WO2013031511A1 - 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびそれを用いた積層体、ならびに、偏光板の製造方法 - Google Patents

偏光板離型フィルム用二軸配向ポリエステルフィルムおよびそれを用いた積層体、ならびに、偏光板の製造方法 Download PDF

Info

Publication number
WO2013031511A1
WO2013031511A1 PCT/JP2012/070313 JP2012070313W WO2013031511A1 WO 2013031511 A1 WO2013031511 A1 WO 2013031511A1 JP 2012070313 W JP2012070313 W JP 2012070313W WO 2013031511 A1 WO2013031511 A1 WO 2013031511A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester film
polarizing plate
biaxially oriented
width
Prior art date
Application number
PCT/JP2012/070313
Other languages
English (en)
French (fr)
Inventor
原健治
川上崇史
植木克行
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280033268.4A priority Critical patent/CN103649182B/zh
Priority to JP2012552162A priority patent/JP6007792B2/ja
Priority to KR1020137030253A priority patent/KR101884252B1/ko
Publication of WO2013031511A1 publication Critical patent/WO2013031511A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a biaxially oriented polyester film for a polarizing plate release film, which is suitably used for a polarizing plate having excellent optical properties in members for liquid crystal display applications and the like, and a method for producing the same.
  • LCDs liquid crystal displays
  • CTR cathode ray tube
  • the visual inspection by the crossed Nicols method is common for the defect inspection of the polarizing plate.
  • the crossed Nicols method is a method in which two polarizing plates are made to have a dark field with their orientation principal axes orthogonal, and a product to be measured is sandwiched between them to observe with transmitted light.
  • the crossed Nicols method if there is a foreign matter or a defect in the polarizing plate, it appears as a bright spot. Therefore, the defect can be inspected by checking the bright spot.
  • the biaxially oriented polyester film is often used as a release film in order to give an adhesive for attaching the polarizing plate to another member to the polarizing plate.
  • this release film has optical anisotropy, light leakage occurs from a member in which a polarizing plate, a release film, and an adhesive are combined. This light leakage becomes an obstacle to the inspection by the crossed Nicols method, and there is a problem that it is easy to overlook foreign matters and defects. Further, if the release film has an optical defect, a bright spot derived from the optical defect of the release film is added, which becomes an obstacle to defect inspection. It has been known so far that foreign matters in the release film and scratches on the surface become bright spots during defect inspection.
  • the biaxially oriented polyester film is advantageous when used as a polarizing plate release film because it can be easily thinned.
  • Patent Document 1 when a polyester film is stretched, a phenomenon called bowing occurs due to the center portion being stretched with respect to the stretched end portion. Therefore, the biaxially oriented polyester film has birefringence (phase difference).
  • phase difference phase difference
  • Japanese Examined Patent Publication No. 39-029214 Japanese Patent Laid-Open No. 2007-213016 Japanese Patent Laid-Open No. 2004-237451 JP 2001-328159 A Japanese Patent Laid-Open No. 2004-18588 JP 2004-358742 A JP 2008-246665A
  • a defect inspection apparatus disclosed in Patent Document 2 is known as an improvement of an automatic inspection instrument using the crossed Nicols method.
  • This defect inspection apparatus has an inspection polarizing filter between the light source and the optical path of the camera.
  • the birefringence of the film is adjusted by appropriately adjusting the relative angular position of the inspection polarizing filter so that the amount of light received in the background portion where there is no defect of visible light input to the camera is the minimum value. (Phase difference) is cancelled. Therefore, this defect inspection apparatus can inspect defects in the film with a polarizing plate in a crossed Nicol state.
  • a polarizing plate is arranged so that the field of view at the time of crossed Nicol inspection becomes dark, regardless of a defect that causes a large light amount change. There is a need to. In this case, since the contrast difference is further reduced, detection becomes more difficult.
  • Patent Document 7 proposes a cooling process after transverse stretching, and a cooling temperature in the cooling process is specified so that the orientation angle is 5 degrees or less over a width of 5 m. Has been.
  • the present invention provides a biaxially oriented polyester film for polarizing plate release film that solves the above-described problems and has good cross-Nicol inspection properties for polarizing plates used especially for large screen TVs and can improve productivity. There is.
  • the heat shrinkage rate in the longitudinal direction of the film after heat treatment at 150 ° C. for 30 minutes is 5 to 7%, and the heat shrinkage rate in the film width direction is 7 to 9% ( A biaxially oriented polyester film for releasing a polarizing plate according to 1) or (2).
  • Step 1 A step of stretching a non-stretched polyester film in the longitudinal direction at a stretch ratio of 2.5 to 5 to obtain a uniaxially stretched polyester film.
  • Step 2 The uniaxially stretched polyester film is stretched at a stretch ratio of 3 to 6 in the width direction and a stretch ratio in the width direction larger than the stretch ratio in the longitudinal direction.
  • Obtaining A step of cooling the biaxially stretched polyester film at a film temperature of 25 to 45 ° C. and a film width shrinkage rate of 0.1 to 20% / min to obtain a cooled polyester film.
  • Step 4) A step of heat-treating the cooled polyester film at a heat treatment temperature of 180 to 230 ° C. to obtain a biaxially oriented polyester film.
  • a laminate comprising the polarizing plate releasing biaxially oriented polyester film according to any one of (1) to (8) provided on at least one side of a polarizer having a width of 1700 mm or more.
  • Step 1 A method for producing a biaxially oriented polyester film for a polarizing plate release film according to any one of (1) to (8), comprising the following steps in the order.
  • Step 1 A step of stretching a non-stretched polyester film in the longitudinal direction at a stretch ratio of 2.5 to 5 to obtain a uniaxially stretched polyester film.
  • Step 2 The uniaxially stretched polyester film is stretched at a stretch ratio of 3 to 6 in the width direction and a stretch ratio in the width direction larger than the stretch ratio in the longitudinal direction.
  • Obtaining A step of cooling the biaxially stretched polyester film at a film temperature of 25 to 45 ° C. and a film width shrinkage rate of 0.1 to 20% / min to obtain a cooled polyester film.
  • Step 4) A step of heat-treating the cooled polyester film at a heat treatment temperature of 180 to 230 ° C. to obtain a biaxially oriented polyester film.
  • Step 1) A step of stretching a non-stretched polyester film in the longitudinal direction at a stretch ratio of 2.5 to 5 to obtain a uniaxially stretched polyester film.
  • Step 2 The uniaxially stretched polyester film is stretched at a stretch ratio of 3 to 6 in the width direction and a stretch ratio in the width direction larger than the stretch ratio in the longitudinal direction. Obtaining.
  • Step 3 A step of cooling the biaxially stretched polyester film at a film temperature of 25 to 45 ° C. and a film width shrinkage rate of 0.1 to 20% / min to obtain a cooled polyester film.
  • Step 4 A step of heat-treating the cooled polyester film at a heat treatment temperature of 180 to 230 ° C. to obtain a biaxially oriented polyester film.
  • the present invention even when the inclination of the alignment principal axis with respect to the width direction is the same direction, variation in the inclination angle (orientation angle) of the alignment principal axis with respect to the width direction is suppressed, cross Nicol inspection property is good, and productivity is improved. It is possible to provide a biaxially oriented polyester film for polarizing plate release film that can improve (yield) and a method for producing the same.
  • the polyester that can be suitably used in the present invention is not particularly limited as long as it is a polyester that becomes a high-strength film by molecular orientation, but preferably mainly includes polyethylene terephthalate and polyethylene-2,6-naphthalate. Particularly preferred is polyethylene terephthalate which is superior in price.
  • polyester copolymer component other than ethylene terephthalate examples include diol components such as diethylene glycol, propylene glycol, neopentyl glycol, polyethylene glycol, p-xylylene glycol, and 1,4-cyclohexanedimethanol, adipine Films intended for dicarboxylic acid components such as acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, polyfunctional dicarboxylic acid components such as trimellitic acid and pyromellitic acid, and p-oxyethoxybenzoic acid It can be used as long as the physical properties are not impaired.
  • dicarboxylic acid components such as acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, polyfunctional dicarboxylic acid components such as trimellitic acid and pyromellitic acid, and p-oxyethoxybenzoic acid It
  • Such a polyester can be produced, for example, by the method shown below.
  • a method in which a dicarboxylic acid component and a diol component are directly esterified, and then the product of this reaction is heated under reduced pressure to perform polycondensation while removing excess diol components For example, a dialkyl ester of a dicarboxylic acid is used as a component, and after transesterification with a diol component, polycondensation is performed in the same manner as described above.
  • an alkali metal, an alkaline earth metal, manganese, cobalt, zinc, antimony, germanium, or a titanium compound can be used as a reaction catalyst as necessary.
  • the polyester has an intrinsic viscosity of preferably 0.4 to 0.9, more preferably 0.5 to 0.7, and still more preferably 0.55 to 0.65.
  • the biaxially oriented polyester film for polarizing plate release film of the present invention has an inclination angle (orientation angle) variation of the orientation main axis with respect to the width direction within 3.7 degrees and a film width of 1700 mm or more. is there. Moreover, it is preferable that the inclination of the orientation main axis with respect to the film width direction is the same direction.
  • the orientation angle represents the angle of inclination of the orientation main axis.
  • the orientation angle can be measured by evaluating the orientation by transmitting an ultrasonic pulse through the film in all directions and measuring the propagation speed.
  • the orientation angle was defined as 0 degree when parallel to the film width direction, + for the clockwise inclination with respect to the film width direction, and-for the counterclockwise direction.
  • the inclination of the orientation main axis with respect to the film width direction being the same direction defines that both ends in the film width direction of the stretched film show the same sign in the measurement of the inclination of the orientation main axis described above.
  • the inclination of the orientation main axis is caused by the bowing phenomenon that occurs during the heat treatment process from the stretching process.
  • the bowing phenomenon is caused by the fact that the film in the heat treatment process from the stretching process constitutes a catenary curve (catenary curve), so in the biaxially oriented polyester film, from the width direction center to the width direction end of the film.
  • the inclination of the orientation main axis tends to increase as it goes.
  • it has the inclination of the orientation principal axis of a reverse direction, respectively.
  • orientation angle variation referred to in the present invention is defined as the maximum and minimum difference in the orientation angle at any position in the film measured as described above.
  • the orientation angle variation is more preferably within 3.5 degrees, and further preferably within 3.2 degrees.
  • the biaxially oriented polyester film for releasing the polarizing plate of the present invention is collected from a film having an inclination angle (orientation angle) of the orientation main axis with respect to the film width direction of 3.7 degrees or less over a width of at least 5 m. Since productivity can be improved, it is preferable.
  • Alignment angle variation is a cause of variation in the amount of light leakage in a normal part without defects in the film when the film is in a crossed Nicol state.
  • This variation in the amount of light leakage is a variation in the amount of received light in the background portion where there is no defect in the background portion where there is no defect in the crossed Nicol inspection device described in “(9) Evaluation with a crossed Nicol inspection device” described later. Can be confirmed.
  • the inspection property changes according to the position of the film (according to the variation in the orientation angle), and the oversight of the defect may occur. An example is shown below.
  • Detection test 1 Sample: A polyester film having surface defects generated when a polyester film is processed at room temperature. However, this polyester film is a small piece, and there is almost no variation in the orientation angle in the film plane.
  • Measuring device The crossed Nicol tester shown in “(9) Evaluation with a crossed Nicol tester” described later. Baseline: In the crossed Nicols tester, it is necessary to determine the baseline of the amount of light received in the background portion without any defects at the time of inspection.
  • test 1A a test in which the baseline of the received light amount in the background portion without defects (light leakage amount in the normal portion without defects) is in the range of 10 to 30 in 256 gradations is set as test 1A, and the background portion without defects is A test in which the baseline of the amount of received light was in the range of 30 to 50 with 256 gradations was designated as Test 1B.
  • the baseline was adjusted by adjusting both the angle of the second polarizing filter on the light receiving means side and the angle of the first polarizing filter installed on the illumination side.
  • Test result When the sample was inspected under the conditions of Test 1A, the surface defect portion of the film showed the amount of light received in the background portion having no defect as high as 40 from the baseline.
  • the surface defect portion of the film showed the amount of light received in the background portion having no defect as high as 17 from the baseline.
  • the inspection property is high (sensitive).
  • the test results are shown in FIG. In FIG. 1, the black portion indicates that the received light amount is small in the background portion without defects, and the white portion indicates that the received light amount is large in the background portion without defects.
  • the orientation angle varies depending on the position of the film, so that the baseline of the received light amount in the background portion without any defects changes. Specifically, even if the baseline of the received light amount in the background portion where there is no defect is set to 20 at the position where the orientation angle is 0 degree, there is no defect at the position where the orientation angle is other than 0 degree. The baseline of the received light amount in the background portion changes from 20. Then, when the baseline of the amount of light received in the background portion having no defect changes, the inspection property changes.
  • Detection test 2 Sample A polyester film having a surface defect generated during production of a polyester film (particularly during heat stretching). However, this polyester film is a small piece, and there is almost no variation in the orientation angle in the film plane.
  • Measuring device The crossed Nicol tester shown in “(9) Evaluation with a crossed Nicol tester” described later.
  • Baseline In the crossed Nicols tester, it is necessary to determine the baseline of the amount of light received in the background portion without any defects at the time of inspection. Therefore, a test in which the baseline of the received light amount in the background portion having no defect is in a range of 10 to 30 in 256 gradations is set as Test 2A, and the baseline of the received light amount in the background portion without defects is set to 30 in 256 gradations.
  • Tests in the range of ⁇ 50 were designated as test 2B.
  • the baseline was adjusted by adjusting both the angle of the second polarizing filter on the light receiving means side and the angle of the first polarizing filter installed on the illumination side.
  • Test result When the sample was inspected under the conditions of Test 2A, the surface defect of the film showed the amount of light received in the background portion having no defect as high as 80 from the baseline. On the other hand, when the same sample was inspected under the conditions of Test 2B, the surface defect portion of the film showed the amount of light received in the background portion having no defect as high as 70 from the baseline.
  • the measured size of surface defects, under the conditions of the test 2A is observed as large as 0.475 mm 2, under the conditions of the test 2A is observed as large as 0.588mm 2.
  • test results are shown in FIG. Conclusion: From the above test results, it was shown that the testability (particularly, the magnitude of the defect indicated as a measured value) changes depending on the baseline of the amount of light received in the background portion where there is no defect. Then, if there is a variation in the orientation angle in the plane of the polyester film, the baseline of the amount of light received at the background portion where there is no defect changes depending on the position of the film. Then, when the baseline of the amount of light received in the background portion having no defect changes, the inspection property changes.
  • the biaxially oriented polyester film of the present invention preferably has an orientation angle variation (hereinafter referred to as MD orientation angle unevenness) of 1.5 degrees or less with respect to the longitudinal direction of the film.
  • MD orientation angle unevenness means that the orientation angles at both ends in the film width direction are measured at 10 points every 1000 mm in the film longitudinal direction, and the absolute value of the difference between the maximum value and the minimum value at each film end is measured. Find the value and define it as the value with the larger absolute value.
  • the MD orientation angle unevenness is preferably 1.5 degrees or less, more preferably 1.2 degrees or less, and further preferably 1.0 degrees or less.
  • the absolute value of the orientation angle at the film end position decreases in the biaxially oriented polyester film of the present invention. It is preferable to form a film.
  • the biaxially oriented polyester film of the present invention needs to have a film width of at least 1700 mm.
  • the orientation angle takes a behavior that increases with respect to the distance from the center of the formed film, it becomes difficult to suppress the variation in the orientation angle and the orientation angle as the film width increases. Therefore, conventionally, in a biaxially oriented polyester film having a film width of 1700 mm or more, the variation in the orientation angle could not be 3.7 degrees or less. Since the biaxially oriented polyester film of the present invention has a film width of at least 1700 mm or more and an orientation angle variation of 3.7 degrees or less, the polarization of a large screen (specifically, 32 inches or more) LCD It is preferably used for a release film for plate inspection.
  • a film width of 1900 mm or more is more preferable because it can be suitably used for LCDs for larger screens, and productivity is improved.
  • the upper limit of the film width is not particularly limited, but the film width is preferably 10,000 mm or less from the viewpoint of manufacturing equipment cost.
  • the biaxially oriented polyester film of the present invention preferably has the same orientation of the orientation main axis with respect to the film width direction.
  • the inclination of the orientation main axis tends to increase as it goes from the center in the width direction to the end in the width direction of the film.
  • the two directions from the center in the width direction toward the end in the width direction have inclinations of the orientation main axes in opposite directions. Therefore, in order to widen the orientation angle variation to the minimum, the width is centered so that the center in the width direction of the film to be widened is the same as the center in the width direction of the film after being widened. .
  • the product can be collected only in the central part in the width direction of the film by this width measurement.
  • chamfering is performed so that the inclinations are in the same direction, variations in orientation angle and MD orientation angle unevenness tend to increase.
  • the biaxially oriented polyester film of the present invention is biaxially oriented with good productivity and good testability because the variation in the orientation angle is small even when the orientation of the orientation main axis with respect to the film width direction is chamfered in the same direction. Polyester can be obtained.
  • the biaxially oriented polyester film of the present invention preferably has a thermal shrinkage of 5 to 7% and 7 to 9% in the film longitudinal direction and film width direction after heat treatment at 150 ° C. for 30 minutes, respectively. .
  • they are 5.5 to 6.5% and 7.5 to 8.5%, respectively.
  • the heat shrinkage rate can be adjusted by the relaxation rate in the heat treatment and the heat treatment temperature.
  • annealing is separately performed after film formation. Since it is necessary to perform the treatment, productivity and efficiency are lowered, which is not preferable.
  • the biaxially oriented polyester film for polarizing plate release film of the present invention preferably has a haze value of 7 to 13%. Preferably it is 8 to 12%, more preferably 9 to 11%.
  • the haze value is less than 7%, the reflected light is too strong when inspecting the polarizing plate.
  • the haze value exceeds 13% the reflected light is weak, which may hinder the inspection.
  • the reflected light under crossed Nicol is difficult to distinguish the difference between the defective portion and the formation (background portion) regardless of whether the reflected light is strong or weak. This effect is particularly noticeable when visual inspection is performed.
  • the reflected light is strong when the haze is low, and the uneven brightness of the texture (background part) is emphasized, making it difficult to distinguish between the defective part and the texture (background part), and scattering when the haze is high.
  • the light is strong and the luminescent spot of the defective part becomes ambiguous and the detectability is lowered.
  • the haze value of the film is in the above range.
  • the film of the present invention may be a single layer or a composite film composed of two or more layers, but it is particularly suitable when the film has a three-layer composite film in order to keep the haze value of the film within the above range.
  • the polymer composition of the layer constituting the film surface (lamination part), the particle type or particle content to be contained may be different, and the A / B / C structure may be used.
  • An A / B / A configuration may be used in which the composition, the contained particle type, or the particle content is the same.
  • composition of A / B / A having the same composition of the polymer composition of the layer (lamination part) constituting the film surface and the contained particle type or particle content is simple in terms of equipment and is preferable from the viewpoint of productivity. . Furthermore, when the three-layer composite film has an A / B / A configuration, it is preferable that the thickness of both layers constituting the film surface side is substantially the same because quality design is easy. Further, the thickness of the layer (laminate) constituting the film surface is preferably 0.5 to 2.5 ⁇ m, and particularly preferably 1.0 to 2.0 ⁇ m.
  • a method of containing inert particles in the film is preferably used.
  • the film of the present invention is a three-layer composite film
  • the haze value is set to a desired range. This is preferable because it can be performed.
  • inorganic particles such as spherical silica, aluminum silicate, titanium dioxide, calcium carbonate, and other organic polymer particles include crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin. Particles, crosslinked styrene-acrylic resin particles, crosslinked polyester particles, polyimide particles, melamine resin particles and the like are preferably used. These 1 type (s) or 2 or more types can also be selected and used.
  • an inert particle-containing slurry of ethylene glycol, which is a glycol component, is prepared, and the inert particle-containing slurry is added after the ester exchange before polycondensation or at the oligomer stage after esterification.
  • the polycondensation reaction By carrying out the polycondensation reaction, inert particle-containing polyethylene terephthalate can be obtained.
  • the slurry of inert particles before addition can be dispersed by a sand grinder or the like, separated by coarse particles by centrifugal sedimentation, or subjected to high-precision filtration to make the particle size distribution uniform and coarse particles. Can be effectively removed to reduce the coarse protrusions of the film.
  • the layer (laminate) constituting the film surface has an average particle diameter of 0.5 to 1.5 ⁇ m, preferably 0. It is preferable that 0.2 to 1.0% by weight, more preferably 0.3 to 0.8% by weight of inert particles of 0.8 to 1.3 ⁇ m are contained.
  • the layer (base layer part) that does not constitute the film surface contains 0.02 to 0.1% by weight of inert particles having an average particle size of 0.5 to 1.5 ⁇ m, preferably 0.8 to 1.3 ⁇ m.
  • the inert particle species contained in the layer (laminate portion) constituting the film surface and the layer (base layer portion) not constituting the film surface be the same because production facilities can be simplified.
  • the thickness unevenness in the film longitudinal direction is preferably less than 2.0 ⁇ m, more preferably 0.5 to 1.5 ⁇ m, It is particularly preferable that the particle diameter is ⁇ 1.2 ⁇ m.
  • the thickness unevenness in the film longitudinal direction referred to in the present invention represents a value measured by the method described later in “(5) thickness unevenness in the film longitudinal direction”. When the thickness unevenness exceeds 1.5 ⁇ m, the unevenness of the intensity of light leaking from the polarizing plate in the crossed Nicol method for inspecting the polarizing plate becomes strong, which may hinder the inspection.
  • the thickness unevenness exceeds 2.0 ⁇ m, stretching unevenness often occurs, and since the texture (background portion) is not uniform due to the stretching unevenness, the crossed Nicols inspection property is remarkably deteriorated and the polarizing plate is released. It is not preferred as a biaxially oriented polyester film for film. On the other hand, in order to manufacture a film having a thickness unevenness of 0.5 ⁇ m or less, production management becomes complicated, which is not preferable.
  • the thickness of the film of the present invention is preferably 25 to 70 ⁇ m, more preferably 30 to 50 ⁇ m, and still more preferably 35 to 45 ⁇ m. When the thickness of the film is within this range, it is easy to adjust the haze value of the film within the above range, which is preferable.
  • the biaxially oriented polyester film for polarizing plate release film of the present invention can be obtained by, for example, stretching an unstretched film in the longitudinal direction, then stretching in the transverse direction, and heat-treating it through a cooling step, and in particular, the bowing phenomenon.
  • the film temperature is cooled to 25 to 45 ° C. in the cooling process, and the film width shrinks in the cooling process. It is important to heat-treat after controlling the speed at 0.1 to 20% / min.
  • the mechanism that can lower the orientation angle by controlling the width shrinkage rate in addition to the temperature in the cooling step after stretching is cooled from the transverse stretching step.
  • the width shrinkage rate By controlling the width shrinkage rate during the transitional period when the film temperature decreases over the process, the lateral orientation relaxation is physically suppressed, or the width shrinkage in the cooling process is physically suppressed from acting on the film immediately after the stretching process.
  • the bowing phenomenon can be sufficiently suppressed more than in the past.
  • the width shrinkage rate of the film in the cooling step is preferably 0.1% to 20% / min, and preferably 0.2% to 18%. % / Min is more preferable. If the width shrinkage rate is less than 0.1% / min, the film tension due to the suppression of the width shrinkage of the film is affected, the film forming property is deteriorated, and the film is torn. On the other hand, if the width shrinkage rate is greater than 20% / min, the effect of suppressing orientation relaxation due to the width shrinkage of the film is small, and the suppression of the bowing phenomenon is insufficient.
  • the width reduction speed V1 (% / min) of the film in the cooling process shown here is the film width W1 (mm) immediately after entering the cooling process after passing through the transverse stretching process, and after passing through the cooling process.
  • V1 (W1-W2) / W1 ⁇ 1 / T1 Formula (1)
  • the passing time of the cooling step is preferably 10 seconds or more, and more preferably 15 seconds or more.
  • the upper limit of the passage time of the cooling step is not particularly limited, it is preferably 60 seconds or less because productivity is improved.
  • the polyester film of the present invention is preferably obtained by a method having the following steps in that order.
  • Step 1 A step of stretching a non-stretched polyester film in the longitudinal direction at a stretch ratio of 2.5 to 5 to obtain a uniaxially stretched polyester film.
  • Step 2 The uniaxially stretched polyester film is stretched at a stretch ratio of 3 to 6 in the width direction and a stretch ratio in the width direction larger than the stretch ratio in the longitudinal direction.
  • Step 3) A step of cooling the biaxially stretched polyester film at a film temperature of 25 to 45 ° C. and a film width shrinkage rate of 0.1 to 20% / min to obtain a cooled polyester film.
  • Step 4) A step of heat-treating the cooled polyester film at a heat treatment temperature of 180 to 230 ° C. to obtain a biaxially oriented polyester film.
  • the polyester obtained by the well-known method is dried as needed, supplied to an extruder, and filtered with a filter. Since a small foreign substance also becomes a film defect, it is effective to use a high-accuracy filter that collects 95% or more of a foreign substance of 5 ⁇ m or more, for example. Subsequently, it is melt-extruded into a sheet using a T-type die and the like, and cooled and solidified on a casting roll to obtain an unstretched film.
  • a uniaxially stretched polyester film is obtained by stretching the unstretched film in the longitudinal direction at a stretch ratio of 2.5 to 5 times.
  • the stretching in the longitudinal direction is preferably performed at a stretching temperature of 90 to 130 ° C. in one step or in multiple steps.
  • the stretching temperature is preferably 100 to 120 ° C. and the stretching ratio is preferably 3 to 4 times from the viewpoint of suppressing the bowing phenomenon and thickness unevenness in the film longitudinal direction, and the stretching is performed in two or more stages from the viewpoint of preventing stretching unevenness and scratches. It is preferable.
  • a biaxially stretched polyester film is obtained by stretching the uniaxially stretched polyester film at a stretch ratio of 3 to 6 times in the width direction and a stretch ratio in the width direction larger than the stretch ratio in the longitudinal direction.
  • the stretching in the width direction is preferably performed at a stretching temperature of 90 to 130 ° C. When the stretching temperature is lower than 90 ° C. and the stretching ratio is larger than 6 times, the film is easily broken. More preferably, the stretching temperature is 100 to 120 ° C., and the stretching ratio is 4 to 5 times.
  • the stretching ratio in the width direction is larger than the stretching ratio in the longitudinal direction. If the stretching ratio in the width direction is larger than the stretching ratio in the longitudinal direction, the molecular orientation in the film tends to be inclined in the longitudinal direction, and it may be difficult to suppress the orientation angle variation.
  • the biaxially oriented polyester film for polarizing plate release film of the present invention is produced, it is subjected to lateral stretching after longitudinal stretching.
  • longitudinal stretching is performed after transverse stretching, the molecules are mainly oriented strongly in the TD direction after transverse stretching, but when longitudinal stretching is performed thereafter, the molecules are also oriented in the MD direction, resulting in a large variation in orientation angle. is there.
  • the film temperature in the cooling step is 25 to 45 ° C., because lateral orientation relaxation due to width shrinkage can be suppressed and the bowing phenomenon can be suppressed. More preferably, it is 30 to 40 ° C.
  • the film temperature in the cooling step is higher than 45 ° C., the tension due to the film width shrinkage affects the film forming property, and the effect of suppressing the lateral orientation relaxation may not be sufficiently obtained. It is not preferable that the film temperature in the cooling step is cooled to less than 20 ° C., because the productivity deteriorates.
  • Examples of the method for cooling the polyester film include an air cooling method using a tenter that performs heat treatment, an air cooling method in which hot air is blocked by a shielding plate such as an aluminum plate above and below the heat treatment region, and a cooling method using a roll.
  • the air-cooling method with a heat-treating tenter all zones are connected in the longitudinal direction, so there is a case where the film temperature cannot be sufficiently cooled due to temperature differences in the vertical and width directions of the film due to the free flow of high-temperature air such as an accompanying air flow. is there. In that case, it is possible to cope with this by sending compressed air or the like and actively cooling it.
  • the number of rolls to be used and the set temperature are not limited, but it is preferable to cool by using a plurality of rolls.
  • the roll temperature is preferably 20 to 45 ° C, more preferably 30 to 40 ° C.
  • the width reduction rate of the film is 0.1 to 20% / min. If the width shrinkage rate is less than 0.1% / min, the film tension due to the suppression of the width shrinkage of the film is affected, the film forming property is deteriorated, and the film is torn. On the other hand, when the width shrinkage rate is greater than 20% / min, the effect of suppressing orientation relaxation due to the width shrinkage of the film is small, and the suppression of the bowing phenomenon may be insufficient.
  • the width shrinkage rate of the film is more preferably 0.2 to 18% / min.
  • the passing time of the cooling step is preferably 10 seconds or longer, more preferably 15 seconds or longer.
  • the upper limit of the passage time of the cooling step is not particularly limited, it is preferably 60 seconds or less because productivity is improved.
  • the width shrinking speed can be set from the cooling process length and the film forming speed, and can be realized by various methods. Specifically, in the air-cooling method in the tenter, the width reduction speed can be set to a desired value by gripping both ends with clips and adjusting the rail width.
  • the cooled polyester film is heat-treated at a heat treatment temperature of 180 to 230 ° C. to obtain a biaxially oriented polyester film.
  • a heat treatment temperature 180 to 230 ° C.
  • the heat treatment becomes insufficient, and the heat shrinkage rate in the film longitudinal direction and film width direction after heat treatment at 150 ° C for 30 minutes is 5 to 7% and 7 to 9%, respectively. It may be difficult to fit within the range.
  • the heat treatment temperature is higher than 230 ° C., the orientation by thermal crystallization advances, and it may be difficult to keep the variation of the tilt angle (orientation angle) of the orientation main axis with respect to the film width direction within 3.7 degrees. is there.
  • the temperature difference between the top and bottom of the film is preferably 1 to 20 ° C., more preferably 1 to 10 ° C., and further preferably 1 to 5 ° C.
  • the physical properties in the width direction of the film particularly the mechanical properties or the heat shrinkage rate, may be nonuniform.
  • the relaxation treatment may be performed in either the lateral direction or the longitudinal direction, or may be performed in the lateral direction and the longitudinal direction simultaneously or separately.
  • the relaxation rate is preferably 1 to 20%, more preferably 1 to 10% with respect to the entire width of the film, it is effective for obtaining a film having excellent thermal dimensional stability.
  • the polyester film of the present invention is suitably used as a release film for a large-size polarizing plate. Specifically, it is preferably used in the following manner.
  • the polyester film of the present invention is provided on at least one side of a polarizer having a width of 1700 mm or more to form a laminate.
  • the laminate is preferably a laminate in which “the polyester film of the present invention / adhesive layer A / polarizer / adhesive layer B / protective sheet” is provided in that order, and more preferably, “the present invention”.
  • polyester film / silicone layer / adhesive layer A / polarizer / adhesive layer B / protective sheet in that order.
  • a well-known material can be used as a silicone layer, an adhesion layer, a polarizer, and a protective sheet.
  • the laminate is inspected. Since the polyester film of the present invention is used for the laminate, good testability is obtained. Thereafter, the polyester film of the present invention is peeled from the laminate to obtain a polarizing plate.
  • the polarizing plate refers to a member having at least a polarizer.
  • polyester film of the present invention When the polyester film of the present invention is peeled (removed) from “layer / adhesive layer A / polarizer / adhesive layer B / protective sheet” (laminate), “adhesive layer A / polarizer / adhesive layer B / protective sheet” becomes A polarizing plate provided in order is obtained.
  • a silicone layer is peeled with the polyester film of this invention.
  • the measurement method of characteristic values in the examples and comparative examples is as follows.
  • the film to be measured for film width was spread on a table, and the width was measured with a metal scale (JIS grade 1).
  • Film temperature was measured using a handy type radiation thermometer (IR-TA manufactured by Chino Corporation). Three points were measured uniformly in the film width direction, and the average value was taken as the measurement result. Height (Z direction) magnification: 50,000 times.
  • Light in the field of view (background part) entering the field of view is slightly strong or slightly weak, and there is unevenness in the amount of light at each position. I missed some of the shortcomings.
  • X The light entering the field of view (background part) is strong or weak, and there is a clear unevenness in the amount of light for each position. I missed many shortcomings.
  • the light from the illumination means 4 enters and transmits the film 1 to be inspected through the first polarizing plate, and is imaged by the light receiving means 5 through the second polarizing plate, It is output to the signal processing means 6.
  • the evaluation of the variation in the amount of light received in the background portion without the base defect is based on the angle of the second polarizing plate on the light receiving means side as a uniform fixed, and the first polarizing plate angle installed on the illumination side is adjusted,
  • the film sampled with the measurement width is used as the inspection object, and the amount of light received in the background portion with no defect in the entire inspection width is evaluated in 256 gradations.
  • the difference between the maximum value and the minimum value of the amount of received light was confirmed, and this difference was evaluated as the variation in the amount of received light in the background without any defects.
  • the present invention will be described in detail with reference to examples.
  • Example 1 To 100 parts by weight of dimethyl terephthalate (DMT), 61 parts by weight (1.9 moles per 1 mole of DMT) of ethylene glycol and magnesium acetate tetrahydrate 0.05 parts by weight and 0.015 parts by weight of phosphoric acid are added and heated. Transesterification was conducted, 0.025 parts by mass of antimony trioxide was subsequently added, the temperature was raised by heating, and a polycondensation reaction was carried out by evacuation to obtain polyester pellets having an intrinsic viscosity of 0.63, substantially containing no particles.
  • DMT dimethyl terephthalate
  • calcium carbonate having a true specific gravity of 2.71 g / cm 3 and an average particle diameter of 1.0 ⁇ m was prepared to obtain a 10 wt% ethylene glycol slurry.
  • This slurry was dispersed for 1 hour with a jet agitator and filtered with high accuracy through a filter having a collection efficiency of 95% of 5 ⁇ m or more.
  • This slurry was added after transesterification, and subsequently a polycondensation reaction was performed in the same manner as described above to obtain a calcium carbonate-containing master pellet having an intrinsic viscosity of 0.63 and containing 1% of calcium carbonate having an average particle diameter of 1.0 ⁇ m. .
  • polyester A containing 0.5% by weight of calcium carbonate
  • polyester B containing 0.054% by weight of calcium carbonate
  • polyesters A and B were each dried under reduced pressure at 160 ° C. for 8 hours, then supplied to separate extruders, melt-extruded at 275 ° C., filtered through a high-precision filter with a collection efficiency of 95% of 5 ⁇ m or more, The layers were merged and laminated in a rectangular three-layer merge block to form a three-layer laminate comprising polyester A / polyester B / polyester A. Thereafter, the film was cooled and solidified on a casting roll having a surface temperature of 25 ° C. by using an electrostatic application casting method through a slit die maintained at 285 ° C. to obtain an unstretched film.
  • This unstretched film was first stretched 3.4 times in the longitudinal direction with a roll heated to 103 ° C. and a radiation heater. Subsequently, the film was stretched 4.4 times at 105 ° C. in the width direction by a tenter. Then, it cooled so that the film temperature might be 35 degreeC with the width shrinkage speed
  • Examples 2-12, Comparative Examples 1-4 A biaxially oriented polyester film consisting of three layers was obtained in the same manner as in Example 1 except that the film forming conditions such as the stretching conditions, the cooling conditions, the heat treatment temperature, the width shrinkage rate of the cooling process, and the sampling width were changed. The obtained results are shown in Table 1-1 and Table 1-2.
  • the variation of the inclination angle (orientation angle) of the orientation main axis with respect to the film width direction is within 3.7 degrees, and in addition, the haze value of the film is 7 to 13%.
  • the variation in the amount of light received in the background area where there are no defects in the crossed Nicols tester can be reduced, so even if inspection is performed using an automatic inspection device, defects are not missed or erroneous detection is reduced. It was.
  • the light of the background (background part) is no longer too strong or too weak, so it is possible to confirm that inspections are improved and fewer defects are missed. It was.
  • the film of the present invention has excellent crossed Nicols inspection properties, it can be suitably used for releasing a polarizing plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

幅方向に対する配向主軸の傾きが同一方向となる幅取りで幅方向に対する配向主軸の傾きの角度(配向角)バラツキを抑え、クロスニコル検査性を担保し、生産性を向上できる偏光板離型フィルム用二軸配向ポリエステルフィルムを提供することを目的とする。 本発明では、フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキが3.7度以内であり、フィルム幅が1700mm以上である偏光板離型用二軸配向ポリエステルフィルムとする。

Description

偏光板離型フィルム用二軸配向ポリエステルフィルムおよびそれを用いた積層体、ならびに、偏光板の製造方法
 本発明は、液晶表示用途等の部材において、光学特性に優れた偏光板に好適に用いられる偏光板離型フィルム用二軸配向ポリエステルフィルム、およびその製造方法に関するものである。
 近年、従来のディスプレイであるブラウン管(CRT)に比べ、薄型軽量化、低消費電力、高画質化の利点を有する液晶ディスプレイ(LCD)の需要が急速に拡大している。とくに、大画面モニターや32インチ以上といった大画面TV用途のLCDの需要が急速に伸びている。LCDが大画面化されるに伴い、大画面でも輝度を十分確保するために、LCDのバックライトの輝度を上げることや、LCDに輝度を向上させる機能性フィルムを組み込むことなどが検討がされている。
 このような高輝度タイプのLCDでは、輝度が高いゆえにディスプレイ中に存在する小さな欠点が問題となる場合が多く発生する。そのため、偏光板、位相差板といった光学特性を有するLCDの構成部材では、これまでのLCDに用いても問題にならなかったようなサイズの欠点が問題となってきている。そのため、各光学部材においては、製造工程における欠点の発生を防ぐことが重要である。一方で、偏光板、位相差板といった光学特性を有するLCDの構成部材では、欠点が発生したとしても欠点として確実に認知できるような検査性の向上も重要となってきている。
 偏光板の欠点検査はクロスニコル法による目視検査が一般的である。このクロスニコル法は2枚の偏光板をその配向主軸を直交させて暗視野をつくり、その間に測定対象品を挟んで透過光で観察する方法である。クロスニコル法では、偏光板中に異物や欠点があると輝点として現れるので、その輝点を確認することで欠点検査ができるというものである。
 ここで偏光板の製造工程においては、二軸配向ポリエステルフィルムが偏光板に対して偏光板を他の部材に貼り付けるための粘着剤を付与するために離型フィルムとして用いることが多い。この離型フィルムに光学的異方性があると偏光板と離型フィルムと粘着剤が組み合わされた部材からは光漏れが生じる。この光漏れはクロスニコル法の検査の障害となり、異物の混入や欠点を見逃しやすくなるという不具合が生じる。更に離型フィルム中に光学的欠点を有していると、離型フィルムの光学的欠点由来の輝点が加わり、欠点検査の障害となる。これまでに、離型フィルム中の異物や、表面のキズが欠点検査時の輝点となることは知られている。
 二軸配向ポリエステルフィルムは薄膜化が容易であるという点で偏光板離型フィルムとして用いるときに有利である。しかし、特許文献1に開示されるように、ポリエステルフィルムでは、延伸を行う際に、延伸端部に対して中央部が遅れて延伸されることによるボーイング(bowing)という現象が生じる。そのため、二軸配向ポリエステルフィルムは、複屈折(位相差)を有することとなる。直線偏光が複屈折(位相差)を有する二軸配向ポリエステルフィルムに入射し、透過すると楕円偏光となる。
 そのため、このような二軸配向ポリエステルフィルムを偏光板に貼り合わせて偏光板を直行させても実質的にクロスニコルの状態にはならない。つまり、このような二軸配向ポリエステルフィルムを偏光板に貼り合わせてクロスニコル法による偏光板の欠点検査を行おうとしても、直線偏光を入射させたときにポリエステルフィルムの複屈折によって影響を受けてしまい、精度の良い欠点検査を行うことが出来ない。
 これらの課題に対して、特許文献2~7に開示されるような、クロスニコル法を利用した自動検査器の改善、及び偏光板離型ポリエステルフィルムの配向主軸の傾き(以下 配向角と記す)を改善する方法などが従来行われてきた。
特公昭39-029214号公報 特開2007―213016号公報 特開2004-237451号公報 特開2001-328159号公報 特開2004-18588号公報 特開2004-358742号公報 特開2008-246685号公報
 クロスニコル法を利用した自動検査器の改善として、上記特許文献2に開示される欠点検査装置が知られている。この欠点検査装置は、光源とカメラの光路上の間に検査用偏光フィルターを有している。この欠点検査装置では、カメラに入力される可視光の欠点がない背景部分での受光量が最小値となるように検査用偏光フィルターの相対角度位置を適宜調整することで、フィルムの複屈折(位相差)をキャンセルしている。そのためにこの欠点検査装置では、クロスニコル状態で偏光板付きフィルム中の欠点を検査することが可能となる。
 しかしながら、上記特許文献2における装置では、フィルムの幅方向に配向角のバラツキを有するフィルムを検査する場合においては、幅方向に複数台のカメラおよび検査用偏光フィルターを有する必要がある。本発明者らの知見によれば、フィルムの幅方向に配向角のバラツキを有するフィルムを検査する時、カメラに入力される可視光の欠点がない背景部分での受光量が最小値となるよう検査用偏光フィルターの角度を調整するだけでは、カメラ位置毎つまり幅方向で均一な欠点がない背景部分での受光量を得ることが難しい。例えば、フィルム幅方向でフィルム端部と中央部の欠点がない背景部分での受光量レベルに差が生じてしまう。そのため、フィルムの幅方向に複屈折のバラツキを有するフィルムを検査する場合、同時に精度良く欠点検査を行うことができない。
 さらに、本発明者らの知見によれば、大きな光量変化をもたらす欠点はともかく、小さな光量変化しかもたらさない欠点を検査する場合には、クロスニコル検査時の視野が暗くなるように偏光板を配置する必要がある。この場合にはコントラスト差がさらに小さくなるため検出がより困難となる。
 また、偏光板離型フィルムにおける検査性を改善するべく、横延伸後に冷却工程を設け、冷却工程における冷却温度を規定することで5m幅にわたって配向角を5度以下とする特許文献7などが提案されている。
 しかしながら、本発明者らの検討によれば、フィルムの配向角5度以下とするだけでは、クロスニコル検査時の視野が最も暗くなるように偏光板を配置した場合に小さな光量変化しかもたらさない欠点については、欠点がない背景部分での受光量に差があるため、欠点の検出が困難となる。
 加えて、32インチ以上といった大画面TV用に使用する偏光板を、クロスニコル法を用いて検査する場合は、クロスニコル下での反射光が強くすぎても、弱すぎても、欠点部と欠点部以外の地合(背景部分)との差異を分別し難くなり、検査性が低下するという独特の問題点がある。また、検査対象の偏光板の大きさが32インチ以上となると、その大きさゆえに、自動検査装置ではなく、検査員(人)によって検査されることも少なくないが、上述の問題点は、検査員(人)による検査の際に、特に大きな問題点となる。また、クロスニコル下での反射光が強くすぎたり、弱すぎたりして欠点部と欠点部以外の地合(背景部分)との差異が分別し難くなる場合、自動検査装置を用いたとしても誤検知が多くなり、十分な検査性を担保することができない。
 そこで、本発明は上記した課題を解消し、特に大画面TV用に用いられる偏光板のクロスニコル検査性が良好で、生産性を向上できる偏光板離型フィルム用二軸配向ポリエステルフィルムを提供することにある。
 上記課題を解決するために鋭意検討した結果、次の特性を有することで上記課題が解決できることを見いだし、本発明に至った。
 (1)フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキが3.7度以内であり、フィルム幅が1700mm以上である偏光板離型用二軸配向ポリエステルフィルム。
 (2)フィルムのヘイズ値が7~13%である(1)に記載の偏光板離型用二軸配向ポリエステルフィルム。
 (3)150℃、30分間の条件で熱処理したのちのフィルム長手方向の熱収縮率が5~7%であり、フィルム幅方向の熱収縮率が7~9%であることを特徴とする(1)又は(2)に記載の偏光板離型用二軸配向ポリエステルフィルム。
 (4)フィルム幅方向に対する配向主軸の傾きが同一方向であることを特徴とする(1)~(3)のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルム。
 (5)フィルム長手方向の厚みムラが2.0μm未満である(1)~(4)に記載の偏光板離型用二軸配向ポリエステルフィルム。
 (6)長手方向の配向角バラツキ(MD配向角ムラ)が1.5度未満である(1)~(5)に記載の偏光板離型用二軸配向ポリエステルフィルム。
 (7)フィルム幅方向に対する配向主軸の傾きの角度(配向角)が少なくとも5m幅にわたって3.7度以下であるフィルムから採取されることを特徴とする(1)~(6)のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルム。
 (8)以下の工程をその順に有する方法によって得られる(1)~(7)のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルム。
(工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
(工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
(工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
(工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
 (9)幅が1700mm以上の偏光子の少なくとも片側に、(1)~(8)のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルムを設けてなる積層体。
 (10)(9)に記載の積層体から前記偏光板離型用二軸配向ポリエステルフィルムを剥離する、偏光板の製造方法。
 (11)(1)~(8)の何れかに記載の偏光板離型フィルム用二軸配向ポリエステルフィルムの製造方法であって、以下の工程をその順に有する二軸配向ポリエステルフィルムの製造方法。
(工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
(工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
(工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
(工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
 (12)フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキが3.7度以内であり、フィルム幅が1700mm以上である二軸配向ポリエステルフィルムの製造方法であって、以下の工程をその順に有する二軸配向ポリエステルフィルムの製造方法。
(工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
(工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
(工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
(工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
 本発明によれば、幅方向に対する配向主軸の傾きが同一方向となる幅取りとしても幅方向に対する配向主軸の傾きの角度(配向角)のバラツキを抑え、クロスニコル検査性が良好で、生産性(収率)を向上できる偏光板離型フィルム用二軸配向ポリエステルフィルムとその製造方法を提供することが可能となる。
クロスニコル検査器にて検出テストを行ったときの画像(フィルム面内の画像) 本発明におけるフィルムの検査性を評価したクロスニコル検査器の概要図
 以下、本発明についてさらに詳細に説明する。本発明において好適に用いることのできるポリエステルは、分子配向により高強度フィルムとなるポリエステルであれば特に限定しないが、主としてポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレートを含むことが好ましい。特に好ましくは価格的にも優位なポリエチレンテレフタレートである。ポリエチレンテレフタレートを用いる場合、エチレンテレフタレート以外のポリエステル共重合体成分としては、例えばジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ポリエチレングリコール、p-キシリレングリコール、1,4-シクロヘキサンジメタノールなどのジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などのジカルボン酸成分、トリメリット酸、ピロメリット酸などの多官能ジカルボン酸成分、p-オキシエトキシ安息香酸などが目的とするフィルム物性を阻害しない範囲で使用できる。かかるポリエステルは、例えば以下に示す方法で製造することができる。たとえば、ジカルボン酸成分とジオール成分とを直接エステル化反応させた後、この反応の生成物を減圧下で加熱して余剰のジオール成分を除去しつつ重縮合させることによって製造する方法や、ジカルボン酸成分としてジカルボン酸のジアルキルエステルを用い、ジオール成分とエステル交換反応させた後、上記と同様にして重縮合させることによって製造する方法等がある。この際、必要に応じて、反応触媒として例えばアルカリ金属、アルカリ土類金属、マンガン、コバルト、亜鉛、アンチモン、ゲルマニウム、チタン化合物を用いることができる。上記ポリエステルの固有粘度は好ましくは0.4~0.9であり、より好ましくは0.5~0.7,さらに好ましくは0.55~0.65である。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムは、幅方向に対する配向主軸の傾きの角度(配向角)バラツキが3.7度以内であり、かつ、フィルム幅が1700mm以上となるものである。また、フィルム幅方向に対する配向主軸の傾きが同一方向であることが好ましい。
 本発明でいう配向角とは、配向主軸の傾きの角度のことを表す。配向角は、全方位にわたってフィルムに超音波パルスを透過させ、その伝播速度を測定することによって配向性を評価し、測定することができる。また、配向角は、フィルム幅方向と平行である時を0度とし、フィルム幅方向に対して時計回りの傾きを+、反時計回りを-と定義した。また、フィルム幅方向に対する配向主軸の傾きが同一方向であるとは、幅取りしたフィルムのフィルム幅方向両端が、前述した配向主軸の傾きの測定において、同符号を示すことを定義する。二軸配向ポリエステルフィルムにおいて、配向主軸の傾きは、延伸工程から熱処理工程時に発生するボーイング現象により発生する。ボーイング現象は、延伸工程から熱処理工程内のフィルムが懸垂線(カテナリー曲線)を構成することに起因する現象であるため、二軸配向ポリエステルフィルムにおいては、幅方向中心からフィルムの幅方向端部に行くに従って配向主軸の傾きは増加する傾向となる。また、二軸配向ポリエステルフィルムの幅方向中心から幅方向端部へ向かう2つの方向においては、それぞれ逆方向の配向主軸の傾きを有する。
 また、本発明でいう配向角バラツキとは、前述の通り測定したフィルム内の任意の位置の配向角の最大と最小の差分と定義する。配向角バラツキが3.7度を超える場合には、偏光板を検査するクロスニコル法において偏光板から光漏れが生じることにより、検査の障害となる場合がある。配向角バラツキは、3.5度以内であるとより好ましく、3.2度以内であるとさらに好ましい。
 また、本発明の偏光板離型用二軸配向ポリエステルフィルムは、フィルム幅方向に対する配向主軸の傾きの角度(配向角)が少なくとも5m幅にわたって3.7度以下であるフィルムから採取されると、生産性を高めることができるため好ましい。
 配向角バラツキはフィルムをクロスニコル状態にしたときのフィルムにおける欠点の無い正常部分の光漏れ量のバラツキの要因となる。この光漏れ量のバラツキは、後に述べる「(9)クロスニコル検査器による評価」にて示したクロスニコル検査器においては、欠点がない背景部分での欠点がない背景部分での受光量バラツキとして確認することができる。そして、光漏れ量のバラツキが発生すると、フィルムの位置に応じて(配向角のバラツキに応じて)検査性が変わり、欠点の見逃しが発生することがある。以下に、その例を示す。
 クロスニコル検査器による欠点検出性と配向角のバラツキの関係について:
 [1]検出テスト1
・サンプル:常温にてポリエステルフィルムを加工した際に発生した表面欠点を有するポリエステルフィルム。ただし、このポリエステルフィルムは小片であり、フィルム面内において配向角のバラツキはほとんど無いものである。
・測定装置:後に述べる「(9)クロスニコル検査器による評価」にて示したクロスニコル検査器。
・ベースライン:クロスニコル検査器では、検査に際して、欠点がない背景部分での受光量のベースラインを定める必要がある。そこで、欠点がない背景部分での受光量のベースライン(欠点の無い正常部分の光漏れ量)を256階調で10~30の範囲としたテストをテスト1Aとし、欠点がない背景部分での受光量のベースラインを256階調で30~50の範囲としたテストをテスト1Bとした。なお、ベースラインの調整は、受光手段側の第2の偏光フィルターの角度、照明側に設置されている第1の偏光フィルター角度の両方を調整することによって行った。
・テスト結果:テスト1Aの条件で、サンプルを検査したところ、フィルムの表面欠点部では、ベースラインから40ほど高い欠点がない背景部分での受光量を示した。一方、テスト1Bの条件で、同一のサンプルを検査したところ、フィルムの表面欠点部では、ベースラインから17ほど高い欠点がない背景部分での受光量を示した。なお、欠点がない背景部分での受光量のベースラインから高い欠点がない背景部分での受光量を示すほど、検査性は高い(鋭敏である)。テスト結果を図1に示す。図1において、黒い部分は欠点がない背景部分での受光量が小さいことを示し、白い部分は欠点がない背景部分での受光量が大きいことを示す。
・結論:上記のテスト結果より、欠点がない背景部分での受光量のベースラインによって、検査性が変化することが示された。そして、ポリエステルフィルムの面内において配向角のバラツキが存在すると、フィルムの位置によって配向角にバラツキがあるため、欠点がない背景部分での受光量のベースラインが変化する。具体的には、配向角が0度の位置において、欠点がない背景部分での受光量のベースラインを20となるように設定せしめても、配向角が0度以外の位置では、欠点がない背景部分での受光量のベースラインが20から変化する。そして、欠点がない背景部分での受光量のベースラインが変化すると、検査性が変化することになる。
 [2]検出テスト2
・サンプル:ポリエステルフィルム製造時(特に加熱延伸時)発生した表面欠点を有するポリエステルフィルム。ただし、このポリエステルフィルムは小片であり、フィルム面内において配向角のバラツキはほとんど無いものである。
・測定装置:後に述べる「(9)クロスニコル検査器による評価」にて示したクロスニコル検査器。
・ベースライン:クロスニコル検査器では、検査に際して、欠点がない背景部分での受光量のベースラインを定める必要がある。そこで、欠点がない背景部分での受光量のベースラインを256階調で10~30の範囲としたテストをテスト2Aとし、欠点がない背景部分での受光量のベースラインを256階調で30~50の範囲としたテストをテスト2Bとした。なお、ベースラインの調整は、受光手段側の第2の偏光フィルターの角度、照明側に設置されている第1の偏光フィルター角度の両方を調整することによって行った。
・テスト結果:テスト2Aの条件で、サンプルを検査したところ、フィルムの表面欠点部では、ベースラインから80ほど高い欠点がない背景部分での受光量を示した。一方、テスト2Bの条件で、同一のサンプルを検査したところ、フィルムの表面欠点部では、ベースラインから70ほど高い欠点がない背景部分での受光量を示した。また、表面欠点の大きさを測定したところ、テスト2Aの条件下では0.475mmほどの大きさとして観察され、テスト2Aの条件下では0.588mmほどの大きさとして観察された。テスト結果を図1に示す。
・結論:上記のテスト結果より、欠点がない背景部分での受光量のベースラインによって、検査性(特に測定値として示される欠点の大きさ)が変化することが示された。そして、ポリエステルフィルムの面内において配向角のバラツキが存在すると、フィルムの位置によって、欠点がない背景部分での受光量のベースラインが変化する。そして、欠点がない背景部分での受光量のベースラインが変化すると、検査性が変化することになる。
 以上の知見から欠点がない背景部分での受光量のバラツキは少ないほど、フィルム面内における検査性を均一化することができる。そして、フィルム面内における検査性を均一化するためには、フィルムの配向角バラツキを3.7度以下とすることが重要である。
 また、本発明の二軸配向ポリエステルフィルムは、フィルムの長手方向に対する配向角バラツキ(以下、MD配向角ムラと呼称する)が1.5度以下があることが好ましい。本発明でいうMD配向角ムラとは、フィルム幅方向両端部の配向角をそれぞれフィルム長手方向に1000mm毎に10点測定し、フィルム端部毎に測定値の最大値と最小値の差の絶対値を求め、その絶対値が大きい方の値と定義する。
 MD配向角ムラが大きいと、フィルム長手方向でクロスニコル検査器における欠点がない背景部分での受光量バラツキが発生するため、好ましくない。クロスニコル検査器ではクロスニコル状態に調整したときの配向角から乖離が大きくなると、クロスニコル検査器における欠点がない背景部分での受光量バラツキが大きくなる。そのため、MD配向角ムラを抑制すればクロスニコル検査器における欠点がない背景部分での受光量バラツキを抑制することができる。MD配向角ムラは1.5度以下があることが好ましく、更に好ましくは1.2度以下、更に好ましくは1.0度以下である。
 フィルム端部位置での配向角の絶対値が大きいほどMD配向角ムラは大きくなる傾向があることから、本発明の二軸配向ポリエステルフィルムではフィルム端部位置での配向角の絶対値が小さくなるように製膜することが好ましい。
 本発明の二軸配向ポリエステルフィルムは、フィルム幅は少なくとも1700mm以上あることが必要である。上述したとおり、配向角は製膜したフィルム中心からの距離に対して増加する挙動を取るため、フィルム幅が大きくなるほど配向角および配向角のバラツキを抑制することは困難となる。そのため、従来はフィルム幅が1700mm以上の二軸配向ポリエステルフィルムにおいて、配向角のバラツキが3.7度以下とすることは出来ていなかった。本発明の二軸配向ポリエステルフィルムは、フィルム幅は少なくとも1700mm以上であり、かつ、配向角のバラツキが3.7度以下であるため、大画面(具体的には32インチ以上)のLCDの偏光板の検査用離型フィルムに好ましく用いられる。フィルム幅は1900mm以上であるとより大画面用のLCDに好適に用いることができ、また生産性が良好となるためより好ましい。フィルム幅の上限は特に限定されないが、製造設備コストの面からフィルム幅は10000mm以下であることが好ましい。
 本発明の二軸配向ポリエステルフィルムは、フィルム幅方向に対する配向主軸の傾きが同一方向であることが好ましい。前述したとおり、二軸配向ポリエステルフィルムにおいて、幅方向中心からフィルムの幅方向端部に行くに従って配向主軸の傾きは増加する傾向となる。また、幅方向中心から幅方向端部へ向かう2つの方向においては、それぞれ逆方向の配向主軸の傾きを有する。そのため、配向角のバラツキを最も小さく幅取りするには、幅取りするフィルムの幅方向の中心と、幅取りした後のフィルムの幅方向の中心を同じとするように幅取りを行うこととなる。しかしながら、この幅取りではフィルムの幅方向の中央部分のみしか、製品採取できない。生産性を改善させるには、幅取り後のフィルムの幅方向両端の配向主軸の傾きが同一方向となるように幅取りを行う必要があるが、幅取り後のフィルムの幅方向両端の配向主軸の傾きが同一方向となるように幅取りを行うと、配向角のバラツキやMD配向角ムラが大きくなる傾向にある。本発明の二軸配向ポリエステルフィルムは、フィルム幅方向に対する配向主軸の傾きが同一方向とする幅取りを行っても、配向角のバラツキが小さいため、生産性良く、検査性の良好な二軸配向ポリエステルを得ることが出来る。
 また、本発明の二軸配向ポリエステルフィルムは、150℃30分間の条件で熱処理したのちのフィルム長手方向およびフィルム幅方向の熱収縮率がそれぞれ5~7%、7~9%であることが好ましい。好ましくはそれぞれ5.5~6.5%、7.5~8.5%である。熱収縮率が前述の範囲を超えると、寸法安定性が悪くなるため好ましくない。熱収縮率は熱処理における弛緩率や熱処理温度にて調整可能である。しかしながら、配向角バラツキを3.7度以下に維持しつつ、偏光板離型用フィルムとして好ましい平面性を維持しながら熱収縮率を前述の下限範囲未満とするには、例えば製膜後に別途アニール処理を行うことが必要となるため、生産性・効率が下がることとなるため好ましくない。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムは、フィルムのヘイズ値が7~13%であることが好ましい。好ましくは8~12%、さらに好ましくは9~11%である。ヘイズ値が7%未満の場合には偏光板を検査する際に反射光が強すぎるため、13%を超える場合には反射光が弱いため、検査の障害となる場合がある。特にクロスニコル下での反射光は反射光が強くても弱くても欠点部と地合(背景部分)との差異を分別し難くなる。特に目視で検査を行う際にはこの影響を顕著に受ける。具体的にはヘイズが低いときには反射光が強く、地合(背景部分)の輝度ムラが強調されるため、欠点部と地合(背景部分)の際が分別し難くなり、ヘイズが高いときには散乱光が強く欠点部の輝点が曖昧になり検出性が低くなる。このため、欠点検査の検査性を高めるためには、フィルムのヘイズ値は前述の範囲とすることが特に重要である。ヘイズ値は前述の範囲とすることによって、検査対象たる偏光板の大きさが32インチ以上であっても、検査性を十分に向上させることができる。
 本発明のフィルムは単層であっても、2層以上からなる複合フィルムであってもよいが、フィルムのヘイズ値を上記範囲にするには、3層複合フィルムからなる場合とくに好適である。本発明のフィルムを3層複合フィルムとする場合、フィルム表面を構成する層(積層部)のポリマー組成や含有する粒子種あるいは粒子含有量が異なる、A/B/Cの構成でもよいが、ポリマー組成や含有する粒子種あるいは粒子含有量を同一の組成とするA/B/Aの構成でもよい。フィルム表面を構成する層(積層部)のポリマー組成や含有する粒子種あるいは粒子含有量を同一の組成とするA/B/Aの構成が設備的に簡易であり、生産性の面からも好ましい。さらに、3層複合フィルムをA/B/Aの構成とした場合、フィルム表面側を構成する両層の積層厚さを実質的に同一にした場合、品質の設計が容易であるため好ましい。また、フィルム表面を構成する層(積層部)の厚さは、0.5~2.5μmが好ましく、とくに1.0~2.0μmが好ましい。
 フィルムのヘイズ値を上記範囲にするには、フィルムに不活性粒子を含有させる方法が好ましく用いられる。本発明のフィルムを3層複合フィルムとした場合、フィルム表面を構成する層(積層部)とフィルム表面を構成しない層(基層部)に、それぞれ粒子を含有させると、ヘイズ値を所望の範囲とすることができるため好ましい。含有させる不活性粒子の種類としては、球状シリカ、ケイ酸アルミニウム、二酸化チタン、炭酸カルシウムなどの無機粒子、またその他有機系高分子粒子としては、架橋ポリスチレン樹脂粒子、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレン-アクリル樹脂粒子、架橋ポリエステル粒子、ポリイミド粒子、メラミン樹脂粒子等が好ましく用いられる。これらの1種もしくは2種以上を選択して用いることもできる。
 不活性粒子を含有したフィルムを得る方法としては、ポリエステルの重合工程で不活性粒子を添加して不活性粒子含有ポリエステルを作製し、それを原料にして製膜を行う方法、粒子を含有しないポリエステルを重合し、製膜段階でポリエステルと不活性粒子をブレンドしながら製膜する方法などが挙げられる。粒子の凝集による異物の発生を抑制する観点からは、ポリエステルの重合工程で不活性粒子を添加する方法が好ましい。例えば、ポリエチレンテレフタレートの場合、グリコール成分であるエチレングリコールの不活性粒子含有スラリーを調製し、重縮合前のエステル交換後、あるいはエステル化後のオリゴマーの段階で不活性粒子含有スラリーを添加し、引き続き、重縮合反応を行うことで、不活性粒子含有ポリエチレンテレフタレートを得ることができる。
 また、添加前の不活性粒子のスラリーは必要に応じ、サンドグラインダー等による分散処理、遠心沈降処理による粗大粒子の分離あるいは、高精度濾過を行うことが、粒径分布を均一化でき、粗大粒子を除去することができ、フィルムの粗大突起の減少に効果的に採用できる。
 本発明のフィルムのヘイズ値を上記の範囲とするためには、3層複合フィルムの場合、フィルム表面を構成する層(積層部)には、平均粒子径0.5~1.5μm、好ましく0.8~1.3μmの不活性粒子を0.2~1.0重量%、さらに好ましくは、0.3~0.8重量%含有させることが好適である。併せて、フィルム表面を構成しない層(基層部)に、平均粒子径0.5~1.5μm、好ましく0.8~1.3μmの不活性粒子を0.02~0.1重量%含有させると、ヘイズ値を上記の範囲にすることができるため好ましい。また、フィルム表面を構成する層(積層部)、フィルム表面を構成しない層(基層部)に含有する不活性粒子種は同一であると、生産設備を簡略化できるため好ましい。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムは、フィルム長手方向の厚みむらが2.0μm未満であることが好ましく、0.5~1.5μmであることがさらに好ましく、0.5~1.2μmであることが特に好ましい。本発明でいうフィルム長手方向の厚みむらとは、後に述べる「(5)フィルム長手方向の厚みむら」にて示す方法において測定される値を表す。厚みむらが1.5μmを超える場合には、偏光板を検査するクロスニコル法において偏光板から漏れる光の強度のむらが強くなり、検査の障害となる場合がある。特に厚みムラが2.0μmを越える場合は延伸ムラが発生している事が多く、延伸ムラによって地合(背景部分)が均一にならないため、クロスニコル検査性が著しく悪くなり、偏光板離型フィルム用二軸配向ポリエステルフィルムとして好ましくはない。一方で、厚みむらが0.5μm以下のフィルムを製造するためには、生産管理が複雑となるため好ましくない。
 また、本発明のフィルムの厚みは25~70μmであることが好ましく、より好ましくは30~50μm、さらに好ましくは35~45μmである。フィルムの厚みがこの範囲内にあると、フィルムのヘイズ値を上記範囲内で調整しやすく、好ましい。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムは、例えば未延伸フィルムを縦方向に延伸し、次いで横方向に延伸し、冷却工程を経て熱処理することによって得られるが、特に、ボーイング現象を抑制し、フィルム幅1700mm以上にわたって、配向角のバラツキを3.7度以内にするためには、冷却工程にてフィルム温度を25~45℃に冷却し、かつ、冷却工程におけるフィルムの幅縮み速度を0.1~20%/minで制御した後に、熱処理することが重要である。
 フィルムの配向角を低くする方法としては、特許文献7に記載のように横延伸後に冷却工程を設け、冷却工程における冷却温度を規定することで配向角を低くするといった方法がある。これは横延伸後のフィルムの温度をフィルムのガラス転移温度以下に十分に冷却することでボーイング現象を十分に抑制することで実現をしている。しかしながら、上記の方法では、フィルム幅が1700mm以上のような幅広いフィルムの配向角のバラツキを十分に抑制することは出来ていない。本発明では更に冷却工程においてフィルムの幅縮み速度を制御することによって従来技術では達成し得なかった程度に配向角を低くすることが可能となり、幅取り後の配向角バラツキを抑制できることを見いだした。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムを製造するに際し、延伸後の冷却工程における温度に加えて幅縮み速度を制御することで配向角を低くできるメカニズムは、横延伸工程から冷却工程にかけてフィルム温度が低下する過渡期において幅縮み速度を制御することで横配向緩和を物理的に抑制し、もしくは冷却工程における幅縮みが延伸工程直後でのフィルムに作用することを物理的に抑制し、従来以上にボーイング現象を十分に抑制できるためと推測される。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムを製造するに際しては、冷却工程におけるフィルムの幅縮み速度は0.1%~20%/minであることが好ましく、0.2%~18%/minとすることがより好ましい。幅縮み速度が0.1%/min未満では、フィルムの幅縮みが抑制されたことによるフィルム張力が影響し、製膜性が悪くなり、フィルム破れ等の原因となる。また、幅縮み速度が20%/minより大きいと、フィルムの幅縮みによる配向緩和を抑制する効果は少なく、ボーイング現象の抑制が不十分となる。
 なお、ここで示した冷却工程におけるフィルムの幅縮み速度V1(%/min)は、横延伸工程を経た後であって冷却工程に入る直前のフィルム幅W1(mm)、冷却工程を経た後のフィルム幅W2(mm)、冷却工程の通過時間をT1(min)としたときに式(1)にて算出されるものである。
V1=(W1-W2)/W1 × 1/T1 式(1)
 また、本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムを製造するに際し、冷却工程においてフィルムは温度が低下した状態である程度の時間を経ることが重要である。この理由としては、以下のように推測している。前述したように冷却工程では幅縮みをする際に配向緩和が起こっていると考えられるが、フィルムを冷却することによって配向緩和を止めるには一定の時間が必要であると推測される。そのため、冷却工程の通過時間が不十分であると配向緩和を抑制できないため、ボーイング現象を抑制する効果が少ないと推測している。本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムを製造するに際して、冷却工程の通過時間は、10秒間以上が好ましく、更に好ましくは15秒間以上である。冷却工程の通過時間の上限は特に限定されないが、60秒間以下であると生産性が良好となるため好ましい。
 本発明のポリエステルフィルムは、以下の工程をその順に有する方法によって得られることが好ましい。
(工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
(工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
(工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
(工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
 以下にそれぞれの工程について詳しく説明する。
 ・未延伸フィルムの作成
 公知の方法で得られたポリエステルを、必要に応じて乾燥し、押出機に供給して、フィルターにより濾過する。小さな異物もフィルム欠点となるため、このフィルターには例えば5μm以上の異物を95%以上捕集する高精度のものを用いることが有効である。続いてT型口金等を用いてシート状に溶融押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを得る。
 ・(工程1)
 前記未延伸フィルムを、長手方向に延伸倍率が2.5~5倍で延伸することによって、一軸延伸ポリエステルフィルムを得る。長手方向への延伸は、90~130℃の延伸温度で1段階的に、もしくは多段階的に分けて延伸することが好ましい。ボーイング現象およびフィルム長手方向の厚みムラを抑える観点から、延伸温度は100~120℃、延伸倍率は3~4倍が好ましく、延伸ムラおよびキズを防止する観点から延伸は2段階以上に分けて行うことが好ましい。
 ・(工程2)
前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸することによって、二軸延伸ポリエステルフィルムを得る。幅方向の延伸は、90~130℃の延伸温度で延伸することが好ましい。延伸温度が90℃よりも低く、延伸倍率が6倍よりも大きくなるとフィルムが破断しやすくなる。延伸温度は100~120℃、延伸倍率は4~5倍であるとより好ましい。
 また、配向角バラツキを小さくするためには、幅方向の延伸倍率が、長手方向の延伸倍率よりも大きいことが好ましい。縦延伸倍率より幅方向延伸倍率を大きくとするとフィルム内の分子配向が長手方向側に傾く傾向があり、配向角バラツキを抑制することが困難となる場合がある。
 本発明の偏光板離型フィルム用二軸配向ポリエステルフィルムを製造するに際し、縦延伸の後に横延伸後を行う。横延伸後に縦延伸を行うと、横延伸後に分子が主にTD方向に強く配向するが、その後に縦延伸を行うとMD方向にも配向してしまい、配向角バラツキが大きくなってしまうためである。
 ・(工程3)
前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却することによって、冷却されたポリエステルフィルムを得る。
 冷却工程におけるフィルム温度は25~45℃とすることが幅縮みによる横配向緩和を抑制し、ボーイング現象を抑制できるため好ましい。より好ましくは、30~40℃である。冷却工程におけるフィルム温度が45℃より高いと、フィルム幅縮みによる張力が影響して製膜性が悪くなり、また横配向緩和を抑制する効果が十分に出ない場合がある。冷却工程におけるフィルム温度が20℃未満に冷却することは、生産性が悪くなるため好ましくない。
 ポリエステルフィルムの冷却方法は、熱処理を行うテンターによる空冷方法、熱処理領域の上下にアルミ板などの遮蔽板で熱風を遮断する空冷方法、ロールによる冷却方法等が挙げられる。熱処理を行うテンターによる空冷方法では各ゾーンが長手方向に全てつながっているため、随伴気流など高温空気の自由な流れによりフィルム上下や幅方向に温度差が発生し、フィルム温度を十分冷却できない場合がある。その場合は、圧縮空気などを送り込んで積極的に冷却することで対応することもできる。
 また、ロールによる冷却方法では、使用するロール本数や設定温度は限られるものではないが、ロール本数を複数本用いて冷却することが好ましい。ロールによる冷却方法においてフィルム温度を上記の範囲とするためには、ロール温度は20~45℃であることが好ましく、さらに好ましくは30~40℃である。また、ロールによる冷却方法ではフィルムをニップロールで冷却ロールに荷重をかけて密着させると、安定して冷却が行えるため好ましい。
 また、この冷却工程において、フィルムの幅縮み速度は0.1~20%/minであることが重要である。幅縮み速度が0.1%/min未満では、フィルムの幅縮みが抑制されたことによるフィルム張力が影響し、製膜性が悪くなり、フィルム破れ等の原因となる。また、幅縮み速度が20%/minより大きいと、フィルムの幅縮みによる配向緩和を抑制する効果は少なく、ボーイング現象の抑制が不十分となる場合がある。フィルムの幅縮み速度は、0.2~18%/minとすることがさらに好ましい。
 また、冷却工程の通過時間は、10秒間以上が好ましく、更に好ましくは15秒間以上である。冷却工程の通過時間の上限は特に限定されないが、60秒間以下であると生産性が良好となるため好ましい。
 幅縮み方向を制御する方法としては、冷却工程長さ、製膜速度から幅縮みの速度を設定し、様々な方法で実現することができる。具体的にはテンターにおける空冷方法においては両端をクリップで把持し、レール幅を調整することで幅縮み速度を所望の値にすることが出来る。
 ・(工程4)
 前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理することによって、二軸配向ポリエステルフィルムを得る。熱処理温度が180℃未満では熱処理が不十分となり、熱収縮率を150℃30分間の条件で熱処理したのちのフィルム長手方向およびフィルム幅方向の熱収縮率がそれぞれ5~7%、7~9%の範囲に収めることが困難となる場合がある。熱処理温度が230℃より高いと、熱結晶化による配向が進むことにより、フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキが3.7度以内に収めることが困難となる場合がある。
 また、熱処理工程において、フィルム上下の温度差は好ましくは1~20℃であり、より好ましくは1~10℃、さらに好ましくは1~5℃である。フィルム上下での温度差が20℃よりも大きいと、フィルムの幅方向の物性、特に機械的特性あるいは熱収縮率を不均一となる場合がある。また、上記熱処理においては、必要に応じて弛緩処理を行ってもよい。弛緩処理は、横方向・長手方向いずれの方向について行っても良く、横方向・長手方向を同時に行っても、それぞれ別に行っても良い。弛緩率は、フィルムの全幅に対して好ましくは1~20%、さらに好ましくは1~10%であると、熱寸法安定性の優れたフィルムを得るのに有効である。
 本発明のポリエステルフィルムは、大サイズの偏光板の離型用フィルムとして好適に用いられる。具体的には、以下の態様で用いられることが好ましい。
 はじめに、幅が1700mm以上の偏光子の少なくとも片側に本発明のポリエステルフィルムを設けて積層体とする。ここで、積層体は、「本発明のポリエステルフィルム/粘着層A/偏光子/粘着層B/保護シート」がその順に設けられてなる積層体であることが好ましく、より好ましくは、「本発明のポリエステルフィルム/シリコーン層/粘着層A/偏光子/粘着層B/保護シート」がその順に設けられてなる積層体である。なお、シリコーン層、粘着層、偏光子、保護シートとしては公知の材料を用いることができる。
 次に、積層体の検査を行う。当該積層体は、本発明のポリエステルフィルムが用いられているので、良好な検査性が得られる。その後、積層体から、本発明のポリエステルフィルムを剥離して、偏光板を得る。ここで、偏光板とは、少なくとも偏光子を有する部材を指すが、例えば、「本発明のポリエステルフィルム/粘着層A/偏光子/粘着層B/保護シート」や「本発明のポリエステルフィルム/シリコーン層/粘着層A/偏光子/粘着層B/保護シート」(積層体)から本発明のポリエステルフィルムを剥離(除去)すると、「粘着層A/偏光子/粘着層B/保護シート」がその順に設けられてなる偏光板が得られる。なお、シリコーン層は、本発明のポリエステルフィルムと共に剥離されることが好ましい。
 実施例および比較例における特性値の測定方法は次の通りである。
 (1)フィルム幅
測定対象のフィルムを台に広げ、幅を金尺(JIS1級)で測定した。
 (2)配向主軸の傾き(配向角)、配向角バラツキ
野村商事製配向性測定機(SST-4000)を用いて測定をする。試料となるフィルムの幅に対して両端部からA4サイズに切り出したサンプルの中点(105mm)を測定し、配向主軸がフィルム幅方向と平行である時を配向角0度であり、フィルム幅方向に対して時計回りの傾きを+、反時計回りを-とし、その絶対値を測定結果とした。
配向角バラツキは対象となる採取幅取りにおいて、最大値と最小値の差分の絶対値を測定結果とした。
 (3)フィルムのヘイズ値
JIS K7105(1981)に準じ、フィルム長手方向4cm×フィルム幅方向3.5cmの寸法に切り出したものをサンプルとし、ヘイズメータ(スガ試験機製HGM-2DP(C光用))を用いて測定する。フィルム幅方向に対して均等に3点測定し、その平均値を測定結果とした。
 (4)熱収縮率
フィルム表面に、幅10mm、測定長約100mmとなるように2本のラインを引き、この2本のライン間の距離を23℃で測定しこれをL0とする。このフィルムサンプルを150℃のオーブン中に30分間、1.5gの荷重下で放置した後、再び2本のライン間の距離を23℃で測定しこれをL1とし、下式により熱収縮率を求めた。
熱収縮率(%)={(L0-L1)/L0}×100
フィルムの長手方法および幅方向についてそれぞれ3カ所の測定を行い、平均値を求めた。
 (5)フィルム長手方向の厚みむら
安立電気製フィルム厚み連続測定器を用いて、長手方向に15m測定し、記録されたフィルム厚さチャートから、最大厚みと最小厚みの差を厚みむら(μm)として測定した。測定条件は下記の通り。
構成:K-306C広範囲電子マイクロメータ、K-310Cレコーダー、フィルム送り装置
検出器:3Rルビー端子、測定力:15g±5g
フィルム幅:45mm、測定長:15m、フィルム送り速度:3m/分。
 (6)フィルム厚み
JIS C2151(1990)に準じ、マイクロメーター(ミツトヨOMM-25)を用いてフィルム幅方向に対して均等に30点測定し、その平均値を測定結果とした。
 (7)フィルム温度
ハンディ形放射温度計(株式会社チノー製IR-TA)を用いて、フィルム温度を測定した。フィルム幅方向に対して均等に3点測定し、その平均値を測定結果とした。
高さ(Z方向)拡大倍率:5万倍。
 (8)目視による検査
光源(ライトボックス)上に偏光板2枚を載せ、その間にポリエステルフィルムを置き、2枚の偏光板をフィルム全体がクロスニコル状態になるように合わせた状態とし、目視検査を行い、フィルム表面の欠点をマーキングした。検査は2名で行いクロスチェックをして欠点の見逃しの有無を確認し、以下の判断基準で評価した。
◎:目視検査に良好な地合(背景部分)であったため、欠点をほとんど見逃すことなく、検査することができた。
○:視界に入る地合(背景部分)の光がやや強かったり、やや弱かったり、位置ごとに軽微な光量ムラが存在したので、2時間程度続けて検査をしていると疲労感を感じるようになり、いくつかの欠点を見逃してしまった。
△:視界に入る地合(背景部分)の光がやや強かったり、やや弱かったり、位置ごとに光量ムラが存在したので、1時間程度でも続けて検査をしていると疲労感を感じるようになり、いくつかの欠点を見逃してしまった。
×:視界に入る地合(背景部分)の光が強かったり、弱かったり、位置ごとに明確な光量ムラが存在したので、1時間程度でも続けて検査をしていると疲労感を強く感じるようになり、多くの欠点を見逃してしまった。
 (9)クロスニコル検査器による評価:欠点がない背景部分での受光量バラツキ
本発明におけるクロスニコル検査性を評価する機器として、照明手段として250Wのメタルハライド(目白プレシジョン製 BMH-250A)及び角度調整が可能な第1の偏光板が設けられ、受光手段として分解能25μmのCCDカメラ(DALSA製  P3-80-8K-40)と角度調整が可能な第2の偏光板を組み合わせて複数配置されているクロスニコル検査器を使用した。装置の概要を図2に示す。
 この検査器では図2に示すように、照明手段4より光が第1の偏光板を経て検査対象のフィルム1に入射・透過して、第2の偏光板を経て受光手段5で撮像され、信号処理手段6へ出力される。
 ベース欠点がない背景部分での受光量バラツキの評価は、受光手段側の第2の偏光板の角度を一律固定として基準とし、照明側に設置されている第1の偏光板角度を調整し、測定幅で採取したフィルムを検査対象とし、全検査幅での欠点がない背景部分での受光量を256階調で評価したときの平均値が最小となった状態で欠点がない背景部分での受光量の最大値と最小値の差を確認し、この差を欠点がない背景部分での受光量バラツキとして評価した。
 (10)自動検査装置による検査
(9)クロスニコル検査器による評価にて用いた検査装置を用いて、カメラの検出感度は一定値として、フィルム10mを検査した。この際の検査性を確認し、以下の判断基準で評価した。
○:誤検知の多発による検査停止が発生することなく検査できた。検査後のフィルムを
目視にてクロスニコル検査したが、検査器での見逃しは殆ど確認できなった。
□:誤検知の多発による検査停止が発生することなく検査できた。検査後のフィルムを
目視にてクロスニコル検査したところ、検査器で検出出来ていない幾つかの欠点が確認された。
△:誤検知の多発による検査停止が検査開始から10m以内に発生した。
×:誤検知の多発による検査停止が検査開始から1m未満で発生した。
 (11)MD配向角ムラ
(2)配向主軸の傾き(配向角)と同様の手法に測定を行う。フィルム両端部位置で長手方向に1000mm毎に配向角を10点測定する。フィルム端部毎に測定値の最大値と最小値の差の絶対値を求め、絶対値が大きかった方の値をMD配向角ムラの測定結果とした。
以下、実施例で本発明を詳細に説明する。
 実施例1:
 ジメチルテレフタレート(DMT)100質量部に61重量部(DMT1モルに対して1.9モル)のエチレングリコールおよび酢酸マグネシウム・4水塩を0.05質量部、リン酸を0.015質量部加え加熱エステル交換を行い、引き続き三酸化アンチモン0.025質量部を加え、加熱昇温し真空化で重縮合反応を行い、粒子を実質的に含有しない、固有粘度0.63のポリエステルペレットを得た。
 次に、真比重2.71g/cm、平均粒子径1.0μmの炭酸カルシウムを準備し、10重量%のエチレングリコールスラリーとした。このスラリーをジェットアジテイターで一時間分散処理を行い、5μm以上の捕集効率95%のフィルターで高精度濾過した。このスラリーをエステル交換後に添加し、引き続き、上記と同じように重縮合反応を行い、平均粒子径1.0μmの炭酸カルシウムを1%含む、固有粘度0.63の炭酸カルシウム含有マスターペレットを得た。
 次に、炭酸カルシウム含有マスターペレットおよび、粒子を含有しないポリエステルペレットを混合し、炭酸カルシウムを0.5重量%含有するポリエステルA、炭酸カルシウムを0.054重量%含有するポリエステルBを得た。
 これらのポリエステルA、Bをそれぞれ160℃で8時間減圧乾燥した後、別々の押出機に供給し、275℃で溶融押出して、5μm以上の捕集効率95%の高精度フィルターで濾過した後、矩形の3層用合流ブロックで合流積層し、ポリエステルA/ポリエステルB/ポリエステルAからなる3層積層とした。その後、285℃に保ったスリットダイを介し静電印可キャスト法を用いて表面温度25℃のキャスティングロール上に冷却固化し、未延伸フィルムを得た。この未延伸フィルムを、まず103℃に加熱したロールとラジエーションヒーターによって長手方向に3.4倍延伸した。続いてテンターにて幅方向に105℃で4.4倍に延伸した。その後、冷却工程の幅縮み速度18%/minでフィルム温度が35℃になるよう冷却した。この冷却工程ではロール方式を採用し、ロールの温度は30℃とし、冷却工程の通過時間は15秒とした。次いで190℃で熱処理を行って、全フィルム厚み38μm、フィルムの積層厚さがポリエステルA/ポリエステルB/ポリエステルA=1.5μm/35μm/1.5μm、フィルム幅5.1mの3層からなる二軸配向ポリエステルフィルムを巻き取って中間製品ロールを作成した。得られた中間製品ロールからサンプルを採取し、幅方向5mについて配向角を測定したところ、最大値は3.6度であった。次に得られている中間製品ロールについて、フィルム端部を含むように表1に記載の評価ロール採取幅である2000mmにスリットし、フィルム端部を含む幅2000mmの評価用ロールを作製した。作成した評価用ロールについて配向主軸の傾きは同一方向であった。さらに評価ロールについてフィルム特性の評価を行い、得られた結果を表1に示した。
得られた結果を表1に示した。
 実施例2~12、比較例1~4:
延伸条件、冷却条件、熱処理温度、冷却工程の幅縮み速度、採取幅などの製膜条件を変えるほかは実施例1と同様に実施し、3層からなる二軸配向ポリエステルフィルムを得た。得られた結果を表1-1、表1-2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の実施例・比較例より以下の事項を確認できる。
すなわち、本発明の態様とすることにより(特に、フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキを3.7度以内としたり、それに加えてフィルムのヘイズ値を7~13%とすることにより)、クロスニコル検査器における欠点がない背景部分での受光量バラツキを低減できたので、自動検査装置を用いて検査しても、欠点を見逃したり、誤検知することが少なくなった。また、目視で検査する場合においても、地合(背景部分)の光が強すぎたり、弱すぎたりすることがなくなったので、欠点を見逃すことが少なくなり、検査性が向上することが確認できた。
 本発明のフィルムは、優れたクロスニコル検査性を有するので、偏光板離型用として好適に用いることができる。
 1  検査対象のフィルム
 2  第1の偏光フィルター
 3  第2の偏光フィルター
 4  照明手段
 5  受光手段
 6  信号処理手段

Claims (12)

  1. フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキが3.7度以内であり、フィルム幅が1700mm以上である偏光板離型用二軸配向ポリエステルフィルム。
  2. フィルムのヘイズ値が7~13%である請求項1に記載の偏光板離型用二軸配向ポリエステルフィルム。
  3. 150℃、30分間の条件で熱処理したのちのフィルム長手方向の熱収縮率が5~7%であり、フィルム幅方向の熱収縮率が7~9%であることを特徴とする請求項1又は2に記載の偏光板離型用二軸配向ポリエステルフィルム。
  4. フィルム幅方向に対する配向主軸の傾きが同一方向であることを特徴とする請求項1~3のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルム。
  5. フィルム長手方向の厚みムラが2.0μm未満である請求項1~4に記載の偏光板離型用二軸配向ポリエステルフィルム。
  6. 長手方向での配向角バラツキ(MD配向角ムラ)が1.5度未満である請求項1~5に記載の偏光板離型用二軸配向ポリエステルフィルム。
  7. フィルム幅方向に対する配向主軸の傾きの角度(配向角)が少なくとも5m幅にわたって3.7度以下であるフィルムから採取されることを特徴とする請求項1~6のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルム。
  8. 以下の工程をその順に有する方法によって得られる請求項1~7のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルム。
    (工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
    (工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
    (工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
    (工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
  9. 幅が1700mm以上の偏光子の少なくとも片側に、請求項1~8のいずれかに記載の偏光板離型用二軸配向ポリエステルフィルムを設けてなる積層体。
  10. 請求項9に記載の積層体から前記偏光板離型用二軸配向ポリエステルフィルムを剥離する、偏光板の製造方法。
  11. 請求項1~8のいずれかに記載の偏光板離型フィルム用二軸配向ポリエステルフィルムの製造方法であって、以下の工程をその順に有する二軸配向ポリエステルフィルムの製造方法。
    (工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
    (工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
    (工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
    (工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
  12. フィルム幅方向に対する配向主軸の傾きの角度(配向角)のバラツキが3.7度以内であり、フィルム幅が1700mm以上である二軸配向ポリエステルフィルムの製造方法であって、以下の工程をその順に有する二軸配向ポリエステルフィルムの製造方法。
    (工程1)未延伸ポリエステルフィルムを、長手方向に延伸倍率が2.5~5倍で延伸して、一軸延伸ポリエステルフィルムを得る工程。
    (工程2)前記一軸延伸ポリエステルフィルムを、幅方向に延伸倍率が3~6倍、かつ、幅方向の延伸倍率が長手方向の延伸倍率よりも大きい延伸倍率で延伸して、二軸延伸ポリエステルフィルムを得る工程。
    (工程3)前記二軸延伸ポリエステルフィルムを、フィルム温度を25~45℃、フィルムの幅縮み速度が0.1~20%/minにて冷却して、冷却されたポリエステルフィルムを得る工程。
    (工程4)前記冷却されたポリエステルフィルムを、熱処理温度が180~230℃にて熱処理して、二軸配向ポリエステルフィルムを得る工程。
PCT/JP2012/070313 2011-08-30 2012-08-09 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびそれを用いた積層体、ならびに、偏光板の製造方法 WO2013031511A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280033268.4A CN103649182B (zh) 2011-08-30 2012-08-09 偏振片脱模膜用双轴取向聚酯膜及使用其的层合体、以及偏振片的制造方法
JP2012552162A JP6007792B2 (ja) 2011-08-30 2012-08-09 偏光板離型フィルム用二軸配向ポリエステルフィルムの製造方法、およびそれを用いた積層体の製造方法、ならびに、偏光板の製造方法
KR1020137030253A KR101884252B1 (ko) 2011-08-30 2012-08-09 편광판 이형 필름용 2축 배향 폴리에스테르 필름 및 그것을 사용한 적층체, 및 편광판의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187259 2011-08-30
JP2011187259 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031511A1 true WO2013031511A1 (ja) 2013-03-07

Family

ID=47756010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070313 WO2013031511A1 (ja) 2011-08-30 2012-08-09 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびそれを用いた積層体、ならびに、偏光板の製造方法

Country Status (5)

Country Link
JP (1) JP6007792B2 (ja)
KR (1) KR101884252B1 (ja)
CN (1) CN103649182B (ja)
TW (1) TWI565579B (ja)
WO (1) WO2013031511A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096928A (ja) * 2013-11-16 2015-05-21 三菱樹脂株式会社 偏光板保護用ポリエステルフィルム
TWI632053B (zh) * 2013-06-28 2018-08-11 東麗股份有限公司 Biaxially oriented polyester film
JP2018162435A (ja) * 2016-09-30 2018-10-18 東レ株式会社 二軸配向ポリエステルフィルムおよびその製造方法
JP2019211601A (ja) * 2018-06-04 2019-12-12 三菱ケミカル株式会社 偏光子保護フィルム
JP2020125405A (ja) * 2019-02-05 2020-08-20 東レ株式会社 偏光板離型用ポリエステルフィルム
JP2022517201A (ja) * 2019-01-07 2022-03-07 東レ先端素材株式会社 偏光子保護用ポリエステルフィルムとその製造方法及びこれを備える偏光板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151466A1 (ja) * 2014-03-31 2015-10-08 株式会社クラレ 二軸延伸フィルムとその製造方法、偏光子保護フィルム、加飾フィルム、および積層フィルム
WO2020085307A1 (ja) * 2018-10-26 2020-04-30 東洋紡株式会社 液晶化合物配向層転写用配向フィルム
KR102415828B1 (ko) * 2019-09-30 2022-06-30 코오롱인더스트리 주식회사 폴리에스테르 다층 필름 및 그 제조방법
CN110744807B (zh) * 2019-10-14 2021-12-17 浙江洁美电子科技股份有限公司 一种bopet基膜的生产工艺及其所制得的bopet基膜
KR102315358B1 (ko) * 2020-09-03 2021-10-19 도레이첨단소재 주식회사 광학용 폴리에스테르 보호필름 및 이의 제조방법
KR102438415B1 (ko) * 2020-09-03 2022-08-30 도레이첨단소재 주식회사 광학용 폴리에스테르 보호필름

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246685A (ja) * 2007-03-29 2008-10-16 Toray Ind Inc 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびその製造方法
JP2011104981A (ja) * 2009-11-19 2011-06-02 Toray Advanced Materials Korea Inc 離型フィルム用2軸延伸ポリエステルフィルム及びこれを用いた離型フィルム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639435B2 (ja) 2000-06-21 2011-02-23 東レ株式会社 離型フィルム用二軸配向ポリエステルフィルム
JP4814514B2 (ja) 2004-12-21 2011-11-16 三菱樹脂株式会社 離型フィルム用ポリエテルフィルム
JP4805799B2 (ja) * 2006-12-11 2011-11-02 三菱樹脂株式会社 離型フィルム
WO2009084180A1 (ja) * 2007-12-28 2009-07-09 Mitsubishi Plastics, Inc. 偏光板用離型フィルム用ポリエステルフィルム及び偏光特性の改善された積層体
WO2009107326A1 (ja) * 2008-02-25 2009-09-03 三菱樹脂株式会社 離型フィルム
JP2009235231A (ja) 2008-03-27 2009-10-15 Toray Ind Inc 離型用ポリエステルフィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246685A (ja) * 2007-03-29 2008-10-16 Toray Ind Inc 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびその製造方法
JP2011104981A (ja) * 2009-11-19 2011-06-02 Toray Advanced Materials Korea Inc 離型フィルム用2軸延伸ポリエステルフィルム及びこれを用いた離型フィルム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632053B (zh) * 2013-06-28 2018-08-11 東麗股份有限公司 Biaxially oriented polyester film
JP2015096928A (ja) * 2013-11-16 2015-05-21 三菱樹脂株式会社 偏光板保護用ポリエステルフィルム
JP2018162435A (ja) * 2016-09-30 2018-10-18 東レ株式会社 二軸配向ポリエステルフィルムおよびその製造方法
JP7172025B2 (ja) 2016-09-30 2022-11-16 東レ株式会社 二軸配向ポリエステルフィルムおよびその製造方法
JP2019211601A (ja) * 2018-06-04 2019-12-12 三菱ケミカル株式会社 偏光子保護フィルム
JP7259216B2 (ja) 2018-06-04 2023-04-18 三菱ケミカル株式会社 偏光子保護フィルム
JP2022517201A (ja) * 2019-01-07 2022-03-07 東レ先端素材株式会社 偏光子保護用ポリエステルフィルムとその製造方法及びこれを備える偏光板
JP2020125405A (ja) * 2019-02-05 2020-08-20 東レ株式会社 偏光板離型用ポリエステルフィルム
JP7225863B2 (ja) 2019-02-05 2023-02-21 東レ株式会社 偏光板離型用ポリエステルフィルム

Also Published As

Publication number Publication date
CN103649182B (zh) 2016-11-02
JPWO2013031511A1 (ja) 2015-03-23
JP6007792B2 (ja) 2016-10-12
TWI565579B (zh) 2017-01-11
KR20140053000A (ko) 2014-05-07
KR101884252B1 (ko) 2018-08-01
CN103649182A (zh) 2014-03-19
TW201318821A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6007792B2 (ja) 偏光板離型フィルム用二軸配向ポリエステルフィルムの製造方法、およびそれを用いた積層体の製造方法、ならびに、偏光板の製造方法
JP5125176B2 (ja) 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびその製造方法
TWI426099B (zh) 雙軸定向聚酯薄膜及使用彼之離形薄膜
US20110019275A1 (en) Polyester film for release film for polarizing plate, and laminate having improved polarization characteristics
JP2009235231A (ja) 離型用ポリエステルフィルム
JP4644916B2 (ja) 偏光フィルム貼り合わせ用ポリエステルフィルム
JP5703566B2 (ja) 偏光板離型用二軸延伸ポリエチレンテレフタレートフィルム
JP4691842B2 (ja) 偏光フィルム貼り合わせ用ポリエステルフィルム
JP2004177719A (ja) 離型フィルム
WO2009107326A1 (ja) 離型フィルム
JP5651960B2 (ja) 偏光板離型用二軸延伸ポリエチレンテレフタレートフィルム
JP2003231214A (ja) 離型フイルム
JP4639435B2 (ja) 離型フィルム用二軸配向ポリエステルフィルム
JP2007056091A (ja) ポリエステルフィルムおよび離型フィルム
JP2004277524A (ja) 二軸配向ポリエステルフィルム
JP2009178908A (ja) 離型フィルム
JP7172025B2 (ja) 二軸配向ポリエステルフィルムおよびその製造方法
JP2009178933A (ja) 離型フィルム
JP2005014545A (ja) 離型フィルム用ポリエステルフィルム
JP2009178920A (ja) 離型フィルム
JP5844027B2 (ja) 偏光板または位相差板の表面に貼り合わせて保護するためのポリエチレンテレフタレートフィルム
JP2009199023A (ja) 離型フィルム
JP2016130020A (ja) 二軸延伸ポリエチレンテレフタレートフィルム
JP2009178930A (ja) 離型フィルム
JP2009161574A (ja) 離型フィルム用ポリエテルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012552162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030253

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828648

Country of ref document: EP

Kind code of ref document: A1