状に限られず、矩形板状または多角形板状などでもよい。
 側壁部112は、底部111の周縁から上方に延設されている。ケース110の外面に位置する底部111の外底面から、側壁部112の上端までの、ケース110の高さH1は、たとえば、9.0mmである。
 ケース110は、導電性材料で構成されている。本実施の形態においては、ケース110は、たとえばアルミニウム合金で構成されている。ただし、ケース110を構成する材料は導電性材料に限られず、絶縁性材料であってもよい。ケース110は、たとえば鍛造により形成される。
 圧電素子120は、たとえばセラミックスで構成された圧電体を含む。本実施の形態においては、圧電素子120が含む圧電体は、PZT(チタン酸ジルコン酸鉛)系セラミックスで構成されている。ただし、圧電素子120が含む圧電体は、PZT系セラミックスに限られず、その他の圧電材料であってもよい。
 底部111に圧電素子120が貼り付けられていることにより、ユニモルフ型圧電振動子が構成されている。なお、圧電素子120は、バイモルフ型圧電振動子またはマルチモルフ型圧電振動子であってもよい。
 圧電素子120には、図示しない一対の電極が設けられている。一対の電極に電圧が印加されることにより、圧電素子120が駆動されて振動する。圧電素子120が振動することにより、底部111が振動する。
 また、ケース110の底部111が外部から超音波を受けることによって振動すると、この振動に伴って圧電素子120も振動する。圧電素子120の振動に伴って電荷を生じることにより、超音波が圧電素子120にて電気信号に変換される。当該電気信号は、一対の電極を通じて外部に伝送される。
 図1に示すように、本実施の形態に係る超音波トランスデューサ100において、圧電素子120は、ケース110のDR1方向の略中央の位置に配置されている。
 圧電素子120は、第1主面121と、第2主面122とを含む。第1主面121および第2主面122は、互いに対向している。第2主面122は、ケース110の内側において底部111に貼り付けられている。本実施の形態においては、圧電素子120は、エポキシ樹脂によって底部111に接着されている。
 DR1方向において、圧電素子120の幅に対する、ケース110の内部空間の幅の比率は、1.1倍以上である。この比率関係により、後述するフレキシブルプリント基板140に過負荷を与えることなく、圧電素子120をケース110の底部111に貼り付けることができる。
 本実施の形態における端子部材130は、ピン端子である。端子部材130は、第1端部131と、第2端部132と、支持部材133とを含む。
 第1端部131は、ケース110の内側に配置されている。第2端部132は、ケース110の外側に配置されている。支持部材133は、第1端部131および第2端部132を支持している。第1端部131、第2端部132および支持部材133の各々は、導電材料により構成されている。
 フレキシブルプリント基板140は、圧電素子120と端子部材130の第1端部131とを電気的に接続している。フレキシブルプリント基板140には、圧電素子120に電圧を印加するための電気配線および圧電素子120において生ずる電気信号を伝送する信号線などが設けられている。
 フレキシブルプリント基板140は、第1面部141と、第2面部142と、第3面部143とを含む。
 第1面部141は、圧電素子120の第1主面121に接しつつ延在している。第1面部141は、DR1方向に沿って延在している。
 第1面部141は、圧電素子120に電気的に接続された第1電極145を有する。第1電極145は、たとえば圧電素子120の第1主面121にはんだ付けされることにより接続される。
 第2面部142は、第1面部141の側壁部112に近接している縁から湾曲して立ち上がり、ケース110の側壁部112に沿って延在している。本実施の形態においては、第2面部142は、側壁部112に直接接している。なお、第2面部142は、側壁部112に対して隙間をあけつつ側壁部112に沿って延在していてもよい。また、本実施の形態における第2面部142は、主に直線形状で構成されているが、DR2方向において圧電素子120と第2面部142とが並ぶことがない範囲で湾曲していてもよい。
 本実施の形態においては、圧電素子120寄りのフレキシブルプリント基板140がケース110内において直線状に固定されている部分を有しているため、フレキシブルプリント基板140の位置決めがしやすい。これにより、後述するフレキシブルプリント基板140の一部を埋める第1充填材150の位置のばらつきが抑制される。その結果、第1充填材150の圧電素子120から発振される超音波振動を吸収する吸音特性のばらつきを抑制することができるため、超音波トランスデューサ100の超音波振動に対する音響特性のばらつきを抑制することができる。
 フレキシブルプリント基板140における第1面部141の縁との境界に位置する部分の第2面部142の湾曲の曲率Rは、0.8(1/mm)以上2.9(1/mm)以下である。これにより、第1面部141および第2面部142の間の境界に位置する部分への過負荷を抑制し、かつ、第2面部142を側壁部112に直接接して沿わせることができる。
 第3面部143は、第2面部142の上端からS字状に曲折して第1面部141と間隔をあけて面している。第3面部143は、DR1方向に沿ってS字状に曲折している。なお、第3面部143は、S字状に曲折する形状に限定されず、DR1方向に沿って直線形状であってもよいし、蛇行する形状などであってもよい。
 第3面部143は、端子部材130の第1端部131に電気的に接続された第2電極146を有する。第2電極146は、たとえば端子部材130の第1端部131にはんだ付けされることにより接続される。
 第1電極145および第2電極146は、フレキシブルプリント基板140における表面および裏面のうちのいずれか一方の面上に配置されている。本実施の形態においては、フレキシブルプリント基板140が圧電素子120および端子部材130の第1端部131に接続されている面を表面とした場合、第1電極145および第2電極146が表面上に配置されている。
 フレキシブルプリント基板140に第1電極145および第2電極146を設ける際に、第1電極145および第2電極146がフレキシブルプリント基板140の表面および裏面の別々に配置されている場合、フレキシブルプリント基板140に第1電極145および第2電極146を設ける製造工程が複数工程となる。このため、製造工程が複雑となって製造コストが増加する。一方、第1電極145および第2電極146をフレキシブルプリント基板140の表面および裏面のどちらか一方の面上に配置した場合、フレキシブルプリント基板140に第1電極145および第2電極146を設ける製造工程を1つの工程にすることができるため、フレキシブルプリント基板140を廉価に製造することができる。
 第1充填材150は、ケース110内の底部111側を埋めるように充填されている。第1充填材150には、圧電素子120および、フレキシブルプリント基板140の一部が埋まっている。具体的には、フレキシブルプリント基板140においては、第1面部141および、第2面部142の少なくとも第1面部141寄りの部分が第1充填材150中に埋まっている。
 第1充填材150は、発泡シリコーン樹脂で構成されている。第1充填材150は、液状のシリコーン樹脂を硬化させることにより形成される。
 第1充填材150は、ケース110の外面に位置する底部111の外底面から、第1充填材150の上端までの高さH2を有している。底部111に直交する高さ方向(DR2方向)におけるケース110の高さH1に対する第1充填材150の高さH2の比率は、0.3倍以上0.7倍以下である。これにより、端子部材130の第1端部131がケース110の内部に配置されるスペースを確保し、かつ、第1充填材150の超音波振動の吸音特性の低下を抑制することができる。
 第2充填材160は、ケース110内の第1充填材150を埋めるように充填されている。第2充填材160は、シリコーン樹脂で構成されている。なお、第2充填材160は、ウレタン系樹脂などの樹脂材料で構成されていてもよい。
 以下、本発明の実施の形態1に係る超音波トランスデューサ100の製造方法について説明する。
 図2は、本発明の実施の形態1に係る超音波トランスデューサの製造方法を示すフローチャートである。図3は、本発明の実施の形態1に係る超音波トランスデューサが備える圧電素子とフレキシブルプリント基板とが接続された状態を示す断面図である。図4は、本発明の実施の形態1に係る超音波トランスデューサが備える圧電素子がケースの底部に貼り付けられた状態を示す縦断面図である。図5は、本発明の実施の形態1に係る超音波トランスデューサが備える第1充填材がケースの内部に充填された状態を示す縦断面図である。図6は、本発明の実施の形態1に係る超音波トランスデューサが備える端子部材がフレキシブルプリント基板に接続された状態を示す縦断面図である。図7は、本発明の実施の形態1に係る超音波トランスデューサが備えるフレキシブルプリント基板を曲折させることにより端子部材の第1端部がケースの内部に配置された状態を示す縦断面図である。
 図2および図3に示すように、超音波トランスデューサ100の製造方法として、まず、圧電素子120の第1主面121にフレキシブルプリント基板140の第1電極145を接続させる(S1工程)。
 次に、図2および図4に示すように、フレキシブルプリント基板140が接続された圧電素子120の第2主面122を底部111に貼り付けるとともに、フレキシブルプリント基板140を側壁部112に接触させて曲げつつ第2電極146をケース110の外側に配置させる(S2工程)。これにより、フレキシブルプリント基板140において第1面部141が形成される。
 フレキシブルプリント基板140が側壁部112に接触しながら曲げられることによって、側壁部112がフレキシブルプリント基板140を支持することができるため、フレキシブルプリント基板140の第2電極146の位置のばらつきが抑制される。具体的には、第2電極146の位置精度は、設計位置に対して±0.2mm以下にすることができる。これにより、後述するフレキシブルプリント基板140と端子部材130とが接続される際に、互いの接続位置のばらつきが抑制されるため、自動化設備によるフレキシブルプリント基板140と端子部材130との接続の自動化が行ないやすい。
 次に、図2および図5に示すように、ケース110内の底部111側を埋めるように第1充填材150を充填してフレキシブルプリント基板140の一部が固定される(S3工程)。
 第1充填材150は、ポッティングによって形成することができる。ポッティングにおいては、液状のシリコーン樹脂をケース110内の圧電素子120およびフレキシブルプリント基板140の各々に塗布した後、液状のシリコーン樹脂を硬化させる。これにより、圧電素子120およびフレキシブルプリント基板140の形状にかかわらず、圧電素子120およびフレキシブルプリント基板140に第1充填材150を密着して設けることができる。
 次に、図2および図6に示すように、ケース110の外側において、フレキシブルプリント基板140の第2電極146を端子部材130の第1端部131に接続させる(S4工程)。フレキシブルプリント基板140の一部が第1充填材150により固定されていることにより、フレキシブルプリント基板140全体が歪むことが抑制される。なお、フレキシブルプリント基板140が圧電素子120および端子部材130の第1端部131に接続されている面を表面とした場合、第1端部131をフレキシブルプリント基板140の裏面に接続してもよい。
 第2電極146を第1端部131に接続する際、フレキシブルプリント基板140の一部が側壁部112に沿って直線状にケース110の外側に延在しているため、第2電極146の周囲には障害物が配置されずに空間が確保されている。第2電極146と第1端部131とを自動化設備によりはんだ付けして接続する場合、端子部材130およびフレキシブルプリント基板140が当該自動化設備の構成要素と干渉することが抑制されるため、第2電極146と第1端部131との接続を自動化することができる。
 次に、図2および図7に示すように、端子部材130の第2端部132がケース110の外側に位置しつつ、フレキシブルプリント基板140が接続された端子部材130の第1端部131をケース110の内側に配置させて第1充填材150から露出している部分のフレキシブルプリント基板140を曲折させる(S5工程)。
 第1充填材150を充填してフレキシブルプリント基板140の一部が固定されていることによって、第1充填材150に埋まっているフレキシブルプリント基板140の一部がその形状を維持したまま、第1充填材150から露出している部分のフレキシブルプリント基板140を曲折させる。これにより、フレキシブルプリント基板140において第2面部142および第3面部143が形成される。
 次に、図1および図2に示すように、ケース110内の第1充填材150およびフレキシブルプリント基板140の第1充填材150から露出して曲折している部分を埋めるように第2充填材160が充填される(S6工程)。上述した工程によって、超音波トランスデューサ100を製造することができる。
 (実験例)
 ここで、ケース110の高さH1に対する第1充填材150の高さH2の比率と、ケース110内に圧電素子120およびフレキシブルプリント基板140を配置した際の配置状態の良否判定との関係について検証した第1実験例について説明する。実験条件としては、ケース110の高さH1に対する第1充填材150の高さH2の比率を変えた場合に、圧電素子120およびフレキシブルプリント基板140をケース110内に問題無く配置することができるか否かを検証した。
 表1は、第1実験例の結果から、ケース110の高さH1に対する第1充填材150の高さH2の比率と、ケース110内に圧電素子120およびフレキシブルプリント基板140を配置した際の配置状態の良否判定との関係をまとめたものである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、当該比率が0.3以上0.7以下である場合、圧電素子120およびフレキシブルプリント基板140をケース110の内部に問題無く配置することができた。
 一方、当該比率が0.2であった場合、第1充填材150によってフレキシブルプリント基板140の一部を固定することはできたものの、第1充填材150の吸音特性が低下し、残響振動が長くなった。このため、超音波トランスデューサ100を超音波センサとして使用する場合の近距離検知性能が悪化した。
 また、当該比率が0.8であった場合、フレキシブルプリント基板140を曲げてケース110内に配置させる際に、ケース110内のスペースが不足するため、フレキシブルプリント基板140全体をケース110の内部に収容することができない。なお、当該比率の測定方法は、たとえば縦断面で切断した超音波トランスデューサを光学顕微鏡などによって観察することにより測定することができる。
 次に、フレキシブルプリント基板140における第1面部141と第2面部142との境界の曲率Rと、フレキシブルプリント基板140の配置状態の良否判定との関係について検証した第2実験例について説明する。実験条件としては、曲率Rを変えた場合に、フレキシブルプリント基板140が問題無くケース110内に配置することができるか否かを検証した。
 表2は、第2実験例の結果から、フレキシブルプリント基板140における第1面部141と第2面部142と境界の曲率Rと、フレキシブルプリント基板140の配置状態の良否判定との関係をまとめたものである。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、曲率Rが0.8(1/mm)以上2.9(1/mm)以下である場合、フレキシブルプリント基板140をケース110の内部に問題無く配置することができた。
 一方、曲率Rが0.7であった場合、ケース110内でフレキシブルプリント基板140が傾いた状態となって、側壁部112に沿ってフレキシブルプリント基板140を配置することができない。このため、ケース110内においてフレキシブルプリント基板140の位置が決まらず、第2電極146と第1端部131との接続を自動化することができない。
 また、曲率Rが5.0であった場合、フレキシブルプリント基板140が曲げられることにより形成された第1面部141から圧電素子120に対する応力集中が発生した。これにより、圧電素子120とフレキシブルプリント基板140との間で導通不良が発生した。なお、曲率Rの測定方法は、たとえば縦断面で切断した超音波トランスデューサを光学顕微鏡などによって観察することにより測定することができる。
 本発明の実施の形態1に係る超音波トランスデューサ100においては、フレキシブルプリント基板140のうちの第2面部142が第1面部141の側壁部112に近接している縁から湾曲して立ち上がり、ケース110の側壁部112に沿って延在していることにより、圧電素子120の直上に第1充填材150の配置割合を増加させることができるため、圧電素子120から発振される超音波振動を第1充填材150によって吸収することができる。その結果、第1充填材150の吸音特性を十分に発揮させることができるため、超音波トランスデューサ100の音響特性を向上させることができる。
 本発明の実施の形態1に係る超音波トランスデューサ100においては、第2面部142が側壁部112に沿って延在した状態で第1充填材150に固定されていることにより、フレキシブルプリント基板140のうちの圧電素子120寄りの一部の位置がばらつくことを抑制することができる。このため、フレキシブルプリント基板140のうちの圧電素子120寄りの一部を覆う第1充填材150の位置のばらつきを抑制することができる。その結果、第1充填材150の吸音特性のばらつきを抑制することができる。
 本発明の実施の形態1に係る超音波トランスデューサ100においては、第2面部142が側壁部112に直接接していることにより、フレキシブルプリント基板140をケース110内で位置決めしやすくすることができるため、第1充填材150の吸音特性のばらつきを抑制することができる。このため、フレキシブルプリント基板140のうちの圧電素子120寄りの一部を覆う第1充填材150の位置のばらつきを抑制することができる。その結果、第1充填材150の吸音特性のばらつきを抑制することができる。
 本発明の実施の形態1に係る超音波トランスデューサ100においては、第1電極145および第2電極146をフレキシブルプリント基板140における表面および裏面のうちのいずれか一方の面上に配置することによって、フレキシブルプリント基板140上に第1電極145および第2電極146を同一の製造工程で形成することができるため、フレキシブルプリント基板140の製造工程を簡素化して、フレキシブルプリント基板140を廉価に製造することができる。
 本発明の実施の形態1に係る超音波トランスデューサ100においては、底部111に直交する高さ方向(DR2方向)におけるケース110の高さH1に対する第1充填材150の高さH2の比率を0.3倍以上0.7倍以下にすることによって、第1充填材150の吸音特性を維持しつつ、第1端部131をケース110内に収容することができる。
 本発明の実施の形態1に係る超音波トランスデューサ100においては、フレキシブルプリント基板140における第1面部141の縁との境界に位置する部分の第2面部142の湾曲の曲率Rを0.8(1/mm)以上2.9(1/mm)以下にすることによって、フレキシブルプリント基板140を曲げる際に加わる過負荷を抑制しつつ、フレキシブルプリント基板140をケース110内で直立させるために必要な曲率を構成することができる。
 本発明の実施の形態1に係る超音波トランスデューサ100の製造方法においては、フレキシブルプリント基板140の圧電素子120寄りの一部が側壁部112に沿って延在する状態で第1充填材150によって固定され、第2電極146をケース110の外側に配置することにより、第2電極146周辺に空間を確保した状態で第2電極146および第1端部131を接続することができる。これにより、端子部材130およびフレキシブルプリント基板140が当該自動化設備の構成要素と干渉することを抑制することができるため、第2電極146と第1端部131との接続を自動化することができる。ひいては、端子部材130およびフレキシブルプリント基板140の接続を自動化することによって、効率的に超音波トランスデューサ100を製造することができる。
 (実施の形態2)
 以下、本発明の実施の形態2に係る超音波トランスデューサについて図を参照して説明する。本発明の実施の形態2に係る超音波トランスデューサは、端子部材の構成が本発明の実施の形態1に係る超音波トランスデューサ100と異なるため、本発明の実施の形態1に係る超音波トランスデューサ100と同様である構成については説明を繰り返さない。
 図8は、本発明の実施の形態2に係る超音波トランスデューサの縦断面図である。図8に示すように、本発明の実施の形態2に係る超音波トランスデューサ200は、有底筒状のケース110と、圧電素子120と、端子部材230と、帯状のフレキシブルプリント基板240と、第1充填材150と、第2充填材160とを備える。本実施の形態における端子部材230は、リード端子である。
 フレキシブルプリント基板240は、第1面部241と、第2面部242と、第3面部243とを含む。
 第3面部243は、端子部材230に電気的に接続された第2電極246を有する。第2電極246は、たとえば端子部材230にはんだ付けされることにより接続される。
 本発明の実施の形態2に係る超音波トランスデューサ200においては、フレキシブルプリント基板240のうちの第2面部242が第1面部241の側壁部112に近接している縁から湾曲して立ち上がり、ケース110の側壁部112に沿って延在していることにより、圧電素子120の直上に第1充填材150の配置割合を増加させることができるため、圧電素子120から発振される超音波振動を第1充填材150によって吸収することができる。その結果、第1充填材150の吸音特性を十分に発揮させることができる。
 本発明の実施の形態2に係る超音波トランスデューサ200においては、端子部材230がリード端子であることによって、端子部材がピン端子である場合と比較して、フレキシブルプリント基板240の第3面部243を曲折させる自由度を向上させることができる。
 [付記]
 <1>
 底部および側壁部を有する有底筒状のケースと、
 第1主面および第2主面を有し、前記ケースの内側において前記第2主面が前記底部に貼り付けられた圧電素子と、
 前記ケースの内側に配置された第1端部および前記ケースの外側に配置された第2端部を有する端子部材と、
 前記圧電素子と前記端子部材の前記第1端部とを電気的に接続する帯状のフレキシブルプリント基板と、
 前記ケース内の底部側を埋めるように充填された第1充填材と、
 前記ケース内の前記第1充填材を埋めるように充填された第2充填材とを備え、
 前記フレキシブルプリント基板は、
 前記圧電素子に電気的に接続された第1電極を有し、前記圧電素子の前記第1主面に接しつつ延在する第1面部と、
 前記第1面部の前記側壁部に近接している縁から湾曲して立ち上がり、前記ケースの前記側壁部に沿って延在する第2面部と、
 前記端子部材の前記第1端部に電気的に接続された第2電極を有し、前記第2面部の上端からS字状に曲折して前記第1面部と間隔をあけて面する第3面部とを含み、
 前記第1面部および、前記第2面部の少なくとも前記第1面部寄りの部分は、前記第1充填材中に埋まっている、超音波トランスデューサ。
 <2>
 前記第2面部は、前記側壁部に直接接している、<1>に記載の超音波トランスデューサ。
 <3>
 前記第1電極および前記第2電極は、前記フレキシブルプリント基板における表面および裏面のうちのいずれか一方の面上に配置されている、<1>または<2>に記載の超音波トランスデューサ。
 <4>
 前記底部に直交する高さ方向における前記ケースの高さに対する前記第1充填材の高さの比率は、0.3倍以上0.7倍以下である、<1>から<3>のいずれか1つに記載の超音波トランスデューサ。
 <5>
 前記フレキシブルプリント基板における前記第1面部の前記縁との境界に位置する部分の前記第2面部の湾曲の曲率は、0.8(1/mm)以上2.9(1/mm)以下である、<1>から<4>のいずれか1つに記載の超音波トランスデューサ。
 <6>
 第1主面および第2主面を有する圧電素子と、
 底部および側壁部を有する有底筒状のケースと、
 第1端部および第2端部を有する端子部材と、
 第1電極および第2電極を有し、前記圧電素子と前記端子部材とを互いに電気的に接続する帯状のフレキシブルプリント基板と、
 前記ケース内に充填される第1充填材と、
 前記ケース内に充填される第2充填材とを備える超音波トランスデューサの製造方法であって、
 前記圧電素子の前記第1主面に前記フレキシブルプリント基板の前記第1電極を接続する工程と、
 前記フレキシブルプリント基板が接続された前記圧電素子の前記第2主面を前記底部に貼り付けるとともに、前記フレキシブルプリント基板を前記側壁部に接触させて曲げつつ前記第2電極を前記ケースの外側に配置する工程と、
 前記ケース内の底部側を埋めるように前記第1充填材を充填して前記フレキシブルプリント基板の一部を固定する工程と、
 前記ケースの外側において、前記フレキシブルプリント基板の前記第2電極を前記端子部材の前記第1端部に接続する工程と、
 前記端子部材の前記第2端部が前記ケースの外側に位置しつつ前記フレキシブルプリント基板が接続された前記端子部材の前記第1端部を前記ケースの内側に配置させて前記第1充填材から露出している部分の前記フレキシブルプリント基板を曲折させる工程と、
 前記ケース内の前記第1充填材および前記フレキシブルプリント基板の前記第1充填材から露出して曲折している部分を埋めるように前記第2充填材を充填する工程とを備える、超音波トランスデューサの製造方法。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100,200 超音波トランスデューサ、110 ケース、111 底部、112 側壁部、120 圧電素子、121 第1主面、122 第2主面、130,230 端子部材、131 第1端部、132 第2端部、133 支持部材、140,240 フレキシブルプリント基板、141,241 第1面部、142,242 第2面部、143,243 第3面部、145 第1電極、146,246 第2電極、150 第1充填材、160 第2充填材、H1,H2 高さ、R 曲率。

Claims (6)

  1.  底部および側壁部を有する有底筒状のケースと、
     第1主面および第2主面を有し、前記ケースの内側において前記第2主面が前記底部に貼り付けられた圧電素子と、
     前記ケースの内側に配置された第1端部および前記ケースの外側に配置された第2端部を有する端子部材と、
     前記圧電素子と前記端子部材の前記第1端部とを電気的に接続する帯状のフレキシブルプリント基板と、
     前記ケース内の底部側を埋めるように充填された第1充填材と、
     前記ケース内の前記第1充填材を埋めるように充填された第2充填材とを備え、
     前記フレキシブルプリント基板は、
     前記圧電素子に電気的に接続された第1電極を有し、前記圧電素子の前記第1主面に接しつつ延在する第1面部と、
     前記第1面部の前記側壁部に近接している縁から湾曲して立ち上がり、前記ケースの前記側壁部に沿って延在する第2面部と、
     前記端子部材の前記第1端部に電気的に接続された第2電極を有し、前記第2面部の上端からS字状に曲折して前記第1面部と間隔をあけて面する第3面部とを含み、
     前記第1面部および、前記第2面部の少なくとも前記第1面部寄りの部分は、前記第1充填材中に埋まっている、超音波トランスデューサ。
  2.  前記第2面部は、前記側壁部に直接接している、請求項1に記載の超音波トランスデューサ。
  3.  前記第1電極および前記第2電極は、前記フレキシブルプリント基板における表面および裏面のうちのいずれか一方の面上に配置されている、請求項1または請求項2に記載の超音波トランスデューサ。
  4.  前記底部に直交する高さ方向における前記ケースの高さに対する前記第1充填材の高さの比率は、0.3倍以上0.7倍以下である、請求項1から請求項3のいずれか1項に記載の超音波トランスデューサ。
  5.  前記フレキシブルプリント基板における前記第1面部の前記縁との境界に位置する部分の前記第2面部の湾曲の曲率は、0.8(1/mm)以上2.9(1/mm)以下である、請求項1から請求項4のいずれか1項に記載の超音波トランスデューサ。
  6.  第1主面および第2主面を有する圧電素子と、
     底部および側壁部を有する有底筒状のケースと、
     第1端部および第2端部を有する端子部材と、
     第1電極および第2電極を有し、前記圧電素子と前記端子部材とを互いに電気的に接続する帯状のフレキシブルプリント基板と、
     前記ケース内に充填される第1充填材と、
     前記ケース内に充填される第2充填材とを備える超音波トランスデューサの製造方法であって、
     前記圧電素子の前記第1主面に前記フレキシブルプリント基板の前記第1電極を接続する工程と、
     前記フレキシブルプリント基板が接続された前記圧電素子の前記第2主面を前記底部に貼り付けるとともに、前記フレキシブルプリント基板を前記側壁部に接触させて曲げつつ前記第2電極を前記ケースの外側に配置する工程と、
     前記ケース内の底部側を埋めるように前記第1充填材を充填して前記フレキシブルプリント基板の一部を固定する工程と、
     前記ケースの外側において、前記フレキシブルプリント基板の前記第2電極を前記端子部材の前記第1端部に接続する工程と、
     前記端子部材の前記第2端部が前記ケースの外側に位置しつつ前記フレキシブルプリント基板が接続された前記端子部材の前記第1端部を前記ケースの内側に配置させて前記第1充填材から露出している部分の前記フレキシブルプリント基板を曲折させる工程と、
     前記ケース内の前記第1充填材および前記フレキシブルプリント基板の前記第1充填材から露出して曲折している部分を埋めるように前記第2充填材を充填する工程とを備える、超音波トランスデューサの製造方法。
PCT/JP2023/007065 2022-04-19 2023-02-27 超音波トランスデューサおよびその製造方法 WO2023203879A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024516112A JPWO2023203879A1 (ja) 2022-04-19 2023-02-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022068729 2022-04-19
JP2022-068729 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023203879A1 true WO2023203879A1 (ja) 2023-10-26

Family

ID=88419648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007065 WO2023203879A1 (ja) 2022-04-19 2023-02-27 超音波トランスデューサおよびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023203879A1 (ja)
WO (1) WO2023203879A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051525A1 (ja) 2011-10-05 2013-04-11 株式会社村田製作所 超音波センサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051525A1 (ja) 2011-10-05 2013-04-11 株式会社村田製作所 超音波センサ

Also Published As

Publication number Publication date
JPWO2023203879A1 (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
US7956516B2 (en) Ultrasonic sensor and method for manufacturing the same
JP6252280B2 (ja) 超音波デバイスユニットおよびプローブ並びに電子機器および超音波画像装置
EP1501074A2 (en) Piezoelectric vibrator
KR101528890B1 (ko) 초음파 센서
CN110118595B (zh) 超声波传感器
US10074352B2 (en) Ultrasonic wave generation apparatus
WO2007102460A1 (ja) 超音波センサおよびその製造方法
US7692367B2 (en) Ultrasonic transducer
JPWO2007069609A1 (ja) 超音波トランスデューサ
JP2020170995A (ja) 超音波センサ
EP2760224B1 (en) Directional loudspeaker
US20220040736A1 (en) Piezoelectric device and ultrasonic transducer
JPWO2009122704A1 (ja) 圧電振動部品
JP4961224B2 (ja) 超音波探触子
WO2007091609A1 (ja) 超音波センサ
US12083559B2 (en) Vibrating device and manufacturing method of the same
WO2016147917A1 (ja) 超音波センサ
WO2023203879A1 (ja) 超音波トランスデューサおよびその製造方法
WO2016104415A1 (ja) 超音波センサ
JP5525351B2 (ja) 圧電発音体
JP7088099B2 (ja) 超音波センサ
JP2007036301A (ja) 超音波センサおよびその製造方法
JP6514079B2 (ja) 音響発生器
WO2023119745A1 (ja) 超音波トランスデューサ
CN103562731A (zh) 加速度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024516112

Country of ref document: JP

Kind code of ref document: A