WO2013039228A1 - 標的核酸の検出方法 - Google Patents
標的核酸の検出方法 Download PDFInfo
- Publication number
- WO2013039228A1 WO2013039228A1 PCT/JP2012/073710 JP2012073710W WO2013039228A1 WO 2013039228 A1 WO2013039228 A1 WO 2013039228A1 JP 2012073710 W JP2012073710 W JP 2012073710W WO 2013039228 A1 WO2013039228 A1 WO 2013039228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- sequence
- amplification
- primer
- probe
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Definitions
- This specification relates to a technique for detecting a target nucleic acid.
- nucleic acid sequences have been proposed as methods for genetic analysis of living organisms and for examining the presence of viruses, bacteria, and the like in biological samples.
- a probe or the like associated with a target nucleic acid sequence is prepared in advance, and hybridization between the probe and the like and a DNA fragment amplified from a biological sample by a nucleic acid amplification method is used.
- the target nucleic acid is detected with a labeling substance that has been bound to the fragment.
- a method is described in which a primer is designed to include a base sequence that allows a specific substance to bind to both ends of a DNA fragment amplified by a nucleic acid amplification method, and the DNA fragment is detected using such a specific substance.
- Patent Document 1 a method is described in which a primer is designed to include a base sequence that allows a specific substance to bind to both ends of a DNA fragment amplified by a nucleic acid amplification method, and the DNA fragment is detected using such a specific substance.
- Patent Documents 2 and 3 Non-Patent Document 1
- a sample preparation step is designed so that a detection probe having an artificial base sequence is prepared in advance and a DNA fragment having a base sequence that binds to the artificial base sequence can be amplified.
- Non-patent Document 2 a method for visually detecting the drug sensitivity of Mycobacterium tuberculosis using an array is disclosed.
- Nucleic acid amplification methods such as PCR usually amplify the target double-stranded portion. For this reason, the nucleic acid amplification product is also double-stranded. Whether the amplification product is intended or not is detected by heat denaturing the double strand to form a single strand and hybridizing a part of the single strand with a probe such as an oligonucleotide.
- hybridization efficiency may be reduced by hybridization with the probe as a single strand by heat denaturation.
- a specific substance recognizes a specific substance binding site (specific base sequence to which a specific substance can bind) of an amplified DNA fragment and binds to the specific base sequence.
- the amplified DNA fragment forms a double strand with its complementary strand even in its specific base sequence, and is not in a single-stranded state that easily interacts with a specific substance. Therefore, the efficiency with which a specific substance recognizes a specific base sequence is not so high, and it is necessary to concentrate double-stranded fragments to which the specific substance is bound.
- amplification is performed by relatively increasing the primer concentration on one side (also referred to as asymmetric PCR) in the labeling step.
- the reactivity is improved by selectively amplifying the DNA strand on the side that reacts with the probe on the array.
- non-contrast PCR tended to reduce the amplification efficiency itself.
- M. tuberculosis DNA can be visually detected, but heat denaturation is required before the DNA extracted from the bacteria is applied to the array.
- a DNA amplification fragment used as a sample is still a double strand, and in order to efficiently perform hybridization with a probe, it is converted into a single strand by heat denaturation or alkali denaturation. It is common. However, the denatured amplified fragment gradually returns to double strand, which may reduce the hybridization efficiency. On the other hand, in order to suppress this, it may be necessary to optimize conditions such as hybridization time and temperature.
- a method is also conceivable in which a DNA partial double strand having a single strand (hereinafter also referred to as a tag strand) at the 5 ′ end of a DNA double strand nucleic acid is used as an amplification product of a nucleic acid amplification reaction.
- the DNA partial double strand that is the amplification product of this method can hybridize with other DNA strands at both ends. Therefore, one tag strand of this DNA partial double strand can be used for hybridization with a probe, and the other tag strand can be used for hybridization with a labeled probe.
- This method has an advantage that the heat denaturation step can be omitted, but according to the present inventors, there are the following problems.
- this method increases the difficulty of setting amplification conditions. That is, an extra tag chain that does not contribute to amplification is bound to both forward and reverse primers.
- the present specification is directed to a method for detecting a target nucleic acid that can solve the problem of sample DNA fragments in conventional probe hybridization and realize efficient probe hybridization, a gene amplification agent used in the method, and A composition for hybridization is provided.
- the specification also provides a method for detecting a target nucleic acid, a kit for the target nucleic acid, and the like that can detect the target nucleic acid more practically, that is, with a simple operation and with high accuracy.
- the present inventors examined modification of the nucleic acid amplification method from the viewpoint of improving hybridization efficiency and sensitivity with a probe when applied to probe hybridization. As a result of various studies, knowledge that hybridization efficiency is high and detection sensitivity can be improved by introducing a site capable of suppressing or stopping the progress of the polymerase reaction into a part of the primer used for nucleic acid amplification. Got. In addition, the inventors have obtained the knowledge that highly sensitive hybridization is possible in a short time without the need for heat denaturation. This specification provides the following means based on these findings.
- a method for detecting a target nucleic acid in a sample Preparing a solid phase body comprising detection probes each having a different predetermined base sequence; A tag sequence complementary to the detection probe pre-associated with the target nucleic acid and a first identification sequence for identifying a first base sequence in the target nucleic acid, the tag sequence and the first identification
- a first primer having a linking site capable of suppressing or stopping the DNA polymerase reaction between the sequence and
- a second primer comprising a second identification sequence for identifying a second base sequence in the target nucleic acid
- a method comprising: (2) The method according to (1), wherein the second primer has a labeling substance binding region to which
- the amplification step is a step of performing nucleic acid amplification using a nucleoside triphosphate including a nucleoside derivative triphosphate having a labeling substance.
- the linking site does not include a natural base or a derivative of a natural base paired with a natural base.
- the linking site includes an alkylene chain or a polyoxyalkylene chain which is adjacent to the nucleotide in the primer via a phosphodiester bond and has 2 to 40 elements and may be substituted.
- nucleic acid amplification is performed using a plurality of sets of the first primer and the second primer so as to be detectable by a plurality of the detection probes previously associated with the plurality of target nucleic acids.
- the hybridization step is a step of bringing the plurality of amplified fragments obtained in the amplification step into contact with the plurality of detection probes on the solid phase so as to be capable of hybridizing
- the detection step is a step of detecting a hybrid product of the plurality of amplified fragments on the solid phase body and the plurality of detection probes.
- the tag sequence has 20 to 50 bases.
- a nucleic acid amplification kit comprising two or more nucleic acid amplification agents according to (14) or (15).
- a composition for probe hybridization comprising a DNA double-stranded fragment.
- a method for amplifying a target nucleic acid in a sample Including a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, between the first arbitrary base sequence and the first identification sequence, Performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or terminating the DNA polymerase reaction, A method of providing.
- the present inventors have conducted various studies on more practical target nucleic acid detection. As a result, it is possible to specify the form of the nucleic acid to be subjected to hybridization by nucleic acid chromatography. In the amplification step preceding it, the primer design and process can be simplified, and in the hybridization step, hybridization is performed while suppressing mishybridization. The knowledge that efficiency can be improved was acquired. The present specification provides the following means based on these findings.
- a method for detecting a target nucleic acid by nucleic acid chromatography One or more partially double-stranded nucleic acids associated with one or more target nucleic acids and one or more probes associated with the one or more target nucleic acids on a solid support.
- the one or more partial double-stranded nucleic acids have a tag sequence that is a single-stranded tag part capable of specifically hybridizing with the probe on the 5 ′ end side of the first strand, and has at least one
- a method comprising providing a labeling substance or a labeling substance binding substance in the part.
- a link comprising the tag sequence and a first identification sequence for identifying the first base sequence of the target nucleic acid, and capable of suppressing or stopping a DNA polymerase reaction between the tag sequence and the first identification sequence
- a second primer I comprising a first primer having a portion, a labeling sequence and a second identification sequence for identifying a second base sequence of the target nucleic acid, and the labeling substance or the labeling substance binding substance
- a link comprising the tag sequence and a first identification sequence for identifying the first base sequence of the target nucleic acid, and capable of suppressing or stopping a DNA polymerase reaction between the tag sequence and the first identification sequence
- a labeling probe comprising a substance-binding substance and a sequence that specifically hybridizes with the labeling sequence
- an amplification reaction is performed on the target nucleic acid to obtain a partial double-stranded nucleic acid and the labeling probe.
- An amplification step of obtaining a complex The method according to (21) or (22).
- a link comprising the tag sequence and a first identification sequence for identifying the first base sequence of the target nucleic acid, and capable of suppressing or stopping a DNA polymerase reaction between the tag sequence and the first identification sequence
- a second primer having a second identification sequence for identifying a second base sequence of the target nucleic acid, and a nucleoside derivative comprising the labeling substance or the labeling substance binding substance.
- the hybridization step is carried out by bringing a development medium containing an amplification reaction solution containing the amplification product after the amplification step into contact with a part of the solid phase carrier. (21) to (27) The method in any one of.
- the labeling substance binding substance is one or more selected from the group consisting of an antibody in an antigen-antibody reaction and a hapten containing biotin, digoxigenin, FITC, and the like.
- the labeling substance has a site capable of binding to the labeling substance binding substance, and uses one or more kinds of labeling substances selected from the group consisting of fluorescence, radioactivity, enzyme, phosphorescence, chemiluminescence, and coloring.
- the chromatography main body according to (32) The solid phase is provided with a tapered liquid contact part or a liquid contact part forming marker for contacting with a development medium for nucleic acid chromatography at one end thereof, according to (32) or (33). Chromatographic body. (35) The chromatography according to (34), wherein the liquid contact part formation marker is a marker that makes it possible to visually recognize a cleavage site for cutting a part of the solid phase body to form the liquid contact part.
- Body. The chromatography main body according to (35), wherein the marker has a fragility capable of cleaving the solid phase body along the marker.
- the present invention relates to a method for detecting a target nucleic acid, a nucleic acid amplification agent, and the like.
- the target nucleic acid detection method of the present invention is characterized by using the following first primer and second primer.
- An example of the amplification step in the detection method of the present invention is shown in FIGS. 1A and 1B.
- the first primer discriminates the first arbitrary base sequence such as a tag sequence complementary to the detection probe previously associated with the target nucleic acid from the first base sequence in the target nucleic acid.
- a linking site capable of suppressing or stopping the DNA polymerase reaction between the first arbitrary base sequence and the first recognition sequence,
- the second primer includes a second identification sequence that identifies the second base sequence in the target nucleic acid.
- the linking site suppresses or stops the DNA polymerase reaction. That is, the linking site cannot be a template for a DNA extension reaction by DNA polymerase because it does not contain a natural base or the like. Therefore, as shown in FIG. 1A, when the DNA single strand amplified by the first primer becomes a template strand and further amplified by the second primer, the DNA extension reaction from the second primer is In addition, it is suppressed or stopped on the 3 ′ side from the site that matches the linking site. Therefore, as a result, the amplified fragment (DNA double-stranded fragment) obtained by the amplification step is provided with a first arbitrary base sequence protruding from one end as a single strand and double-paired by base pairing. It is inferred to have a chain part.
- FIG. 1B also shows a case where the second primer further has a second arbitrary base sequence, and has the linking site between the second arbitrary base sequence and the second identification sequence.
- An amplification process is shown.
- FIG. 1B like the first primer shown in FIG. 1A, when the DNA single strand amplified by the second primer becomes a template strand and further amplified by the first primer, The DNA extension reaction from one primer is suppressed or stopped on the 3 ′ side from the site that pairs with the ligation site.
- the amplified fragment (DNA double-stranded fragment) obtained by the amplification step is provided as a single strand with a tag sequence protruding at one end and an arbitrary base sequence protruding at the other end. It is inferred that it is provided as a single strand and has a double-stranded portion by base pairing.
- the target nucleic acid can be detected with extremely high sensitivity and speed when the amplified fragment obtained by carrying out the step is hybridized with the detection probe without being denatured as it is.
- the obtained DNA double-stranded fragment forms a double-stranded portion in the first base sequence and the second base sequence in the target nucleic acid, and a tag sequence at the end. Since it is a DNA double-stranded fragment possessed as a single strand, it is considered that this single strand is efficiently hybridized with the probe. Sensitivity improves as hybridization efficiency increases.
- Such an oligonucleotide derivative having a base sequence including a linking site is useful as a nucleic acid amplification agent such as a primer itself.
- the nucleic acid amplification method using such a primer, the obtained DNA double-stranded fragment and the hybridization composition containing the fragment can also exhibit at least one effect corresponding to the form of each.
- the present specification also relates to a method for detecting a target nucleic acid by nucleic acid chromatography, a solid phase suitable for the method, and the like.
- the method for detecting a target nucleic acid disclosed in this specification identifies a partial double-stranded nucleic acid that is preferable for hybridization in nucleic acid chromatography, and as a result, efficient and highly accurate hybridization is possible.
- hybridization in nucleic acid chromatography involves movement of the development medium based on the capillary phenomenon and evaporation of the development medium, and it is difficult to achieve favorable hybridization. It was.
- efficient and highly accurate hybridization has become possible.
- a part of the solid phase body is brought into contact with the development medium containing the amplification reaction solution, and the development medium is moved on the solid phase carrier to perform hybridization. Therefore, contamination and the like that occur when a part of the nucleic acid amplification reaction solution is supplied to the solid phase body can be effectively prevented, and the operation for the hybridization step can be simplified.
- chromatography main body since a position marker is provided, even when a large number of target nucleic acids are detected simultaneously, a probe region corresponding to the target nucleic acid can be easily identified and detected. Simplification and accuracy can be improved at the same time. In particular, it is suitable for visual detection, and even in the case of visual detection, the presence or absence of the target nucleic acid can be detected at a glance.
- nucleic acid means a polymer of nucleotides, and the number thereof is not particularly limited. Nucleic acids include oligonucleotides in which several tens of nucleotides are linked, and longer polynucleotides are also included.
- the nucleic acid includes DNA single-stranded or double-stranded, RNA single-stranded or double-stranded, DNA / RNA hybrid, DNA / RNA chimera, and the like. Further, the nucleic acid may include a natural base, a nucleotide, and a nucleoside, and may include a non-natural base, a nucleotide, and a nucleoside in part.
- Nucleic acids include all DNA and RNA including cDNA, genomic DNA, synthetic DNA, mRNA, total RNA, hnRNA and synthetic RNA, as well as artificial nucleic acids such as peptide nucleic acid, morpholino nucleic acid, methylphosphonate nucleic acid and S-oligonucleic acid. Contains synthetic nucleic acids. Moreover, it may be single-stranded or double-stranded.
- the “target nucleic acid” is not particularly limited, and is any nucleic acid whose presence and / or amount should be detected.
- the target nucleic acid may be natural or artificially synthesized.
- natural target nucleic acids include genetic indicators in organisms such as humans and non-human animals, such as constitution, genetic diseases, onset of specific diseases such as cancer, disease diagnosis, treatment prognosis, selection of drugs and treatments, etc. Or a base sequence. Typically, polymorphisms such as SNP and congenital or acquired mutations can be mentioned.
- nucleic acids derived from microorganisms such as pathogenic bacteria and viruses are also included in the target nucleic acid.
- synthetic target nucleic acids include nucleic acids that are artificially synthesized for some kind of identification.
- the amplification product obtained by performing nucleic acid amplification reaction with respect to a certain kind of natural or artificial nucleic acid is mentioned.
- a sample described later or a nucleic acid fraction thereof can be used as it is, but preferably, an amplification product obtained by amplifying a plurality of target nucleic acids by PCR amplification reaction, more preferably multiplex PCR amplification reaction is used. It is preferable to use it.
- sample refers to a sample that may contain a target nucleic acid.
- samples that can contain the target nucleic acid include various biological samples (blood, urine, sputum, saliva, tissue, cells (cultivated animal cells and cultured plant cells derived from various animals). , Etc.), or a DNA extraction sample obtained by extracting DNA from such a biological sample.
- the DNA sample etc. which extracted RNA from the said biological sample and converted into DNA are also contained. Fractions containing nucleic acids from these various samples can be obtained by those skilled in the art with reference to conventional techniques as appropriate.
- the “target sequence” refers to a sequence composed of one or more bases characteristic of the target nucleic acid to be detected.
- it may be a partial sequence with low homology between target nucleic acids, or may be a sequence that is complementary or has low homology to other nucleic acids that may be contained in a sample.
- the target sequence may be a sequence characteristic of the target nucleic acid.
- Such target sequences may be artificially altered sequences.
- nucleic acid chromatography refers to a porous solid phase carrier capable of diffusing and moving a liquid (development medium) by a capillary phenomenon, and the nucleic acid is moved inside the solid phase carrier by the liquid to be solidified.
- This refers to chromatography in which a hybridized product is formed by specific base pairing with a probe prepared in advance on a phase carrier and the nucleic acid is captured on a solid phase carrier.
- the detection method disclosed in the present specification includes a step of preparing a solid phase body provided with a detection probe, and a step of performing nucleic acid amplification of the sample using a first primer and a second primer.
- a detection step for detecting a hybridized product is provided.
- the detection method disclosed in the present specification applies to one or more types of target nucleic acids, and more specifically, target sequences related to characteristic sequences in these target nucleic acids are to be detected.
- a series of steps for one kind of target nucleic acid will be mainly described. However, the following steps are also applied to a case where a plurality of target nucleic acids are detected simultaneously.
- the detection method disclosed in the present specification can include a step of preparing a solid phase as shown in FIG. 2A.
- a solid phase may be prepared in advance prior to the execution of the detection method, may be obtained commercially, or may be prepared each time the detection method is performed.
- the solid phase body can be provided with a plurality of detection probes each having a detection sequence that is a different unique base sequence on a carrier.
- a detection probe each having a detection sequence that is a different unique base sequence on a carrier.
- FIG. 2A shows an example of a solid phase body.
- Each of the detection probes has a detection sequence that is a unique base sequence for probing.
- a detection sequence can be set independently of the sequence characteristic of the target nucleic acid, that is, the target sequence.
- the detection sequence of the detection probe can suppress or avoid non-specific binding between a plurality of detection probes, and is suitable for hybridization at a suitable temperature and time. Can be set in consideration of the hybridization conditions.
- the same detection probe can always be used regardless of the type of target nucleic acid.
- the length of the detection sequence is not particularly limited, but is preferably 20 bases or more and 50 bases or less. This is because within this range, hybridization efficiency can be ensured while ensuring the specificity of each detection sequence.
- a base length detection sequence includes a 46 base length sequence obtained by combining two base sequences each having a base length of 23 bases each selected from SEQ ID NOs: 1 to 100 and a complementary sequence thereof, and the combined base sequence. Can be obtained by appropriately adding or deleting a base. More preferably, it is 20 bases or more and 25 bases or less.
- such a base length detection sequence can be obtained by appropriately adding or deleting bases to the 23 base length sequences of SEQ ID NOS: 1 to 100 and their complementary sequences or these base sequences. it can.
- the tag sequence in the first primer is a base sequence that is paired with the detection sequence
- the base length of the tag sequence is preferably 20 bases or more and 50 bases or less, like the detection sequence. Preferably, it is 20 bases or more and 25 bases or less.
- the detection sequence of such a detection probe for example, the base sequence described in SEQ ID NO: 1 to SEQ ID NO: 100 or a base sequence complementary to this base sequence can be used. These base sequences all have the same base length (23 base length), and have a melting temperature (Tm) of 40 ° C. or higher and 80 ° C. or lower, preferably 50 ° C. or higher and 70 ° C. or lower, and are homogeneous in hybridization under the same conditions. A hybrid result can be obtained.
- Tm melting temperature
- 2 types selected from these base sequence groups can also be combined.
- bases can be added, deleted, substituted, etc. within such a range that the specificity is not lost.
- the detection sequence for the detection probe used at the same time is selected from the group of the base sequences (groups) represented by SEQ ID NOs: 1 to 100 or the complementary base sequence (group) to these. Is preferred.
- the detection sequence of the detection probe can be appropriately selected from such candidate base sequences or their complementary sequences, and is selected from the base sequences shown in the following table or their complementary sequences. Only a probe set consisting of only one or two or more probes each having one or two or more base sequences as a detection sequence, or only a probe having all the following base sequences or their complementary sequences as detection sequences It is preferable to use a probe set consisting of By selecting such a base sequence as a detection sequence, it is possible to perform hybridization in a short time and realize further rapid hybridization.
- the detection sequence in such a detection probe is also referred to as an orthonormalized sequence, for example, a continuous match length for a DNA sequence of a predetermined base length obtained from a random number, melting temperature prediction by Nearest-Neighbor method, Hamming distance, Designed by performing secondary structure prediction calculations.
- the orthonormalized sequence is a base sequence of nucleic acid having a uniform melting temperature, that is, a sequence designed so that the melting temperature is within a certain range, and the nucleic acid itself is intramolecular. It means a base sequence that does not form a stable hybrid other than a base sequence that is structured in the above and does not inhibit hybridization with a complementary sequence.
- a sequence included in one orthonormalized sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction. Further, when the orthonormalized sequence is amplified in PCR, the amount of nucleic acid corresponding to the initial amount of the nucleic acid having the orthonormalized sequence is quantitatively affected without being affected by the problems such as the above-mentioned cross-hybridization. Has the property of being amplified.
- the orthonormalized array as described above is described in detail in H. Yoshida and A.Suyama, “Solution to 3-SAT by breadth first search”, DIMACS Vl.54, 9-20 (2000) and Japanese Patent Application No. 2003-108126. Are listed. Orthonormalized sequences can be designed using the methods described in these references.
- the detection probe is immobilized on a carrier.
- a carrier a solid phase carrier can be used.
- the carrier may be plastic or glass, and the material is not particularly limited.
- porous bodies such as a cellulose, a nitrocellulose, and nylon, may be sufficient. This type of porous carrier is particularly suitable for hybridizing the detection probe immobilized on the solid phase carrier and the amplified fragment by affinity chromatography.
- the shape of the carrier may be flat as shown in FIG. 1, but may be beads, and the shape is not particularly limited.
- the solid phase is preferably an array (particularly a microarray) in which the carrier is in the form of a solid plate and a plurality of detection probes are fixed in a fixed arrangement.
- the array can fix a large number of detection probes 4 and is convenient for comprehensively detecting various target nucleic acids at the same time.
- the solid phase body may include a plurality of partitioned array regions on the carrier. In the plurality of array regions, a set of detection probes each having the same combination may be fixed, or a set of detection probes each having a different combination may be fixed. If different combinations of detection probe sets are immobilized on multiple array regions, individual array regions can be assigned for detection of target nucleic acids in different genes.
- the shape of the carrier can also be set in consideration of the form of hybridization described later. For example, when hybridization is performed in a microtube such as Eppendorf tube (trademark), which is widely used for examinations and research, the array region of the carrier is immersed in the hybridization solution contained in the tube.
- the size and shape are preferred.
- the size of such a carrier can typically be a flat area of 150 mm 2 or less, an aspect ratio of 1.5 to 20 and a thickness of 0.01 mm to 0.3 mm.
- the end of the carrier has a size (width direction) and shape that can be immersed in a hybridization solution supplied to a microtube such as a tube (trademark).
- a microtube such as a tube (trademark).
- it is a long body provided with a part that can be accommodated from the vicinity of the bottom of this type of tube to the upper end.
- the immobilization form of the detection probe is not particularly limited.
- the 3 'end of the detection probe may be bound to a carrier, or the 5' end may be bound. It may be covalent or non-covalent.
- the detection probe can be immobilized on the surface of the carrier by various conventionally known methods.
- the carrier is supplied so as to draw a predetermined plane form by a method of discharging a micro droplet of a solution containing a detection probe.
- the probe for a detection is fix
- an amino group or the like may be added to the detection probe, or a protein such as albumin is linked to increase the adhesion to the carrier. You can also. Further, the sticking property can be enhanced by various types of radiation such as heat treatment and UV irradiation.
- the detection probe may have an appropriate linker sequence on the surface of the carrier.
- the linker sequence is preferably the same sequence with the same base length between the detection probes.
- the detection probe is supplied to the solid phase carrier in a predetermined pattern according to the form of hybridization described later.
- the streams (bands) corresponding to the individual detection probes are arranged at one or more development positions along the development direction. Pattern.
- the amplification step is performed using a first primer and a second primer.
- the nucleic acid amplification method in the nucleic acid amplification step include various known methods for amplifying DNA using a DNA polymerase reaction such as PCR to obtain a double-stranded DNA fragment.
- the first primer includes a tag sequence complementary to a detection probe previously associated with the target nucleic acid and a first identification sequence for identifying the first base sequence in the target nucleic acid.
- the lengths and the like of these base sequences are not particularly limited, and are appropriately determined according to the contents of the target sequence of the target nucleic acid.
- the first identification sequence is a sequence for amplifying the target nucleic acid by nucleic acid amplification, and can specifically hybridize with the first base sequence constituting a part of the target sequence in the target nucleic acid.
- the first identification sequence is set complementarily to the extent that it can hybridize with the first base sequence with high selectivity. Preferably, it is set to be completely complementary (specific).
- the tag sequence is a sequence for allowing the amplified fragment to hybridize with the detection probe and detects the target nucleic acid. Therefore, the tag sequence hybridizes to the detection sequence of the detection probe for each target nucleic acid. It is set to be able to soy.
- the base sequence is complementary to the detection sequence. Therefore, one target nucleic acid is associated with one detection probe.
- the base length of the tag sequence preferably matches the base length of the detection sequence of the detection probe, preferably 20 bases to 50 bases, more preferably 20 bases to 25 bases. It is as follows.
- the first base sequence and the second base sequence in the target nucleic acid may have any configuration with respect to the target nucleic acid.
- only one of the base sequences may contain a mutation site of one or more bases, or both may contain a mutation site.
- the first primer has such a tag sequence and a first identification sequence, has a natural base constituting such a base sequence or an artificial base homologous thereto, and a base pair with a natural nucleic acid. It has a skeleton that can be combined. Typically an oligonucleotide or a derivative thereof.
- the ligation site is a site capable of suppressing or stopping the DNA polymerase reaction when included in the template strand.
- the DNA polymerase reaction it is said that if there is no nucleic acid (or base) as a template, the DNA strand will not be extended any further.
- the linking site of the present invention has a structure that cannot serve as a template during DNA elongation by DNA polymerase. That is, this linking site does not include a natural base or a derivative of a natural base (such as a natural base) that pairs with a natural base.
- this linking site may be only a skeleton chain having no natural base or the like. That is, it may be a sugar-phosphate skeleton or a skeleton applied to other known artificial oligonucleotides.
- the DNA polymerase includes various known DNA polymerases. Typically, DNA polymerase used for nucleic acid amplification methods, such as various PCR, is mentioned.
- this linking site may be a chain linking group containing a single chain structure having 2 to 40 elements adjacent to the nucleotide via a phosphodiester bond. This is because if the number of elements is 1 or less, the DNA polymerase reaction is likely to be incompletely inhibited or stopped, and if the number of elements exceeds 40, the solubility of nucleotides may be reduced. Considering the effect of suppressing or stopping the DNA polymerase reaction, the chain linking group element is preferably 2 or more and 36 or less, more preferably 3 or more and 16 or less.
- This linking site contains a single bond to facilitate rotation at the linking site, and the single bond is a carbon-carbon single bond, carbon-oxygen single bond, carbon-nitrogen single bond, SS single bond. Examples include bonding. It is preferable that this connection site is mainly composed of such a single bond. In addition, this linking site may partially contain an aromatic ring or cycloalkane as long as it contains a single bond.
- the connecting site preferably contains an alkylene chain or a polyoxyalkylene chain which has 2 to 40 elements and may be substituted.
- Such a chain-like connection structure is structurally simple and can be easily introduced as a connection site.
- connection part represented by the following formula
- equation (1) is mentioned, for example.
- equation (1) (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.)
- m is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less.
- substituent of H in formula (1) include an alkyl group, an alkoxy group, and a hydroxyl group.
- the alkyl group and alkoxy group preferably have 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.
- the substituents may be the same or different.
- connection part represented by the following formula
- equation (2) is mentioned.
- equation (2) (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and n represents an integer of 2 or more and 4 or less. And l is an integer of 2 or more, and (n + 1) ⁇ l represents an integer of 40 or less.)
- (n + 1) ⁇ l is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less.
- the same aspect as the substituent in Formula (1) is applied to the substituent of H in Formula (2).
- linking site examples include the following chain sites.
- linking site examples include the following chain sites.
- the first primer has a first identification sequence and a tag sequence, and has a natural base constituting such a base sequence or an artificial base homologous thereto, and allows base pairing with a natural nucleic acid.
- a main component Typically an oligonucleotide or a derivative thereof.
- the first primer preferably has a tag sequence, a linking site, and a first identification sequence in that order from the 5 'side.
- the 5 'end of the nucleotide base adjacent to the 3 ′ side of the ligation site derived from the first primer in the template strand or the base in the vicinity thereof is the 5 ′ end, and the tag sequence in the first primer An amplified fragment having no complementary strand is obtained (see FIGS. 1A and 1B and FIGS. 2A to 2C).
- a sequence unrelated to the tag sequence or the first identification sequence can also be included in the vicinity of the linking site, that is, on the 3 'side and 5' side of the linking site.
- the presence of a ligation site can reduce or avoid the influence of unintended DNA extension reaction progress or termination on the tag sequence or the first identification sequence in the extended strand. Because.
- the second primer includes a second identification sequence that identifies the second base sequence in the target nucleic acid.
- the lengths and the like of these base sequences are not particularly limited, and are appropriately determined according to the contents of the target sequence of the target nucleic acid.
- the second identification sequence is a sequence for amplifying the target nucleic acid together with the first primer by nucleic acid amplification, and specifically with the second base sequence constituting the other part of the target sequence in the target nucleic acid. Can hybridize.
- the second identification sequence is set complementarily to the extent that it can hybridize with the second base sequence with high selectivity. Preferably, it is set to be completely complementary (specific).
- the labeling substance binding region can be provided with a labeling substance in advance.
- the labeling substance is for detecting a DNA double-stranded fragment bound to a detection probe on a solid phase.
- conventionally known substances can be appropriately selected and used. It may be various dyes such as a fluorescent substance that emits a fluorescent signal when excited by itself, or may be a substance that emits various signals in combination with the second component by an enzyme reaction or an antigen-antibody reaction.
- a fluorescent labeling substance such as Cy3, Alexa555, Cy5, Alexa647 can be used.
- the labeling substance binding region is provided with a labeling substance linked to the second base sequence directly or via a suitable linker by a known method.
- the “labeling substance” is a substance that makes it possible to distinguish a substance or molecule to be detected from others.
- the labeling substance is not particularly limited, but typically, a labeling substance using fluorescence, radioactivity, enzyme (for example, peroxidase, alkaline phosphatase, etc.), phosphorescence, chemiluminescence, coloring and the like can be mentioned.
- the labeling substance is preferably a luminescent substance or a coloring substance that presents luminescence or coloring that can be detected visually (with the naked eye). That is, it is preferably a substance that itself can directly generate a signal that is visible to the naked eye without the need for other components.
- the detection process can be performed quickly and easily.
- Such materials typically include various colorants such as various pigments and dyes.
- noble metals such as gold and silver
- various metals or alloys such as copper, or organic compounds containing the metal (may be complex compounds) may be used.
- inorganic compounds such as mica, which are similar to the colorant, can be used.
- This type of labeling substance typically includes various dyes, various pigments, luminol, isoluminol, acridinium compounds, olefins, enol ethers, enamines, aryl vinyl ethers, dioxene, aryl imidazoles, lucigenin, luciferin and eclion.
- a chemiluminescent substance is mentioned.
- particles such as latex particles labeled with such a labeling substance are also included.
- colloids or sols including gold colloids or sols or silver colloids or sols can be mentioned.
- a metal particle, an inorganic particle, etc. are mentioned.
- the labeling substance may include particles in a part thereof.
- the average particle size of particles such as latex particles constituting a part of the labeling substance is not particularly limited, but is, for example, 20 nm or more and 20 ⁇ m or less, typically 40 nm to 10 ⁇ m, preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
- the average particle diameter is particularly preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.15 ⁇ m or more and 2 ⁇ m or less.
- it is preferably 500 nm or less, more preferably 250 nm or less, preferably 100 nm or less, and preferably 50 nm or less.
- a minimum is 0.1 nm or more, More preferably, it is 1 nm or more.
- it is more preferably 0.1 nm or more and 250 nm or less, and further preferably 1 nm or more and 250 nm or less.
- it is more preferably 0.1 nm or more and 100 nm or less, and further preferably 1 nm or more and 50 nm or less.
- Preferred particles are particles that can be suspended in an aqueous solution and are made of a water-insoluble polymer material.
- a water-insoluble polymer material for example, polyethylene, polystyrene, styrene-styrene sulfonate copolymer, acrylic acid polymer, methacrylic acid polymer, acrylonitrile polymer, acrylonitrile-butadiene-styrene, polyvinyl acetate-acrylate, polyvinylpyrrolidone, or vinyl chloride-acrylate may be mentioned. Mention may also be made of latex particles having active groups on their surface, for example carboxyl, amino or aldehyde groups.
- the labeling substance binding region may be provided with a molecule or substance (hereinafter also referred to as a labeling substance binding substance) capable of binding these so that they can be finally identified by the labeling substance.
- a labeling substance binding substance capable of binding these so that they can be finally identified by the labeling substance.
- protein-protein interaction low molecular compound-protein interaction, and the like can be used.
- antibodies in antigen-antibody reaction biotin in avidin (streptavidin) -biotin system, digoxigenin in anti-digoxigenin (DIG) -digoxigenin (DIG) system, or haptens represented by FITC in anti-FITC-FITC system, etc. Is mentioned.
- the labeling substance finally used for detection is the other molecule or substance that interacts with the labeling substance binding substance (for example, an antigen, ie, streptavidin, anti-FITC, etc.) and the labeling substance binding substance. It is modified so as to be provided as a site for binding.
- the amplification product includes a labeling substance binding substance, a label having a labeling substance binding substance of the amplification product and a site that binds to the labeling substance binding substance in the hybridization step, prior to or after this step. A complex with the substance is formed, and the amplification product is detected by the labeling substance.
- Such labeling substances and labeling substance substances are commercially available, and the production of labeling substances and labeling substance binding substances and methods for labeling labeling substances, etc. are also known. And can be obtained. Furthermore, binding between such a labeling substance or particles labeled with a labeling substance or a labeling substance binding substance and an oligonucleotide such as DNA can be appropriately performed via a functional group such as an amino group, and as such is itself in the field. It is well known.
- the second primer may be configured such that the labeling substance binding region can bind the labeling substance or the labeling substance binding substance. That is, a labeled probe having a predetermined base sequence and having a labeling substance or a labeling substance binding substance and a base sequence for identifying the label binding sequence may be capable of binding. Such a labeled probe can be supplied to a DNA double-stranded fragment hybridized with a detection probe on a solid phase in the hybridization step or detection step described later, and can be labeled.
- the second primer may not have a labeling substance binding region. That is, in the amplification step, nucleic acid amplification is performed using a nucleoside triphosphate including a nucleoside derivative triphosphate provided with a labeling substance, whereby a labeled substance is introduced into the DNA extension site of the amplified fragment and labeled. Because it can be obtained.
- the second primer has a labeling substance binding region as required in addition to the second identification sequence, and has a natural base constituting the base sequence of the second identification sequence or an artificial base homologous thereto. In addition, it has a skeleton that allows base pairing with natural nucleic acids. Typically an oligonucleotide or a derivative thereof.
- the labeling substance binding region and the second identification sequence may be directly linked, but it is preferable to have a linking site between them.
- the labeling substance binding region has a base sequence that interacts with and binds to the labeling probe.
- the linking site is as described in the first primer.
- the second primer preferably has a labeling substance binding region, a linking site, and a second identification sequence in that order from the 5 'side.
- the base binding to the base of the nucleotide adjacent to or adjacent to the 3 ′ side of the linking site derived from the second primer in the template strand is the 5 ′ end, and the label binding region in the second primer A DNA amplified fragment having no complementary strand of (base sequence) is obtained (see FIGS. 1B and 2B).
- a sequence unrelated to the labeling substance binding region and the second identification sequence can also be included in the vicinity of the linking site, that is, on the 3 ′ side and 5 ′ side of the linking site.
- the second primer becomes a template strand, due to the presence of the ligation site, the influence of unintended DNA extension reaction progress or termination on the labeling substance binding region or the second identification sequence in the extended strand is reduced or This is because it can be avoided.
- Such primers can be synthesized according to a normal oligonucleotide synthesis method.
- the linking site can be synthesized using a phosphoramidite reagent having an alkylene chain.
- a reagent itself is known and can be obtained from, for example, GlenResearch.
- the following reagents can be mentioned.
- DMT represents a typical dimethoxytrityl group as a hydroxyl protecting group, but may be other known hydroxyl protecting groups.
- PA represents a phosphoramidite group.
- Nucleic acid amplification is performed using these primers.
- various known methods can be applied to the nucleic acid amplification method, but typically, various PCRs such as PCR and multiplex PCR are used.
- a person skilled in the art can appropriately set the solution composition, temperature control, and the like in carrying out the nucleic acid amplification step.
- the first primer having these in the order of the tag sequence, the linking site and the first identification sequence from the 5 ′ side, and the labeling substance binding region, the linking site and the second from the 5 ′ side.
- PCR is performed on a sample that may contain a target nucleic acid using a second primer having these in the order of the identification sequences, as shown in each of (a) to (c) of FIG. 1B Due to the DNA extension reaction of DNA polymerase, a template strand containing the primer is formed from the first primer and the second primer.
- the DNA extension reaction is again performed by the DNA polymerase using the second primer and the first primer which are different from the primers from which the template strands are derived.
- the DNA elongation reaction of the DNA polymerase with respect to the template strand starting from the second primer and containing the first primer is performed by the first primer in the template strand.
- DNA elongation is suppressed or stopped.
- the DNA extension reaction of the DNA polymerase to the template strand starting from the first primer and containing the second primer is derived from the second primer in the template strand.
- the DNA elongation is suppressed or stopped.
- the resulting amplified fragment comprises a single-stranded tag sequence protruding from the 5 ′ end and a labeling substance binding region, respectively.
- the first identification sequence and the second identification sequence Becomes a double-stranded DNA fragment comprising a double strand. That is, in the heavy chain fragment of this DNA, the tag sequence protrudes into a single strand on the 5 ′ side of one DNA strand, and the labeling substance binding region protrudes on the 5 ′ side of the other DNA strand. Yes.
- the labeling substance is attached to the 5 ′ end of one DNA strand as shown in FIG. 2A. It has a tag sequence protruding on the 5 ′ side of one DNA strand, and in the first and second identification sequences, it becomes a DNA double-stranded fragment comprising a double strand.
- a labeling substance is present at the DNA chain extension site, a tag sequence protrudes on the 5 ′ side of one DNA chain, and the first and second identification sequences are double-stranded.
- a DNA double-stranded fragment comprising
- the hybridization step is a step in which the amplified fragment obtained in the amplification step and the detection probe are brought into contact with each other so as to be hybridizable with a tag sequence.
- the tag sequence of the DNA double-stranded fragment obtained in the amplification step, the detection sequence of the detection probe on the solid phase body, and the fixed sequence When they are complementary to the extent that they can specifically hybridize, they hybridize to form a duplex in a given detection probe on the solid phase.
- An appropriate washing step may be further included after the hybridization step.
- a DNA double-stranded fragment corresponding to the target nucleic acid specifically amplified in the amplification step is supplied.
- This fragment has a tag sequence specific to a detection probe associated in advance as a single strand.
- a denaturation step such as heat denaturation. Therefore, the hybridization efficiency is high, and as a result, the sensitivity can be improved and stabilized.
- the sensitivity is preferably improved by a factor of 5 or more, more preferably by a factor of 10 or more by providing a linking site in the first primer.
- the rapidity of hybridization is also improved. It has been found that the provision of a linking site in the first primer shortens the hybridization time to about 1/10.
- the DNA double-stranded fragment supplied to the hybridization step has a labeling substance binding region and is directly provided with a labeling substance
- a special labeling step does not have to be performed.
- FIG. 2C the same applies to the case where the DNA double-stranded fragment is given a labeling substance by the amplification step.
- the labeling substance binding region includes a base sequence that binds the labeling probe
- this base sequence portion projects as a single strand to the 5 ′ side opposite to the tag sequence. . For this reason, it is possible to efficiently hybridize with the labeled probe, and to label quickly, easily and with high sensitivity.
- the labeled probe is supplied to the solid phase simultaneously with the DNA double strand break in the hybridization step, or before and after the supply of the DNA double strand fragment to the solid phase. (That is, it may be before or after hybridization).
- the DNA double-stranded fragment hybridizes only to a specific detection probe based on the tag sequence.
- the detection sequence and the tag sequence of the detection probe are designed to be highly selective and mishybridization is highly suppressed. Hybridization of heavy chain fragments is highly suppressed.
- the hybridization step is not limited to the hybridization mode (immersion type hybridization) performed by supplying the hybridization solution to the entire solid phase illustrated in FIG.
- it is a form of chromatography (development type hybridization) in which a hybridization solution that is also a mobile phase is supplied to a part of a solid phase body, and the hybridization solution is developed in a predetermined direction with respect to the solid phase body. May be.
- the detection step is a step of detecting a hybridized product of the amplified fragment on the solid phase body and the detection probe.
- the detection step is a step of acquiring signal intensity information about the target nucleic acid based on the labeling substance held by the hybridized product on the solid phase after hybridization, and detecting the hybridized product. For obtaining signal intensity information, a label signal derived from a labeling substance can be detected. Since the position on the solid phase body of the detection probe associated with the target nucleic acid in advance is acquired in advance, the presence or the ratio of the target nucleic acid can be detected by detecting the label signal.
- a conventionally known method may be appropriately selected and adopted according to the form of the solid phase used and the type of labeling substance.
- the fluorescent signal of the added labeling substance is detected by an array scanner or the like, or a chemiluminescent reaction to the labeling substance Can be implemented.
- a detection method using a flow cytometer can be used.
- the presence or absence, the ratio, etc. of the target nucleic acid in the sample can be detected based on the signal intensity information of the labeling substance. According to this method, even when a plurality of target nucleic acids are detected at the same time, it is possible to reliably detect a target sequence as a detection target. In this method, since the DNA double-stranded fragment obtained in the amplification step is suitable for efficient hybridization and efficient labeling, efficient detection with high sensitivity is possible and a complicated denaturation step is performed. It can be omitted.
- nucleic acid amplification was performed using a plurality of sets of the first primer and the second primer so that they could be detected by a plurality of detection probes previously associated with a plurality of target nucleic acids, and obtained in the amplification step
- a plurality of amplified fragments and a plurality of detection probes on the solid phase are brought into contact with each other so as to be able to hybridize, and a hybrid product of the plurality of amplified fragments on the solid phase and the plurality of detection probes is detected. It is preferable.
- the nucleic acid amplifying agent of the present invention is a first discriminating first base sequence in a nucleic acid to be amplified from a first arbitrary base sequence from the 5 ′ side. And an oligonucleotide derivative having a linking site capable of suppressing or stopping the DNA polymerase reaction between the first base sequence and the first identification sequence.
- the nucleic acid amplification agent includes such a linking site, the nucleic acid amplification agent is used in the nucleic acid amplification method as at least one primer, and the DNA strand containing the nucleic acid amplification agent obtained by the amplification reaction is a template strand.
- the linking site acts as a point for suppressing or stopping the DNA polymerase reaction in the extended strand, and the portion after the linking site does not function as a template strand.
- an extended strand complementary to the template strand after the ligation site is not formed.
- the resulting DNA double-stranded fragment is a DNA duplex having a single strand of the first arbitrary base sequence on one 5 ′ side, as shown in FIG. 1A.
- the second primer which is the other primer, is amplified with the second arbitrary base sequence from the 5 ′ side in the same manner as the first primer.
- an oligonucleotide derivative having a linking site capable of suppressing or stopping the DNA polymerase reaction between the second base sequence and the second identification sequence. it can.
- a DNA duplex having a single strand of the first arbitrary base sequence and a single strand of the second arbitrary base sequence on each 5 'side is obtained.
- the nucleic acid amplification agent can typically be used as a primer in various nucleic acid amplification methods.
- the first arbitrary base sequence and / or the second arbitrary base sequence may be a tag sequence in the present invention, or may be a base sequence to which a label is bound or capable of hybridizing with a labeled probe. Good.
- the target nucleic acid can be amplified and labeled at the same time.
- the linking site already described in the present detection method can be applied to the linking site in the nucleic acid amplification agent.
- the first arbitrary base sequence and the first identification sequence of the nucleic acid amplification site include the tag sequence and the first identification sequence in the first primer and the second primer already described in the detection method, and Various embodiments of the labeling substance binding region and the second identification sequence can be applied. That is, the nucleic acid amplification agent uses the first primer and the second primer as one embodiment.
- kits containing one or more of these nucleic acid amplification agents is also provided.
- the kit may contain a solid phase body for hybridization with a DNA fragment obtained using the first primer or the second primer described above.
- a DNA double-stranded fragment obtained by the present detection method that is, a DNA duplex having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing.
- At least one DNA strand has a linking site capable of suppressing or stopping a DNA polymerase reaction between the single-stranded portion and the double-stranded binding portion, and the single-stranded portion is A DNA double-stranded fragment having a tag sequence complementary to the base sequence in the detection probe is also provided.
- a DNA double-stranded fragment having a single-stranded portion on the 5 'side of the other strand and having a label linked to this single-stranded portion is also provided.
- a probe hybridization composition containing them is also provided. Use this method.
- a method for amplifying a target nucleic acid in a sample is also provided. That is, a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, and between the first arbitrary base sequence and the first recognition sequence
- a method is provided which comprises the step of performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or stopping the DNA polymerase reaction.
- the amplified fragment obtained by this method is a DNA double-stranded fragment having a single strand of the first arbitrary base sequence protruding to the 5 'side of at least one strand.
- the second arbitrary base sequence and a second identification sequence for identifying the second base sequence in the target nucleic acid are included as other primers, and the first arbitrary base A second primer having a linking site capable of suppressing or stopping the DNA polymerase reaction can also be used between the sequence and the first recognition sequence.
- a DNA double-stranded fragment having a single strand of the first arbitrary base sequence protruding to the 5 'side of both strands can be obtained.
- the first arbitrary base sequence may be provided with a labeling substance or may have a base sequence capable of binding to the label probe. The same applies to the second primer.
- the various aspects of the detection method described above can be applied to the first primer, the second primer, and the ligation site.
- This amplification method is also provided as a method for producing a DNA double-stranded fragment having a single strand on the 5 'side of at least one DNA strand. Furthermore, this amplification method can also be implemented as a method for labeling a target nucleic acid. Furthermore, it can also be implemented as a method for detecting a target nucleic acid comprising such a labeling step. That is, by using this amplification step (labeling step) instead of the labeling step in the detection methods such as SNP disclosed in JP2008-306941A, JP2009-24A and Non-Patent Document 1, Thus, efficient and sensitive hybridization can be carried out.
- the method for detecting a target nucleic acid by nucleic acid chromatography disclosed herein can hybridize a partially double-stranded nucleic acid and a probe on a solid phase carrier by nucleic acid chromatography.
- a hybridization step for contacting under conditions, and a detection step for detecting a hybridized product generated in the hybridization step can hybridize a partially double-stranded nucleic acid shown in FIG. 1A, and then the hybridization step and the detection step will be described.
- the partial double-stranded nucleic acid 10 As shown in detail in FIG. 3, the partial double-stranded nucleic acid 10 referred to in the present specification includes a first strand 12 and a second strand 14, and one strand is provided on the 5 ′ end side of the first strand 12. It means a nucleic acid having a strand part 20 and a double-stranded part 16 other than the single-stranded part 20 by hydrogen bonding.
- the single-stranded portion 20 of the first strand 12 of the partial double-stranded nucleic acid 10 that is, the tag portion 20 protrudes from the double-stranded portion 16 and has a dangling strand shape.
- the double-stranded portion 16 of the partial double-stranded nucleic acid 10, that is, the double-stranded portion 16 formed by base pairing of the first strand 12 and the second strand 14 is a DNA strand elongation reaction by DNA polymerase. It preferably has a structure in which nucleotides having natural bases (adenine, guanine, thymine and cytosine) that can serve as substrates are linked by phosphodiester bonds. That is, the double-stranded portion 16 preferably has a natural ribose-phosphate backbone and further has a natural nucleic acid with a natural base, and more preferably consists only of a natural nucleic acid. This is because, as will be described later, it is preferably synthesized by a nucleic acid amplification reaction when obtaining the partial double-stranded nucleic acid 10 in association with the target nucleic acid.
- the partial double-stranded nucleic acid 10 is associated with the target nucleic acid.
- being associated with the target nucleic acid means having a double-stranded part 16 including at least a part of the double-stranded part of the target nucleic acid.
- Such a double-stranded part 16 is obtained by, for example, amplifying with a primer set that specifically hybridizes with a part of the target sequence in the target nucleic acid.
- the tag part 20 of the partial double-stranded nucleic acid 10 can adopt the same configuration as the double-stranded part 22 as described above so that it can be synthesized by a nucleic acid amplification reaction. That is, the tag portion 20 may have a structure in which nucleotides having natural bases that can serve as templates for DNA chain elongation reaction by DNA polymerase are linked by phosphodiester bonds, and may contain natural nucleic acids, It may be composed only of natural nucleic acids.
- the tag part 20 may also be a non-naturally synthesized oligonucleotide chain that does not rely on a nucleic acid amplification reaction.
- a known artificial backbone such as a backbone of PNA (peptide nucleic acid) or a backbone of BNA (crosslinked nucleic acid) can be adopted.
- the base since the base only needs to be capable of hybridizing specifically with the probe, it may be provided with non-natural, for example, L-DNA, assuming that the probe is matched, or L-DNA. It may consist only of.
- the tag part 20 can be derived from the primer of nucleic acid amplification reaction.
- the tag portion 20 of the partial double-stranded nucleic acid 10 has a tag sequence that can specifically hybridize with a probe provided on a solid phase carrier.
- the tag sequence 22 is a sequence for enabling hybridization with a probe and detects a target nucleic acid. Therefore, each target nucleic acid is set so as to be hybridizable to the probe detection sequence.
- the base sequence is complementary to the detection sequence. As a result, one probe is associated with one target nucleic acid.
- the base length of the tag sequence 22 matches the base length of the probe detection sequence, and is preferably 20 to 50 bases, more preferably 20 to 25 bases.
- a linking site 30 capable of suppressing or stopping the DNA strand elongation reaction by the DNA polymerase is provided. It is preferable to provide. As already described, by providing the linking site 30, the partial double-stranded nucleic acid 10 including the tag unit 20 can be synthesized by a nucleic acid amplification reaction. Moreover, by providing such a connection part 30, the free mobility of the tag part 20 can be improved and efficient hybridization with a probe is attained.
- a nucleic acid sequence having a three-dimensional structure that inhibits the progression of polymerase such as a strong hairpin structure or a pseudoknot structure
- a target nucleic acid natural nucleic acid such as an L-type nucleic acid or an artificial nucleic acid
- Non-nucleic acid structures such as RNA and fatty chains.
- the artificial nucleic acid include peptide nucleic acid, cross-linked nucleic acid, azobenzene and the like.
- the partial double-stranded nucleic acid 10 includes the labeling substance 40 or the labeling substance binding substance 42 described above. In this detection method, the partial double-stranded nucleic acid 10 is provided for nucleic acid chromatography, and only includes the tag portion 20 that hybridizes to the probe, and does not have a single strand for the labeling substance 40.
- the labeling substance 40 or the labeling substance binding substance 42 may be provided at any location of the partial double-stranded nucleic acid 10. For example, as shown in FIG. 3, it is provided at the 5 'end of one strand. Further, the first chain 12 and the second chain 14 are provided in whole or in part.
- the labeling substance 40 or the labeling substance binding substance 42 is usually incorporated into the partial double-stranded nucleic acid 10 in the nucleic acid amplification reaction.
- the partially double-stranded nucleic acid 10 to be subjected to the hybridization step is preferably obtained by a nucleic acid amplification reaction.
- a nucleic acid amplification reaction for obtaining the partial double-stranded nucleic acid 10 will be described.
- the amplification step for obtaining the partial double-stranded nucleic acid 10 is performed using a first primer 50 and a second primer 60.
- the nucleic acid amplification method in the nucleic acid amplification step include various known methods for amplifying DNA using a DNA polymerase reaction such as PCR to obtain a double-stranded DNA fragment.
- the first primer 50 is a primer for obtaining the first strand 12 of the partial double-stranded nucleic acid 10.
- the first primer 50 includes a tag sequence 22 complementary to a probe pre-associated with the target nucleic acid and a first identification sequence 12a for identifying the first base sequence in the target nucleic acid. It is out.
- the tag sequence 22 corresponds to the tag sequence 22 of the tag portion 20 of the partial double-stranded nucleic acid 10.
- the first primer 50 has a linking site 30 between the first identification sequence 12 a and the tag sequence 22.
- the connecting portion 30 is as described above.
- the first primer 50 preferably has the tag sequence 22, the linking site 30, and the first identification sequence 12a in this order from the 5 'side.
- the nucleotide that is adjacent to the 3 ′ side of the linking site 30 derived from the first primer 50 or a base that is paired with the base in the vicinity thereof is the 5 ′ end, and the first primer The second strand 14 having no complementary strand of the tag sequence 22 in 50 is obtained.
- the second primer 60 is a primer for obtaining the second strand 14 of the partial double-stranded nucleic acid 10. As shown in FIG. 4, the second primer 60 includes the second identification sequence 14 a that identifies the second base sequence in the target nucleic acid, as already described.
- the second primer 60 can be provided with a labeling substance 40 in advance.
- the labeling substance 40 is for detecting the partial double-stranded nucleic acid 10 bound to the probe on the solid phase carrier.
- a conventionally known substance can be appropriately selected and used.
- the labeling substance 40 is preferably provided at the 5 ′ end of the second primer 60.
- the second primer 60 may include a labeling substance binding substance 42 as shown in FIG.
- the labeling substance binding substance 42 is preferably provided at the 5 ′ end of the second primer 60.
- the second primer may not include the labeling substance 40 and the labeling substance binding substance 42 as shown in FIG. That is, in the amplification step, a nucleic acid amplification reaction is performed using a nucleoside triphosphate composition containing a nucleoside derivative triphosphate provided with the labeling substance 40 or the labeling substance binding substance 42, whereby the labeling substance 40 or This is because the partially double-stranded nucleic acid 10 labeled with the labeling substance binding substance 42 introduced therein can be obtained.
- the second primer 60 preferably has the labeling substance 40 or the labeling substance binding substance 42 and the second identification sequence 14a in this order from the 5 'side. Thereby, the 2nd chain
- the partial double-stranded nucleic acid 10 of the form shown in FIGS. 4 and 5 (hereinafter, the partial double-stranded nucleic acid of such form is also referred to as a partial double-stranded nucleic acid 10a) is the first primer already described. It can also be obtained by carrying out an amplification step using the following two types of second primers I and II. The primers used and the amplification process are shown in FIG.
- the second primer I70 includes a labeling sequence 72 and a second identification sequence 14a for identifying the second base sequence.
- the second identification array 14a is as described above.
- the labeling sequence 72 is used for newly introducing a base sequence for labeling into the amplification product obtained by the second primer I70 and can be set regardless of the base sequence of the target nucleic acid or detection probe. it can. There is no need for association. Therefore, the labeling sequence 72 does not have to be a different base sequence for each target nucleic acid, and may be a common base sequence for all target nucleic acids. When two or more kinds of labeling substances are used, Different base sequences may be used for the labeling substance and the like.
- the labeling sequence 72 can be shared with the target nucleic acid instead of being individual. Further, it can be a completely artificial base sequence optimized in consideration of amplification reactivity and the like.
- the second primer I70 preferably includes a labeling sequence 72 and a second identification sequence from the 5 ′ end.
- the second primer II 80 includes a labeling substance 40 or a labeling substance binding substance 42 and a labeling sequence 72.
- the labeling substance 40 or the labeling substance binding substance 42 is as described above.
- the labeling substance 40 or the labeling substance binding substance 42 is linked to the 5 ′ end of the second primer II.
- the labeling sequence 72 is as described in the second primer I.
- the base sequence of the second primer II80 to which a labeling substance or the like is bound is shared. For this reason, the second primer II80 to which a labeling substance or the like is bound can be provided at a low cost.
- the nucleic acid amplification reaction is performed on the target nucleic acid by the first primer 50 and the second primer I70, thereby having the tag sequence 22 as a single-stranded portion and the labeling sequence.
- 72 and a partial double-stranded nucleic acid 90 having a sequence 72a complementary thereto are obtained as amplification products.
- the second primer I70 is applied to one strand of the partial double-stranded nucleic acid 90 (a strand having a sequence 72a complementary to the labeling sequence 72).
- the second primer II80 is hybridized and a nucleic acid amplification reaction is performed.
- a partial double-stranded nucleic acid 10a having a labeling substance or the like as shown in FIG. 7 can be obtained.
- the second primer II 70 is in the amplification reaction system, the second primer I 70 also acts on the partial double-stranded nucleic acid 90 to synthesize the partial double-stranded nucleic acid 90.
- the second primer I70 and the second primer II80 in place of the second primer 60, the nucleic acid amplification reaction is efficiently performed, and as a result, good detection sensitivity can be obtained. That is, depending on the base sequence of the target nucleic acid, the matching between the second primer 60 and the target nucleic acid is not good and the progress of the nucleic acid amplification reaction is not good, and as a result, the detection sensitivity may be lowered. Even in such a case, once the partial double-stranded nucleic acid 90 by this primer set can be obtained once by using the first primer 50 and the second primer I70, the second primer II80 is then transferred to the second primer II80. Since it can act on one strand having the complementary strand of the labeling sequence 72 of the partially double-stranded nucleic acid 100, the first primer 50 and the second primer II80 can efficiently advance the nucleic acid amplification reaction. .
- the supply order of the first primer 60, the second primer I70, and the second primer II80 is appropriately determined. For example, these may be simultaneously supplied to the nucleic acid amplification reaction system to act on the target nucleic acid. For example, after supplying the first primer 60 and the second primer I70, the second primer II80 is supplied. Also good. At the same time, it may be supplied to the nucleic acid amplification reaction system.
- the partial double-stranded nucleic acid 110 can be synthesized with high efficiency by allowing the second primer II80 to be present in excess relative to the second primer I70.
- the second primer II80 is supplied to the reaction system in the range of 1 to 10 times, preferably 1 to 5 times that of the second primer I.
- the equivalent of the partial double-stranded nucleic acid 10a is used without using the second primer II80, and using the labeling probe 100 including the labeling substance 40 or the labeling substance binding substance 42 shown below. Can also be obtained. That is, it can also be obtained by performing a nucleic acid amplification reaction on the target nucleic acid using the first primer 50 and the second primer I70 in the presence of the labeling probe 100.
- the primers and probes used and the amplification process are shown in FIG.
- the labeling probe 120 includes a complementary sequence 72a that can specifically hybridize with the labeling sequence 72 of the second primer I70, and has a labeling substance 40 or a labeling substance at its 3 ′ end. A binding material 42 is provided. Similarly, since the labeling sequence 72 itself is not associated with the target nucleic acid and is not specific and can be shared regardless of the target nucleic acid, the complementary sequence 72a is also shared for the same reason. . Therefore, the labeling probe 100 can also be provided at a low cost, like the second primer II80.
- the amplification step is performed on the target nucleic acid using the first primer 50 and the second primer I70 in the presence of the labeling probe 100.
- a partial double-stranded nucleic acid 90 having the tag sequence 22 as a single-stranded portion and having a complementary sequence 72 a at the 3 ′ end of the DNA strand having the tag sequence 22 is synthesized.
- the first primer 50 acts on one of the single strands (the labeling sequence 72 is provided at the 5 'end) as a template strand to extend the DNA.
- the labeling probe 100 is connected to the labeling sequence 72 at the 5 ′ end of the template strand via its complementary sequence 72a in the same manner as the first probe 50 hybridizes to the template strand. Hybridize.
- the DNA polymerase reaction is suppressed or stopped at the 5 ′ end side of the template strand, that is, at the hybridization site of the labeling probe 100, and the DNA extension is suppressed or stopped.
- This complex 110 is different from the partial double-stranded nucleic acid 10a in the structure as an amplification product, but has a labeling substance 40 or a labeling substance binding substance 42 at the other end of the single-stranded part having the tag sequence 22. Yes. For this reason, in the subsequent hybridization step, it functions in the same manner as the partial double-stranded nucleic acid 10a.
- the amplification product can be efficiently labeled by using the labeling probe 100 instead of the second primer II80. As a result, the detection sensitivity can be improved.
- the DNA polymerase used in the amplification step shown in FIG. 8 is preferably one having suppressed or no 3′-5 ′ exonuclease activity. This is for avoiding or suppressing decomposition of the labeling probe 100.
- the amplification step is performed using these primers.
- various known methods can be applied to the nucleic acid amplification method, but typically, various PCRs such as PCR and multiplex PCR are used.
- a person skilled in the art can appropriately set the solution composition, temperature control, and the like in carrying out the nucleic acid amplification step.
- hybridization process In the hybridization step, the partial double-stranded nucleic acid 10 (including 10a) or a complex 110 (hereinafter referred to as a partial double-stranded nucleic acid or the like) that is an equivalent thereof and the probe 220 on the solid phase carrier 210 are combined.
- This is a step of contacting under conditions that allow hybridization by nucleic acid chromatography.
- the chromatography main body 200 which is a solid phase body including the solid phase carrier 210 used in the hybridization step and the probe 220 immobilized on the solid phase carrier 210 will be described first.
- the chromatography main body 200 includes a solid phase carrier 210 and one or more types of probes 220 fixed to the solid phase carrier 210.
- the solid phase carrier 210 is not particularly limited, and a conventionally known one that can move a liquid by a capillary phenomenon can be adopted.
- examples of the solid phase carrier 210 include so-called porous materials mainly composed of polymers such as polyethersulfone, nitrocellulose, nylon, and polyvinylidene fluoride. Cellulose materials such as filter paper can also be preferably used.
- the chromatography main body 200 does not necessarily need to be composed of a single solid phase carrier 210.
- the overall form of the chromatography main body 200 is not particularly limited. Any form such as a sheet form or a thin bar form capable of developing and diffusing the chromatographic liquid by the capillary phenomenon may be used. Preferably, it is an elongate body, and one edge part along the longitudinal direction contacts the developing medium of chromatography.
- the probe 220 includes a detection sequence 222 that can specifically hybridize with the tag sequence 22 such as a partial double-stranded nucleic acid associated with the target nucleic acid.
- the detection sequence 222 is preferably complementary to the tag sequence 22 such as a partially double-stranded nucleic acid, and preferably has a completely complementary base sequence.
- the detection sequence 222 only needs to be able to specifically hybridize with the tag sequence 22 attached to the partial double-stranded nucleic acid or the like, and can be set regardless of the target nucleic acid.
- the length of the detection sequence 222 is not particularly limited. As an example, it may be about 20 to 50 bases. This is because within this range, hybridization efficiency can generally be secured while ensuring the specificity of each detection sequence.
- a base length detection sequence includes a 46 base length sequence obtained by combining two base sequences each having a base length of 23 bases each selected from SEQ ID NOs: 1 to 100 and a complementary sequence thereof, and the combined base sequence. Can be obtained by appropriately adding or deleting a base. More preferably, it is 20 bases or more and 25 bases or less.
- such a base length detection sequence can be obtained by appropriately adding or deleting bases to the 23 base length sequences of SEQ ID NOS: 1 to 100 and their complementary sequences or these base sequences. it can.
- the base length of the tag sequence 22 is preferably the same base length as the detection sequence.
- the immobilization form is not particularly limited. A known immobilization method is used. For example, in addition to the electrostatic interaction between the probe 220 and the surface of the solid phase carrier 210, the functional group in the material of the solid phase carrier (including the functional group provided for immobilization in addition to the functional group present in advance) ) To the functional group in the probe 220 and the like.
- the region (probe region) 230 on the solid phase carrier 210 on which the probe 220 is immobilized is formed in an arbitrary pattern.
- the probe region 230 may have an arbitrary shape, a dot shape, a line shape, or other shapes.
- a plurality of probe regions 230 are provided at appropriate intervals along the development direction in a line shape orthogonal to the development direction of the chromatography development medium.
- one probe region 230 corresponds to one type of probe.
- the three or more probe regions 230 may be formed in a parallel line shape.
- the interval between the three or more probe regions 230 is appropriately determined. For example, when there are seven probe regions, a group of two probe regions 230 on the most upstream side in the deployment direction, a group of three probe regions 230 immediately downstream, and a group of two probe regions 230 further downstream Can be arranged.
- a predetermined interval can be set between the probe 230 regions in the group of the plurality of probe regions 230 in each part of the solid phase carrier 210. For example, the same interval can be set.
- the position marker region 240 is preferably set as a visually observable region in the hybridization process to the detection process. Typically, it is composed of pigments and dyes that are insoluble in the development medium. Moreover, it is preferable that it is a line form orthogonal to the expansion
- the position of the position marker region 240 is appropriately determined, but is preferably 2 or more.
- an appropriate number of, for example, two, three, or four or more position marker regions 240 are provided between two position marker regions 240.
- one, two, or three or more probe regions 230 may be provided further upstream of the upstream position marker region 240, or one downstream of the downstream position marker region 240.
- Two, three or more probe regions 230 may be provided. By doing so, it is possible to easily identify a large number of probe regions 230 effectively using the two position marker regions 240.
- these intervals can be equal. By setting the same interval, the position of the probe region 230 can be easily specified. In particular, it is preferable when there are three probe regions 230 between two position markers 240. At first glance, it is possible to determine which of the two different position marker areas 240 the color probe area 230 is close to, or in the middle of both position marker areas 240. In addition, when there are five probe regions 240, if two probe regions 230 are additionally arranged outside the respective position markers, in addition to the above three points, whether they are outside or inside the position markers 240 at a glance It is possible to easily discriminate up to five locations with clear distinction. It should be noted that by increasing the position marker regions 240 based on this concept, the number of probe regions 230 that can be easily discriminated simultaneously can be increased.
- the chromatography main body 200 can be provided with a liquid contact portion 250 for bringing a development medium for nucleic acid chromatography into contact with one end portion thereof.
- a liquid contact portion 250 for bringing a development medium for nucleic acid chromatography into contact with one end portion thereof.
- the chromatography main body 100 is preferably a long body, one end along the longitudinal direction can be used as the liquid contact portion 250.
- Such a liquid contact portion 250 is particularly preferable when a developing medium is disposed at the lower end of the chromatography body 200 and the developing medium is moved upward.
- the liquid contact part 250 is not particularly limited as long as it has a shape that can be immersed in the development medium. For example, it is good also as a taper-shaped form toward the front-end
- the liquid contact portion 250 may hold the liquid contact portion 250 having a specific shape in advance, but when contacting the development medium, the liquid contact portion 250 is formed with the end portion of the chromatography main body 200 having a specific shape. It may be.
- a liquid contact portion forming marker 260 for forming a liquid contact portion 250 having a specific shape can be provided.
- the liquid contact part formation marker 260 can be a marker that indicates a cutting site for forming the liquid contact part 250 having a specific shape by cutting the chromatography body 200 with scissors or the like.
- disconnection end point so that visual recognition is possible may be sufficient.
- the line shape which clearly shows the cutting line itself so that visual recognition is sufficient may be sufficient.
- the liquid contact part formation marker 260 may have a vulnerability capable of cutting the chromatography main body 200 so that the liquid contact part 250 can be formed.
- the vulnerability means, for example, the weakness or weakness of the chromatographic main body 200 that can be provided so as to guide or promote the cutting or removal by hand or scissors.
- the vulnerability may be a chemical weakness or a physical weakness.
- the liquid contact part formation marker 260 may have a form in which stress is easily concentrated along the planned cutting site by making the planned cutting site a perforation or reducing the thickness of the planned cutting site. It is done. By providing the marker 260, the chromatography main body 200 can be cut along the marker 260, and the liquid contact portion 250 having a predetermined shape can be easily formed.
- the chromatography main body 200 can further include another marker region or the like for indicating that the development medium is sufficiently developed.
- a partially double-stranded nucleic acid or the like includes a label binding element 42
- a holding unit for the label substance 40 for binding the label substance 40 to the label binding element 42 may be provided.
- Each of these parts, like the probe region, is formed of a porous body that can move the development medium, and at the same time, is configured not to prevent continuous development of the development medium at each part. ing.
- a water absorption part for collecting the development medium after completion of the development may be provided on the downstream side of the probe region.
- a development medium containing an amplification reaction solution containing this amplification product can be prepared prior to the hybridization step.
- a development medium containing an amplification reaction solution containing this amplification product can be prepared.
- the partially double-stranded nucleic acid or the like is provided with the labeling substance 40, it is not necessary to add the labeling substance 40 separately to the development medium.
- the chromatography main body 200 described above may be provided as a kit together with a set of primers corresponding to the probe 220 of the solid phase carrier 210. Furthermore, a reagent relating to the labeling substance 40 may be included in the kit. For example, a primer including the labeling substance 40 may be included in the primer set, or dNTP including the labeling substance 40 or the labeling substance binding substance 42 used for the nucleic acid amplification reaction may be included. Further, a labeling substance 40 to be bound to the labeling substance binding substance 42 may be included.
- the development medium is a liquid that diffuses and moves the solid phase carrier 110 of the chromatography main body 100 by a capillary phenomenon, and is a medium for moving the solid phase carrier 110 to the partially double-stranded nucleic acid 10.
- the development medium is an aqueous medium.
- the aqueous medium is not particularly limited, and examples thereof include water, an organic solvent compatible with water, or a mixture of water and one or more organic solvents.
- Organic solvents that are compatible with water are well known to those skilled in the art, and examples include lower alcohols having about 1 to 4 carbon atoms, esters such as DMSO, DMF, methyl acetate, and ethyl acetate, and acetone.
- the development medium is preferably mainly water.
- the development medium can contain a component for keeping the pH within a certain range. This is to ensure a pH range for ensuring the state, stability and development environment of the preferred partial double-stranded nucleic acid 10.
- the buffer salt is usually in the range of 6.0 to 8.0, depending on the intended pH. More preferably, it is 7.0 or more and 8.0 or less.
- Components for obtaining such pH are, for example, acetic acid and sodium acetate (acetic acid buffer), citric acid and sodium citrate (citrate buffer), phosphoric acid and sodium phosphate (phosphate buffer), and the like.
- a phosphate buffered saline (PBS) etc. are mentioned.
- the composition and concentration may be adjusted by adding an additional component such as a surfactant or an appropriate salt or a solvent to the amplification reaction solution, and the resultant may be used as a developing medium.
- the amplification reaction may be performed by adding the labeling substance 40 in advance in the amplification step.
- the partial double-stranded nucleic acid 10 including the labeling substance 40 as a complex product in which the labeling substance 40 is bound to the labeling substance binding substance 42 can be obtained.
- the labeling substance 40 is added to the partially double-stranded nucleic acid 10 in the amplification reaction solution after the reaction is completed, a complex product is obtained in the same manner.
- the labeling substance 40 is added to the developing medium solution (the additive solution when the amplification reaction solution is used as the developing medium is referred to as the developing medium solution), and then the amplification reaction solution and the developing medium solution are mixed. Even so, the same complex product is obtained.
- a development medium is prepared in a cavity such as a container or tube in which the amplification step has been performed, that is, a cavity holding the amplification reaction solution, It is preferable to perform the hybridization step by bringing the development medium and the chromatography main body into contact in the cavity. In this way, it is not necessary to collect the amplification reaction solution using a pipette or the like and use it for the hybridization step, and detection with high accuracy is possible by reducing the possibility of contamination. In addition, erroneous operations can be reduced.
- amplification processes such as PCR are usually performed in a tube-shaped container.
- the hybridization step can be carried out by adding the labeling substance 40 to the amplification reaction solution in the tube-like container as necessary, and further supplying the chromatography body 100 to the tube-like container.
- the partial double-stranded nucleic acid 10 includes biotin as the labeling substance binding substance 42
- colored latex particles coated with streptavidin or the like can be used as the labeling substance 40 as the labeling substance 40.
- the embodiment of the nucleic acid chromatography is not particularly limited. It may be intended to be deployed in a substantially horizontal state. In this case, typically, chromatography is performed by dropping a certain amount of development medium into the specific liquid contact 150. Further, the form of chromatography may be intended for development in a substantially vertical direction. In this case, typically, the chromatography main body 100 is supported in a substantially vertical direction, and the liquid contact portion 50 or the like at the lower end of the main body 100 is immersed in a developing medium to perform chromatography.
- the developing medium By contacting the developing medium with the chromatography main body 200 according to the form of chromatography, the developing medium is diffused through the solid phase carrier 210 and developed into the probe region 230 by a capillary phenomenon.
- the partial double-stranded nucleic acid 10 hybridizes with the probe 220 and hybridizes. Forms a soy product. Thereby, a signal is presented according to the labeling substance 40 included in the partial double-stranded nucleic acid 10.
- the labeling substance 40 exhibits light emission or coloration that can be visually recognized by itself, the target nucleic acid previously associated with the partial double-stranded nucleic acid 10 can be quickly detected.
- probe regions 230 In the case where there are a plurality of probe regions 230, if other partial double-stranded nucleic acids 10 to be hybridized with other probes 220 are present in the development medium, a hybridization product is formed in the corresponding probe region 230.
- the conditions in the hybridization step are not particularly limited, but can be performed in an air atmosphere of, for example, about 5 ° C to 40 ° C. Preferably they are 15 degreeC or more and 35 degrees C or less.
- a development medium of about 10 ⁇ l or more and 60 ⁇ l or less is used as the chromatography main body 100.
- the chromatography main body 100 is a sheet-shaped chromatography main body having a width of 2.0 mm to 8.0 mm and a length (or height) of 20 mm to 100 mm Infiltrate a part of (a lower end part or a supply part) and start chromatography.
- the deployment time for the deployment medium to pass through the probe region 130 is approximately 2 to 50 minutes.
- the detection step is a step of detecting the final hybridized product based on the labeling substance 40. More specifically, this is a step of confirming the coloring and position of the probe region 230 to which the probe 220 is immobilized.
- the signal is appropriately selected according to the type of the labeling substance 40.
- a specific binding reaction or a color reaction with an enzyme is required, such an operation is appropriately performed.
- the labeling substance 40 is a labeling substance that presents color development or luminescence that can be detected with the naked eye, such as latex particles, colloidal gold particles, and silver colloidal particles, the presence of the target nucleic acid and its amount (color density) immediately And so on). For this reason, further rapid detection is possible.
- the target nucleic acid was detected by the following procedure according to the detection method of the present invention. Hereinafter, it demonstrates according to these order.
- DNA microarray GENESHT (Nippon Gaishi Co., Ltd.) uses an aqueous solution in which a synthetic oligo DNA (manufactured by Nippon Genetic Laboratory Co., Ltd.) having a 3 ′ end modified with an amino group is dissolved in a plastic plate as a detection probe. Spotted with a spotter (registered trademark).
- synthetic oligo DNA sequences used the following 33 types capable of high-speed hybridization were selected from SEQ ID NOs: 1 to 100.
- the synthetic oligo DNA was immobilized by the procedure described below. That is, after washing with 2 ⁇ SSC / 0.2% SDS for 15 minutes, washing with 2 ⁇ SSC / 0.2% SDS at 95 ° C. for 5 minutes, and then washing with sterilized water (shaking up and down 10 times) 3 Repeated times. Then, it dehydrated by centrifugation (1000 rpm x 3 minutes).
- the genomic DNA used for amplification is derived from humans and is specific to six target nucleic acids ((1) to (6)) in the human genome.
- Primers P1-1 to P1 shown in the following table -6 (manufactured by Nippon Genetic Institute), P2-1 to P2-6 (manufactured by Nippon Genetic Institute) and P3-1 to P3-6 (manufactured by Nippon Genetic Institute) were prepared. Each series has the following configuration (displayed as 5 ′ to 3 ′).
- the propylene group portion of the P3-based primer was synthesized according to an ordinary oligonucleotide synthesis method using Spacer Phophoamidite C3, a phosphoramidite reagent of GlenResearch, shown in the following formula.
- P1-based primers F, R: P2-based primers including a base sequence for specific target nucleic acids (1) to (6) in human DNA:
- P3 primer F: Binding sequence of labeled probe + linkage site X (propylene chain) + base sequence for each target nucleic acid of P1 system
- genomic DNA was amplified using these primers as follows.
- QIAGEN's multiplex PCR master mix was used as a sample amplification reagent.
- Applied Biosystems GeneAmp PCR 9970 was used as a thermal cycler.
- the amplification reagent is transferred to the thermal cycle plate, and the thermal cycle reaction (after 95 minutes at 95 ° C .; 30 seconds at 95 ° C., 1 second at 80 ° C., 40 minutes for 6 minutes at 64 ° C., then lowered to 10 ° C.) )
- the amplified sample was purified by QIAGEN's MinElute PCR-Purification Kit, and then confirmed to be amplified by the intended length by agarose electrophoresis. The results are shown in FIG.
- the upper part of FIG. 12 shows the result of electrophoresis, and the lower part shows the amount of amplification calculated from the fluorescence intensity.
- Hybridization In order to hybridize the amplified sample obtained in (2) with the detection probe immobilized on the microarray, the following Hybri control and Hybri solution were prepared, and a reagent for hybridization was prepared therefrom.
- PrimerMix contains a labeling probe (fluorescently modified oligonucleotide that binds to the 5 ′ side of F of P2 and P3 primers) (25 ⁇ M).
- the Alexa555-rD1_100 used for the Hybri control was one in which the 5 'end of a sequence complementary to the corresponding sequence of D1_100 was labeled with Alexa555.
- Hybri solution 20 x SSC 2.0ml 10% SDS 0.8ml 100% Formamide 12.0ml 100 mM EDTA 0.8 ml milliQ 24.4ml Total 40.0ml
- Hybri control 1.5 ⁇ l Primer Mix 1.0 ⁇ l Hybri solution 9.0 ⁇ l Subtotal 10.5 ⁇ l Amplified sample 3.0 ⁇ l 18.0 ⁇ l total
- the microarray substrate after the hybridization reaction is immersed in a glass staining vat filled with a cleaning solution having the following composition, shaken up and down for 5 minutes, and transferred to a glass staining vat containing sterilized water, The mixture was shaken up and down for 1 minute and centrifuged at 2000 rpm for 1 minute to remove water remaining on the surface of the microarray substrate.
- composition of cleaning solution milliQ 188.0ml 20 x SSC 10.0ml 10% SDS 2.0ml Total 200.0ml
- the intended target nucleic acid in the genomic DNA can be amplified regardless of the presence or absence of the tag sequence.
- the lower table of FIG. 12 it was found that there was no significant change in the amplification amount even when the tag sequence was directly linked to the identification sequence or via a linking site containing a propylene group. .
- the P3 primer is clearly As a result of hybridization with the DNA fragment obtained by amplification using the DNA, roughly constant strong fluorescence could be observed regardless of individual tag sequences. On the other hand, in the hybridization results using the P2 primer, almost no fluorescence was observed regardless of the tag sequence.
- the use of the P3-based primer improves the detection sensitivity by at least 10 times.
- the amplification sample was applied to the array without performing a denaturation step, and as shown in FIG. 12, the synthesis amount of the amplification sample was almost the same as that obtained with the P2-based primer. From the above, it can be seen that a double-stranded fragment with high efficiency and good label efficiency was obtained by using the P3 primer.
- a glass substrate (geneslide manufactured by Toyo Steel Co., Ltd.) was used as a substrate instead of a plastic substrate, and the base sequences of detection probes are shown in the following table. 33 types were selected, and (3) in hybridization, except that a reagent having the following composition was used as a hybridization reagent, (1) Preparation of DNA microarray of Example 1, (2) Preparation of target nucleic acid and primer The target nucleic acid was detected in the same manner as in amplification, (3) hybridization, and (4) detection using a scanner.
- Example 2 The results are the same as in Example 1 when the P3 primer (tag sequence + linking site X + identification sequence) was used compared to the P2 primer (tag sequence + identification sequence) without performing the denaturation step. Obviously, it was possible to obtain a hybridization signal that was 10 times or more intense.
- Hybri control 1.5 ⁇ l Primer Mix 3.5 ⁇ l Hybri solution 9.0 ⁇ l Subtotal 14.0 ⁇ l Amplified sample 4.0 ⁇ l 18.0 ⁇ l total
- the target nucleic acid was detected by the following method.
- a capture DNA probe solution comprising a base sequence shown in the following table on a Hi-Flow Plus membrane sheet (60 mm x 600 mm) manufactured by Merck Millipore is described in JP-A-2003-75305. Spotting was performed using GENISHOT (registered trademark) spotter using NGK Corporation using a discharge unit (inkjet method).
- GENISHOT registered trademark
- NGK Corporation NGK Corporation
- INKjet method inkjet method
- 44 types of sequences shown in the following table among 100 types of D1_1 to D1_100 described in Supplementary Table 1 of the literature (Analytical Biochemistry 364 (2007) 78-85) were used as probes.
- the array was arranged as shown in FIG.
- the probe used was a sequence in which the 3 ′ end of the oligonucleotide was modified with an amino group.
- UV irradiation device XL-1500 UV Crosslinker manufactured by Spectroline.
- Genomic DNAs used for amplification were derived from humans, and P2 primers having the sequences shown in Table 9 below and primers of the sequences P3 shown in Table 10 below were used. Amplification was performed. The structure of the primer is as shown below.
- P2 primer F: Binding sequence of labeled probe + base sequence for each target nucleic acid of P1 system
- R Tag sequence comprising the same base sequence as the base sequence of the synthetic oligonucleotide probe + base sequence for each target nucleic acid of P1 system (note that P2 system primer is used)
- P2 system primer When used, since the complementary strand of the base sequence complementary to this tag sequence is also amplified, the complementary strand hybridizes with the probe, and the amplified fragment can be detected.
- P3 primer F: Binding sequence of labeled probe + linkage site X (propylene chain) + base sequence for each target nucleic acid of P1 system
- R Tag sequence consisting of a base sequence complementary to the base sequence of the synthetic oligonucleotide probe + linkage site X (propylene chain) + base sequence for each target nucleic acid of the P1 system
- genomic DNA was amplified using these primers as follows.
- QIAGEN's multiplex PCR master mix was used as a sample amplification reagent.
- Applied Biosystems GeneAmp PCR 9970 was used as a thermal cycler.
- the amplification reagent is transferred to the thermal cycle plate, and the thermal cycle reaction (after 95 minutes at 95 ° C .; 30 seconds at 95 ° C., 1 second at 80 ° C., 40 minutes for 6 minutes at 64 ° C., then lowered to 10 ° C.) )
- the amplified sample was purified by QIAGEN's MinElute PCR-Purification Kit, and then confirmed to be amplified by the intended length by agarose electrophoresis.
- Hybridized sample composition Hybri Solution * 200.0 ⁇ l (0.5% Tween20-1% BSA-PBS) Biotin-labeled oligo DNA complementary to F-side primer label binding sequence (25 ⁇ M) 4.0 ⁇ l Sample 4.0 ⁇ l Total 208.0 ⁇ l
- Membrane-type DNA microarray is cut into a size that can fit into a 0.2 ml tube, set in the tube, and 200 ⁇ l of each prepared hybridized sample is added without heating for denaturation, etc., and heated at a heat block temperature of 37 ° C. for 30 minutes. Hybridization reaction was performed for 1 minute.
- the membrane type DNA microarray was transferred to a 0.2 ml tube containing a washing solution (0.1% Tween 20-1 mM EDTA-TBS) and washed in a 37 ° C. heat block (37 ° C. ⁇ 1 min, 37 ° C. ⁇ 10 min, 37 ° C. ⁇ 1 min).
- the washed membrane type DNA microarray was transferred to a 0.2 ml tube containing a mixed solution of biotin-HRP and streptavidin, and reacted at room temperature for 20 minutes.
- the membrane type DNA microarray was transferred to a 0.2 ml tube containing a washing solution (0.1% Tween 20-1 mM EDTA-TBS) and washed (room temperature ⁇ 1 min, room temperature ⁇ 10 min, room temperature ⁇ 1 min).
- the washed membrane type DNA microarray was subjected to a color reaction for about 5 minutes at room temperature using TMB Peroxidase Substrate Kit, 3, 3 ', 5, 5'-tetramethylbenzidine, manufactured by Vector Laboratories.
- the target nucleic acid was detected by the following method.
- a capture DNA probe solution having a base sequence shown in Table 11 below is described in JP-A-2003-75305 on a Hi-Flow Plus membrane sheet (60 mm ⁇ 600 mm) manufactured by Merck Millipore. Spotting was carried out using a GENSHOT (registered trademark) spotter manufactured by NGK Corporation using a discharge unit (inkjet method).
- the synthetic oligo DNA sequences used were 4 types of sequences shown in the following table among 100 types of D1_1 to D1_100 described in Supplementary Table 1 of the literature (Analytical Biochemistry 364 (2007) 78-85) as probes.
- the probe used was a sequence in which the 3 ′ end of the oligonucleotide was modified with an amino group.
- the array shown in FIG. 17 was arrayed with stream-like lines.
- the probe immobilization solution was colored with a dye and spotted in a stream shape.
- the liquid containing the pigment was spotted in the form of a stream (band) in the vicinity of the probe immobilization region so that a probe immobilization region for detecting the hybridized product can be easily assumed.
- UV irradiation device XL-1500 UV Crosslinker manufactured by Spectroline.
- the reaction to the membrane type DNA microarray using the sample amplified in (2) and its detection procedure were as follows.
- the latex solution is a polystyrene latex bead containing a blue colorant and oligo DNA having a sequence complementary to the labeled probe binding sequence of each F primer is diluted with a developing solution to a concentration of 100 nM. Used.
- the oligo DNA was immobilized on the beads by forming a covalent bond between the oligo DNA whose 5 ′ end was modified with an amino group and the carboxyl group on the latex surface. Phosphate buffered saline was used as the developing solution.
- Hybridization 50 ⁇ l of each of the above hybridized samples was added to a 0.2 ml tube without heating for denaturation or the like, membrane type DNA microarray was inserted, and hybridization by chromatography was started. The sample solution was all sucked up in about 20 minutes, and the reaction was completed. After completion of the reaction, the membrane type DNA microarray was air-dried.
- the probe was fixed by irradiating with ultraviolet light of about 300 mJ / cm 2 at a wavelength including a component of 280 nm.
- the chromatographic body provided with each of the probe region and the three types of position marker regions was obtained.
- the primer set which consists of a base sequence shown in the following Table 13 was used. That is, the R primer includes a tag sequence complementary to the probe (D1-001, 002, 003, and 005) + linking site X + first identification sequence, and the F primer includes biotin + linking site X + second sequence. Amplification was performed using each with the identification sequence. According to these primer sets, a partial double-stranded DNA (single-stranded single type) having a tag sequence as a single strand can be obtained.
- a nucleic acid amplification reaction was similarly performed using a primer set having a base sequence shown in Table 14. According to these primer sets, partial double-stranded DNA (single-stranded double type) each having a labeling sequence capable of binding a tag sequence and a labeled probe as a single strand can be obtained.
- All the primers shown in Table 13 were a probe sequence (D1-001, 002, 003 and 005) and a tag sequence complementary to each of the probes, a linking site X, and a first or second identification sequence. All of the above primers were manufactured by Nippon Genetic Institute.
- the linking site X is a propyleneoxy chain and was introduced using a phosphoramidite (spacer phosphoramidite C3, manufactured by Glen Research).
- composition in the amplification reaction was as follows, and the thermal cycle conditions were as follows: 95 cycles at 15 ° C. for 15 minutes, 95 ° C. for 30 seconds, 80 ° C. for 1 second and 64 ° C. for 6 minutes, and 40 cycles. Cooled to 10 ° C.
- composition 2 ⁇ Qiagen multiplex PCR master mix 5.0 ⁇ l Primer mix (500 nM each) 0.5 ⁇ l dH 2 O 4.0 ⁇ l Genomic DNA 0.5 ⁇ l Total 10.0 ⁇ l
- primer mixes were prepared: a mixture of primer sets for each amplification product single 1 to 4 shown in Table 13 and a mixture of all primer sets of singles 1 to 4. Similarly, a total of five types of primer mixes were prepared for the amplification products double 1 to 4 shown in Table 14.
- the amplification product obtained by amplification was purified with QIAGEN's MinElute® PCR® Purification® Kit, and then it was confirmed by agarose electrophoresis that the target length fragment was amplified. Furthermore, the recovery amount after purification of each amplification product was confirmed.
- the results are shown in FIGS. 20 and 21, the numbers with circles indicate the numbers of primer sets for obtaining single-stranded single and double-stranded partial double-stranded nucleic acids, respectively.
- both the amplification amount and the recovery amount after purification of the single-stranded single-type amplification product exceeded the comparative example. That is, it was found that a partial double-stranded nucleic acid having a single strand only in one strand can obtain better amplification efficiency than a partial double-stranded nucleic acid having a single strand in both strands.
- Development solution was prepared by mixing PBS (phosphate buffered saline), latex solution and amplification reaction solution (5 types).
- a latex stock solution was prepared by coating a polystyrene latex beads containing a blue colorant with avidin (streptavidin) using PBS so as to have a predetermined concentration.
- the developing solution was prepared by mixing Millipore water after mixing PBS (phosphate buffered saline), latex solution and amplification reaction solution (5 types).
- the latex preservation solution used for the single-strand double type developing solution is prepared by fixing a linking DNA having a sequence complementary to the labeling sequence of the R primer to polystyrene latex beads containing a blue colorant.
- the solution was prepared using PBS so as to have the same concentration as that of the single-stranded single type.
- the DNA for ligation was modified with a 5 'amino group and fixed by forming a covalent bond between the amino group and the carboxyl group on the latex surface.
- Hybridization process 50 ⁇ l of each of the developing solutions was added to a 0.2 ml tube, and the lower ends of the chromatography main bodies (8 types and 4 types) were inserted to start a hybridization reaction by chromatography. All the developing solution was sucked up in about 20 minutes, and the hybridization reaction by chromatography was completed. After completion of the reaction, the chromatography main body was air-dried, and then the reaction site was visually confirmed and an image was taken.
- the probe was fixed by irradiating with ultraviolet light of about 300 mJ / cm 2 at a wavelength including a component of 280 nm.
- the chromatographic body provided with each of the probe region and the three types of position marker regions was obtained.
- a primer set having a base sequence shown in Table 16 below was used as a primer. That is, the R primer includes a tag sequence complementary to the probe (D1-001, 002, 003, and 005) + the linking site X + the first identification sequence, and the F primer includes the second identification sequence. Each was used for amplification.
- biotin-16-dUTP (Roche Applied Science) is added in addition to the raw material dNTPs so that biotin is incorporated into the double-stranded DNA after amplification, and the portion having the tag sequence as a single strand Double-stranded DNA (single-stranded single type) was obtained.
- a nucleic acid amplification reaction was similarly performed using a primer set having a base sequence shown in Table 17.
- biotin-16-dUTP (Roche Applied Science) is added, and a partial double-stranded DNA each having a labeling sequence capable of binding a tag sequence and a labeled probe as single strands. (Single-stranded double type) was obtained.
- All of the primers shown in Table 16 were a probe sequence (D1-001, 002, 003, and 005) and a tag sequence complementary to each of them and a first identification sequence. All of the above primers were manufactured by Nippon Genetic Institute.
- the linking site X is a propyleneoxy chain, and was introduced using a phosphoramidite (spacer phosphoramidite C3, manufactured by Glen Research).
- composition in the amplification reaction was as follows, and the thermal cycle conditions were as follows: 95 cycles at 15 ° C. for 15 minutes, 95 ° C. for 30 seconds, 80 ° C. for 1 second and 64 ° C. for 6 minutes, and 40 cycles. Cooled to 10 ° C.
- composition 2 ⁇ Qiagen multiplex PCR master mix 5.0 ⁇ l Primer mix (500 nM each) 0.5 ⁇ l Biotin-16-dUTP (1 mM) 0.5 ⁇ l dH 2 O 3.5 ⁇ l Genomic DNA 0.5 ⁇ l Total 10.0 ⁇ l
- primer mixes were prepared: a mixture of primer sets for each amplification product single 1 to 4 shown in Table 16 and a mixture of all primer sets of singles 1 to 4. Similarly, for the amplification product doubles 1 to 4 shown in Table 17, a total of 5 types of primer mixes were similarly prepared.
- the amplification product obtained by amplification was purified with QIAGEN's MinElute® PCR® Purification® Kit, and then it was confirmed by agarose electrophoresis that the target length fragment was amplified. Furthermore, the recovery amount after purification of each amplification product was confirmed. The results are shown in FIGS.
- both the single-stranded single type and the double-stranded single type showed almost no difference in the amplification amount of the amplification product and the recovered amount after purification.
- Development solution was prepared by mixing PBS (phosphate buffered saline), latex solution and amplification reaction solution (5 types).
- a latex stock solution prepared by coating polystyrene latex beads containing a blue colorant with avidin (streptavidin) at a predetermined concentration was prepared using PBS.
- the developing solution was prepared by mixing PBS (phosphate buffered saline), latex solution and amplification reaction solution (5 types) and then mixing biotin aqueous solution.
- a latex stock solution prepared by coating polystyrene latex beads containing a blue colorant with avidin (streptavidin) at a predetermined concentration was prepared using PBS.
- Hybridization process 50 ⁇ l of each of the developing solutions was added to a 0.2 ml tube, and the lower end of the chromatography main body was inserted to start a hybridization reaction by chromatography. All the developing solution was sucked up in about 20 minutes, and the hybridization reaction by chromatography was completed. After completion of the reaction, the chromatography main body was air-dried, and then the reaction site was visually confirmed and an image was taken.
- the probe was fixed by irradiating with ultraviolet light of about 300 mJ / cm 2 at a wavelength including a component of 280 nm.
- the chromatographic body provided with each of the probe region and the three types of position marker regions was obtained.
- the linking site X is a propyleneoxy chain and was introduced using a phosphoramidite (spacer phosphoramidite C3, manufactured by Glen Research).
- composition in the amplification reaction was as follows, and the thermal cycle conditions were as follows: 95 cycles at 15 ° C. for 15 minutes, 95 ° C. for 30 seconds, 80 ° C. for 1 second and 64 ° C. for 6 minutes, and 40 cycles. Cooled to 10 ° C.
- composition 2 ⁇ Qiagen multiplex PCR master mix 5.0 ⁇ l Primer mix (500 nM each for F and R) 0.5 ⁇ l R'primer (2 ⁇ M) 0.5 ⁇ l dH 2 O 3.0 ⁇ l Genomic DNA 0.5 ⁇ l Total 10.0 ⁇ l
- primer mixes were prepared: a mixture of primer sets for each of amplification products 1 to 4 shown in Table 19, and a mixture of all primer sets of amplification products 1 to 4.
- the amplification product obtained by amplification was purified by MinElute® PCR® Purification® Kit of QIAGEN, and then it was confirmed by agarose electrophoresis that the target fragment was amplified. Furthermore, the recovery amount after purification of each amplification product was confirmed. The results are shown in FIGS. 26 and 27.
- Development solution was prepared by mixing PBS (phosphate buffered saline), latex solution and amplification reaction solution (5 types).
- a latex stock solution prepared by coating polystyrene latex beads containing a blue colorant with avidin (streptavidin) at a predetermined concentration was prepared using PBS.
- Hybridization process 50 ⁇ l of each of the developing solutions was added to a 0.2 ml tube, and the lower end of the chromatography main body was inserted to start a hybridization reaction by chromatography. All the developing solution was sucked up in about 20 minutes, and the hybridization reaction by chromatography was completed. After completion of the reaction, the chromatography main body was air-dried, and then the reaction site was visually confirmed and an image was taken.
- the probe was fixed by irradiating with ultraviolet light of about 300 mJ / cm 2 at a wavelength including a component of 280 nm.
- the chromatographic body provided with each of the probe region and the three types of position marker regions was obtained.
- the primer set which consists of a base sequence shown in the following Table 22 was used. That is, the R primer has a tag sequence complementary to the probe (D1-001, 002, 003, and 005) + the linking site X + the first identification sequence, and the F primer has a tag sequence + second identification sequence. Each was used for amplification.
- a primer (R'primer: Table 23) in which the 3 'end of the tag complementary sequence in the R primer is modified with biotin is added, and R' is added to the end of the double-stranded DNA after amplification.
- the device was devised so that biotin was added via a primer, and a partially double-stranded DNA having a tag sequence as a single strand was obtained.
- the linking site X is a propyleneoxy chain and was introduced using a phosphoramidite (spacer phosphoramidite C3, manufactured by Glen Research).
- composition in the amplification reaction was as follows, and the thermal cycle conditions were as follows: 95 cycles at 15 ° C. for 15 minutes, 95 ° C. for 30 seconds, 80 ° C. for 1 second and 64 ° C. for 6 minutes, and 40 cycles. Cooled to 10 ° C.
- composition 10 ⁇ TITANIUM Taq DNA Polymerase 0.2 ⁇ l 50 ⁇ dNTP Mix 0.2 ⁇ l 10 ⁇ TITANIUM Taq PCR buffer 1.0 ⁇ l Primer mix (500 nM each for F and R) 0.5 ⁇ l R'primer (2 ⁇ M) 0.5 ⁇ l dH 2 O 7.1 ⁇ l Genomic DNA 0.5 ⁇ l Total 10.0 ⁇ l
- primer mixes were prepared: a mixture of primer sets for each of amplification products 1 to 4 shown in Table 22 and a mixture of all primer sets of amplification products 1 to 4.
- the amplification product obtained by amplification was purified by MinElute® PCR® Purification® Kit of QIAGEN, and then it was confirmed by agarose electrophoresis that the target fragment was amplified. Furthermore, the recovery amount after purification of each amplification product was confirmed. The results are shown in FIG. 29 and FIG.
- the developing solution was prepared by mixing PBS (phosphate buffered saline), latex solution and amplification reaction solution (5 types).
- a latex stock solution prepared by coating polystyrene latex beads containing a blue colorant with avidin (streptavidin) at a predetermined concentration was prepared using PBS.
- Hybridization process 50 ⁇ l of each of the developing solutions was added to a 0.2 ml tube, and the lower end of the chromatography main body was inserted to start a hybridization reaction by chromatography. All the developing solution was sucked up in about 20 minutes, and the hybridization reaction by chromatography was completed. After completion of the reaction, the chromatography main body was air-dried, and then the reaction site was visually confirmed and an image was taken.
- base sequence analysis (one-pass sequence) was performed on a total of 18 kinds of amplification products obtained in Example 1. Base sequence analysis was performed as follows.
- the P2 primer When the P2 primer was used, it was confirmed that the complementary strand of the tag sequence was also amplified.
- the P3 primer when the P3 primer was used, the complementary strand of the tag sequence was not amplified, and it was confirmed that only the same sequence as that when the P1 primer was used was amplified as a double strand. From the above, by using the P3-based primer, the tag sequence portion was retained as a single strand, and a result that could contribute to highly efficient hybridization results could be confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本明細書の開示は、効率的なプローブハイブリダイゼーションを実現できる標的核酸の検出方法を提供する。このため、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列と標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーと、標的核酸中の第2の塩基配列を識別する第2の識別配列を含む第2のプライマーと、を用いて、標的核酸を増幅し、その増幅断片と検出用プローブとをハイブリダイズ可能に接触させ、ハイブリダイズ産物を検出するようにする。
Description
本明細書は、標的核酸を検出する技術に関する。
従来、生物個体の遺伝子解析や、生体試料におけるウイルスや細菌等の存在を調べるための方法として、核酸配列を網羅的に検出し、同定し、さらに定量する方法が提案されている。こうした解析等においては、予め標的となる核酸配列に関連付けられたプローブなどを準備しておき、このプローブ等と生体試料から核酸増幅法により増幅したDNA断片とのハイブリダイゼーションを利用し、プローブないしDNA断片に結合させておいた標識物質で標的核酸を検出等することが通常である。
例えば、核酸増幅法により増幅したDNA断片の両端に特定の物質が結合できるような塩基配列を含むようにプライマーを設計し、こうした特定物質を利用してDNA断片を検出する方法が記載されている(特許文献1)。
また、一塩基多型(SNP)の検出に特化したアレイが開発されている(例えば特許文献2、3、非特許文献1)。この方法では、人工的な塩基配列を有する検出用プローブを予め準備しておき、当該人工的塩基配列に結合する塩基配列を有するようなDNA断片を増幅可能に試料調製工程が設計されている。
さらに、結核菌の薬剤感受性を菌から抽出したDNAをアレイを用いて目視で検出するための方法が開示されている(非特許文献2)。
PCRなどの核酸増幅法は、通常、標的とする二本鎖部分を増幅する。このため、核酸増幅産物も二本鎖となる。意図した増幅産物かどうかを、二本鎖を熱変性させて一本鎖とし、一本鎖の一部とオリゴヌクレオチドなどのプローブとをハイブリダイズさせることで検出する。
しかしながら熱変性により一本鎖としてプローブとハイブリダイズさせることで、ハイブリダイズ効率が低下する場合がある。
Analytical Biochemistry 364(2007), 78-85
臨床微生物迅速診断研究会誌14:45―50
上記特許文献1に記載の方法では、増幅DNA断片の特定物質結合部位(特定物質が結合可能な特定塩基配列)を、特定物質が認識して当該特定塩基配列に結合する。しかしながら、増幅DNA断片は、その特定塩基配列においてもその相補鎖と二重鎖を形成しており、特定物質と相互作用しやすい一本鎖状態ではない。したがって、特定物質が特定塩基配列を認識する効率はそれほど高くなく、特定物質が結合した二重鎖断片を濃縮する必要がある。
また、上記特許文献2、3及び非特許文献1に記載の方法では、ラベリング工程において、片方のプライマー濃度を相対的に高くして増幅を行う(アシメトリックPCRともいう。)などして、意図的にアレイ上のプローブと反応する側のDNA鎖を選択的に増幅するようにして、反応性を向上させている。しかしながら、こうした非対照的なPCRでは、増幅効率自体が低下する傾向があった。
また、非特許文献2に記載の方法では、結核菌DNAを目視で検出できるが、菌から抽出されたDNAをアレイに適用する前に熱変性を必要としている。
一般的なプローブハイブリダイゼーションにおいて、試料として用いられるDNA増幅断片はやはり二重鎖であり、プローブとのハイブリダイゼーションを効率的に行うためには、熱変性やアルカリ変性を行って一本鎖とすることが一般的である。しかしながら、変性した増幅断片は、徐々に二重鎖に戻り、ハイブリダイゼーション効率が低下するおそれがある。一方、これを抑制するには、ハイブリダイゼーション時間や温度などの条件の最適化が必要になる場合もある。
また、DNA二本鎖の核酸5’末端に一本鎖(以下、タグ鎖ともいう。)を有するDNA部分二本鎖を、核酸増幅反応の増幅産物をとして得る方法も考えられる。この方法の増幅産物であるDNA部分二本鎖は、両端に他のDNA鎖等とハイブリダイズ可能である。したがって、このDNA部分二本鎖の一方のタグ鎖をプローブとのハイブリダイズに用い、他方のタグ鎖を標識プローブとのハイブリダイズなどに用いることができる。この方法では、熱変性工程を省略できるというメリットがあるが、本発明者らによれば、以下の問題点もあった。すなわち、こうしたDNA部分二本鎖を用いる場合、タグ鎖の塩基配列の設計上の難易度が高くなってしまうという問題があった。すなわち、DNA部分二本鎖に2つのタグ鎖がある以上、この部分二本鎖を用いて、1つの標的核酸を検出するには、一方のタグ鎖は、当該標的核酸と特異的にハイブリダイズする配列とする一方、他方のタグ鎖は、当該標的核酸とはハイブリダイズせず、前記一方のタグ鎖と標的核酸とのハイブリダイズとを阻害しない(干渉しない)配列とする必要がある。また、同時に多数個の標的核酸の検出を意図する場合、双方のタグ鎖を、このDNA部分二本鎖が意図しない他の標的核酸と干渉しないようにする必要がある。さらに、双方のタグ鎖が互いにハイブリダイズしないように塩基配列を設計する必要がある。
さらに、この方法では、増幅条件の設定の困難性が高くなってしまう。すなわち、増幅には寄与しない余分なタグ鎖がフォワード、リバースの両プライマーにそれぞれ結合されているためである。
結果として、この方法では、増幅工程や核酸クロマトグラフィーのハイブリダイゼーション工程における効率の低下やミスハイブリダイゼーションにより検出精度が低下するおそれがあった。特に、核酸クロマトグラフィーにおいては、展開媒体の移動や蒸発というファクターがあるため、いわゆるアレイをハイブリダイゼーション液に浸漬する浸漬型ハイブリダイゼーションよりもハイブリダイゼーション効率が低いという問題があることがわかった。
以上の現状に鑑み、本明細書は、従来のプローブハイブリダイゼーションにおける試料DNA断片における問題を解決して、効率的なプローブハイブリダイゼーションを実現できる標的核酸の検出方法、その方法に用いる遺伝子増幅剤及びハイブリダイゼーション用組成物を提供する。
また、明細書は、より実用的な、すなわち、簡易な操作でかつ高い確度で標的核酸を検出できる、標的核酸の検出方法及びそのためのキット等を提供する。
本発明者らは、プローブハイブリダイゼーションに適用する際のプローブとのハイブリダイゼーション効率や感度の向上の観点から核酸増幅法の修飾について検討した。種々の検討の結果、核酸増幅に用いるプライマーの一部にポリメラーゼ反応の進行を抑制又は停止可能な部位を導入しておくことで、ハイブリダイゼーション効率が高く、検出感度を向上させることができるという知見を得た。また、熱変性を不要として短時間で高感度なハイブリダイゼーションが可能であるという知見を得た。本明細書は、これらの知見に基づいて以下の手段を提供する。
(1)試料中の標的核酸を検出する方法であって、
それぞれ異なる所定の塩基配列を有する検出用プローブを備える固相体を準備する工程と、
前記標的核酸に予め関連付けられた前記検出用プローブに相補的なタグ配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーと、
前記標的核酸中の第2の塩基配列を識別する第2の識別配列を含む第2のプライマーと、
を用いて、前記試料中の核酸増幅を実施する増幅工程と、
前記増幅工程で得られた増幅断片と前記固相体上の前記検出用プローブとをハイブリダイズ可能に接触させるハイブリダイゼーション工程と、
前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、
を備える方法。
(2)前記第2のプライマーは、標識物質が結合された又は標識物質を結合可能に構成された標識物質結合領域を有する、(1)に記載の方法。
(3)前記第2のプライマーは、前記標識物質結合領域と前記第2の識別配列との間に、前記連結部を有する、(1)又は(2)に記載の方法。
(4)前記増幅工程は、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施する工程である、(1)に記載の方法。
(5)前記連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体を含まない、(1)~(4)のいずれかに記載の方法。
(6)前記連結部位は、リン酸ジエステル結合を介して前記プライマー中のヌクレオチドに隣接される、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含む、(1)~(5)のいずれかに記載の方法。
(7)前記連結部位は、以下のいずれかの式で表される、(6)に記載の方法。
5’-O-CmH2m-O-3’ 式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)、
又は、
5’-(OCnH2n)l-O-3’ 式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
(8)前記増幅工程は、複数の前記標的核酸に予め関連付けた複数の前記検出用プローブで検出可能に、前記第1のプライマーと前記第2のプライマーとからなる複数のセットを用いて核酸増幅を実施する工程であり、
前記ハイブリダイゼーション工程は、前記増幅工程で得られた複数の前記増幅断片と前記固相体上の前記複数の検出用プローブとをハイブリダイズ可能に接触させる工程であり、
前記検出工程は、前記固相体上の前記複数の増幅断片と前記複数の検出用プローブとのハイブリダイズ産物を検出する工程である、(1)~(7)のいずれかに記載の方法。
(9)前記タグ配列は、塩基数が20以上50以下である、(1)~(8)のいずれかに記載の方法。
(10)前記塩基数が20以上25以下である、(9)に記載の方法。
(11)前記検出用プローブの前記所定の配列は、配列番号1~100で表される塩基配列及びその相補配列から選択される、(1)~(10)のいずれかに記載の方法。
(12)前記検出用プローブの前記所定の配列は、以下の表に記載の配列番号で表される塩基配列及びその相補配列から選択される、(1)~(11)のいずれかに記載の方法。
(13) 前記ハイブリダイゼーション工程は、複数の前記検出用プローブを備える前記固相体に対して前記増幅断片を含む液体を移動相として供給し前記固相体に対して前記移動相を展開することを含む工程である、(1)~(12)のいずれかに記載の方法。
(14)5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体である、核酸増幅法に用いる核酸増幅剤。
(15)前記第1の塩基配列には、標識が結合されている、(14)に記載の核酸増幅剤。
(16)(14)又は(15)に記載の核酸増幅剤を2種以上含む、核酸増幅キット。
(17)少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、検出用プローブ中の塩基配列と相補的なタグ配列を有する、DNA二重鎖断片を含む、プローブハイブリダイゼーション用組成物。
(18)他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されている、(16)に記載のプローブハイブリダイゼーション用組成物。
(19)少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する、DNA二重鎖断片。
(20)試料中の標的核酸を増幅する方法であって、
第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、
備える、方法。
それぞれ異なる所定の塩基配列を有する検出用プローブを備える固相体を準備する工程と、
前記標的核酸に予め関連付けられた前記検出用プローブに相補的なタグ配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーと、
前記標的核酸中の第2の塩基配列を識別する第2の識別配列を含む第2のプライマーと、
を用いて、前記試料中の核酸増幅を実施する増幅工程と、
前記増幅工程で得られた増幅断片と前記固相体上の前記検出用プローブとをハイブリダイズ可能に接触させるハイブリダイゼーション工程と、
前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、
を備える方法。
(2)前記第2のプライマーは、標識物質が結合された又は標識物質を結合可能に構成された標識物質結合領域を有する、(1)に記載の方法。
(3)前記第2のプライマーは、前記標識物質結合領域と前記第2の識別配列との間に、前記連結部を有する、(1)又は(2)に記載の方法。
(4)前記増幅工程は、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施する工程である、(1)に記載の方法。
(5)前記連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体を含まない、(1)~(4)のいずれかに記載の方法。
(6)前記連結部位は、リン酸ジエステル結合を介して前記プライマー中のヌクレオチドに隣接される、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含む、(1)~(5)のいずれかに記載の方法。
(7)前記連結部位は、以下のいずれかの式で表される、(6)に記載の方法。
5’-O-CmH2m-O-3’ 式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)、
又は、
5’-(OCnH2n)l-O-3’ 式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
(8)前記増幅工程は、複数の前記標的核酸に予め関連付けた複数の前記検出用プローブで検出可能に、前記第1のプライマーと前記第2のプライマーとからなる複数のセットを用いて核酸増幅を実施する工程であり、
前記ハイブリダイゼーション工程は、前記増幅工程で得られた複数の前記増幅断片と前記固相体上の前記複数の検出用プローブとをハイブリダイズ可能に接触させる工程であり、
前記検出工程は、前記固相体上の前記複数の増幅断片と前記複数の検出用プローブとのハイブリダイズ産物を検出する工程である、(1)~(7)のいずれかに記載の方法。
(9)前記タグ配列は、塩基数が20以上50以下である、(1)~(8)のいずれかに記載の方法。
(10)前記塩基数が20以上25以下である、(9)に記載の方法。
(11)前記検出用プローブの前記所定の配列は、配列番号1~100で表される塩基配列及びその相補配列から選択される、(1)~(10)のいずれかに記載の方法。
(12)前記検出用プローブの前記所定の配列は、以下の表に記載の配列番号で表される塩基配列及びその相補配列から選択される、(1)~(11)のいずれかに記載の方法。
(14)5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体である、核酸増幅法に用いる核酸増幅剤。
(15)前記第1の塩基配列には、標識が結合されている、(14)に記載の核酸増幅剤。
(16)(14)又は(15)に記載の核酸増幅剤を2種以上含む、核酸増幅キット。
(17)少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、検出用プローブ中の塩基配列と相補的なタグ配列を有する、DNA二重鎖断片を含む、プローブハイブリダイゼーション用組成物。
(18)他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されている、(16)に記載のプローブハイブリダイゼーション用組成物。
(19)少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する、DNA二重鎖断片。
(20)試料中の標的核酸を増幅する方法であって、
第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、
備える、方法。
本発明者らは、より実用的な、標的核酸の検出について種々検討した。その結果、核酸クロマトグラフィーによるハイブリダイゼーションに供する核酸の形態を特定することが、それに先立つ増幅工程では、プライマーの設計やプロセスを簡易化しできるとともに、ハイブリダイゼーション工程ではミスハイブリダイゼーションを抑制しつつハイブリダイゼーション効率を高めることができるという知見を得た。本明細書は、こうした知見に基づき以下の手段を提供する。
(21)標的核酸の核酸クロマトグラフィーによる検出方法であって、
1又は2以上の標的核酸に関連付けられた1又は2以上の部分二本鎖核酸と固相担体上にあって前記1又は2以上の標的核酸に関連付けられた1又は2以上のプローブとを、核酸クロマトグラフィーによりハイブリダイズ可能な条件下で接触させるハイブリダイゼーション工程と、
前記ハイブリダイゼーション工程で生成したハイブリダイズ産物を検出する検出工程と、
を備え、
前記1又は2以上の部分二本鎖核酸は、第1の鎖の5’末端側に一本鎖のタグ部であって前記プローブと特異的にハイブリダイズ可能なタグ配列を有し、少なくとも一部に標識物質又は標識物質結合物質を備えている、方法。
(22)前記部分二本鎖核酸は、第2の鎖の5’末端側に前記標識物質又は前記標識物質結合物質を備える、(21)に記載の方法。
(23)前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、前記標的核酸の第2の塩基配列を識別する第2の識別配列と、前記標識物質又は前記標識物質結合物質とを備える第2のプライマーと、を用いて、標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、(21)又は(22)に記載の方法。
(24)前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、標識用配列と前記標的核酸の第2の塩基配列を識別する第2の識別配列とを含む第2のプライマーIと、前記標識物質又は前記標識物質結合物質と前記標識用配列とを含む第2のプライマーIIと、を用いて、標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、(21)又は(22)に記載の方法。
(25) 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、標識用配列と前記標的核酸の第2の塩基配列を識別する第2の識別配列とを含む第2のプライマーIと、を用いて、前記標識物質又は前記標識物質結合物質と前記標識用配列と特異的にハイブリダイズする配列とを含む標識用プローブの存在下で、標的核酸に対して増幅反応を実施して部分二本鎖核酸と前記標識用プローブとの複合体を取得する増幅工程、を備える、(21)又は(22)に記載の方法。
(26) 前記部分二本鎖核酸は、その二本鎖部分に前記標識物質又は前記標識物質結合物質を備える、(21)に記載の方法。
(27) 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと前記標的核酸の第2の塩基配列を識別する第2の識別配列を備える第2のプライマーとを用いるとともに、前記標識物質又は前記標識物質結合物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、(21)又は(26)に記載の方法。
(28) 前記増幅工程後の前記増幅産物を含有する増幅反応液を含む展開媒体と前記固相担体の一部とを接触させて、前記ハイブリダイゼーション工程を実施する、(21)~(27)のいずれかに記載の方法。
(29) 前記増幅工程後の前記増幅産物を含有する増幅反応液と前記標識物質結合物質に結合する標識物質とを含む前記展開媒体を準備し、この展開媒体と前記固相担体の少なくとも一部とを接触させて、前記ハイブリダイゼーション工程を実施する、(28)に記載の方法。
(30) 前記前記増幅工程を実施し前記増幅反応溶液を保持するキャビティに少なくとも前記標識物質を供給して前記展開媒体を準備し、前記キャビティ内において前記展開媒体と前記固相担体の一部とを接触させる、(29)に記載の方法。
(31) 前記標識物質結合物質は、抗原抗体反応における抗体並びにビオチン、ジゴキシゲニン及びFITCなどを含むハプテンからなる群から選択される1種又は2種以上であり、
前記標識物質は、前記標識物質結合物質と結合可能な部位を備えて、蛍光、放射能、酵素、燐光、化学発光及び着色からなる群から選択される1種又は2種以上を利用する標識物質である、(21)~(30)いずれかに記載の方法。
(32)(13)及び(21)~(31)のいずれかに記載の標的核酸の検出方法に用いられるクロマトグラフィー本体であって、
固相担体と、
前記固相担体上の異なる位置に配された前記プローブを固定した互いに平行状の3以上のライン状のプローブ領域と、
前記固相担体上の前記3以上のプローブ領域とは異なる位置に配された互いに平行状であるとともに前記プローブ領域に対しても平行状である2以上の位置マーカー領域と、
を備え、
前記2以上の位置マーカー領域のうちの2つの位置マーカー領域の間に、前記3以上のプローブ領域のうちの3つのプローブ領域が等間隔状で配されている、クロマトグラフィー本体。
(33) 前記2つの位置マーカーの前記3つのプローブ領域が固定されている側とは反対側に前記3つのプローブ領域間の間隔と同等の間隔で1以上の前記プローブ領域が配されている、(32)に記載のクロマトグラフィー本体。
(34) 前記固相体は、その一つの端部に核酸クロマトグラフィーの展開媒体と接触させるための先細り状の液接触部又は液接触部形成マーカーを備える、(32)又は(33)に記載のクロマトグラフィー本体。
(35) 前記液接触部形成マーカーは、前記固相体の一部を切断して前記液接触部を形成するための切断部位を視認可能とするマーカーである、(34)に記載のクロマトグラフィー本体。
(36) 前記マーカーは、前記マーカーに沿って前記固相体を切断可能な脆弱性を有する、(35)に記載のクロマトグラフィー本体。
1又は2以上の標的核酸に関連付けられた1又は2以上の部分二本鎖核酸と固相担体上にあって前記1又は2以上の標的核酸に関連付けられた1又は2以上のプローブとを、核酸クロマトグラフィーによりハイブリダイズ可能な条件下で接触させるハイブリダイゼーション工程と、
前記ハイブリダイゼーション工程で生成したハイブリダイズ産物を検出する検出工程と、
を備え、
前記1又は2以上の部分二本鎖核酸は、第1の鎖の5’末端側に一本鎖のタグ部であって前記プローブと特異的にハイブリダイズ可能なタグ配列を有し、少なくとも一部に標識物質又は標識物質結合物質を備えている、方法。
(22)前記部分二本鎖核酸は、第2の鎖の5’末端側に前記標識物質又は前記標識物質結合物質を備える、(21)に記載の方法。
(23)前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、前記標的核酸の第2の塩基配列を識別する第2の識別配列と、前記標識物質又は前記標識物質結合物質とを備える第2のプライマーと、を用いて、標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、(21)又は(22)に記載の方法。
(24)前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、標識用配列と前記標的核酸の第2の塩基配列を識別する第2の識別配列とを含む第2のプライマーIと、前記標識物質又は前記標識物質結合物質と前記標識用配列とを含む第2のプライマーIIと、を用いて、標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、(21)又は(22)に記載の方法。
(25) 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、標識用配列と前記標的核酸の第2の塩基配列を識別する第2の識別配列とを含む第2のプライマーIと、を用いて、前記標識物質又は前記標識物質結合物質と前記標識用配列と特異的にハイブリダイズする配列とを含む標識用プローブの存在下で、標的核酸に対して増幅反応を実施して部分二本鎖核酸と前記標識用プローブとの複合体を取得する増幅工程、を備える、(21)又は(22)に記載の方法。
(26) 前記部分二本鎖核酸は、その二本鎖部分に前記標識物質又は前記標識物質結合物質を備える、(21)に記載の方法。
(27) 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと前記標的核酸の第2の塩基配列を識別する第2の識別配列を備える第2のプライマーとを用いるとともに、前記標識物質又は前記標識物質結合物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、(21)又は(26)に記載の方法。
(28) 前記増幅工程後の前記増幅産物を含有する増幅反応液を含む展開媒体と前記固相担体の一部とを接触させて、前記ハイブリダイゼーション工程を実施する、(21)~(27)のいずれかに記載の方法。
(29) 前記増幅工程後の前記増幅産物を含有する増幅反応液と前記標識物質結合物質に結合する標識物質とを含む前記展開媒体を準備し、この展開媒体と前記固相担体の少なくとも一部とを接触させて、前記ハイブリダイゼーション工程を実施する、(28)に記載の方法。
(30) 前記前記増幅工程を実施し前記増幅反応溶液を保持するキャビティに少なくとも前記標識物質を供給して前記展開媒体を準備し、前記キャビティ内において前記展開媒体と前記固相担体の一部とを接触させる、(29)に記載の方法。
(31) 前記標識物質結合物質は、抗原抗体反応における抗体並びにビオチン、ジゴキシゲニン及びFITCなどを含むハプテンからなる群から選択される1種又は2種以上であり、
前記標識物質は、前記標識物質結合物質と結合可能な部位を備えて、蛍光、放射能、酵素、燐光、化学発光及び着色からなる群から選択される1種又は2種以上を利用する標識物質である、(21)~(30)いずれかに記載の方法。
(32)(13)及び(21)~(31)のいずれかに記載の標的核酸の検出方法に用いられるクロマトグラフィー本体であって、
固相担体と、
前記固相担体上の異なる位置に配された前記プローブを固定した互いに平行状の3以上のライン状のプローブ領域と、
前記固相担体上の前記3以上のプローブ領域とは異なる位置に配された互いに平行状であるとともに前記プローブ領域に対しても平行状である2以上の位置マーカー領域と、
を備え、
前記2以上の位置マーカー領域のうちの2つの位置マーカー領域の間に、前記3以上のプローブ領域のうちの3つのプローブ領域が等間隔状で配されている、クロマトグラフィー本体。
(33) 前記2つの位置マーカーの前記3つのプローブ領域が固定されている側とは反対側に前記3つのプローブ領域間の間隔と同等の間隔で1以上の前記プローブ領域が配されている、(32)に記載のクロマトグラフィー本体。
(34) 前記固相体は、その一つの端部に核酸クロマトグラフィーの展開媒体と接触させるための先細り状の液接触部又は液接触部形成マーカーを備える、(32)又は(33)に記載のクロマトグラフィー本体。
(35) 前記液接触部形成マーカーは、前記固相体の一部を切断して前記液接触部を形成するための切断部位を視認可能とするマーカーである、(34)に記載のクロマトグラフィー本体。
(36) 前記マーカーは、前記マーカーに沿って前記固相体を切断可能な脆弱性を有する、(35)に記載のクロマトグラフィー本体。
本発明は、標的核酸の検出方法、核酸増幅剤等に関する。本発明の標的核酸を検出方法は、以下の第1のプライマーと第2のプライマーとを用いることを特徴としている。本発明の検出方法における増幅工程の一例を図1A及び図1Bに示す。
図1Aに示すように、第1のプライマーは、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列などの第1の任意の塩基配列と標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、第1の任意の塩基配列と第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有しており、
第2のプライマーは、標的核酸中の第2の塩基配列を識別する第2の識別配列を含んでいる。
第2のプライマーは、標的核酸中の第2の塩基配列を識別する第2の識別配列を含んでいる。
連結部位は、DNAポリメラーゼの反応を抑制又は停止させる。すなわち、当該連結部位は、天然塩基等を含まないなどの理由により、DNAポリメラーゼによるDNA伸長反応の鋳型とはなりえない。このため、図1Aに示すように、第1のプライマーによって増幅されたDNA一本鎖が鋳型鎖となって、さらに第2のプライマーによって増幅されるとき、第2のプライマーからのDNA伸長反応は、当該連結部位に対合する部位より3’側において抑制又は停止される。このため、増幅工程により得られる増幅断片(DNA二重鎖断片)は、結果として、一方の端部に第1の任意の塩基配列を突出する一本鎖として備えるとともに塩基の対合による二重鎖部分を備えたものとなると推論される。
また、図1Bには、第2のプライマーが、第2の任意の塩基配列をさらに有し、当該第2の任意の塩基配列と第2の識別配列との間に前記連結部位を有する場合の増幅工程を示す。図1Bに示すように、図1Aで示した第1のプライマーと同様、第2のプライマーによって増幅されたDNA一本鎖が鋳型鎖となって、さらに第1のプライマーによって増幅されるとき、第1のプライマーからのDNA伸長反応は、当該連結部位に対合する部位より3’側において抑制又は停止される。このため、増幅工程により得られる増幅断片(DNA二重鎖断片)は、結果として、一方の端部にタグ配列を突出した一本鎖として備え、他方の端部に任意の塩基配列を突出した一本鎖として備えるとともに、塩基の対合による二重鎖部分を備えたものとなると推論される。
以上のことは、第1の任意の塩基配列を、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列としたプライマーセットを用いて、標的核酸を含む試料に対してDNAポリメラーゼによる増幅工程を実施することで得られる増幅断片を、そのまま変性することなく、検出用プローブとハイブリダイゼーションさせるとき、極めて高感度にかつ迅速に標的核酸を検出できることでも支持されている。図1A及び図1Bに示すように、得られたDNA二重鎖断片が、標的核酸中の第1の塩基配列及び第2の塩基配列において二重鎖部分を形成し、端部にタグ配列を一本鎖として有するDNA二重鎖断片となっているため、この一本鎖で効率的にプローブとハイブリダイゼーションしていると考えられる。ハイブリダイゼーション効率が上昇することにより感度は向上する。
本発明の検出方法によれば、以下の少なくとも一つの効果を実現できる。
(1)ハイブリダイゼーションの効率化(迅速化)
(2)ラベリングの効率化
(3)検出感度の高度化
(4)工程の簡略化(迅速化)-特に二重鎖を一本鎖とする変性工程の省略による
(1)ハイブリダイゼーションの効率化(迅速化)
(2)ラベリングの効率化
(3)検出感度の高度化
(4)工程の簡略化(迅速化)-特に二重鎖を一本鎖とする変性工程の省略による
こうした連結部位を含んで塩基配列を有するオリゴヌクレオチド誘導体は、それ自体プライマー等の核酸増幅剤として有用である。また、こうしたプライマーを用いる核酸増幅方法、得られたDNA二重鎖断片及び当該断片を含むハイブリダイゼーション用組成物も、それぞれその形態に応じた少なくとも一つの効果を発揮することができる。
また、別に、本明細書は、標的核酸の核酸クロマトグラフィーによる検出方法、当該方法に好適な固相体等に関する。本明細書に開示される標的核酸の検出方法は、核酸クロマトグラフィーにおけるハイブリダイゼーションに好ましい部分二本鎖核酸を特定し、この結果、効率的であり確度の高いハイブリダイゼーションを可能とした。核酸クロマトグラフィーにおけるハイブリダイゼーションは、通常のアレイ上におけるハイブリダイゼーションとは異なり、キャピラリー現象に基づく展開媒体の移動と展開媒体との蒸発とを伴っており、好ましいハイブリダイゼーションを達成することは困難であった。かしながら、本明細書に開示される部分二本鎖核酸を核酸クロマトグラフィーにおける標的核酸の検出用として準備することで、効率的でかつ確度の高いハイブリダイゼーションが可能となった。
また、本明細書に開示される方法によれば、増幅反応液を含む展開媒体に対して固相体の一部を接触させて展開媒体を固相担体上を移動させてハイブリダイゼーションを実施させるため、核酸増幅反応液の一部を固相体に供給する際に生じるコンタミネーション等を効果的に防ぐことができるとともに、ハイブリダイゼーション工程のための操作を簡素化できる。
さらに、本明細書に開示されるクロマトグラフィー本体によれば、位置マーカーを備えているため、多数の標的核酸を同時に検出する場合においても、標的核酸に対応するプローブ領域を容易に特定でき、検出の簡易性と精度を同時に向上させることができる。特に、目視検出に適しており、目視検出の場合であっても、一目で標的核酸の存在不存在を検出できる。
以下、本明細書に開示される各種の実施形態について詳細に説明する。
本明細書において「核酸」とは、ヌクレオチドの重合体を意味しており、その数は特に限定しない。核酸は、数十程度のヌクレオチドが連結したオリゴヌクレオチドが包含され、さらに長いポリヌクレオチドも包含される。核酸は、DNA1本鎖若しくは二本鎖のほか、RNA一本鎖若しくは二本鎖、さらには、DNA/RNAハイブリッド、DNA/RNAキメラなども包含される。また、核酸は、天然の塩基、ヌクレオチド及びヌクレオシドからなるもののほか、非天然の塩基、ヌクレオチド、ヌクレオシドを一部に含むものであってもよい。また、核酸は、cDNA、ゲノムDNA、合成DNA、mRNA、全RNA、hnRNAおよび合成RNAを含む全てのDNAおよびRNAのほかペプチド核酸、モルホリノ核酸、メチルフォスフォネート核酸およびS-オリゴ核酸などの人工合成核酸を含む。また、1本鎖であっても2本鎖であってもよい。
また、本明細書において「標的核酸」とは、特に限定されないでその存在及び/又は量を検出するべき任意の核酸である。標的核酸は、天然のあるいは人工的に合成されたものであってもよい。天然の標的核酸としては、例えば、体質、遺伝病、癌などの特定疾患についての発症、疾患診断、治療予後、薬剤や治療の選択などのヒト、非ヒト動物などの生物における遺伝子上の指標となる塩基あるいは塩基配列を含んでいる。典型的には、SNPなどの多型や先天的又は後天的変異が挙げられる。また、病原菌やウイルスなどの微生物由来の核酸なども標的核酸に含まれる。また、合成の標的核酸としては、人為的になんらかの識別のために合成された核酸が挙げられる。また、ある種の天然あるいは人工の核酸に対して核酸増幅反応を行って得られる増幅産物が挙げられる。
標的核酸は、後述する試料又はその核酸画分をそのまま用いることもできるが、好ましくは、PCRによる増幅反応、より好ましくはマルチプレックスPCRによる増幅反応により、複数の標的核酸が増幅された増幅産物を用いることが好ましい。
本明細書において「試料」とは、標的核酸を含む可能性のある試料をいう。試料採取源は特に限定されないが、標的核酸が含まれうる試料としては、各種の生体由来の試料(血液、尿、痰、唾液、組織、細胞(各種の動物由来の培養動物細胞、培養植物細胞、培養微生物細胞を含む)等)あるいは、こうした生体試料からDNAを抽出したDNA抽出試料等が挙げられる。さらには、上記生体試料からRNAを抽出し、DNAに変換したDNA試料等も含まれる。こうした各種の試料からの核酸を含む画分は当業者であれば適宜従来技術を参照して取得することができる。
本明細書において「標的配列」とは、検出対象の標的核酸に特徴的な1又は2以上の塩基からなる配列をいう。例えば、標的核酸同士のホモロジーの低い部分配列であってもよいし、試料に含まれる可能性のある他の核酸に相補性もしくは相同性の低い配列であってもよい。標的配列は、標的核酸に特徴的な配列であってもよい。こうした標的配列は、人工的に配列を変更したものであってもよい。
本明細書において、核酸クロマトグラフィーとは、キャピラリー現象により液体(展開媒体)を拡散・移動可能な多孔質状の固相担体を用いて、前記液体により核酸を固相担体内を移動させて固相担体に予め準備したプローブとの特異的な塩基対合によってハイブリダイズ産物を形成させて前記核酸を固相担体に補足するクロマトグラフィーをいう。
以下では、本明細書の開示の代表的かつ非限定的な具体例について、図面を参照して詳細に説明する。この詳細な説明は、本明細書の開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本明細書の開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善された標的核酸の検出方法等を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本明細書の開示を実施する際に必須のものではなく、特に本明細書の開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本明細書の開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
[標的核酸中の標的配列を検出する方法]
本明細書に開示される検出方法は、検出用プローブを備える固相体を準備する工程と、第1のプライマーと、第2のプライマーと、を用いて、前記試料の核酸増幅を実施する工程と、前記増幅実施工程で得られた増幅断片と前記検出用プローブとを前記タグ配列によりハイブリダイズ可能に接触させるハイブリダイゼーション工程と、前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、を備えている。本明細書に開示の検出方法は、1種又は2種以上の標的核酸を適用対象とし、より詳細には、これらの標的核酸中の特徴的な配列に関する標的配列を検出対象とする。以下、主として一種の標的核酸についての一連の工程を説明するが、以下の工程は、複数又は多数の標的核酸を同時に検出する場合にも適用される。
本明細書に開示される検出方法は、検出用プローブを備える固相体を準備する工程と、第1のプライマーと、第2のプライマーと、を用いて、前記試料の核酸増幅を実施する工程と、前記増幅実施工程で得られた増幅断片と前記検出用プローブとを前記タグ配列によりハイブリダイズ可能に接触させるハイブリダイゼーション工程と、前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、を備えている。本明細書に開示の検出方法は、1種又は2種以上の標的核酸を適用対象とし、より詳細には、これらの標的核酸中の特徴的な配列に関する標的配列を検出対象とする。以下、主として一種の標的核酸についての一連の工程を説明するが、以下の工程は、複数又は多数の標的核酸を同時に検出する場合にも適用される。
(固相体の準備工程)
本明細書に開示される検出方法(以下、単に本検出方法という。)は、図2Aに示すように、固相体を準備する工程を備えることができる。こうした固相体は、検出方法の実施に先立って予め準備していてもよいし、商業的に入手してもよいし、検出方法の実施毎に調製してもよい。
本明細書に開示される検出方法(以下、単に本検出方法という。)は、図2Aに示すように、固相体を準備する工程を備えることができる。こうした固相体は、検出方法の実施に先立って予め準備していてもよいし、商業的に入手してもよいし、検出方法の実施毎に調製してもよい。
図2Aに示すように、固相体は、それぞれ異なる固有の塩基配列である検出用配列を備える複数の検出用プローブを担体上に備えることができる。このような固相体を準備することで、プローブの設計、合成、アレイの作製、ハイブリダイゼーション条件についての検討を回避することができる。
図2Aに固相体の一例を示す。検出用プローブは、それぞれプロービングのための固有の塩基配列である検出用配列を有している。このような検出用配列は、標的核酸に特徴的な配列、すなわち標的配列と、無関係に設定することができる。標的配列と無関係に設定することで、検出用プローブの検出用配列を、複数の検出用プローブ間での非特異的結合を抑制又は回避できるように、かつ、ハイブリダイゼーションに好適な温度及び時間等のハイブリダイゼーション条件を考慮して設定することができる。また、標的核酸の種類にかかわらず、いつも同じ検出用プローブを用いることができるようになる。
検出用配列の長さは、特に限定しないが、20塩基以上50塩基以下であることが好ましい。この範囲であると、各検出用配列の特異性を確保しつつハイブリダイゼーション効率も確保できるからである。例えば、こうした塩基長の検出用配列は、後述する配列番号1~100及びその相補配列から選択される各23塩基長の塩基配列を2つ組み合わせた46塩基長の配列や、当該組み合わせた塩基配列に対して適宜塩基を付加、欠失などすることにより得ることができる。より好ましくは、20塩基以上25塩基以下である。例えば、こうした塩基長の検出用配列は、配列番号1~100の各23塩基長の塩基配列及びその相補配列又はこれらの塩基配列に対して適宜塩基を付加、欠失などすることにより得ることができる。なお、第1のプライマーにおけるタグ配列は、検出用配列と対合する塩基配列であるため、タグ配列の塩基長は、検出用配列と同様、20塩基以上50塩基以下であることが好ましく、より好ましくは、20塩基以上25塩基以下である。
こうした検出用プローブの検出用配列としては、例えば、配列番号1~配列番号100に記載の塩基配列又はこの塩基配列に相補的な塩基配列を用いることができる。これらの塩基配列は全て同一塩基長(23塩基長)であり、融解温度(Tm)が40℃以上80℃以下、好ましくは50℃以上70℃以下であって、同一条件でのハイブリダイズにおいて均質なハイブリダイズ結果が得ることができるようになっている。なお、上述したように、これらの塩基配列群から選択される2種を組み合わせることもできる。さらに、こうした配列に対して、特異性を失わない範囲で塩基を付加、欠失、置換等することができる。同時に用いる検出用プローブのための検出用配列は、配列番号1~100で表される塩基配列(群)か、あるいはこれらに相補的な塩基配列(群)のいずれかの群から選択されることが好ましい。
検出用プローブの検出用配列は、このような候補となる塩基配列又はその相補配列から適宜選択して用いることができるが、なかでも、以下の表に示す塩基配列又はその相補配列から選択される1種又は2種以上の塩基配列をそれぞれ検出用配列として有する1種又は2種以上のプローブのみからなるプローブセット、あるいは以下の全ての塩基配列又はその相補配列をそれぞれ検出用配列として有するプローブのみからなるプローブセットを用いることが好ましい。こうした塩基配列を検出用配列として選択することで、短時間のハイブリダイゼーションが可能であり、ハイブリダイゼーションの一層の迅速性を実現できる。
このような検出用プローブにおける検出用配列は、正規直交化配列ともいい、たとえば乱数から得られた所定塩基長のDNA配列に対して連続一致長、Nearest-Neighbor法による融解温度予測、ハミング距離、二次構造予測の計算を行うことにより設計される。正規直交化配列は、核酸の塩基配列であって、その融解温度が均一であるもの、即ち融解温度が一定範囲内に揃うように設計された配列であって、核酸自身が分子内(intramolecular)で構造化して、相補的な配列とのハイブリッド形成を阻害することのない配列であり、尚且つこれに相補的な塩基配列以外とは安定したハイブリッドを形成しない塩基配列を意味する。1つの正規直交化配列群に含まれる配列は、所望の組み合わせ以外の配列間および自己配列内において反応が生じ難いか、または反応が生じない。また、正規直交化配列は、PCRにおいて増幅させると、たとえば上述のクロスハイブリダイズのような問題に影響されずに、当該正規直交化配列を有する核酸の初期量に応じた量の核酸が定量的に増幅される性質を有している。上記のような正規直交化配列は、H.Yoshida and A.Suyama,“Solution to 3-SAT by breadth first search”,DIMACS Vl.54, 9-20(2000)および特願2003-108126に詳細が記載されている。これらの文献に記載の方法を使用して正規直交化配列を設計することができる。
検出用プローブは、担体に固定化されている。こうした担体としては、固相担体を用いることができる。例えば、担体はプラスチックであってもよいし、ガラスであってもよく、材質は特に限定されない。また、セルロース、ニトロセルロース、ナイロン等の多孔質体であってもよい。この種の多孔質担体は、特に、アフィニティークロマトグラフィーにより、固相担体に固定化した検出用プローブと増幅断片とをハイブリダイゼーションさせるのに好適である。
なお、担体の形状は図1に示すように平板状であってもよいが、ビーズ状であってもよく、形状は特に限定されない。固相体は、好ましくは、担体が固相平板状であり、複数の検出用プローブが一定の配列で固定されたアレイ(特にマイクロアレイ)である。アレイは、多数個の検出用プロー4を固定でき、同時に網羅的に各種の標的核酸を検出するのに都合がよい。また、固相体は、担体上に複数個の区画されたアレイ領域を備えていてもよい。これらの複数のアレイ領域は、それぞれ同一の組み合わせからなる検出用プローブのセットが固定化されていてもよいし、それぞれ別の組み合わせからなる検出用プローブのセットが固定化されていてもよい。複数のアレイ領域に異なる組み合わせの検出用プローブのセットが固定化されていれば、個々のアレイ領域を、異なる遺伝子における標的核酸の検出のために割り当てることができる。
担体の形状は、後述するハイブリダイゼーションの形態を考慮して設定することもできる。例えば、検査や研究用に汎用されているエッペンドルフチューブ(商標)のようなマイクロチューブ内でハイブリダイゼーションを実施する場合には、当該チューブ内に収容したハイブリダイゼーション溶液に担体のアレイ領域が浸漬されるサイズ及び形状であることが好ましい。こうした担体のサイズは、典型的には、平面積が150mm2以下、アスペクト比が1.5以上20以下で、厚みは0.01mm以上0.3mm以下とすることができる。
また、ハイブリダイゼーションを、アフィニティークロマトグラフィーの原理を用いて多孔質体である固相担体に固定化した検出用プローブとの間で実施する形態では、少なくとも、検査や研究用に汎用されているエッペンドルフチューブ(商標)のようなマイクロチューブに供給されるハイブリダイゼーション溶液に対して担体の端部が浸漬可能なサイズ(幅方向)及び形状を備えていることが好ましい。好ましくは、この種のチューブの底部近傍から上端までに収容可能な部位を備える長尺体である。
検出用プローブの固定化形態は特に限定されない。検出用プローブは、その3’末端が担体に結合されていてもよいし、5’末端が結合されていてもよい。共有結合性であってもよいし非共有結合性であってもよい。検出用プローブは、従来公知の各種の方法で担体の表面に固定化することができる。例えば、検出用プローブを含む溶液の微小液滴を吐出する方法で、担体に所定の平面形態を描くように供給する。そして、必要に応じて加熱等することで乾燥することで検出用プローブを固定化する。さらに、例えば、検出用プローブの固相担体への固定化のために、検出用プローブにアミノ基等を付加してもよいし、アルブミンなどのタンパク質を連結して担体への固着性を高めることもできる。また、加熱処理やUV照射などの各種放射線照射により固着性を高めることもできる。
また、検出用プローブは、担体の表面に対しては適当なリンカー配列を備えていてもよい。リンカー配列は、好ましくは検出用プローブ間において同一塩基長で同一配列とする。
検出用プローブは、後述するハイブリダイゼーションの形態に応じて所定のパターンで固相担体に供給される。ハイブリダイゼーション溶液に固相体全体を浸漬する形態では、典型的には個々の検出用プローブに対応するドットが配列されたパターンとなる。また、ハイブリダイゼーション溶液を移動相として固相体を展開させる形態では、典型的には個々の検出用プローブに対応するストリーム(帯状体)が展開方向に添う1又は2以上の展開位置に配列されたパターンとなる。
(増幅工程)
図2Aに示すように、増幅工程は、第1のプライマーと第2のプライマーとを用いて実施する。核酸増幅工程における核酸増幅法は、PCRを始めとするDNAポリメラーゼ反応を用いてDNAを増幅して二重鎖DNA断片を取得する各種の公知の方法が挙げられる。
図2Aに示すように、増幅工程は、第1のプライマーと第2のプライマーとを用いて実施する。核酸増幅工程における核酸増幅法は、PCRを始めとするDNAポリメラーゼ反応を用いてDNAを増幅して二重鎖DNA断片を取得する各種の公知の方法が挙げられる。
(第1のプライマー)
第1のプライマーは、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列と標的核酸中の第1の塩基配列を識別する第1の識別配列とを含んでいる。これらの塩基配列の長さ等は特に限定されず、標的核酸の標的配列の内容に応じて適宜決定される。
第1のプライマーは、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列と標的核酸中の第1の塩基配列を識別する第1の識別配列とを含んでいる。これらの塩基配列の長さ等は特に限定されず、標的核酸の標的配列の内容に応じて適宜決定される。
(第1の識別配列)
第1の識別配列は、核酸増幅により、標的核酸を増幅するための配列であり、標的核酸中の標的配列の一部を構成する第1の塩基配列と特異的にハイブリダイズできる。第1の識別配列は、第1の塩基配列と高い選択性でハイブリダイズ可能な程度に相補的に設定される。好ましくは完全に相補的(特異的)に設定される。
第1の識別配列は、核酸増幅により、標的核酸を増幅するための配列であり、標的核酸中の標的配列の一部を構成する第1の塩基配列と特異的にハイブリダイズできる。第1の識別配列は、第1の塩基配列と高い選択性でハイブリダイズ可能な程度に相補的に設定される。好ましくは完全に相補的(特異的)に設定される。
(タグ配列)
タグ配列は、タグ配列は、増幅断片が検出用プローブとハイブリダイゼーションを可能とするための配列であり、標的核酸を検出するものであるため、標的核酸毎に検出用プローブの検出用配列にハイブリダイズ可能に設定される。典型的には、検出用配列に相補的な塩基配列となっている。したがって、一つの標的核酸は、一つの検出用プローブに対応付けられることになる。タグ配列の塩基長は、既に説明したように、好ましくは検出用プローブの検出用配列の塩基長に一致し、好ましくは、20塩基以上50塩基以下であり、より好ましくは、20塩基以上25塩基以下である。
タグ配列は、タグ配列は、増幅断片が検出用プローブとハイブリダイゼーションを可能とするための配列であり、標的核酸を検出するものであるため、標的核酸毎に検出用プローブの検出用配列にハイブリダイズ可能に設定される。典型的には、検出用配列に相補的な塩基配列となっている。したがって、一つの標的核酸は、一つの検出用プローブに対応付けられることになる。タグ配列の塩基長は、既に説明したように、好ましくは検出用プローブの検出用配列の塩基長に一致し、好ましくは、20塩基以上50塩基以下であり、より好ましくは、20塩基以上25塩基以下である。
標的核酸中の第1の塩基配列と第2の塩基配列とは、標的核酸に対してどのような構成となっていてもよい。例えば、DNA上の変異を検出する場合、いずれか一方の塩基配列にのみ1又は2以上の塩基の変異部位が含まれるようにしてもよいし、双方に変異部位が含まれるようにしてもよい。なお、第1のプライマーは、こうしたタグ配列及び第1の識別配列を有しており、こうした塩基配列を構成する天然塩基あるいはこれに相同な人工塩基を有するとともに、天然核酸との間で塩基対合を可能とする骨格を有している。典型的にはオリゴヌクレオチド又はその誘導体である。
(連結部位)
タグ配列を有するプライマーの一部と第1の識別配列を有するプライマーの他の一部とは直接連結されることはなく、これらの間には連結部位を有している。連結部位は、鋳型鎖に含まれたとき、DNAポリメラーゼ反応を抑制又は停止可能な部位である。DNAポリメラーゼ反応は、鋳型となる核酸(ないし塩基)がないとそれ以上DNA鎖を伸長しないとされている。このため、本発明の連結部位は、DNAポリメラーゼによるDNA伸長時の鋳型となりえない構造を有している。すなわち、本連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体(天然塩基等)を含まない。こうした天然塩基等を含まないことで、前記鋳型となることを回避して、DNAポリメラーゼによるDNA鎖の伸長を抑制又は回避できる。したがって、本連結部位は、天然塩基等を有しないない単なる骨格鎖だけであってもよい。すなわち、糖-リン酸骨格や、他の公知の人工オリゴヌクレオチドに適用される骨格であってもよい。なお、DNAポリメラーゼは、各種公知のDNAポリメラーゼが包含される。典型的には、各種PCRなどの核酸増幅法に用いられるDNAポリメラーゼが挙げられる。
タグ配列を有するプライマーの一部と第1の識別配列を有するプライマーの他の一部とは直接連結されることはなく、これらの間には連結部位を有している。連結部位は、鋳型鎖に含まれたとき、DNAポリメラーゼ反応を抑制又は停止可能な部位である。DNAポリメラーゼ反応は、鋳型となる核酸(ないし塩基)がないとそれ以上DNA鎖を伸長しないとされている。このため、本発明の連結部位は、DNAポリメラーゼによるDNA伸長時の鋳型となりえない構造を有している。すなわち、本連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体(天然塩基等)を含まない。こうした天然塩基等を含まないことで、前記鋳型となることを回避して、DNAポリメラーゼによるDNA鎖の伸長を抑制又は回避できる。したがって、本連結部位は、天然塩基等を有しないない単なる骨格鎖だけであってもよい。すなわち、糖-リン酸骨格や、他の公知の人工オリゴヌクレオチドに適用される骨格であってもよい。なお、DNAポリメラーゼは、各種公知のDNAポリメラーゼが包含される。典型的には、各種PCRなどの核酸増幅法に用いられるDNAポリメラーゼが挙げられる。
また、本連結部位は、リン酸ジエステル結合を介してヌクレオチドに隣接される、元素数が2以上40以下である一重鎖構造を含む鎖状の連結基であってもよい。元素数が1以下では、DNAポリメラーゼ反応を抑制又は停止が不完全になりやすく、元素数が40を超えると、ヌクレオチドの溶解性が低下するおそれがあるからである。DNAポリメラーゼ反応の抑制又は停止の効果を考慮すると、鎖状の連結基の元素は、2以上36以下であることが好ましく、より好ましくは3以上16以下である。
本連結部位が、一重結合を含むのは、連結部位における回転を容易にするためであり、一重結合は、炭素-炭素一重結合、炭素-酸素一重結合、炭素-窒素一重結合、S-S一重結合などが挙げられる。本連結部位は、こうした一重結合を主体とすることが好ましい。また、本連結部位は、一重結合を含む限り一部に芳香環あるいはシクロアルカンを含んでいてもよい。
本連結部位としては、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含むことが好ましい。こうした鎖状の連結構造は、構造的に簡易であるほか、連結部位としての導入も容易である。
こうした連結部位としては、例えば、以下の式(1)で表される連結部位が挙げられる。
5’-O-CmH2m-O-3’ 式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)
5’-O-CmH2m-O-3’ 式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)
式(1)においてmは、好ましくは2以上36以下であり、より好ましくは3以上16以下である。式(1)中のHの置換基は、典型的には、アルキル基、アルコキシ基、水酸基等が挙げられる。アルキル基及びアルコキシ基の炭素数は1~8であることが好ましく、より好ましくは1~4である。また、2以上の置換基を有する場合には、置換基は同一であっても異なっていてもよい。さらに、置換基を有していないことも好ましい。
また、他の連結部位としては、以下の式(2)で表される連結部位が挙げられる。
5’-(OCnH2n)l-v3’ 式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
5’-(OCnH2n)l-v3’ 式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
式(2)において(n+1)×lは、好ましくは2以上36以下であり、より好ましくは3以上16以下である。式(2)中のHの置換基は、式(1)中の置換基と同様の態様が適用される。
本連結部位としては、例えば、以下の鎖状部位が挙げられる。
さらに、本連結部位としては、例えば、以下の鎖状部位が挙げられる。
第1のプライマーは、第1の識別配列及びタグ配列を有しており、こうした塩基配列を構成する天然塩基あるいはこれに相同な人工塩基を有するとともに、天然核酸との間で塩基対合を可能とする骨格を主体として有している。典型的にはオリゴヌクレオチド又はその誘導体である。
第1のプライマーにおいては、その5’側からタグ配列、連結部位及び第1の識別配列の順でこれらを有していることが好ましい。こうした構成とすることで、こうしたプライマーによって増幅されたDNA鎖が鋳型鎖となって増幅されるとき、鋳型鎖中の第1のプライマー由来の連結部位よりも5’側、すなわち、DNAポリメラーゼによって伸長されるDNA鎖においてより先の3’側では伸長反応が停止されるか抑制される。この結果、鋳型鎖中の第1のプライマー由来の連結部位の3’側に隣接するヌクレオチドの塩基又はその近傍の塩基に対合する塩基を5’末端とし、第1のプライマー中のタグ配列の相補鎖を有しない増幅断片が得られることとなる(図1A及び図1B、図2A~図2C参照)。
なお、連結部位近傍、すなわち、連結部位の3’側及び5’側には、タグ配列や第1の識別配列とは無関係の配列を含めることもできる。第1のプライマーが鋳型鎖となったとき、連結部位の存在のために、伸長鎖におけるタグ配列や第1の識別配列に対して意図しないDNA伸長反応の進行や停止の影響を低減又は回避できるからである。
(第2のプライマー)
図2Aに示すように、第2のプライマーは、標的核酸中の第2の塩基配列を識別する第2の識別配列を含んでいる。これらの塩基配列の長さ等は特に限定されず、標的核酸の標的配列の内容に応じて適宜決定される。
図2Aに示すように、第2のプライマーは、標的核酸中の第2の塩基配列を識別する第2の識別配列を含んでいる。これらの塩基配列の長さ等は特に限定されず、標的核酸の標的配列の内容に応じて適宜決定される。
(第2の識別配列)
第2の識別配列は、核酸増幅により、第1のプライマーとともに標的核酸を増幅するための配列であり、標的核酸中の標的配列の他の一部を構成する第2の塩基配列と特異的にハイブリダイズできる。第2の識別配列は、第2の塩基配列と高い選択性でハイブリダイズ可能な程度に相補的に設定される。好ましくは完全に相補的(特異的)に設定される。
第2の識別配列は、核酸増幅により、第1のプライマーとともに標的核酸を増幅するための配列であり、標的核酸中の標的配列の他の一部を構成する第2の塩基配列と特異的にハイブリダイズできる。第2の識別配列は、第2の塩基配列と高い選択性でハイブリダイズ可能な程度に相補的に設定される。好ましくは完全に相補的(特異的)に設定される。
(標識物質結合領域)
図2Aに示すように、標識物質結合領域は、予め標識物質を備えることができる。標識物質は、固相上で検出用プローブに結合したDNA二重鎖断片を検出するためのものである。標識物質としては従来公知のものを適宜選択して用いることができる。それ自体励起されると蛍光シグナルを発する蛍光物質などの各種色素であってもよいし、さらに酵素反応や抗原抗体反応により第2成分と組み合わせて各種シグナルを発する物質であってもよい。典型的には、Cy3、Alexa555、Cy5、Alexa647等の蛍光標識物質を用いることができる。標識物質結合領域は、標識物質を、第2の塩基配列に対して直接あるいは適当なリンカーを介して公知の方法により連結して備えている。
図2Aに示すように、標識物質結合領域は、予め標識物質を備えることができる。標識物質は、固相上で検出用プローブに結合したDNA二重鎖断片を検出するためのものである。標識物質としては従来公知のものを適宜選択して用いることができる。それ自体励起されると蛍光シグナルを発する蛍光物質などの各種色素であってもよいし、さらに酵素反応や抗原抗体反応により第2成分と組み合わせて各種シグナルを発する物質であってもよい。典型的には、Cy3、Alexa555、Cy5、Alexa647等の蛍光標識物質を用いることができる。標識物質結合領域は、標識物質を、第2の塩基配列に対して直接あるいは適当なリンカーを介して公知の方法により連結して備えている。
本明細書において「標識物質」とは、検出しようとする物質あるいは分子を他と識別することを可能とする物質である。標識物質は、特に限定しないが、典型的には、蛍光、放射能、酵素(例えば、ペルオキシダーゼ、アルカリフォスファターゼ等)、燐光、化学発光、着色などを利用した標識物質が挙げられる。
標識物質は、目視(肉眼で)で検出可能な発光又は発色を提示する発光物質又は発色物質であることが好ましい。すなわち、直接それ自体が、他の成分を必要としないで肉眼で視認可能なシグナルを生成することができる物質であることが好ましい。検出工程で迅速かつ簡易に行うことができる。こうした物質としては、典型的には、各種の顔料や染料などの各種の着色剤が挙げられる。また、これに準ずる、金、銀などの貴金属ほか、銅などの各種金属又は合金、あるいは当該金属を含む有機化合物(錯体化合物であってもよい)が挙げられる。また、着色剤に準ずる、マイカ等の無機化合物が挙げられる。
この種の標識物質としては、典型的には、各種染料、各種顔料、ルミノール、イソルミノール、アクリジニウム化合物、オレフィン、エノールエーテル、エナミン、アリールビニルエーテル、ジオキセン、アリールイミダゾール、ルシゲニン、ルシフェリン及びエクリオンを包含する化学発光物質が挙げられる。また、こうした標識物質でラベルされているラテックス粒子などの粒子も挙げられる。さらに、金コロイド若しくはゾル又は銀コロイド若しくはゾルを包含するコロイド若しくはゾル等が挙げられる。さらにまた、金属粒子、無機粒子等が挙げられる。
標識物質は上記のように、その一部に粒子を備えていてもよい。標識物質の一部を構成するラテックス粒子などの粒子の平均粒子径は、特に限定しないが、例えば、20nm以上20μm以下であり、典型的には、40nm~10μm、好ましくは0.1μm以上10μm以下、特に好ましくは0.1μm以上5μm以下、さらに好ましくは0.15μm以上2μm以下の平均粒子径を有している。また、固相担体210の孔径によっては、500nm以下であることが好ましく、また、250nm以下であることも好ましく、100nm以下であることも好ましく、50nm以下であることも好ましい。また、下限は、0.1nm以上であることが好ましく、より好ましくは1nm以上である。例えば、0.1nm以上250nm以下であることがより好ましく、1nm以上250nm以下であることがさらに好ましい。また、0.1nm以上100nm以下であることもより好ましく、1nm以上50nm以下であることがさらに好ましい。
好ましい粒子は、水溶液に懸濁でき、そして水不溶性ポリマー材料からなる粒子である。例えばポリエチレン、ポリスチレン、スチレン-スチレンスルホン酸塩共重合体、アクリル酸ポリマー、メタクリル酸ポリマー、アクリロニトリルポリマー、アクリロニトリル-ブタジエン-スチレン、ポリビニルアセテート-アクリレート、ポリビニルピロリドン又は塩化ビニル-アクリレートが挙げられる。それらの表面上に活性基、例えばカルボキシル、アミノ又はアルデヒド基を有するラテックス粒子も挙げられる。
標識物質結合領域は、最終的に標識物質による識別が可能にこれらを結合可能な分子ないし物質(以下、標識物質結合物質ともいう。)を備えていてもよい。こうした物質等としては、タンパク質-タンパク質相互作用、低分子化合物-タンパク質相互作用等を利用できる。例えば、抗原抗体反応における抗体や、アビジン(ストレプトアビジン)-ビオチンシステムにおけるビオチン、抗ジゴキシゲニン(DIG)-ジゴキシゲニン(DIG)システムにおけるジゴキシゲニン、又は抗FITC-FITCシステムにおけるFITC等に代表されるハプテン類などが挙げられる。この場合、最終的に検出のために用いられる標識物質は、標識物質結合物質と相互作用する他方の分子又は物質(例えば、抗原、すなわち、ストレプトアビジン、抗FITCなど)を、標識物質結合物質との結合のための部位として備えるように修飾される。増幅産物が標識物質結合物質を備える場合には、ハイブリダイゼーション工程において、あるいはこの工程に先立って、あるいはこの工程後に、増幅産物の標識物質結合物質と、標識物質結合物質と結合する部位を備える標識物質との複合体を形成させて、標識物質により増幅産物を検出する。
こうした標識物質や標識物質物質は、商業的に入手できるほか、標識物質及び標識物質結合物質の製造及び標識物質等を粒子にラベルする方法も公知であり、当業者であれば適宜公知技術を利用して取得することができる。さらに、こうした標識物質又は標識物質でラベル化された粒子や標識物質結合物質と、DNA等のオリゴヌクレオチドとの結合もアミノ基等の官能基を介して適宜可能であり、それ自体は当該分野において周知である。
また、第2のプライマーは、図2Bに示すように、標識物質結合領域が、標識物質又は標識物質結合物質を結合可能に構成されていてもよい。すなわち、所定の塩基配列を有しており、標識物質又は標識物質結合物質を有するとともに標識結合配列を識別する塩基配列を有する標識プローブが結合可能であってもよい。こうした標識プローブは後述するハイブリダイゼーション工程や検出工程において固相体上の検出用プローブとハイブリダイゼーションしたDNA二重鎖断片に供給されて、これを標識することができる。
さらに、第2のプライマーは、図2Cに示すように、標識物質結合領域を備えていなくてもよい。すなわち、増幅工程において、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施することで、増幅断片のDNA伸長部位に標識物質が導入され標識された増幅断片を得ることができるからである。
第2のプライマーは、第2の識別配列のほか、必要に応じて標識物質結合領域を有しており、第2の識別配列の塩基配列を構成する天然塩基あるいはこれに相同な人工塩基を有するとともに、天然核酸との間で塩基対合を可能とする骨格を有している。典型的にはオリゴヌクレオチド又はその誘導体である。
(連結部位)
標識物質結合領域を備えるとき、標識物質結合領域と第2の識別配列とは、直接連結されていてもよいが、これらの間には連結部位を有していることが好ましい。特に、図2Bに示すように、標識物質結合領域が標識プローブと相互作用してこれを結合する塩基配列を有しているときにおいて好ましい。連結部位は、既に第1のプライマーにおいて説明したとおりである。
標識物質結合領域を備えるとき、標識物質結合領域と第2の識別配列とは、直接連結されていてもよいが、これらの間には連結部位を有していることが好ましい。特に、図2Bに示すように、標識物質結合領域が標識プローブと相互作用してこれを結合する塩基配列を有しているときにおいて好ましい。連結部位は、既に第1のプライマーにおいて説明したとおりである。
第2のプライマーにおいては、その5’側から、標識物質結合領域、連結部位及び第2の識別配列の順でこれらを有していることが好ましい。こうした構成とすることで、第2のプライマーによって増幅されたDNA鎖が鋳型鎖となって、第1のプライマーによって増幅されるとき、鋳型鎖中の第2のプライマーに由来する連結部位よりも5’側、すなわち、DNAポリメラーゼによって伸長される新たなDNA鎖においてはより先の3’側では伸長反応が停止されるか抑制される。この結果、鋳型鎖中の第2のプライマー由来の連結部位の3’側に隣接するヌクレオチドの塩基又はその近傍の塩基に対合する塩基を5’末端とし、第2のプライマー中の標識結合領域(の塩基配列)の相補鎖を有しないDNA増幅断片が得られることとなる(図1B、図2B参照)。
なお、連結部位近傍、すなわち、連結部位の3’側及び5’側には、標識物質結合領域や第2の識別配列とは無関係の配列を含めることもできる。第2のプライマーが鋳型鎖となったとき、連結部位の存在のために、伸長鎖における標識物質結合領域や第2の識別配列に対して意図しないDNA伸長反応の進行や停止の影響を低減又は回避できるからである。
こうしたプライマーは、通常のオリゴヌクレオチド合成法にしたがって合成することができる。例えば、連結部位については、アルキレン鎖を有するホフォスホアミダイト試薬を用いて合成することができる。こうした試薬自体は、公知であり、例えば、GlenResearch社等から入手することができる。例えば、以下の試薬が挙げられる。なお、以下の式においてDMTは、水酸基保護基として典型的なジメトキシトリチル基を表すが、他の公知の水酸基保護基であってもよい。また、以下の式においてPAは、ホスホアミダイト基を表す。
核酸増幅は、これらのプライマーを用いて実施する。核酸増幅法は既に説明したように各種公知の方法を適用できるが、典型的にはPCR、マルチプレックスPCR等の各種PCRである。核酸増幅工程を実施するにあたっての、溶液組成、温度制御等については、当業者であれば適宜設定することができる。
すでに説明したように、たとえば、5’側からタグ配列、連結部位及び第1の識別配列の順でこれらを有する第1のプライマーと、5’側から、標識物質結合領域、連結部位及び第2の識別配列の順でこれらを有する第2のプライマーと、を用いて標的核酸を含む可能性のある試料に対してPCRを実施すると、図1Bの各(a)~(c)に示すように、DNAポリメラーゼのDNA伸長反応により、第1のプライマー及び第2のプライマーに由来して当該プライマーを含む鋳型鎖が形成される。
そして、これらの鋳型鎖がそれぞれ由来するプライマーとは異なる第2のプライマー及び第1のプライマーによって再びDNAポリメラーゼによるDNA伸長反応が実施される。このとき、図1Bの各(d)及び(e)に示すように、第2のプライマーから始まり第1のプライマーを含む鋳型鎖に対するDNAポリメラーゼのDNA伸長反応は、鋳型鎖中の第1のプライマー由来の連結部位より5’側、すなわち、伸長鎖では連結部位よりも3’側ではDNAの伸長が抑制又は停止される。
また、図1Bの(d)及び(e)に示すように、第1のプライマーから始まり第2のプライマーを含む鋳型鎖に対するDNAポリメラーゼのDNA伸長反応は、鋳型鎖中の第2のプライマー由来の連結部位より5’側、すなわち、伸長鎖では連結部位よりも3’側ではDNAの伸長が抑制又は停止される。
こうした結果、得られる増幅断片は、図2Bに示すように、5’末端にそれぞれ突出する一本鎖のタグ配列と標識物質結合領域とを備え、第1の識別配列と第2の識別配列においては二重鎖を備えるDNA二重鎖断片となる。すなわち、このDNAに重鎖断片にあっては、一方のDNA鎖の5’側では、タグ配列が突出して一本鎖となり、他方のDNA鎖の5’側では、標識物質結合領域が突出している。
なお、用いる第2のプライマーが図2Aに示すように、予め標識物質が結合した標識物質結合領域を有する場合には、図2Aに示すように、標識物質を一方のDNA鎖の5’末端に有し、一方のDNA鎖の5’側にタグ配列を突出して有し、第1及び第2の識別配列においては二重鎖を備えるDNA二重鎖断片となる。
また、図2Cに示すように、標識物質をDNA鎖伸長部位に有し、一方のDNA鎖の5’側にタグ配列を突出して有し、第1及び第2の識別配列においては二重鎖を備えるDNA二重鎖断片となる。
(ハイブリダイゼーション工程)
次に、図2A~図2Cに示すように、ハイブリダイゼーション工程を実施する。ハイブリダイゼーション工程は、増幅工程で得られた増幅断片と検出用プローブとをタグ配列によりハイブリダイズ可能に接触させる工程である。ハイブリダイゼーション工程によれば、図2A~図2Cに示すように、増幅工程で得られたDNA二重鎖断片のタグ配列と、固相体上の検出用プローブの検出用配列と一定条件下において特異的にハイブリダイズ部可能な程度に相補的であるとき、これらはハイブリダイズし固相体上の所定の検出用プローブにおいて二重鎖を形成する。ハイブリダイゼーション工程後において、適宜洗浄工程をさらに含んでいてもよい。
次に、図2A~図2Cに示すように、ハイブリダイゼーション工程を実施する。ハイブリダイゼーション工程は、増幅工程で得られた増幅断片と検出用プローブとをタグ配列によりハイブリダイズ可能に接触させる工程である。ハイブリダイゼーション工程によれば、図2A~図2Cに示すように、増幅工程で得られたDNA二重鎖断片のタグ配列と、固相体上の検出用プローブの検出用配列と一定条件下において特異的にハイブリダイズ部可能な程度に相補的であるとき、これらはハイブリダイズし固相体上の所定の検出用プローブにおいて二重鎖を形成する。ハイブリダイゼーション工程後において、適宜洗浄工程をさらに含んでいてもよい。
ハイブリダイゼーション工程には、増幅工程において特異的に増幅された標的核酸に対応するDNA二重鎖断片が供給される。この断片は、予め関連付けられた検出用プローブに特異的なタグ配列を、一本鎖として突出して有している。このため、増幅工程後、熱変性等の変性工程によって一本鎖としなくても、検出用プローブと容易に反応できる。したがって、ハイブリダイゼーション効率が高いものとなっており、結果として感度も向上しかつ安定化させることができる。感度は、第1のプライマーにおいて連結部位を備えることで、好ましくは5倍以上、より好ましくは10倍以上向上する。また、ハイブリダイゼーションの迅速性も向上されている。第1のプライマーにおいて連結部位を備えることで、ハイブリダイゼーション時間は、10分の1程度にまで短縮されることがわかっている。
また、図2Aに示すように、ハイブリダイゼーション工程に供給されるDNA二重鎖断片が標識物質結合領域を有し直接標識物質を備えているときには、特別なラベリング工程を実施しなくてよい。図2Cに示すように、DNA二重鎖断片が増幅工程により標識物質を付与されている場合も同様である。さらに、図2Bに示すように、標識物質結合領域が標識プローブを結合する塩基配列を含んでいるときには、この塩基配列部分は、一本鎖としてタグ配列と反対側の5’側に突出している。このため、効率的に標識プローブとハイブリダイズし、迅速かつ容易に、しかも感度よい標識が可能となっている。したがって、特別なラベリング工程は不要であり、標識プローブは、ハイブリダイゼーション工程においてDNA二重鎖断と同時に固相体に供給するか、あるいは、DNA二重鎖断片の固相体への供給に前後して供給してもよい(すなわち、ハイブリダイゼーション前でもハイブリダイゼーション後であってもよい。)。
DNA二重鎖断片は、そのタグ配列に基づき特定の検出用プローブにしかハイブリダイズしない。検出用プローブの検出用配列とタグ配列とは、高度に選択的に設計されておりミスハイブリダイズが高度に抑制されているため、ハイブリダイゼーション工程においては検出用プローブに対して非特異的に二重鎖断片がハイブリダイズすることが高度に抑制される。
なお、ハイブリダイゼーション工程は、図2に例示される固相体全体にハイブリダイゼーション溶液を供給して実施するハイブリダイゼーションの形態(浸漬型ハイブリダイゼーション)に限定されない。例えば、固相体の一部に移動相でもあるハイブリダイゼーション溶液を供給して、固相体に対して所定の方向性でハイブリダイゼーション溶液を展開するクロマトグラフィーの形態(展開型ハイブリダイゼーション)であってもよい。
(検出工程)
検出工程は、前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する工程である。
検出工程は、前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する工程である。
検出工程は、ハイブリダイズ後の固相体上のハイブリダイズ産物が保持する標識物質に基づく標的核酸についてのシグナル強度情報を取得し、ハイブリダイズ産物を検出する工程である。シグナル強度情報取得の取得には、標識物質由来の標識シグナルを検出することができる。標的核酸と予め関連付けられた検出用プローブの固相体上における位置は予め取得されているため、標識シグナルを検出することで標的核酸の有無や比率を検知することができる。
シグナル強度情報取得には、用いた固相体の形態や標識物質の種類に応じて、従来公知の手法を適宜選択して採用すればよい。典型的には、固相体からハイブリダイズしなかったオリゴヌクレオチド等を洗浄操作等によって除去した後、付加した標識物質の蛍光シグナルをアレイスキャナ等により検出したり、標識物質に対して化学発光反応を実施したりすることができる。担体にビーズを用いた場合には、フローサイトメーターによる検出方法が挙げられる。
本検出工程では、標識物質のシグナル強度情報に基づいて、試料中の標的核酸の有無や比率等を検出することができる。本方法によれば、複数の標的核酸を同時に検出する場合であっても、確実に検出対象たる標的配列を検出することができる。本方法では、増幅工程で取得したDNA二重鎖断片が、効率的なハイブリダイゼーションや効率的なラベリングに適しているため、効率的に高感度な検出が可能であるとともに、煩雑な変性工程を省略できるようになっている。
本検出方法は、マルチプレックスPCRで試料から複数の標的核酸に対応する増幅断片を増幅して、これらを一挙に固相体上で検出することが好ましい。すなわち、複数の標的核酸に予め関連付けた複数の検出用プローブで検出可能に、第1のプライマーと第2のプライマーとからなる複数のセットを用いて核酸増幅を実施し、増幅工程で得られた複数の増幅断片と固相体上の複数の検出用プローブとをハイブリダイズ可能に接触させ、固相体上の複数の増幅断片と複数の検出用プローブとのハイブリダイズ産物を検出するようにすることが好ましい。
(核酸増幅剤)
本発明の核酸増幅剤は、図1Aに第1のプライマー等として示すように、5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体を含んでいる。本核酸増幅剤がこうした連結部位を含むことで、本核酸増幅剤を少なくとも一つのプライマー等として核酸増幅法で用いる場合であって、増幅反応で得られた核酸増幅剤を含むDNA鎖が鋳型鎖となるとき、当該連結部位は、伸長鎖におけるDNAポリメラーゼ反応の抑制又は停止ポイントとして作用し、連結部位以降は、鋳型鎖として機能しなくなる。この結果、連結部位以降の鋳型鎖に相補的な伸長鎖が形成されないことになる。この結果得られるDNA二重鎖断片は、図1Aに示すように、一方の5’側に第1の任意の塩基配列の一本鎖を有するDNA二重鎖となる。
本発明の核酸増幅剤は、図1Aに第1のプライマー等として示すように、5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体を含んでいる。本核酸増幅剤がこうした連結部位を含むことで、本核酸増幅剤を少なくとも一つのプライマー等として核酸増幅法で用いる場合であって、増幅反応で得られた核酸増幅剤を含むDNA鎖が鋳型鎖となるとき、当該連結部位は、伸長鎖におけるDNAポリメラーゼ反応の抑制又は停止ポイントとして作用し、連結部位以降は、鋳型鎖として機能しなくなる。この結果、連結部位以降の鋳型鎖に相補的な伸長鎖が形成されないことになる。この結果得られるDNA二重鎖断片は、図1Aに示すように、一方の5’側に第1の任意の塩基配列の一本鎖を有するDNA二重鎖となる。
図1Bに示すように、他方のプライマーである第2のプライマーを、第1のプライマーと同様に、5’側から第2の任意の塩基配列と増幅しようとする核酸中の第2の塩基配列を識別する第2の識別配列とを含み、前記第2の塩基配列と前記第2の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体とすることもできる。こうすることで、図1Bに示すように、各5’側に第1の任意の塩基配列の一本鎖と第2の任意の塩基配列の一本鎖を有するDNA二重鎖となる。
こうした突出一本鎖を有するDNA二重鎖は、ハイブリダイゼーション用のほか、各種用途に用いられる。核酸増幅剤は、典型的には各種核酸増幅法におけるプライマーとして用いることができる。
第1の任意の塩基配列及び/又は第2の任意の塩基配列は、本発明におけるタグ配列であってもよいし、標識が結合された又は標識プローブとハイブリダイズ可能な塩基配列であってもよい。第1の任意の塩基配列がこのように標識に関連付けられていると、標的核酸を増幅すると同時にラベリングも可能となる。
本核酸増幅剤における連結部位には、本検出方法において既に説明した連結部位の各種実施態様を適用できる。また、本核酸増幅部位の第1の任意の塩基配列及び第1の識別配列には、本検出方法において既に説明した第1のプライマー及び第2のプライマーにおける、タグ配列及び第1の識別配列並びに標識物質結合領域及び第2の識別配列の各種実施態様を適用できる。すなわち、本核酸増幅剤は、第1のプライマーや第2のプライマーをその一実施態様としている。
なお、本発明によれば、こうした核酸増幅剤を1種又は2種以上含むキットも提供される。当該キットには、上記した第1のプライマーや第2のプライマーを用いて得られるDNA断片とハイブリダイゼーションさせるための固相体を含んでいてもよい。
本発明によれば、本検出方法において得られるDNA二重鎖断片、すなわち、少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、検出用プローブ中の塩基配列に相補的なタグ配列を有する、DNA二重鎖断片も提供される。さらに、他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されているDNA二重鎖断片も提供される。さらにこうしたDNA二重鎖断片は、プローブハイブリダイゼーションに好適であるため、これらを含むプローブハイブリダイゼーション用組成物も提供される。この方法で用いる。
さらに、本発明によれば、試料中の標的核酸を増幅する方法も提供される。すなわち、第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、備える、方法も提供される。この方法によって得られる増幅断片は、図1Aに示すように、少なくとも一方の鎖の5’側に突出した第1の任意の塩基配列の一本鎖を有するDNA二重鎖断片となっている。さらに、この増幅方法においては、他のプライマーとして、第2の任意の塩基配列と前記標的核酸中の第2の塩基配列を識別する第2の識別配列とを含み、前記第1の任意の塩基配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第2のプライマーを用いることもできる。この場合には、図1Bに示すように、両方の鎖の5’側に突出した第1の任意の塩基配列の一本鎖を有するDNA二重鎖断片を得ることができる。第1のプライマーにおいては、その第1の任意の塩基配列には、標識物質を備えていてもよいし、標識プローブと結合可能な塩基配列を有していてもよい。第2のプライマーについても、同様である。
本増幅方法においても、第1のプライマー及び第2のプライマー並びに連結部位に関して、既に説明した本検出方法の各種態様を適用できる。
本増幅方法は、また、少なくとも一方のDNA鎖の5’側に一本鎖を備えるDNA二重鎖断片の生産方法としても提供される。さらに、本増幅方法は、標的核酸のラベリング方法としても実施できる。さらに、こうしたラベリング工程を備える、標的核酸の検出方法としても実施できる。すなわち、特開2008-306941号公報、特開2009-24号公報並びに非特許文献1に開示されるSNP等の検出方法における標識工程に替えて本増幅工程(標識工程)を用いることで、その後の変性工程を省略するとともに、効率的かつ高感度なハイブリダイゼーションを実施することができる。
(標的核酸の核酸クロマトグラフィーによる検出方法)
本明細書に開示される標的核酸の核酸クロマトグラフィーによる検出方法(以下、単に検出方法ともいう。)は、部分二本鎖核酸と固相担体上のプローブとを核酸クロマトグラフィーによりハイブリダイズ可能な条件下で接触させるハイブリダイゼーション工程と、前記ハイブリダイゼーション工程で生成したハイブリダイズ産物を検出する検出工程と、を備えている。以下、まず、図1Aにも示した、部分二本鎖核酸について説明し、その後ハイブリダイゼーション工程及び検出工程について説明する。
本明細書に開示される標的核酸の核酸クロマトグラフィーによる検出方法(以下、単に検出方法ともいう。)は、部分二本鎖核酸と固相担体上のプローブとを核酸クロマトグラフィーによりハイブリダイズ可能な条件下で接触させるハイブリダイゼーション工程と、前記ハイブリダイゼーション工程で生成したハイブリダイズ産物を検出する検出工程と、を備えている。以下、まず、図1Aにも示した、部分二本鎖核酸について説明し、その後ハイブリダイゼーション工程及び検出工程について説明する。
(部分二本鎖核酸)
本明細書にいう部分二本鎖核酸10は、図3に詳細に示すように、第1の鎖12と第2の鎖14とを備え、第1の鎖12の5’末端側に一本鎖部分20を有し、当該一本鎖部分20以外は水素結合による二本鎖部分16を有する核酸を意味している。本明細書における部分二本鎖核酸10の第1の鎖12の一本鎖部分20、すなわち、タグ部20は、二本鎖部分16から突き出てダングリング鎖状となっている。
本明細書にいう部分二本鎖核酸10は、図3に詳細に示すように、第1の鎖12と第2の鎖14とを備え、第1の鎖12の5’末端側に一本鎖部分20を有し、当該一本鎖部分20以外は水素結合による二本鎖部分16を有する核酸を意味している。本明細書における部分二本鎖核酸10の第1の鎖12の一本鎖部分20、すなわち、タグ部20は、二本鎖部分16から突き出てダングリング鎖状となっている。
部分二本鎖核酸10の二本鎖部分16は、すなわち、第1の鎖12と第2の鎖14が塩基対合してなる二本鎖部分16は、DNAポリメラーゼによるDNA鎖の伸長反応の基質となりうる天然塩基(アデニン、グアニン、チミン及びシトシン)を備えるヌクレオチドがリン酸ジエステル結合で連結された構造を有することが好ましい。すなわち、二本鎖部分16は、天然のリボース-リン酸バックボーンを有し、さらに天然塩基を備えた天然核酸を有していることが好ましく、より好ましくは天然核酸のみからなる。後述するように、標的核酸に関連付けて部分二本鎖核酸10を取得する際の核酸増幅反応により合成されることが好ましいからである。
部分二本鎖核酸10は、標的核酸に関連付けられている。ここで標的核酸に関連付けられているとは、標的核酸の少なくとも一部の二本鎖部を含む二本鎖部分16を有していることを意味している。こうした二本鎖部分16は、例えば、標的核酸中の標的配列の一部と特異的にハイブリダイズするプライマーセットにより増幅することによって得られる。
(タグ部)
部分二本鎖核酸10のタグ部20は、核酸増幅反応によって合成可能に、上記のとおり二本鎖部分22と同じ構成を採用することもできる。すなわち、タグ部20は、DNAポリメラーゼによるDNA鎖の伸長反応の鋳型となりうる天然塩基を備えるヌクレオチドがリン酸ジエステル結合で連結された構造であってもよく、天然核酸を含んでいてもよいし、天然核酸のみから構成されていてもよい。タグ部20は、また、核酸増幅反応によらない非天然の合成によるオリゴヌクレオチド鎖であってもよい。このヌクレオチド鎖は、バックボーンに関しても、いわゆる天然のリボース-リン酸バックボーン以外にも、PNA(ペプチド核酸)のバックボーン、BNA(架橋化核酸)などのバックボーン等公知の人工的バックボーンを採用できる。また、塩基についても、プローブとの特異的とハイブリダイズ可能であればよいので、プローブを対応させることを前提に、非天然の、例えば、L-DNAを備えていてもよいし、L-DNAのみからなっていてもよい。また、非天然塩基を有していてもよく、非天然塩基のみから構成されていてもよい。標的核酸に関連付けられているが、二本鎖部分22とは異なり核酸増幅反応によって合成されなくてもよい。このため、タグ部20は、核酸増幅反応のプライマーに由来させることができる。
部分二本鎖核酸10のタグ部20は、核酸増幅反応によって合成可能に、上記のとおり二本鎖部分22と同じ構成を採用することもできる。すなわち、タグ部20は、DNAポリメラーゼによるDNA鎖の伸長反応の鋳型となりうる天然塩基を備えるヌクレオチドがリン酸ジエステル結合で連結された構造であってもよく、天然核酸を含んでいてもよいし、天然核酸のみから構成されていてもよい。タグ部20は、また、核酸増幅反応によらない非天然の合成によるオリゴヌクレオチド鎖であってもよい。このヌクレオチド鎖は、バックボーンに関しても、いわゆる天然のリボース-リン酸バックボーン以外にも、PNA(ペプチド核酸)のバックボーン、BNA(架橋化核酸)などのバックボーン等公知の人工的バックボーンを採用できる。また、塩基についても、プローブとの特異的とハイブリダイズ可能であればよいので、プローブを対応させることを前提に、非天然の、例えば、L-DNAを備えていてもよいし、L-DNAのみからなっていてもよい。また、非天然塩基を有していてもよく、非天然塩基のみから構成されていてもよい。標的核酸に関連付けられているが、二本鎖部分22とは異なり核酸増幅反応によって合成されなくてもよい。このため、タグ部20は、核酸増幅反応のプライマーに由来させることができる。
部分二本鎖核酸10のタグ部20は、固相担体上に備えられるプローブと特異的にハイブリダイズ可能なタグ配列を有している。タグ配列22はプローブとハイブリダイゼーションを可能とするための配列であり、標的核酸を検出するものである。このため、標的核酸毎にプローブの検出用配列にハイブリダイズ可能に設定される。典型的には、検出用配列に相補的な塩基配列となっている。この結果、一つの標的核酸に対して一つのプローブが関連付けられていることになる。タグ配列22の塩基長は、プローブの検出用配列の塩基長に一致し、好ましくは、20塩基以上50塩基以下であり、より好ましくは、20塩基以上25塩基以下である。
(連結部位)
部分二本鎖核酸10の第1の鎖12のタグ部20と二本鎖部分22に対応する部分との間には、DNAポリメラーゼよるDNAの鎖伸長反応を抑制又は停止可能な連結部位30を備えていることが好ましい。既に記載したように、連結部位30を備えることで、核酸増幅反応により、タグ部20を備える部分二本鎖核酸10を合成できる。また、こうした連結部位30を備えることで、タグ部20の自由運動性を向上させることができ、プローブとの効率的なハイブリダイゼーションが可能となる。
部分二本鎖核酸10の第1の鎖12のタグ部20と二本鎖部分22に対応する部分との間には、DNAポリメラーゼよるDNAの鎖伸長反応を抑制又は停止可能な連結部位30を備えていることが好ましい。既に記載したように、連結部位30を備えることで、核酸増幅反応により、タグ部20を備える部分二本鎖核酸10を合成できる。また、こうした連結部位30を備えることで、タグ部20の自由運動性を向上させることができ、プローブとの効率的なハイブリダイゼーションが可能となる。
また、連結部位30としては、このほか、強固なヘアピン構造やシュードノット構造のようにポリメラーゼの進行を阻害する立体構造を有する核酸配列、L型核酸や人工核酸等の標的核酸天然型核酸や、RNA及び脂肪鎖のような非核酸構造が挙げられる。人工核酸としては、ペプチド核酸、架橋化核酸、アゾベンゼン等が挙げられる。
(標識物質)
部分二本鎖核酸10は、既に説明した標識物質40又は標識物質結合物質42を備えている。本検出方法では、核酸クロマトグラフィーに部分二本鎖核酸10を供するものとし、プローブにハイブリダイズするタグ部20を備えるのみであって、標識物質40のための一本鎖を有していない。
部分二本鎖核酸10は、既に説明した標識物質40又は標識物質結合物質42を備えている。本検出方法では、核酸クロマトグラフィーに部分二本鎖核酸10を供するものとし、プローブにハイブリダイズするタグ部20を備えるのみであって、標識物質40のための一本鎖を有していない。
標識物質40又は標識物質結合物質42は、部分二本鎖核酸10のいずれかの箇所に備えられていればよい。例えば、図3に示すように、一方の鎖の5’末端に備えられる。また、第1の鎖12及び第2の鎖14の全体にあるいは部分的に備えられる。標識物質40又は標識物質結合物質42は、通常、部分二本鎖核酸10を核酸増幅反応において部分二本鎖核酸10に組み込まれる。
(増幅工程)
ハイブリダイゼーション工程に供する部分二本鎖核酸10は、核酸増幅反応によって取得されることが好ましい。以下、部分二本鎖核酸10を取得する核酸増幅工程の一例について説明する。
ハイブリダイゼーション工程に供する部分二本鎖核酸10は、核酸増幅反応によって取得されることが好ましい。以下、部分二本鎖核酸10を取得する核酸増幅工程の一例について説明する。
図4に示すように、部分二本鎖核酸10を得るための増幅工程は、第1のプライマー50と第2のプライマー60とを用いて実施する。核酸増幅工程における核酸増幅法は、PCRを始めとするDNAポリメラーゼ反応を用いてDNAを増幅して二重鎖DNA断片を取得する各種の公知の方法が挙げられる。
(第1のプライマー)
第1のプライマー50は、部分二本鎖核酸10の第1の鎖12を得るためのプライマーである。第1のプライマー50は、既に記載したように、標的核酸に予め関連付けられたプローブに相補的なタグ配列22と標的核酸中の第1の塩基配列を識別する第1の識別配列12aとを含んでいる。なお、タグ配列22は、部分二本鎖核酸10のタグ部20のタグ配列22に相当している。第1のプライマー50は、第1の識別配列12aとタグ配列22との間に連結部位30を有している。連結部位30については既に説明したとおりである。
第1のプライマー50は、部分二本鎖核酸10の第1の鎖12を得るためのプライマーである。第1のプライマー50は、既に記載したように、標的核酸に予め関連付けられたプローブに相補的なタグ配列22と標的核酸中の第1の塩基配列を識別する第1の識別配列12aとを含んでいる。なお、タグ配列22は、部分二本鎖核酸10のタグ部20のタグ配列22に相当している。第1のプライマー50は、第1の識別配列12aとタグ配列22との間に連結部位30を有している。連結部位30については既に説明したとおりである。
第1のプライマー50においては、その5’側からタグ配列22、連結部位30及び第1の識別配列12aの順でこれらを有していることが好ましい。これにより、図4に示すように、第1のプライマー50由来の連結部位30の3’側に隣接するヌクレオチドの塩基又はその近傍の塩基に対合する塩基を5’末端とし、第1のプライマー50中のタグ配列22の相補鎖を有しない第2の鎖14が得られることとなる。
(第2のプライマー)
第2のプライマー60は、部分二本鎖核酸10の第2の鎖14を得るためのプライマーである。図4に示すように、第2のプライマー60は、既に説明したように、標的核酸中の第2の塩基配列を識別する第2の識別配列14aを含んでいる。
第2のプライマー60は、部分二本鎖核酸10の第2の鎖14を得るためのプライマーである。図4に示すように、第2のプライマー60は、既に説明したように、標的核酸中の第2の塩基配列を識別する第2の識別配列14aを含んでいる。
図4に示すように、第2のプライマー60は、予め標識物質40を備えることができる。標識物質40は、固相担体上でプローブに結合した部分二本鎖核酸10を検出するためのものである。標識物質40としては従来公知のものを適宜選択して用いることができる。標識物質40は、第2のプライマー60の5’末端に備えられていることが好ましい。
また、第2のプライマー60は、図5に示すように、標識物質結合物質42を備えていてもよい。標識物質結合物質42は、第2のプライマー60の5’末端に備えられていることが好ましい。さらに、第2のプライマーは、図6に示すように、標識物質40及び標識物質結合物質42を備えていなくてもよい。すなわち、増幅工程において、標識物質40又は標識物質結合物質42を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸組成物を用いて核酸増幅反応を実施することで、DNA伸長部位に標識物質40又は標識物質結合物質42が導入され標識された部分二本鎖核酸10を得ることができるからである。
第2のプライマー60においては、その5’側から、標識物質40又は標識物質結合物質42、第2の識別配列14aの順でこれらを有していることが好ましい。これにより、5’末端に標識物質40又は標識物質結合物質42を備える第2の鎖14を得ることができる(図4、図5参照)。
また、図4及び図5に示す形態の部分二本鎖核酸10(以下、こうした形態の部分二本鎖核酸を、部分二本鎖核酸10aとも称する。)は、既に説明した第1のプライマーと、以下に示す2種類の第2のプライマーI及びIIを用いて増幅工程を実施することによっても得ることができる。用いるプライマー及び増幅工程を図7に示す。
(第2のプライマーI)
図7に示すように、第2のプライマーI70は、標識用配列72と第2の塩基配列を識別する第2の識別配列14aとを含んでいる。第2の識別用配列14aは既に説明したとおりである。標識用配列72は、この第2のプライマーI70によって得られる増幅産物に新たに標識用の塩基配列を導入するためものであり、標的核酸や検出用プローブの塩基配列とは無関係に設定することができる。また、関連付けの必要がない。したがって、標識用配列72は、標的核酸毎に異なる塩基配列とする必要がなく、全ての標的核酸に対して共通の塩基配列であってもよいし、2種類以上の標識物質等を用いるときには、標識物質等について異なる塩基配列としてもよい。すなわち、標識用配列72は、標的核酸に対して個別でなく共通化することができる。また、増幅性の反応性等を考慮し最適化した完全に人工的な塩基配列とすることができる。第2のプライマーI70は、その5’末端から標識用配列72と第2の識別配列とを含んでいることが好ましい。
図7に示すように、第2のプライマーI70は、標識用配列72と第2の塩基配列を識別する第2の識別配列14aとを含んでいる。第2の識別用配列14aは既に説明したとおりである。標識用配列72は、この第2のプライマーI70によって得られる増幅産物に新たに標識用の塩基配列を導入するためものであり、標的核酸や検出用プローブの塩基配列とは無関係に設定することができる。また、関連付けの必要がない。したがって、標識用配列72は、標的核酸毎に異なる塩基配列とする必要がなく、全ての標的核酸に対して共通の塩基配列であってもよいし、2種類以上の標識物質等を用いるときには、標識物質等について異なる塩基配列としてもよい。すなわち、標識用配列72は、標的核酸に対して個別でなく共通化することができる。また、増幅性の反応性等を考慮し最適化した完全に人工的な塩基配列とすることができる。第2のプライマーI70は、その5’末端から標識用配列72と第2の識別配列とを含んでいることが好ましい。
(第2のプライマーII)
第2のプライマーII80は、標識物質40又は標識物質結合物質42と標識用配列72とを含んでいる。標識物質40又は標識物質結合物質42は既に説明したとおりである。標識物質40又は標識物質結合物質42は、第2のプライマーIIの5’末端に連結されている。標識用配列72については、第2のプライマーIにおいて説明したとおりである。第2のプライマーII80においては、標識物質等が結合した第2のプライマーII80の塩基配列が共通化されている。このため、標識物質等の結合した第2のプライマーII80を低コストに提供可能である。
第2のプライマーII80は、標識物質40又は標識物質結合物質42と標識用配列72とを含んでいる。標識物質40又は標識物質結合物質42は既に説明したとおりである。標識物質40又は標識物質結合物質42は、第2のプライマーIIの5’末端に連結されている。標識用配列72については、第2のプライマーIにおいて説明したとおりである。第2のプライマーII80においては、標識物質等が結合した第2のプライマーII80の塩基配列が共通化されている。このため、標識物質等の結合した第2のプライマーII80を低コストに提供可能である。
図7に示すように、第1のプライマー50と第2のプライマーI70とによって、標的核酸に対して核酸増幅反応を実施することで、タグ配列22を一本鎖部分として有し、標識用配列72とこれに相補的な配列72aを有する部分二本鎖核酸90が増幅産物として得られることになる。一旦、こうした部分二本鎖核酸90が得られると、この部分二本鎖核酸90の一方の鎖(標識用配列72と相補的な配列72aを有する鎖)に対して、第2のプライマーI70に替わり第2のプライマーII80がハイブリダイズして、核酸増幅反応が実施される。この結果、図7に示すような標識物質等を備えた部分二本鎖核酸10aを得ることができるようになる。なお、第2のプライマーII70が増幅反応系内にあれば、部分二本鎖核酸90に対して第2のプライマーI70も作用して、部分二本鎖核酸90も合成される。
第2のプライマー60に替えて、第2のプライマーI70及び第2のプライマーII80を用いることで、効率よく核酸増幅反応を実施して結果として良好な検出感度が得られるようになる。すなわち、標的核酸の塩基配列によっては、第2のプライマー60と標的核酸とのマッチングが良好でなく、核酸増幅反応の進行も良好でなく、結果として、検出感度が低下する場合がある。こうした場合においても、第1のプライマー50と第2のプライマーI70とを用いることで、このプライマーセットによる部分二本鎖核酸90を一旦得ることができたら、その後は、第2のプライマーII80がこの部分二本鎖核酸100の標識用配列72の相補鎖を有する一方の鎖に作用できるため、第1のプライマー50と第2のプライマーII80とによって、効率的に核酸増幅反応を進行させることができる。
なお、第1のプライマー60と、第2のプライマーI70と、第2のプライマーII80と、の供給順序等は適宜決定される。例えば、これらを同時に核酸増幅反応系に供給して標的核酸に作用させてもよいし、例えば、第1のプライマー60と第2のプライマーI70とを供給後に、第2のプライマーII80を供給してもよい。同時に核酸増幅反応系に供給してもよい。
なお、第2のプライマーII80を第2のプライマーI70に対して過剰に存在させることで、部分二本鎖核酸110を高効率で合成させることができる。例えば、第2のプライマーII80は、第2のプライマーIの1倍以上10倍以下、好ましくは、1倍以上5倍以下の範囲で反応系に供給される。
さらに、図8に示すように、部分二本鎖核酸10aの同等物を、第2のプライマーII80を用いずに、以下に示す標識物質40又は標識物質結合物質42を備える標識用プローブ100を用いて取得することもできる。すなわち、標識用プローブ100の存在下で第1のプライマー50と第2のプライマーI70を用いて標的核酸に対して核酸増幅反応を実施することによっても、得ることができる。用いるプライマー及びプローブ並びに増幅工程を図8に示す。
(標識用プローブ)
図8に示すように、標識用プローブ120は、第2のプライマーI70の標識用配列72と特異的にハイブリダイズ可能に相補的配列72aを備えるとともに、その3’末端に標識物質40又は標識物質結合物質42を備えている。標識用配列72自体、標的核酸に関連付けられておらず特異的でなく、標的核酸に関わらず、共通化されうるものであるため、同様に、相補的配列72aも同様の理由から共通化される。したがって、標識用プローブ100も、第2のプライマーII80と同様、低コストに提供可能である。
図8に示すように、標識用プローブ120は、第2のプライマーI70の標識用配列72と特異的にハイブリダイズ可能に相補的配列72aを備えるとともに、その3’末端に標識物質40又は標識物質結合物質42を備えている。標識用配列72自体、標的核酸に関連付けられておらず特異的でなく、標的核酸に関わらず、共通化されうるものであるため、同様に、相補的配列72aも同様の理由から共通化される。したがって、標識用プローブ100も、第2のプライマーII80と同様、低コストに提供可能である。
図8に示すように、標識用プローブ100の存在下、第1のプライマー50と第2のプライマーI70とを用いて標的核酸に対して増幅工程を実施する。これにより、図7と同様、タグ配列22を一本鎖部分として有し、タグ配列22を有するDNA鎖の3’末端に相補的配列72aを備える部分二本鎖核酸90が合成される。さらに、その後の増幅反応において、鋳型鎖となった一方の一本鎖(標識用配列72を5’末端に備える)に対して第1のプライマー50が作用してDNAを伸長させる。このDNA伸長反応時に、第1のプローブ50が鋳型鎖にハイブリダイズするのと同様、標識用プローブ100が、その相補的配列72aを介して鋳型鎖の5’末端の標識用配列72に対してハイブリダイズする。この結果、DNA伸長反応が、鋳型鎖の5’末端側、すなわち、標識用プローブ100のハイブリダイズ部位においてはDNAポリメラーゼ反応が抑制又は停止され、DNAの伸長が抑制又は停止される。
このため、図8に示すように、一方の鎖の5’末端にタグ配列22を一本鎖として有し、他方の鎖の5’末端に標識用配列72を一本鎖として有する部分二本鎖核酸92が合成される。そして、同時に、部分二本鎖核酸92中の標識用配列72に対して標識用プローブ100がハイブリダイズする。この結果、核酸増幅反応によって得られる増幅産物は、部分二本鎖核酸02に標識用プローブ100がハイブリダイズした複合体110となる。この複合体110は、増幅産物としての構造は、部分二本鎖核酸10aとは異なるが、タグ配列22を有する一本鎖部分の他端に標識物質40又は標識物質結合物質42を保持している。このため、後段のハイブリダイゼーション工程では、部分二本鎖核酸10aと同等に機能する。
第2のプライマーII80に替えて、標識用プローブ100を用いることで、効率的に、増幅産物を標識することができるようになる。この結果、検出感度を向上させることができる。
なお、図8に示す増幅工程において用いるDNAポリメラーゼは、3’-5’エキソヌクレアーゼ活性が抑制されたか又はないものであることが好ましい。標識用プローブ100の分解を回避又は抑制するためである。
増幅工程は、これらのプライマーを用いて実施する。核酸増幅法は既に説明したように各種公知の方法を適用できるが、典型的にはPCR、マルチプレックスPCR等の各種PCRである。核酸増幅工程を実施するにあたっての、溶液組成、温度制御等については、当業者であれば適宜設定することができる。
(ハイブリダイゼーション工程)
ハイブリダイゼーション工程は、部分二本鎖核酸10(10aを含む)又はその同等物である複合体110(以下、これらを部分二本鎖核酸等という。)と固相担体210上のプローブ220とを、核酸クロマトグラフィーによってハイブリダイズ可能な条件下で接触させる工程である。以下、ハイブリダイゼーション工程に用いる固相担体210と固相担体210上に固定化されたプローブ220とを備える固相体であるクロマトグラフィー本体200についてまず説明する。
ハイブリダイゼーション工程は、部分二本鎖核酸10(10aを含む)又はその同等物である複合体110(以下、これらを部分二本鎖核酸等という。)と固相担体210上のプローブ220とを、核酸クロマトグラフィーによってハイブリダイズ可能な条件下で接触させる工程である。以下、ハイブリダイゼーション工程に用いる固相担体210と固相担体210上に固定化されたプローブ220とを備える固相体であるクロマトグラフィー本体200についてまず説明する。
(クロマトグラフィー本体)
図9に示すように、クロマトグラフィー本体200は、固相担体210と、固相担体210に固定化された1種又は2種以上のプローブ220とを備えている。固相担体210は、特に限定されないでキャピラリー現象により液体を移動させることが可能な従来公知のものを採用できる。例えば、固相担体210としては、例えば、ポリエーテルスルホン、ニトロセルロース、ナイロン、ポリフッ化ビニリデンなどのポリマーを主体としたいわゆる多孔質性の材料が挙げられる。また、ろ紙などのセルロース系材料も好ましく用いることができる。クロマトグラフィー本体200においては、単一の固相担体210で構成されている必要は必ずしもない。全体としてキャピラリー現象により展開媒体を移動可能であれば、複数の固相担体210で連結されていてもよい。クロマトグラフィー用本体200の全体形態は特に問わない。シート状や細い棒状など、キャピラリー現象によるクロマトグラフィー用液の展開拡散が可能な形態であればよい。好ましくは、長尺状体であって、その長手方向に沿う一つの端部がクロマトグラフィーの展開媒体に接触するようになっている。
図9に示すように、クロマトグラフィー本体200は、固相担体210と、固相担体210に固定化された1種又は2種以上のプローブ220とを備えている。固相担体210は、特に限定されないでキャピラリー現象により液体を移動させることが可能な従来公知のものを採用できる。例えば、固相担体210としては、例えば、ポリエーテルスルホン、ニトロセルロース、ナイロン、ポリフッ化ビニリデンなどのポリマーを主体としたいわゆる多孔質性の材料が挙げられる。また、ろ紙などのセルロース系材料も好ましく用いることができる。クロマトグラフィー本体200においては、単一の固相担体210で構成されている必要は必ずしもない。全体としてキャピラリー現象により展開媒体を移動可能であれば、複数の固相担体210で連結されていてもよい。クロマトグラフィー用本体200の全体形態は特に問わない。シート状や細い棒状など、キャピラリー現象によるクロマトグラフィー用液の展開拡散が可能な形態であればよい。好ましくは、長尺状体であって、その長手方向に沿う一つの端部がクロマトグラフィーの展開媒体に接触するようになっている。
プローブ220は、標的核酸に関連付けられた部分二本鎖核酸等のタグ配列22と特異的にハイブリダイズ可能な検出用配列222を含んでいる。検出用配列222は、好ましくは、部分二本鎖核酸等のタグ配列22と相補的であり、好ましくは完全に相補的な塩基配列を有している。
検出用配列222は、部分二本鎖核酸等に対して付与されたタグ配列22と特異的ハイブリダイズ可能であれば足りるため、標的核酸とは無関係に設定することもできる。
検出用配列222の長さは、特に限定しない。一例として20塩基以上50塩基以下程度とすることができる。この範囲であると、一般的に各検出用配列の特異性を確保しつつハイブリダイゼーション効率も確保できるからである。例えば、こうした塩基長の検出用配列は、後述する配列番号1~100及びその相補配列から選択される各23塩基長の塩基配列を2つ組み合わせた46塩基長の配列や、当該組み合わせた塩基配列に対して適宜塩基を付加、欠失などすることにより得ることができる。より好ましくは、20塩基以上25塩基以下である。例えば、こうした塩基長の検出用配列は、配列番号1~100の各23塩基長の塩基配列及びその相補配列又はこれらの塩基配列に対して適宜塩基を付加、欠失などすることにより得ることができる。
第1のプライマー50及び部分二本鎖核酸等におけるタグ配列22は、検出用配列122と対合する塩基配列であるため、タグ配列22の塩基長は、検出用配列と同一の塩基長が好ましい。
1種又は2種以上のプローブ220は単一の固相担体210に固定化されている。固定化形態は特に限定されない。公知の固定化方法が用いられる。例えば、プローブ220と固相担体210の表面との静電的相互作用のほか、固相担体の材料内の官能基(予め存在する官能基のほか、固定化のために付与した官能基を含む)とのプローブ220内官能基との共有結合等によりことができる。
図10に示すように、プローブ220が固定化される固相担体210上の領域(プローブ領域)230は、任意のパターンで形成される。プローブ領域230は、任意の形態を有する、ドット状であってもよいし、ライン状であってもよいし、その他の形態であってもよい。プローブ領域230は、典型的には、クロマトグラフィーの展開媒体の展開方向と直交するようなライン状の形態で、展開方向に沿って複数個、適当な間隔で備えられている。好ましくは1つのプローブ領域230が1種のプローブに対応されている。
図10に示すように、3以上のプローブ220に対するプローブ領域230を備える場合、例えば、3以上のプローブ領域230は、互いに平行状のライン状に形成されていてもよい。この場合、3以上のプローブ領域230の間隔は、適宜決定される。例えば、7個のプローブ領域があるとき、展開方向の最も上流側2つのプローブ領域230の群と、すぐ下流の3つのプローブ領域230の群と、さらに下流の2つのプローブ領域230の群とを配することができる。この場合、固相担体210の各部にある複数のプローブ領域230の群内におけるプローブ230領域同士の間を所定の間隔とすることができる。例えば、同一の間隔に設定することができる。
図10に示すように、さらに、固相担体210上には、1又は2以上の位置マーカー領域140を備えることができる。位置マーカー領域240は、ハイブリダイゼーション工程~検出工程において、目視で視認可能な領域として設定されていることが好ましい。典型的には、展開媒体に不溶性の顔料や染料で構成されている。また、展開媒体の展開方向と直交するようなライン状となっていることが好ましい。また、位置マーカー領域240は、それ自体が、文字、記号、数字及び図形からなる群から選択される1種又は2種以上の組み合わせで構成されていてもよい。さらに、位置マーカー領域240の着色は、特に限定されない。複数の位置マーカー領域240につき、同一色であってもよいし、異なる色を付与してもよい。好ましくは、プローブ領域230における発色等と異なる色調である。
位置マーカー領域240の位置は、適宜決定されるが、2以上であることが好ましい。例えば、図10に示すように、2つの位置マーカー領域240の間に、適数個の、例えば、2個、3個、あるいは4個以上の位置マーカー領域240を備えるようにすることが好ましい。こうすることで、複数個のプローブ領域230も誤認せずに同定することが容易になる。さらに、上流側の位置マーカー領域240のさらに上流側に、1個、2個あるいは3個以上のプローブ領域230を備えていてもよいし、下流側の位置マーカー領域240のさらに下流側に、1個、2個あるいは3個以上のプローブ領域230を備えていてもよい。こうすることで、2つの位置マーカー領域240を用いて、効果的に多数個のプローブ領域230の同定を容易に行うことができる。
固相担体210上において配列される1又は2以上のプローブ領域230及び位置マーカー領域240は、合計して3つ以上あるとき、これらの間隔は等間隔とすることができる。等間隔とすることで、プローブ領域230の位置特定が容易となる。特に2つの位置マーカーに240の間にプローブ領域230が3つある場合は好適である。 目視でひと目みれば、発色したプローブ領域230が、それぞれ別の2つの位置マーカー領域240のどちらの位置マーカー領域240に近いのか、または両位置マーカー領域の真ん中に位置するのかを判別できる。 またプローブ領域240が5つある場合は、追加でそれぞれの位置マーカーの外側に2つのプローブ領域230を配置すると、前記3箇所に加え、位置マーカー240の外側にあるのか内側にあるのかのひと目でわかる区別で、5箇所まで判別が容易に可能になる。 尚、この考え方により位置マーカー領域240を増やすことで、同時に容易に判別できるプローブ領域230の数を増やすことが出来る。
図10に示すように、クロマトグラフィー本体200は、その一つの端部に核酸クロマトグラフィーの展開媒体を接触させるための液接触部250を備えることができる。クロマトグラフィー本体100は好ましくは長尺状体であるとき、その長手方向に沿う一つの端部を液接触部250とすることができる。こうした液接触部250は、特に、クロマトグラフィー本体200の下端に展開媒体を配して展開媒体を上方にむかって移動させる場合に好ましい。
液接触部250は、展開媒体に浸漬しうる形状であれば特に限定しない。例えば、より先端に向かって先細り状の形態としてもよい。こうすることで、いわゆる実験用のチューブに供給した展開媒体にクロマトグラフィー本体200の液接触部250を接触又は浸漬させやくすることができる。一方、展開速度を速めたいときには、逆に、液接触部250を他の部位よりも大面積にあるいは大容積に設定することもできる。例えば、クロマトグラフィー本体200として棒状体を採用するときには、棒状体の棒状部分よりも下方に向かって広がるテーパー状の液接触部250としてもよい。
液接触部250は、特定形状の液接触部250を予め保持していてもよいが、展開媒体に接触する際に、クロマトグラフィー本体200の端部を特定形状として液接触部250を形成するようにしてもよい。例えば、図11(a)~図11(c)に示すように、特定形状の液接触部250を形成するための、液接触部形成マーカー260を備えることができる。液接触部形成マーカー260は、クロマトグラフィー本体200をはさみなどで切断して特定形状の液接触部250を形成するための切断部位を示すマーカーとすることができる。例えば、図11(a)に示すように、切断開始点ないし切断終了点を視認可能に明示するライン状であってもよい。また、図11(b)に示すように、切断線自体を視認可能に明示するライン状であってもよい。さらに、図11(c)に示すように、除去される部分を視認可能に明示するものであってもよい。さらにまた、図示はしないが、あるいは残す部分を視認可能に明示するものであってもよい。
さらには、液接触部形成マーカー260は、液接触部250を形成可能に、クロマトグラフィー本体200を切断可能な脆弱性を有していてもよい。ここで、脆弱性とは、例えば、手やはさみによる切断や除去をガイドしあるいは促進可能に設けられる程度のクロマトグラフィー本体200の脆さや弱さを意味している。脆弱性は、化学的な弱さ等であってもよいし、物理的な弱さ等であってもよい。例えば、液接触部形成マーカー260は、切断予定部位をミシン目としたり、あるいは切断予定部位の厚みを薄くしたりするなどして、切断予定部位に沿って応力集中しやすいようにする形態が挙げられる。マーカー260を設けることで、当該マーカー260に沿ってクロマトグラフィー本体200を切断可能となり、容易に所定形状の液接触部250を形成できる。
クロマトグラフィー本体200には、さらに、展開媒体が十分に展開したことを示すための別のマーカー領域等を備えることができる。さらには、部分二本鎖核酸等が標識結合要素42を備えるときに、当該標識結合要素42に対して標識物質40を結合させるための標識物質40の保持部を備えていてもよい。これらの部位は、いずれも、プローブ領域等と同様、それ自体が展開媒体の移動が可能な多孔質体で形成され、同時に、各部位における展開媒体の連続的な展開を妨げないように構成されている。さらにまた、展開終了後の展開媒体を回収するための吸水部をプローブ領域の下流側に備えていてもよい。
ハイブリダイゼーション工程に先立って、例えば、部分二本鎖核酸等を増幅工程の増幅産物として取得するとき、この増幅産物を含有する増幅反応液を含む展開媒体を準備することができる。部分二本鎖核酸等が標識物質40を備えているときは、展開媒体に別途標識物質40を加える必要はない。
以上説明したクロマトグラフィー本体200は、固相担体210のプローブ220に対応したプライマーのセットとともにキットとして提供されてもよい。また、さらに、標識物質40に関する試薬もキットに含めてもよい。例えば、プライマーセットに標識物質40を備えるプライマーを含めてもよいし、核酸増幅反応に用いる、標識物質40又は標識物質結合物質42を備えるdNTPを含めてもよい。さらに、標識物質結合物質42に結合させる標識物質40を含めてもよい。
(展開媒体)
展開媒体は、クロマトグラフィー本体100の固相担体110をキャピラリー現象により拡散移動する液体であり、部分二本鎖核酸10に固相担体110を移動させるための媒体である。展開媒体は、水性媒体である。水性媒体は、特に限定しないが、例えば、水、水と相溶する有機溶媒、又は水と1種又は2種以上の前記有機溶媒の混液が挙げられる。水と相溶する有機溶媒は、当業者において周知であるが、例えば、炭素数1~4程度の低級アルコール、DMSO、DMF、酢酸メチル、酢酸エチルなどのエステル類、アセトン等が挙げられる。展開媒体は、好ましくは水を主体とする。
展開媒体は、クロマトグラフィー本体100の固相担体110をキャピラリー現象により拡散移動する液体であり、部分二本鎖核酸10に固相担体110を移動させるための媒体である。展開媒体は、水性媒体である。水性媒体は、特に限定しないが、例えば、水、水と相溶する有機溶媒、又は水と1種又は2種以上の前記有機溶媒の混液が挙げられる。水と相溶する有機溶媒は、当業者において周知であるが、例えば、炭素数1~4程度の低級アルコール、DMSO、DMF、酢酸メチル、酢酸エチルなどのエステル類、アセトン等が挙げられる。展開媒体は、好ましくは水を主体とする。
展開媒体は、そのpHを一定範囲にするための成分を含むことができる。好ましい部分二本鎖核酸10の状態、安定性及び展開環境を確保するためのpH範囲を確保するためである。緩衝塩は、意図するpHにもよるが通常は、6.0以上8.0以下の範囲である。より好ましくは、7.0以上8.0以下である。こうしたpHを得るための成分は、例えば、酢酸と酢酸ナトリウム(酢酸緩衝液)、クエン酸とクエン酸ナトリウム(クエン酸緩衝液)、リン酸とリン酸ナトリウム(リン酸緩衝液)等である。さらに、リン酸緩衝生理食塩水(PBS)等が挙げられる。なお、展開媒体として、増幅反応液をそのまま採用してもよい。また、増幅反応液に対して、界面活性剤や適当な塩等の追加の成分や溶媒を加えたりすることで、組成や濃度の調整をして展開媒体として使用してもよい。
部分二本鎖核酸10が、標識物質結合物質42を備えている場合には、予め増幅工程において標識物質40を加えておいて増幅反応を実施してもよい。こうすることで、増幅工程後において、標識物質40が標識物質結合物質42に結合した複合産物としての標識物質40を備える部分二本鎖核酸10を取得できる。また、反応終了後の増幅反応液中の部分二本鎖核酸10に標識物質40を添加しても、同様に複合産物が得られる。さらに、展開媒体用液(増幅反応液を展開媒体として用いる場合の添加液を展開媒体用液という。)に標識物質40を添加して、その後、増幅反応液とこの展開媒体用液とを混合しても、同様の複合産物が得られる。
部分二本鎖核酸10を含む増幅反応液をハイブリダイゼーション工程に供給するのにあたり、増幅工程を実施した容器やチューブなどのキャビティ、すなわち、増幅反応液を保持するキャビティ内において展開媒体を準備し、当該キャビティ内において展開媒体とクロマトグラフィー本体とを接触させてハイブリダイゼーション工程を実施することが好ましい。こうすることで、増幅反応液をピペットなどを用いて採取し、ハイブリダイゼーション工程に供する必要もなく、コンタミネーションの可能性を低くして確度の高い検出が可能となる。また、誤操作も低減することができる。
例えば、PCRなどの増幅工程は、通常、チューブ状容器で行われる。このチューブ状容器内の増幅反応液に、必要に応じて標識物質40を添加し、さらにクロマトグラフィー本体100をチューブ状容器に供給することでハイブリダイゼーション工程を実施できる。例えば、部分二本鎖核酸10が標識物質結合物質42としてビオチンを備えているとき、標識物質40としては、ストレプトアビジン等でコートされた着色ラテックス粒子等を標識物質40として用いることができる。
次に、部分二本鎖核酸10とプローブ120とのハイブリダイゼーションを展開媒体とクロマトグラフィー本体100とを用いて実施する工程について説明する。
ハイブリダイゼーション工程を実施するにあたり、核酸クロマトグラフィーの実施形態は特に限定されない。ほぼ水平状態での展開を意図したものであってもよい。この場合、典型的には、特定の液接触150に一定量の展開媒体を滴下等してクロマトグラフィーを実施する。また、クロマトグラフィーの形態は、ほぼ鉛直方向での展開を意図したものであってもよい。この場合、典型的には、クロマトグラフィー本体100をほぼ鉛直方向に支持して、当該本体100の下端部の液接触部50などを展開媒体に浸漬してクロマトグラフィーを実施する。
クロマトグラフィーの形態に応じて、展開媒体とクロマトグラフィー本体200とを接触させることで、キャピラリー現象により、展開媒体は、固相担体210を拡散してプローブ領域230へと展開される。
プローブ領域230において、展開媒体中にプローブ220とハイブリダイズすべきタグ部20を有する部分二本鎖核酸10を含んでいるとき、部分二本鎖核酸10は、プローブ220とハイブリダイズして、ハイブリダイズ産物を形成する。これにより、部分二本鎖核酸10が備える標識物質40に応じてシグナルが提示される。標識物質40が、それ自体で視認可能な発光又は着色を呈するときには、速やかに部分二本鎖核酸10に予め関連付けられていた標的核酸を検出できることになる。
プローブ領域230が複数存在する場合には、展開媒体に,他のプローブ220とハイブリダイズすべき他の部分二本鎖核酸10が存在すれば、対応するプローブ領域230において、ハイブリダイズ産物が形成される。
なお、ハイブリダイゼーション工程における条件は特に限定されないが、例えば、5℃以上40℃以下程度の空気雰囲気下で実施できる。好ましくは15℃以上35℃以下である。また、例えば、10μl以上60μl以下程度の展開媒体を、クロマトグラフィー本体100としては、幅2.0mm以上8.0mm以下で長さ(又は高さ)が20mm以上100mm以下のシート状のクロマトグラフィー本体の一部(下端部又は供給部)に浸透させて、クロマトグラフィーを開始する。展開媒体がプローブ領域130の通過を完了する展開時間はおおそよ2分から50分である。
(検出工程)
検出工程は、最終的なハイブリダイズ産物を、標識物質40に基づいて検出する工程である。より具体的には、プローブ220が固定化されたプローブ領域230の着色及び位置を確認する工程である。標識物質40によるシグナルを検出するには、標識物質40の種類に応じて適宜選択される。特異的結合反応や酵素による発色反応が必要な場合には、適宜そうした操作が行われる。本クロマトグラフィー法では、固相担体を洗浄することなくそのまま検出工程を実施することが好ましい。
検出工程は、最終的なハイブリダイズ産物を、標識物質40に基づいて検出する工程である。より具体的には、プローブ220が固定化されたプローブ領域230の着色及び位置を確認する工程である。標識物質40によるシグナルを検出するには、標識物質40の種類に応じて適宜選択される。特異的結合反応や酵素による発色反応が必要な場合には、適宜そうした操作が行われる。本クロマトグラフィー法では、固相担体を洗浄することなくそのまま検出工程を実施することが好ましい。
標識物質40が、例えば、ラテックス粒子、金コロイド粒子、銀コロイド粒子など、肉眼で検出可能な発色又は発光を提示する標識物質であるときには、肉眼で直ちに標的核酸の存在やその量(色の濃さ等で)を検出できる。このため、一層の迅速検出が可能となっている。
以下、本発明を、実施例を挙げて具体的に説明するが、以下の実施例は本発明を限定するものではない。なお、以下の実施例において、%は、いずれも質量%を意味する。
以下の実施例では、本発明の検出方法による標的核酸の検出を次の手順で行った。以下、これらの順序に従って説明する。
(1)DNAマイクロアレイの作製
(2)標的核酸とプライマーの調製と増幅
(3)ハイブリダイズ
(4)スキャナーを用いた検出
(1)DNAマイクロアレイの作製
(2)標的核酸とプライマーの調製と増幅
(3)ハイブリダイズ
(4)スキャナーを用いた検出
(1)DNAマイクロアレイの作製
プラスチック板に、3’末端をアミノ基で修飾した合成オリゴDNA(株式会社日本遺伝子研究所製)を溶かした水溶液を検出用プローブとして、日本ガイシ株式会社にてGENESHOT(登録商標である)スポッターを用いてスポットした。使用した合成オリゴDNA配列は、配列番号1~100から高速ハイブリダイゼーションが可能な以下の33種を選択した。
プラスチック板に、3’末端をアミノ基で修飾した合成オリゴDNA(株式会社日本遺伝子研究所製)を溶かした水溶液を検出用プローブとして、日本ガイシ株式会社にてGENESHOT(登録商標である)スポッターを用いてスポットした。使用した合成オリゴDNA配列は、配列番号1~100から高速ハイブリダイゼーションが可能な以下の33種を選択した。
スポットの後、80℃、1時間のベークを行った。さらに、以下に記載した手順で、合成オリゴDNAの固定化を行った。すなわち、2×SSC/0.2%SDSで15分洗浄後、95℃の2×SSC/0.2%SDSで5分洗浄し、その後、滅菌水で洗浄(10回上下振とう)を3回繰り返した。その後、遠心(1000rpm×3分)により脱水した。
(2)標的核酸の増幅
増幅に使用したゲノムDNAは、ヒト由来とし、ヒトゲノム中の6つの標的核酸((1)~(6))に特異的な以下の表に示すプライマーP1-1~P1-6(日本遺伝子研究所製)、P2-1~P2-6(日本遺伝子研究所製)及びP3-1~P3-6(日本遺伝子研究所製)を準備した。なお、各系列は以下の構成(5’から3’として表示)とした。なお、P3系のプライマーのプロピレン基部分は、以下の式に示すGlenResearch社のホスホアミダイト試薬であるSpacer PhophoamiditeC3を用いて通常のオリゴヌクレオチド合成方法に準じて合成された。
増幅に使用したゲノムDNAは、ヒト由来とし、ヒトゲノム中の6つの標的核酸((1)~(6))に特異的な以下の表に示すプライマーP1-1~P1-6(日本遺伝子研究所製)、P2-1~P2-6(日本遺伝子研究所製)及びP3-1~P3-6(日本遺伝子研究所製)を準備した。なお、各系列は以下の構成(5’から3’として表示)とした。なお、P3系のプライマーのプロピレン基部分は、以下の式に示すGlenResearch社のホスホアミダイト試薬であるSpacer PhophoamiditeC3を用いて通常のオリゴヌクレオチド合成方法に準じて合成された。
P1系のプライマー:F,R:ヒトDNA中の特定の標的核酸(1)~(6)に対する塩基配列を含む
P2系のプライマー:
F:標識プローブの結合配列(タグ配列)+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と同一の塩基配列からなるタグ配列+P1系の各標的核酸に対する塩基配列
(なお、P2系プライマーを用い場合には、このタグ配列と相補的な塩基配列の相補鎖も増幅されるため、当該相補鎖がプローブとハイブリダイズし、増幅断片を検出できる。)
P3系プライマー:
F:標識プローブの結合配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と相補的な塩基配列からなるタグ配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
P2系のプライマー:
F:標識プローブの結合配列(タグ配列)+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と同一の塩基配列からなるタグ配列+P1系の各標的核酸に対する塩基配列
(なお、P2系プライマーを用い場合には、このタグ配列と相補的な塩基配列の相補鎖も増幅されるため、当該相補鎖がプローブとハイブリダイズし、増幅断片を検出できる。)
P3系プライマー:
F:標識プローブの結合配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と相補的な塩基配列からなるタグ配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
次に、ゲノムDNAをこれらのプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、QIAGEN社のmultiplex PCR master mix を使用した。サーマルサイクラーとして、Applied Biosystems社のGeneAmp PCR System9700を使用した。
まず、以下に示す試薬を個々のサンプルごとに調製した。
(試薬調製)
dH2O 4.0μl
2×multiplex PCR master mix 5.0μl
プライマー混合物(各500nM) 0.5μl
ゲノムDNA(50ng/μl) 0.5μl
合計 10.0μl
(試薬調製)
dH2O 4.0μl
2×multiplex PCR master mix 5.0μl
プライマー混合物(各500nM) 0.5μl
ゲノムDNA(50ng/μl) 0.5μl
合計 10.0μl
次に、増幅用試薬をサーマルサイクルプレートに移し、サーマルサイクル反応(95℃で15分後;95℃で30秒、80℃で1秒、64℃で6分を40サイクル、その後10℃に下げる)を行った。そして、増幅したサンプルはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により意図した長さで増幅していることを確認した。結果を図12に示す。図12の上段には、電気泳動結果を示し、その下段には、蛍光強度から算出した増幅量を示す。
(3)ハイブリダイズ
(2)で得た増幅サンプルをマイクロアレイ上に固定した検出用プローブとハイブリダイズするために、以下のHybri controlとHybri solutionを調製し、これからハイブリダイズ用の試薬を調製した。PrimerMixには、標識用プローブ(蛍光修飾したオリゴヌクレオチドでありP2系及びP3系プライマーのFの5’側に結合する。)(25μM)を含んでいる。なお、Hybri controlに使用したAlexa555-rD1_100は、D1_100の対応する配列に相補な配列の5´末端をAlexa555で標識したものを用いた。
(2)で得た増幅サンプルをマイクロアレイ上に固定した検出用プローブとハイブリダイズするために、以下のHybri controlとHybri solutionを調製し、これからハイブリダイズ用の試薬を調製した。PrimerMixには、標識用プローブ(蛍光修飾したオリゴヌクレオチドでありP2系及びP3系プライマーのFの5’側に結合する。)(25μM)を含んでいる。なお、Hybri controlに使用したAlexa555-rD1_100は、D1_100の対応する配列に相補な配列の5´末端をAlexa555で標識したものを用いた。
(Hybri control)
Alexa555-rD1_100(100nM) 10μl
TE(pH8.0) 390μl
合計 400μl
Alexa555-rD1_100(100nM) 10μl
TE(pH8.0) 390μl
合計 400μl
(Hybri solution)
20×SSC 2.0ml
10%SDS 0.8ml
100% Formamide 12.0ml
100mM EDTA 0.8ml
milliQ 24.4ml
合計 40.0ml
20×SSC 2.0ml
10%SDS 0.8ml
100% Formamide 12.0ml
100mM EDTA 0.8ml
milliQ 24.4ml
合計 40.0ml
(ハイブリダイズ用の試薬)
Hybri control 1.5μl
Primer Mix 1.0μl
Hybri solution 9.0μl
小計 10.5μl
増幅サンプル 3.0μl
合計 18.0μl
Hybri control 1.5μl
Primer Mix 1.0μl
Hybri solution 9.0μl
小計 10.5μl
増幅サンプル 3.0μl
合計 18.0μl
調製したハイブリダイズ用試薬(標識サンプル溶液)を、変性等のために加熱することなく、各9μlずつ、マイクロアレイのスポットエリアにかけて、乾燥防止のためコンフォート/プラス用サーモブロックスライド(エッペンドルフ社)を使用し、37℃で30分間静置することによってハイブリダイズ反応を行った。
(洗浄)
ハイブリダイズ後、以下の組成の洗浄液を満たしたガラス染色バットに、ハイブリダイズ反応終了後のマイクロアレイ基板を浸漬し、5分間上下振とうし、滅菌水を入れたガラス染色バットにマイクロアレイ基板を移し、1分間上下振とうし、2000rpmで1分間遠心乾燥し、マイクロアレイ基板表面に残った水分を除去した。
(洗浄液の組成)
milliQ 188.0ml
20×SSC 10.0ml
10%SDS 2.0ml
合計 200.0ml
ハイブリダイズ後、以下の組成の洗浄液を満たしたガラス染色バットに、ハイブリダイズ反応終了後のマイクロアレイ基板を浸漬し、5分間上下振とうし、滅菌水を入れたガラス染色バットにマイクロアレイ基板を移し、1分間上下振とうし、2000rpmで1分間遠心乾燥し、マイクロアレイ基板表面に残った水分を除去した。
(洗浄液の組成)
milliQ 188.0ml
20×SSC 10.0ml
10%SDS 2.0ml
合計 200.0ml
(4)スキャナーを用いた検出
Appleied Precision社ArrayWoRxを使用して適宜、露光時間を調節し、蛍光画像を取得した。プラスチック基板についての結果を、図13及び図14に示す。
Appleied Precision社ArrayWoRxを使用して適宜、露光時間を調節し、蛍光画像を取得した。プラスチック基板についての結果を、図13及び図14に示す。
まず、図12の上段に示すように、タグ配列の有無にかかわらず、ゲノムDNA中の意図した標的核酸を増幅できることがわかった。また、図12の下段の表に示すように、タグ配列を識別配列に直接連結しても、プロピレン基を含む連結部位を介して連結してもその増幅量に大きな変化がないことがわかった。
また、図13及び図14に示すように、P2系プライマー(タグ配列+識別配列)とP3系プライマー(タグ配列+連結部位+識別配列)を用いた場合とでは、明らかに、P3系プライマーを用いて増幅して得られたDNA断片とのハイブリダイゼーション結果において、個々のタグ配列にかかわらず、おおよそ一定の強い蛍光を観察できた。これに対して、P2系プライマーを用いたときのハイブリダイゼーション結果においては、タグ配列にかかわらずいずれもほとんど蛍光を観察できなかった。
さらに、サンプル濃度を10倍希釈して得られたハイブリダイゼーション結果においては、P3系プライマーを用いた場合は、依然として蛍光を観察することができた。以上説明したプラスチック基板におけるのと同様の結果を、ガラス基板についても確認できた。
以上のことから、P3系プライマーを用いることで、少なくとも検出感度が10倍以上向上することがわかった。以上の実施例では、増幅したサンプルの変性工程を行わずにアレイに適用したこと、及び図12に示すように、増幅サンプルの合成量がP2系プライマーによるものとほぼ同量である。以上のことからすると、P3系プライマーを用いることで高効率にハイブリダイゼーションし、かつラベル効率の良好な二重鎖断片が得られたことがわかる。
本実施例では、実施例1の(1)DNAマイクロアレイの作製において、基板として、プラスチック基板に替えてガラス基板(東洋鋼板社製geneslide)を用い、検出用プローブの塩基配列として以下の表に示す33種を選択し、(3)ハイブリダイズにおいて、ハイブリダイズ試薬として以下の組成の試薬を用いた以外は、実施例1の(1)DNAマイクロアレイの作製、(2)標的核酸とプライマーの調製と増幅、(3)ハイブリダイズ及び(4)スキャナーを用いた検出と同様に操作して、標的核酸を検出した。結果は、実施例1と同様に、変性工程を実施しなくても、P2系プライマー(タグ配列+識別配列)に比べてP3系プライマー(タグ配列+連結部位X+識別配列)を用いた場合に、明らかに10倍以上の強い強度のハイブリダイゼーションシグナルを得ることができた。
(ハイブリダイズ試薬の組成)
Hybri control 1.5μl
Primer Mix 3.5μl
Hybri solution 9.0μl
小計 14.0μl
増幅サンプル 4.0μl
合計 18.0μl
Hybri control 1.5μl
Primer Mix 3.5μl
Hybri solution 9.0μl
小計 14.0μl
増幅サンプル 4.0μl
合計 18.0μl
本実施例では、以下の方法で標的核酸を検出した。
(1)メンブレンタイプDNAマイクロアレイの作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるキャプチャーDNAプローブ溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、スポットした。使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種のうち以下の表に示す44種の配列をプローブとして使用し、図15に示す配置でアレイ化した。なお、プローブとしては、オリゴヌクレオチドの3‘末端をアミノ基で修飾した配列を使用した。
(1)メンブレンタイプDNAマイクロアレイの作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるキャプチャーDNAプローブ溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、スポットした。使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種のうち以下の表に示す44種の配列をプローブとして使用し、図15に示す配置でアレイ化した。なお、プローブとしては、オリゴヌクレオチドの3‘末端をアミノ基で修飾した配列を使用した。
プローブのスポットの後、Spectroline社のUV照射装置(XL-1500UV Crosslinker)を用いて、200~500mJ/cm2程度の紫外線光の照射を行って固定化した。
(2)サンプル遺伝子の増幅
増幅に使用したゲノムDNAとしてはヒト由来のものを使用し、以下の表9に示す配列のP2系プライマーおよび以下の表10に記す配列P3系のプライマーをそれぞれ使用して増幅を行った。プライマーの構成は、それぞれ以下に示すとおりである。
増幅に使用したゲノムDNAとしてはヒト由来のものを使用し、以下の表9に示す配列のP2系プライマーおよび以下の表10に記す配列P3系のプライマーをそれぞれ使用して増幅を行った。プライマーの構成は、それぞれ以下に示すとおりである。
P2系のプライマー:
F:標識プローブの結合配列+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と同一の塩基配列からなるタグ配列+P1系の各標的核酸に対する塩基配列
(なお、P2系プライマーを用いる場合には、このタグ配列と相補的な塩基配列の相補鎖も増幅されるため、当該相補鎖がプローブとハイブリダイズし、増幅断片を検出できる。)
F:標識プローブの結合配列+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と同一の塩基配列からなるタグ配列+P1系の各標的核酸に対する塩基配列
(なお、P2系プライマーを用いる場合には、このタグ配列と相補的な塩基配列の相補鎖も増幅されるため、当該相補鎖がプローブとハイブリダイズし、増幅断片を検出できる。)
P3系プライマー:
F:標識プローブの結合配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と相補的な塩基配列からなるタグ配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
F:標識プローブの結合配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
R:合成オリゴヌクレオチドプローブの塩基配列と相補的な塩基配列からなるタグ配列+連結部位X(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
なお、連結部位には、GlenResearch社 Spacer Phosphoramidite C3を用い、実施例1と同様、通常のオリゴヌクレオチド合成方法を準じて合成した。
次に、ゲノムDNAをこれらのプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、QIAGEN社のmultiplex PCR master mix を使用した。サーマルサイクラーとして、Applied Biosystems社のGeneAmp PCR System9700を使用した。
(試薬調製)
dH2O 4.0μl
2×multiplex PCR master mix 5.0μl
プライマー混合物(各500nM) 0.5μl
ゲノムDNA(50ng/μl) 0.5μl
合計 10.0μl
dH2O 4.0μl
2×multiplex PCR master mix 5.0μl
プライマー混合物(各500nM) 0.5μl
ゲノムDNA(50ng/μl) 0.5μl
合計 10.0μl
次に、増幅用試薬をサーマルサイクルプレートに移し、サーマルサイクル反応(95℃で15分後;95℃で30秒、80℃で1秒、64℃で6分を40サイクル、その後10℃に下げる)を行った。そして、増幅したサンプルはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により意図した長さで増幅していることを確認した。
(3)メンブレンタイプDNAマイクロアレイを用いた検出
(2)にて増幅したサンプルを用いてのメンブレンタイプDNAマイクロアレイへの反応及びその検出手順は以下の通りとした。
(2)にて増幅したサンプルを用いてのメンブレンタイプDNAマイクロアレイへの反応及びその検出手順は以下の通りとした。
(ハイブリダイズサンプル組成)
Hybri Solution* 200.0μl
(0.5%Tween20-1%BSA-PBS)
F側プライマー標識結合配列に相補なビオチン標識オリゴDNA(25μM)
4.0μl
サンプル 4.0μl
合計 208.0μl
Hybri Solution* 200.0μl
(0.5%Tween20-1%BSA-PBS)
F側プライマー標識結合配列に相補なビオチン標識オリゴDNA(25μM)
4.0μl
サンプル 4.0μl
合計 208.0μl
(ハイブリダイズおよび発色反応)
メンブレンタイプDNAマイクロアレイを0.2mlチューブに入る大きさに切断し、チューブ内にセットし、調製したハイブリダイズサンプル各200μlを変性等のために加熱することなく添加し、ヒートブロック温度37℃で30分間ハイブリダイゼーション反応を行った。
メンブレンタイプDNAマイクロアレイを0.2mlチューブに入る大きさに切断し、チューブ内にセットし、調製したハイブリダイズサンプル各200μlを変性等のために加熱することなく添加し、ヒートブロック温度37℃で30分間ハイブリダイゼーション反応を行った。
ハイブリダイゼーション反応終了後、メンブレンタイプDNAマイクロアレイを洗浄液(0.1%Tween20-1mM EDTA-TBS)入り0.2mlチューブに移し、37℃のヒートブロック内で洗浄作業(37℃×1min、37℃×10min、37℃×1min)を行った。
洗浄済みのメンブレンタイプDNAマイクロアレイをビオチン-HRPとストレプトアビジンとの混合液が入った0.2mlチューブに移して室温下で20分間の反応を行った。
反応終了後、メンブレンタイプDNAマイクロアレイを洗浄液(0.1%Tween20-1mM EDTA-TBS)入り0.2mlチューブに移し、洗浄作業(室温×1min、室温×10min、室温×1min)を行った。
洗浄済みメンブレンタイプDNAマイクロアレイをVector Laboratories社製TMB Peroxidase Substrate Kit,3,3’,5,5’-tetramethylbenzidineを用いて室温下で5分程度の発色反応を行った。
(検出判定)
アレイの乾燥後の発色の有無を目視で確認した。結果を図16に示す。図16に示すように、双方のサンプルについて、P2系プライマーを用いた従来法では薄い発色がかろうじて確認できたのに対し、P3系プライマーを用いた本発明の方法では、濃い発色を観察できた。以上のことから、P3系プライマーを用いることで、検出感度が向上することがわかった。また、熱変性することなく、ハイブリダイゼーションが可能であることもわかった。
アレイの乾燥後の発色の有無を目視で確認した。結果を図16に示す。図16に示すように、双方のサンプルについて、P2系プライマーを用いた従来法では薄い発色がかろうじて確認できたのに対し、P3系プライマーを用いた本発明の方法では、濃い発色を観察できた。以上のことから、P3系プライマーを用いることで、検出感度が向上することがわかった。また、熱変性することなく、ハイブリダイゼーションが可能であることもわかった。
本実施例では、以下の方法で標的核酸を検出した。
(1)メンブレンタイプDNAマイクロアレイの作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表11に示す塩基配列からなるキャプチャーDNAプローブ溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、スポットした。使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種のうち以下の表に示す4種の配列をプローブとして使用した。なお、プローブとしては、オリゴヌクレオチドの3‘末端をアミノ基で修飾した配列を使用した。図17に示す配置でストリーム状のラインでアレイ化した。なお、図17に示すアレイでは、プローブの固定化領域を明示するために、プローブ固定化溶液を染料で着色してストリーム状にスポットした。また、図8に示すアレイでは、ハイブリダイズ産物を検出するプローブ固定化領域を想定しやすいように、顔料を含む液体をプローブ固定化領域に近接してストリーム状(帯状)にスポットした。
(1)メンブレンタイプDNAマイクロアレイの作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表11に示す塩基配列からなるキャプチャーDNAプローブ溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、スポットした。使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種のうち以下の表に示す4種の配列をプローブとして使用した。なお、プローブとしては、オリゴヌクレオチドの3‘末端をアミノ基で修飾した配列を使用した。図17に示す配置でストリーム状のラインでアレイ化した。なお、図17に示すアレイでは、プローブの固定化領域を明示するために、プローブ固定化溶液を染料で着色してストリーム状にスポットした。また、図8に示すアレイでは、ハイブリダイズ産物を検出するプローブ固定化領域を想定しやすいように、顔料を含む液体をプローブ固定化領域に近接してストリーム状(帯状)にスポットした。
プローブのスポットの後、Spectroline社のUV照射装置(XL-1500UV Crosslinker)を用いて、200~500mJ/cm2程度の紫外線光の照射を行って固定化した。
(2)サンプル遺伝子の増幅
増幅に使用したゲノムDNAとしてはヒト由来のものを使用し、実施例3の表9に示す配列のP2系プライマーおよび実施例3の表10に記す配列P3系のプライマーをそれぞれ使用した。また、実施例3と同様に、ゲノムDNAに対してこれらのプライマーを用いて増幅反応を実施し、QIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により意図した長さで増幅していることを確認した。
増幅に使用したゲノムDNAとしてはヒト由来のものを使用し、実施例3の表9に示す配列のP2系プライマーおよび実施例3の表10に記す配列P3系のプライマーをそれぞれ使用した。また、実施例3と同様に、ゲノムDNAに対してこれらのプライマーを用いて増幅反応を実施し、QIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により意図した長さで増幅していることを確認した。
(3)メンブレンタイプDNAマイクロアレイを用いた検出
(2)にて増幅したサンプルを用いてメンブレンタイプDNAマイクロアレイへの反応及びその検出手順は以下の通りとした。展開液及び、ラテックス液についてはエーエムアール株式会社製を使用した。ラテックス液は、青色系の着色剤を含有するポリスチレン系のラテックスビーズに各Fプライマーの標識プローブ結合配列に相補的な配列のオリゴDNAを固定したものを100nMの濃度になるように展開液で希釈して用いた。なお、オリゴDNAのビーズへの固定化は、オリゴDNAの5’末端をアミノ基で修飾したオリゴDNAとラテックス表面のカルボキシル基との間で共有結合を形成して行った。展開液には、Phosphate buffered salineを使用した。
(2)にて増幅したサンプルを用いてメンブレンタイプDNAマイクロアレイへの反応及びその検出手順は以下の通りとした。展開液及び、ラテックス液についてはエーエムアール株式会社製を使用した。ラテックス液は、青色系の着色剤を含有するポリスチレン系のラテックスビーズに各Fプライマーの標識プローブ結合配列に相補的な配列のオリゴDNAを固定したものを100nMの濃度になるように展開液で希釈して用いた。なお、オリゴDNAのビーズへの固定化は、オリゴDNAの5’末端をアミノ基で修飾したオリゴDNAとラテックス表面のカルボキシル基との間で共有結合を形成して行った。展開液には、Phosphate buffered salineを使用した。
(ハイブリダイズサンプル組成)
展開液* 35.0μl
ラテックス液* 5.0μl
サンプル 10.0μl
total 50.0μl
展開液* 35.0μl
ラテックス液* 5.0μl
サンプル 10.0μl
total 50.0μl
(ハイブリダイズ)
上記ハイブリダイズサンプル各50μlを変性等のために加熱することなく0.2mlチューブに加えて、メンブレンタイプDNAマイクロアレイを差込んでクロマトグラフィーによるハイブリダイゼーションを開始した。サンプル液は約20分間ですべて吸い上がり反応は完了した。反応終了後、メンブレンタイプDNAマイクロアレイを風乾した。
上記ハイブリダイズサンプル各50μlを変性等のために加熱することなく0.2mlチューブに加えて、メンブレンタイプDNAマイクロアレイを差込んでクロマトグラフィーによるハイブリダイゼーションを開始した。サンプル液は約20分間ですべて吸い上がり反応は完了した。反応終了後、メンブレンタイプDNAマイクロアレイを風乾した。
(検出判定)
メンブレンタイプDNAアレイの乾燥後の発色の有無を目視で確認した。結果を図18に示す。図18に示すように、P2系プライマーを用いる従来法では、発色を確認できなかったのに対し、P3系プライマーを用いる方法では、濃い発色を確認できた。以上のことから、P3系プライマーを用いることで、ハイブリダイゼーション形態にかかわらず、ハイブリダイゼーション検出感度が向上することがわかった。また、P3系プライマーを用いることで熱変性することなく、ハイブリダイゼーションが可能であることもわかった。
メンブレンタイプDNAアレイの乾燥後の発色の有無を目視で確認した。結果を図18に示す。図18に示すように、P2系プライマーを用いる従来法では、発色を確認できなかったのに対し、P3系プライマーを用いる方法では、濃い発色を確認できた。以上のことから、P3系プライマーを用いることで、ハイブリダイゼーション形態にかかわらず、ハイブリダイゼーション検出感度が向上することがわかった。また、P3系プライマーを用いることで熱変性することなく、ハイブリダイゼーションが可能であることもわかった。
(1)メンブレンタイプDNAクロマトグラフィー本体の作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。
さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
スポットの後、Spectroline社のUV照射装置(XL-1500UV Crosslinker)を用いて、280nmの成分を含む波長にて300mJ/cm2程度の紫外線光の照射を行ってプローブを固定化し、8種のプローブのプローブ領域と3種の位置マーカー領域と、それぞれ備えるクロマトグラフィー本体を得た。
(2)標的核酸の増幅
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表13に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、ビオチン+連結部位X+第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。これらのプライマーセットによれば、タグ配列を一本鎖として有する部分二本鎖DNA(一本鎖シングル型)を得ることができる。比較例として、表14に示す塩基配列からなるプライマーセットを用いて、同様に核酸増幅反応を実施した。これらのプライマーセットによれば、タグ配列と標識プローブを結合可能な標識用配列をそれぞれ一本鎖として有する部分二本鎖DNA(一本鎖ダブル型)を得ることができる。
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表13に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、ビオチン+連結部位X+第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。これらのプライマーセットによれば、タグ配列を一本鎖として有する部分二本鎖DNA(一本鎖シングル型)を得ることができる。比較例として、表14に示す塩基配列からなるプライマーセットを用いて、同様に核酸増幅反応を実施した。これらのプライマーセットによれば、タグ配列と標識プローブを結合可能な標識用配列をそれぞれ一本鎖として有する部分二本鎖DNA(一本鎖ダブル型)を得ることができる。
表13に示すプライマーは、いずれも、プローブ(D1-001、002、003及び005)とそれぞれと相補的なタグ配列+連結部位X+第1又は第2の識別配列であった。以上のプライマーは、いずれも日本遺伝子研究所製であった。
連結部位Xは、プロピレンオキシ鎖であり、ホスホアミダイト(スペーサーホスホアミダイトC3、グレンリサーチ社製)を用いて導入した。
増幅反応における組成は以下のとおりとし、熱サイクル条件は、95℃で15分後、95℃で30秒、80℃で1秒及び64℃で6分を1セットとして40サイクル実施し、その後、10℃に冷却した。
(組成)
2×Qiagen multiplex PCR master mix 5.0μl
プライマーミックス(各500nM) 0.5μl
dH2O 4.0μl
ゲノムDNA 0.5μl
合計 10.0μl
2×Qiagen multiplex PCR master mix 5.0μl
プライマーミックス(各500nM) 0.5μl
dH2O 4.0μl
ゲノムDNA 0.5μl
合計 10.0μl
なお、プライマーミックスとして、表13に示す増幅産物シングル1~4ごとにプライマーセットを混ぜたものと、シングル1~4の全てのプライマーセットを混ぜたものとの計5種類を準備した。また、同様に、表14に示す増幅産物ダブル1~4についても同様に、合計5種類のプライマーミックスを準備した。
増幅して得られた増幅産物についてはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により狙いとする長さの断片が増幅していることを確認した。さらに、各増幅産物の精製後の回収量を確認した。結果を図20及び図21に示す。図20及び図21において、丸付き数字は、それぞれ一本鎖シングル及び一本鎖ダブル型の部分二本鎖核酸を得るためのプライマーセットの数字を示す。
図20及び図21に示すように、一本鎖シングル型の増幅産物は増幅量及び精製後の回収量がいずれも比較例を上回っていた。すなわち、一本鎖を一方の鎖においてのみ有する部分二本鎖核酸について、双方の鎖において一本鎖を有する部分二本鎖核酸よりも良好な増幅効率が得られることがわかった。
(3)クロマトグラフィー本体を用いた検出
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、一本鎖シングル型及び一本鎖ダブル型についてそれぞれ以下のとおりとした。
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、一本鎖シングル型及び一本鎖ダブル型についてそれぞれ以下のとおりとした。
(一本鎖シングル型のための展開液組成)
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50μl
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50μl
展開液は、PBS(リン酸緩衝生理食塩液)、ラテックス液及び増幅反応液(5種類)を混合して調製した。ラテックス保存液には、青色系の着色剤を含有するポリスチレン系のラテックスビーズにアビジン(ストレプトアビジン)を被覆させたものを所定の濃度となるようにPBSを用いて調製した。
(一本鎖ダブル型のための展開液組成)
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
展開液は、PBS(リン酸緩衝生理食塩液)、ラテックス液及び増幅反応液(5種類)を混合後に、ミリポア水を混合して調製した。一本鎖ダブル型の展開液に用いたラテックス保存液には、青色系の着色剤を含有するポリスチレン系のラテックスビーズにRプライマーの標識用配列に相補な配列の連結用DNAを固定したものを、一本鎖シングル型と同様の濃度となるようにPBSを用いて調製した。なお、連結用DNAは、5’アミノ基修飾しておき、そのアミノ基とラテックス表面のカルボキシル基との間で共有結合を形成させて固定した。
(ハイブリダイゼーション工程)
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体(8種型及び4種型)の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体(8種型及び4種型)の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
(検出工程)
アレイの乾燥後の発色の有無を目視で確認した。結果を図22に示す。図22に示すように、一本鎖ダブル型の増幅産物でも発色は確認できたものの、一本鎖シングル型の増幅産物によればさらに濃い発色が見られ、一本鎖シングル型の部分二本鎖核酸を核酸クロマトグラフィーに供する本手法が一本鎖ダブル型の部分二本鎖核酸に対する効果を確認することができた。
アレイの乾燥後の発色の有無を目視で確認した。結果を図22に示す。図22に示すように、一本鎖ダブル型の増幅産物でも発色は確認できたものの、一本鎖シングル型の増幅産物によればさらに濃い発色が見られ、一本鎖シングル型の部分二本鎖核酸を核酸クロマトグラフィーに供する本手法が一本鎖ダブル型の部分二本鎖核酸に対する効果を確認することができた。
(1)メンブレンタイプDNAクロマトグラフィー本体の作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。
さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。
さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
スポットの後、Spectroline社のUV照射装置(XL-1500UV Crosslinker)を用いて、280nmの成分を含む波長にて300mJ/cm2程度の紫外線光の照射を行ってプローブを固定化し、8種のプローブのプローブ領域と3種の位置マーカー領域と、それぞれ備えるクロマトグラフィー本体を得た。
(2)標的核酸の増幅
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表16に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。増幅時には、原料のdNTPに加え、ビオチン-16-dUTP(ロシュ アプライド サイエンス社)を加えて、増幅後の二本鎖DNA中にビオチンが取り込まれるよう工夫し、タグ配列を一本鎖として有する部分二本鎖DNA(一本鎖シングル型)を得た。比較例として、表17に示す塩基配列からなるプライマーセットを用いて、同様に核酸増幅反応を実施した。上記同様、増幅時には、原料のdNTPに加え、ビオチン-16-dUTP(ロシュ アプライド サイエンス社)を加え、タグ配列と標識プローブを結合可能な標識用配列をそれぞれ一本鎖として有する部分二本鎖DNA(一本鎖ダブル型)を得た。
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表16に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。増幅時には、原料のdNTPに加え、ビオチン-16-dUTP(ロシュ アプライド サイエンス社)を加えて、増幅後の二本鎖DNA中にビオチンが取り込まれるよう工夫し、タグ配列を一本鎖として有する部分二本鎖DNA(一本鎖シングル型)を得た。比較例として、表17に示す塩基配列からなるプライマーセットを用いて、同様に核酸増幅反応を実施した。上記同様、増幅時には、原料のdNTPに加え、ビオチン-16-dUTP(ロシュ アプライド サイエンス社)を加え、タグ配列と標識プローブを結合可能な標識用配列をそれぞれ一本鎖として有する部分二本鎖DNA(一本鎖ダブル型)を得た。
表16に示すプライマーは、いずれも、プローブ(D1-001、002、003及び005)とそれぞれと相補的なタグ配列+第1の識別配列であった。以上のプライマーは、いずれも日本遺伝子研究所製であった。
増幅反応における組成は以下のとおりとし、熱サイクル条件は、95℃で15分後、95℃で30秒、80℃で1秒及び64℃で6分を1セットとして40サイクル実施し、その後、10℃に冷却した。
(組成)
2×Qiagen multiplex PCR master mix 5.0μl
プライマーミックス(各500nM) 0.5μl
ビオチン-16-dUTP(1mM) 0.5μl
dH2O 3.5μl
ゲノムDNA 0.5μl
合計 10.0μl
2×Qiagen multiplex PCR master mix 5.0μl
プライマーミックス(各500nM) 0.5μl
ビオチン-16-dUTP(1mM) 0.5μl
dH2O 3.5μl
ゲノムDNA 0.5μl
合計 10.0μl
なお、プライマーミックスとして、表16に示す増幅産物シングル1~4ごとにプライマーセットを混ぜたものと、シングル1~4の全てのプライマーセットを混ぜたものとの計5種類を準備した。また、同様に、表17に示す増幅産物ダブル1~4についても同様に、合計5種類のプライマーミックスを準備した。
増幅して得られた増幅産物についてはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により狙いとする長さの断片が増幅していることを確認した。さらに、各増幅産物の精製後の回収量を確認した。結果を図23及び図24に示す。
図23及び図24に示すように、一本鎖シングル型、二本鎖シングル型ともに増幅産物の増幅量及び精製後の回収量においては大差ない結果であった。
(3)クロマトグラフィー本体を用いた検出
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、一本鎖シングル型及び二本鎖シングル型についてそれぞれ以下のとおりとした。
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、一本鎖シングル型及び二本鎖シングル型についてそれぞれ以下のとおりとした。
(一本鎖シングル型のための展開液組成)
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
展開液は、PBS(リン酸緩衝生理食塩液)、ラテックス液及び増幅反応液(5種類)を混合して調製した。ラテックス保存液には、青色系の着色剤を含有するポリスチレン系のラテックスビーズにアビジン(ストレプトアビジン)を被覆させたものを所定の濃度となるようにPBSを用いて調製した。
(二本鎖シングル型のための展開液組成)
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
展開液は、PBS(リン酸緩衝生理食塩液)、ラテックス液及び増幅反応液(5種類)を混合後に、ビオチン水溶液を混合して調製した。ラテックス保存液には、青色系の着色剤を含有するポリスチレン系のラテックスビーズにアビジン(ストレプトアビジン)を被覆させたものを所定の濃度となるようにPBSを用いて調製した。
(ハイブリダイゼーション工程)
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
(検出工程)
アレイの乾燥後の発色の有無を目視で確認した。結果を図25に示す。図25に示すように、二本鎖シングル型の増幅産物では発色を確認できなかった。一方で、一本鎖シングル型の増幅産物では濃い発色が見られ、本手法が効果を有することを確認することができた。
アレイの乾燥後の発色の有無を目視で確認した。結果を図25に示す。図25に示すように、二本鎖シングル型の増幅産物では発色を確認できなかった。一方で、一本鎖シングル型の増幅産物では濃い発色が見られ、本手法が効果を有することを確認することができた。
(1)メンブレンタイプDNAクロマトグラフィー本体の作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。
さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。
さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
スポットの後、Spectroline社のUV照射装置(XL-1500UV Crosslinker)を用いて、280nmの成分を含む波長にて300mJ/cm2程度の紫外線光の照射を行ってプローブを固定化し、8種のプローブのプローブ領域と3種の位置マーカー領域と、それぞれ備えるクロマトグラフィー本体を得た。
(2)標的核酸の増幅
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表19に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、タグ配列+第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。増幅時には、上記2種のプライマーに加え、Rプライマー中のタグ配列の5‘末端をビオチン修飾したプライマー(R’プライマー:表20)を加えて、増幅後の二本鎖DNA末端にビオチンが取り込まれるよう工夫し、タグ配列を一本鎖として有する部分二本鎖DNAを得た。
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表19に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、タグ配列+第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。増幅時には、上記2種のプライマーに加え、Rプライマー中のタグ配列の5‘末端をビオチン修飾したプライマー(R’プライマー:表20)を加えて、増幅後の二本鎖DNA末端にビオチンが取り込まれるよう工夫し、タグ配列を一本鎖として有する部分二本鎖DNAを得た。
連結部位Xは、プロピレンオキシ鎖であり、ホスホアミダイト(スペーサーホスホアミダイトC3、グレンリサーチ社製)を用いて導入した。
増幅反応における組成は以下のとおりとし、熱サイクル条件は、95℃で15分後、95℃で30秒、80℃で1秒及び64℃で6分を1セットとして40サイクル実施し、その後、10℃に冷却した。
(組成)
2×Qiagen multiplex PCR master mix 5.0μl
プライマーミックス(F,R各500nM) 0.5μl
R’プライマー(2μM) 0.5μl
dH2O 3.0μl
ゲノムDNA 0.5μl
合計 10.0μl
2×Qiagen multiplex PCR master mix 5.0μl
プライマーミックス(F,R各500nM) 0.5μl
R’プライマー(2μM) 0.5μl
dH2O 3.0μl
ゲノムDNA 0.5μl
合計 10.0μl
なお、プライマーミックスとして、表19に示す増幅産物1~4ごとにプライマーセットを混ぜたものと、増幅産物1~4の全てのプライマーセットを混ぜたものとの計5種類を準備した。
増幅して得られた増幅産物についてはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により狙いとする長さの断片が増幅していることを確認した。さらに、各増幅産物の精製後の回収量を確認した。結果を図26及び図27に示す。
図26及び図27に示すように、断片間での増幅には影響なく、かつ大差ない結果であった。
(3)クロマトグラフィー本体を用いた検出
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、以下のとおりとした。
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、以下のとおりとした。
(展開液組成)
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
展開液は、PBS(リン酸緩衝生理食塩液)、ラテックス液及び増幅反応液(5種類)を混合して調製した。ラテックス保存液には、青色系の着色剤を含有するポリスチレン系のラテックスビーズにアビジン(ストレプトアビジン)を被覆させたものを所定の濃度となるようにPBSを用いて調製した。
(ハイブリダイゼーション工程)
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
(検出工程)
アレイの乾燥後の発色の有無を目視で確認した。結果を図28に示す。図28に示すように、各増幅産物ごとに狙いとする位置で濃い発色が見られ、本手法が効果を有することを確認することができた。
アレイの乾燥後の発色の有無を目視で確認した。結果を図28に示す。図28に示すように、各増幅産物ごとに狙いとする位置で濃い発色が見られ、本手法が効果を有することを確認することができた。
(1)メンブレンタイプDNAクロマトグラフィー本体の作製
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
メルクミリポア製Hi-Flow Plus メンブレンシート(60mm x 600mm)に以下の表に示す塩基配列からなるDNAプローブをそれぞれ含む溶液を、特開2003-75305号公報に記載されている吐出ユニット(インクジェット法)を用いた日本ガイシ株式会社GENESHOT(登録商標)スポッターを用いて、これらのプローブを図19に示す位置にスポットした。なお、DNAプローブとして使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1_1からD1_100の100種の塩基配列のうち任意の8種の配列である。プローブとして利用するため、この塩基配列からなるオリゴヌクレオチドの3’末端側にアミノ基を付加した。さらに、赤色顔料を用いて図19に示すように3つの位置マーカー領域を形成した。
スポットの後、Spectroline社のUV照射装置(XL-1500UV Crosslinker)を用いて、280nmの成分を含む波長にて300mJ/cm2程度の紫外線光の照射を行ってプローブを固定化し、8種のプローブのプローブ領域と3種の位置マーカー領域と、それぞれ備えるクロマトグラフィー本体を得た。
(2)標的核酸の増幅
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表22に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、タグ配列+第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。増幅時には、上記2種のプライマーに加え、Rプライマー中のタグ相補配列の3‘末端をビオチン修飾したプライマー(R’プライマー:表23)を加えて、増幅後の二本鎖DNA末端にR’プライマーを介してビオチンが付加されるよう工夫し、タグ配列を一本鎖として有する部分二本鎖DNAを得た。
増幅に使用したゲノムDNAとしてはヒト由来(コスモバイオ社市販品)のものを使用した。プライマーは、以下の表22に示す塩基配列からなるプライマーセットを用いた。すなわち、Rプライマーはプローブ(D1-001、002、003及び005)とそれぞれ相補的なタグ配列+連結部位X+第1の識別配列を備えるようにし、Fプライマーは、タグ配列+第2の識別配列を備えるようにして、それぞれを使用して増幅を行った。増幅時には、上記2種のプライマーに加え、Rプライマー中のタグ相補配列の3‘末端をビオチン修飾したプライマー(R’プライマー:表23)を加えて、増幅後の二本鎖DNA末端にR’プライマーを介してビオチンが付加されるよう工夫し、タグ配列を一本鎖として有する部分二本鎖DNAを得た。
連結部位Xは、プロピレンオキシ鎖であり、ホスホアミダイト(スペーサーホスホアミダイトC3、グレンリサーチ社製)を用いて導入した。
増幅反応における組成は以下のとおりとし、熱サイクル条件は、95℃で15分後、95℃で30秒、80℃で1秒及び64℃で6分を1セットとして40サイクル実施し、その後、10℃に冷却した。
(組成)
10×TITANIUM Taq DNA Polymerase 0.2μl
50×dNTP Mix 0.2μl
10×TITANIUM Taq PCR buffer 1.0μl
プライマーミックス(F,R各500nM) 0.5μl
R’プライマー(2μM) 0.5μl
dH2O 7.1μl
ゲノムDNA 0.5μl
合計 10.0μl
なお、プライマーミックスとして、表22に示す増幅産物1~4ごとにプライマーセットを混ぜたものと増幅産物1~4の全てのプライマーセットを混ぜたものとの計5種類を準備した。
10×TITANIUM Taq DNA Polymerase 0.2μl
50×dNTP Mix 0.2μl
10×TITANIUM Taq PCR buffer 1.0μl
プライマーミックス(F,R各500nM) 0.5μl
R’プライマー(2μM) 0.5μl
dH2O 7.1μl
ゲノムDNA 0.5μl
合計 10.0μl
なお、プライマーミックスとして、表22に示す増幅産物1~4ごとにプライマーセットを混ぜたものと増幅産物1~4の全てのプライマーセットを混ぜたものとの計5種類を準備した。
増幅して得られた増幅産物についてはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により狙いとする長さの断片が増幅していることを確認した。さらに、各増幅産物の精製後の回収量を確認した。結果を図29及び図30に示す。
図29及び図30に示すように、断片間での増幅には影響なく、かつ大差ない結果であった。
(3)クロマトグラフィー本体を用いた検出
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、以下のとおりとした。
(2)にて増幅した部分二本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応及びその検出を行った。操作は、以下のとおりとした。
(展開液組成)
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
PBS 30.0μl
ラテックス液 5.0μl
増幅反応液 10.0μl
ミリポア水 5.0μl
合計 50.0μl
展開液は、PBS(リン酸緩衝生理食塩液)、ラテックス液及び増幅反応液(5種類)を混合して調製した。ラテックス保存液には、青色系の着色剤を含有するポリスチレン系のラテックスビーズにアビジン(ストレプトアビジン)を被覆させたものを所定の濃度となるようにPBSを用いて調製した。
(ハイブリダイゼーション工程)
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
上記各展開液各50μlを0.2mlチューブに加えて、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を開始した。展開液は約20分間ですべて吸い上がりクロマトグラフィーによるハイブリダイゼーション反応は完了した。反応終了後、クロマトグラフィー本体を風乾させた後、目視による反応箇所の確認及び画像を撮影した。
(検出工程)
アレイの乾燥後の発色の有無を目視で確認した。結果を図31に示す。図31に示すように、各増幅産物ごとに狙いとする位置で濃い発色が見られ、本手法が効果を有することを確認することができた。
アレイの乾燥後の発色の有無を目視で確認した。結果を図31に示す。図31に示すように、各増幅産物ごとに狙いとする位置で濃い発色が見られ、本手法が効果を有することを確認することができた。
以下の実施例では、実施例1で得た合計18種類の増幅産物について、塩基配列解析(ワンパスシークエンス)を行った。塩基配列解析は以下のようにして行った。
各増幅サンプルをタカラバイオ株式会社にて両鎖の塩基配列解析(ワンパスシークエンス)を実施し、プライマー配列を含んでの塩基配列の結果を得た。得られた結果を以下の表24~表26(片鎖のみ)に示す。
P2系プライマーを用いた場合、タグ配列の相補鎖も増幅されていることが確認できた。一方で、P3系プライマーを用いた場合、タグ配列の相補鎖は増幅されておらず、P1系プライマーを用いた場合と同じ配列のみしか二本鎖として増幅されていないことが確認できた。以上のことから、P3系プライマーを用いることで、タグ配列部分は1本鎖のまま保持されており、高効率なハイブリダイゼーション結果に寄与しうる結果を確認できた。
配列番号1~100:プローブ
Claims (37)
- 標的核酸の核酸クロマトグラフィーによる検出方法であって、
1又は2以上の標的核酸に関連付けられた1又は2以上の部分二本鎖核酸と固相担体上にあって前記1又は2以上の標的核酸に関連付けられた1又は2以上のプローブとを、核酸クロマトグラフィーによりハイブリダイズ可能な条件下で接触させるハイブリダイゼーション工程と、
前記ハイブリダイゼーション工程で生成したハイブリダイズ産物を検出する検出工程と、
を備え、
前記1又は2以上の部分二本鎖核酸は、第1の鎖の5’末端側に一本鎖のタグ部であって前記プローブと特異的にハイブリダイズ可能なタグ配列を有し、少なくとも一部に標識物質又は標識物質結合物質を備えている、方法。 - 前記部分二本鎖核酸は、第2の鎖の5’末端側に前記標識物質又は前記標識物質結合物質を備える、請求項1に記載の方法。
- 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、前記標的核酸の第2の塩基配列を識別する第2の識別配列と、前記標識物質又は前記標識物質結合物質とを備える第2のプライマーと、を用いて、標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、請求項1又は2に記載の方法。 - 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、標識用配列と前記標的核酸の第2の塩基配列を識別する第2の識別配列とを含む第2のプライマーIと、前記標識物質又は前記標識物質結合物質と前記標識用配列とを含む第2のプライマーIIと、を用いて、標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、請求項1又は2に記載の方法。 - 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと、標識用配列と前記標的核酸の第2の塩基配列を識別する第2の識別配列とを含む第2のプライマーIと、を用いて、前記標識物質又は前記標識物質結合物質と前記標識用配列と特異的にハイブリダイズする配列とを含む標識用プローブの存在下で、標的核酸に対して増幅反応を実施して部分二本鎖核酸と前記標識用プローブとの複合体を取得する増幅工程、を備える、請求項1又は2に記載の方法。 - 前記部分二本鎖核酸は、その二本鎖部分に前記標識物質又は前記標識物質結合物質を備える、請求項1に記載の方法。
- 前記ハイブリダイゼーション工程に先立って、
前記タグ配列と前記標的核酸の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部を有する第1のプライマーと前記標的核酸の第2の塩基配列を識別する第2の識別配列を備える第2のプライマーとを用いるとともに、前記標識物質又は前記標識物質結合物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて標的核酸に対して増幅反応を実施して増幅産物として前記部分二本鎖核酸を取得する増幅工程、を備える、請求項1又は6に記載の方法。 - 前記増幅工程後の前記増幅産物を含有する増幅反応液を含む展開媒体と前記固相担体の一部とを接触させて、前記ハイブリダイゼーション工程を実施する、請求項1~7のいずれかに記載の方法。
- 前記増幅工程後の前記増幅産物を含有する増幅反応液と前記標識物質結合物質に結合する標識物質とを含む前記展開媒体を準備し、この展開媒体と前記固相担体の少なくとも一部とを接触させて、前記ハイブリダイゼーション工程を実施する、請求項8に記載の方法。
- 前記前記増幅工程を実施し前記増幅反応溶液を保持するキャビティに少なくとも前記標識物質を供給して前記展開媒体を準備し、前記キャビティ内において前記展開媒体と前記固相担体の一部とを接触させる、請求項9に記載の方法。
- 前記標識物質結合物質は、抗原抗体反応における抗体並びにビオチン、ジゴキシゲニン及びFITCなどを含むハプテンからなる群から選択される1種又は2種以上であり、
前記標識物質は、前記標識物質結合物質と結合可能な部位を備えて、蛍光、放射能、酵素、燐光、化学発光及び着色からなる群から選択される1種又は2種以上を利用する標識物質である、請求項1~10いずれかに記載の方法。 - 請求項1~11のいずれかに記載の標的核酸の検出方法に用いられるクロマトグラフィー本体であって、
固相担体と、
前記固相担体上の異なる位置に配された前記プローブを固定した互いに平行状の3以上のライン状のプローブ領域と、
前記固相担体上の前記3以上のプローブ領域とは異なる位置に配された互いに平行状であるとともに前記プローブ領域に対しても平行状である2以上の位置マーカー領域と、
を備え、
前記2以上の位置マーカー領域のうちの2つの位置マーカー領域の間に、前記3以上のプローブ領域のうちの3つのプローブ領域が等間隔状で配されている、クロマトグラフィー本体。 - 前記2つの位置マーカーの前記3つのプローブ領域が固定されている側とは反対側に前記3つのプローブ領域間の間隔と同等の間隔で1以上の前記プローブ領域が配されている、請求項12に記載のクロマトグラフィー本体。
- 前記固相体は、その一つの端部に核酸クロマトグラフィーの展開媒体と接触させるための先細り状の液接触部又は液接触部形成マーカーを備える、請求項12又は13に記載のクロマトグラフィー本体。
- 前記液接触部形成マーカーは、前記固相体の一部を切断して前記液接触部を形成するための切断部位を視認可能とするマーカーである、請求項14に記載のクロマトグラフィー本体。
- 前記マーカーは、前記マーカーに沿って前記固相体を切断可能な脆弱性を有する、請求項15に記載のクロマトグラフィー本体。
- 試料中の標的核酸を検出する方法であって、
それぞれ異なる所定の塩基配列を有する検出用プローブを備える固相体を準備する工程と、
前記標的核酸に予め関連付けられた前記検出用プローブに相補的なタグ配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーと、
前記標的核酸中の第2の塩基配列を識別する第2の識別配列を含む第2のプライマーと、
を用いて、前記試料中の核酸増幅を実施する増幅工程と、
前記増幅工程で得られた増幅断片と前記固相体上の前記検出用プローブとをハイブリダイズ可能に接触させるハイブリダイゼーション工程と、
前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、
を備える方法。 - 前記第2のプライマーは、標識物質が結合された又は標識物質を結合可能に構成された標識物質結合領域を有する、請求項17に記載の方法。
- 前記第2のプライマーは、前記標識物質結合領域と前記第2の識別配列との間に、前記連結部を有する、請求項17又は18に記載の方法。
- 前記増幅工程は、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施する工程である、請求項17に記載の方法。
- 前記連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体を含まない、請求項17~20のいずれかに記載の方法。
- 前記連結部位は、リン酸ジエステル結合を介して前記プライマー中のヌクレオチドに隣接される、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含む、請求項17~22のいずれかに記載の方法。
- 前記連結部位は、以下のいずれかの式で表される、請求項22に記載の方法。
5’-O-CmH2m-O-3’ 式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)、
又は、
5’-(OCnH2n)l-O-3’ 式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。) - 前記増幅工程は、複数の前記標的核酸に予め関連付けた複数の前記検出用プローブで検出可能に、前記第1のプライマーと前記第2のプライマーとからなる複数のセットを用いて核酸増幅を実施する工程であり、
前記ハイブリダイゼーション工程は、前記増幅工程で得られた複数の前記増幅断片と前記固相体上の前記複数の検出用プローブとをハイブリダイズ可能に接触させる工程であり、
前記検出工程は、前記固相体上の前記複数の増幅断片と前記複数の検出用プローブとのハイブリダイズ産物を検出する工程である、請求項17~23のいずれかに記載の方法。 - 前記タグ配列は、塩基数が20以上50以下である、請求項17~24のいずれかに記載の方法。
- 前記タグ配列は、塩基数が20以上25以下である、請求項25に記載の方法。
- 前記検出用プローブの前記所定の配列は、配列番号1~100で表される塩基配列及びその相補配列から選択される、請求項17~26のいずれかに記載の方法。
- 前記ハイブリダイゼーション工程は、複数の前記検出用プローブを備える前記固相体に対して前記増幅断片を含む液体を移動相として供給し前記固相体に対して前記移動相を展開することを含む工程である、請求項17~28のいずれかに記載の方法。
- 5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体を含む、核酸増幅法に用いる核酸増幅剤。
- 前記第1の塩基配列には、標識が結合されている、請求項30に記載の核酸増幅剤。
- 請求項30又は31に記載の核酸増幅剤を2種以上含む、核酸増幅キット。
- 少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、プローブ中の塩基配列を識別する識別配列を有する、DNA二重鎖断片を含む、プローブハイブリダイゼーション用組成物。
- 他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されている、請求項33に記載のプローブハイブリダイゼーション用組成物。
- 少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する、DNA二重鎖断片。
- 試料中の標的核酸を増幅する方法であって、
第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、
備える、方法。 - 請求項29に記載の標的核酸の検出方法に用いられるクロマトグラフィー本体であって、
固相担体と、
前記固相担体上の異なる位置に配された前記プローブを固定した互いに平行状の3以上のライン状のプローブ領域と、
前記固相担体上の前記3以上のプローブ領域とは異なる位置に配された互いに平行状であるとともに前記プローブ領域に対しても平行状である2以上の位置マーカー領域と、
を備え、
前記2以上の位置マーカー領域のうちの2つの位置マーカー領域の間に、前記3以上のプローブ領域のうちの3つのプローブ領域が等間隔状で配されている、クロマトグラフィー本体。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012549585A JP5503021B2 (ja) | 2011-09-14 | 2012-09-14 | 標的核酸の検出方法 |
SG11201400635UA SG11201400635UA (en) | 2011-09-14 | 2012-09-14 | Method for detecting target nucleic acid |
CN201280045065.7A CN103797119B (zh) | 2011-09-14 | 2012-09-14 | 靶核酸的检测方法 |
EP12832061.1A EP2762562B1 (en) | 2011-09-14 | 2012-09-14 | Method for detecting target nucleic acid |
ES12832061T ES2736977T3 (es) | 2011-09-14 | 2012-09-14 | Método para detectar ácido nucleico diana |
JP2012286190A JP6321318B2 (ja) | 2012-09-14 | 2012-12-27 | 標的核酸の検出方法 |
US14/208,070 US20140206567A1 (en) | 2011-09-14 | 2014-03-13 | Method for Detecting Target Nucleic Acid |
US15/820,798 US20180119211A1 (en) | 2011-09-14 | 2017-11-22 | Method for Detecting Target Nucleic Acid |
JP2018073278A JP2018143245A (ja) | 2011-09-14 | 2018-04-05 | 標的核酸の検出方法 |
JP2021051302A JP2021100429A (ja) | 2011-09-14 | 2021-03-25 | 標的核酸の検出方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/071048 WO2013038534A1 (ja) | 2011-09-14 | 2011-09-14 | 標的核酸の検出方法 |
JPPCT/JP2011/071048 | 2011-09-14 | ||
JP2012173347 | 2012-08-03 | ||
JP2012-173347 | 2012-08-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/208,070 Continuation US20140206567A1 (en) | 2011-09-14 | 2014-03-13 | Method for Detecting Target Nucleic Acid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013039228A1 true WO2013039228A1 (ja) | 2013-03-21 |
Family
ID=47883444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073710 WO2013039228A1 (ja) | 2011-09-14 | 2012-09-14 | 標的核酸の検出方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US20140206567A1 (ja) |
EP (1) | EP2762562B1 (ja) |
JP (4) | JP5503021B2 (ja) |
CN (1) | CN103797119B (ja) |
ES (1) | ES2736977T3 (ja) |
MY (1) | MY157586A (ja) |
SG (1) | SG11201400635UA (ja) |
WO (1) | WO2013039228A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013162026A1 (ja) * | 2012-04-27 | 2013-10-31 | 株式会社カネカ | 核酸の増幅方法、および、増幅核酸の検出方法 |
WO2015008508A1 (ja) * | 2013-07-16 | 2015-01-22 | 国立大学法人東北大学 | 核酸クロマトグラフィー |
WO2015012363A1 (ja) * | 2013-07-24 | 2015-01-29 | 日本碍子株式会社 | 標的核酸の検出方法 |
WO2015076356A1 (ja) * | 2013-11-22 | 2015-05-28 | 株式会社カネカ | 短鎖rnaの検出方法 |
JP2016010338A (ja) * | 2014-06-27 | 2016-01-21 | 国立大学法人東北大学 | 核酸検出用デバイス |
WO2017043114A1 (ja) * | 2015-09-07 | 2017-03-16 | 株式会社ファスマック | 等温増幅反応産物の多項目同時検出方法 |
JP2017131166A (ja) * | 2016-01-28 | 2017-08-03 | 株式会社Tba | 標的核酸の検出方法 |
US9920356B2 (en) | 2010-11-24 | 2018-03-20 | Kaneka Corporation | Amplified nucleic acid detection method and detection device |
WO2018181703A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立大学法人東北大学 | 5種マラリア原虫のマルチプレックス検出法 |
JP2019062745A (ja) * | 2017-09-28 | 2019-04-25 | 株式会社Dnaチップ研究所 | 蜂病の原因菌を検出する方法及びその検出キット |
CN112634981A (zh) * | 2020-12-14 | 2021-04-09 | 北京大学 | 数据固定放置的数据处理装置及方法 |
JP2021073945A (ja) * | 2019-11-13 | 2021-05-20 | 国立研究開発法人農業・食品産業技術総合研究機構 | アザミウマ類の分子同定技術 |
JP2022519641A (ja) * | 2019-02-04 | 2022-03-24 | アコヤ・バイオサイエンシズ・インコーポレイテッド | 生物学的試料の選択的標識による分析物検出 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108531622B (zh) * | 2017-03-06 | 2021-07-20 | 广州市宝创生物技术有限公司 | 结核分枝杆菌复合群和鸟-胞内分枝杆菌复合群的杂交膜条和检测试剂盒 |
KR101899371B1 (ko) * | 2017-07-25 | 2018-10-29 | (주)엔바이오텍 | 핵산 복합체 페어, 핵산 복합체 페어를 포함하는 pcr용 키트, 및 핵산 복합체 페어를 이용한 타겟 검출 방법 |
AU2018400335A1 (en) * | 2018-01-05 | 2020-07-02 | Quotient Suisse Sa | Self-assembling diagnostic array platform |
CN108931592A (zh) * | 2018-05-25 | 2018-12-04 | 金花企业(集团)股份有限公司西安金花制药厂 | 一种转移因子口服液中核苷酸类物质的定量检测方法 |
CN109306376B (zh) * | 2018-08-03 | 2022-06-24 | 国家卫生计生委科学技术研究所 | 检验核酸扩增均一性的质量控制标准品及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992008728A1 (en) * | 1990-11-08 | 1992-05-29 | Hybridon, Inc. | Incorporation of multiple reporter groups on synthetic oligonucleotides |
WO1997024455A2 (en) * | 1996-01-03 | 1997-07-10 | Clontech Laboratories, Inc. | METHODS AND COMPOSITIONS FOR FULL-LENGTH cDNA CLONING |
JP2003075305A (ja) | 2001-08-31 | 2003-03-12 | Ngk Insulators Ltd | 液滴吐出装置 |
JP2003108126A (ja) | 2001-09-28 | 2003-04-11 | Kawai Musical Instr Mfg Co Ltd | 電子楽器 |
WO2003050305A1 (en) * | 2001-12-08 | 2003-06-19 | Seegene, Inc. | Annealing control primer and its uses |
WO2004039825A2 (en) * | 2002-10-30 | 2004-05-13 | Nuevolution A/S | Method for the synthesis of a bifunctional complex |
JP2006101844A (ja) | 2004-10-08 | 2006-04-20 | Univ Of Tokyo | 標的核酸を検出又は定量する方法 |
JP2006211982A (ja) | 2005-02-04 | 2006-08-17 | Univ Of Tokyo | Dnaコンピュータ技術による核酸の定量検出方法 |
JP2008306941A (ja) | 2007-06-12 | 2008-12-25 | Ngk Insulators Ltd | 標的核酸中の特定部分配列の検出方法及びアレイ |
JP2009000024A (ja) | 2007-06-20 | 2009-01-08 | Ngk Insulators Ltd | 標的核酸中の変異の検出方法及びアレイ |
WO2009034842A1 (ja) | 2007-09-11 | 2009-03-19 | Kaneka Corporation | 核酸検出方法、および核酸検出キット |
JP2010014507A (ja) * | 2008-07-03 | 2010-01-21 | Kainosu:Kk | 検体検査用具 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8920097D0 (en) * | 1989-09-06 | 1989-10-18 | Ici Plc | Amplification processes |
US6037127A (en) * | 1994-03-31 | 2000-03-14 | E. I. Du Pont De Nemours And Company | Method for detection of non-denatured nucleic acid fragments |
US6124092A (en) * | 1996-10-04 | 2000-09-26 | The Perkin-Elmer Corporation | Multiplex polynucleotide capture methods and compositions |
US6232066B1 (en) * | 1997-12-19 | 2001-05-15 | Neogen, Inc. | High throughput assay system |
US6417180B1 (en) * | 1998-10-07 | 2002-07-09 | University Of Massachusetts | Zinc finger-reactive antimicrobial compounds |
GB0016833D0 (en) * | 2000-07-07 | 2000-08-30 | Lee Helen | Improved dipstick assays (2) |
DE10046184A1 (de) * | 2000-09-18 | 2002-04-04 | November Ag Molekulare Medizin | Verfahren zum Nachweis mindestens einer Nukleinsäuresequenz |
AU2002222737A1 (en) * | 2001-12-08 | 2003-06-23 | Seegene, Inc | Annealing control primer system for regulating primer annealing specificity and its applications |
JP2003194817A (ja) * | 2001-12-26 | 2003-07-09 | Techno Network Shikoku Co Ltd | イムノクロマトグラフ分析の測定方法 |
JP2004154075A (ja) * | 2002-11-07 | 2004-06-03 | Mitsubishi Kagaku Iatron Inc | 新規の分析方法 |
JP2004187607A (ja) * | 2002-12-12 | 2004-07-08 | Olympus Corp | 核酸増幅産物に関する情報を得る方法 |
JP5165383B2 (ja) * | 2004-12-23 | 2013-03-21 | アイ−スタツト・コーポレイシヨン | 分子診断システム及び方法 |
WO2006095550A1 (ja) * | 2005-03-04 | 2006-09-14 | Kyoto University | Pcrプライマー、それを利用したpcr法及びpcr増幅産物、並びにpcr増幅産物を利用するデバイス及びdna-タンパク複合体 |
US20070212704A1 (en) * | 2005-10-03 | 2007-09-13 | Applera Corporation | Compositions, methods, and kits for amplifying nucleic acids |
EP2806037B1 (en) * | 2008-05-13 | 2016-09-21 | Gen-Probe Incorporated | Inactivatable target capture oligomers for use in the selective hybridization and capture of target nucleic acid sequences |
EP2789689B1 (en) * | 2009-06-29 | 2016-04-27 | Luminex Corporation | Chimeric primers with hairpin conformations and methods of using same |
US8409802B2 (en) * | 2009-08-14 | 2013-04-02 | Roche Molecular Systems, Inc. | Format of probes to detect nucleic acid differences |
EP2534263B1 (en) * | 2010-02-09 | 2020-08-05 | Unitaq Bio | Methods and compositions for universal detection of nucleic acids |
JP4638555B1 (ja) * | 2010-09-08 | 2011-02-23 | 田中貴金属工業株式会社 | 核酸又は免疫クロマトグラフィー用試薬組成物、核酸又は免疫クロマトグラフィー測定方法及び核酸又は免疫クロマトグラフィー測定用キット |
JPWO2012070618A1 (ja) * | 2010-11-24 | 2014-05-19 | 株式会社カネカ | 増幅核酸検出方法及び検出デバイス |
-
2012
- 2012-09-14 CN CN201280045065.7A patent/CN103797119B/zh active Active
- 2012-09-14 JP JP2012549585A patent/JP5503021B2/ja active Active
- 2012-09-14 ES ES12832061T patent/ES2736977T3/es active Active
- 2012-09-14 EP EP12832061.1A patent/EP2762562B1/en active Active
- 2012-09-14 SG SG11201400635UA patent/SG11201400635UA/en unknown
- 2012-09-14 WO PCT/JP2012/073710 patent/WO2013039228A1/ja active Application Filing
- 2012-09-14 MY MYPI2014000740A patent/MY157586A/en unknown
-
2014
- 2014-02-10 JP JP2014023882A patent/JP6076273B2/ja active Active
- 2014-03-13 US US14/208,070 patent/US20140206567A1/en not_active Abandoned
-
2017
- 2017-11-22 US US15/820,798 patent/US20180119211A1/en not_active Abandoned
-
2018
- 2018-04-05 JP JP2018073278A patent/JP2018143245A/ja active Pending
-
2021
- 2021-03-25 JP JP2021051302A patent/JP2021100429A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992008728A1 (en) * | 1990-11-08 | 1992-05-29 | Hybridon, Inc. | Incorporation of multiple reporter groups on synthetic oligonucleotides |
WO1997024455A2 (en) * | 1996-01-03 | 1997-07-10 | Clontech Laboratories, Inc. | METHODS AND COMPOSITIONS FOR FULL-LENGTH cDNA CLONING |
JP2003075305A (ja) | 2001-08-31 | 2003-03-12 | Ngk Insulators Ltd | 液滴吐出装置 |
JP2003108126A (ja) | 2001-09-28 | 2003-04-11 | Kawai Musical Instr Mfg Co Ltd | 電子楽器 |
WO2003050305A1 (en) * | 2001-12-08 | 2003-06-19 | Seegene, Inc. | Annealing control primer and its uses |
WO2004039825A2 (en) * | 2002-10-30 | 2004-05-13 | Nuevolution A/S | Method for the synthesis of a bifunctional complex |
JP2006101844A (ja) | 2004-10-08 | 2006-04-20 | Univ Of Tokyo | 標的核酸を検出又は定量する方法 |
JP2006211982A (ja) | 2005-02-04 | 2006-08-17 | Univ Of Tokyo | Dnaコンピュータ技術による核酸の定量検出方法 |
JP2008306941A (ja) | 2007-06-12 | 2008-12-25 | Ngk Insulators Ltd | 標的核酸中の特定部分配列の検出方法及びアレイ |
JP2009000024A (ja) | 2007-06-20 | 2009-01-08 | Ngk Insulators Ltd | 標的核酸中の変異の検出方法及びアレイ |
WO2009034842A1 (ja) | 2007-09-11 | 2009-03-19 | Kaneka Corporation | 核酸検出方法、および核酸検出キット |
JP2010014507A (ja) * | 2008-07-03 | 2010-01-21 | Kainosu:Kk | 検体検査用具 |
Non-Patent Citations (5)
Title |
---|
ANALYTICAL BIOCHEMISTRY, vol. 364, 2007, pages 78 - 85 |
H. YOSHIDA; A. SUYAMA: "Solution to 3-SAT by breadth first search", DIMACS, vol. 54, 2000, pages 9 - 20 |
PROCEEDINGS OF THE 14TH ANNUAL MEETING OF THE ASSOCIATION FOR THE RAPID METHOD AND AUTOMATION IN MICROBIOLOGY (ARMAM, pages 45 - 50 |
See also references of EP2762562A4 |
URDEA, MICKEY S. ET AL.: "A comparison of non-radioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligodeoxyribonucleotide probes.", NUCLEIC ACIDS RESEARCH, vol. 16, no. 11, 1988, pages 4937 - 4956, XP001080119 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10829805B2 (en) | 2010-11-24 | 2020-11-10 | Kaneka Corporation | Amplified nucleic acid detection method and detection device |
US9920356B2 (en) | 2010-11-24 | 2018-03-20 | Kaneka Corporation | Amplified nucleic acid detection method and detection device |
US9783844B2 (en) | 2012-04-27 | 2017-10-10 | Kaneka Corporation | Method for amplifying nucleic acid and method for detecting amplified nucleic acid |
WO2013162026A1 (ja) * | 2012-04-27 | 2013-10-31 | 株式会社カネカ | 核酸の増幅方法、および、増幅核酸の検出方法 |
JPWO2013162026A1 (ja) * | 2012-04-27 | 2015-12-24 | 株式会社カネカ | 核酸の増幅方法、および、増幅核酸の検出方法 |
WO2015008508A1 (ja) * | 2013-07-16 | 2015-01-22 | 国立大学法人東北大学 | 核酸クロマトグラフィー |
WO2015012363A1 (ja) * | 2013-07-24 | 2015-01-29 | 日本碍子株式会社 | 標的核酸の検出方法 |
JP5967785B2 (ja) * | 2013-07-24 | 2016-08-10 | 日本碍子株式会社 | 標的核酸の検出方法 |
US10392652B2 (en) | 2013-11-22 | 2019-08-27 | Kaneka Corporation | Micro RNA detection method using two primers to produce an amplified double stranded DNA fragment having a single stranded region at one end |
WO2015076356A1 (ja) * | 2013-11-22 | 2015-05-28 | 株式会社カネカ | 短鎖rnaの検出方法 |
JP2016010338A (ja) * | 2014-06-27 | 2016-01-21 | 国立大学法人東北大学 | 核酸検出用デバイス |
JPWO2017043114A1 (ja) * | 2015-09-07 | 2018-09-27 | 株式会社ファスマック | 等温増幅反応産物の多項目同時検出方法 |
WO2017043114A1 (ja) * | 2015-09-07 | 2017-03-16 | 株式会社ファスマック | 等温増幅反応産物の多項目同時検出方法 |
JP2017131166A (ja) * | 2016-01-28 | 2017-08-03 | 株式会社Tba | 標的核酸の検出方法 |
WO2018181703A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立大学法人東北大学 | 5種マラリア原虫のマルチプレックス検出法 |
JP2019062745A (ja) * | 2017-09-28 | 2019-04-25 | 株式会社Dnaチップ研究所 | 蜂病の原因菌を検出する方法及びその検出キット |
JP7549587B2 (ja) | 2019-02-04 | 2024-09-11 | アコヤ・バイオサイエンシズ・インコーポレイテッド | 生物学的試料の選択的標識による分析物検出 |
JP2022519641A (ja) * | 2019-02-04 | 2022-03-24 | アコヤ・バイオサイエンシズ・インコーポレイテッド | 生物学的試料の選択的標識による分析物検出 |
JP2021073945A (ja) * | 2019-11-13 | 2021-05-20 | 国立研究開発法人農業・食品産業技術総合研究機構 | アザミウマ類の分子同定技術 |
JP7440882B2 (ja) | 2019-11-13 | 2024-02-29 | 国立研究開発法人農業・食品産業技術総合研究機構 | アザミウマ類の分子同定技術 |
CN112634981B (zh) * | 2020-12-14 | 2024-04-19 | 北京大学 | 数据固定放置的数据处理装置及方法 |
CN112634981A (zh) * | 2020-12-14 | 2021-04-09 | 北京大学 | 数据固定放置的数据处理装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013039228A1 (ja) | 2015-03-26 |
JP2018143245A (ja) | 2018-09-20 |
ES2736977T3 (es) | 2020-01-09 |
JP6076273B2 (ja) | 2017-02-08 |
US20140206567A1 (en) | 2014-07-24 |
MY157586A (en) | 2016-06-16 |
CN103797119A (zh) | 2014-05-14 |
JP2021100429A (ja) | 2021-07-08 |
US20180119211A1 (en) | 2018-05-03 |
JP2014079260A (ja) | 2014-05-08 |
EP2762562A4 (en) | 2015-05-06 |
JP5503021B2 (ja) | 2014-05-28 |
EP2762562B1 (en) | 2019-05-22 |
EP2762562A1 (en) | 2014-08-06 |
CN103797119B (zh) | 2017-10-27 |
SG11201400635UA (en) | 2014-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6076273B2 (ja) | 標的核酸の検出方法 | |
JP6182300B2 (ja) | 標的核酸の検出方法 | |
JP2015508995A (ja) | 核酸ハイブリダイゼーションプローブ | |
JP6691380B2 (ja) | 短鎖rnaの検出方法 | |
JP6321318B2 (ja) | 標的核酸の検出方法 | |
JP5142244B2 (ja) | 新規蛍光標識核酸 | |
JP6196611B2 (ja) | 標的核酸の検出方法 | |
JP6977978B2 (ja) | 標的核酸の検出方法 | |
JP5967785B2 (ja) | 標的核酸の検出方法 | |
JP6202455B2 (ja) | 標的核酸の検出方法 | |
WO2014156513A1 (ja) | 変異の検出方法 | |
WO2018038232A1 (ja) | 標的核酸の増幅産物の生産方法及びその利用 | |
JP2014187934A (ja) | 標的核酸の検出方法 | |
Kamau-Gatogo | Development of RNA microchip for pathogen and cancer direct detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012549585 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12832061 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012832061 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |