WO2013035639A1 - クロマトグラムデータ処理装置及び処理方法 - Google Patents

クロマトグラムデータ処理装置及び処理方法 Download PDF

Info

Publication number
WO2013035639A1
WO2013035639A1 PCT/JP2012/072151 JP2012072151W WO2013035639A1 WO 2013035639 A1 WO2013035639 A1 WO 2013035639A1 JP 2012072151 W JP2012072151 W JP 2012072151W WO 2013035639 A1 WO2013035639 A1 WO 2013035639A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatogram
wavelength
peak
differential
component
Prior art date
Application number
PCT/JP2012/072151
Other languages
English (en)
French (fr)
Inventor
康敬 水戸
悦輔 鎌田
三浦 宏
賢一 三嶋
年伸 柳沢
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US14/342,701 priority Critical patent/US10386346B2/en
Priority to CN201280042744.9A priority patent/CN103765207B/zh
Priority to JP2013532567A priority patent/JP5804070B2/ja
Publication of WO2013035639A1 publication Critical patent/WO2013035639A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to chromatogram data processing for processing data collected by spectroscopic analysis of a sample containing components separated by a column of a chromatograph, particularly a liquid chromatograph (LC), or a sample introduced by a flow injection method.
  • the present invention relates to an apparatus and a processing method.
  • FIG. 13 is a schematic diagram of such three-dimensional chromatogram data.
  • a wavelength chromatogram showing the relationship between time and absorbance at the specific wavelength can be created.
  • an absorbance spectrum indicating the relationship between the wavelength and the light absorbance at the time point can be created.
  • Patent Document 1 discloses a technique for peak purity determination processing in a chromatogram obtained by a liquid chromatograph using a multichannel detector.
  • the absorbance spectrum at time T 0 corresponding to the peak apex of the target peak in the wavelength chromatogram is S 0 ( ⁇ )
  • the absorbance spectrum at any time T before and after that is S ( ⁇ ).
  • the degree of coincidence P between S 0 ( ⁇ ) and S ( ⁇ ) is calculated from equation (1).
  • the degree of coincidence P with the peak apex is green when the coincidence P is 1.0 to 0.8, yellow when 0.8 to 0.6, orange when 0.6 or less. Is divided and displayed in the time axis direction according to the color corresponding to (represented by shading in the figure).
  • the degree of coincidence P is high near the peak apex, and decreases as it goes away from the peak apex, and its shape is approximately across the central axis of the peak. It becomes symmetrical.
  • the degree of coincidence P decreases before or after the peak peak of the target peak.
  • the degree of coincidence P on the right side is lower than the left side across the peak apex.
  • Non-Patent Document 1 in determining the threshold value of the coincidence degree P for determining whether or not an impurity peak exists, for example, noise at each wavelength It is necessary to set as a parameter a noise vector whose component is the magnitude of. However, in order to obtain a noise vector, complicated calculations such as sequentially monitoring the magnitude of noise in a predetermined wavelength region detected by a multi-channel detector and obtaining the standard deviation of the time change of noise in the wavelength region. There was also a problem that processing was necessary.
  • the FIA method is a method in which a predetermined amount of sample is injected into a mobile phase fed at a constant flow rate using a liquid chromatograph injector or the like, and the sample is introduced into a detector by being placed on the flow of the mobile phase. Yes, as with the eluate from the column outlet, the concentration of the target component changes in an approximately mountain shape over time.
  • the data obtained when a sample introduced by the FIA method is detected by a multichannel detector is also three-dimensional data having three dimensions of time, wavelength, and absorbance, and is a liquid chromatograph as described above. Is substantially the same as the data collected by Therefore, “three-dimensional chromatogram data” as used in this specification includes three-dimensional data collected by the FIA method.
  • the present invention has been made to solve the above-mentioned problems, and a first object of the present invention is to determine whether or not the target peak contains impurities with high accuracy without requiring complicated calculation processing. It is an object of the present invention to provide a chromatogram data processing apparatus and processing method that can perform the above processing.
  • a second object of the present invention is to perform quantitative analysis of these two components with high accuracy without requiring complicated arithmetic processing even when the peaks of the two target components overlap. It is an object to provide a chromatogram data processing apparatus and processing method that can be performed in the above.
  • the present invention made to achieve the first and second objects described above is a chromatogram data for processing three-dimensional chromatogram data collected for a target sample and having dimensions of time, wavelength, and absorbance.
  • the processing device a) Based on the three-dimensional chromatogram data, the wavelength at the maximum (or minimum) absorption wavelength of the first component in the absorbance spectrum indicating the relationship between the wavelength and the absorbance at each time point within the entire time range or within the predetermined time range.
  • a differential chromatogram creating means for obtaining a wavelength differential coefficient which is a differential coefficient of a direction, and creating a differential chromatogram representing a time change of the wavelength differential coefficient within the entire time range or a predetermined time range; b) Based on the waveform of the differential chromatogram, the determination of the presence or absence of one or more other components that overlap the peak of the first component, or the quantification of the second component that overlaps the peak of the first component.
  • Chromatogram waveform processing means to be executed; It is characterized by having.
  • the three-dimensional chromatogram data is typically obtained by repeatedly obtaining an absorbance spectrum with a detector such as a multi-channel detector for a sample containing components separated in the time direction by a chromatographic column. Data. Further, instead of the sample that has passed through the column, data obtained in the same manner for the sample introduced without component separation by the FIA method may be used.
  • the detector is not a multi-channel detector as long as it can obtain a spectrum with a relatively broad waveform (a slow change), and wavelength scanning is performed to obtain an absorbance spectrum. It may be an ultraviolet-visible spectrophotometer, an infrared spectrophotometer, a near-infrared spectrophotometer, a fluorescence spectrophotometer, and the like.
  • the chromatograph may be a liquid chromatograph or a gas chromatograph.
  • the above absorbance spectrum shows the relationship between the wavelength of light from the sample and the absorbance at each wavelength.
  • this absorbance spectrum there exists a local maximum (or minimum) absorption wavelength for each substance.
  • the wavelength is limited to a predetermined wavelength range, only one may appear.
  • the acquisition method of the maximum (or minimum) absorption wavelength of the first component is not particularly limited, but the operator may directly input the wavelength value, or the operator may specify the target component and set the corresponding wavelength value.
  • the method of acquiring from a database may be used.
  • a maximum absorption wavelength may be determined by automatically detecting a peak from three-dimensional chromatogram data and collating it with a database.
  • the differential chromatogram creation means reads out necessary data from, for example, a storage unit in which the three-dimensional chromatogram data collected for the target sample is stored, and within a full time range or a predetermined range.
  • the wavelength differential coefficient is obtained by differentiating the absorbance in the wavelength direction at the maximum (or minimum) absorption wavelength of the first component.
  • a differential chromatogram representing a time change of the wavelength differential coefficient is created by plotting the wavelength differential coefficient obtained at each time point within the entire time range or at a predetermined time range in time series.
  • the maximum (or minimum) absorption wavelengths of different components usually do not match.
  • another maximum (or minimum) absorption wavelength may be different from each other. For this reason, if no other component is included in the peak derived from the first component on the chromatogram, at least in the absorbance spectrum at each time point within the time range in which the peak derived from the first component is included.
  • the maximum (or minimum) absorption wavelength of one component remains maximum (or minimum). Therefore, the wavelength differential coefficient at the maximum (or minimum) absorption wavelength is almost 0 at any time point, and the differential chromatogram has a flat shape.
  • the other component is included in the peak derived from the first component, the maximum (or minimum) absorption wavelength of the first component in the absorbance spectrum at each time point within the time range in which the other component is included. Changes under the influence of other ingredients. Therefore, in that time range, the wavelength differential coefficient at the maximum (or minimum) absorption wavelength does not become 0, and the differential chromatogram does not have a flat shape.
  • the amount of the other component contained in the peak derived from the first component is small, the convex portion or the concave portion appearing in the differential chromatogram is small, and if the amount of the other component coexisting is large, the convex portion appearing in the differential chromatogram Or the recess is large. That is, the size of the convex portion or concave portion, that is, the peak appearing in this differential chromatogram depends on the amount of other components that coexist.
  • the peak size on the differential chromatogram can be regarded as the amount of that one component. Even if one or more of the other components coexisting is unknown, it can be determined whether at least such components are present. Therefore, the chromatogram waveform processing means determines whether there is another component that overlaps the peak of the first component based on the waveform of the differential chromatogram, or the second that overlaps the peak of the first component. Quantify ingredients.
  • the chromatogram waveform processing means determines whether or not there is an impurity for the target component. That is, the chromatogram data processing apparatus according to the first aspect of the present invention is: c) wavelength chromatogram creating means for creating a wavelength chromatogram indicating a relationship between time and absorbance with respect to the absorption wavelength of the first component based on the three-dimensional chromatogram data; The differential chromatogram creation means, based on the three-dimensional chromatogram data, has a maximum (or minimum) of the first component for the absorbance spectrum at each time point within the time range in which the peak of the target component in the wavelength chromatogram is included.
  • the chromatogram waveform processing means is configured to be determination means for determining whether an impurity is contained in the peak of the first component, which is a target component, based on the waveform shape of the differential chromatogram. Can do.
  • the “absorption wavelength of the first component” it is desirable to select one of the maximum (or minimum) absorption wavelengths of the first component, but a wavelength in the vicinity thereof may be used. In addition, when there are a plurality of maximum (or minimum) absorption wavelengths for the component, it is desirable to select the wavelength of the maximum intensity among them.
  • the “maximum (or minimum) absorption wavelength of the first component” it is known in advance that an impurity peak exists in the vicinity of the peak peak of the target peak, and when it is desired to determine the number of impurities. A maximum (or minimum) absorption wavelength having a sufficiently large value obtained by differentiating the absorption spectrum of the impurity in the wavelength direction may be selected.
  • time range including the peak of the target component may be obtained by automatically detecting the peak on the wavelength chromatogram and acquiring the time range from the start point to the end point of the target peak.
  • An appropriate time width may be provided before and after the retention time of the upper target peak.
  • the shape of the differential chromatogram created by the differential chromatogram creation means reflects the presence or absence of impurities. Is done. Therefore, according to the chromatogram data processing apparatus according to the first aspect, it can be determined with high accuracy whether or not the target peak contains impurities.
  • the differential chromatogram is created by focusing on the “time range including the peak of the target component” instead of the entire time range, and the presence or absence of impurities within the time range is determined. Not only can it be determined more efficiently whether the target peak contains impurities, but also the time required for determination can be further reduced.
  • the determination means specifically determines whether or not the peak of the target component contains an impurity by determining whether or not the differential chromatogram is flat. That's fine.
  • the chromatogram waveform processing means quantifies the two target components.
  • the differential chromatogram creation means based on the three-dimensional chromatogram data, has a maximum (or minimum) of the first component as the first target component for the absorbance spectrum at each time point within the entire time range or the predetermined time range.
  • the chromatogram waveform processing means quantifies the second target component based on a peak appearing in a differential chromatogram at the maximum (or minimum) absorption wavelength of the first target component, and the maximum of the second target component (or The first target component can be quantified based on the peak appearing in the differential chromatogram at the (minimum) absorption wavelength.
  • the size of the peak appearing in the differential chromatogram at the maximum (or minimum) absorption wavelength of the first target component reflects the concentration of the second target component. For example, if the concentration of the second target component is 0, no peak appears in the differential chromatogram at the maximum (or minimum) absorption wavelength of the first target component, resulting in a flat shape.
  • the size of the peak appearing in the differential chromatogram at the maximum (or minimum) absorption wavelength of the second target component reflects the concentration of the first target component. For example, if the concentration of the first target component is 0, no peak appears in the differential chromatogram at the maximum (or minimum) absorption wavelength of the second target component, and a flat shape is obtained. That is, if attention is paid to the peak appearing in the differential chromatogram at the maximum (or minimum) absorption wavelength of one target component, the influence of the target component can be eliminated and the other target component can be quantified.
  • the maximum (or minimum) absorption wavelength of the second component may be acquired by the same method as the acquisition method of the maximum (or minimum) absorption wavelength of the first component described above. That is, since the target component to be quantified is known, these wavelength values may be directly input by the operator, or the operator may designate the target component and obtain the corresponding wavelength value from the database.
  • the quantitative process based on the peak appearing in the differential chromatogram may be performed in the same manner as the quantitative process using the peak appearing in the normal chromatogram. That is, in the chromatogram data processing apparatus according to the second aspect, the chromatogram waveform processing means includes: Calibration information storage means for storing calibration information indicating the relationship between the peak area or height appearing in the differential chromatogram and the component concentration for each of the first target component and the second target component; Peaks appearing in differential chromatograms at the maximum (or minimum) absorption wavelength of the first target component and the maximum (or minimum) absorption wavelength of the second target component, respectively, created based on the three-dimensional chromatogram data for the target sample. Peak information calculation means for calculating the area or height of Quantitative value calculating means for obtaining a quantitative value of each target component in light of the calibration information, the area or height of the peak calculated by the peak information calculating means; It can be set as the structure containing.
  • Calibration information stored in the calibration information storage means for example, a calibration curve, is created by actually analyzing a sample (that is, a standard sample) each containing a first target component and a second target component whose concentrations are known in advance. It is desirable to keep it. This is also the same as the quantitative processing using the peak appearing in the normal chromatogram.
  • the chromatogram data processing method according to the present invention which has been achieved to achieve the first and second objects, includes three-dimensional chromatogram data collected with respect to a target sample and having dimensions of time, wavelength, and absorbance.
  • the chromatogram data processing method for processing a) Based on the three-dimensional chromatogram data, the wavelength at the maximum (or minimum) absorption wavelength of the first component in the absorbance spectrum indicating the relationship between the wavelength and the absorbance at each time point within the entire time range or within the predetermined time range.
  • a differential chromatogram creating step for obtaining a wavelength differential coefficient that is a differential coefficient of a direction, and creating a differential chromatogram representing a time change of the wavelength differential coefficient within the entire time range or a predetermined time range; b) Based on the waveform of the differential chromatogram, the determination of the presence or absence of one or more other components that overlap the peak of the first component, or the quantification of the second component that overlaps the peak of the first component.
  • the first aspect of the chromatogram data processing method is: c) a wavelength chromatogram creating step of creating a wavelength chromatogram indicating a relationship between time and absorbance with respect to the absorption wavelength of the first component based on the three-dimensional chromatogram data; In the differential chromatogram creation step, the maximum (or minimum) of the first component of the absorbance spectrum at each time point within the time range including the peak of the target component in the wavelength chromatogram based on the three-dimensional chromatogram data.
  • the wavelength differential coefficient at the absorption wavelength create a differential chromatogram representing the time change of the wavelength differential coefficient
  • the chromatogram waveform processing step based on the waveform shape of the differential chromatogram, it can be determined whether or not an impurity is contained in the peak of the first component that is the target component.
  • the second aspect of the chromatogram data processing method according to the present invention is: In the differential chromatogram creation step, the maximum (or minimum) of the first component, which is the first target component, of the absorbance spectrum at each time point within the entire time range or the predetermined time range based on the three-dimensional chromatogram data.
  • the second target component is quantified based on the peak appearing in the differential chromatogram at the maximum (or minimum) absorption wavelength of the first target component, and the maximum (or the maximum) of the second target component (or The first target component can be quantified based on the peak appearing in the differential chromatogram at the (minimum) absorption wavelength.
  • the chromatogram data processing apparatus and the processing method of the present invention even when the impurity peak is present in the immediate vicinity of the peak of the target peak on the chromatogram, even when it is overlooked in the conventional peak purity determination. It is possible to determine with high accuracy whether or not the target peak contains impurities. Further, unlike the above-described conventional peak purity determination process, it is not necessary to set a noise vector as a parameter. Therefore, it can be determined whether or not the target peak contains impurities by a relatively simple calculation process.
  • the chromatogram data processing apparatus and the processing method according to the present invention even when the peaks derived from the two target components overlap on the chromatogram or one is completely included in the other.
  • highly accurate quantification based on the profile waveform derived from each target component is possible.
  • the determination can be performed quickly even using a low-cost personal computer.
  • the figure which shows the differential spectrum based on the light absorbency spectrum shown in FIG. The figure which shows the binary mixture peak on a chromatogram.
  • the figure which shows the differential chromatogram based on the differential spectrum shown in FIG. The schematic block diagram of the liquid chromatograph provided with the chromatogram data processing apparatus which is the other Example of this invention.
  • FIG. 8 is a diagram showing an example of the absorbance spectrum of each of the components x and y. As shown in the figure, generally, the maximum (or minimum) absorption wavelength corresponding to the apex (maximum (or minimum) point) of the absorbance peak differs for each substance.
  • FIG. 9 is a differential spectrum obtained by differentiating the absorbance spectrum shown in FIG. 8 in the wavelength direction.
  • the differential coefficient is a positive value when the curve is rising in the wavelength direction, the differential coefficient is a negative value when the curve is descending, and the differential coefficient is 0 at the peak of the absorbance peak and the bottom of the valley.
  • the wavelength at which the differential coefficient is 0 in the differential spectrum of component x (however, “0” when the differential coefficient changes from a positive value to a negative value) is ⁇ x
  • ⁇ y be the wavelength at which the coefficient is 0 (also “0” in the situation where the differential coefficient changes from a positive value to a negative value). That is, here, ⁇ x is the maximum absorption wavelength of the component x, and ⁇ y is the maximum absorption wavelength of the component y.
  • FIG. 10 is a diagram showing an example of peak profiles of component x and component y on the chromatogram, and a state where these peak profiles overlap, that is, an unseparated mixed peak.
  • the retention times of the component x and the component y are quite close to each other, and it is difficult to predict the peak profile of each component x and y from the mixed peak.
  • FIG. 11 is a plot of the result of the formula (4) in the time direction
  • (b) is a plot of the result of the formula (5) in the time direction. That is, FIG. 11A is a differential chromatogram at wavelength ⁇ x, and FIG. 11B is a differential chromatogram at wavelength ⁇ y.
  • a peak profile b (t) of only the component y appears in the differential chromatogram at the wavelength ⁇ x.
  • the peak profile a (t) of only the component x appears in the differential chromatogram at the wavelength ⁇ y.
  • the area and height of these peak profiles a (t) and b (t) depend on the concentration of each component.
  • FIGS. 9 to 11 is a case where the maximum absorption wavelengths ⁇ x and ⁇ y of the components x and y are used, but the minimum absorption wavelengths of the components x and y are used instead of the maximum absorption wavelengths. May be.
  • the peak profile of the component x appearing in the differential chromatogram at the maximum (or minimum) absorption wavelength ⁇ y is a negative peak.
  • the positive and negative polarities are reversed. That's fine.
  • the other component it is not necessary for the other component to be one if it only determines whether or not the other component is included in the peak of the chromatogram of a certain known component. It can be seen that one or a plurality of components may be collectively treated as impurities.
  • the three-dimensional chromatogram of the target component x is a (t) x ( ⁇ ) and other one or more components are mixed as impurities
  • the three-dimensional chromatogram S (t, ⁇ ) Can be expressed by the following equation (6).
  • S (t, ⁇ ) a (t) x ( ⁇ ) + b (t) y ( ⁇ ) + c (t) z ( ⁇ ) + (6)
  • This equation (7) is a differential chromatogram at the maximum (or minimum) absorption wavelength ⁇ x of the target component x, and it can be seen that the peak derived from the target component x is removed and only the impurity peak appears. Thus, it can be seen that the presence or absence of impurities mixed in the target component can also be determined based on the same principle as the two-component peak separation described above.
  • FIG. 1 is a schematic configuration diagram of a liquid chromatograph system including a chromatogram data processing apparatus (hereinafter simply referred to as “data processing apparatus”) in the present embodiment.
  • the liquid feed pump 12 sucks the mobile phase from the mobile phase container 11 and feeds it to the sample injection unit 13 at a constant flow rate.
  • the sample injection unit 13 injects a sample into the mobile phase at a predetermined timing.
  • the sample is sent to the column 14 by the mobile phase, and each component in the sample is separated in the time direction while passing through the column 14 and is eluted from the column 14.
  • a PDA detector 15 which is a kind of multi-channel detector, is provided as a detector for detecting sample components in the eluate from the column 14.
  • the PDA detector 15 irradiates the eluate with light from a light source (not shown), wavelength-disperses the light transmitted through the eluate, and detects the intensity of light of each wavelength almost simultaneously by the PDA linear sensor.
  • the detection signal repeatedly obtained by the PDA detector 15 is converted into a digital signal by the A / D converter 16 and then output to the data processing device 2 as three-dimensional chromatogram data.
  • the data processing device 2 includes a three-dimensional data storage unit 21 for storing the three-dimensional chromatogram data output from the A / D converter 16 and a three-dimensional wavelength chromatogram representing a change in absorbance over time at a predetermined wavelength.
  • a wavelength chromatogram creation unit 22 created from chromatogram data, a peak detection unit 23 for detecting a peak in the wavelength chromatogram, and an impurity in a target peak designated by an operator among the detected peaks are detected.
  • Impurity detector 24 In the present embodiment, the wavelength chromatogram creation unit 22 creates a maximum (or minimum) absorption wavelength chromatogram representing the time change of absorbance at the maximum (or minimum) absorption wavelength ⁇ S0 of the target component.
  • the impurity detection unit 24 includes, as functional blocks, a differential chromatogram creation unit 25 for creating a differential chromatogram based on the three-dimensional chromatogram data and the maximum (or minimum) absorption wavelength ⁇ S0 of the target component, and a differential chromatogram. And a determination unit 26 that determines the presence or absence of impurities in the target peak based on the shape of the target peak. The operation of these units will be described later.
  • the display unit 3 is for displaying various information such as a maximum (or minimum) absorption wavelength chromatogram, an absorbance spectrum, a differential chromatogram, and a determination result.
  • the operation unit 4 is operated by the operator to input and set information necessary for data processing, such as the maximum (or minimum) absorption wavelength ⁇ S0 of the target component.
  • Part or all of the functions of the data processing device 2 can be achieved by executing dedicated control / processing software installed in a personal computer or workstation.
  • the display unit 3 can be a general liquid crystal monitor or the like, and the operation unit 4 can be a pointing device such as a keyboard or a mouse, which is a standard equipment of a personal computer or workstation.
  • chromatographic analysis is performed on the target sample in the LC unit 1, and three-dimensional chromatogram data (see FIG. 13A) representing the time change of the absorbance spectrum in a predetermined wavelength range is obtained from the PDA detector 15.
  • the data is output to the storage unit 21 and stored in the three-dimensional data storage unit 21 (step S1).
  • the operator inputs the wavelength value of the maximum (or minimum) absorption wavelength ⁇ S0 of the target component (for example, the component to be quantified) included in the sample through the operation unit 4 (step S2).
  • the wavelength chromatogram creation unit 22 displays time on the horizontal axis based on the input maximum (or minimum) absorption wavelength ⁇ S0 and the three-dimensional chromatogram data stored in the three-dimensional data storage unit 21.
  • a maximum (or minimum) absorption wavelength chromatogram in which the absorbance at the maximum (or minimum) absorption wavelength ⁇ S0 is plotted on the vertical axis is created (step S3).
  • An example of the maximum (or minimum) absorption wavelength chromatogram created based on the three-dimensional chromatogram data shown in FIG. 13A is shown in FIG.
  • the peak detector 23 sequentially examines the amount of inclination of the curve of the maximum (or minimum) absorption wavelength chromatogram created by the wavelength chromatogram creation unit 22 in the time direction, and the amount of inclination is a predetermined value as shown in FIG.
  • the peak start point T S is reached, and when the tilt amount changes from positive to zero and further turns negative, it is determined that the peak apex T 0 is reached, and the absolute value of the tilt amount is a predetermined value.
  • it judges that it is the end point TE of a peak and detects a peak (step S4).
  • a peak Although only one peak is shown in FIG. 2, when a sample includes a plurality of components, usually a plurality of peaks are detected. Information on the detected peak is displayed on the screen of the display unit 3, and the operator selects a target peak derived from the target component from the plurality of peaks by the operation unit 4 (step S5).
  • the differential chromatogram creation unit 25 acquires the absorbance spectrum in the time range from the start point T S to the end point T E of the target peak from the three-dimensional data storage unit 21, and for each absorbance spectrum, A wavelength differential coefficient is obtained by differentiating the absorbance at the maximum (or minimum) absorption wavelength ⁇ S0 in the wavelength direction (step S6). Then, a differential chromatogram in which time is plotted on the horizontal axis and wavelength differential coefficient calculated on the vertical axis is created (step S7).
  • FIG. 5 shows an example of the differential chromatogram.
  • the determination unit 26 Based on the differential chromatogram created by the differential chromatogram creation unit 25, the determination unit 26 performs the following processing based on the above-described principle, thereby performing the process from the start point T S to the end point T E of the target peak. The presence or absence of impurities is determined within the time range.
  • Figure 4 is a schematic chromatographic at some point T u of the graph in the analysis of the absorbance spectrum of the target component pattern (in FIG. 4 (1)) and the absorbance spectra of impurities pattern (in FIG. 4 (2)) the FIG.
  • the pattern of the absorbance spectrum actually obtained at the time point Tu is the pattern of the absorbance spectrum of the target component and the absorbance spectrum of the impurity. (3) in FIG. 4).
  • the maximum (or minimum) position of the absorbance spectrum does not coincide with the maximum (or minimum) absorption wavelength ⁇ S0 of the target component.
  • the target peak is derived only from the target component, as shown in FIG. 3, the maximum (or minimum) absorption wavelength ⁇ S0 of the target component at any time point between the start point T S and the end point T E of the target peak.
  • the maximum (or minimum) position of the absorbance spectrum at each time point and therefore the wavelength differential coefficient at the maximum (or minimum) absorption wavelength ⁇ S0 is zero. Therefore, the differential chromatogram in the time range from the start point T S to the end point T E of the target peak becomes a flat state including only inevitable noise as shown by a solid line in FIG.
  • the target peak contains impurities, as shown in FIG.
  • the maximum (or minimum) absorption wavelength ⁇ S0 of the target component does not coincide with the maximum (or minimum) position of the absorbance spectrum at each time point.
  • the wavelength differential coefficient at the maximum (or minimum) absorption wavelength ⁇ S0 is a value other than 0 in the time range T S to T E. Therefore, the differential chromatogram does not become flat in the time region including impurities, as indicated by the dotted line in FIG.
  • the determination unit 26 determines whether or not the differential chromatogram is flat within the time range from the start point T S to the end point T E of the target peak (step S8). If the differential chromatogram is flat within the time range (if Yes at step S8 in FIG. 6), the determination unit 26 does not include the impurity within the time range, that is, only from the target component. It is determined that the peak is a peak (step S9). On the other hand, if the differential chromatogram is not flat within the time range (that is, if it is No at step S8), the determination unit 26 determines that the target peak contains impurities within the time range (step S10). ). The determination result obtained in this manner is notified to the operator by the display unit 3 (step S11).
  • the determination of whether or not the differential chromatogram is flat can be made, for example, by determining whether or not there is a peak that is N times the average of the baseline noise intensity or a predetermined peak area. Good. Other determination methods may be used.
  • differential chromatography is performed in the time range from the start point T S to the end point T E of the target peak on the maximum (or minimum) absorption wavelength chromatogram.
  • the target peak contains impurities. Even if impurities are included in the immediate vicinity of the peak of the target peak, if the maximum (or minimum) absorption wavelength ⁇ S0 of the target component deviates from the maximum (or minimum) even slightly, the shape of the differential chromatogram The presence or absence of is reflected. Therefore, according to the data processing device 2 according to the first embodiment, it is possible to obtain a determination result that is much more accurate than the conventional peak purity determination method.
  • the data processing apparatus 2 unlike the above-described conventional technique, it is not necessary to set a noise vector composed of noise components at each wavelength as a parameter.
  • the peak purity can be determined by processing.
  • the differential chromatogram is created by focusing on the time range from the start point T S to the end point T E of the target peak, not the entire range of the measurement time. It can be determined more efficiently whether the target peak contains impurities, and the determination can be completed in a shorter time.
  • the operator selects the target peak with the operation unit 4, but at this time, a plurality of peaks may be selected as the target peak instead of one peak.
  • the detection of impurities as described above may be performed for each selected target peak.
  • it may be set in advance so that impurities are detected for all detected peaks.
  • the process of step S5 is abbreviate
  • the operator inputs the wavelength value of the maximum (or minimum) absorption wavelength ⁇ S0 of the target component in step S2.
  • the operator specifies the name and structural formula of the target component.
  • the corresponding wavelength value may be acquired from the database.
  • input by the operator itself is omitted, and a peak (for example, a three-dimensional peak) is automatically detected from the three-dimensional chromatogram data, and the maximum (or minimum) absorption wavelength is obtained by comparing the result with a database. It may be determined.
  • the target component has a plurality of maximum (or minimum) absorption wavelengths, one of them may be used.
  • the operator inputs in advance by the operation unit 4 a time range in which an appropriate time width is provided before and after the target peak holding time on the wavelength chromatogram.
  • the time T S corresponding to the peak start point and the time T E corresponding to the end point may be acquired.
  • the wavelength chromatogram as shown in FIG. 2 is displayed on the screen of the display unit 3, the operator views it, and the operation unit 4 corresponds to the time T S and the end point corresponding to the start point of the target peak. it is also possible to specify a time T E to be.
  • the wavelength chromatogram creation unit 22 creates a wavelength chromatogram at the maximum (or minimum) absorption wavelength of the target component. It may be a wavelength chromatogram at a wavelength.
  • maximum (or minimum) absorption wavelengths it is generally desirable to select the wavelength of the maximum intensity among them.
  • the maximum (or minimum) absorption wavelength of the first component it is known in advance that an impurity peak exists in the vicinity of the peak peak of the target peak, and when it is desired to determine the number of impurities, the impurity It is preferable to select a maximum (or minimum) absorption wavelength having a sufficiently large value obtained by differentiating the absorption spectrum in the wavelength direction.
  • the data processing apparatus of this modification example has a maximum (or minimum) absorption wavelength acquisition unit 27 added to the data processing apparatus of the first embodiment.
  • the data processing apparatus of this modification actually uses the sample containing the standard product of the target component when the maximum (or minimum) absorption wavelength ⁇ S0 of the target component is not known and does not have a database for obtaining it.
  • the maximum (or minimum) absorption wavelength ⁇ S0 is obtained by measurement, and the value is used for subsequent processing.
  • a three-dimensional chromatogram data is acquired by measuring a standard sample including a standard product of the target component with the LC unit 1.
  • the acquired three-dimensional chromatogram data is stored in the three-dimensional data storage unit 21.
  • the wavelength chromatogram creation unit 22 reads the appropriate 3D chromatogram data from the 3D data storage unit 21 and selects the selected wavelength. Create a wavelength chromatogram at.
  • the peak detector 23 detects a peak by the same processing as in the above embodiment, and acquires the time corresponding to the peak start point T S , vertex T 0 and end point T E.
  • the operator selects, from the detected peaks, the peak derived from the standard product of the target component by the operation unit 4 (in this case, usually only one peak is detected).
  • the maximum (or minimum) absorption wavelength acquisition unit 27 reads out the three-dimensional chromatogram data obtained by measuring the standard sample containing the target component from the three-dimensional data storage unit 21 and also specifies the peak specified by the operator. The time T 0 corresponding to the vertex of is obtained from the peak detector 23. Then, the maximum (or minimum) absorption wavelength acquisition unit 27 sequentially differentiates the absorbance of the absorbance spectrum at time T 0 in the wavelength direction, and obtains the wavelength differential coefficient at each wavelength. Next, the wavelength at which the wavelength differential coefficient is 0 is obtained, and this is obtained as the maximum (or minimum) absorption wavelength ⁇ S0 of the standard product of the target component.
  • the acquired maximum (or minimum) absorption wavelength ⁇ S0 of the standard product is used for the peak purity determination process of the sample to be measured later.
  • the operator can select one maximum (or minimum) absorption wavelength ⁇ S0 determined to be most appropriate by the operation unit 4. Good. If the maximum (or minimum) absorption wavelength ⁇ S0 of the target component is determined in this way, the subsequent peak purity determination processing is executed in the same procedure as in step S3 and subsequent steps in FIG.
  • a sample including the standard product of the target component can be prepared.
  • the peak purity of the target component in the unknown sample can be determined.
  • the data processing device 5 includes a three-dimensional data storage unit 51 for storing the three-dimensional chromatogram data output from the A / D converter 16, and a wavelength chromatogram at a specific wavelength.
  • a wavelength chromatogram creation unit 52 created from three-dimensional chromatogram data, a peak detection unit 53 that detects a peak to be quantified in the chromatogram and sets its time range, and an operator in the set peak or time range.
  • a two-component separation and quantification unit 54 that separates and quantifies the two specified target components x and y.
  • the two-component separation and quantification unit 54 creates differential chromatograms as functional blocks based on the three-dimensional chromatogram data and the maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y of the two target components x and y, respectively.
  • a calibration curve creating unit 58 that creates a calibration curve indicating the relationship between the peak area value on the differential chromatogram and the component concentration based on the analysis result of the sample including the target component x, y having a known concentration,
  • a calibration curve storage unit 59 for storing the created calibration curve.
  • a characteristic data processing operation in the liquid chromatograph system of the second embodiment will be described.
  • calibration curves for the target components x and y are created in advance and stored as calibration curves as follows.
  • the operator dilutes the standard product of the target component x to prepare a standard sample having a plurality of levels, and similarly dilutes the standard sample of the target component y to prepare a standard sample having a plurality of levels.
  • three-dimensional chromatogram data is obtained by measuring these standard samples with the LC unit 1.
  • the acquired three-dimensional chromatogram data is temporarily stored in the three-dimensional data storage unit 51.
  • the operator inputs the wavelength values of the maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y of the target components x and y through the operation unit 4.
  • the wavelength chromatogram creation unit 52 receives the maximum (or minimum) based on the input two maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y and the three-dimensional chromatogram data obtained for each standard sample. A minimum (or minimum) absorption wavelength chromatogram at the minimum) absorption wavelength ⁇ x, ⁇ y is created.
  • the peak detector 53 detects the peak by the same processing as in the first embodiment, and acquires the time corresponding to the start point T S , the vertex T 0, and the end point T E of each peak (in this case, one peak In the maximum (or minimum) absorption wavelength chromatogram, only one peak derived from the target component x or y is detected).
  • the differential chromatogram creation unit 55 acquires, from the three-dimensional data storage unit 51, an absorbance spectrum in a time range from the peak start point T S to the end point T E for the component x for a standard sample containing the component x at a certain concentration. For each absorbance spectrum, the wavelength differential coefficient is obtained by differentiating the absorbance at the maximum (or minimum) absorption wavelength ⁇ y of the target component y in the wavelength direction. Then, a differential chromatogram at the maximum (or minimum) absorption wavelength ⁇ y is created by plotting time on the horizontal axis and wavelength differential coefficients calculated on the vertical axis.
  • the absorbance continues to show a maximum (or minimum) at the wavelength ⁇ x within the entire time range in which the component x is eluted. Therefore, the differential coefficient at the maximum (or minimum) absorption wavelength ⁇ x remains zero.
  • the wavelength ⁇ y is not the maximum (or minimum) absorption wavelength for the component x, but the wavelength ⁇ y is also absorbed by the component x. Therefore, the wavelength differential coefficient at the maximum (or minimum) absorption wavelength ⁇ y of the component y changes within a range where the absorption by the component x is received. As a result, a peak appears in the differential chromatogram at the maximum (or minimum) absorption wavelength ⁇ y, and this peak reflects the elution profile of the component x. Therefore, the peak area calculation unit 56 calculates the area value of the peak derived from the component x appearing in the differential chromatogram at the wavelength ⁇ y. The same calculation is performed on the differential chromatogram at the wavelength ⁇ y based on the three-dimensional chromatogram data obtained for the standard sample containing the component x having different concentrations, and the peak area value derived from the component x is calculated. .
  • the calibration curve creation unit 58 uses the peak area value obtained from the differential chromatogram at the wavelength ⁇ y corresponding to each of the standard samples containing the component x at different concentrations, and the component concentration based on the component area.
  • a calibration curve indicating the relationship between the concentration of x and the peak area value on the differential chromatogram at the wavelength ⁇ y is created and stored in the calibration curve storage unit 59.
  • the differential chromatogram creation unit 55 creates a differential chromatogram at the maximum (or minimum) absorption wavelength ⁇ x of the component x based on the three-dimensional chromatogram data obtained for the standard sample including the component y.
  • the peak area calculation unit 56 calculates the area value of the peak derived from the component y appearing in the differential chromatogram at the wavelength ⁇ x.
  • the calibration curve creating unit 58 then calculates the component y based on the peak area values obtained from the differential chromatograms at the wavelengths ⁇ x corresponding to the standard samples containing the component y at different concentrations and the respective component concentrations.
  • a calibration curve indicating the relationship between the concentration and the peak area value on the differential chromatogram at the wavelength ⁇ x is created and stored in the calibration curve storage unit 59.
  • the calibration curves for the components x and y can be stored in the calibration curve storage unit 59.
  • the unknown sample is measured by the LC unit 1 to obtain three-dimensional chromatogram data and three-dimensional Store in the data storage unit 51.
  • the operator inputs the wavelength values of the maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y of the target components x and y through the operation unit 4.
  • the wavelength chromatogram creation unit 52 reads the three-dimensional chromatogram data at the two input maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y from the three-dimensional data storage unit 51, and these maximum (or minimum). Wavelength chromatograms at absorption wavelengths ⁇ x and ⁇ y are created.
  • the peak detector 53 detects peaks from these two wavelength chromatograms by the same processing as in the above embodiment, and acquires the times corresponding to the start point T S , the vertex T 0 and the end point T E of each peak. .
  • the peaks appearing in the wavelength chromatogram may be in a state where two peaks overlap as shown in FIG. 15A, for example, the peaks are consecutive based on the retention times of the components x and y given in advance.
  • the processing may be performed so that the start point of the first half of the peak is the peak start point T S and the end point of the second half is the peak end point T E.
  • the peak detection when a plurality of peaks are detected by the peak detection, information on the detected peaks is displayed on the screen of the display unit 3, and the operator can select among the plurality of peaks.
  • the target peak derived from the target component may be selected by the operation unit 4.
  • the differential chromatogram creation unit 55 acquires the absorbance spectrum in the time range from the start point to the end point of the peak detected by the peak detection unit 53 or selected by the operator from the three-dimensional data storage unit 51, and each absorbance For each spectrum, the wavelength differential coefficient is obtained by differentiating the absorbance at the maximum (or minimum) absorption wavelength ⁇ x of the target component x and the maximum (or minimum) absorption wavelength ⁇ y of the target component y in the wavelength direction. Then, differential chromatograms are created at the maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y, respectively.
  • the peak area calculation unit 56 calculates the area value of the peak appearing in each differential chromatogram.
  • the quantitative calculation unit 57 calculates the concentration value of the component y in light of the peak area value obtained from the differential chromatogram at the wavelength ⁇ x against the calibration curve of the component y read from the calibration curve storage unit 59.
  • the concentration value of the component x is calculated by comparing the peak area value obtained from the differential chromatogram at the wavelength ⁇ y with the calibration curve of the component x read out from the calibration curve storage unit 59. Then, the quantitative results of the two target components x and y obtained in this way are notified to the operator by the display unit 3.
  • the data processing apparatus 5 elutes by overlapping the peak area values appearing in the differential chromatogram at the maximum (or minimum) absorption wavelength of another component different from the target component.
  • the target component is quantified by removing the influence of the component.
  • the peak appearing in the differential chromatogram reflects the elution profile of only the target component, so that a much more accurate quantitative result can be obtained compared to the conventional method of dividing and quantifying the overlap of peaks by vertical division. Can do.
  • the operator in addition to allowing the operator to input the wavelength values of the maximum (or minimum) absorption wavelengths ⁇ x and ⁇ y of the target components x and y, the operator can specify the name and structural formula of the target component and respond to it.
  • the wavelength value to be acquired may be acquired from a database. Since the retention time can be obtained simultaneously with the wavelength value of an arbitrary component from such a database, it is particularly convenient when the retention time is used for peak detection.
  • the chromatographic detector for acquiring the three-dimensional chromatogram data to be processed by the data processing apparatus of the present invention may not be a multi-channel detector such as a PDA detector, and the absorbance of the absorbance spectrum in the wavelength direction. It is only necessary to obtain a spectrum having a relatively broad waveform shape (a gradual change) so that a differential coefficient that accurately reflects the slope of the spectrum curve can be obtained when sequentially differentiated.
  • an ultraviolet-visible spectrophotometer Infrared spectrophotometer, near-infrared spectrophotometer, fluorescence spectrophotometer capable of high-speed wavelength scanning is possible. It may be a photometer.
  • the chromatograph may be a gas chromatograph instead of a liquid chromatograph, but a chromatograph using a detector as described above is usually a liquid chromatograph.
  • a chromatograph using a detector as described above is usually a liquid chromatograph.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Library & Information Science (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明の一実施例であるクロマトグラムデータ処理装置(2)は、微分クロマトグラム作成部(25)及び判定部(26)を含む不純物検出部(30)を有する。微分クロマトグラム作成部(25)は、測定の各時刻における吸光度スペクトルを目的成分の極大(又は極小)吸収波長において波長方向に微分することにより波長微分係数を求め、その波長微分係数の時間変化を表した微分クロマトグラムを作成する。判定部(26)は作成された微分クロマトグラムの形状に基づいて、目的成分のピークが不純物を含むか否かを判定する。これにより、複雑な計算処理を要することなく、目的成分のピークが不純物を含むか否かを高精度で判定することができる。

Description

クロマトグラムデータ処理装置及び処理方法
 本発明は、クロマトグラフ、特に液体クロマトグラフ(LC)のカラムで分離された成分を含む試料やフローインジェクション法により導入された試料を分光分析することで収集されたデータを処理するクロマトグラムデータ処理装置及び処理方法に関する。
 検出器としてPDA(Photo Diode Array)検出器等のマルチチャンネル型検出器を用いた液体クロマトグラフ(LC)では、移動相への試料の注入時点を基点とし、カラムからの溶出液に対して吸光度スペクトルを繰り返し取得することで、時間、波長、及び吸光度という三つのディメンジョンを持つ3次元クロマトグラムデータを得ることができる。図13はこのような3次元クロマトグラムデータの模式図である。この3次元クロマトグラムデータの中から特定の波長におけるデータを抽出することで、その特定波長における時刻と吸光度との関係を示す波長クロマトグラムを作成することができる。また、上記3次元クロマトグラムデータの中から特定の時点におけるデータを抽出することで、該時点における波長と吸光度との関係を示す吸光度スペクトルを作成することもできる。
 こうした液体クロマトグラフにおいて、既知である目的成分の定量分析を行う場合には、その目的成分に対応した吸収波長における波長クロマトグラムを求め、そのクロマトグラムに現れる目的成分由来のピークの面積(又は高さ)を検量線に照らして定量値を算出するのが一般的である。
 このように目的成分を定量する際に、波長クロマトグラムに現れているピークがその目的成分のみに由来するものであれば問題ないが、ピークは必ずしも単一成分(目的成分)によるものとは限らず分析者が意図しない不純物を含んでいる場合がよくある。そこで従来より、クロマトグラムに現れている或るピークが目的成分のみに由来するのか、或いは不純物を含んでいるのかを調べる、ピーク純度判定処理が行われている。
 例えば特許文献1には、マルチチャンネル型検出器を用いた液体クロマトグラフで得られるクロマトグラムにおけるピーク純度判定処理の手法が開示されている。この手法では、波長クロマトグラムにおける目的ピークのピーク頂点に対応した時刻T0での吸光度スペクトルをS0(λ)、その前後の任意の時刻Tでの吸光度スペクトルをS(λ)とし、次の(1)式により、S0(λ)とS(λ)との一致度Pを算出する。
Figure JPOXMLDOC01-appb-M000001
 そして、図14に示すように、一致度Pが1.0~0.8であれば緑色、0.8~0.6であれば黄色、0.6以下であれば橙色というように、目的ピークをそのピーク頂点との一致度Pに応じた色(図中では網掛けで表現している)によって時間軸方向に分割表示する。
 目的ピークが目的成分のみに由来すれば、図14(a)に示すように、一致度Pはピーク頂点付近で高く、ピーク頂点から遠ざかるほど低くなり、その形状はピークの中心軸を挟んで概ね左右対称となる。これに対し、目的ピークのピーク頂点の前又は後に不純物ピークが存在する場合(即ち、目的ピークが不純物を含んでいる場合)には、目的ピークのピーク頂点の前又は後で一致度Pが低下する。例えば図14(b)に示した例では、ピーク頂点を挟んで、左側に比べて右側(時間的に後ろ側)の一致度Pが低くなっている。これにより、この付近の時間範囲において不純物が含まれる可能性が高いと判断することができる。
 しかしながら、上述した従来のピーク純度判定方法では、目的ピークのピーク頂点のすぐ近傍に不純物ピークが存在したとしても、ピーク頂点近くにおける一致度Pはあまり下がらないため、不純物の存在を正しく判定することができないことがあった。
 また、上述のピーク純度判定方法では、非特許文献1に記載されているように、不純物ピークが存在するか否かを判断するための一致度Pの閾値を求める上で、例えば各波長におけるノイズの大きさを成分とするノイズベクトルをパラメータとして設定する必要がある。しかしながら、ノイズベクトルを得るためには、マルチチャンネル型検出器で検出される所定の波長領域におけるノイズの大きさを逐次モニタし、該波長領域におけるノイズの時間変化の標準偏差を求めるといった煩雑な計算処理が必要であるという問題もあった。
 また上記液体クロマトグラフにおいて、定量したい目的成分が二つあり、それら二つの成分の保持時間が近い場合、各目的成分由来のピークが充分に分離されずに、図15(a)に示すように、クロマトグラム上で重なり合ったピークが現れることがある。こうした場合、従来、図15(a)中に示すようにテーリング部とリーディング部とが重なったピークを前部と後部とに垂直分割し、二つに分割されたピークの面積をそれぞれ計算して、その面積値に基づいて各成分X、Yの定量値を算出するような処理が行われている。しかしながら、このようにピークを垂直分割した場合、各成分の本来の溶出プロファイル波形(即ち、他の成分が存在しないとした場合のピーク波形)が反映されるわけではないため、高い定量精度は得られない。
 また、垂直分割以外に、例えば特許文献2に記載のような演算処理を実施することにより各成分のピークを分離する方法も知られているが、こうした演算処理はかなり煩雑であり、処理に時間を要するという問題がある。また、いずれの手法でも、図15(b)に示すように、二つの目的成分のピークが完全に重なってしまっている(一方のピークに他方のピークが含まれる)場合には、ピークを分離することはできないため、定量が行えない。
 なお、特に単一成分を含む試料中の該成分の定量分析を行う場合には、カラムを用いない(つまりは成分分離を行わない)フローインジェクション分析(FIA=Flow Injection Analysis)法が用いられることがある。FIA法は、液体クロマトグラフ用のインジェクタなどを用いて一定流量で送給される移動相中に所定量の試料を注入し、移動相の流れに乗せて試料を検出器へと導入する手法であり、カラム出口からの溶出液と同様に、目的成分の濃度は時間経過に伴って略山型状に変化する。このようなFIA法により導入された試料をマルチチャンネル型検出器で検出する場合に得られるデータも、時間、波長、及び吸光度という三つのディメンジョンを持つ3次元データとなり、上記のような液体クロマトグラフにより収集されるデータと実質的に同じである。そのため、本明細書でいうところの「3次元クロマトグラムデータ」は、FIA法により収集された3次元データも含むものとする。
特許第2936700号公報 特開2006-177980号公報
水戸康敬、北岡光夫、「島津HPLC用フォトダイオードアレイUV-VIS検出器SPD-M6A」、島津評論、第46巻、第1号、1989年7月、pp.21-28
 本発明は上記課題を解決するために成されたものであり、その第1の目的は、目的ピークが不純物を含むか否かを、複雑な計算処理を必要とすることなく高精度で判定することができるクロマトグラムデータ処理装置及び処理方法を提供することにある。
 また本発明の第2の目的は、二つの目的成分のピークが重なってしまっている場合であっても、それら二つの成分についての定量分析を、複雑な演算処理を必要とすることなく高い精度で行うことができるクロマトグラムデータ処理装置及び処理方法を提供することにある。
 上記第2の目的を達成するには、二つの目的成分が重なっているピークを各々の目的成分に分離する必要があるが、二つの目的成分の一方が真の目的成分、他方が意図しない不純物であると考えれば、上記第2の目的を達成するために必要なピーク分離の基本的な技術思想は第1の目的を達成するためにも利用し得ることは明らかである。
 即ち、上記第1及び第2の目的を達成するために成された本発明は、目的試料について収集された、時間、波長、及び吸光度をディメンジョンとする3次元クロマトグラムデータを処理するクロマトグラムデータ処理装置において、
 a)前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における波長と吸光度との関係を示す吸光度スペクトルについて、第1の成分の極大(又は極小)吸収波長における波長方向の微分係数である波長微分係数を求め、全時間範囲内又は所定時間範囲内の前記波長微分係数の時間変化を表す微分クロマトグラムを作成する微分クロマトグラム作成手段と、
 b)前記微分クロマトグラムの波形に基づいて、前記第1の成分のピークに重なる他の1乃至複数の成分の有無の判定、又は前記第1の成分のピークに重なる第2の成分の定量を実行するクロマトグラム波形処理手段と、
 を備えることを特徴としている。
 上記3次元クロマトグラムデータは、典型的には、クロマトグラフのカラムにより時間方向に分離された成分を含む試料に対しマルチチャンネル型検出器などの検出器により吸光度スペクトルを繰り返し取得することで得られたデータである。
 また、カラムを経た試料の代わりに、FIA法により、成分分離されることなく導入された試料に対して同様に得られたデータでもよい。
 また上記検出器はマルチチャンネル型検出器でなくても、その波形形状が比較的ブロードである(変化が緩やかである)スペクトルが得られるものであればよく、吸光度スペクトルを得るために波長走査を伴う紫外可視分光光度計、赤外分光光度計、近赤外分光光度計、蛍光分光光度計、などであってもよい。
 また、上記クロマトグラフは、液体クロマトグラフ、ガスクロマトグラフのいずれでもよい。
 上記吸光度スペクトルは、試料からの光の波長と、各波長における吸光度との関係を示すものである。この吸光度スペクトルには、物質毎に固有の極大(又は極小)吸収波長が存在する。極大(又は極小)吸収波長は、多くの場合、物質毎に複数存在するが、所定の波長範囲に限った場合、一つしか現れないこともある。
 第1の成分の極大(又は極小)吸収波長の取得方法については特に限定されないが、オペレータに波長値を直接入力させてもよく、また、オペレータに目的成分を指定させ、それに対応する波長値をデータベースから取得するという方法でもよい。さらには、3次元クロマトグラムデータより自動的にピークを検出し、データベースと照合することにより極大(又は極小)吸収波長を決定するようにしてもよい。
 本発明に係るクロマトグラムデータ処理装置において、微分クロマトグラム作成手段は、例えば目的試料について収集された3次元クロマトグラムデータが格納されている記憶部から必要なデータを読み出し、全時間範囲内又は所定時間範囲内の各時点における波長と吸光度との関係を示す吸光度スペクトルのそれぞれについて、第1の成分の極大(又は極小)吸収波長において吸光度を波長方向に微分することにより波長微分係数を求める。そして、全時間範囲内又は所定時間範囲内の各時点において求まった波長微分係数を時系列にプロットすることで、波長微分係数の時間変化を表した微分クロマトグラムを作成する。
 上述したように極大(又は極小)吸収波長は物質固有であるため、通常、異なる成分の極大(又は極小)吸収波長は一致しない。また、偶然、或る一つの極大(又は極小)吸収波長が一致したとしても、互いに異なる別の極大(又は極小)吸収波長が存在することもある。こうしたことから、クロマトグラム上で第1の成分に由来するピークに他の成分が含まれていなければ、少なくとも第1の成分由来のピークが含まれる時間範囲内の各時点の吸光度スペクトルにおいて、第1の成分の極大(又は極小)吸収波長は極大(又は極小)のままである。そのため、該極大(又は極小)吸収波長における波長微分係数はいずれの時点でもほぼ0となり、微分クロマトグラムは平坦な形状となる。
 一方、第1の成分由来のピークに他の成分が含まれていれば、該他の成分が含まれる時間範囲内の各時点の吸光度スペクトルにおいて、第1の成分の極大(又は極小)吸収波長がその他の成分の影響を受けて変化する。そのため、その時間範囲では、極大(又は極小)吸収波長における波長微分係数は0にはならず、微分クロマトグラムは平坦な形状にはならない。このとき、第1の成分由来のピークに含まれる他の成分の量が少なければ微分クロマトグラムに現れる凸部又は凹部は小さく、共存する他の成分の量が多ければ微分クロマトグラムに現れる凸部又は凹部は大きい。即ち、この微分クロマトグラムに現れる凸部又は凹部、つまりはピークの大きさは、共存する他の成分の量に依存する。
 共存する他の成分が一つであれば、微分クロマトグラム上のピークの大きさはその一つの成分の量であるとみなせる。また、共存する他の成分が一つ又は複数のいずれか不明でも、少なくともそうした成分が存在するか否かを判定できる。そこでクロマトグラム波形処理手段は、微分クロマトグラムの波形に基づいて、第1の成分のピークに重なる他の成分が存在するかどうかの判定を行ったり、第1の成分のピークに重なる第2の成分の定量を行ったりする。
 上記第1の成分を目的成分、それに重なる1乃至複数の成分を不純物であると考えれば、上記クロマトグラム波形処理手段により、目的成分に対する不純物の有無の判定が実行される。
 即ち、本発明の第1の態様によるクロマトグラムデータ処理装置は、
 c)前記3次元クロマトグラムデータに基づき、第1の成分の吸収波長に関して時間と吸光度との関係を示す波長クロマトグラムを作成する波長クロマトグラム作成手段、をさらに備え、
 前記微分クロマトグラム作成手段は、前記3次元クロマトグラムデータに基づき、前記波長クロマトグラムにおける目的成分のピークが含まれる時間範囲内の各時点における吸光度スペクトルについて、前記第1の成分の極大(又は極小)吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成する手段であり、
 前記クロマトグラム波形処理手段は、前記微分クロマトグラムの波形形状に基づいて、目的成分である前記第1の成分のピークに不純物が含まれているか否かを判定する判定手段である構成とすることができる。
 ここで「第1の成分の吸収波長」としては第1の成分の極大(又は極小)吸収波長の一つを選択することが望ましいが、その近傍の波長でも構わない。また、その成分に対し複数の極大(又は極小)吸収波長が存在する場合は、その中の最大強度の波長を選択することが望ましい。また、「第1の成分の極大(又は極小)吸収波長」としては、目的ピークのピーク頂点の近傍に不純物ピークが存在することが予め分かっており、その不純物の多寡を判定したいという場合には、その不純物の吸収スペクトルを波長方向に微分した値が充分な大きさを持つ極大(または極小)吸収波長を選択するとよい。
 また上記の「目的成分のピークが含まれる時間範囲」は、波長クロマトグラム上のピークを自動検出して目的ピークの始点から終点までの時間範囲を取得してもよいし、オペレータが波長クロマトグラム上の目的ピークの保持時間の前後に適当な時間幅を設けて入力するようにしてもよい。
 クロマトグラム上で不純物ピークが目的ピークの頂点のすぐ近くに存在する場合(つまり保持時間がきわめて近い場合)でも、微分クロマトグラム作成手段により作成される微分クロマトグラムの形状には不純物の有無が反映される。そのため、第1の態様によるクロマトグラムデータ処理装置によれば、目的ピークに不純物が含まれているか否かを高精度で判定することができる。
 また、上記構成によれば、全時間範囲ではなく「目的の成分のピークが含まれる時間範囲」に絞って微分クロマトグラムを作成し、該時間範囲内における不純物の有無を判定するようにしたため、目的ピークに不純物が含まれているか否かをより効率よく判定できるのみならず、判定に要する時間を一層短縮することができる。
 なお、上記第1の態様において上記判定手段は、具体的には、微分クロマトグラムが平坦であるか否かを判定することによって、目的成分のピークに不純物が含まれているか否かを判定すればよい。
 また上記第1及び第2の成分をともに既知の目的成分であると考えれば、クロマトグラム波形処理手段により、二つの目的成分の定量が実行される。
 即ち、本発明の第2の態様によるクロマトグラムデータ処理装置において、
 前記微分クロマトグラム作成手段は、前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における吸光度スペクトルについて、第1目的成分である前記第1の成分の極大(又は極小)吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成するとともに、第2目的成分である前記第2の成分の極大(又は極小)吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成し、
 前記クロマトグラム波形処理手段は、前記第1目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークに基づいて前記第2目的成分を定量するとともに、前記第2目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークに基づいて前記第1目的成分を定量する構成とすることができる。
 上述したように、第1目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークの大きさは第2目的成分の濃度を反映する。例えば第2目的成分の濃度が0であれば、第1目的成分の極大(又は極小)吸収波長における微分クロマトグラムにはピークが現れず、平坦な形状となる。逆に、第2目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークの大きさは第1目的成分の濃度を反映する。例えば第1目的成分の濃度が0であれば、第2目的成分の極大(又は極小)吸収波長における微分クロマトグラムにはピークが現れず、平坦な形状となる。即ち、一方の目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークに着目すれば、その目的成分の影響を排除して、他方の目的成分の定量が可能となる。
 ここで、第2の成分の極大(又は極小)吸収波長は、上述した第1の成分の極大(又は極小)吸収波長の取得方法と同様の方法で取得できるようにすればよい。即ち、定量したい目的成分は既知であるから、それら波長値をオペレータにより直接入力させてもよく、また、オペレータに目的成分を指定させ、それに対応する波長値をデータベースから取得するという方法でもよい。
 上記第2の態様によるクロマトグラムデータ処理装置では、通常のクロマトグラムに現れるピークを用いた定量処理と同様に、微分クロマトグラムに現れるピークに基づく定量処理を行えばよい。即ち、第2の態様によるクロマトグラムデータ処理装置において、前記クロマトグラム波形処理手段は、
 前記第1目的成分及び第2目的成分についてそれぞれ、微分クロマトグラムに現れるピークの面積又は高さと成分濃度との関係を示す検量情報を記憶しておく検量情報記憶手段と、
 目的試料に対する3次元クロマトグラムデータに基づいてそれぞれ作成された、前記第1目的成分の極大(又は極小)吸収波長及び前記第2目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークの面積又は高さを計算するピーク情報算出手段と、
 該ピーク情報算出手段により計算されたピークの面積又は高さを前記検量情報に照らして各目的成分の定量値を求める定量値算出手段と、
 を含む構成とすることができる。
 検量情報記憶手段に記憶される検量情報、例えば検量線は、予め濃度が既知である第1目的成分、第2目的成分をそれぞれ含む試料(つまり標準試料)を実際に分析することで作成しておくことが望ましい。これも、通常のクロマトグラムに現れるピークを用いた定量処理と同様である。
 上述したような微分クロマトグラムの作成はごく簡単な処理であり、微分クロマトグラムに対して予め作成された検量情報を利用した定量処理を行えば定量値の算出もごく短時間で行うことが可能である。したがって、この構成によれば、二つの目的成分由来のピークが重なっていても、迅速に各目的成分を定量することが可能である。また、微分クロマトグラムに現れるピークの形状は、理想的には重なった成分の影響を排除したプロファイル波形と相似形になるため、高精度の定量が可能である。
 また上記第1及び第2の目的を達成するために成された本発明に係るクロマトグラムデータ処理方法は、目的試料について収集された、時間、波長、及び吸光度をディメンジョンとする3次元クロマトグラムデータを処理するクロマトグラムデータ処理方法において、
 a)前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における波長と吸光度との関係を示す吸光度スペクトルについて、第1の成分の極大(又は極小)吸収波長における波長方向の微分係数である波長微分係数を求め、全時間範囲内又は所定時間範囲内の前記波長微分係数の時間変化を表す微分クロマトグラムを作成する微分クロマトグラム作成ステップと、
 b)前記微分クロマトグラムの波形に基づいて、前記第1の成分のピークに重なる他の1乃至複数の成分の有無の判定、又は前記第1の成分のピークに重なる第2の成分の定量を実行するクロマトグラム波形処理ステップと、
 を有することを特徴としている。
 また、本発明に係るクロマトグラムデータ処理方法の第1の態様は、
 c)前記3次元クロマトグラムデータに基づき、第1の成分の吸収波長に関して時間と吸光度との関係を示す波長クロマトグラムを作成する波長クロマトグラム作成ステップ、をさらに有し、
 前記微分クロマトグラム作成ステップでは、前記3次元クロマトグラムデータに基づき、前記波長クロマトグラムにおける目的成分のピークが含まれる時間範囲内の各時点における吸光度スペクトルについて、前記第1の成分の極大(又は極小)吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成し、
 前記クロマトグラム波形処理ステップでは、前記微分クロマトグラムの波形形状に基づいて、目的成分である前記第1の成分のピークに不純物が含まれているか否かを判定するものとすることができる。
 さらにまた、本発明に係るクロマトグラムデータ処理方法の第2の態様は、
 前記微分クロマトグラム作成ステップでは、前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における吸光度スペクトルについて、第1目的成分である前記第1の成分の極大(又は極小)吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成するとともに、第2目的成分である前記第2の成分の極大(又は極小)吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成し、
 前記クロマトグラム波形処理ステップでは、前記第1目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークに基づいて前記第2目的成分を定量するとともに、前記第2目的成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークに基づいて前記第1目的成分を定量するものとすることができる。
 本発明に係るクロマトグラムデータ処理装置及び処理方法によれば、クロマトグラム上で不純物ピークが目的ピークの頂点のすぐ近傍に存在するなど、従来のピーク純度判定では見逃されるような場合であっても、目的ピークに不純物が含まれているか否かを高精度に判定することができる。また上述した従来のピーク純度判定処理とは異なり、ノイズベクトルをパラメータとして設定する必要がないため、比較的単純な計算処理によって目的ピークに不純物が含まれているか否かを判定することができる。
 また本発明に係るクロマトグラムデータ処理装置及び処理方法によれば、クロマトグラム上で二つの目的成分由来のピークが重なっていたり一方が他方に完全に含まれてしまっていたりした場合であっても、各目的成分由来のプロファイル波形に基づく高精度の定量が可能である。また、こうした定量のために比較的単純な演算処理を行えばよいので、低価格のパーソナルコンピュータを用いても迅速に定量を行うことができる。
本発明の一実施例であるクロマトグラムデータ処理装置を備えた液体クロマトグラフの概略構成図。 極大(又は極小)吸収波長クロマトグラムのピークの一例を示す図。 各測定時点における吸光度スペクトルの一例を示す図。 目的成分及び不純物の吸光度スペクトルの一例を示す図。 微分クロマトグラムの一例を示す図。 本実施例のクロマトグラムデータ処理装置におけるピーク純度判定処理動作を示すフローチャート。 本発明の他の実施例であるクロマトグラムデータ処理装置を備えた液体クロマトグラフの概略構成図。 本発明における二成分ピーク分離及びピーク純度判定の原理を説明するための吸光度スペクトルの一例を示す図。 図8に示した吸光度スペクトルに基づく微分スペクトルを示す図。 クロマトグラム上の二成分混合ピークを示す図。 図9に示した微分スペクトルに基づく微分クロマトグラムを示す図。 本発明の他の実施例であるクロマトグラムデータ処理装置を備えた液体クロマトグラフの概略構成図。 3次元クロマトグラムデータ、及び該3次元クロマトグラムデータから作成される極大(又は極小)吸収波長クロマトグラムを示す模式図。 従来のピーク純度判定処理の手法により得られる結果の表示例であり、(a)は不純物を含まないピークの例、(b)は不純物を含むピークの例。 分離が不充分であって二成分のピークが重なった状態のクロマトグラムの一例を示す図。
 [本発明における二成分ピーク分離及びピーク純度判定の原理説明]
 まず、図13に示したような3次元クロマトグラムデータに対して実行される、本発明における二成分ピーク分離及びピーク純度判定の原理を、添付の図8~図11を参照して説明する。
 いま、x、yなる二つの成分が試料に含まれる場合を考える。図8はこの成分x及びyそれぞれの吸光度スペクトルの一例を示す図である。図示するように、一般に、吸光度ピークの頂点(極大(又は極小)点)に対応した極大(又は極小)吸収波長は物質毎に相違する。
 図9は、図8に示した吸光度スペクトルを波長方向に微分することで求まる微分スペクトルである。波長方向にカーブが上昇している局面では微分係数は正値、カーブが下降している局面では微分係数は負値になり、吸光度ピークの頂点及び谷部の底では微分係数は0となる。図9に示すように、成分xの微分スペクトルにおいて微分係数が0(ただし微分係数が正値から負値に変化する状況での「0」)となる波長をλx、成分yの微分スペクトルにおいて微分係数が0(同じく微分係数が正値から負値に変化する状況での「0」)となる波長をλyとする。つまり、ここでは、λxは成分xの極大吸収波長、λyは成分yの極大吸収波長である。
 図10は、クロマトグラム上で成分xと成分yそれぞれのピークプロファイルの一例と、それらピークプロファイルが重なった状態、つまり未分離の混合ピークとを示す図である。成分xと成分yの保持時間はかなり近接しており、混合ピークから各成分x、yのピークプロファイルを予測するのは困難である。
 いまここで、成分xの吸光度スペクトルをx(λ)、ピークプロファイルをa(t)、同様に成分yの吸光度スペクトルをy(λ)、ピークプロファイルをb(t)とすると、成分xと成分yとが共に溶出している(つまりはクロマトグラム上でピークが重なっている)二成分系での3次元クロマトグラムS(t,λ)は次の(2)式で表すことができる。
  S(t,λ)=a(t)x(λ)+b(t)y(λ)   …(2)
これを波長λで偏微分すると次の(3)式となる。
  ∂S(t,λ)/∂λ=a(t)x'(λ)+b(t)y'(λ)   …(3)
(3)式に成分xの微分スペクトルにおける微分係数が0となる波長λxを代入すると、x'(λx)=0であることから、
  ∂S(t,λx)/∂λ=b(t)y'(λx)   …(4)
となる。同様に、(3)式に成分yの微分スペクトルにおける微分係数が0となる波長λyを代入すると、y'(λy)=0であることから、
  ∂S(t,λy)/∂λ=a(t)x'(λy)   …(5)
となる。
 図11の(a)は(4)式の結果を時間方向にプロットしたもの、(b)は同様に(5)式の結果を時間方向にプロットしたものである。つまり、図11(a)は波長λxにおける微分クロマトグラム、図11(b)は波長λyにおける微分クロマトグラムである。(4)式から明らかなように、波長λxにおける微分クロマトグラムには、成分yのみのピークプロファイルb(t)が現れる。また(5)式から明らかなように、波長λyにおける微分クロマトグラムでは、成分xのみのピークプロファイルa(t)が現れる。これらピークプロファイルa(t)、b(t)の面積や高さはそれぞれの成分の濃度に依存する。なお、図9~図11に関する上記説明は成分x、yの極大吸収波長λx、λyを用いた場合についての説明であるが、極大吸収波長の代わりに成分x、yの極小吸収波長を利用してもよい。
 以上のことから、x、yの二成分が共に溶出している状況下でも、x成分の極大(又は極小)吸収波長λxにおける波長方向の微分係数を時間方向にプロットした微分スペクトルを用いればy成分のみを分離して定量することができ、y成分の極大(又は極小)吸収波長λyにおける波長方向の微分係数を時間方向にプロットした微分スペクトルを用いればx成分のみを分離して定量することができることが分かる。
 なお、図11(b)に示すように、極大(又は極小)吸収波長λyにおける微分クロマトグラムに現れる成分xのピークプロファイルは負ピークとなるが、定量を行う場合には正負の極性を反転すればよい。
 いま図11(a)に着目すると、この微分クロマトグラムにピークが現れなかったとすれば、つまりは微分係数が0のままであったとすれば、これは成分yが存在しなかったことを意味する。即ち、成分xの極大(又は極小)吸収波長λxにおける微分クロマトグラムにピークが生じるか否かを判定すれば、成分yの重なりの有無を判定することができる。この判定を行うだけであれば、成分yの極大(又は極小)吸収波長λyが既知である必要はなく、成分y自体が未知の成分であってもよいことは明らかである。これを拡張して考えれば、単に或る既知の成分のクロマトグラムのピークに他の成分が含まれているか否かを判定するだけであれば、該他の成分は一つである必要はなく、1乃至複数の成分をまとめて不純物として扱えばよいことが分かる。
 即ち、目的成分xの3次元クロマトグラムがa(t)x(λ)であり、これに他の1乃至複数の成分が不純物として混入している場合、3次元クロマトグラムS(t,λ)は次の(6)式で表すことができる。
  S(t,λ)=a(t)x(λ)+b(t)y(λ)+c(t)z(λ)+…   …(6)
これを波長λで偏微分し、目的成分xの微分スペクトルx'(λ)の値が0となる波長λxを代入すると、次の(7)式となる。
  ∂S(t,λx)/∂λ=b(t)y'(λx)+c(t)z'(λx)+…   …(7)
この(7)式が目的成分xの極大(又は極小)吸収波長λxにおける微分クロマトグラムであり、目的成分x由来のピークは除去され、不純物のピークのみが現れることが分かる。
 これにより、上述した二成分のピーク分離と同じ原理により、目的成分に混入している不純物の有無も判定可能であることが分かる。
 [本発明の第1実施例であるクロマトグラムデータ処理装置の構成及び動作]
 次に、本発明に係るクロマトグラムデータ処理装置の一実施例(第1実施例)について、図1~図6を参照して説明する。この第1実施例は、上記原理に基づきピーク純度判定を行うものである。図1は、本実施例におけるクロマトグラムデータ処理装置(以下、単に「データ処理装置」という)を備える液体クロマトグラフシステムの概略構成図である。
 3次元クロマトグラムデータを収集するためのLC部1では、送液ポンプ12が移動相容器11から移動相を吸引し、一定の流量で試料注入部13へと送給する。試料注入部13は所定のタイミングで試料を移動相中に注入する。試料は移動相によってカラム14に送られ、カラム14を通過する間に試料中の各成分が時間方向に分離され、カラム14から溶出する。
 カラム14の出口には、カラム14からの溶出液中の試料成分を検出するための検出器として、マルチチャンネル型検出器の一種であるPDA検出器15が設けられている。PDA検出器15は、図示しない光源からの光を溶出液に照射し、溶出液を透過した光を波長分散させて各波長の光の強度をPDAリニアセンサによってほぼ同時に検出する。このPDA検出器15により繰り返し得られた検出信号はA/D変換器16によってデジタル信号に変換された後、3次元クロマトグラムデータとしてデータ処理装置2へ出力される。
 データ処理装置2は、A/D変換器16から出力された3次元クロマトグラムデータを格納するための3次元データ記憶部21と、所定の波長における吸光度の時間変化を表す波長クロマトグラムを3次元クロマトグラムデータから作成する波長クロマトグラム作成部22と、該波長クロマトグラム中のピークを検出するピーク検出部23と、検出されたピークの中でオペレータにより指定された目的ピーク中の不純物を検出する不純物検出部24と、を含む。なお、本実施例では、波長クロマトグラム作成部22は、目的成分の極大(又は極小)吸収波長λS0での吸光度の時間変化を表す極大(又は極小)吸収波長クロマトグラムを作成する。
 不純物検出部24は、機能ブロックとして、3次元クロマトグラムデータ及び目的成分の極大(又は極小)吸収波長λS0に基づいて微分クロマトグラムを作成するための微分クロマトグラム作成部25と、微分クロマトグラムの形状に基づいて目的ピーク中の不純物の有無を判定する判定部26と、を含む。これら各部の動作については後述する。
 表示部3は、極大(又は極小)吸収波長クロマトグラム、吸光度スペクトル、微分クロマトグラム、及び判定結果等の各種情報を表示するためのものである。操作部4は、目的成分の極大(又は極小)吸収波長λS0など、データ処理に必要な情報等をオペレータが入力設定するために操作される。
 なお、データ処理装置2の機能の一部又は全部は、パーソナルコンピュータやワークステーションにインストールされた専用の制御・処理ソフトウエアを実行することにより達成することができる。また、表示部3は一般的な液晶モニタ等であり、操作部4はパーソナルコンピュータやワークステーションの標準的な装備であるキーボードやマウス等のポインティングなどとすることができる。
 次に、この第1実施例の液体クロマトグラフシステムにおける特徴的なデータ処理動作について、図6のフローチャートを参照して説明する。
 まず、LC部1において目的試料に対するクロマトグラフ分析が実行され、所定の波長範囲における吸光度スペクトルの時間変化を表す3次元クロマトグラムデータ(図13(a)参照)がPDA検出器15から3次元データ記憶部21へと出力され、該3次元データ記憶部21に格納される(ステップS1)。
 次に、オペレータは、試料に含まれる目的成分(例えば定量したい成分)の極大(又は極小)吸収波長λS0の波長値を操作部4により入力する(ステップS2)。これを受けて、波長クロマトグラム作成部22は、入力された極大(又は極小)吸収波長λS0及び3次元データ記憶部21に格納されている3次元クロマトグラムデータに基づいて、横軸に時間、縦軸に極大(又は極小)吸収波長λS0における吸光度をプロットした極大(又は極小)吸収波長クロマトグラムを作成する(ステップS3)。図13(a)に示した3次元クロマトグラムデータに基づいて作成される極大(又は極小)吸収波長クロマトグラムの一例を図13(b)に示す。
 ピーク検出部23は、波長クロマトグラム作成部22により作成された極大(又は極小)吸収波長クロマトグラムの曲線の傾斜量を時間方向に順次調べ、図2に示すように、その傾斜量が所定値以上になったときにピークの始点TSであると判断し、傾斜量が正から0になりさらに負に転じたときにピーク頂点T0であると判断し、傾斜量の絶対値が所定値以下になったときにピークの終点TEであると判断して、ピークを検出する(ステップS4)。図2では一つのピークのみを示しているが、試料に複数の成分が含まれる場合には、通常、複数のピークが検出される。検出されたピークの情報は表示部3の画面上に表示され、オペレータは、それら複数のピークの中から目的成分に由来する目的ピークを操作部4により選択する(ステップS5)。
 目的ピークが選択されると、微分クロマトグラム作成部25は、目的ピークの始点TSから終点TEまでの時間範囲における吸光度スペクトルを3次元データ記憶部21から取得し、各吸光度スペクトルについてそれぞれ、極大(又は極小)吸収波長λS0における吸光度を波長方向に微分することにより波長微分係数を求める(ステップS6)。そして、横軸に時間、縦軸に算出された波長微分係数をプロットした微分クロマトグラムを作成する(ステップS7)。図5に微分クロマトグラムの一例を示す。
 微分クロマトグラム作成部25により作成された微分クロマトグラムに基づいて、判定部26は、上述した原理に基づく以下のような処理を実施することで、目的ピークの始点TSから終点TEまでの時間範囲内で不純物の有無の判定を行う。
 図4は、クロマトグラフ分析中の或る時点Tuにおける目的成分の吸光度スペクトルのパターン(図4中の(1))及び不純物の吸光度スペクトルのパターン(図4中の(2))を模式的に示す図である。このように目的成分の吸収波長域と不純物の吸収波長域とが互いに重なっている場合、上記時点Tuにおいて実際に得られる吸光度スペクトルのパターンは、目的成分の吸光度スペクトルのパターンと不純物の吸光度スペクトルのパターンを加算したもの(図4中の(3))となる。そのため、この吸光度スペクトルの極大(又は極小)位置と目的成分の極大(又は極小)吸収波長λS0とが一致しなくなる。
 目的ピークが目的成分のみに由来する場合、図3に示すように、目的ピークの始点TSから終点TEまでの間のいずれの時点においても、目的成分の極大(又は極小)吸収波長λS0は各時点における吸光度スペクトルの極大(又は極小)位置と一致するため、極大(又は極小)吸収波長λS0における波長微分係数は0となる。したがって、目的ピークの始点TSから終点TEまでの時間範囲における微分クロマトグラムは、図5において実線で示されるような、不可避なノイズのみを含んだ平坦な状態になる。一方、目的ピークが不純物を含んでいる場合、図4に示すように、目的成分の極大(又は極小)吸収波長λS0が各時点における吸光度スペクトルの極大(又は極小)位置と一致しなくなるため、極大(又は極小)吸収波長λS0における波長微分係数は、時間範囲TS~TEにおいて0以外の値となる。したがって、微分クロマトグラムは、図5において点線で示すように、不純物を含む時間域では平坦な状態とはならない。
 そこで判定部26は、目的ピークの始点TSから終点TEまでの時間範囲内において微分クロマトグラムが平坦か否かを判定する(ステップS8)。該時間範囲内で微分クロマトグラムが平坦であれば(図6のステップS8でYesであれば)、判定部26は目的ピークが該時間範囲内において不純物を含まない、即ち、目的成分のみに由来するピークであると判定する(ステップS9)。一方、上記時間範囲内で微分クロマトグラムが平坦でなければ(即ち、ステップS8でNoであれば)、判定部26は目的ピークが該時間範囲内において不純物を含んでいると判定する(ステップS10)。このように得られた判定結果は、表示部3によってオペレータに通知される(ステップS11)。
 微分クロマトグラムが平坦であるか否かの判定は、例えば、ベースラインのノイズ強度の平均のN倍又は所定のピーク面積以上であるピークが存在するか否か判定することで行うようにすればよい。また、それ以外の判定方法でもよい。
 以上述べたように、この第1実施例に係るデータ処理装置2では、極大(又は極小)吸収波長クロマトグラム上の目的ピークの始点TSから終点TEまでの間の時間範囲において、微分クロマトグラムが平坦であるか否かを判定することによって、目的ピークが不純物を含むか否かを判定する。目的ピークのピーク頂点のごく近傍に不純物が含まれる場合であっても、目的成分の極大(又は極小)吸収波長λS0が極大(又は極小)から僅かでも外れれば、微分クロマトグラムの形状に不純物の有無が反映される。そのため、第1実施例に係るデータ処理装置2によれば、従来のピーク純度判定手法に比べて格段に高精度な判定結果を得ることができる。
 また、第1実施例に係るデータ処理装置2では、上述した従来技術とは異なり、各波長におけるノイズ成分から成るノイズベクトルをパラメータとして設定する必要がないため、従来に比べて格段に平易な計算処理によってピーク純度判定を行うことができる。
 さらにまた、第1実施例に係るデータ処理装置2では、測定時間の全範囲ではなく、目的ピークの始点TSから終点TEまでの時間範囲に絞って微分クロマトグラムを作成するようにしたため、目的ピークに不純物が含まれているか否かをより効率よく判定でき、より短時間で判定を終了することができる。
 なお、上記説明では、オペレータが操作部4によって目的ピークを選択するようにしていたが、この際に一つのピークではなく複数のピークを目的ピークとして選択するようにしてもよい。その場合、選択された目的ピーク毎に上述したような不純物の検出を実施すればよい。また、検出されたピークの数に拘わらず、検出された全てのピークについて不純物の検出を実施するように予め設定しておいてもよい。その場合、上記フローチャートにおいてステップS5の処理は省略される。
 また、第1実施例では、ステップS2において目的成分の極大(又は極小)吸収波長λS0の波長値をオペレータが入力するようにしたが、オペレータにより目的成分の名称や構造式などを指定させるようにし、それに対応する波長値をデータベースから取得するようにしてもよい。或いは、オペレータによる入力自体を省略し、3次元クロマトグラムデータより自動的にピーク(例えば3次元的なピーク)を検出して、その結果をデータベースと照合することで極大(又は極小)吸収波長を決定するようにしてもよい。目的成分が複数の極大(又は極小)吸収波長を有する場合には、そのうちの一つを用いるようにすればよい。
 さらにまた、目的ピークが含まれる時間範囲の設定に関し、オペレータが波長クロマトグラム上の目的ピークの保持時間の前後に適当な時間幅を設けた時間範囲を操作部4によって予め入力することにより、目的ピークの始点に対応する時間TS及び終点に対応する時間TEが取得されるようにしてもよい。
 さらにまた、図2に示したような波長クロマトグラムを表示部3の画面上に表示し、オペレータがそれを見て、操作部4により、目的ピークの始点に対応する時間TS及び終点に対応する時間TEを指定するようにしてもよい。
 こうした構成の場合、ステップS5においてオペレータが直接的に上記時間範囲を入力したり、波長クロマトグラム上で始点及び終点の位置をクリック操作等で指定したりすることにより、目的ピークの始点TSから終点TEまでの時間範囲が決定されるようにすることができる。
 さらにまた、第1実施例では、波長クロマトグラム作成部22が目的成分の極大(又は極小)吸収波長における波長クロマトグラムを作成していたが、目的成分の極大(又は極小)吸収波長の近傍の波長における波長クロマトグラムであっても構わない。また複数の極大(又は極小)吸収波長が存在する場合、一般的には、その中の最大強度の波長を選択することが望ましい。また、第1の成分の極大(又は極小)吸収波長としては、目的ピークのピーク頂点の近傍に不純物ピークが存在することが予め分かっており、その不純物の多寡を判定したい場合には、その不純物の吸収スペクトルを波長方向に微分した値が充分な大きさを持つ極大(又は極小)吸収波長を選択するとよい。
 [第1実施例の変形例によるクロマトグラムデータ処理装置の構成及び動作]
 次に、第1実施例の変形例によるデータ処理装置について図7により説明する。図7に示すように、この変形例のデータ処理装置は、上記第1実施例のデータ処理装置に対して極大(又は極小)吸収波長取得部27が追加されている。
 この変形例のデータ処理装置は、目的成分の極大(又は極小)吸収波長λS0が既知でなくそれを求めるためのデータベースも有していない場合に、目的成分の標準品を含む試料を実際に測定してその極大(又は極小)吸収波長λS0を取得し、その値を後段の処理に用いるという構成を有するものである。
 まず、目的成分の標準品を含む標準試料をLC部1で測定することにより、3次元クロマトグラムデータを取得する。取得された3次元クロマトグラムデータは3次元データ記憶部21に格納される。オペレータが、目的成分に由来するピークが出現するような適当な波長を選択すると、波長クロマトグラム作成部22は、3次元データ記憶部21から適当な3次元クロマトグラムデータを読み出し、選択された波長における波長クロマトグラムを作成する。ピーク検出部23はこの波長クロマトグラムから、上記実施例と同様の処理によってピークを検出し、ピークの始点TS、頂点T0及び終点TEに対応する時間を取得する。オペレータは、検出されたピークの中から目的成分の標準品に由来するピークを操作部4により選択する(この場合には、通常、ピークは一つのみ検出される)。
 次に、極大(又は極小)吸収波長取得部27は、目的成分を含む標準試料を測定して得られた3次元クロマトグラムデータを3次元データ記憶部21から読み出すとともに、オペレータにより指定されたピークの頂点に対応する時刻T0をピーク検出部23から取得する。そして極大(又は極小)吸収波長取得部27は、時刻T0における吸光度スペクトルの吸光度を波長方向に順次微分してゆき、各波長における波長微分係数を求める。
 次いで、波長微分係数が0となる波長を求め、これを目的成分の標準品の極大(又は極小)吸収波長λS0として取得する。取得された標準品の極大(又は極小)吸収波長λS0は、以降に測定される試料のピーク純度判定処理に用いられる。極大(又は極小)吸収波長λS0が複数取得された場合には、オペレータが操作部4によって最も適切であると判断される一つの極大(又は極小)吸収波長λS0を選択するようにすればよい。このようにして目的成分の極大(又は極小)吸収波長λS0が決まれば、それ以降のピーク純度判定処理は、上述した図6のステップS3以降と同様の手順で実行される。
 以上のようにして、この変形例によるデータ処理装置によれば、目的成分の極大(又は極小)吸収波長λS0に関する情報がない場合でも該目的成分の標準品を含む試料が用意可能であれば、未知試料中の目的成分のピーク純度判定を行うことができる。
 [本発明の第2実施例であるクロマトグラムデータ処理装置の構成及び動作]
 次いで、本発明に係るクロマトグラムデータ処理装置の第2実施例を備えた液体クロマトグラフシステムについて、図12を参照して説明する。この第2実施例は、上記説明した原理に基づき、保持時間が比較的近くカラム14では充分に分離されない二つの目的成分x、yを、データ処理によって分離して定量するものである。図12において、LC部1の構成は図1に示した第1実施例の構成と同じであり説明を略す。
 データ処理装置5は、第1実施例と同様に、A/D変換器16から出力された3次元クロマトグラムデータを格納するための3次元データ記憶部51と、特定の波長における波長クロマトグラムを3次元クロマトグラムデータから作成する波長クロマトグラム作成部52と、該クロマトグラム中で定量を行うピークを検出しその時間範囲を設定するピーク検出部53と、設定されたピーク又は時間範囲においてオペレータにより指定された二つの目的成分x、yを分離した上でそれぞれ定量する二成分分離定量部54と、を含む。
 二成分分離定量部54は、機能ブロックとして、3次元クロマトグラムデータ及び二つの目的成分x、yの極大(又は極小)吸収波長λx、λyに基づいて、それぞれ微分クロマトグラムを作成する微分クロマトグラム作成部55と、微分クロマトグラムに現れるピークの面積を計算するピーク面積計算部56と、計算された面積値を後述する検量線に照らして未知である目的成分x、yの濃度を求める定量演算部57と、既知濃度の目的成分x、yが含まれる試料の分析結果に基づいて微分クロマトグラム上のピーク面積値と成分濃度との関係を示す検量線を作成する検量線作成部58と、作成された検量線を記憶しておく検量線記憶部59と、を含む。
 第2実施例の液体クロマトグラフシステムにおける特徴的なデータ処理動作について説明する。この第2実施例では、未知試料中の濃度が未知である目的成分x、yをそれぞれ定量するために、次のようにして、目的成分x、yの検量線を予め作成して検量線記憶部59に格納しておく。
 即ち、オペレータは目的成分xの標準品を希釈して複数段階の濃度の標準試料を調製するとともに、同様に、目的成分yの標準品を希釈して複数段階の濃度の標準試料を調製する。そして、それら標準試料をそれぞれLC部1で測定することにより、3次元クロマトグラムデータを取得する。取得された3次元クロマトグラムデータは一時的に3次元データ記憶部51に格納される。
 オペレータは、目的成分x、yの極大(又は極小)吸収波長λx、λyの波長値を操作部4により入力する。これを受けて、波長クロマトグラム作成部52は、入力された二つの極大(又は極小)吸収波長λx、λy及び各標準試料に対して得られた3次元クロマトグラムデータに基づいて、極大(又は極小)吸収波長λx、λyにおける極大(又は極小)吸収波長クロマトグラムをそれぞれ作成する。そして、ピーク検出部53は、第1実施例と同様の処理によってピークを検出し、それぞれのピークの始点TS、頂点T0及び終点TEに対応する時間を取得する(この場合、一つの極大(又は極小)吸収波長クロマトグラムにおいて目的成分x又はy由来のピーク一つのみが検出される)。
 微分クロマトグラム作成部55は、成分xを或る濃度で含む標準試料について、成分xに関するピークの始点TSから終点TEまでの時間範囲における吸光度スペクトルを3次元データ記憶部51から取得し、各吸光度スペクトルについてそれぞれ、目的成分yの極大(又は極小)吸収波長λyにおける吸光度を波長方向に微分することにより波長微分係数を求める。そして、横軸に時間、縦軸に算出された波長微分係数をプロットした、極大(又は極小)吸収波長λyにおける微分クロマトグラムを作成する。この場合、測定された標準試料には成分xのみが含まれるから、該成分xが溶出している全時間範囲内で、波長λxにおいて吸光度は極大(又は極小)を示し続ける。それ故に、極大(又は極小)吸収波長λxにおける微分係数は0を保つ。
 これに対し、波長λyは成分xに対しては極大(又は極小)吸収波長ではないものの、波長λyでも成分xによる吸収がある。そのため、成分yの極大(又は極小)吸収波長λyにおける波長微分係数は成分xによる吸収を受ける範囲で変化する。その結果、上記極大(又は極小)吸収波長λyにおける微分クロマトグラムにはピークが現れ、このピークは成分xの溶出プロファイルを反映したものとなる。そこで、ピーク面積計算部56は、波長λyにおける微分クロマトグラムに現れる成分xに由来するピークの面積値を計算する。また同様の計算を、異なる濃度の成分xを含む標準試料に対して得られた3次元クロマトグラムデータに基づく、波長λyにおける微分クロマトグラムについて実施し、成分xに由来するピーク面積値を算出する。
 検量線作成部58は、上述したように成分xが異なる濃度で含まれる標準試料にそれぞれ対応した波長λyにおける微分クロマトグラムから得られたピーク面積値と、それぞれの成分濃度とに基づいて、成分xの濃度と波長λyにおける微分クロマトグラム上のピーク面積値との関係を示す検量線を作成し、これを検量線記憶部59に格納する。
 また、微分クロマトグラム作成部55は、同様に、成分yを含む標準試料について得られた3次元クロマトグラムデータに基づいて、成分xの極大(又は極小)吸収波長λxにおける微分クロマトグラムを作成し、ピーク面積計算部56は波長λxにおける微分クロマトグラムに現れる成分yに由来するピークの面積値を計算する。そして、検量線作成部58は、成分yが異なる濃度で含まれる標準試料にそれぞれ対応した波長λxにおける微分クロマトグラムから得られたピーク面積値と、それぞれの成分濃度とに基づいて、成分yの濃度と波長λxにおける微分クロマトグラム上のピーク面積値との関係を示す検量線を作成し、これを検量線記憶部59に格納する。
 以上のようにして成分x、yそれぞれの検量線を検量線記憶部59に格納することができる。
 濃度が未知である目的成分x、yを含む試料中の成分x、yを定量する際には、該未知試料をLC部1で測定することにより、3次元クロマトグラムデータを取得して3次元データ記憶部51に格納する。
 オペレータは、目的成分x、yの極大(又は極小)吸収波長λx、λyの波長値を操作部4により入力する。これを受けて、波長クロマトグラム作成部52は、入力された二つの極大(又は極小)吸収波長λx、λyにおける3次元クロマトグラムデータを3次元データ記憶部51から読み出し、それら極大(又は極小)吸収波長λx、λyにおける波長クロマトグラムを作成する。そして、ピーク検出部53はこれら二つの波長クロマトグラムから、上記実施例と同様の処理によってピークを検出し、それぞれのピークの始点TS、頂点T0及び終点TEに対応する時間を取得する。ただし、波長クロマトグラムに現れるピークは図15(a)に示すように二つのピークが重なった状態となる場合があるから、例えば予め与えられた各成分x、yの保持時間に基づいて、連なったピークの前半部の始点をピーク始点TSとし、後半部の終点をピーク終点TEとするように処理を行うとよい。
 なお、第1実施例と同様に、ピーク検出により複数のピークが検出された場合には、検出されたピークの情報を表示部3の画面上に表示し、オペレータにより、それら複数のピークの中から目的成分に由来する目的ピークを操作部4により選択させるようにすればよい。
 次に、微分クロマトグラム作成部55は、ピーク検出部53により検出された又はオペレータにより選択されたピークの始点から終点までの時間範囲における吸光度スペクトルを3次元データ記憶部51から取得し、各吸光度スペクトルについてそれぞれ、目的成分xの極大(又は極小)吸収波長λx及び目的成分yの極大(又は極小)吸収波長λyにおける吸光度を波長方向に微分することにより波長微分係数を求める。そして、極大(又は極小)吸収波長λx及びλyにおける微分クロマトグラムをそれぞれ作成する。上述したように、波長λxにおける微分クロマトグラムには目的成分xの吸収の影響は現れず、観測されるピークは目的成分yの溶出プロファイルを反映したものとなる。一方、波長λyにおける微分クロマトグラムには目的成分yの吸収の影響は現れず、観測されるピークは目的成分xの溶出プロファイルを反映したものとなる。そこで、ピーク面積計算部56は、各微分クロマトグラムに現れるピークの面積値をそれぞれ計算する。
 定量演算部57は、波長λxにおける微分クロマトグラムから求められたピーク面積値を、検量線記憶部59から読み出した成分yの検量線に照らして成分yの濃度値を算出する。また、波長λyにおける微分クロマトグラムから求められたピーク面積値を、同じく検量線記憶部59から読み出した成分xの検量線に照らして成分xの濃度値を算出する。そして、このようにして得られた二つの目的成分x、yの定量結果は、表示部3によってオペレータに通知される。
 以上述べたように、この第2実施例に係るデータ処理装置5では、目的成分とは異なる他の成分の極大(又は極小)吸収波長における微分クロマトグラムに現れるピークの面積値により、重なって溶出しているその成分の影響を除外して目的成分を定量する。このとき微分クロマトグラムに現れるピークは目的成分のみの溶出プロファイルを反映しているので、従来のピークの重なりを垂直分割により分割して定量する手法と比べて格段に高精度な定量結果を得ることができる。
 この第2実施例においても、上記第1実施例について説明した様々な変形が可能である。例えば、目的成分x、yの極大(又は極小)吸収波長λx、λyの波長値をオペレータが入力するようにする以外に、オペレータにより目的成分の名称や構造式などを指定させるようにし、それに対応する波長値をデータベースから取得するようにしてもよい。こうしたデータベースからは任意の成分の波長値と同時に保持時間も取得できるので、ピーク検出の際に保持時間を利用する場合には特に都合がよい。
 また本発明は上記第1実施例、第2実施例に限らず、本発明の趣旨の範囲で適宜変形、追加、修正を加えても本願特許請求の範囲に包含されることは明らかである。
 例えば、本発明のデータ処理装置による処理対象の3次元クロマトグラムデータを取得するクロマトグラフの検出器はPDA検出器等のマルチチャンネル型検出器でなくてもよく、吸光度スペクトルの吸光度を波長方向に順次微分したときにそのスペクトルカーブの傾斜を正確に反映した微分係数が得られるように、波形形状が比較的ブロードである(変化が緩やかである)スペクトルが得られるものであればよい。ただし、所定波長範囲に亘る吸光度の測定に時間が掛かり過ぎるのは適当でないから、高速の波長走査が可能である紫外可視分光光度計、赤外分光光度計、近赤外分光光度計、蛍光分光光度計、などであってもよい。
 また、クロマトグラフは、液体クロマトグラフでなくガスクロマトグラフでもよいが、上記のような検出器を用いるクロマトグラフは通常、液体クロマトグラフである。また、上述したように、クロマトグラフのカラムで分離された試料を検出器で検出して得られるデータでなく、FIA法により成分分離されることなく導入された試料中の成分を検出器で検出して得られるデータを処理する装置や方法にも本発明を適用できることは明らかである。
1…LC部
11…移動相容器
12…送液ポンプ
13…試料注入部
14…カラム
15…PDA検出器
16…A/D変換器
2、5…データ処理装置
21、51…3次元データ記憶部
22、52…波長クロマトグラム作成部
23、53…ピーク検出部
24…不純物検出部
25…微分クロマトグラム作成部
26…判定部
27…極大(又は極小)吸収波長取得部
3…表示部
4…操作部
54…二成分分離定量部
55…微分クロマトグラム作成部
56…ピーク面積計算部
57…定量演算部
58…検量線作成部
59…検量線記憶部

Claims (10)

  1.  目的試料について収集された、時間、波長、及び吸光度をディメンジョンとする3次元クロマトグラムデータを処理するクロマトグラムデータ処理装置において、
     a)前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における波長と吸光度との関係を示す吸光度スペクトルについて、第1の成分の極大又は極小吸収波長における波長方向の微分係数である波長微分係数を求め、全時間範囲内又は所定時間範囲内の前記波長微分係数の時間変化を表す微分クロマトグラムを作成する微分クロマトグラム作成手段と、
     b)前記微分クロマトグラムの波形に基づいて、前記第1の成分のピークに重なる他の1乃至複数の成分の有無の判定、又は前記第1の成分のピークに重なる第2の成分の定量を実行するクロマトグラム波形処理手段と、
     を備えることを特徴とするクロマトグラムデータ処理装置。
  2.  請求項1に記載のクロマトグラムデータ処理装置であって、
     c)前記3次元クロマトグラムデータに基づき、第1の成分の吸収波長に関して時間と吸光度との関係を示す波長クロマトグラムを作成する波長クロマトグラム作成手段、をさらに備え、
     前記微分クロマトグラム作成手段は、前記3次元クロマトグラムデータに基づき、前記波長クロマトグラムにおける目的成分のピークが含まれる時間範囲内の各時点における吸光度スペクトルについて、前記第1の成分の極大又は極小吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成する手段であり、
     前記クロマトグラム波形処理手段は、前記微分クロマトグラムの波形形状に基づいて、目的成分である前記第1の成分のピークに不純物が含まれているか否かを判定する判定手段であることを特徴とするクロマトグラムデータ処理装置。
  3.  請求項2に記載のクロマトグラムデータ処理装置であって、
     前記判定手段は、前記微分クロマトグラムが平坦であるか否かを判定することによって、目的成分のピークに不純物が含まれているか否かを判定することを特徴とするクロマトグラムデータ処理装置。
  4.  請求項2又は3に記載のクロマトグラムデータ処理装置であって、
     d)前記波長クロマトグラムのピークを検出し、ピークの始点及び終点を決定するピーク検出手段、をさらに備え、
     前記微分クロマトグラム作成手段は、前記波長クロマトグラムにおける目的成分のピークの始点から終点までの時間範囲における微分クロマトグラムを作成することを特徴とするクロマトグラムデータ処理装置。
  5.  請求項2~4のいずれかに記載のクロマトグラムデータ処理装置であって、
     e)既知の目的成分を含む試料に対して得られた3次元クロマトグラムデータに基づく波長クロマトグラムのピークの頂点の時点における吸光度スペクトルを波長方向に微分することにより、前記目的成分の極大又は極小吸収波長を求める極大吸収波長取得手段又は極小吸収波長取得手段、をさらに備えることを特徴とするクロマトグラムデータ処理装置。
  6.  請求項1に記載のクロマトグラムデータ処理装置であって、
     前記微分クロマトグラム作成手段は、前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における吸光度スペクトルについて、第1目的成分である前記第1の成分の極大又は極小吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成するとともに、第2目的成分である前記第2の成分の極大又は極小吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成し、
     前記クロマトグラム波形処理手段は、前記第1目的成分の極大又は極小吸収波長における微分クロマトグラムに現れるピークに基づいて前記第2目的成分を定量するとともに、前記第2目的成分の極大又は極小吸収波長における微分クロマトグラムに現れるピークに基づいて前記第1目的成分を定量することを特徴とするクロマトグラムデータ処理装置。
  7.  請求項6に記載のクロマトグラムデータ処理装置であって、
     前記クロマトグラム波形処理手段は、
     前記第1目的成分及び第2目的成分についてそれぞれ、微分クロマトグラムに現れるピークの面積又は高さと成分濃度との関係を示す検量情報を記憶しておく検量情報記憶手段と、
     目的試料に対する3次元クロマトグラムデータに基づいてそれぞれ作成された、前記第1目的成分の極大又は極小吸収波長及び前記第2目的成分の極大又は極小吸収波長における微分クロマトグラムに現れるピークの面積又は高さを計算するピーク情報算出手段と、
     該ピーク情報算出手段により計算されたピークの面積又は高さを前記検量情報に照らして各目的成分の定量値を求める定量値算出手段と、
     を含むことを特徴とするクロマトグラムデータ処理装置。
  8.  目的試料について収集された、時間、波長、及び吸光度をディメンジョンとする3次元クロマトグラムデータを処理するクロマトグラムデータ処理方法において、
     a)前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における波長と吸光度との関係を示す吸光度スペクトルについて、第1の成分の極大又は極小吸収波長における波長方向の微分係数である波長微分係数を求め、全時間範囲内又は所定時間範囲内の前記波長微分係数の時間変化を表す微分クロマトグラムを作成する微分クロマトグラム作成ステップと、
     b)前記微分クロマトグラムの波形に基づいて、前記第1の成分のピークに重なる他の1乃至複数の成分の有無の判定、又は前記第1の成分のピークに重なる第2の成分の定量を実行するクロマトグラム波形処理ステップと、
     を有することを特徴とするクロマトグラムデータ処理方法。
  9.  請求項8に記載のクロマトグラムデータ処理方法であって、
     c)前記3次元クロマトグラムデータに基づき、第1の成分の吸収波長に関して時間と吸光度との関係を示す波長クロマトグラムを作成する波長クロマトグラム作成ステップ、をさらに有し、
     前記微分クロマトグラム作成ステップでは、前記3次元クロマトグラムデータに基づき、前記波長クロマトグラムにおける目的成分のピークが含まれる時間範囲内の各時点における吸光度スペクトルについて、前記第1の成分の極大又は極小吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成し、
     前記クロマトグラム波形処理ステップでは、前記微分クロマトグラムの波形形状に基づいて、目的成分である前記第1の成分のピークに不純物が含まれているか否かを判定することを特徴とするクロマトグラムデータ処理方法。
  10.  請求項8に記載のクロマトグラムデータ処理方法であって、
     前記微分クロマトグラム作成ステップでは、前記3次元クロマトグラムデータに基づき、全時間範囲内又は所定時間範囲内の各時点における吸光度スペクトルについて、第1目的成分である前記第1の成分の極大又は極小吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成するとともに、第2目的成分である前記第2の成分の極大又は極小吸収波長における波長微分係数を求め、該波長微分係数の時間変化を表す微分クロマトグラムを作成し、
     前記クロマトグラム波形処理ステップでは、前記第1目的成分の極大又は極小吸収波長における微分クロマトグラムに現れるピークに基づいて前記第2目的成分を定量するとともに、前記第2目的成分の極大又は極小吸収波長における微分クロマトグラムに現れるピークに基づいて前記第1目的成分を定量することを特徴とするクロマトグラムデータ処理方法。
PCT/JP2012/072151 2011-09-05 2012-08-31 クロマトグラムデータ処理装置及び処理方法 WO2013035639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/342,701 US10386346B2 (en) 2011-09-05 2012-08-31 System and method for processing chromatogram data
CN201280042744.9A CN103765207B (zh) 2011-09-05 2012-08-31 色谱数据处理装置及处理方法
JP2013532567A JP5804070B2 (ja) 2011-09-05 2012-08-31 クロマトグラムデータ処理装置及び処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-193263 2011-09-05
JP2011193263 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035639A1 true WO2013035639A1 (ja) 2013-03-14

Family

ID=47832086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072151 WO2013035639A1 (ja) 2011-09-05 2012-08-31 クロマトグラムデータ処理装置及び処理方法

Country Status (4)

Country Link
US (1) US10386346B2 (ja)
JP (1) JP5804070B2 (ja)
CN (1) CN103765207B (ja)
WO (1) WO2013035639A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015555A1 (ja) * 2013-07-29 2015-02-05 株式会社島津製作所 クロマトグラフ用データ処理装置及びデータ処理方法
WO2015029508A1 (ja) * 2013-09-02 2015-03-05 株式会社島津製作所 クロマトグラムデータ処理装置
JP2015068754A (ja) * 2013-09-30 2015-04-13 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用検出器
WO2015056311A1 (ja) * 2013-10-16 2015-04-23 株式会社島津製作所 クロマトグラムデータ処理装置
JP5962845B2 (ja) * 2013-03-04 2016-08-03 株式会社島津製作所 クロマトグラムデータ処理装置及び処理方法
EP2986352A4 (en) * 2014-01-14 2016-11-09 Bio Rad Laboratories METHOD FOR LIQUID CHROMATOGRAPHY DATA ANALYSIS
CN106574914A (zh) * 2014-06-24 2017-04-19 株式会社岛津制作所 全二维色谱用数据处理装置
JPWO2016035167A1 (ja) * 2014-09-03 2017-06-08 株式会社島津製作所 クロマトグラムデータ処理方法及び装置
JPWO2017038983A1 (ja) * 2015-09-02 2018-06-21 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
US11209406B2 (en) 2016-05-02 2021-12-28 Shimadzu Corporation Data processing device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317378B2 (en) * 2012-12-07 2019-06-11 Shimadzu Corporation Data processing system and data processing method for chromatograph
JP6269146B2 (ja) * 2014-02-19 2018-01-31 株式会社島津製作所 クロマトグラフ稼働状態監視装置
CN104849226B (zh) * 2015-05-26 2016-04-27 谭森 一种在线监测水质的装置和方法
US11543395B2 (en) * 2016-06-22 2023-01-03 Shimadzu Corporation Information processing device, information processing method, and information processing program
EP3594680A4 (en) * 2017-03-07 2020-11-25 Shimadzu Corporation FACTION COLLECTOR DEVICE AND PREPARATIVE LIQUID CHROMATOGRAPHER
EP3805748A4 (en) * 2018-05-30 2021-06-23 Shimadzu Corporation SPECTRAL DATA PROCESSING DEVICE AND ANALYSIS DEVICE
JP7085943B2 (ja) * 2018-08-23 2022-06-17 アークレイ株式会社 成分分析方法及び成分分析装置
CN115856185B (zh) * 2023-02-28 2023-06-13 杭州泽天春来科技有限公司 分析仪的处理方法、系统及可读存储介质
CN116136518B (zh) * 2023-04-20 2023-08-01 杭州泽天春来科技有限公司 色谱仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120662A (ja) * 1988-10-29 1990-05-08 Shimadzu Corp クロマトグラフィ用装置
JP2011153966A (ja) * 2010-01-28 2011-08-11 Shimadzu Corp 三次元クロマトグラム用データ処理方法及びデータ処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111423B2 (ja) * 1986-10-01 1995-11-29 株式会社日立製作所 クロマトグラフのデ−タ処理方法
CN1016900B (zh) * 1989-01-12 1992-06-03 中国人民解放军第二军医大学 褶合曲线分析法及褶合光谱仪
JP2936700B2 (ja) 1990-11-16 1999-08-23 株式会社島津製作所 クロマトグラムピークの成分純度測定装置
EP0486030B1 (en) * 1990-11-16 1997-01-15 Shimadzu Corporation Fraction purity measuring apparatus for chromatogram peak
JP2550805B2 (ja) * 1991-06-30 1996-11-06 株式会社島津製作所 クロマトグラフの吸光分析装置
JPH06230001A (ja) * 1993-02-03 1994-08-19 Shimadzu Corp クロマトグラフ用データ処理装置
JPH07218491A (ja) * 1994-01-31 1995-08-18 Shimadzu Corp クロマトグラフ用検出装置
US6629039B1 (en) * 2000-04-27 2003-09-30 Perkinelmer Instruments Llc Method and apparatus for impurity detection
JP4163534B2 (ja) * 2002-04-01 2008-10-08 日本電子株式会社 質量スペクトルの解析方法および装置
CN1712955A (zh) * 2004-06-25 2005-12-28 中国科学院大连化学物理研究所 一种精确测定色谱峰形参数和重叠峰面积的方法
US7488935B2 (en) * 2005-06-24 2009-02-10 Agilent Technologies, Inc. Apparatus and method for processing of mass spectrometry data
JP4800056B2 (ja) * 2006-02-09 2011-10-26 株式会社日立製作所 ストレージシステム及びその制御方法
JP3888389B2 (ja) 2006-03-27 2007-02-28 株式会社日立製作所 クロマトデータ処理装置,クロマトデータ処理方法、及びクロマトグラフ分析装置
US7511802B2 (en) * 2006-05-26 2009-03-31 Spectrasensors, Inc. Measuring trace components of complex gases using gas chromatography/absorption spectrometry
WO2010015509A1 (en) * 2008-08-07 2010-02-11 Agilent Technologies, Inc. Multi-wavelength light source
JP5333089B2 (ja) * 2009-09-09 2013-11-06 株式会社島津製作所 クロマトグラフ用データ処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120662A (ja) * 1988-10-29 1990-05-08 Shimadzu Corp クロマトグラフィ用装置
JP2011153966A (ja) * 2010-01-28 2011-08-11 Shimadzu Corp 三次元クロマトグラム用データ処理方法及びデータ処理装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962845B2 (ja) * 2013-03-04 2016-08-03 株式会社島津製作所 クロマトグラムデータ処理装置及び処理方法
WO2015015555A1 (ja) * 2013-07-29 2015-02-05 株式会社島津製作所 クロマトグラフ用データ処理装置及びデータ処理方法
JP5954497B2 (ja) * 2013-07-29 2016-07-20 株式会社島津製作所 クロマトグラフ用データ処理装置及びデータ処理方法
US10697946B2 (en) 2013-07-29 2020-06-30 Shimadzu Corporation Data processing system and data processing method for chromatograph
WO2015029508A1 (ja) * 2013-09-02 2015-03-05 株式会社島津製作所 クロマトグラムデータ処理装置
US10802005B2 (en) 2013-09-02 2020-10-13 Shimadzu Corporation Chromatogram data processing system
CN105518456A (zh) * 2013-09-02 2016-04-20 株式会社岛津制作所 色谱数据处理装置
CN108918744A (zh) * 2013-09-02 2018-11-30 株式会社岛津制作所 色谱数据处理方法
JPWO2015029508A1 (ja) * 2013-09-02 2017-03-02 株式会社島津製作所 クロマトグラムデータ処理装置
JP2015068754A (ja) * 2013-09-30 2015-04-13 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用検出器
JPWO2015056311A1 (ja) * 2013-10-16 2017-03-09 株式会社島津製作所 クロマトグラムデータ処理装置
JP6037040B2 (ja) * 2013-10-16 2016-11-30 株式会社島津製作所 クロマトグラムデータ処理装置
US10429365B2 (en) 2013-10-16 2019-10-01 Shimadzu Corporation Chromatogram data processing system
WO2015056311A1 (ja) * 2013-10-16 2015-04-23 株式会社島津製作所 クロマトグラムデータ処理装置
US10261058B2 (en) 2014-01-14 2019-04-16 Bio-Rad Laboratories, Inc. Method and system for liquid chromatography data analysis
EP2986352A4 (en) * 2014-01-14 2016-11-09 Bio Rad Laboratories METHOD FOR LIQUID CHROMATOGRAPHY DATA ANALYSIS
CN106574914A (zh) * 2014-06-24 2017-04-19 株式会社岛津制作所 全二维色谱用数据处理装置
JPWO2016035167A1 (ja) * 2014-09-03 2017-06-08 株式会社島津製作所 クロマトグラムデータ処理方法及び装置
US10416134B2 (en) 2014-09-03 2019-09-17 Shimadzu Corporation Chromatogram data processing method and chromatogram data processing apparatus
JPWO2017038983A1 (ja) * 2015-09-02 2018-06-21 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
US11209406B2 (en) 2016-05-02 2021-12-28 Shimadzu Corporation Data processing device

Also Published As

Publication number Publication date
US10386346B2 (en) 2019-08-20
US20140257712A1 (en) 2014-09-11
JP5804070B2 (ja) 2015-11-04
JPWO2013035639A1 (ja) 2015-03-23
CN103765207A (zh) 2014-04-30
CN103765207B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5804070B2 (ja) クロマトグラムデータ処理装置及び処理方法
JP6037040B2 (ja) クロマトグラムデータ処理装置
JP6156501B2 (ja) クロマトグラムデータ処理装置
JP5962845B2 (ja) クロマトグラムデータ処理装置及び処理方法
US10935526B2 (en) Liquid chromatograph and method for correcting detector output value fluctuation of liquid chromatograph
JP6573028B2 (ja) データ処理装置
US10317378B2 (en) Data processing system and data processing method for chromatograph
JP5146344B2 (ja) クロマトグラフ用データ処理装置
JP5742749B2 (ja) クロマトグラフ用データ処理装置及びデータ処理方法
JP2011185743A (ja) クロマトグラムピーク純度判定装置
CN105158189A (zh) 基于空间夹角判据分析植物油中抗氧化剂含量的方法
JP2011153945A (ja) 分光蛍光光度計、および液体クロマトグラフ用蛍光検出器
JP4062155B2 (ja) クロマトグラフ用データ処理装置
JP7069537B2 (ja) スペクトルデータ処理装置
Castledine et al. Strategies for peak-purity assessment in liquid chromatography
JP6237510B2 (ja) クロマトグラフ用データ処理装置及びデータ処理方法並びにクロマトグラフ分析システム
US9739756B2 (en) Data processing system and method for chromatograph
JP2017223670A (ja) 液体クロマトグラフおよび液体クロマトグラフの検出器出力値変動補正手段
JPS63317763A (ja) 光学検出装置
WO2016178033A1 (en) Mixture identification
JP2013003086A (ja) 測定装置のデータ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14342701

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12830155

Country of ref document: EP

Kind code of ref document: A1