WO2013038572A1 - 電動式駆動装置 - Google Patents

電動式駆動装置 Download PDF

Info

Publication number
WO2013038572A1
WO2013038572A1 PCT/JP2011/075417 JP2011075417W WO2013038572A1 WO 2013038572 A1 WO2013038572 A1 WO 2013038572A1 JP 2011075417 W JP2011075417 W JP 2011075417W WO 2013038572 A1 WO2013038572 A1 WO 2013038572A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
terminal
electric
drive device
connection terminal
Prior art date
Application number
PCT/JP2011/075417
Other languages
English (en)
French (fr)
Inventor
伊藤 慎一
晴希 馬詰
山村 明弘
晋介 逸見
宮嶋 正泰
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/122,788 priority Critical patent/US9450476B2/en
Priority to EP11872253.7A priority patent/EP2757665B1/en
Priority to CN201180073409.0A priority patent/CN103797691B/zh
Priority to IN2465CHN2014 priority patent/IN2014CN02465A/en
Priority to JP2013533454A priority patent/JP5634610B2/ja
Publication of WO2013038572A1 publication Critical patent/WO2013038572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/38Control circuits or drive circuits associated with geared commutator motors of the worm-and-wheel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • H01R13/112Resilient sockets forked sockets having two legs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements

Definitions

  • the present invention is an electric drive device including an electric motor that outputs an auxiliary torque to a vehicle steering and a control device that controls the drive of the electric motor, for example, an electric drive used in an electric power steering device. It relates to the device.
  • an electric motor that outputs an auxiliary torque to the steering of a vehicle and a control device that drives and controls the electric motor are provided, and an electric drive device in which the control device is attached to the electric motor is known.
  • an electric power steering device described in Patent Document 1 has been proposed.
  • a control unit that is a control device is disposed on the axis of the rotation shaft of the electric motor and is fixed to the electric motor.
  • the joint between the electric motor feeding portion and the control unit is joined using screws in the housing or the case through the opening provided in the housing, the case, or both. ing.
  • An object of the present invention is to solve the above-described problems, and in an electric drive device including an electric motor and a control device, the electric drive device in which the number of parts and the number of assembly steps are reduced. Is intended to provide.
  • An electric drive device is an electric drive device comprising: an electric motor; and a control device that is disposed on an axis of a rotation shaft of the electric motor and controls driving of the electric motor.
  • the apparatus includes a semiconductor switching element that switches a current of the electric motor and a passive element that is electrically connected to the switching element, and a drive unit that drives the electric motor and each terminal of the passive element are connected to each other.
  • a plurality of conductive plates insert-molded with an insulating resin and a frame on which the passive element is disposed, and one of the electric motor and the control device has the rotating shaft toward the other.
  • a first terminal extending in parallel with the axial direction of the first terminal, and a slit is formed at the other end of the first terminal.
  • a second terminal provided on an extension line of the first terminal and electrically connected to the first terminal, and the slit sandwiches the second terminal, whereby the first terminal Is fixed in a state of being press-fitted into the second terminal.
  • an electric drive device including an electric motor and a control device
  • an electric drive device that reduces the number of parts and the number of assembly steps.
  • the passive element is disposed on the frame integrally formed with the conductive plate and each terminal is connected to the conductive plate, an electric drive device with improved assembling workability can be provided.
  • FIG. 1 is a cross-sectional view of an electric drive device 100 according to Embodiment 1 of the present invention.
  • 1 is an exploded perspective view of an electric drive device 100 according to Embodiment 1 of the present invention.
  • 1 is a circuit diagram of an electric drive device 100 according to Embodiment 1 of the present invention. It is a principal part front view of the motor terminal 13 of FIG. It is a perspective view of the power module 21 of FIG.
  • FIG. 3 is a perspective view of a main part of the frame 30 when the motor terminal 13 approaches the guide portion 31 before the motor terminal 13 is fixed in a state where it is press-fitted into the motor connection terminal 34. It is sectional drawing of the electric drive device 200 which concerns on Embodiment 2 of this invention.
  • FIG. 6 It is a perspective view of the power module 62 of FIG.
  • FIG. 6 is a perspective view of a main part of the power module 62 before the motor terminal 13 is fixed in a state where it is press-fitted into the motor connection terminal 45 and when the motor terminal 13 approaches the opening 62a.
  • FIG. 11 It is a principal part perspective view of the housing 66 of FIG.
  • FIG. 11 is a perspective view of a main part of a housing 66 before the electric motor 1 and the control device 20 are connected in the electric drive device 300 of FIG. 10.
  • FIG. 6 is a perspective view of a main part of the insulating member 42 before the motor terminal 13 is fixed in a state where the motor terminal 13 is press-fitted into the motor connection terminal 46 and when the motor terminal 13 approaches the guide portion 43. It is sectional drawing of the electrically driven power steering apparatus which concerns on Embodiment 4 of this invention. It is sectional drawing of the electrically driven power steering apparatus which concerns on another form of Embodiment 4 of this invention.
  • Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6.
  • An electric drive device 100 according to Embodiment 1 of the present invention is an electric drive device used for an electric power steering device, and includes an electric motor 1 that outputs an auxiliary torque to a vehicle steering, and the electric motor. 1 is provided.
  • the electric motor 1 is a three-phase brushless motor, and includes a rotating shaft 2, a rotor 4 in which a cylindrical permanent magnet 3 magnetized with, for example, 10 poles is fixed to the rotating shaft 2, and the periphery of the rotor 4.
  • the stator 5 is provided with an iron yoke 6 that fixes the stator 5, and a coupling 7 that is fixed to the end of the rotary shaft 2 and transmits the torque of the electric motor 1.
  • the stator 5 is wound through, for example, twelve salient poles 8 opposed to the outer periphery of the permanent magnet 3 and an insulator 9 attached to the salient poles 8 and connected to three phases U, V, and W. Armature winding 10 is provided.
  • the armature winding 10 is, for example, ⁇ -connected, and each winding end has three terminals (intermediate members) 12U, 12V supported by a donut-shaped holder 11 made of an insulating resin material. 12 W, respectively, connected by joining means such as caulking and welding.
  • the number of poles of the permanent magnet 3 is 10 and the number of salient poles of the stator 5 is 12.
  • the present invention is not limited to this combination, and other combinations of pole numbers and salient pole numbers are possible.
  • the armature winding 10 is a ⁇ connection, but is not limited to this, and may be a star connection.
  • the annular holder 11 is formed with the same number of concentric concave grooves (supports) 11 a as the terminals 12. Each arc-shaped terminal 12 is supported by the groove 11a. Further, the terminal 12 is caulked and welded to the same number of motor terminals (first terminals) 13 as the terminals 12 extending in parallel with the axis of the rotary shaft 2 from the electric motor 1 toward the control device 20. It is connected by a joining means such as. At this time, the motor terminal 13 is arrange
  • the terminal 12 is made of a copper alloy that has lower heat-resistant creep characteristics than the motor terminal 13.
  • Creep is a deformation that occurs after a certain period of time when a material that is subjected to a certain temperature and constant stress.
  • a material with high heat-resistant creep characteristics is subject to a certain stress against heat. It is a material that has a small degree of deterioration (deformation) over time.
  • FIG. 4 is a front view of a main part of the motor terminal 13 of FIG.
  • the motor terminal 13 has, for example, a columnar shape, and a slit 13 a is formed at the end on the control device 20 side, and two arm portions 13 b are formed by the slit 13 a.
  • the end of the electric motor 1 side (the side opposite to the side where the slits 13a are formed) is bent into an L shape by a bending portion 13d, so that the rotating shaft An end face 13e perpendicular to the axial direction of 2 is formed.
  • the slit width W gradually increases toward the tip, that is, the arm 13b.
  • the taper 13c1 is gradually formed on both sides of the slit 13a.
  • the end surface 13e is supported in contact with the contact surface 11b of the holder 11 in the axial direction.
  • a taper 13c2 is also formed on the tip of the arm 13b, on the side where the slit 13a is not formed (outside of the motor terminal 13, see FIG. 4).
  • the motor terminal 13 is a copper alloy used for an in-vehicle connector or the like, and presses a plate material of a special copper alloy having a high heat resistance and a high conductivity and a high strength compared to a motor connection terminal 34 described later. It is formed by doing. Then, after the press working, the press-worked surface is plated with, for example, tin.
  • the control device 20 for driving and controlling the electric motor 1 includes a power module (semiconductor module) 21 and a relay module (semiconductor module) 60 formed by sealing the semiconductor switching element 23 with a mold resin, and a control board 25 including an insulating printed board.
  • a passive element (coil 40, capacitor 41) connected to the semiconductor switching element 23, a frame 30 in which a plurality of conductive plates 33 are insert-molded with an insulating resin, a heat sink 35 made of aluminum die casting, a vehicle A power connector 37 electrically connected to the battery 50, a signal connector 38 for inputting / outputting signals to / from the vehicle via external wiring, and a torque sensor for inputting / outputting signals from the torque sensor 51 via external wiring
  • the resolver 29 has a resolver rotor 29a and a resolver stator 29b.
  • FIG. 5 is a perspective view of the power module 21 of FIG. 1, where (a) is a perspective view of the power module 21 alone, and (b) is after the motor connection terminal 34 is welded to the power module 21 of (a). It is a perspective view.
  • the power module 21 has a three-phase bridge circuit for switching the motor current IM of the electric motor 1 according to the magnitude and direction of the auxiliary torque on the lead frame 22 made of copper or copper alloy on which the wiring pattern is formed.
  • the FET 23a that constitutes a motor relay that is a switch means for energizing and shutting off a motor current IM supplied from the three-phase bridge circuit to the electric motor 1, and a shunt resistor that is inserted between the FET 23b that constitutes a motor relay and the ground.
  • This is a transfer mold type module in which the container 24 is mounted with solder, and this is encapsulated in an insulating resin and integrally molded.
  • the power module 21 includes module power terminals 22a and 22b for supplying power to the built-in FET 23a, a module motor connection terminal 22c for supplying power from the power module 21 to the electric motor 1, and the FET 23a. And module signal terminal 22d for controlling 23b.
  • the module signal terminal 22d of the power module 21 is connected to a through hole 25b of the control board 25 described later by soldering.
  • the module motor connection terminal 22c of the power module 21 is connected to a motor connection terminal (second terminal) 34 of the frame 30 described later by welding.
  • the module power terminals 22a and 22b are respectively joined to a conductive plate 33 of the frame 30 described later by welding.
  • an FET 23c which is a switch means for energizing / interrupting the power source current IB from the battery 50, is mounted on the lead frame 22 with solder.
  • the FET 23c is made of insulating resin.
  • This is a transfer mold type module that is enclosed and integrally molded.
  • the electric motor 1 of the electric drive device according to the first embodiment is a three-phase brushless motor, and as can be seen from FIGS. 1 and 3, the control device 20 includes three power modules 21 and a relay.
  • the module 60 includes a total of four semiconductor modules. As shown in FIG. 2, these four semiconductor modules are arranged at regular intervals at a pitch of approximately 90 degrees with respect to the circumferential direction of the control device 20.
  • the control board 25 is made of a multilayer (for example, four layers) glass epoxy board, and is provided with a through hole 25b into which the module signal terminal 22d is inserted.
  • the module signal terminal 22d is electrically connected to the wiring pattern of the control board 25 by being soldered to the through hole 25b.
  • the auxiliary torque is calculated based on the steering torque signal from the torque sensor 51, and the motor current IM and the rotational position of the rotor of the electric motor 1 detected by the resolver 29 are fed back.
  • a microcomputer 26 that calculates a current corresponding to the auxiliary torque, a drive circuit 27 that outputs a drive signal for driving the FET 23 a according to a command from the microcomputer 26, and one end of the shunt resistor 24 are connected to the electric motor 1.
  • Current detection means 28 for detecting the motor current IM is mounted by soldering.
  • the microcomputer 26 includes a well-known self-diagnosis function in addition to an AD converter, a PWM timer circuit, etc., and always performs self-diagnosis as to whether the system is operating normally. When an abnormality occurs, the motor current IM is cut off.
  • the driving unit 61 that drives the electric motor 1 includes a semiconductor switching element 23 (FET 23a) that switches current of the electric motor 1, a passive element (coil 40, capacitor 41) that is electrically connected to the switching element 23, and It comprises a drive circuit 27 that outputs a drive signal for driving the FET 23a and peripheral circuit elements.
  • the coil 40 removes electromagnetic noise generated during the switching operation of the semiconductor switching element 23, and the capacitor 41 absorbs a ripple component of the motor current IM flowing through the electric motor 1.
  • a PWM drive signal is generated and applied to the FET 23a.
  • the power source current IB from the battery 50 flows to the electric motor 1 through the power connector 37, the coil 40, and the FETs 23a and 23b, and a required amount of auxiliary torque is output in a required direction.
  • the motor current IM includes a ripple component due to the switching operation during PWM driving of the FET 23a, but is smoothed and controlled by the capacitor 41.
  • FIG. 6 is a perspective view of a main part of the frame 30 before the motor terminal 13 is fixed in a state where it is press-fitted into the motor connection terminal 34 and when the motor terminal 13 approaches the guide portion 31.
  • a) is an overall view of the guide portion 31, and
  • (b) is a view showing the vicinity of the motor connection terminal.
  • the frame 30 is electrically connected to the module power terminals 22a and 22b, the coil 40, the capacitor 41, and various connectors (power connector 37, signal connector 38, torque sensor connector 39) of the power module 21.
  • the plurality of conductive plates 33 are formed by insert molding with an insulating resin.
  • the conductive plate 33 is configured on a plane perpendicular to the rotating shaft 2, and one end thereof is bent into an L shape to form a connection portion 33 a exposed from the insulating resin.
  • These connecting portions 33a, module power terminals 22a and 22b, various connectors (power connector 37, signal connector 38, torque sensor connector 39), coil 40, and capacitor 41 are connected by a joining means such as welding.
  • the motor connection terminal 34 is one of the conductive plates 33 and has the same number as the motor terminals 13, and each of the motor connection terminals 34 is electrically connected to the motor terminals 13, together with these conductive plates 33. It is formed by being insert-molded into the frame 30 with an insulating resin, or after these conductive plates 33 are insert-molded, and then separated from the conductive plate 33 by, for example, pressing. Similarly to the conductive plate 33, one end of the motor connection terminal 34 is bent into an L shape, and the connection portion 34a exposed from the insulating resin and the module motor connection terminal 22c are connected by a joining means such as welding. As shown in FIG.
  • the motor connection terminal 34 is formed with an insertion hole 34 b into which the arm portion 13 b of the motor terminal 13 is inserted.
  • the length D between the insertion holes 34 b is set to the motor terminal 13. Is larger than the slit width W (see FIG. 4), that is, the relationship of D> W is satisfied. Since the arm 13b is inserted into the insertion hole 34b, the slit 13a (the inner side of the motor terminal 13 of each arm 13b) sandwiches the inner side of each insertion hole 34b.
  • the length D corresponds to the sandwiching width of the motor connection terminal 34 with respect to the motor terminal 13.
  • the motor connection terminal 34 is formed by pressing a copper plate in a predetermined shape (dimension).
  • the frame 30 has an insertion hole 31a into which the motor terminal 13 is inserted, and the slit 13a of the motor terminal 13 can sandwich the motor connection terminal 34.
  • a guide portion 31 made of an insulating resin for guiding the motor terminal 13 is formed.
  • the insertion hole 31a has an axial cross section of the guide portion 31 from the electric motor 1 side (inlet) to the counter electric motor 1 side (outlet) with respect to the axial direction. Since the taper shape is gradually narrowed, when the motor terminal 13 passes through the insertion hole 31a, the position of the motor terminal 13 is corrected, and the motor terminal 13 can be guided to a position where the motor connection terminal 34 is located.
  • an end surface 30 a perpendicular to the axis of the rotating shaft 2 is formed on the end portion of the frame 30 outside the guide portion 31 and on the counter-electric motor 1 side.
  • the heat sink 35 is disposed closer to the counter-electric motor 1 than the frame 30, and the power module 21 is disposed on the heat motor 35 on the side of the electric motor 1. It is fixed in close contact via a ceramic plate (not shown) such as silicon nitride or aluminum nitride. Heat transfer grease or adhesive is applied to the ceramic plate.
  • the frame 30 is fixed to the surface of the heat sink 35 to which the power module 21 is fixed with screws (not shown).
  • the coil 40 and the capacitor 41 disposed on the frame 30 are inserted into a recess 35 a formed in the heat sink 35. Heat conductive grease or adhesive is applied to the gap between the recess 35 a formed in the heat sink and the coil 40 and the capacitor 41.
  • the heat sink 35 is provided with a support portion 35 b that contacts the end surface 30 a of the frame 30 and supports the frame 30.
  • the housing 36 is disposed on the axis of the rotary shaft 2 and connects the electric motor 1 and the control device 20, and is fastened by a heat sink 35 and a screw (not shown) constituting the control device 20.
  • the housing 36 covers the power module 21, the control board 25, and the frame 30 together with the heat sink 35.
  • the housing 36 is fastened to the yoke 6 constituting the electric motor 1 by screws (not shown).
  • Liquid packing is applied between the housing 36 and the heat sink 35 and between the housing 36 and the electric motor 1.
  • the housing 36 is integrally formed with a plate 36 a that is perpendicular to the direction of the rotary shaft 2 of the electric motor 1.
  • the plate 36 a divides a space surrounded by the electric motor 1, the heat sink 35, and the housing 36.
  • the plate 36 a is formed with a through hole 36 b through which the rotating shaft 2 passes and a through hole 36 c through which the guide portion 31 formed in the frame 30 passes when the electric motor 1 and the control device 20 are connected
  • the connection between the motor terminal 13 and the motor connection terminal 34 will be described with reference to FIGS. 1, 2, and 6.
  • the motor terminal 13 provided on the electric motor 1 extends from the electric motor 1 toward the control device 20 in parallel with the axial direction of the rotary shaft 2.
  • an arm portion 13 b and a slit 13 a are formed at an end portion on the control device 20 side.
  • the housing 36 and the heat sink 35 are fastened with screws, and at this time, the guide portion 31 formed in the frame 30 passes through the through hole 36 c formed in the housing 36 and is electrically driven.
  • a motor connection terminal 34 extending toward the motor 1 and provided in the control device 20 is insert-molded in the frame 30 together with the conductive plate 33 as shown in FIG. Then, the electric motor 1 faces the control device 20 in the axial direction of the rotating shaft 2, and the housing 36 fastened with the control device 20 with screws is fastened with the yoke 6 of the electric motor 1 with screws, and the electric motor 1 and the control device 20.
  • the motor terminal 13 is inserted into the insertion hole 31 a of the guide portion 31 at the timing of assembling both.
  • a motor connection terminal 34 is positioned and fixed on the counter-electric motor 1 side of the insertion hole 31 a, and the arm portion 13 b of the motor terminal 13 is inserted into the insertion hole 34 b of the motor connection terminal 34, and the motor terminal 13.
  • the motor terminal 13 is press-fitted into the motor connection terminal 34 by the slit 13 a formed in the pinch the motor connection terminal 34. As a result, both terminals are electrically connected in a pressure contact state. Therefore, the motor terminal 13 is fixed in a state of being press-fitted into the motor connection terminal 34 at the timing when the electric motor 1 and the control device 20 are assembled. At this time, as shown in FIG. 1, the slit 13 a of the motor terminal 13 is fixed by being positioned in a space (closed space) surrounded by the frame 30, the power module 21, and the heat sink 35.
  • control device 20 is arranged on the axis of rotating shaft 2 of electric motor 1, and electric motor 1 or control device 20 has Among them, the electric motor 1 that is one has a motor terminal (first terminal) 13 that extends toward the control device 20 that is the other, and among the motor terminals 13, the control device 20 side end ( A slit 13a is formed at the other end), and the motor connection terminal (second terminal) 34 is provided on the extension line of the motor terminal 13 and electrically connected to the motor terminal. have. Then, the slit 13a sandwiches the motor connection terminal 34, so that the motor terminal 13 is press-fitted into the motor connection terminal 34, and both terminals are electrically connected.
  • the arm portion 13 b of the motor terminal 13 when the arm portion 13 b of the motor terminal 13 is inserted into the insertion hole 34 b of the motor connection terminal 34, at least the inner side of the motor terminal 13 of the arm portion 13 b bends in the outward direction of each motor terminal 13, and the arm portion 13 b. Since the inner side of the motor terminal 13 sandwiches between the insertion holes 34b (length D, D> W) of the motor connection terminal 34, the width of the arm portion 13b of the motor terminal 13 varies, and the arm portion 13b Even if there is a slight gap between the outer side of the motor terminal 13 and the insertion hole 34b, the motor terminal 13 and the motor connection terminal 34 are electrically connected. As a result, the productivity of the electric drive device is improved. Furthermore, since the motor terminal 13 is fixed in a state where it is press-fitted into the motor connection terminal 34 at the timing when the electric motor 1 and the control device 20 are assembled, the assemblability of the electric drive device is improved.
  • the first terminal is the motor terminal 13 of the electric motor 1 and the second terminal is the motor connection terminal 34 of the control device 20 is shown, but these terminals are reversed. That is, the first terminal may be a motor connection terminal of the control device, and the second terminal may be a motor terminal of the electric motor. Even in this case, among the motor connection terminals that are the first terminals, a slit is formed at the end portion on the electric motor side, and the motor connection terminal is obtained by sandwiching the motor terminal that is the second terminal. Since the two terminals are electrically connected by being press-fitted into the motor terminal, this eliminates the need for a new part such as a screw for connection between the two terminals, thereby reducing the number of parts and fastening the screw. Since the process is not necessary, the number of assembling steps is reduced, and as a result, the cost can be reduced.
  • the slit 13a formed at the end of the motor terminal 13 on the control device 20 side is divided into two ends, and two arm portions 13b are formed.
  • the present invention is not limited to this case, and it may be divided into three or more on the same plane to form three or more arms.
  • the press input also increases and the press-fitting is performed more reliably.
  • the tip of the motor terminal is divided into a plurality of planes, such as a cross shape or an H shape, and the arm portion is formed, the arm portion of the motor terminal is the motor connection terminal. Since the motor terminal is press-fitted into the motor connection terminal by sandwiching the insertion hole from four sides, the same effect can be obtained.
  • control device 20 of the electric drive device 100 includes a semiconductor switching element 23 (FET 23a) that switches current of the electric motor 1 and a passive electrically connected to the semiconductor switching element 23.
  • a drive unit 61 for driving the electric motor 1 and a plurality of conductive plates 33 to which each terminal of the passive element is connected are insert-molded with an insulating resin, and the passive element is composed of elements (coil 40, capacitor 41). Therefore, in the assembly stage of the control device 20, it is possible to perform collectively with a joining means such as welding of the passive elements, and the assembly time of the passive elements is As a result, the assembly of the electric drive device is improved.
  • the passive element is disposed on the heat sink 35 side (one side of the frame 30) of the frame 30, it is possible to efficiently secure a space for disposing the passive element, thereby reducing the size of the electric drive device. be able to.
  • the module power terminals 22a and 22b of the power module 21 are connected to the conductive plate 33 of the frame 30, and the module motor connection terminal 22c of the power module 21 is connected to the motor connection terminal 34 of the frame 30, respectively. Therefore, in addition to the above passive elements, the terminals of the power module 21 (module power terminals 22a and 22b and the module motor connection terminal 22c) can be collectively performed by a joining means such as welding. Since the assembly time of the (passive element, power module) is shortened, the assemblability of the electric drive device is further improved.
  • two arm portions 13b are formed by the slits 13a of the motor terminal 13, and at the tip portions of the respective arm portions 13b, inside the motor terminal 13, a taper 13c1 whose slit width gradually increases toward the tip. Are formed on both sides of the slit 13a.
  • the taper 13c1 portion formed on the inner side of the motor terminal 13 (the side on which the slit 13a is formed) is a motor. Since it serves as a guide for guiding between the insertion holes 34b formed in the connection terminal 34 and the motor connection terminal 34 can be smoothly sandwiched, the assembly of the electric drive device is improved.
  • the taper 13c2 is formed on the outer end of the arm terminal 13b (on the side where the slit 13a is not formed).
  • the taper 13c2 serves as a guide for guiding into each insertion hole 34b formed in the motor connection terminal 34. Since the motor connection terminal 34 is smoothly inserted into the insertion hole 34b, the slit width W of the motor terminal 13, The dimensional variation of the length D between the insertion holes 34b of the motor connection terminal 34 can be absorbed.
  • the end of the motor terminal 13 on the electric motor 1 side (the side opposite to the side on which the slit 13a is formed) is bent into an L shape by a bending portion 13d, so that the axis of the rotary shaft 2 is obtained.
  • An end face 13e perpendicular to the direction is formed, and this end face 13e is supported in contact with the contact surface 11b of the holder 11 as a contact member, so that the motor terminal 13 and the motor connection terminal 34 are press-fitted.
  • the load applied to the motor terminal 13 is received by the entire holder 11 through the contact surface 11b, and the deformation amount (deflection amount) of the motor terminal 13 is the total load applied to the motor terminal 13 only by the end surface 13e.
  • the motor terminal 13 Since the motor terminal 13 is smaller than the case of receiving it, the motor terminal 13 is less likely to be deformed due to buckling or the like, and an electric drive device with improved reliability can be provided.
  • the motor terminal 13 since the motor terminal 13 is fixed by bringing the end face 13e of the motor terminal 13 into contact with the contact surface 11b of the holder 11, the terminal 12 and the motor terminal 13 are caulked and connected by a joining means such as welding. When doing so, the positional deviation of the motor terminal 13 is reduced, and the assembly and reliability of the electric drive device are improved. Further, in the electric drive device 100 after the motor terminal 13 is press-fitted and fixed to the motor connection terminal 34, a linear expansion difference or the like occurs in the material due to vibration or temperature change of the electric drive device.
  • the motor terminal 13 is made of a copper alloy having higher heat-resistant creep characteristics than the motor connection terminal 34, the degree of deterioration with time of the press-fit fixing portion is reduced, and an electric drive device with improved reliability is provided. can do.
  • the motor terminal 13 is a copper alloy having higher heat-resistant creep characteristics than the motor connection terminal 34 and is made of a special copper alloy having higher conductivity and higher strength. In addition to the fact that the degree of deterioration with time of the press-fitting and fixing portion is small, the amount of heat generated at the motor terminal is small and the strength is high, so that an electric drive device with further improved reliability can be provided.
  • the motor terminal 13 is electrically connected to the armature winding 10 via a terminal 12 which is an intermediate member by a joining means such as caulking or welding.
  • the terminal 12 is compared with the motor terminal 13.
  • a part of the motor terminal 13 other than the press-fit fixing part does not require heat-resistant creep characteristics as compared with the press-fit fixing part.
  • the electric motor 1 according to Embodiment 1 of the present invention is a three-phase motor, and the holder 11 is formed with a support portion 11a that supports the terminal 12, and three terminals 12U, 12V, and 12W are provided.
  • the three motor terminals 13U, 13V, and 13W are connected by joining means such as caulking and welding, and each motor terminal 13 is disposed radially outside the support portion 11a.
  • the insulation distance between the terminals 12 of the other phases can be increased for each motor terminal 13, and the reliability of the electric drive device is improved.
  • the joint portion between the motor terminal 13 and the terminal 12 is arranged on the outer side in the radial direction, it is possible to secure a necessary space when connecting the two by the joining means, and the assembly of the electric drive device is also improved.
  • the motor connection terminal 34 is provided on the extension line of the motor terminal 13 and receives press-fitting of the motor terminal 13, and the three motor terminals 13 are arranged on the outer side in the radial direction from the support portion 11 a. Therefore, the three motor connection terminals 34 provided on the extension lines of the three motor terminals 13 are also arranged on the outer side in the radial direction.
  • the press-fitting load of the motor terminal 13 can be received in a radially outer side without being concentrated in the vicinity of the rotary shaft 2 and on the outer side in the radial direction. Improves. Moreover, the insulation distance of the motor connection terminal 34 can be ensured, and the reliability of the electric drive device is further improved.
  • control device 20 includes four semiconductor modules, that is, three power modules 21 and one relay module, which are arranged in the circumferential direction of the control device 20.
  • three motor terminals 13U, 13V, and 13W are also arranged at equal intervals at a substantially 90 degree pitch corresponding to the three power modules 21.
  • a sufficient insulation distance between the motor terminals 13 can be ensured, so that the reliability of the electric drive device is improved. To do.
  • the guide portion 31 into which the motor terminal 13 is inserted is formed in the frame 30, when the motor terminal 13 sandwiches the motor connection terminal 34, the guide portion 31 sets the position of the motor terminal 13 to the motor connection terminal 34. Therefore, the motor terminal 13 can sandwich the motor connection terminal 34 in accordance with the guide of the guide portion 31, and the assemblability of the electric drive device is improved.
  • the guide portion 31 is configured as a separate component from the frame 30 has been described.
  • the present invention is not limited to this case, and the frame 30 and the guide portion 31 are both formed of an insulating resin. Therefore, both can be integrally molded.
  • the frame 30 and the guide portion 31 By integrally molding the frame 30 and the guide portion 31 with an insulating resin, the number of assembling steps can be reduced and the cost can be reduced.
  • the positional accuracy of the guide portion 31 is improved as compared with the case where both parts are configured as separate parts, the assembly of the electric drive device is further improved, and the reliability of the electric drive device is improved. improves.
  • the guide part 31 since the guide part 31 is formed so that the circumference
  • both ends of the motor connection terminal 34 are fixed by the insulating resin when the frame 30 is formed. Is fixed in a state where it is press-fitted into the motor connection terminal 34, the load applied to the motor connection terminal 34 during press-fitting is applied evenly without being biased, and the load received by the motor connection terminal 34 can be received by the entire frame 30. And the deformation and breakage of the motor connection terminal 34 can be prevented. This improves the reliability of the electric drive device.
  • the frame 30 is formed with a guide portion into which the motor terminal 13 is inserted.
  • the guide portion 31 uniquely determines the relative position of the motor terminal 13 with respect to the frame 30 and, as described above, the motor connection. Also for the terminal 34, the relative position with respect to the frame 30 is uniquely determined.
  • the relative positions of the motor terminal 13 and the motor connection terminal 34 with respect to the frame 30 are uniquely determined, and the positional deviation between the two is reduced, so that the assembly and reliability of the electric drive device are further improved.
  • the guide portion 31 is also insert-molded into the frame 30, so that the number of assembling steps can be reduced and the cost can be reduced. Since the relative position of the guide portion 31 is uniquely determined and the positional deviation between the guide portion 31 and the motor connection terminal 33 is reduced, the positional accuracy of both is improved, and the assembly and reliability of the electric drive device are improved. To do.
  • the motor connection terminal 34 is insert-molded in the frame 30, so that the number of assembling steps can be reduced and the cost can be reduced.
  • the lead frame 22 of the power module 21 is pressed into a required shape by punching or the like, and the FETs 23a and 23b and the shunt resistor 24 are mounted. Is removed and bent in a direction perpendicular to the surface on which the FETs 23a and 23b are mounted (see the module power terminals 22a and 22b, the module motor connection terminal 22c, and the module signal terminal 22d in FIG. 5). Since the shape of the lead frame 22 before being pressed is the shape before the lead frame 22 is bent, in general, if the length of the lead frame is long, unnecessary portions increase, so the cost of the lead frame increases.
  • the motor connection terminal 34 is insert-molded in the frame 30 on which the power module 21 is disposed.
  • the module motor connection terminal 22c is the motor connection terminal. Since the length of the module motor connection terminal 22c is shortened and the amount of material used for the lead frame 22 is reduced correspondingly, the cost can be reduced.
  • an end surface 30a perpendicular to the axis of the rotating shaft 2 is formed on the end portion of the frame 30 outside the guide portion 31 and on the side of the counter electric motor 1, and this end surface 30a is a support member. Since the heat sink 35 is configured to support the frame 30 on which the guide portion 31 is formed in contact with the support portion 35 b provided on a certain heat sink 35, when the motor terminal 13 is inserted into the guide portion 31, The load received by the frame 30 is received by the entire heat sink 35 via the support portion 35b, and the amount of deflection of the frame 30 is smaller than when the total load applied to the frame 30 is received only by the end face 30a. The deformation and breakage of the frame 30 can be prevented. This improves the reliability of the electric drive device.
  • the motor connection terminal 34 is insert-molded into the frame 30, the number of assembling steps can be reduced, the cost can be reduced, and the motor connection terminal 34 can be inserted when the motor terminal 13 and the motor connection terminal 34 are press-fitted. Therefore, the motor connection terminal 34 is not deformed by press fitting, and an electric drive device with improved reliability can be provided.
  • the motor connection terminal 34 is formed by pressing a flat portion of a copper plate with a predetermined shape (dimension), not a plate thickness portion of a copper plate (eg, a thin plate having a thickness of 1 mm) according to JIS standards. Therefore, the clamping width of the motor connection terminal 34 (the length D between the insertion holes 34b) can be arbitrarily set according to the output of the electric motor 1, the use environment, and the application, so that the design of the electric drive device is free. The degree is improved. Further, since the motor terminal 13 is also formed by pressing a copper alloy plate material, the shape of the motor terminal 13 depends on the output of the electric motor 1, the use environment, and the application, similarly to the motor connection terminal 34. (For example, the slit width W ⁇ D) can be arbitrarily set, so that the degree of freedom in designing the electric drive device is improved.
  • the motor terminal 13 since the motor terminal 13 is subjected to a plate processing after the plate material is pressed, the arm portion 13b of the motor terminal 13 is inserted into the insertion hole of the motor connection terminal 34 in the plated portion of the motor terminal 13. Since it acts so as to fill a fine gap generated between both terminals after sandwiching between 34b, an increase in contact resistance generated between both terminals is suppressed, and the performance of the electric drive device is improved.
  • a configuration in which the motor connection terminal 34 is plated instead of the motor terminal 13 or a configuration in which both terminals are plated is also possible. Needless to say, however, an effect of suppressing an increase in contact resistance between both terminals can be obtained.
  • the electric motor 1 according to the first embodiment of the present invention is a three-phase motor, and the three motor terminals 13U, 13V, and 13W are individually formed by pressing a plate material. Press-fitted into the motor connection terminals 34U, 34V, and 34W, respectively.
  • the three motor connection terminals 34 (34U, 34V, 34W) are formed as an integrated product having a connection to a passive element such as a coil 40 by pressing a copper plate, Insert molded with insulating resin.
  • the motor connection terminal 34 that is an integrated product includes a portion that does not require plating, and is large in size. Therefore, when plating is performed on a required portion, the cost may be high.
  • the motor terminals 13 formed individually are small in size, and the entire terminal is subjected to a plating process. Therefore, the cost can be reduced at a low cost.
  • insert molding is performed after the plating of the motor connection terminal 34, there is a risk that the electrical reliability of the motor connection terminal 34 may be impaired due to elution of the plating film at the time of insert molding. Since it is press-fitted into the connection terminal 34, it is advantageous in terms of performance and cost to apply plating to the motor terminal 13 also in this respect.
  • both terminals are plated, the plated portions of both terminals are inserted while contacting each other, and the motor terminal 13 sandwiches the motor connection terminal 34, so that the insertion becomes smooth, Since both terminals are covered with the plated portion, the surface of the terminal is hardly scraped. Therefore, since the surface areas of both terminals are smaller than when the terminal surfaces are shaved, the terminal surfaces are less likely to be oxidized, and the lifetimes of both terminals are prolonged, thereby extending the lifetime of the device.
  • the passive element such as the coil 40 and the capacitor 41 and the semiconductor switching element 23 constituting the driving unit 61 are heat-generating components, and the coil 40 and the capacitor 41 are inserted into the recess 35a formed in the heat sink 35, and the semiconductor switching element Since the semiconductor module (power module 21 and relay module 60) formed by sealing 21 with a mold resin is fixed in close contact via a ceramic plate having heat conductivity, a heat generating component (coil 40, capacitor 41, Heat generated from the semiconductor module is dissipated by the heat sink 35, and the heat dissipation performance of the electric drive device is improved. Therefore, since the temperature rise when heat is generated by the heat-generating component is suppressed, the reliability of the electric drive device is improved.
  • the coil 40 and the capacitor 41 are inserted into the recesses 35a formed in the heat sink 35. Therefore, the heat generated from the coil 40 and the capacitor 41 is added to the outer periphery in addition to the axial end surface on the heat sink 35 side. Since heat is transferred from the surface to the heat sink 35 and radiated, the heat dissipation performance of the electric drive device is improved as compared with the case where heat is transferred to the heat sink 35 from only the axial end surface on the heat sink 35 side.
  • thermally conductive grease or adhesive to the ceramic plate, the adhesive thermal resistance between components is reduced, and the gap between the coil 40, the capacitor 41 and the recess 35a of the heat sink 35 is reduced.
  • heat conductive grease or adhesive heat radiation from the coil 40 and capacitor 41 to the heat sink 35 is promoted, so that the heat radiation performance of the electric drive device is further improved.
  • the electric drive device 100 is formed by assembling the electric motor 1 and the control device 20, and the motor terminal 13 is inside the electric drive device 100, foreign matter from the outside to the motor terminal 13 portion can be reduced. While preventing intrusion, the slit 13a (arm portion 13b) of the motor terminal 13 is in a space (closed space) surrounded by the frame 30, the power module 21 and the heat sink 35 at the timing of assembly. For example, even if foreign matter (dust or water droplets) that has entered the electric motor 1 from the outside reaches the frame 30 portion, the frame 30 causes the slit 13a (arm portion 13b) to be fixed. ) Ensure that the press-fit fixing part is waterproof and insulating because it can be prevented from entering the part. It can be. Moreover, it is possible to prevent the residue generated during press-fitting from flowing out to the rotor 4 of the electric motor 1, for example.
  • the waterproof structure between the housing 36 and the heat sink 35 (electric motor 1) is liquid packing.
  • the present invention is not limited to this.
  • an O-ring or rubber packing is used. May be.
  • the insulating member between the heat sink 35 and the power module 21 is a ceramic plate.
  • the insulating member is not limited to this, and for example, an adhesive mixed with a high thermal conductive material such as alumina as a filler, A heat radiation insulating sheet made of a material such as silicon may be used.
  • FIG. 7 is a cross-sectional view of the electric drive device 200 according to Embodiment 2 of the present invention
  • FIG. 8 is a perspective view of the power module 62 of FIG. 7
  • FIG. 9 is a state in which the motor terminal 13 is press-fitted into the motor connection terminal 45.
  • FIG. 6 is a perspective view of a main part of the power module 62 when the motor terminal 13 approaches the opening 62a before being fixed by the motor.
  • the configuration of the power module 62 is different from that of the power module 21 shown in the first embodiment.
  • the shape of the frame 63 is also different from that of the frame 30 shown in the first embodiment. Since other configurations are the same as those of the electric drive device 100 of the first embodiment, detailed description thereof is omitted.
  • the power module 62 has an opening 62a into which the motor terminal 13 as the first terminal is inserted.
  • the lead frame 22 is located inside the opening 62a.
  • the module motor connection terminal 22e is fixed.
  • the opening 62a has a tapered shape in which the section of the opening 62a gradually narrows from the side where the motor terminal 13 is inserted toward the module motor connection terminal 22e.
  • the motor terminal 13 is fixed in a press-fitted state by sandwiching the module motor connection terminal 22e, and both are electrically connected. Therefore, the module motor connection terminal 22e is integrated with the motor connection terminal 45, which is the second terminal. Therefore, the motor connection terminal 45 is integrally formed with the power module 62.
  • the frame 63 includes a plurality of conductive plates 33 that are electrically connected to the module power terminals 22a and 22b, the coil 40, the capacitor 41, and various connectors (the power connector 37, the signal connector 38, and the torque sensor connector 39) of the power module 62. It is formed by insert molding with an insulating resin.
  • the electric drive device 200 is a semiconductor in which the semiconductor switching elements (FETs 23a and 23b) are sealed with the mold resin as shown in FIGS.
  • the module (power module 62) is further provided, the power module 62 is provided with an opening 62a into which the motor terminal (first terminal) 13 is inserted, and the motor connection terminal (second terminal) 45 is provided inside the opening 62a.
  • the lead frame of the power module is formed with a wiring pattern and is usually exposed to the outside of the power module, the lead frame 22 includes the module. Since the motor connection terminal 22e is positioned and fixed inside the opening 62a of the power module 62, the module motor connection end Without e is exposed to the outside, since the amount of material used correspondingly lead frame 22 is reduced, the cost can be reduced.
  • the motor connection terminal 45 is formed on the lead frame 22 as the module motor connection terminal 22e, the motor connection terminal 34 is a separate component from the module motor connection terminal 22c as in the first embodiment. Therefore, the number of parts can be reduced as compared with the first embodiment. Further, since the work of connecting the motor connection terminal 34 and the module motor connection terminal 22c is not necessary, the number of assembling steps can be reduced. Therefore, the number of parts and the number of assembly steps can be reduced, and the cost can be reduced.
  • the motor connection terminal 45 is integrally formed with the power module 62, when the power module 62 is configured by sealing the FETs 23 a and 23 b that are semiconductor switching elements with a mold resin, the motor that is the lead frame 22. Since both ends of the connection terminal 45 are fixed by the mold resin, when the motor terminal 13 is fixed in a state of being press-fitted into the motor connection terminal 45, the load applied to the motor connection terminal 45 at the time of press-fitting is evenly distributed. In addition, the load received by the motor connection terminal 45 can be received by the entire power module 62 via the mold resin, and deformation and breakage of the motor connection terminal 45 can be prevented. This improves the reliability of the electric drive device.
  • the motor connection terminal 45 is integrally formed with the power module 62, the position of the motor connection terminal 45 is fixed, so that the positional displacement of the motor connection terminal 45 is reduced, and the motor terminal 13 securely secures the motor connection terminal 45. Therefore, the assemblability of the electric drive device is improved.
  • the heat sink 35 is disposed on the counter-electric motor 1 side with respect to the frame 63, and the power module 62 is disposed on the electric motor 1 side of the heat sink 35 via a ceramic plate. And are firmly fixed.
  • the frame 63 is fixed to the surface of the heat sink 35 to which the power module 62 is fixed by screws (not shown), and the frame 63 is pressed against the heat sink 35 by fastening the screws. It is fixed with. Therefore, when the frame 63 is fixed while being pressed against the heat sink 35 using the fastening force of the screw, the motor connection terminal 45 positioned and fixed at the opening 62 a of the power module 62. Since the position of the motor connection terminal 45 is fixed, the displacement of the motor connection terminal 45 is reduced, and the motor terminal 13 can securely pinch the motor connection terminal 45, so that the assembly of the electric drive device is improved.
  • the opening 62a has a tapered shape in which the section of the opening 62a gradually narrows from the side where the motor terminal 13 is inserted toward the motor connection terminal 45, the motor terminal 13 is inserted into the opening 62a. Then, the position of the motor terminal 13 can be guided to a position where the motor connection terminal 45 is located. Therefore, the motor terminal 13 can sandwich the motor connection terminal 45 according to the taper of the opening 62a, and the assemblability of the electric drive device is improved.
  • the frame 63 is formed with the guide portion 31 into which the motor terminal 13 is inserted, the taper of the opening 62a and the guide portion 31 formed on the frame 63 are used in combination. By doing so, the position of the motor terminal 13 can be accurately guided to the motor connection terminal 45, and the positional deviation can be reduced, so that the assembly of the dynamic drive device is further improved.
  • the motor terminal that is the first terminal extends in parallel with the axial direction of the rotating shaft from the electric motor toward the control device, and is press-fitted into the motor connection terminal that is the second terminal. It is fixed in the state. Further, the motor connection terminal as the second terminal is insert-molded in the frame, or is fixed inside the opening of the power module. Since the frame and the power module are in the control device and are relatively far from the electric motor, the length of the motor terminal is sufficiently longer than its cross-sectional area. Therefore, when a load is applied to the long columnar motor terminal during press-fitting between the motor terminal and the motor connection terminal, the motor terminal may be deformed due to buckling or the like.
  • the insulating member is positioned and fixed on the electric motor side of the housing connecting the electric motor and the control device, and the motor connection terminal is fixed to the housing via the insulating member.
  • FIGS. 10 is a cross-sectional view of an electric drive device 300 according to Embodiment 3 of the present invention
  • FIG. 11 is a perspective view of a main part of the housing 66 of FIG. 10
  • (a) is a module motor connection terminal of the power module 64.
  • FIG. 12B is a perspective view of the main part in the vicinity of 22f
  • FIG. 12B is a perspective view of the main part after the motor connection terminal 46 is welded to the module motor connection terminal 22f in FIG.
  • FIG. 6 is a perspective view of a main part of a housing 66 before the motor 1 and the control device 20 are connected.
  • FIG. 10 is a cross-sectional view of an electric drive device 300 according to Embodiment 3 of the present invention
  • FIG. 11 is a perspective view of a main part of the housing 66 of FIG. 10
  • (a) is a module motor connection terminal of the power module 64.
  • FIG. 12B is a perspective view of the main part in the vicinity of 22f
  • FIGS. 10 to 13 are a perspective view of a main part of the insulating member 42 when the motor terminal 13 approaches the guide portion 43 before the motor terminal 13 is fixed in a state of being press-fitted into the motor connection terminal 46.
  • the position of the motor connection terminal 46 is different from the motor connection terminals (34, 45) shown in the first and second embodiments. Different.
  • the shapes of the housing 66, the power module 64, and the frame 65 are changed to the housing 36, the power module (21, 62), and the frame (30, 30) shown in the first and second embodiments. 63). Since other configurations are the same as those of the electric drive devices (100, 200) of the first and second embodiments, detailed description will be omitted.
  • the housing 66 is integrally formed with a plate 66 a that is perpendicular to the direction of the rotating shaft 2 of the electric motor 1. And when connecting the electric motor 1 and the control apparatus 20 to the plate 66a, the through-hole 66b through which the rotating shaft 2 passes and the through-hole 66c for fixing the insulating member 42 described later in a press-fitted state. Is formed.
  • the module motor connection terminal 22 f passes through a through hole 65 a formed in the frame 65 and extends to the electric motor 1 side of the housing 66.
  • the insulating member 42 is, for example, a member made of an insulating resin, and is located on the electric motor 1 side of the housing 66 and has a through hole 66c provided in the housing 66 as described above, as shown in FIG. And fixed in a press-fitted state.
  • the insulating member 42 is formed with a flange 42a that serves as a stopper for suppressing the insulating member 42 itself from moving toward the control device 20 side.
  • the insulating member 42 has an insertion hole 43a into which the motor terminal 13 is inserted, and the insulating member 42 guides the motor terminal 13 so that the slit 13a of the motor terminal 13 can sandwich the motor connection terminal 46.
  • a resin guide portion 43 is formed.
  • the insertion hole 43a has a tapered shape in which the axial section of the guide portion 43 gradually narrows from the electric motor 1 side (inlet) to the control device 20 side (outlet) with respect to the axial direction.
  • the insulating member 42 is formed by insert molding the motor connection terminal 46.
  • the motor connection terminal 46 is configured on a plane perpendicular to the rotating shaft 2, and one end thereof is bent into an L shape to form a connection portion 46 a exposed from the insulating member 42. And as shown in FIG.11 (b), the connection part 46a and the module motor connection terminal 22f are connected by joining means, such as welding.
  • the electric drive device 300 further includes the housing 66 that is disposed on the axis of the rotary shaft 2 and connects the electric motor 1 and the control measure 20. Since the insulating member 42 is positioned and fixed to the electric motor 1 side, and the motor connection terminal (second terminal) 46 is configured to be fixed to the housing 66 via the insulating member 42, The insulating member 42 is located between the electric motor 1 and the control device 20, that is, on the electric motor 1 side of the housing 66 located on the electric motor 1 side of the control device 20. It is fixed to the housing 66 via the sex member 42.
  • the motor connection terminal fixed to the housing 66. 46 is also located on the electric motor 1 side, and therefore, the motor terminal (first terminal) 13 extending from the electric motor 1 toward the control device 20 in parallel with the axial direction of the rotary shaft 2 is shortened. Therefore, the motor terminal 13 is less likely to be deformed due to buckling or the like, and an electric drive device with improved reliability can be provided.
  • the motor terminal 13 is formed by pressing a special copper alloy plate having higher heat-resistant creep characteristics than the motor connection terminal 46, the motor terminal 13 is shortened. This reduces the cost of the electric drive device.
  • the motor terminal 13 In addition to the columnar motor terminal 13, in general, if the length of the column is too long, the column changes into a curved shape due to the weight of the column (deflection occurs), and displacement occurs at both ends of the column. As a result, the positional accuracy of the motor terminal 13 deteriorates. Therefore, in the first and second embodiments, since the motor terminal 13 is relatively long, the motor terminal 13 is displaced when the motor terminal 13 sandwiches the motor connection terminals (34, 45).
  • the motor terminal 13 since the motor terminal 13 is shortened, the motor terminal 13 is less likely to be misaligned, and even if a misalignment occurs, the motor terminal 13 Since the positional accuracy is improved as compared with the motor terminal 13 in the first and second embodiments, the assemblability and reliability of the electric drive device are improved. As the motor terminal 13 is shortened, there is a concern that the length of the module motor connection terminal 22f, which is the lead frame 22 constituting the power module 64, is increased, resulting in misalignment, as shown in FIG. In addition, when the module motor connection terminal 22f is connected to the motor connection terminal 46 by a joining means such as welding, the misalignment is absorbed. Therefore, the motor connection terminal 46 when the motor terminal 13 sandwiches the motor connection terminal 46 is absorbed. Therefore, the position accuracy when the motor terminal 13 sandwiches the motor connection terminal 46 is improved, and the assemblability and reliability of the electric drive device are improved.
  • the insulating member 42 is formed with a flange 42a that serves as a stopper that suppresses the insulating member 42 itself from moving toward the control device 20 side.
  • the insulating member 42 fixed to the housing 66 can be restricted from moving further to the control device 20 side, and the insulating member 42 is securely fixed. Since the motor terminal 13 becomes smaller, the motor connection terminal 46 can be securely sandwiched, and the assembly of the electric drive device is further improved.
  • the motor connection terminal 46 is fixed to the housing 66 through the insulating member 42, and the insulating member 42 is formed with a guide portion 43 into which the motor terminal 13 is inserted. Since the guide portion 43 serves as a guide for correcting the position of the motor terminal 13 to a position where the motor connection terminal 46 is located when the motor connection terminal 46 is sandwiched, the motor terminal 13 is connected to the motor according to the guide of the guide portion 43. The terminal 46 can be inserted, and the assemblability of the electric drive device is improved.
  • the guide portion 43 is shown as a separate component from the insulating member 42. However, both the insulating member 42 and the guide portion 43 are molded from an insulating resin. Therefore, both can be integrally molded.
  • the insulating member 42 and the guide portion 43 By integrally molding the insulating member 42 and the guide portion 43 with an insulating resin, the number of assembling steps can be reduced, and the cost of the electric drive device can be reduced. In addition, since the position accuracy of the guide portion 43 is improved as compared with the case where both parts are configured as separate parts, the assembly of the electric drive device is further improved and the reliability of the electric drive device is improved. improves. Further, in the third embodiment, as shown in FIG. 13, the guide portion 43 is formed so as to cover the periphery of the motor terminal 13, so that insulation can be secured, and the reliability of the electric drive device can be ensured. The nature is further improved.
  • the motor connection terminal 46 is insert-molded into the insulating member 42 made of an insulating resin, when the insulating member 42 is formed, both ends of the motor connection terminal 46 are fixed by the insulating resin.
  • the motor terminal 13 is fixed in a state where it is press-fitted into the motor connection terminal 46, the load applied to the motor connection terminal 46 during press-fitting is evenly applied without being biased, and the load received by the motor connection terminal 46 is insulative. Therefore, the deformation and breakage of the motor connection terminal 46 can be prevented. This improves the reliability of the electric drive device.
  • the motor connection terminal 46 when the motor connection terminal 46 is insert-molded into the insulating member 42, the position of the motor connection terminal 46 is fixed, so that the displacement of the motor connection terminal 46 is reduced, and the motor terminal 13 is connected to the motor connection terminal 46. Since it can pinch reliably, the assembly property of an electric drive device improves. In addition, since the motor connection terminal 46 is insert-molded into the insulating member 42, the number of assembly steps can be reduced and the cost can be reduced.
  • Embodiment 4 FIG.
  • the electric drive device (100, 200, 300) used in the electric power steering device has been described.
  • the electric drive device 101 according to the first embodiment is the same.
  • the mounted electric power steering apparatus will be described with reference to FIGS.
  • FIG. 14 is a cross-sectional view of an electric power steering apparatus according to Embodiment 4 of the present invention.
  • the electric power steering apparatus according to Embodiment 4 of the present invention reduces the rotational speed of electric motor 1 on the control device 20 side of electric drive apparatus 101 according to Embodiment 1. It is configured by mounting the reduction gear 14. More specifically, the electric drive device 101 is fixed to the speed reduction device 14 with a screw (not shown) via the heat sink 35 of the control device 20.
  • the speed reducer 14 includes a gear case 15 to which the heat sink 35 of the control device 20 is attached, a worm gear 16 that is provided in the gear case 15 and decelerates the rotation of the rotary shaft 2, and a worm wheel 17 that meshes with the worm gear 16. have.
  • a coupling 18 is fixed to the end of the worm gear 16 on the rotating shaft 2 side. By coupling the coupling 18 and the coupling 7, torque is transmitted from the electric motor 1 to the worm gear 16.
  • the reduction device that reduces the rotational speed of the electric motor 1. 14 is mounted, the heat generated from the control device 20 (the heat generating components (coil 40, capacitor 41, power module 21) constituting the drive unit 61) is radiated to the heat sink 35 and then further reduced by the speed reducer 14. Therefore, since the heat generated from the control device 20 is radiated by the speed reducer 14, the heat dissipation performance of the electric power stirrer is improved. Since the rise is suppressed, an electric power steering device with improved reliability can be provided.
  • FIG. 15 is a cross-sectional view of an electric power steering apparatus according to another embodiment of the fourth embodiment of the present invention.
  • the reduction gear 14 is mounted on the electric motor 1 side of the electric drive device 102 according to the first embodiment. More specifically, the electric drive device 102 is fixed to the reduction gear 14 with a screw (not shown) via the yoke 6 of the electric motor 1.
  • the yoke 6 in the electric motor 1 of the electric drive device 102 is equipped with the speed reduction device 14 that decelerates the rotation speed of the electric motor 1. Since the control device 20 and the speed reduction device 14 are sandwiched, the durability of the electric motor 1 against vibrations, that is, vibration resistance is increased, and an electric power steering device with improved reliability can be provided.
  • the electric motor 1 is a brushless motor, but is not limited thereto, and may be an induction motor or a switched reluctance motor (SR motor).
  • SR motor switched reluctance motor
  • the power module (21, 62, 65) is mounted with an FET 23b that constitutes a motor relay that is a switch means for energizing and interrupting the motor current IM supplied to the electric motor 1.
  • the FET 23b may be omitted.
  • the shunt resistor 24 is integrally molded as a component of the power module (21, 62, 65), but may be configured separately from the power module (21, 62, 65).
  • the low-side current detection circuit in which the shunt resistor 24 is inserted between the three-phase bridge circuit and the ground is shown as a means for detecting the motor current IM.
  • a so-called high-side current detection circuit in which a shunt resistor is inserted between the high-potential side of the power source that supplies the motor current IM to the electric motor 1 and the three-phase bridge circuit may be used. Furthermore, the motor current IM may be detected by means other than the shunt resistor 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Power Steering Mechanism (AREA)

Abstract

本発明は、電動モータと、電動モータを制御する制御装置とを備えた電動式駆動装置において、モータ端子と制御装置の接続端子とを電気的に接続するネジを必要することなく、部品点数および組立工数の減少によりコストダウンをはかることを目的としてなされたものである。本発明の電動式駆動装置100は、電動モータ1と、電動モータ1の回転軸2の軸線上に配置され電動モータ1を制御する制御装置20とを備え、電動モータ1には、制御装置20に向かって回転軸2の軸線方向と平行に延出するモータ端子13を有するとともに、モータ端子13の制御装置20側端部にスリット13aが形成され、制御装置20には、モータ端子13の延出線上に設けられ、モータ端子13に接続されるモータ接続端子34を有し、モータ端子13のスリット13aがモータ接続端子34に圧入固定されるものである。

Description

電動式駆動装置
 本発明は、車両のステアリングに対して補助トルクを出力する電動モータとこの電動モータを駆動制御する制御装置を備えた電動式駆動装置であって、例えば電動式パワーステアリング装置に用いられる電動式駆動装置に関するものである。
 従来、車両のステアリングに対して補助トルクを出力する電動モータと、この電動モータを駆動制御する制御装置を備えており、この制御装置が電動モータに取り付けられた電動式駆動装置が知られている。この種の電動式駆動装置として、例えば、特許文献1に記載の電動式パワーステアリング装置が提案されている。
 特許文献1に記載の電動式パワーステアリング装置では、制御装置である制御ユニットが電動モータの回転軸の軸線上に配置されて電動モータに固定されている。この際、電動モ-タの給電部と制御ユニットの接合部は、ハウジング、またはケ-ス、あるいは両方に設けられた開口部を通して、ハウジング内、またはケ-ス内でネジを用いて接合されている。
特開2009-248754号公報(図2)
 特許文献1に記載の電動式パワーステアリング装置に用いられる電動式駆動装置では、電動モータの給電部と制御装置の接合部とを電気的に接続するネジが必要になる。また、ネジを用いて接合するためには、ネジの配置スペースおよびネジ締結用ツールの挿入スペースも必要になる。その結果、部品点数および組立工数が増加してコストが高くなるとともに、装置が大型化するという問題点があった。
 また、上記電動式駆動装置において、開口部から、ネジ締結用ツールを用いてネジを接合することで、給電部と接合部は接合されるため、外部からの異物(塵埃、水滴等)が、この接合部位に侵入して、接合部位の絶縁性が確保できなくなったり、接合部位に水滴が付着することで錆が生じて、導電率が低下したりするおそれがあった。そして、この接合部位の絶縁性、防水性を確保するためには、ネジ締結後、さらにカバーを用いて、ネジ締結用ツールの挿入口を塞ぐ必要がある。これにより、部品点数および組立工数が増加してコストがさらに高くなるという問題点があった。
 本発明は、上記のような問題点を解決することを課題とするものであって、電動モータと制御装置とを備えた電動式駆動装置において、部品点数および組立工数を削減した電動式駆動装置を提供することを目的とするものである。
 本発明に係る電動式駆動装置は、電動モータと、前記電動モータの回転軸の軸線上に配置され、前記電動モータを駆動制御する制御装置とを備えた電動式駆動装置であって、前記制御装置は、前記電動モータの電流切り替えを行う半導体スイッチング素子および前記スイッチング素子に電気的に接続される受動素子からなる、前記電動モータを駆動する駆動部と、前記受動素子の各端子がそれぞれ接続される複数の導電板が絶縁性樹脂によりインサート成型されるとともに、前記受動素子が配設されたフレームとを備え、前記電動モータまたは前記制御装置のうち、一方には、他方に向かって前記回転軸の軸線方向と平行に延出する第1の端子を有するとともに、前記第1の端子のうち、他方側端部にスリットが形成され、他方には、前記第1の端子の延出線上に設けられて、前記第1の端子に電気的に接続される第2の端子を有し、前記スリットが前記第2の端子を挟み込むことで、前記第1の端子は前記第2の端子に圧入された状態で固定されるものである。
 本発明によれば、電動モータと制御装置とを備えた電動式駆動装置において、部品点数および組立工数を削減した電動式駆動装置を提供することができる。さらに、導電板が一体成型されたフレームに受動素子を配設して、各端子をそれぞれ導電板に接続したので、組立作業性が向上した電動式駆動装置を提供することができる。
本発明の実施の形態1に係る電動式駆動装置100の断面図である。 本発明の実施の形態1に係る電動式駆動装置100の分解斜視図である。 本発明の実施の形態1に係る電動式駆動装置100の回路図である。 図1のモータ端子13の要部正面図である。 図1のパワーモジュール21の斜視図である。 モータ端子13が、モータ接続端子34に圧入された状態で固定される前であり、モータ端子13がガイド部31に接近した際のフレーム30の要部斜視図である。 本発明の実施の形態2に係る電動式駆動装置200の断面図である。 図7のパワーモジュール62の斜視図である。 モータ端子13がモータ接続端子45に圧入された状態で固定される前であり、モータ端子13が開口部62aに接近した際のパワーモジュール62の要部斜視図である。 本発明の実施の形態3に係る電動式駆動装置300の断面図である。 図10のハウジング66の要部斜視図である。 図10の電動式駆動装置300において、電動モータ1と制御装置20とが連結される前の、ハウジング66の要部斜視図である。 モータ端子13がモータ接続端子46に圧入された状態で固定される前であり、モータ端子13がガイド部43に接近した際の絶縁性部材42の要部斜視図である。 本発明の実施の形態4に係る電動式パワーステアリング装置の断面図である。 本発明の実施の形態4の別の形態に係る電動式パワーステアリング装置の断面図である。
実施の形態1.
 以下、本発明の実施の形態1について図1~図6に基づいて説明するが、各図において、同一、または相当部材、部位については同一符号を付して説明する。
 図1~図3は、それぞれ本発明の実施の形態1に係る電動式駆動装置100の断面図、分解斜視図、回路図である。本発明の実施の形態1に係る電動式駆動装置100は、電動式パワーステアリング装置に用いられる電動式駆動装置であり、車両のステアリングに対して補助トルクを出力する電動モータ1と、この電動モータ1を駆動制御する制御装置20とを備えている。
 電動モータ1は、三相ブラシレスモータであって、回転軸2と、回転軸2に例えば10極に着磁された円筒状の永久磁石3が固定された回転子4と、回転子4の周囲に設けられた固定子5と、固定子5を固定する鉄製のヨーク6と、回転軸2の端部に固定され、電動モータ1のトルクを伝達するカップリング7とを備えている。
 固定子5は、永久磁石3の外周に相対した例えば12個の突極8と、突極8に装着されたインシュレータ9を介して巻回され、かつ、U、VおよびWの3相に接続された電機子巻線10を有している。電機子巻線10は、例えばΔ結線されており、各巻線端部は、絶縁性の樹脂材からなるド-ナツ形状のホルダ11により支持される3本のターミナル(中間部材)12U、12V、12Wと、それぞれ、かしめ、溶接等の接合手段にて接続される。なお、永久磁石3の極数を10極、固定子5の突極数を12個としたが、この組み合わせに限定されるものではなく、他の極数、突極数の組み合わせであってもよく、また、電機子巻線10は、Δ結線としたが、この場合に限らず、スター結線であっても良い。
 円環状のホルダ11には、同心円状に凹状の溝部(支持部)11aがターミナル12と同数形成されている。円弧形状の各ターミナル12は、溝部11aに支持されている。また、タ-ミナル12は、それぞれ、電動モータ1から制御装置20に向かって回転軸2の軸線と平行に延出するターミナル12と同数のモータ端子(第1の端子)13と、かしめ、溶接等の接合手段にて接続される。このとき、モータ端子13は、溝部11aよりも径方向外側に配置されている。
 なお、ターミナル12は、モータ端子13に比べて耐熱クリープ特性が低い銅合金で作製されている。なお、クリープとは、一定の温度、一定の応力を受ける材料が、ある時間を過ぎた後に生じる変形のことであり、耐熱クリープ特性が高い材料とは、熱に対して、一定の応力を受けた材料の経時劣化度合い(変形度合い)が小さい材料のことである。
 ここで、図1、図4を参照しながら、モータ端子13について説明する。図4は、図1のモータ端子13の要部正面図である。
 図4に示すように、モータ端子13は、例えば柱状であって、制御装置20側の端部にはスリット13aが形成されており、このスリット13aにより、二つの腕部13bが形成される。また、図1に示すように、電動モータ1側(スリット13aが形成された側とは反対側)の端部には、曲げ部13dにてL字状に曲げ加工されることで、回転軸2の軸方向に対して垂直な端面13eが形成されている。それぞれの腕部13bの先端部であって、スリットが形成されている側(モータ端子13の内側、図4参照)には、先端に向かってスリット幅Wが漸次大きくなる、すなわち、腕部13bの幅が漸次小さくなるテーパ13c1がスリット13aの両側に形成されている。端面13eは、ホルダ11の当接面11bに対して軸方向に当接して支持されている。なお、本実施の形態1では、腕部13bの先端部であって、スリット13aが形成されていない側(モータ端子13の外側、図4参照)にもテーパ13c2が形成されている。
 また、モータ端子13は、車載用コネクタ等に使用される銅合金であって、後述するモータ接続端子34に比べて耐熱クリープ特性の高い、高導電、高強度の特殊銅合金の板材をプレス加工することで形成される。そして、プレス加工した後、プレス加工面には、例えば錫等にてメッキ処理が施されている。
 次に、制御装置20について説明する。電動モータ1を駆動制御する制御装置20は、半導体スイッチング素子23をモールド樹脂で封止してなるパワーモジュール(半導体モジュール)21およびリレーモジュール(半導体モジュール)60と、絶縁プリント基板からなる制御基板25と、半導体スイッチング素子23に接続される受動素子(コイル40、コンデンサ41)と、複数の導電板33が、絶縁性樹脂によりインサート成型されているフレーム30と、アルミダイカスト製のヒートシンク35と、車両のバッテリ50と電気的に接続されるパワーコネクタ37、外部配線を介して車両側と信号が入出力される信号コネクタ38、外部配線を介してトルクセンサ51からの信号が入出力されるトルクセンサコネクタ39と、ヨーク6を固定するアルミダイカスト製のハウジング36と、回転子4の回転位置を検出する回転位置センサであるレゾルバ29とを備えている。レゾルバ29は、レゾルバ用回転子29aおよびレゾルバ用固定子29bを有している。ここでは、回転位置センサをレゾルバ29とした場合について示したが、この場合に限らず、例えば、磁気抵抗素子、ホールIC等他の磁気検出素子を用いても良い。
 ここで、図1、図2および図5を参照しながら、パワーモジュール21について説明する。図5は、図1のパワーモジュール21の斜視図であって、(a)はパワーモジュール21単体の斜視図、(b)は(a)のパワーモジュール21にモータ接続端子34を溶接した後の斜視図である。
 パワーモジュール21は、配線パターンが形成された、銅または銅合金製のリードフレーム22上に、補助トルクの大きさおよび方向に応じて電動モータ1のモータ電流IMを切り替えるための3相ブリッジ回路を構成するFET23a、3相ブリッジ回路から電動モータ1に供給されるモータ電流IMを通電・遮断するスイッチ手段であるモータリレーを構成するFET23b、3相ブリッジ回路と接地との間に挿入されるシャント抵抗器24が半田で実装されており、これを絶縁性樹脂にて内包して一体成型したトランスファーモールドタイプのモジュールである。
 そして、図5(a)に示すように、パワーモジュール21には、内蔵するFET23aに給電するモジュールパワー端子22a、22bと、パワーモジュール21から電動モータ1へ給電するモジュールモータ接続端子22cと、FET23a、23bを制御するモジュール信号端子22dとを備えている。パワーモジュール21のモジュール信号端子22dは、後述する制御基板25のスルーホール25bに半田付けにより接続される。また、図5(b)に示すように、パワーモジュール21のモジュールモータ接続端子22cは、後述するフレーム30のモータ接続端子(第2の端子)34に溶接で接続される。さらに、モジュールパワー端子22a、22bは、後述するフレーム30の導電板33とそれぞれ溶接にて接合される。
 リレーモジュール60は、リードフレーム22上に、バッテリ50からの電源電流IBを通電・遮断するスイッチ手段であるFET23cが半田で実装されており、パワーモジュール21と同様、このFET23cを絶縁性樹脂にて内包して一体成型したトランスファーモールドタイプのモジュールである。
 本実施の形態1に係る電動式駆動装置の電動モータ1は、3相ブラシレスモータであり、また図1、図3からも分かるように、制御装置20は、パワーモジュール21を3個と、リレーモジュール60を1個の計4個の半導体モジュールを備えている。そして、図2に示すように、これら4個の半導体モジュールは、制御装置20の周方向に対して、略90度ピッチで等間隔に配置されている。
 制御基板25は、多層(例えば4層)のガラスエポキシ基板からなり、モジュール信号端子22dの挿入されるスルーホール25bが設けられている。モジュール信号端子22dは、スルーホール25bに半田付けされることで、制御基板25の配線パターンと電気的に接続される。そして、制御基板25上には、トルクセンサ51からの操舵トルク信号に基づいて補助トルクを演算するとともに、モータ電流IMおよびレゾルバ29で検出された電動モータ1の回転子の回転位置をフィードバックして補助トルクに相当する電流を演算するマイクロコンピュータ26と、マイクロコンピュータ26からの指令によりFET23aを駆動する駆動信号を出力する駆動回路27と、シャント抵抗器24の一端と接続され、電動モータ1に流れるモータ電流IMを検出する電流検出手段28とが、半田付けされて実装されている。なお、マイクロコンピュータ26は、図示していないが、AD変換器やPWMタイマ回路等の他に、周知の自己診断機能を含み、システムが正常に作動しているか否かを常に自己診断しており、異常が発生するとモータ電流IMを遮断するようになっている。
 また、電動モータ1を駆動する駆動部61は、電動モータ1の電流切り替えを行う半導体スイッチング素子23(FET23a)、スイッチング素子23に電気的に接続される受動素子(コイル40、コンデンサ41)、およびFET23aを駆動する駆動信号を出力する駆動回路27および周辺回路素子等からなる。コイル40は、半導体スイッチング素子23のスイッチング動作時に発生する電磁ノイズを除去するものであり、コンデンサ41は、電動モータ1に流れるモータ電流IMのリップル成分を吸収するものである。駆動回路27では、回転方向指令および電流制御量がマイクロコンピュータ26から入力されると、PWM駆動信号が生成され、FET23aに印加される。これにより、電動モータ1には、バッテリ50からの電源電流IBが、パワーコネクタ37、コイル40およびFET23a、23bを通じて流れ、所要方向に所要量の補助トルクが出力される。
なお、モータ電流IMには、FET23aのPWM駆動時のスイッチング動作によりリップル成分を含むが、コンデンサ41により平滑されて制御される。
 ここで、図1、図6を参照しながら、フレーム30について説明する。図6は、モータ端子13がモータ接続端子34に圧入された状態で固定される前であり、モータ端子13がガイド部31に接近した際の、フレーム30の要部斜視図であって、(a)はガイド部31の全体図、(b)はモータ接続端子34付近を示した図である。
 フレーム30は、図1に示すように、パワーモジュール21のモジュールパワー端子22a、22b、コイル40、コンデンサ41、各種コネクタ(パワーコネクタ37、信号コネクタ38、トルクセンサコネクタ39)と電気的に接続される複数の導電板33を絶縁性樹脂にてインサート成型することで形成されている。導電板33は、回転軸2と垂直な平面上に構成されており、その一端がL字状に曲げ加工され、絶縁性樹脂から露出した接続部33aが形成されている。これらの接続部33aと、モジュールパワー端子22a、22b、各種コネクタ(パワーコネクタ37、信号コネクタ38、トルクセンサコネクタ39)、コイル40、コンデンサ41が溶接等の接合手段にて接続される。
 また、図6に示すように、モータ接続端子34は導電板33の一つであって、モータ端子13と同数あり、それぞれ、モータ端子13に電気的に接続されて、これらの導電板33とともに絶縁性樹脂にてフレーム30にインサート成型される、もしくはこれらの導電板33をインサート成型した後、例えばプレス加工にて導電板33から分断される、ことで形成されている。モータ接続端子34も、導電板33と同様、その一端がL字状に曲げ加工され、絶縁性樹脂から露出した接続部34aとモジュールモータ接続端子22cが溶接等の接合手段にて接続される。
 モータ接続端子34には、図5(b)に示すように、モータ端子13の腕部13bが挿入される挿入孔34bが形成されており、挿入孔34b間の長さDは、モータ端子13のスリット幅W(図4参照)よりも大きい、すなわち、D>Wの関係を満たすようになっている。なお、腕部13bが挿入孔34bに挿入されることで、スリット13a(それぞれの腕部13bのモータ端子13の内側)がそれぞれの挿入孔34bの内側を挟み込むことから、挿入孔34b間の長さDは、モータ端子13に対する、モータ接続端子34の挟み込み幅に相当する。また、モータ接続端子34は、銅板を所定の形状(寸法)でプレス加工して形成されている。
 また、フレーム30には、図6(a)に示すように、モータ端子13が挿入される挿入孔31aを有し、モータ端子13のスリット13aがモータ接続端子34を挟み込むことができるように、モータ端子13をガイドする絶縁性樹脂製のガイド部31が形成されている。そして、図6(b)に示すように、挿入孔31aは、軸方向に対して、電動モータ1側(入口)から反電動モータ1側(出口)に向かってガイド部31の軸方向断面が漸次狭くなるテーパ形状となっているので、モータ端子13が挿入孔31aを通過すると、モータ端子13の位置が矯正され、モータ接続端子34のある位置にモータ端子13をガイドすることができる。また、図1に示すように、フレーム30における、ガイド部31よりも外側でかつ、反電動モータ1側の端部には、回転軸2の軸線と垂直な端面30aが形成されている。
 ヒートシンク35は、フレーム30よりも反電動モータ1側に配置されており、ヒートシンク35の電動モータ1側には、パワーモジュール21が、伝熱性と絶縁性を両立する絶縁性部材、例えば、アルミナ、窒化ケイ素、窒化アルミニウムなどのセラミック板(図示せず)を介して密着して固定されている。セラミック板には伝熱性のグリスまたは接着剤が塗布されている。
 また、ヒートシンク35のパワーモジュール21が固定されている面には、フレーム30がねじ(図示せず)で固定されている。フレーム30に配設された、コイル40およびコンデンサ41は、ヒートシンク35に形成された凹部35aに挿入されている。ヒートシンクに形成された凹部35aと、コイル40およびコンデンサ41との隙間には、伝熱性のグリスまたは接着剤が塗布されている。ヒートシンク35には、フレーム30の端面30aに当接して、フレーム30を支持する支持部35bが設けられている。
 ハウジング36は、回転軸2の軸線上に配置され、電動モータ1と制御装置20とを連結するものであり、制御装置20を構成するヒートシンク35とねじ(図示せず)で締結されている。ハウジング36は、ヒートシンク35とともにパワーモジュール21、制御基板25、フレーム30を覆っている。また、ハウジング36は、電動モータ1を構成するヨーク6とねじ(図示せず)で締結されている。なお、ハウジング36とヒートシンク35の間、ハウジング36と電動モータ1の間には、それぞれ液体パッキンが塗布されている。ハウジング36は、電動モータ1の回転軸2方向に垂直なプレート36aが一体成型されている。プレート36aは、電動モータ1、ヒートシンク35、ハウジング36にて囲まれる空間を分割している。なお、プレート36aには、電動モータ1と制御装置20とを連結する際、回転軸2が通過する貫通孔36bと、フレーム30に形成されたガイド部31が通過する貫通孔36cが形成されている。
 続いて、図1、図2および図6を参照しながら、モータ端子13とモータ接続端子34の接続について説明する。図2に示すように、電動モータ1を組み上げた段階で、電動モータ1に設けられたモータ端子13は、電動モータ1から制御装置20に向かって回転軸2の軸線方向と平行に延出しており、モータ端子13のうち、制御装置20側端部には、腕部13bおよびスリット13aが形成されている。
 また、制御装置20を組み上げた段階では、ハウジング36とヒートシンク35はねじで締結され、このとき、フレーム30に形成されたガイド部31は、ハウジング36に形成された貫通孔36cを通過し、電動モータ1に向かって延出しており、制御装置20に設けられたモータ接続端子34は、図1に示すように、導電板33とともにフレーム30にインサート成型されている。
 そして、電動モータ1が回転軸2の軸線方向で制御装置20に向かい、制御装置20とねじで締結されたハウジング36が電動モータ1のヨーク6とねじで締結され、電動モータ1、制御装置20の両者を組み付けるタイミングで、モータ端子13は、ガイド部31の挿入孔31aに挿入される。挿入孔31aの反電動モータ1側には、モータ接続端子34が位置して固定されており、モータ端子13の腕部13bは、モータ接続端子34の挿入孔34bに挿入されて、モータ端子13に形成されたスリット13aがモータ接続端子34を挟み込むことで、モータ端子13はモータ接続端子34に圧入される。その結果、両端子は圧接状態で電気的に接続される。それゆえ、電動モータ1と制御装置20を組み付けるタイミングでモータ端子13はモータ接続端子34に圧入された状態で固定される。このとき、モータ端子13のスリット13aは、図1に示すように、フレーム30、パワーモジュール21およびヒートシンク35によって、その周囲が取り囲まれた空間(閉空間)内に位置して固定されている。
 以上説明したように、本発明の実施の形態1に係る電動式駆動装置100によれば、制御装置20が電動モータ1の回転軸2の軸線上に配置され、電動モータ1または制御装置20のうち、一方である電動モータ1には、他方である制御装置20に向かって延出するモータ端子(第1の端子)13を有し、このモータ端子13のうち、制御装置20側端部(他方側端部)にスリット13aが形成され、また、制御装置20には、モータ端子13の延出線上に設けられ、モータ端子に電気的に接続されるモータ接続端子(第2の端子)34を有している。そして、スリット13aがモータ接続端子34を挟み込むことで、モータ端子13は、モータ接続端子34に圧入されて、両端子は電気的に接続されている。
これにより、両端子間の接続にネジ等の部品を新たに必要としないので、部品点数が削減され、ネジを締結する工程も不要となるので、組立工数が削減され、その結果、コストを低減することができる。また、ネジ締結のために、ネジの配置スペースおよびネジ締結用の挿入スペースを別途確保していた場合と比べると、これらのスペースも不要となるので、電動式駆動装置を小型化することができる。
 また、端子間を接続するネジが不要となったことから、ネジ締結用ツールの挿入口を塞ぐカバーも不要となるので、部品点数および組立工数が削減され、さらにコストを低減することができる。
 また、モータ端子13の腕部13bがモータ接続端子34の挿入孔34bに挿入される際、少なくとも腕部13bのモータ端子13の内側が、おのおのモータ端子13の外側方向にたわんで、腕部13bのモータ端子13の内側が、モータ接続端子34の挿入孔34b間(長さD、D>W)を挟み込むことから、モータ端子13の腕部13bの幅に寸法ばらつきが生じて、腕部13bのモータ端子13の外側と挿入孔34bとの間に多少の隙間があった場合であっても、モータ端子13とモータ接続端子34とは電気的に接続されるので、モータ端子13の寸法ばらつきを吸収することができ、電動式駆動装置の生産性が向上する。
 さらに、電動モータ1と制御装置20を組み付けるタイミングで、モータ端子13はモータ接続端子34に圧入された状態で固定されることから、電動式駆動装置の組立性が向上する。
 なお、実施の形態1においては、第1の端子が電動モータ1のモータ端子13であり、第2の端子が制御装置20のモータ接続端子34である場合について示したが、これらの端子が逆の構成である、すなわち、第1の端子が制御装置のモータ接続端子であり、第2の端子が電動モータのモータ端子であっても良い。この場合であっても、第1の端子であるモータ接続端子のうち、電動モータ側端部にスリットが形成され、このスリットが第2の端子であるモータ端子を挟み込むことで、モータ接続端子は、モータ端子に圧入されて、両端子は電気的に接続されるので、これにより、両端子間の接続にネジ等の部品を新たに必要としないので、部品点数が削減され、ネジを締結する工程も不要となるので、組立工数が削減され、その結果、コストを低減することができる。
 また、実施の形態1に係る電動式駆動装置100において、モータ端子13の制御装置20側の端部に形成されるスリット13aは、先端が二つに分かれ、二つの腕部13bが形成される場合について示したが、この場合に限らず、同一平面上で三つあるいはそれ以上に分かれ、三つあるいはそれ以上の腕部が形成されるようにしても良い。この場合、モータ端子、モータ接続端子間の圧入箇所が増加することから、圧入力も増加し、より確実に圧入される。また、モータ端子の先端が、十字形状またはH字形状等のように、複数の平面上で複数に分かれて、腕部が形成される場合であっても、モータ端子の腕部がモータ接続端子の挿入孔を四方より挟み込むことでモータ端子がモータ接続端子に圧入されることから、同様の効果が得られる。
 また、本発明の実施の形態1に係る電動式駆動装置100の制御装置20は、電動モータ1の電流切り替えを行う半導体スイッチング素子23(FET23a)および半導体スイッチング素子23に電気的に接続される受動素子(コイル40、コンデンサ41)からなる、電動モータ1を駆動する駆動部61と、受動素子の各端子がそれぞれ接続される複数の導電板33が絶縁性樹脂によりインサート成型されるとともに、受動素子が配設されたフレーム30とを備えた構成であることから、制御装置20の組み立て段階において、受動素子の溶接等の接合手段で一括して行うことが可能であり、受動素子の組み付け時間が短縮されることから、電動式駆動装置の組立性が向上する。
 受動素子は、フレーム30のヒートシンク35側(フレーム30の一方)に配設されているので、受動素子の配設スペースを効率的に確保することができることから、電動式駆動装置の小型化を図ることができる。
 なお、実施の形態1においては、パワーモジュール21のモジュールパワー端子22a、22bはフレーム30の導電板33と、パワーモジュール21のモジュールモータ接続端子22cはフレーム30のモータ接続端子34と、それぞれ接続されるので、上記の受動素子に加えて、パワーモジュール21の端子(モジュールパワー端子22a、22bとモジュールモータ接続端子22c)についても溶接等の接合手段で一括して行うことが可能であり、電子部品(受動素子、パワーモジュール)の組み付け時間が短縮されることから、電動式駆動装置の組立性がさらに向上する。
 また、モータ端子13のスリット13aにより二つの腕部13bが形成され、それぞれの腕部13bの先端部であって、モータ端子13の内側には、先端に向かってスリット幅が漸次大きくなるテーパ13c1がスリット13aの両側に形成されているので、モータ端子13のスリット13aがモータ接続端子34を挟み込む際、モータ端子13の内側(スリット13aが形成される側)に形成されたテーパ13c1部分がモータ接続端子34に形成された挿入孔34b間に誘導するガイドの役割をし、モータ接続端子34をスムーズに挟み込むことができることから、電動式駆動装置の組立性が向上する。
 その上、本発明の実施の形態1においては、腕部13bの先端部であって、モータ端子13の外側(スリット13aが形成されていない側)にもテーパ13c2が形成されているので、このテーパ13c2がモータ接続端子34に形成された各挿入孔34b内に誘導するガイドの役割をし、モータ接続端子34は挿入孔34b内にスムーズに挿入されるので、モータ端子13のスリット幅W、モータ接続端子34の挿入孔34b間の長さDの寸法ばらつきを吸収することができる。
 また、モータ端子13の電動モータ1側(スリット13aが形成された側とは反対側)の端部には、曲げ部13dにてL字状に曲げ加工されることで、回転軸2の軸方向と垂直な端面13eが形成されており、この端面13eは、当接部材であるホルダ11の当接面11bに当接して支持されているので、モータ端子13とモータ接続端子34との圧入時に、モータ端子13に加わる荷重を、当接面11bを介してホルダ11全体で受けることになり、モータ端子13の変形量(たわみ量)は、モータ端子13に加わる全荷重を端面13eのみで受ける場合に比べて小さくなることから、モータ端子13が座屈等で変形を生じる場合が少なくなり、信頼性の向上した電動式駆動装置を提供することができる。
 その上、モータ端子13の端面13eをホルダ11の当接面11bに当接させることで、モータ端子13が固定されるので、ターミナル12とモータ端子13とをかしめ、溶接等の接合手段で接続する際、モータ端子13の位置ずれが小さくなり、電動式駆動装置の組立性および信頼性が向上する。
 また、モータ端子13がモータ接続端子34に圧入されて固定された後の電動式駆動装置100において、電動式駆動装置の振動や温度変化により材料に線膨張差等が生じ、このとき、モータ端子13の圧入力を弱める応力が生じるが、モータ端子13を曲げ加工することで曲げ部13dがL字状に形成され、これがモータ端子13の弾性部を形成することから、電動式駆動装置の振動、モータ端子13の線膨張差等により生じる応力が緩和され、電動式駆動装置の信頼性が向上する。
 また、モータ端子13は、モータ接続端子34に比べて耐熱クリープ特性の高い銅合金で作製されているので、圧入固定部の経時劣化度合いが小さくなり、信頼性の向上した電動式駆動装置を提供することができる。本発明の実施の形態1においては、モータ端子13は、モータ接続端子34に比べて耐熱クリープ特性の高い銅合金であって、さらに高導電、高強度の特殊銅合金で作製されていることから、圧入固定部の経時劣化度合いが小さいことに加えて、モータ端子の発熱量も少なく、また強度も高くなることから、さらに信頼性の向上した電動式駆動装置を提供することができる。
 また、モータ端子13は、中間部材であるターミナル12を介して電機子巻線10に、かしめ、溶接等の接合手段にて電気的に接続されており、ターミナル12は、モータ端子13に比べて耐熱クリープ特性が低い銅合金で作製されている。一般に、耐熱クリープ特性が高い銅合金は特殊材料であり、変形等に対する経時劣化度合いが小さい反面、高価であることから、モータ端子と電機子巻線とを溶接等の接合手段にて直接電気的に接続した場合、特殊材料の使用量が増加して高コストになる。しかし、実施の形態1においては、モータ端子13のうち、圧入固定部以外の一部は、圧入固定部に比べて耐熱クリープ特性を必要としないことから、この部分を圧入固定部に比べて耐熱クリープ特性の低いターミナル12で構成し、圧入固定部のみをモータ端子13で構成したことで、特殊材料の使用量が低減し、電動式駆動装置のコストが低減する。
 また、本発明の実施の形態1に係る電動モータ1は、三相モータであって、ホルダ11には、ターミナル12を支持する支持部11aが形成され、3本のターミナル12U、12V、12Wと3本のモータ端子13U、13V、13Wは、それぞれかしめ、溶接等の接合手段にて接続されており、各モータ端子13は、この支持部11aより径方向外側に配置されているので、支持部11aより径方向内側に配置される場合に比べて、各モータ端子13について、他相のターミナル12間との絶縁距離を広げることができ、電動式駆動装置の信頼性が向上する。また、モータ端子13とターミナル12の接合部位が径方向外側に配置されるので、接合手段にて両者を接続する際に必要なスペースを確保することができ、電動式駆動装置の組立性も向上する。
 さらに、モータ接続端子34は、モータ端子13の延出線上に設けられて、モータ端子13の圧入を受けるものであって、3本のモータ端子13は、支持部11aより径方向外側に配置されているので、3本のモータ端子13それぞれの延出線上に設けられた3本のモータ接続端子34についても、径方向外側に配置されることから、3本のモータ接続端子34は、3本のモータ端子13の圧入を、径方向内側であって、回転軸2付近で集中して受けることなく、径方向外側で、圧入荷重を分散して受けることができるので、電動式駆動装置の信頼性が向上する。また、モータ接続端子34の絶縁距離を確保することができ、さらに電動式駆動装置の信頼性が向上する。
 また、本発明の実施の形態1に係る制御装置20は、3個のパワーモジュール21と1個のリレーモジュールの計4個の半導体モジュールを備えており、これらは、制御装置20の周方向に対して、略90度ピッチで等間隔に配置され、3個のパワーモジュール21に対応して、3本のモータ端子13U、13V、13Wも略90度ピッチで等間隔に配置されている。このように、3本のモータ端子13を90度ピッチで等間隔に配置することで、各モータ端子13間の絶縁距離を十分に確保することができることから、電動式駆動装置の信頼性が向上する。
 また、フレーム30には、モータ端子13が挿入されるガイド部31が形成されているので、モータ端子13がモータ接続端子34を挟み込む際、ガイド部31はモータ端子13の位置をモータ接続端子34のある位置に矯正するガイドの役割をすることから、モータ端子13は、ガイド部31のガイドに従ってモータ接続端子34を挟み込むことができ、電動式駆動装置の組立性が向上する。
 なお、実施の形態1では、ガイド部31は、フレーム30とは別部品にて構成した場合について示したが、この場合に限らず、フレーム30、ガイド部31はともに絶縁性樹脂にて成型されるものであることから、両者を一体成型することができる。フレーム30とガイド部31を絶縁性樹脂にて一体成型することで、組立工数が削減され、コストを低減することができる。その上、両部品を別部品にて構成した場合に比べて、ガイド部31の位置精度が向上することから、電動式駆動装置の組立性がさらに向上するとともに、電動式駆動装置の信頼性が向上する。
 さらに、実施の形態1において、ガイド部31は、図6に示すように、モータ端子13の周囲を覆うように形成されているので、絶縁性を確保することができ、電動式駆動装置の信頼性がさらに向上する。
 また、モータ接続端子34は、絶縁性樹脂にてフレーム30にインサート成型されているので、フレーム30を構成する際、絶縁性樹脂によりモータ接続端子34の両端は固定されることから、モータ端子13がモータ接続端子34に圧入された状態で固定される際、圧入時にモータ接続端子34に加わる荷重が、偏ることなく均等にかかるとともに、モータ接続端子34が受ける荷重をフレーム30全体で受けることができ、モータ接続端子34の変形、破損を防ぐことができる。これにより、電動式駆動装置の信頼性が向上する。
 モータ接続端子34が、絶縁性樹脂にてフレーム30にインサート成型されると、モータ接続端子34の位置が固定されるので、モータ接続端子34の位置ずれが小さくなり、モータ端子13はモータ接続端子34を確実に挟み込むことができることから、電動式駆動装置の組立性が向上する。
 さらに、フレーム30には、モータ端子13が挿入されるガイド部が形成されており、このガイド部31により、モータ端子13はフレーム30に対する相対位置が一意に決まるとともに、上述したように、モータ接続端子34についても、フレーム30に対する相対位置が一意に決まる。よって、フレーム30に対して、モータ端子13、モータ接続端子34の相対位置が一意に決まり、両者の位置ずれが小さくなることから、電動式駆動装置の組立性・信頼性がさらに向上する。
 その上、モータ接続端子34に加えて、ガイド部31もフレーム30にインサート成型されることで、組立工数が削減され、コストを低減することができるとともに、フレーム30に対して、モータ接続端子34、ガイド部31の相対位置が一意に決まり、ガイド部31とモータ接続端子33の位置ずれが小さくなることから、両者の位置精度が向上して、電動式駆動装置の組立性・信頼性が向上する。なお、モータ接続端子34がフレーム30にインサート成型されることで、組立工数が削減され、コストを低減することができる。
 なお、パワーモジュール21のリードフレーム22は、打ち抜き等により所要の形状にプレス加工されたものに、FET23a、23bおよびシャント抵抗器24が搭載され、これをモールド樹脂で封止した後、不要な部分が除去されて、FET23a、23bが搭載される面に垂直な方向に折り曲げられる(図5のモジュールパワー端子22a、22b、モジュールモータ接続端子22c、モジュール信号端子22d参照)。
 プレス加工される前のリードフレーム22の形状は、リードフレーム22を折り曲げる前の形状であるため、一般に、リードフレームの長さが長いと、不要な部分も増加することから、リードフレームのコストが増加するが、実施の形態1において、モータ接続端子34は、パワーモジュール21が配設されるフレーム30にインサート成型されており、リードフレーム22のうち、モジュールモータ接続端子22cは、このモータ接続端子34に溶接等の接合手段により接続されるので、モジュールモータ接続端子22cの長さが短くなり、その分リードフレーム22の材料使用量が低減することから、コストを低減することができる。
 また、フレーム30における、ガイド部31よりも外側でかつ、反電動モータ1側の端部には、回転軸2の軸線と垂直な端面30aが形成されており、この端面30aは、支持部材であるヒートシンク35に設けられた支持部35bに当接して、ヒートシンク35は、ガイド部31が形成されたフレーム30を支持する構成であるので、モータ端子13がガイド部31に挿入される際に、フレーム30が受ける荷重を、支持部35bを介してヒートシンク35全体で受けることになり、フレーム30のたわみ量は、フレーム30に加わる全荷重を端面30aのみで受ける場合に比べて、小さくなることから、フレーム30の変形、破損を防ぐことができる。これにより、電動式駆動装置の信頼性が向上する。
 その上、モータ接続端子34がフレーム30にインサート成型されることで、組立工数が削減され、コストを低減することができるとともに、モータ端子13とモータ接続端子34との圧入時に、モータ接続端子34が受ける荷重をフレーム30全体で受けることができることから、圧入によりモータ接続端子34が変形することがなくなり、信頼性の向上した電動式駆動装置を提供することができる。
 また、モータ接続端子34は、JIS規格に準じた銅板(例.板厚1mmの薄板)の板厚部分ではなく、銅板の平面部分を所定の形状(寸法)でプレス加工して形成されているので、電動モータ1の出力、使用環境、用途に応じて、モータ接続端子34の挟み込み幅(挿入孔34b間の長さD)を任意に設定することができることから、電動式駆動装置の設計自由度が向上する。また、モータ端子13についても、銅合金の板材をプレス加工することで形成されているので、モータ接続端子34と同様、電動モータ1の出力、使用環境、用途に応じて、モータ端子13の形状(例.スリット幅W<D)を任意に設定することができることから、電動式駆動装置の設計自由度が向上する。
 また、モータ端子13は、板材をプレス加工した後、プレス加工面にメッキ処理が施されているので、モータ端子13のメッキ部分は、モータ端子13の腕部13bがモータ接続端子34の挿入孔34b間を挟み込んだ後の、両端子間に生じる微細な隙間を埋めるように作用することから、両端子間に生じる接触抵抗の増加が抑制されて、電動式駆動装置の性能が向上する。なお、モータ端子13の代わりに、モータ接続端子34にメッキ処理が施される構成、あるいは両端子にメッキ処理が施される構成も可能であり、これらの構成であっても、それぞれ程度の差異はあるものの、両端子間に生じる接触抵抗の増加が抑制される効果が得られることは言うまでもない。
 さらに、本発明の実施の形態1に係る電動モータ1は、三相モータであって、3本のモータ端子13U、13V、13Wは、板材をプレス加工することで個々に形成されて、3つのモータ接続端子34U、34V、34Wにそれぞれ圧入される。これに対して、3つのモータ接続端子34(34U、34V、34W)は、銅板をプレス加工することで、例えば、コイル40等の受動素子への接続部を備えた一体品で形成されて、絶縁性樹脂にてインサート成型される。一体品であるモータ接続端子34は、メッキ処理の不要な箇所が含まれており、大型であるため、必要箇所にメッキ処理を施す場合、高コストになるおそれがある。これに対して、個々に形成されるモータ端子13は、小型で、端子全体にメッキ処理を施すので、低コストで施すことができることから、装置のコストが低減する。
 モータ接続端子34のメッキ処理後、インサート成型される場合、インサート成型時にメッキ被膜の溶出により、モータ接続端子34の電気的信頼性を損なうおそれがあるが、モータ端子13は、メッキ処理後、モータ接続端子34に圧入されるので、この点においても、モータ端子13にメッキ処理を施す方が性能面・コスト面で有利である。
 その上、両端子にメッキ処理を施した場合であれば、両端子のメッキ部分同士が接触しながら挿入されて、モータ端子13がモータ接続端子34を挟み込むので、挿入がスムーズになり、また、両端子はメッキ部分に覆われているので、端子表面が削られにくくなる。それゆえ、両端子の表面積は、端子表面が削られた場合に比べて小さいことから、端子表面は酸化しにくく、両端子の寿命が長くなり、装置の長寿命化を図ることができる。
 また、駆動部61を構成するコイル40、コンデンサ41等の受動素子や半導体スイッチング素子23は発熱部品であり、コイル40、コンデンサ41は、ヒートシンク35に形成された凹部35aに挿入され、半導体スイッチング素子21をモールド樹脂で封止してなる半導体モジュール(パワーモジュール21、リレーモジュール60)は、伝熱性を有するセラミック板を介して密着して固定されているので、発熱部品(コイル40、コンデンサ41、半導体モジュール)からの発熱は、ヒートシンク35にて放熱されて、電動式駆動装置の放熱性能が向上する。よって、発熱部品にて発熱した際の温度上昇が抑制されるので、電動式駆動装置の信頼性が向上する。
 発熱部品のうち、コイル40、コンデンサ41については、ヒートシンク35に形成された凹部35aに挿入されているので、コイル40、コンデンサ41からの発熱は、ヒートシンク35側の軸方向端面に加えて、外周面からもヒートシンク35に伝熱して放熱されることから、ヒートシンク35側の軸方向端面のみからヒートシンク35に伝熱して放熱される場合に比べて、電動式駆動装置の放熱性能が向上する。
 なお、実施の形態1では、セラミック板に伝熱性のグリスまたは接着剤を塗布することで、部品間の接着熱抵抗が低減し、またコイル40、コンデンサ41とヒートシンク35の凹部35aとの隙間に、伝熱性のグリスまたは接着剤を塗布することで、コイル40、コンデンサ41からヒートシンク35への放熱が促進されるので、電動式駆動装置の放熱性能がさらに向上する。
 また、電動モータ1と制御装置20を組み付けることで電動式駆動装置100は形成されて、モータ端子13が電動式駆動装置100の内部にあることから、外部からモータ端子13部分への、異物の侵入を防ぐことができるとともに、組み付けのタイミングで、モータ端子13のスリット13a(腕部13b)は、フレーム30、パワーモジュール21およびヒートシンク35により、その周囲が取り囲まれた空間(閉空間)内に位置して固定されているので、例えば、外部から電動モータ1内に侵入した異物(ゴミや水滴等)が、たとえフレーム30部分にまで到達したとしても、フレーム30により、スリット13a(腕部13b)部分にまで侵入することを防ぐことができることから、圧入固定部の防水性、絶縁性を確保することができる。また、圧入時に発生したカス等が、例えば、電動モータ1の回転子4等へ流出することも防ぐことができる。
 また、ハウジング36とヒートシンク35の間、ハウジング36と電動モータ1の間には、それぞれ液体パッキングが塗布されているので、これらの間をシーリングすることができ、電動式駆動装置の防水性が向上する。なお、実施の形態1においては、ハウジング36とヒートシンク35(電動モータ1)との間の防水構造を液体パッキングとしたが、これに限定されるものではなく、例えば、Oリングやゴムパッキンであっても良い。
 また、ヒートシンク35とパワーモジュール21との間にある絶縁性部材は、セラミック板としたが、これに限定されるものではなく、例えば、アルミナ等の高熱伝導材をフィラーとして混入させた接着剤やシリコン等の素材による放熱絶縁シートであっても良い。
実施の形態2.
 実施の形態2に係る電動式駆動装置200の構造について、図7~図9を用いて説明する。図7は本発明の実施の形態2に係る電動式駆動装置200の断面図、図8は図7のパワーモジュール62の斜視図、図9はモータ端子13がモータ接続端子45に圧入された状態で固定される前であり、モータ端子13が開口部62aに接近した際の、パワーモジュール62の要部斜視図である。
 図7~図9に示すように、実施の形態2に係る電動式駆動装置200は、パワーモジュール62の構成が実施の形態1で示したパワーモジュール21とは異なる。また、このパワーモジュールの変更に伴い、フレーム63の形状も実施の形態1で示したフレーム30とは異なる。他の構成は上記実施の形態1の電動式駆動装置100と同様であるので、詳細説明は省略する。
 図8に示すように、パワーモジュール62には、第1の端子であるモータ端子13が挿入される開口部62aが形成されており、この開口部62aの内側に位置してリードフレーム22であるモジュールモータ接続端子22eが固定されている。開口部62aは、モータ端子13が挿入される側からモジュールモータ接続端子22eに向かって開口部62aの断面が漸次狭くなるテーパ形状となっている。
 そして、モータ端子13は、このモジュールモータ接続端子22eを挟み込むことで、圧入された状態で固定され、両者は電気的に接続される。それゆえ、モジュールモータ接続端子22eは第2の端子であるモータ接続端子45と一体化して構成されている。したがって、モータ接続端子45は、パワーモジュール62と一体成型されている。
 フレーム63は、パワーモジュール62のモジュールパワー端子22a、22b、コイル40、コンデンサ41、各種コネクタ(パワーコネクタ37、信号コネクタ38、トルクセンサコネクタ39)と電気的に接続される複数の導電板33を絶縁性樹脂にてインサート成型することで形成されている。
 以上説明したように、本発明の実施の形態2に係る電動式駆動装置200は、図7~図9に示すように、半導体スイッチング素子(FET23a、23b)をモールド樹脂で封止してなる半導体モジュール(パワーモジュール62)をさらに備え、パワーモジュール62に、モータ端子(第1の端子)13が挿入される開口部62aを設け、モータ接続端子(第2の端子)45を開口部62aの内側に位置して固定されるように構成したので、パワーモジュールのリードフレームは、配線パターンが形成されるものであり、通常、パワーモジュールの外部に露出しているが、リードフレーム22のうち、モジュールモータ接続端子22eは、パワーモジュール62の開口部62aの内側に位置して固定されるので、モジュールモータ接続端子eが外部に露出することなく、その分リードフレーム22の材料使用量が低減することから、コストを低減することができる。
 また、モータ接続端子45は、モジュールモータ接続端子22eとして、リードフレーム22上に形成されているので、上記実施の形態1のように、モジュールモータ接続端子22cとは別部品として、モータ接続端子34を準備する必要がなく、実施の形態1の場合に比べて、部品点数を削減することができる。また、モータ接続端子34とモジュールモータ接続端子22cを接続する作業も不要であるので、組立工数も削減することができる。それゆえ、部品点数および組立工数が削減され、コストを低減することができる。
 また、モータ接続端子45は、パワーモジュール62と一体成型されているので、半導体スイッチング素子であるFET23a、23bをモールド樹脂で封止して、パワーモジュール62を構成する際、リードフレーム22であるモータ接続端子45の両端は、モールド樹脂により固定されることから、モータ端子13がモータ接続端子45に圧入された状態で固定される際、圧入時にモータ接続端子45に加わる荷重が、偏ることなく均等にかかるとともに、モータ接続端子45が受ける荷重を、モールド樹脂を介してパワーモジュール62全体で受けることができ、モータ接続端子45の変形、破損を防ぐことができる。これにより、電動式駆動装置の信頼性が向上する。
 また、モータ接続端子45がパワーモジュール62と一体成型されると、モータ接続端子45の位置が固定されるので、モータ接続端子45の位置ずれが小さくなり、モータ端子13はモータ接続端子45を確実に挟み込むことができることから、電動式駆動装置の組立性が向上する。
 また、上記実施の形態1の場合と同様、ヒートシンク35は、フレーム63よりも反電動モータ1側に配置されており、ヒートシンク35の電動モータ1側には、パワーモジュール62が、セラミック板を介して密着して固定されている。そして、ヒートシンク35のパワーモジュール62が固定されている面には、フレーム63がねじ(図示せず)で固定されており、このねじを締結することで、フレーム63がヒートシンク35に押圧された状態で固定される。それゆえ、ねじの締結力を利用して、フレーム63がヒートシンク35に押圧された状態で固定されると、パワーモジュール62およびパワーモジュール62の開口部62aに位置して固定されたモータ接続端子45の位置が固定されるので、モータ接続端子45の位置ずれが小さくなり、モータ端子13はモータ接続端子45を確実に挟み込むことができることから、電動式駆動装置の組立性が向上する。
 また、開口部62aは、モータ端子13が挿入される側からモータ接続端子45に向かって開口部62aの断面が漸次狭くなるテーパ形状となっているので、モータ端子13が開口部62a内に挿入されると、モータ端子13の位置をモータ接続端子45のある位置に誘導することができる。それゆえ、モータ端子13は、開口部62aのテーパに従ってモータ接続端子45を挟み込むことができ、電動式駆動装置の組立性が向上する。なお、実施の形態1の場合と同様、フレーム63には、モータ端子13が挿入されるガイド部31が形成されているので、開口部62aのテーパとフレーム63に形成されたガイド部31を併用することで、モータ端子13の位置をモータ接続端子45に精度よく誘導することができ、位置ずれを小さくすることができるので、動式駆動装置の組立性がさらに向上する。
実施の形態3.
 上記各実施の形態において、第1の端子であるモータ端子は、電動モータから制御装置に向かって回転軸の軸線方向と平行に延出するとともに、第2の端子であるモータ接続端子に圧入された状態で固定されている。また、第2の端子であるモータ接続端子は、フレームにインサート成型されたり、パワーモジュールの開口部の内側に位置して固定されたりしている。そして、フレームやパワーモジュールは制御装置内であり、電動モータから比較的離れた位置にあるため、モータ端子の長さは、その断面積に比べて十分に長い。それゆえ、モータ端子とモータ接続端子との圧入時に、長い柱状のモータ端子に荷重が加わると、モータ端子が座屈等で変形を生じる場合がある。実施の形態3では、電動モータと制御装置とを連結するハウジングの電動モータ側に、絶縁性部材が位置して固定され、モータ接続端子が、この絶縁性部材を介してハウジングに固定されることで、モータ端子が短くなることから、モータ端子13が座屈等で変形を生じる場合が少なくなり、信頼性の向上した電動式駆動装置を提供することができる。
 実施の形態3に係る電動式駆動装置300の構造について、図10~図13を用いて説明する。図10は本発明の実施の形態3に係る電動式駆動装置300の断面図、図11は図10のハウジング66の要部斜視図であって、(a)はパワーモジュール64のモジュールモータ接続端子22f付近の要部斜視図、(b)は(a)のモジュールモータ接続端子22fにモータ接続端子46を溶接した後の要部斜視図、図12は図10の電動式駆動装置300において、電動モータ1と制御装置20とが連結される前の、ハウジング66の要部斜視図である。また、図13はモータ端子13がモータ接続端子46に圧入された状態で固定される前であり、モータ端子13がガイド部43に接近した際の絶縁性部材42の要部斜視図である。
 図10~図13に示すように、実施の形態3に係る電動式駆動装置300は、モータ接続端子46の位置が、実施の形態1、2で示したモータ接続端子(34、45)とは異なる。また、このモータ接続端子46の位置の変更に伴い、ハウジング66、パワーモジュール64およびフレーム65の形状も実施の形態1、2で示したハウジング36、パワーモジュール(21、62)およびフレーム(30、63)とは異なる。他の構成は上記実施の形態1、2の電動式駆動装置(100、200)と同様であるので、詳細説明は省略する。
 ハウジング66は、図10、図11(a)に示すように、電動モータ1の回転軸2方向に垂直なプレート66aが一体成型されている。そして、プレート66aには、電動モータ1と制御装置20とを連結する際、回転軸2が通過する貫通孔66bと、後述の絶縁性部材42を圧入された状態で固定するための貫通孔66cが形成されている。
 また、パワーモジュール64を構成するリードフレーム22のうち、モジュールモータ接続端子22fは、フレーム65に形成された貫通孔65aを通過して、ハウジング66の電動モータ1側に延出している。
 絶縁性部材42は、例えば、絶縁性樹脂製の部材であり、図12に示すように、ハウジング66の電動モータ1側に位置して、上述したように、ハウジング66に設けられた貫通孔66cに、圧入された状態で固定される。絶縁性部材42には、絶縁性部材42自体が制御装置20側へ移動するのを抑制するストッパの役割をするフランジ42aが形成されている。
 また、絶縁性部材42には、モータ端子13が挿入される挿入孔43aを有し、モータ端子13のスリット13aがモータ接続端子46を挟み込むことができるように、モータ端子13をガイドする絶縁性樹脂製のガイド部43が形成されている。そして、挿入孔43aは、軸方向に対して、電動モータ1側(入口)から制御装置20側(出口)に向かってガイド部43の軸方向断面が漸次狭くなるテーパ形状となっているので、モータ端子13が挿入孔43aを通過すると、モータ端子13の位置が矯正され、モータ接続端子46のある位置にモータ端子13をガイドすることができる。
 また、絶縁性部材42は、モータ接続端子46をインサート成型されて形成されている。モータ接続端子46は、回転軸2と垂直な平面上に構成されており、その一端がL字状に曲げ加工され、絶縁性部材42から露出した接続部46aが形成されている。そして、図11(b)に示すように、接続部46aとモジュールモータ接続端子22fが溶接等の接合手段にて接続される。
 以上説明したように、本発明の実施の形態3の電動式駆動装置300は、回転軸2の軸線上に配置され、電動モータ1と制御措置20とを連結するハウジング66をさらに備え、ハウジング66の電動モータ1側には、絶縁性部材42が位置して固定され、モータ接続端子(第2の端子)46は、絶縁性部材42を介してハウジング66に固定されるように構成したので、絶縁性部材42は、電動モータ1と制御装置20の間、すなわち、制御装置20の電動モータ1側に位置するハウジング66の電動モータ1側に位置しており、モータ接続端子46は、この絶縁性部材42を介して、ハウジング66に固定されている。
 よって、ハウジング66は、電動モータ1と制御装置20との間に位置して、フレーム65やパワーモジュール64よりも電動モータ1側に位置しているので、ハウジング66に固定されているモータ接続端子46も、電動モータ1側に位置しており、それゆえ、電動モータ1から制御装置20に向かって回転軸2の軸線方向と平行に延出するモータ端子(第1の端子)13が短くなることから、モータ端子13が座屈等で変形を生じる場合が少なくなり、信頼性の向上した電動式駆動装置を提供することができる。
 特に、モータ端子13が、モータ接続端子46に比べて耐熱クリープ特性の高い特殊銅合金の板材をプレス加工することで形成される場合、モータ端子13が短くなるので、特殊銅合金の使用量が少なくなり、電動式駆動装置のコストが低減する。
 また、柱状のモータ端子13に限らず、一般に、柱の長さが長すぎると、柱の自重で柱が曲線状に変化して(たわみが発生して)、柱の両端で位置ずれが生じて、モータ端子13の位置精度が劣化する。よって、上記実施の形態1、2においては、モータ端子13が比較的長いため、モータ端子13がモータ接続端子(34、45)を挟み込む際の、モータ端子13の位置ずれが生じて、モータ端子13の位置精度が劣化するおそれがあるが、実施の形態3においては、モータ端子13が短くなるので、モータ端子13の位置ずれが生じにくくなり、また位置ずれが生じたとしても、モータ端子13の位置精度は、実施の形態1、2におけるモータ端子13に比べて向上することから、電動式駆動装置の組立性・信頼性が向上する。
 なお、モータ端子13が短くなることに伴い、パワーモジュール64を構成するリードフレーム22であるモジュールモータ接続端子22fの長さは長くなり、位置ずれが生じるという懸念があるが、図12に示すように、モジュールモータ接続端子22fは、モータ接続端子46と溶接等の接合手段で接続される際、位置ずれは吸収されるので、モータ端子13がモータ接続端子46を挟み込む際の、モータ接続端子46の位置精度には影響しないことから、モータ端子13がモータ接続端子46を挟み込む際の位置精度が向上して、電動式駆動装置の組立性・信頼性が向上する。
 また、絶縁性部材42は、ハウジング66に設けられた貫通孔66cに圧入された状態で固定されると、絶縁性部材42を介して固定されたモータ接続端子46の位置も固定されるので、モータ接続端子46の位置ずれが小さくなり、モータ端子13はモータ接続端子46を確実に挟み込むことができることから、電動式駆動装置の組立性が向上する。その上、本発明の実施の形態3において、絶縁性部材42には、絶縁性部材42自体が制御装置20側へ移動するのを抑制するストッパの役割をするフランジ42aが形成されているので、ハウジング66に固定された絶縁性部材42が、これ以上制御装置20側へ移動するのを規制することができるとともに、絶縁性部材42が確実に固定されるので、モータ接続端子46の位置ずれも小さくなることから、モータ端子13はモータ接続端子46を確実に挟み込むことができ、電動式駆動装置の組立性がさらに向上する。
 また、モータ接続端子46は、絶縁性部材42を介してハウジング66に固定されており、絶縁性部材42には、モータ端子13が挿入されるガイド部43が形成されているので、モータ端子13がモータ接続端子46を挟み込む際、ガイド部43はモータ端子13の位置をモータ接続端子46のある位置に矯正するガイドの役割をすることから、モータ端子13は、ガイド部43のガイドに従ってモータ接続端子46を挟み込むことができ、電動式駆動装置の組立性が向上する。
 なお、実施の形態3では、ガイド部43は、絶縁性部材42とは別部品にて構成した場合について示したが、絶縁性部材42、ガイド部43はともに絶縁性樹脂にて成型されるものであることから、両者を一体成型することができる。絶縁性部材42とガイド部43を絶縁性樹脂にて一体成型することで、組立工数が削減され、電動式駆動装置のコストを低減することができる。
 その上、両部品を別部品にて構成した場合に比べて、ガイド部43の位置精度が向上することから、電動式駆動装置の組立性がさらに向上するとともに、電動式駆動装置の信頼性が向上する。さらに、実施の形態3において、ガイド部43は、図13に示すように、モータ端子13の周囲を覆うように形成されているので、絶縁性を確保することができ、電動式駆動装置の信頼性がさらに向上する。
 また、モータ接続端子46は、絶縁性樹脂製の絶縁性部材42にインサート成型されているので、絶縁性部材42を構成する際、絶縁性樹脂によりモータ接続端子46の両端は固定されることから、モータ端子13がモータ接続端子46に圧入された状態で固定される際、圧入時にモータ接続端子46に加わる荷重が、偏ることなく均等にかかるとともに、モータ接続端子46が受ける荷重を絶縁性部材42全体で受けることができ、モータ接続端子46の変形、破損を防ぐことができる。これにより、電動式駆動装置の信頼性が向上する。
 また、モータ接続端子46が絶縁性部材42にインサート成型されると、モータ接続端子46の位置が固定されるので、モータ接続端子46の位置ずれが小さくなり、モータ端子13はモータ接続端子46を確実に挟み込むことができることから、電動式駆動装置の組立性が向上する。その上、モータ接続端子46が絶縁性部材42にインサート成型されることで、組立工数が削減され、コストを低減することができる
実施の形態4.
 上記実施の形態1~3では、電動式パワーステアリング装置に用いられる電動式駆動装置(100、200、300)について説明した。実施の形態4では、上記実施の形態1~3に係る電動式駆動装置(100、200、300)が装着された電動式パワーステアリング装置のうち、実施の形態1に係る電動式駆動装置101が装着された電動式パワーステアリング装置について図14、図15を用いて説明する。図14は、本発明の実施の形態4に係る電動式パワーステアリング装置の断面図である。
 図14に示すように、本発明の実施の形態4に係る電動式パワーステアリング装置は、実施の形態1に係る電動式駆動装置101の制御装置20側において、電動モータ1の回転数を減速させる減速装置14が装着されることで構成される。より具体的には、電動式駆動装置101は、制御装置20のヒートシンク35を介して減速装置14にねじ(図示せず)で固定される。
 減速装置14は、制御装置20のヒートシンク35が取り付けられるギヤケース15と、ギヤケース15内に設けられ、回転軸2の回転を減速する減速ギヤであるウォームギヤ16と、ウォームギヤ16に歯合したウォームホイール17を有している。ウォームギヤ16の回転軸2側の端部にはカップリング18が固定されている。カップリング18とカップリング7とが連結することで、電動モータ1からウォームギヤ16にトルクが伝達されるようになっている。
 以上説明したように、本発明の実施の形態4に係る電動式パワーステアリング装置によれば、電動式駆動装置101の制御装置20にあるヒートシンク35において、電動モータ1の回転数を減速させる減速装置14が装着されているので、制御装置20(駆動部61を構成する発熱部品(コイル40、コンデンサ41、パワーモジュール21)からの発熱は、ヒートシンク35に放熱された後、さらに減速装置14にて放熱される。よって、制御装置20からの発熱は、減速装置14にて放熱されることから、電動式パワースタリング装置の放熱性能が向上する。よって、制御装置20にて発熱した際の温度上昇が抑制されるので、信頼性の向上した電動式パワーステアリング装置を提供することができる。
 なお、実施の形態4では、実施の形態1に係る電動式駆動装置101の制御装置20側にあるヒートシンク35において、減速装置14が装着されている場合について示したが、制御措置20とは反対側である電動モータ1側において、減速装置14が装着されるよう構成しても良い。図15は、本発明の実施の形態4の別の形態に係る電動式パワーステアリング装置の断面図である。図15に示すように、実施の形態1に係る電動式駆動装置102の電動モータ1側において、減速装置14が装着されることで構成される。より具体的には、電動式駆動装置102は、電動モータ1のヨーク6を介して減速装置14にねじ(図示せず)で固定される。
 図15に示した場合には、電動式駆動装置102の電動モータ1にあるヨーク6において、電動モータ1の回転数を減速させる減速装置14が装着されているので、重量の大きい電動モータ1を、制御装置20と減速装置14とで挟み構造となることから、電動モータ1の振動に対する耐久性能、すなわち耐振性が増し、信頼性の向上した電動式パワーステアリング装置を提供することができる。
 なお、上記各実施の形態において、電動モータ1はブラシレスモータとしたが、これに限定されるものでなく、インダクションモータまたはスイッチトリラクタンスモータ(SRモータ)であっても良い。
 また、上記各実施の形態において、パワーモジュール(21、62、65)には、電動モータ1に供給されるモータ電流IMを通電・遮断するスイッチ手段であるモータリレーを構成するFET23bが実装されているが、このFET23bを省略した構成としても良い。なお、シャント抵抗器24は、パワーモジュール(21、62、65)の構成要素として、一体成型されているが、パワーモジュール(21、62、65)とは別体で構成されていても良い。また、上記各実施の形態においては、モータ電流IMの検知手段として、3相ブリッジ回路と接地との間にシャント抵抗器24が挿入されるローサイド方式の電流検出回路について示したが、別の構成として、電動モータ1にモータ電流IMを供給する電源の高電位側と3相ブリッジ回路との間にシャント抵抗器が挿入される、いわゆるハイサイド方式の電流検出回路であっても良い。さらには、モータ電流IMの検知手段として、シャント抵抗器24以外で構成されていても良い。
1:電動モータ、2:回転軸、3:永久磁石、4:回転子、5:固定子、
6:ヨーク、10:電機子巻線、11:ホルダ(当接部材)、
11a:溝部(支持部)、11b:当接面、
12、12U、12V、12W:ターミナル(中間部材)、
13、13U、13V、13W:モータ端子(第1の端子)、
13a:スリット、
13b:腕部、13c1、13c2:テーパ、
13d:曲げ部、13e:端面
30a:端面、14:減速装置、15:ギヤケース、16:ウォームギヤ、
17:ウォームホイール、20:制御装置、
21、62、64:パワーモジュール(半導体モジュール)、
22:リードフレーム、22a、22b:モジュールパワー端子、
22c、22e、22f:モジュールモータ接続端子、
22d:モジュール信号端子、23:半導体スイッチング素子、
23a、23b、23c:FET、25:制御基板、
26:マイクロコンピュータ、27:駆動回路、
30、63、65:フレーム、31、43:ガイド部、
31a、34b、43a:挿入孔、33:導電板、
34、34U、34V、34W、45、46:モータ接続端子(第2の端子)、
33a、34a、46a:接続部、35:ヒートシンク(支持部材)、
35a:凹部、35b:支持部、36、66:ハウジング、
36a、66a:プレート、
36b、36c、65a、66b、66c:貫通孔、
40:コイル(受動素子)、41:コンデンサ(受動素子)、
42:絶縁性部材、
42a:フランジ、50:バッテリ、
60:リレーモジュール(半導体モジュール)、
61:駆動部、62a:開口部、
100、101、102、200、300:電動式駆動装置。

Claims (18)

  1.  電動モータと、前記電動モータの回転軸の軸線上に配置され、前記電動モータを駆動制御する制御装置とを備えた電動式駆動装置であって、前記制御装置は、前記電動モータの電流切り替えを行う半導体スイッチング素子および前記スイッチング素子に電気的に接続される受動素子からなる、前記電動モータを駆動する駆動部と、前記受動素子の各端子がそれぞれ接続される複数の導電板が絶縁性樹脂によりインサート成型されるとともに、前記受動素子が配設されたフレームとを備え、前記電動モータまたは前記制御装置のうち、一方には、他方に向かって前記回転軸の軸線方向と平行に延出する第1の端子を有するとともに、前記第1の端子のうち、他方側端部にスリットが形成され、他方には、前記第1の端子の延出線上に設けられて、前記第1の端子に電気的に接続される第2の端子を有し、前記スリットが前記第2の端子を挟み込むことで、前記第1の端子は前記第2の端子に圧入された状態で固定されることを特徴とする電動式駆動装置。
  2.  第1の端子のスリットのうち、少なくとも先端部はテーパ形状であることを特徴とする請求項1に記載の電動式駆動装置。
  3.  第1の端子における、スリットが形成された側とは反対側の端部には、回転軸の軸線と垂直な端面を有するとともに、前記端面に当接する当接部材をさらに備えたことを特徴とする請求項1または請求項2のうちいずれか1項に記載の電動式駆動装置。
  4.  第1の端子は、第2の端子に比べて耐熱クリープ特性の高い銅合金であることを特徴とする請求項1から請求項3のうちいずれか1項に記載の電動式駆動装置。
  5.  第1の端子は、電動モータのモータ端子であって、前記モータ端子に比べて耐熱クリープ特性の低い中間部材をさらに備えるとともに、前記モータ端子は、前記中間部材を介して前記電動モータの電機子巻線に電気的に接続されることを特徴とする請求項4に記載の電動式駆動装置。
  6.  電動モータは、中間部材を支持する支持部を有する絶縁性のホルダーをさらに備えるとともに、モータ端子は、前記支持部よりも径方向外側に配置されることを特徴とする請求項5に記載の電動式駆動装置。
  7.  フレームには、第1の端子が挿入されるガイド部が形成されていることを特徴とする請求項1から請求項6のうちいずれか1項に記載の電動式駆動装置。
  8.  第1の端子は、電動モータのモータ端子であり、第2の端子は、制御装置のモータ接続端子であって、前記モータ接続端子は、フレームにインサート成型されていることを特徴とする請求項1から請求項7のうちいずれか1項に記載の電動式駆動装置。
  9.  フレームにおける、ガイド部よりも外側でかつ反電動モータ側の端部には、回転軸の軸線と垂直な端面を有するとともに、前記端面に当接して、前記フレームを支持する支持部材をさらに備えたことを特徴とする請求項7または請求項8のうちいずれか1項に記載の電動式駆動装置。
  10.  第1の端子は、電動モータのモータ端子であり、第2の端子は、制御装置のモータ接続端子であって、半導体スイッチング素子をモールド樹脂で封止してなる半導体モジュールをさらに備え、前記半導体モジュールは、前記モータ端子が挿入される開口部を有しているとともに、前記モータ接続端子は、前記開口部の内側に位置して固定されていることを特徴とする請求項1から請求項7のうちいずれか1項に記載の電動式駆動装置。
  11.  モータ接続端子は、半導体モジュールと一体成型されていることを特徴とする請求項10に記載の電動式駆動装置。
  12.  制御装置は、半導体モジュールの発熱を放熱するヒートシンクをさらに備えるとともに、フレームが前記ヒートシンクに押圧された状態で固定されることで、前記半導体モジュールは、前記ヒートシンクに固定されることを特徴とする請求項10または請求項11のうちいずれか1項に記載の電動式駆動装置。
  13.  第1の端子は、電動モータのモータ端子であり、第2の端子は、制御装置のモータ接続端子であって、回転軸の軸線上に配置され、前記電動モータと前記制御装置とを連結するハウジングをさらに備えるとともに、前記ハウジングの前記電動モータ側には、絶縁性部材が位置して固定され、前記モータ接続端子は、前記絶縁性部材を介して前記モータハウジングに固定されていることを特徴とする請求項1から請求項6のうちいずれか1項に記載の電動式駆動装置。
  14.  絶縁性部材は、ハウジングに設けられた貫通孔に圧入された状態で固定されることを特徴とする請求項13に記載の電動式駆動装置。
  15.  絶縁性部材には、モータ端子が挿入されるガイド部が形成されていることを特徴とする請求項13または請求項14のうちいずれか1項に記載の電動式駆動装置。
  16.  モータ接続端子は、絶縁性部材にインサート成型されていることを特徴とする請求項13から請求項15のうちいずれか1項に記載の電動式駆動装置。
  17.  電動モータの反制御装置側において、前記電動モータの回転数を減速させる減速装置が装着されるよう構成したことを特徴とする請求項1から請求項16のうちいずれか1項に記載の電動式駆動装置。
  18.  制御装置の反電動モータ側において、前記電動モータの回転数を減速させる減速装置が装着されるよう構成したことを特徴とする請求項1から請求項16のうちいずれか1項に記載の電動式駆動装置。
PCT/JP2011/075417 2011-09-12 2011-11-04 電動式駆動装置 WO2013038572A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/122,788 US9450476B2 (en) 2011-09-12 2011-11-04 Electric drive unit
EP11872253.7A EP2757665B1 (en) 2011-09-12 2011-11-04 Electric drive device
CN201180073409.0A CN103797691B (zh) 2011-09-12 2011-11-04 电动式驱动装置
IN2465CHN2014 IN2014CN02465A (ja) 2011-09-12 2011-11-04
JP2013533454A JP5634610B2 (ja) 2011-09-12 2011-11-04 電動式駆動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011198462 2011-09-12
JP2011-198462 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013038572A1 true WO2013038572A1 (ja) 2013-03-21

Family

ID=47882830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075417 WO2013038572A1 (ja) 2011-09-12 2011-11-04 電動式駆動装置

Country Status (6)

Country Link
US (1) US9450476B2 (ja)
EP (1) EP2757665B1 (ja)
JP (1) JP5634610B2 (ja)
CN (1) CN103797691B (ja)
IN (1) IN2014CN02465A (ja)
WO (1) WO2013038572A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173855A1 (ja) * 2014-05-12 2015-11-19 三菱電機株式会社 制御装置一体型回転電機及びその製造方法
CN105264748A (zh) * 2013-06-06 2016-01-20 三菱电机株式会社 电动助力用马达装置的供电部结构
WO2016075821A1 (ja) * 2014-11-14 2016-05-19 三菱電機株式会社 制御ユニットおよびこれを用いた電動パワーステアリング装置
JPWO2015093138A1 (ja) * 2013-12-16 2017-03-16 三菱電機株式会社 機電一体型駆動装置及びその製造方法
CN107078607A (zh) * 2014-11-13 2017-08-18 三菱电机株式会社 控制单元以及使用该控制单元的电动助力转向装置
EP3124356A4 (en) * 2014-03-26 2018-01-10 Mitsubishi Electric Corporation Electric power steering device
US10128720B2 (en) 2012-12-28 2018-11-13 Mitsuba Corporation Electric motor and electric pump
JP2021164235A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 電力制御ユニット
US11408485B2 (en) * 2017-09-28 2022-08-09 Nidec Tosok Corporation Electric actuator
WO2023095217A1 (ja) * 2021-11-24 2023-06-01 株式会社ジェイテクト モータ装置およびモータ制御装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619279B2 (ja) * 2011-05-11 2014-11-05 三菱電機株式会社 電動パワーステアリング装置
WO2013111365A1 (ja) * 2012-01-25 2013-08-01 三菱電機株式会社 電動パワーステアリング装置
JP6271968B2 (ja) * 2012-12-28 2018-01-31 株式会社ミツバ 電動モータおよび電動ポンプ
JP2015039283A (ja) * 2013-04-02 2015-02-26 アスモ株式会社 回転電機
CA2816212A1 (en) * 2013-05-17 2014-11-17 Brandt Agricultural Products Ltd. Electric mover for swing away conveyor
US9929614B2 (en) * 2013-07-02 2018-03-27 Nidec Corporation Motor with integrated slot liner and bobbin with guides for conductor coils
JP6117661B2 (ja) * 2013-09-19 2017-04-19 日立オートモティブシステムズ株式会社 電子制御装置
US20160362127A1 (en) * 2013-12-13 2016-12-15 Nsk Ltd. Electronic Controlling Unit, Electric Power Steering Device, and Vehicle
CN106256075B (zh) * 2014-05-01 2018-11-09 三菱电机株式会社 车用控制装置
US10710628B2 (en) * 2014-06-27 2020-07-14 Mitsubishi Electric Corporation Integrated electric power steering apparatus and manufacturing method therefor
DE102015201397A1 (de) * 2015-01-28 2016-07-28 Zf Friedrichshafen Ag Leistungssteuerung für eine Drehfeldmaschine
JP6107847B2 (ja) * 2015-02-10 2017-04-05 日本精工株式会社 端子接続構造、モータ、アクチュエータ、電動パワーステアリング装置および車両
JP5951067B1 (ja) * 2015-04-10 2016-07-13 三菱電機株式会社 電動パワーステアリング装置
CN107660322B (zh) * 2015-04-27 2020-02-18 三菱电机株式会社 控制装置
US10468935B2 (en) 2015-08-27 2019-11-05 Nidec Corporation Motor
US10404136B2 (en) * 2015-10-14 2019-09-03 Black & Decker Inc. Power tool with separate motor case compartment
JP6499988B2 (ja) * 2016-03-09 2019-04-10 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP6671209B2 (ja) * 2016-03-28 2020-03-25 Ntn株式会社 電動アクチュエータ
CN109565204B (zh) * 2016-08-12 2021-06-01 日本电产株式会社 马达
JP6595436B2 (ja) * 2016-10-25 2019-10-23 オムロンオートモーティブエレクトロニクス株式会社 回路一体型モータ
DE202016008549U1 (de) 2016-11-04 2018-07-31 Nidec Corporation Sammelschieneneinheit für einen Elektromotor
DE102017101739A1 (de) * 2017-01-30 2018-08-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Baukastensystem
JP2018125940A (ja) * 2017-01-31 2018-08-09 株式会社デンソー 駆動装置
JP6702212B2 (ja) * 2017-01-31 2020-05-27 株式会社デンソー 駆動装置
KR101896060B1 (ko) * 2017-02-15 2018-09-06 주식회사 만도 자동차 조향장치의 전자제어장치
JP6952765B2 (ja) * 2017-03-27 2021-10-20 三菱電機株式会社 電動機および空気調和装置
JP6885156B2 (ja) * 2017-03-31 2021-06-09 三菱自動車エンジニアリング株式会社 高電圧機器
JP6847763B2 (ja) * 2017-05-18 2021-03-24 株式会社マキタ 電動工具
CN108945085A (zh) * 2017-05-19 2018-12-07 上海海拉电子有限公司 一种电动助力转向系统
FR3068179A1 (fr) * 2017-06-22 2018-12-28 Valeo Systemes De Controle Moteur Dispositif de connexion electrique comportant une embase de connexion et un dispositif de guidage
JP6939185B2 (ja) * 2017-07-25 2021-09-22 日本電産トーソク株式会社 電動アクチュエータ
US11601029B2 (en) 2017-10-13 2023-03-07 Mitsubishi Electric Cornoration Electric power steering device
US10998797B2 (en) * 2017-12-19 2021-05-04 Tti (Macao Commercial Offshore) Limited Electric motor assembly including end cap having heat sink for heat-generating electrical component
JP6593815B2 (ja) * 2018-02-21 2019-10-23 三菱電機株式会社 電動パワーステアリング装置
JP2019161773A (ja) 2018-03-09 2019-09-19 株式会社デンソー 回転電機
US11015564B2 (en) * 2018-04-24 2021-05-25 GM Global Technology Operations LLC Starter for an internal combustion engine
US10886817B2 (en) * 2018-04-24 2021-01-05 GM Global Technology Operations LLC On-axis brushless starter assembly
DE102018209152A1 (de) * 2018-06-08 2019-12-12 Continental Automotive Gmbh Inverter und Elektromotorvorrichtung
JP7110872B2 (ja) * 2018-09-26 2022-08-02 日本電産トーソク株式会社 電動アクチュエータ
US20210336513A1 (en) * 2018-10-26 2021-10-28 Borgwarner Inc. Rotating machine and method of using the same
FR3091062B1 (fr) * 2018-12-20 2023-05-26 Valeo Equip Electr Moteur Ensemble d’interconnexion pour machine électrique tournante et machine électrique tournante
US11767053B2 (en) * 2018-12-27 2023-09-26 Hitachi Astemo, Ltd. Electronic control device and electric power steering device
DE102019102318A1 (de) * 2019-01-30 2020-07-30 Nidec Gpm Gmbh Pumpe aufweisend einen Elektromotor mit Steckeranbindung in Form eines Zwischenringes
JP7160012B2 (ja) * 2019-10-03 2022-10-25 株式会社デンソー 電子制御装置
EP4146522A1 (en) * 2020-05-08 2023-03-15 Hella Gmbh & Co. Kgaa Electronic control unit and electric power steering system
US11658545B2 (en) 2020-06-19 2023-05-23 Snap-On Incorporated Brushless direct current motor end cap
CN114069956A (zh) * 2020-07-31 2022-02-18 日本电产(大连)有限公司 驱动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP2003204654A (ja) * 2002-01-08 2003-07-18 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2009248754A (ja) 2008-04-07 2009-10-29 Mitsubishi Electric Corp 電動パワ−ステアリング用電動モ−タ装置および電動パワーステアリング装置
JP2009278855A (ja) * 2008-04-18 2009-11-26 Asmo Co Ltd モータ構造
WO2011065394A1 (ja) * 2009-11-27 2011-06-03 パナソニック電工株式会社 モータ装置、このモータ装置を装備するポンプ及びこのポンプを装備する液体循環装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146893C3 (de) * 1971-09-20 1974-02-07 Siemens Ag, 1000 Berlin U. 8000 Muenchen Kollektorloser Gleichstrommotor mit einer durch Hall generatoren gesteuerten, aus Halbleiterschaltelementen aufgebauten Kommutierungseinrichtung
US4926075A (en) * 1987-12-28 1990-05-15 Makita Electric Works, Ltd. Electric motor brush assembly adaptable to different stators
JPH04128069U (ja) * 1991-05-14 1992-11-20 自動車電機工業株式会社 ワイパモータ
US5825107A (en) * 1997-06-13 1998-10-20 General Electric Company Drive package for a dynamoelectric machine
JP3535827B2 (ja) * 1997-10-01 2004-06-07 カヤバ工業株式会社 電動パワーステアリング装置の電動モータ
US5939807A (en) * 1997-12-16 1999-08-17 Reliance Electric Industrial Company Cap mounted drive for a brushless DC motor
JP3774624B2 (ja) * 2000-10-18 2006-05-17 三菱電機株式会社 電動パワーステアリング装置
FR2865981B1 (fr) * 2004-02-06 2006-04-21 Valeo Systemes Dessuyage Moto-reducteur notamment pour mecanisme d'essuie-glace de vehicule automobile
WO2006109714A1 (ja) * 2005-04-08 2006-10-19 Mitsuba Corporation モータ装置
JP4502912B2 (ja) * 2005-09-16 2010-07-14 三菱電機株式会社 回転電機およびその製造方法
DE102007006859A1 (de) * 2007-02-12 2008-08-14 Siemens Ag Kontaktierung
JP4794667B2 (ja) * 2007-02-19 2011-10-19 三菱電機株式会社 モータの端子構造
EP2623394B1 (en) * 2008-07-16 2014-08-20 Mitsubishi Electric Corporation Electric power steering apparatus and control device integrated type electric motor
JP5476791B2 (ja) * 2009-05-13 2014-04-23 日本電産株式会社 モータの給電構造及びモータ
JP2011035984A (ja) * 2009-07-30 2011-02-17 Mitsubishi Electric Corp 電動モ−タ装置
JP5410194B2 (ja) * 2009-08-07 2014-02-05 株式会社デンソー 駆動回路内蔵型モータ
JP4772139B2 (ja) 2009-08-07 2011-09-14 三菱電機株式会社 電動パワーステアリング装置用モータ装置
JP5039171B2 (ja) * 2010-05-11 2012-10-03 三菱電機株式会社 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP2003204654A (ja) * 2002-01-08 2003-07-18 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2009248754A (ja) 2008-04-07 2009-10-29 Mitsubishi Electric Corp 電動パワ−ステアリング用電動モ−タ装置および電動パワーステアリング装置
JP2009278855A (ja) * 2008-04-18 2009-11-26 Asmo Co Ltd モータ構造
WO2011065394A1 (ja) * 2009-11-27 2011-06-03 パナソニック電工株式会社 モータ装置、このモータ装置を装備するポンプ及びこのポンプを装備する液体循環装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757665A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128720B2 (en) 2012-12-28 2018-11-13 Mitsuba Corporation Electric motor and electric pump
US9899891B2 (en) 2013-06-06 2018-02-20 Mitsubishi Electric Corporation Power feed section structure of electric power assisting motor apparatus
CN105264748A (zh) * 2013-06-06 2016-01-20 三菱电机株式会社 电动助力用马达装置的供电部结构
EP3007326A4 (en) * 2013-06-06 2017-02-22 Mitsubishi Electric Corporation Power feed section structure of electric power assisting motor apparatus
US10361603B2 (en) 2013-12-16 2019-07-23 Mitsubishi Electric Corporation Mechanically and electrically integrated driving apparatus and manufacturing method therefor
JPWO2015093138A1 (ja) * 2013-12-16 2017-03-16 三菱電機株式会社 機電一体型駆動装置及びその製造方法
US10211709B2 (en) 2014-03-26 2019-02-19 Mitsubishi Electric Corporation Electric power steering device
EP3124356A4 (en) * 2014-03-26 2018-01-10 Mitsubishi Electric Corporation Electric power steering device
JPWO2015173855A1 (ja) * 2014-05-12 2017-04-20 三菱電機株式会社 制御装置一体型回転電機
US10367397B2 (en) 2014-05-12 2019-07-30 Mitsubishi Electric Corporation Controller-integrated rotary electric machine and method for manufacturing the same
WO2015173855A1 (ja) * 2014-05-12 2015-11-19 三菱電機株式会社 制御装置一体型回転電機及びその製造方法
JP6095853B2 (ja) * 2014-05-12 2017-03-15 三菱電機株式会社 制御装置一体型回転電機
CN107078607A (zh) * 2014-11-13 2017-08-18 三菱电机株式会社 控制单元以及使用该控制单元的电动助力转向装置
CN107078607B (zh) * 2014-11-13 2019-05-14 三菱电机株式会社 控制单元以及使用该控制单元的电动助力转向装置
WO2016075821A1 (ja) * 2014-11-14 2016-05-19 三菱電機株式会社 制御ユニットおよびこれを用いた電動パワーステアリング装置
CN107041165A (zh) * 2014-11-14 2017-08-11 三菱电机株式会社 控制单元及使用了该控制单元的电动助力转向装置
JPWO2016075821A1 (ja) * 2014-11-14 2017-04-27 三菱電機株式会社 制御ユニットおよびこれを用いた電動パワーステアリング装置
US10597069B2 (en) 2014-11-14 2020-03-24 Mitsubishi Electric Corporation Control unit and electric power steering device employing control unit
US11408485B2 (en) * 2017-09-28 2022-08-09 Nidec Tosok Corporation Electric actuator
JP2021164235A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 電力制御ユニット
WO2023095217A1 (ja) * 2021-11-24 2023-06-01 株式会社ジェイテクト モータ装置およびモータ制御装置

Also Published As

Publication number Publication date
EP2757665B1 (en) 2017-03-01
JPWO2013038572A1 (ja) 2015-03-23
CN103797691B (zh) 2016-12-21
JP5634610B2 (ja) 2014-12-03
EP2757665A1 (en) 2014-07-23
US9450476B2 (en) 2016-09-20
IN2014CN02465A (ja) 2015-08-07
US20140091683A1 (en) 2014-04-03
EP2757665A4 (en) 2015-10-14
CN103797691A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5634610B2 (ja) 電動式駆動装置
JP5748917B2 (ja) 電動式駆動装置および電動式駆動装置の製造方法
EP2549627B1 (en) Electric drive device and electric power steering device having same mounted therein
KR101206158B1 (ko) 전동식 파워 스티어링 장치
JP6540986B2 (ja) 回転電機
JP5719524B2 (ja) 電動装置
JP4203055B2 (ja) 電動式パワーステアリング装置
JP5008742B2 (ja) 電動式駆動装置
JP4479821B2 (ja) 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置
JP2013090472A (ja) 駆動装置
EP2408278A1 (en) Control device
JP4582182B2 (ja) 電動式パワーステアリング装置
JP4981939B2 (ja) 電動式駆動装置および電動式パワーステアリング装置
JP6983338B2 (ja) 電動駆動装置
CN111727545B (zh) 电子控制装置以及电动驱动装置
KR20200108051A (ko) 전동 구동 장치 및 전동 파워 스티어링 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533454

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122788

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011872253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE