WO2013027708A1 - 炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材 - Google Patents

炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材 Download PDF

Info

Publication number
WO2013027708A1
WO2013027708A1 PCT/JP2012/071018 JP2012071018W WO2013027708A1 WO 2013027708 A1 WO2013027708 A1 WO 2013027708A1 JP 2012071018 W JP2012071018 W JP 2012071018W WO 2013027708 A1 WO2013027708 A1 WO 2013027708A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
sizing agent
fiber bundle
resin
mass
Prior art date
Application number
PCT/JP2012/071018
Other languages
English (en)
French (fr)
Inventor
巧己 若林
杉浦 直樹
昌宏 畑
武田 重一
圭吾 吉田
中村 秀一
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to US14/240,161 priority Critical patent/US9862824B2/en
Priority to JP2012539133A priority patent/JP5497908B2/ja
Priority to EP12826136.9A priority patent/EP2749690B1/en
Priority to KR1020137034114A priority patent/KR101557568B1/ko
Priority to CN201280040587.8A priority patent/CN103748281B/zh
Publication of WO2013027708A1 publication Critical patent/WO2013027708A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • D06M13/2246Esters of unsaturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the present invention relates to a sizing agent for carbon fiber, an aqueous dispersion thereof, a carbon fiber bundle having a sizing agent attached thereto, a sheet-like material, and a carbon fiber reinforced composite material.
  • Carbon fiber is used in a wide range of fields as a carbon fiber reinforced composite material formed by compounding with resin such as epoxy resin, unsaturated polyester resin, vinyl ester resin, acrylic resin (hereinafter referred to as matrix resin) and molding.
  • resin such as epoxy resin, unsaturated polyester resin, vinyl ester resin, acrylic resin (hereinafter referred to as matrix resin) and molding.
  • matrix resin acrylic resin
  • a method for producing a carbon fiber reinforced composition a method of impregnating a fiber as a reinforcing material with a matrix resin is common.
  • a method of impregnating the fiber with the matrix resin there are a prepreg method in which the matrix resin is thinly applied on the release paper and the fibers are arranged in one direction on the release paper, a dipping method in which the fiber is passed through the matrix resin bath, and the like.
  • a sheet-like material is laminated and thermally cured by pressurization using an autoclave, or after one to several hundred carbon fiber bundles are aligned and impregnated with a matrix resin.
  • a pultrusion method in which a matrix resin is cured through a die, a die, or the like, and a hand layup method in which a fiber base material such as a woven fabric or a sheet is impregnated with a resin at room temperature and cured as it is are known.
  • a carbon fiber reinforced composite material using carbon fiber as a reinforcing material and formed of the carbon fiber and a matrix resin is lightweight and excellent in strength and elastic modulus.
  • Such composite materials are being developed for use in a wide range of fields as components for sports / leisure products, vehicles / aerospace equipment, industrial materials for energy / civil engineering, and the like. Therefore, there is a strong demand for high performance of carbon fibers as a reinforcing material.
  • carbon fibers used as structural materials and industrial materials in vehicles and aerospace applications are being developed for the purpose of increasing strength and increasing elastic modulus.
  • Composite materials for use in such structural materials and industrial materials are required to have a high tensile strength in the longitudinal direction of the fiber.
  • carbon fiber filaments are required.
  • mechanical properties such as tensile strength as a carbon fiber reinforced composite material are hardly expressed.
  • carbon fibers are filaments having a diameter of about 5 to 8 ⁇ m, and the single fibers are used in the form of a unit of thousands to tens of thousands (hereinafter referred to as “carbon fiber bundles”). . Since the carbon fiber itself has a low elongation and a brittle nature, fluff is likely to occur due to mechanical friction or the like, and fluff and thread breakage are likely to occur in the manufacturing process of the composite material. Therefore, in many cases, various sizing agents are applied to the carbon fiber and sizing treatment is performed for the purpose of suppressing fluffiness. In general, the carbon fiber is used in the form of a woven fabric obtained by processing the carbon fiber bundle with a loom.
  • the carbon fiber is treated with a sizing agent.
  • Patent Document 1 proposes a sizing agent using polyglycidyl ethers (hereinafter referred to as “sizing agent 1”), and Patent Document 2 and Patent Document 3 disclose an epoxy resin, an unsaturated dibasic acid, and bisphenol. Proposed is a sizing agent (hereinafter referred to as “sizing agent 2”), which comprises a condensate of an alkylene oxide adduct and a alkylene oxide adduct of a phenol selected from monocyclic phenols and polycyclic phenols. Has been.
  • the sizing agent 1 is excellent in impregnation property and interfacial adhesion, but it cannot be said that it has good adhesion to radical polymerization resins such as unsaturated polyester resins, vinyl ester resins and acrylic resins.
  • the sizing agent 2 can be expected to improve the adhesiveness with a matrix resin, particularly an unsaturated polyester resin, and can maintain the physical properties of the fiber-reinforced composite material when an epoxy resin is used as the matrix resin.
  • a matrix resin particularly an unsaturated polyester resin
  • the adhesion to the radical polymerization resin is not good.
  • Patent Document 4 proposes a sizing agent (hereinafter referred to as “sizing agent 3”) comprising an ester resin containing one or more epoxy groups, a urethane acrylate, an anionic emulsifier, and a small amount of a nonionic emulsifier.
  • sizing agent 3 a sizing agent comprising an ester resin containing one or more epoxy groups, a urethane acrylate, an anionic emulsifier, and a small amount of a nonionic emulsifier.
  • the sizing agent 3 has excellent adhesion to radical polymerization resins such as unsaturated polyester resins, vinyl ester resins, and acrylic resins, and can provide the same performance as a composite material using an epoxy resin as a matrix resin. Moreover, compatibility with an epoxy resin may be good, and the composite material combined with a wide range of thermosetting resins can exhibit excellent mechanical strength.
  • radical polymerization resins such as unsaturated polyester resins, vinyl ester resins, and acrylic resins
  • this sizing agent has an excellent effect of suppressing the orientation disorder and meandering of the carbon fiber filaments during the molding process, which causes the strength reduction of the carbon fiber reinforced composite material.
  • Patent Documents 5 and 6 propose a sizing agent containing a polyurethane resin (hereinafter referred to as “sizing agent 4”).
  • sizing agent 4 a polyurethane resin
  • it is effective in suppressing phenomena such as disordered alignment and meandering of carbon fiber filaments during molding, but the sizing agent 4 uses substantially 100% polyurethane resin.
  • the sizing agent 4 is designed to reinforce the thermoplastic resin so that the softening temperature of the dry film of the sizing agent is 50 to 150 ° C, it is impregnated with resin near room temperature like a composite material using radical polymerization resin When work is performed, the resin impregnation property is poor.
  • the present invention has been made in view of the above circumstances, and has excellent sizing process passability, a sizing agent is uniformly attached, and a machine when combined with a resin, particularly a radical polymerization resin. It is an object of the present invention to provide a carbon fiber sizing agent and an aqueous dispersion of a sizing agent that can obtain a carbon fiber bundle excellent in the effect of improving physical properties. Further, to provide a carbon fiber bundle excellent in the mechanical property improving effect of the composite material, a sheet-like material having the carbon fiber bundle, and a carbon fiber reinforced composite material excellent in mechanical property, particularly a pultruded composite material. Objective.
  • the mass ratio of the content of the compound (A) and the urethane acrylate oligomer (B) is 1/3 or more and 2/1 or less as the ratio of urethane acrylate oligomer (B) / compound (A),
  • the ratio of the total amount of the compound (A) and the urethane acrylate oligomer (B) in all sizing components is 20% by mass or more,
  • the carbon fiber sizing agent of the present invention preferably has a tensile strength of the dry film of the polyurethane resin (C) of 10 MPa to 50 MPa.
  • the polyurethane resin (C) preferably has a glass transition temperature of ⁇ 50 ° C. or more and 35 ° C. or less.
  • An aqueous dispersion in which the carbon fiber sizing agent is dispersed in water, and an aqueous dispersion of the carbon fiber sizing agent in which the average particle size of dispersed particles of the sizing agent in the aqueous dispersion is 0.3 ⁇ m or less is provided.
  • a carbon fiber bundle composed of carbon fibers to which the carbon fiber sizing agent is attached that is, a carbon fiber bundle to which the carbon fiber sizing agent is attached
  • the amount of the sizing agent attached is 0.6 mass% or more.
  • a carbon fiber bundle that is 0% by mass or less is provided.
  • it is a carbon fiber bundle made of carbon fibers to which the sizing agent is attached, which is treated with the aqueous dispersion of the sizing agent for carbon fiber, and the attached amount of the sizing agent is 0.6% by mass or more.
  • a carbon fiber bundle that is 3.0% by mass or less is provided.
  • a sheet-like material including the carbon fiber bundle including the carbon fiber bundle
  • a composite material including the sheet-like material and a pultruded composite material including the carbon fiber bundle.
  • a carbon fiber bundle is obtained that is excellent in passing through a sizing treatment process, in which a sizing agent is uniformly attached, and that is excellent in mechanical properties when combined with a resin, particularly a radical polymerization resin.
  • Carbon fiber sizing agents and aqueous dispersions of sizing agents are provided.
  • a carbon fiber bundle excellent in the mechanical property improving effect of the composite material a sheet-like material having the carbon fiber bundle, a carbon fiber reinforced composite material excellent in mechanical property, particularly a pultruded composite material.
  • the present invention by fixing the shape of the carbon fiber bundle, it becomes easy to maintain the straight holding property of the carbon fiber bundle, thereby optimizing the resin pickup in the resin impregnation step in pultrusion molding or filament winding molding.
  • a carbon fiber bundle having significantly improved properties and a sheet-like material having the carbon fiber can be obtained.
  • the sizing agent for carbon fiber of the present invention contains the components (A) to (C) described in detail below. This sizing agent can be obtained by appropriately mixing each component.
  • Component (A) an ester of an epoxy compound having a plurality of epoxy groups in the molecule and an unsaturated monobasic acid, and a compound having at least one epoxy group in the molecule (A)
  • the component (A) contained in the carbon fiber sizing agent of the present invention needs to have at least one epoxy group in the molecule.
  • the epoxy group means a group having a ring skeleton having a three-membered ring composed of two carbon atoms and one carbon atom in its structure.
  • Compound (A) having at least one epoxy group in the molecule examples of the epoxy group contained in the component (A) contained in the carbon fiber sizing agent of the present invention include a group represented by the following formula (e1) and a group represented by the following formula (e2) (glycidyl group). And other cycloaliphatic epoxy groups. Examples of other cycloaliphatic epoxy groups include groups having a cyclic structure formed by the three-membered ring and a monocyclic or polycyclic aliphatic ring in the structure. For example, the following formula (e3 ) To (e5).
  • the epoxy compound having a plurality of epoxy groups in the molecule forming the ester is not particularly limited, and examples thereof include bisphenol epoxy compounds and bisphenols. Alkylene oxide addition epoxy compounds, hydrogenated bisphenols epoxy compounds, hydrogenated bisphenols alkylene oxide addition epoxy compounds, and the like. These bisphenols are not particularly limited, and examples thereof include bisphenol F type, bisphenol A type, and bisphenol S type. Epoxy resins such as phenol novolak type, cresol novolak type, diphenyl type, dicyclopentadiene type, naphthalene skeleton type other than epoxy compounds of bisphenols can also be used. Further, it may have a linear aliphatic skeleton.
  • the unsaturated monobasic acid forming the ester is not particularly limited as long as it is a compound having one unsaturated group and one carboxyl group. good.
  • the unsaturated group is not particularly limited, but is preferably a vinyl group or a propenyl group, more preferably a vinyl group, because it is not bulky and does not lower the rigidity of the main chain of the ester formed.
  • Particularly preferred is acrylic acid or methacrylic acid. That is, the component (A) is preferably an ester of the epoxy compound and acrylic acid or methacrylic acid.
  • the component (A) contained in the sizing agent for carbon fiber of the present invention is an ester obtained by reacting a compound having a plurality of epoxy groups with an unsaturated monobasic acid. In this reaction, a plurality of epoxy groups are contained. Of the epoxy groups of the compound having at least one, at least one epoxy group remains unreacted, and at least one epoxy group is ring-opened by an unsaturated monobasic acid to form a so-called half ester having an unsaturated group.
  • the component (A) includes an epoxy group derived from a compound having a plurality of epoxy groups in the molecule and an unsaturated group derived from an unsaturated monobasic acid (for example, CH 2 ⁇ CH—COO— derived from acrylic acid).
  • radical polymerization resins such as unsaturated polyester resins, vinyl ester resins, and acrylic resins can be strongly bonded to carbon fibers, and excellent interfacial adhesion can be exhibited.
  • the radical polymerization resin and the carbon fiber can be strongly bonded, and excellent interfacial adhesiveness can be expressed.
  • the compound having an epoxy group at both ends of the molecule one or both of a diepoxy compound of a bisphenol and an alkylene oxide-added diepoxy compound of a bisphenol are particularly preferable.
  • the component (A) is an ester of either one or both of a bisphenol diepoxy compound and a bisphenol alkylene oxide addition diepoxy compound and an unsaturated monobasic acid, and is one end of the molecular main chain. It is preferable that the compound has an unsaturated group at the other end and an epoxy group at the other end.
  • (A) component may be used individually by 1 type, and may use 2 or more types together.
  • the component (B) contained in the sizing agent for carbon fiber of the present invention has an effect of forming an interface phase excellent in flexibility at the interface between the matrix resin and the carbon fiber. Thereby, the interface adhesiveness between matrix resin and carbon fiber improves.
  • a radical polymerization resin such as a vinyl ester resin or an unsaturated polyester resin
  • many of these resins have low toughness, and soften the interface phase. The resulting increase in toughness dramatically improves interfacial adhesion.
  • the sizing agent component on the carbon fiber surface diffuses into the matrix resin, and the sizing agent component is concentrated at a high concentration especially in the matrix resin near the interface. A region included in is formed. This region affects the mechanical properties of the composite material.
  • component (B) component is an acrylate oligomer, when forming a fiber reinforced composite material, it will be integrated in the hardening reaction of a matrix resin, and integration of an interface phase and a matrix resin phase will be aimed at. Therefore, by including this component (B), the mechanical properties of the fiber reinforced composite material are at the same level as when the epoxy resin is used as the matrix resin even when the radical polymerization resin is used as the matrix resin. can do.
  • the component (B) contained in the sizing agent for carbon fiber of the present invention needs to have a tensile elongation of 40% or more of the cured product obtained by the following measurement method, which is effective in increasing the toughness of the interface phase. Since it is excellent, the tensile elongation is more preferably 45% or more, and more preferably 50% or more.
  • the upper limit of the tensile elongation rate (%) is preferably 900% or less, more preferably 700% or less in consideration of a significant reduction in the elastic modulus of the resin near the interface.
  • the component (B) contained in the carbon fiber sizing agent of the present invention needs to be bifunctional. If it is a tri- or higher functional type, the crosslink density becomes too high and sufficient toughness is not exhibited. On the other hand, in the monofunctional type, the crosslinking reaction with the matrix resin is only on one side, and a sufficient toughening effect cannot be obtained.
  • the viscosity at 60 ° C. is 5,000 mPa ⁇ s or more and the cured product has a tensile strength of 6 MPa or more.
  • a large viscosity indicates that the molecular weight of the oligomer is large or that the cohesive force between oligomer molecules is large.
  • the component (B) is unevenly distributed in the interface phase between the carbon fiber surface and the matrix resin without diffusing into the matrix resin, resulting in the effect of the interface phase. It is preferable because it can be made flexible.
  • cured material can be calculated
  • a mixture of 97 g of urethane acrylate oligomer (B) and 3 g of a curing agent (2-hydroxy-2-methyl-1-phenyl-propan-1-one) is applied on a glass plate to obtain a film having a thickness of 100 ⁇ m.
  • the coating is cured by irradiating with ultraviolet rays for 5 seconds from a position 10 cm away from the coating using an ozone type lamp (80 W / cm).
  • the tensile strength and the tensile elongation are measured at a tensile speed of 300 mm / min.
  • the viscosity of component (B) at 60 ° C. is more preferably 10,000 mPa ⁇ s or more, and further preferably 20,000 mPa ⁇ s or more.
  • the viscosity of component (B) can be measured with a B-type viscometer.
  • the glass transition temperature (Tg) of the cured product (B) contained in the carbon fiber sizing agent of the present invention is preferably ⁇ 5 ° C. or higher, more preferably 5 ° C. or higher. If the Tg of the cured product is ⁇ 5 ° C. or more, not only can the appropriate softening be achieved by the interfacial phase, but also the value of the stress leading to fracture increases, so that a stronger interfacial phase can be formed and the above effects are achieved. improves. That is, the interfacial phase has a function of supporting the reinforcing fiber, and it becomes easy to keep the mechanical properties of the composite material favorable by appropriately suppressing the softening. As an upper limit of Tg of hardened
  • the Tg of the cured product is a rate of 2 ° C./minute using a viscoelasticity measuring apparatus (manufactured by UBM, product name: Rheogel E4000) using a cured film obtained by the same method as the measurement of tensile elongation as a test piece.
  • the dynamic viscoelasticity and loss tangent of the test piece are measured, and the peak temperature (tan ⁇ MAX) of the loss tangent can be obtained.
  • the “urethane acrylate oligomer” is a compound having a urethane bond and an acryloyl group (CH 2 ⁇ CH—CO—) in the molecule.
  • the structure of the urethane acrylate oligomer can be broadly classified into an aromatic type having an aromatic group in the structure and an aliphatic type having no aromatic group.
  • the structure of the urethane acrylate oligomer used in the present invention is not particularly limited, and may be aromatic or aliphatic. Since the balance between the tensile elongation percentage and the tensile strength of the cured product is good, an aliphatic system is preferable.
  • component (B) contained in the carbon fiber sizing agent of the present invention commercially available urethane acrylate oligomers may be used.
  • urethane acrylate oligomers include CN-965, CN-981 manufactured by Sartomer, CN-9178, CN-9788, CN-9893, CN-971, CN-973, CN-9882, UF-8001 made by Kyoeisha Chemical, UA-122P made by Shin-Nakamura Chemical Co., Ltd. Name).
  • (B) component may be used individually by 1 type, and may use 2 or more types together.
  • the content of the component (B) is less than 1/3 of the content of the component (A)
  • the interfacial phase is not sufficiently softened and toughened.
  • the content exceeds 2/1, (A )
  • the good adhesion expression effect that is a function of the component is inhibited, and the effect of improving the adhesion of the carbon fiber to the matrix resin cannot be sufficiently obtained.
  • the ratio of the total amount of the component (A) and the component (B) in the total sizing component is 20% by mass or more. If it is less than 20% by mass, the functions of these two components are not sufficiently exhibited, and the effects of the present invention cannot be obtained.
  • the “total sizing component” is the total amount of all components applied to the carbon fiber after the sizing treatment among the components contained in the sizing agent, and is removed after sizing, such as water or an organic solvent. Represents an active ingredient not included. That is, the “total sizing component” includes the components (A) and (B) described above, the component (C) described later, the components (D) and (E) described later as optional components, and other components. It can be obtained as a total amount.
  • the ratio of the total amount of the component (A) and the component (B) is preferably 25% by mass or more, more preferably 30% by mass or more in all sizing components.
  • the carbon fiber sizing agent of the present invention comprises the component (C) as an essential component.
  • Component (C) is a polyurethane resin, which facilitates fixing the shape of the carbon fiber bundle. Since the shape of the carbon fiber bundle is fixed and it is easy to maintain the straight-line holding property, it becomes easy to optimize the resin pickup in the resin impregnation process in the pultrusion molding and the filament winding molding, and the resin is impregnated.
  • the component (C) has an effect of forming a flexible and tough interface phase at the interface between the matrix resin and the carbon fiber, similarly to the component (B) described above.
  • the component (C) one type may be used alone, or two or more types may be used in combination.
  • the component (C) contained in the carbon fiber sizing agent of the present invention needs to have a dry elongation of 350% or more and 900% or less. If the tensile elongation of the dry film is within this range, the effect of fixing the shape of the carbon fiber bundle described above and maintaining the straight-running retention can be sufficiently obtained, and the interface between the matrix resin and the carbon fiber can be obtained. A tough interfacial phase can be formed.
  • the component (C) preferably has a dry elongation of 420% or more and 750% or less, and more preferably 450% or more and 650% or less.
  • the component (C) contained in the carbon fiber sizing agent of the present invention preferably has a dry film tensile strength of 10 MPa to 50 MPa. If it is 10 MPa or more, it is easy to obtain the effect of fixing the shape of the above-described carbon fiber bundle and maintaining the straight advanceability, and it is easy to form a tough interface phase at the interface between the matrix resin and the carbon fiber. On the other hand, if it is 50 MPa or less, the sizing agent hardly adheres to the surface of the carbon fiber, and good process passability is easily obtained in the winding process and molding process of the carbon fiber after the sizing treatment.
  • the tensile strength of the dry film (C) is more preferably 15 MPa or more and 40 MPa or less, and further preferably 20 MPa or more and 35 MPa or less.
  • the tensile elongation rate of a dry film can be calculated
  • Polyurethane resin was applied on a glass plate, and the film was prepared under conditions of preliminary drying at room temperature for 15 hours and main drying at 80 ° C. for 6 hours, followed by heat treatment at 120 ° C. for 20 minutes, with a thickness of 500 ⁇ m. A film is obtained, and tensile strength and tensile elongation are measured at a pulling speed of 300 mm / min according to JIS K7127.
  • the component (C) contained in the carbon fiber sizing agent of the present invention preferably has a glass transition temperature (Tg) of ⁇ 50 ° C. or more and 35 ° C. or less. If it is ⁇ 50 ° C. or higher, the above-described effect of fixing the shape of the carbon fiber bundle can be easily obtained, and a tough interface phase can be easily formed at the interface between the matrix resin and the carbon fiber. On the other hand, if it is 35 degrees C or less, the adhesion spot of a sizing agent will not produce easily on the carbon fiber surface, and it will become easy to obtain favorable process permeability in the winding process of carbon fiber after a sizing process, and a shaping
  • Tg glass transition temperature
  • the Tg of the dry film of component (C) is preferably from ⁇ 35 ° C. to 30 ° C., more preferably from ⁇ 20 ° C. to 20 ° C.
  • Tg of (C) component can be measured with a dynamic viscoelasticity measuring apparatus.
  • the proportion of the component (C) in all sizing components is 5% by mass or more and 50% by mass or less. If it is 5 mass% or more, the effect which fixes the shape of the carbon fiber bundle mentioned above will be easy to be acquired. If it is 50 mass% or less, the shape fixation of the carbon fiber bundle by the component (C) is likely to be good, and good handling properties and impregnation properties of the matrix resin are easily obtained.
  • the proportion of the component (C) in the total sizing component is preferably 10% by mass or more and 45% by mass or less, more preferably 15% by mass or more and 40% by mass or less.
  • Component E Ester compound (E) which is an ester of an alkylene oxide adduct of bisphenols and a dicarboxylic acid compound and has an acid value of 50 or more
  • the sizing agent for carbon fiber of the present invention preferably further contains a component (E) in addition to the components (A), (B) and (C) described above.
  • the ester (acid value of 50 or more) of an alkylene oxide adduct of bisphenols and a dicarboxylic acid compound that can be added to the sizing agent for carbon fibers of the present invention has a molecular weight of about 1000 and a carboxyl group at one end of the molecule. It is preferable to use a compound having a main component.
  • a component (E) exhibits excellent compatibility with matrix resins, particularly epoxy resins and vinyl ester resins. Therefore, the wettability of the sized carbon fiber to the resin is improved, and the resin impregnation property is further improved.
  • alkylene oxide adduct of bisphenols that forms the component (E) that can be added to the sizing agent for carbon fiber of the present invention
  • 2 to 4 mol of ethylene oxide or propylene oxide is added to 1 mol of bisphenols. It is preferable that When the addition amount of ethylene oxide or propylene oxide to 1 mol of bisphenols is 4 mol or less, it is easy to improve the affinity with the matrix resin without impairing the rigidity of the molecular chain inherent to bisphenols. . More preferably, bisphenols are added with 2 mol of ethylene oxide or propylene oxide.
  • the alkylene oxide adducts of bisphenols may be used alone or as a mixture of a plurality of compounds.
  • the “dicarboxylic acid compound” that forms an ester with an alkylene oxide adduct of bisphenols is preferably an aliphatic compound having 4 to 6 carbon atoms.
  • an aromatic compound is used as the dicarboxylic acid compound, the resulting ester compound has a relatively high melting point and tends to be relatively poor in solubility with the matrix resin. Therefore, an aliphatic compound is more preferable than an aromatic compound from the viewpoint of expressing good wettability.
  • an aliphatic compound having 6 or less carbon atoms is used as the dicarboxylic acid compound, it is easy to improve the affinity with the matrix resin without impairing the rigidity of the resulting ester compound.
  • dicarboxylic acid compound examples include fumaric acid, maleic acid, methyl fumaric acid, methyl maleic acid, ethyl fumaric acid, ethyl maleic acid, glutaconic acid, itaconic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, and adipic acid. It is done.
  • the component (E) that can be added to the carbon fiber sizing agent of the present invention may be used alone or in combination of two or more.
  • content of (E) component is 2.0 mass times or less with respect to the sum total of (A) component and (B) component.
  • this ratio is 2 times or less, the interaction between the (A) component and the carbon fiber surface is caused by the interaction between the epoxy group of the (A) component and the acidic group (carboxy group, etc.) of the (E) component. It is possible to easily prevent the action from being hindered. As a result, the coupling function between the carbon fiber and the matrix resin of the component (A) is easily exhibited, and it is easy to improve the adhesion.
  • This ratio is more preferably 1.75 or less, and most preferably 1.55 or less.
  • the lower limit value of this ratio is not particularly limited, but is preferably 0.2 or more in order to exert the effect of the component (E) that improves the wettability and resin impregnation property of the sized carbon fiber to the resin. 0.4 or more is more preferable.
  • the sizing agent of the present invention preferably further contains a component (D).
  • the component (D) contained in the carbon fiber sizing agent of the present invention includes the components (A), (B) and (C), the optional component (E), and other components in water. It is used to disperse.
  • a component may be used individually by 1 type and may use 2 or more types together.
  • Examples of the component (D) contained in the carbon fiber sizing agent of the present invention include nonionic surfactants and anionic surfactants.
  • a surfactant such as an aliphatic nonion and a phenol nonionic can be used.
  • Aliphatic nonionic surfactants include higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid esters ethylene oxide adducts, glycerol fatty acid esters, sorbitol and sorbitan fatty acid esters, and pentaerythritol fatty acid esters.
  • Etc examples of the phenol-based nonionic surfactant include alkylphenol-based nonions and polycyclic phenol-based nonions.
  • ethylene oxide adduct a type in which a propylene oxide unit is provided in a part of the polyethylene oxide chain in a random or block form is preferable.
  • fatty acid ethylene oxide adduct or polyhydric alcohol fatty acid ester ethylene oxide adduct nonionic surfactants such as monoester type, diester type, triester type, and tetraester type can be used.
  • an anionic surfactant (D-1) component having an ammonium ion as a counter ion, and a nonionic surfactant (D-2) component described later are preferably contained simultaneously.
  • the anionic surfactant (D-1) component having an ammonium ion as a counter ion has a hydrophobic group and an ammonium ion as a counter ion, so that the carbon fiber sizing agent of the present invention is used as an aqueous dispersion.
  • the component (D-2) has the effect of suppressing the reaction activity between the ammonium ion of the component (D-1) and the epoxy group of the component (A). Therefore, by containing appropriate amounts of the components (D-1) and (D-2) (contents will be described in detail later), the impregnation properties of various matrix resins are further improved and treated with a sizing agent.
  • the change with time of the hardness of the carbon fiber formed can be made extremely small.
  • the component (D-1) is not particularly limited, and examples thereof include carboxylate, sulfate ester salt, sulfonate salt, and phosphate ester salt. Among these, sulfate ester salts and sulfonates are more preferable because they are particularly excellent in the ability to emulsify the component (A) and the component (B).
  • sulfate ester salt examples include higher alcohol sulfate ester salt, higher alkyl polyethylene glycol ether sulfate ester salt, alkylbenzene polyethylene glycol ether sulfate ester salt, polycyclic phenyl ether polyethylene glycol ether sulfate ester salt, and sulfated fatty acid ester salt.
  • propylene oxide units are randomly or block-containing in part of the polyethylene oxide chain in the higher alkyl polyethylene glycol ether sulfate, alkylbenzene polyethylene glycol ether sulfate, and polycyclic phenyl ether polyethylene glycol ether sulfate. Can also be used.
  • sulfonate examples include alkylbenzene sulfonate, alkyl naphthalene sulfonate, polycyclic phenyl ether sulfonate, alkyl sulfonate, ⁇ -olefin sulfonate, ⁇ -sulfonated fatty acid salt, dialkyl sulfosuccinate, and the like. Is mentioned.
  • an anionic surfactant having a hydrophobic group represented by the following formula (1) or (2) is more preferably used as the component (D-1).
  • the anionic surfactant having a hydrophobic group represented by the formula (1) or (2) is a relatively long alkyl such as nonylphenol or octylphenol from the viewpoint of preventing the diffusion of the exogenous endocrine disrupting substance derivative. It is also preferable because it has been desired to avoid the use of an anionic surfactant having a phenol group having a group.
  • R 1 is a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, Alternatively, a methyl group is more preferable, and a hydrogen atom is more preferable from the viewpoint of an exogenous endocrine disrupting substance derivative.
  • R 2 and R 3 are a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 3 carbon atoms, and may be the same or different. As the chain hydrocarbon group for R 2 and R 3, the same chain hydrocarbon group as for R 1 can be used.
  • R 4 is a divalent aliphatic hydrocarbon group such as a linear or branched alkylene group having 1 to 10 carbon atoms.
  • m represents a positive integer, preferably an integer of 1 to 3, and more preferably 1 or 2. If m is 3 or less, the hydrophobic group itself can be easily prevented from becoming a bulky structure, and the affinity and compatibility with the (A) component, the (B) component, and the matrix resin can be improved. Is easy. As a result, it is easy to improve the stability of emulsification, the resin impregnation property, and the mechanical properties of the fiber-reinforced composite material.
  • a group in parentheses with a subscript m is a benzyl group (a group in which both R 2 and R 3 are hydrogen atoms) or a styrene group (R 2 and R 2 ) from the viewpoint of the bulkiness of the hydrophobic group molecule. It is preferable that one of 3 is a hydrogen atom and the other is a methyl group. Moreover, when m is 2 or more, that is, when there are a plurality of groups in parentheses with a subscript m, these groups may be the same or different.
  • nonionic surfactant examples include “New Coal 707”, “New Coal 723”, “New Coal 707-F” manufactured by Nippon Emulsifier Co., Ltd., and the like.
  • anionic surfactant (component (D-1)) examples include “New Coal 707-SF” and “New Coal 723-SF” manufactured by Nippon Emulsifier Co., Ltd., and “Hitenol manufactured by Daiichi Kogyo Seiyaku Co., Ltd. NF-13 "," Hitenol NF-17 ", etc. (all are product names).
  • the component (D-2) is not particularly limited, but an aliphatic nonionic surfactant is particularly preferable because the reaction activity reducing action is extremely excellent.
  • Aliphatic nonionic surfactants include higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid esters ethylene oxide adducts, glycerol fatty acid esters, sorbitol and sorbitan fatty acid esters, and pentaerythritol fatty acid esters. Etc. In these ethylene oxide adducts, a type in which propylene oxide units are randomly or block-containing in a part of the polyethylene oxide chain is also preferably used.
  • fatty acid ethylene oxide adducts As higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid ester ethylene oxide adducts, those containing propylene oxide units randomly or in blocks in part of these polyethylene oxide chains are more preferred. . This is because these are excellent in the ability to reduce the reaction activity of ammonium ions on epoxy groups.
  • fatty acid ethylene oxide adduct and polyhydric alcohol fatty acid ester ethylene oxide adduct monoester type, diester type, triester, tetraester type and the like can be used.
  • component (D-2) a commercially available product can be used, and examples thereof include “Fine Surf FON180E06 (product name)” manufactured by Aoki Yushi Co., Ltd.
  • the content of the component (D) can be appropriately determined in consideration of the stability of the aqueous dispersion in which the sizing agent is dispersed in water and the sizing effect of the sizing agent. -30% by mass is preferable, and 10-25% by mass is more preferable. If the surfactant content is 5% by mass or more, it is easy to improve the stability of the aqueous dispersion in which the sizing agent is dispersed in water, and if it is 30% by mass or less, the effect of the sizing agent is achieved. Is easy to express.
  • the ratio (mass ratio) of the content of the component (D-1) and the component (D-2) is The component (D-2) / the component (D-1) is preferably in the range of 1/10 to 1/5. When this ratio is within this range, the reaction activity of the ammonium ion derived from the component (D) with respect to the epoxy group of the component (A) can be easily suppressed, and the change with time of the hardness of the carbon fiber to which the sizing agent is attached is remarkably increased. This is preferable because the emulsification stability when the sizing agent is emulsified using water or the like as a medium and the wettability of the sized sizing carbon fiber surface to the resin is improved.
  • the sizing agent of the present invention when the component (D-1) and the component (D-2) are contained, the component (D-1) and the component (D-2) occupying in all the sizing components
  • the ratio of the total amount is preferably 10 to 25% by mass.
  • the emulsion stability of the sizing agent solution is very good, and it is easy to exert the effect of the sizing agent.
  • the more preferable lower limit of the total amount of the component (D-1) and the component (D-2) is 13% by mass, and the more preferable upper limit is 20% by mass.
  • the aqueous dispersion of the sizing agent for carbon fibers of the present invention can be obtained as an aqueous dispersion of one sizing agent for carbon fibers by mixing and stirring (emulsification, water dispersion) each component by a conventional method. Or what was processed separately and became a plurality of kinds of water dispersions can be mixed, and one water dispersion can also be obtained.
  • the concentration of components other than the sizing agent concentration (non-volatile component concentration) in the aqueous dispersion of the sizing agent for carbon fiber of the present invention that is, volatile components (water removed by drying after sizing, etc.) in the aqueous dispersion for sizing.
  • concentration of components other than the sizing agent concentration (non-volatile component concentration) in the aqueous dispersion of the sizing agent for carbon fiber of the present invention that is, volatile components (water removed by drying after sizing, etc.) in the aqueous dispersion for sizing.
  • the average particle diameter of the dispersed particles in the aqueous dispersion of the sizing agent for carbon fiber of the present invention is preferably 0.3 ⁇ m or less. If it is 0.3 micrometer or less, the storage stability of the aqueous dispersion of the sizing agent for carbon fibers and the temporal stability of the aqueous dispersion of the sizing agent for carbon fibers can be easily secured. Furthermore, since it is possible to easily prevent the occurrence of sizing agent adhesion spots on the surface of the carbon fiber and to easily maintain the scuff resistance of the carbon fiber, the winding process of the carbon fiber after the sizing treatment, Fluff generation in the molding process can be easily prevented, which is preferable.
  • the average particle diameter is measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
  • the sizing agent may be dispersed in a solvent.
  • the volume-based average particle diameter of the polyurethane resin dispersed particles is preferably 0.2 ⁇ m or less. If the volume-based average particle size of the dispersed particles of the polyurethane resin is 0.2 ⁇ m or less, it is possible to easily prevent the sizing agent from adhering to the surface of the carbon fiber, and to maintain good scuff resistance of the carbon fiber. Therefore, it is possible to easily prevent the occurrence of fuzz in the winding process and molding process of the carbon fiber after the sizing treatment, which is preferable. In addition, there is no restriction
  • polyurethane resin used in the aqueous dispersion of the polyurethane (C) component many products are commercially available from various companies in which an urethane resin is an aqueous dispersion. As described above, the tensile elongation of the dry film is 350% or more. A polyurethane resin that is 900% or less is dispersed in water, and the polyurethane resin particles in the aqueous dispersion having a volume-based average particle diameter of 0.2 ⁇ m or less can be selected.
  • Examples include “Yukot UWS-145” from Sanyo Chemical Industries, Ltd., “KP-2820” from Matsumoto Yushi Seiyaku Co., Ltd., “Superflex 150HS”, “Superflex 470” from Daiichi Kogyo Seiyaku Co., Ltd. Both are product names).
  • An example of a polyurethane aqueous dispersion having a dry film tensile elongation within the above range is “Permarin UA-368” (product name) manufactured by Sanyo Chemical Industries, Ltd.
  • the carbon fiber bundle that can be suitably used for the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached may be obtained from any raw material such as pitch, rayon or polyacrylonitrile, and has high strength. Any of a type (low elastic modulus carbon fiber), medium high elasticity carbon fiber, or ultra high elasticity carbon fiber may be sufficient.
  • the carbon fiber sizing agent is attached by, for example, a method of attaching a dispersion of the sizing agent to the carbon fiber by a roller dipping method or a roller contact method, and a method of spraying the carbon fiber bundle directly by spraying. However, the roller dipping method is preferable in terms of productivity and uniform adhesion.
  • the adhesion amount of the sizing agent in the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is adhered is preferably 0.6% by mass or more and 3.0% by mass or less with respect to the total mass of the carbon fiber and the sizing agent. 1.0 mass% or more and 2.4 mass% or less is more preferable.
  • the adhesion amount of the sizing agent is 0.6% by mass or more, it becomes easy to cover the entire carbon fiber surface with the sizing agent.
  • the sizing-treated carbon fiber and the matrix resin are mixed when producing the carbon fiber reinforced composite material, the above-described functions such as flexibility and toughness due to the interface resin layer can be fully exhibited. .
  • the adhesion amount of the sizing agent is 3.0% by mass or less, the handling property of the sizing treatment carbon fiber and the impregnation of the matrix resin as a result of the sizing treatment carbon fiber being hardened by depositing a large amount of the sizing agent on the carbon fiber surface. It is possible to easily suppress the deterioration of the property.
  • the amount of sizing agent attached is within the above range, in the carbon fiber reinforced composite material, a failure occurs in the transmission of stress transmitted from the matrix resin to the sizing carbon fiber through the interface resin layer, resulting in a decrease in mechanical properties. Can be suppressed.
  • the carbon fiber will have excellent bundling properties and scratch resistance, as well as sufficient wettability to the matrix resin and interfacial adhesion to the matrix resin. And the resulting carbon fiber reinforced composite material is provided with good mechanical properties.
  • the convergence of the carbon fiber bundle varies depending on the number of filaments, fiber diameter, surface wrinkles, etc. of the carbon fiber to be sized.
  • the adhesion amount of the sizing agent can be adjusted by adjusting the sizing agent concentration of the sizing agent aqueous dispersion in the sizing process or adjusting the squeezing amount.
  • the carbon fiber bundle to which the sizing agent for carbon fiber is attached is weighed (W1), and left in a muffle furnace (FP410 manufactured by Yamato Scientific Co., Ltd.) set at a temperature of 450 ° C. in a nitrogen stream of 50 liters / minute for 15 minutes.
  • the sizing agent attached to the carbon fiber bundle is completely pyrolyzed.
  • the cantilever value at 25 ° C. of the carbon fiber bundle to which the sizing agent for carbon fiber is attached is preferably 200 mm or more and 400 mm or less.
  • the cantilever value at 25 ° C. is 200 mm or more and 400 mm or less, the woven fabric is less likely to lose its shape even in various molding processing environments using the unidirectional reinforced fabric made of the carbon fiber bundle. Regardless of the working environment when creating the carbon fiber reinforced resin composition obtained by impregnating the resin, the straightness of the carbon fiber is easily maintained, and the molded product obtained from the carbon fiber reinforced resin composition (carbon fiber reinforced The mechanical properties of the resin composite material) exhibit good mechanical properties.
  • the cantilever value at 25 ° C. is preferably 220 mm or more and 380 mm or less, and more preferably 240 mm or more and 360 mm or less.
  • the cantilever value at 25 ° C. of the carbon fiber bundle to which the sizing agent for carbon fiber in the present invention is adhered is measured by the following method.
  • Test 2 Measurement is performed in an air atmosphere at 25 ° C.
  • the test carbon fiber bundle is placed on the horizontal plane of a measuring table having a horizontal plane and a slope having an inclination angle of 45 degrees inclined downward from one end (linear shape) of the horizontal plane.
  • the end portion (linear shape) of the fiber bundle is aligned with the boundary line A between the slope and the horizontal plane.
  • a pressing plate is placed on the test carbon fiber bundle, and the end (straight line) of the pressing plate is aligned with the boundary line A.
  • the average value of the numerical value x and the numerical value y is defined as a cantilever value of one carbon fiber bundle, and the simple average value obtained by measuring the number of measurements in steps 2 to 5 is 10 times as the cantilever value.
  • the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached is less prone to fluff due to mechanical friction and the like due to the sizing agent, and also has good resin impregnation and adhesiveness. Excellent.
  • the sizing agent contains the component (B) and the component (C) together with the component (A)
  • the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is adhered and the matrix resin are combined to form a carbon fiber.
  • the mechanical properties of a molded product (fiber reinforced composite material) obtained using the carbon fiber reinforced resin composition exhibit good mechanical properties.
  • the sizing agent contains the component (E), it exhibits excellent compatibility with the matrix resin. Therefore, the wettability of the sized carbon fiber to the resin is improved, and the resin impregnation property is further improved.
  • the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached has excellent processability such as weaving and can be suitably processed into a woven fabric and a sheet-like material of a unidirectionally arranged sheet. Particularly in weaving, carbon fibers are usually prone to fluff due to rubbing, but the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached can remarkably suppress fuzz by the sizing agent. It is also suitable for direct molding such as pultrusion molding and filament winding molding.
  • the sheet-like material including the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached is characterized by using the carbon fiber bundle treated with the above-described sizing agent, and is woven, unidirectionally arranged A combination of these, such as a sheet, a non-woven fabric, and a mat, can be used.
  • the sheet-like material may be composed of a carbon fiber bundle to which the carbon fiber sizing agent is attached, or may include other elements.
  • Examples of the sheet-like material of the present invention include those in which a carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached is aligned in one direction.
  • the sheet-like material is simply arranged at regular intervals in one direction, or further wefts are arranged in the width direction of the sheet-like material, or heat-fusible fibers are used as the wefts.
  • the sheet-like material formed by arranging the carbon fiber bundles to which the sizing agent for carbon fiber of the present invention is attached in one direction is at least (a) a carbon fiber sheet-like material aligned in one direction.
  • heat-sealable fibers are arranged at predetermined intervals in a direction perpendicular to the carbon fibers and heat-sealed (hereinafter referred to as sheet-like material a), or (b) aligned in one direction.
  • a fusion-bonded fiber cloth such as a net-like support or a web-like support made of a thermoplastic resin or coated with a thermoplastic resin is heat-sealed on at least one surface of a carbon fiber sheet (hereinafter referred to as “a carbon fiber sheet”). And sheet-like material b).
  • the sheet-like material a is formed by aligning the carbon fiber bundles in one direction into a sheet shape, arranging heat-fusible fibers in the width direction of the reinforcing fibers (carbon fibers), heating, and heat-sealing with the carbon fibers. Manufactured by.
  • the interval at which the heat-fusible fibers are arranged is preferably 3 mm or more and 150 mm or less, more preferably 3 mm or more and 15 mm or less. If the spacing is 3 mm or more, the handleability of the sheet-like material is good, the restraint of the carbon fiber is suitable, and it is easy to improve the resin impregnation property, and 150 mm or less. In this case, it is easy to improve the handleability as a sheet.
  • the sheet-like material b is a net-like shape in which carbon fiber bundles are aligned in one direction to form a sheet, and at least one surface thereof is melted at room temperature or higher and exhibits adhesiveness or a thermoplastic resin or a thermoplastic resin. It is manufactured by heat-sealing a heat-fusible fiber cloth such as a support or a web-like support.
  • the opening of the net of the net-like support is preferably wide from the viewpoint of resin impregnation, and the opening of the polygon is preferably 1 mm or more and the opening area is 10 mm 2 or more. More preferably, one side is 2.5 mm or more and the opening area is 15 mm 2 or more.
  • the opening is small, and that one side is 20 mm or less and the opening area is 500 mm 2 or less.
  • the web-like support is a sheet-like material in which short fibers or long fibers are intertwined.
  • the basis weight of the net-like or web-like support is preferably 20 g / m 2 or less from the viewpoint of the mechanical properties of the resulting molded product, particularly the interlaminar shear strength retention and the resin impregnation property of the sheet-like product.
  • the sheet-like product composed of the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached may be a woven fabric using the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached as a woven yarn.
  • the fabric can also be used for reinforcing sheet materials such as bridges, piers, and building columns.
  • the woven structure of the woven fabric is not particularly limited, and other than the plain weave, twill weave and satin weave, these original structures may be changed.
  • both the weft and the warp may be a carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached, or a mixed weave with other carbon fibers (bundles) or fibers (bundles) other than carbon fibers.
  • fibers other than carbon fibers include inorganic fibers such as glass fibers, Tyranno fibers, and SiC fibers, and organic fibers such as aramid, polyester, polypropylene, polyamide, acrylic, polyimide, and vinylon.
  • fibers having a tensile modulus lower than that of the warp as the weft because the warp is less likely to meander in the longitudinal direction and sufficient strength can be obtained when a woven fabric is used as the reinforcing sheet.
  • the fiber other than the carbon fiber may be a composite fiber composed of two or more kinds.
  • a composite system composed of two kinds of fibers having a melting point difference of 50 ° C. or more is particularly excellent.
  • the high melting point fiber functions as an original weft, while the low melting point fiber integrates the warp and the weft after weaving to give excellent handling properties.
  • fibers other than carbon fibers preferably have narrow latitude lines, and preferably have a mass per meter of 0.1 g or less.
  • the weft spacing is preferably 3 to 15 mm. When the interval is 3 mm or more, it is easy to suppress meandering in the longitudinal direction of the warp, and good strength development can be easily obtained. On the other hand, when the interval is 15 mm or less, it is easy to improve the handleability as a sheet-like material.
  • a more preferable interval between the latitude lines is 4 mm or more and 10 mm or less.
  • Carbon fiber reinforced resin composition composite material including sheet
  • the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached and the sheet-like material of the present invention are combined with a matrix resin, and are unidirectional prepreg, cross prepreg, tow prep, short fiber reinforced resin impregnated sheet, and short fiber mat reinforced.
  • the carbon fiber reinforced resin composition can be configured in the form of a resin-impregnated sheet or the like.
  • the matrix resin is not particularly limited, and examples thereof include epoxy resins, radical polymerization resins such as acrylic resins, vinyl ester resins, unsaturated polyester resins, thermoplastic acrylic resins, and phenol resins. .
  • the carbon fiber reinforced resin composition can be produced by impregnating the above matrix resin into a carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached or a sheet-like material of the present invention.
  • a conventional method can be employed as a method for producing such a carbon fiber reinforced resin composition. Examples thereof include a method such as a hot melt method, a solvent method, a syrup method, or a thickening resin method used for a sheet mold compound (SMC).
  • the carbon fiber reinforced resin composition using the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is adhered or the sheet-like material of the present invention is used as a matrix resin because the sizing treated carbon fiber is used as a reinforcing material.
  • excellent in impregnation with radical polymerization resins such as epoxy resin, acrylic resin, unsaturated polyester resin, vinyl ester resin, and phenol resin, and strong interfacial adhesion between carbon fiber and matrix resin. It may be characteristic.
  • the pultruded composite material using the carbon fiber bundle to which the sizing agent for carbon fiber of the present invention is attached can be used as either a rod-shaped material or a plate-shaped material.
  • the rod-shaped material can be manufactured by impregnating a carbon fiber bundle with a matrix resin, molding the carbon fiber bundle with a die or a mold, and then heat-curing the carbon fiber bundle.
  • the plate-like material can also be produced by impregnating a carbon fiber bundle with a matrix resin, forming it with a mold, and curing it by heating.
  • the matrix resin is not particularly limited, and examples thereof include epoxy resins, radical polymerization resins such as acrylic resins, vinyl ester resins, unsaturated polyester resins, thermoplastic acrylic resins, and phenol resins. .
  • the composite material including a pultruded composite material or a sheet-like material includes a thermosetting matrix resin.
  • the tensile strength of a pultruded composite material is 5000 MPa or more and 6000 MPa or less.
  • the average particle size of the aqueous dispersion of the carbon fiber sizing agent was measured by a concentrated particle size analyzer (product name: FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.).
  • the surface state of the carbon fiber to which the sizing agent for carbon fiber of the present invention was attached was measured at an acceleration voltage of 5 kV and a magnification of 2500 times using a scanning electron microscope (manufactured by JEOL Ltd., product name: JEOL JSM-6390). Observed. The case where the adhesion spot of the sizing agent was not observed was evaluated as ⁇ , and the case where the adhesion spot of the sizing agent was observed was evaluated as ⁇ .
  • the carbon fiber bundles to which the sizing agent of the present invention is attached are aligned in one direction using a face plate and a comb at a spacing of 2.5 mm and a width of 300 mm, and both surfaces have glass fibers (tensile elastic modulus 72.5 GPa) and a low melting point.
  • Nylon fiber (multifilament, melting point 125 ° C.) entangled yarn (0.03 g / m) is arranged at 25 mm intervals per side (sheets are arranged at 12.5 mm intervals and parallels are alternately arranged on both surfaces)
  • the sheet was unidirectionally formed by heat fusion at 180 ° C. by pressing.
  • the width (direction perpendicular to the fiber axis direction of the carbon fiber bundle) is about 2.5 cm (so that six carbon fiber bundles to which the sizing agent is attached) are long.
  • the length (fiber axis direction) is about 15 cm, except that five pieces are collected and used as test pieces.
  • the unidirectional sheet shape is in accordance with the stiffness test method A (45 ° cantilever method) described in JIS L1096.
  • the bending resistance of the object was measured. Note that the measurement in the lateral direction of the sample as described in the pliability test method A (45 ° cantilever method) described in JIS L1096 is not performed.
  • the unidirectional sheet-like material is impregnated with a mixture of an epoxy resin (manufactured by Konishi Co., Ltd., product name: E2500S) and a main agent in a ratio of 100 parts by weight of the main agent and 50 parts by weight of the hardener. Was cured in a stationary state for 7 days to obtain a unidirectional sheet-like composite.
  • an epoxy resin manufactured by Konishi Co., Ltd., product name: E2500S
  • the fiber volume content Vf of the unidirectional sheet-like composite is expressed by the following formula:
  • the weft (5 / inch (2.54 cm)) and the warp (5 / inch (2.54 cm)) have a carbon fiber basis weight of 315 g / m 2 .
  • a plain weave cloth was woven.
  • the fiber volume content Vf of the woven fabric composite material can be calculated by the same method as that for the unidirectional sheet composite material described above.
  • the woven fabric composite was subjected to a bending test in accordance with ASTM-D-790, which is a general evaluation method for mechanical properties of a laminated board, to obtain a bending strength.
  • ASTM-D-790 is a general evaluation method for mechanical properties of a laminated board, to obtain a bending strength.
  • ASTM-D-790 is a general evaluation method for mechanical properties of a laminated board.
  • the evaluation of the woven laminate was carried out so that a film was placed between the indenter and the sample of the test piece so as not to break due to stress concentration.
  • Example 1 (1. Preparation of sizing agent) A sizing agent was prepared by phase inversion emulsification using a mixer (manufactured by Tokushu Kika Kogyo Co., Ltd., product name: Hibis Disper Mix, homomixer specification: Model 3D-5).
  • the component (C) in the state of an aqueous dispersion shown in the column of Example 1 in Table 1 (details of each component are shown in Table 4) are dried at 120 ° C. for 2 hours, What removed the water
  • Components other than the component (D) in the types and blending amounts shown in the column of Example 1 in Table 1 were kneaded and mixed at 120 ° C. with a planetary mixer and a homomixer. Thereafter, the temperature was raised to 90 ° C. while kneading, and then an aqueous solution of component (D) was added little by little. During this process, the viscosity of the contents gradually increased. After all the aqueous solution of component (D) was added, the temperature was set to 60 ° C. while kneading for 10 minutes. Next, deionized water was dropped little by little and after passing through the phase inversion point, the amount of water dropped was increased.
  • a sizing agent aqueous dispersion having a sizing agent concentration of about 40% by mass was obtained.
  • Tables 1 to 3 the composition of the sizing agent is shown in parts by mass. However, for the components obtained in the form of an aqueous dispersion or an aqueous solution, the parts by mass excluding water are shown.
  • the carbon fiber to which the sizing agent for carbon fiber was attached was produced by the following procedure.
  • a carbon fiber bundle (manufactured by Mitsubishi Rayon Co., Ltd., product name: Pyrofil TR50S) filled with an aqueous dispersion of the above sizing agent in an immersion tank having an immersion roller inside and not provided with the sizing agent in the aqueous dispersion. 12,000 filaments, strand strength 5,000 MPa, strand elastic modulus 242 GPa, fiber density 1.81 g / cm 3 ).
  • the carbon fiber bundle to which the sizing agent adhered was obtained by drying with hot air.
  • the carbon fiber bundle was wound around a bobbin.
  • the room temperature curable epoxy resin EP1 is a mixture of an epoxy resin (manufactured by Konishi, product name: E2500S) and a curing agent in a ratio of 100 parts by mass of the main agent and 50 parts by mass of the curing agent.
  • the fiber volume content Vf of the woven fabric composite material was calculated by the same method as that for the unidirectional sheet composite material described above.
  • Example 2 Except having shown the component in the column of Example 2 of Table 1, the aqueous dispersion of a sizing agent was prepared by the method similar to Example 1, and the sizing process of carbon fiber using this was prepared. The carbon fiber bundle to which the sizing agent was adhered was obtained, and a sheet-like product and a woven fabric were prepared and evaluated.
  • (C) component what was obtained in the state of the water dispersion was used after drying similarly to Example 1. The results are shown in Table 1.
  • Examples 3 to 17 In each example, the water-dispersed polyurethane resin was used as component (C). That is, the sizing agent was dispersed in water in the same manner as in Example 1 using components other than the component (C) among the compositions of the sizing agents shown in the columns of Examples 3 to 17 in Table 1 or Table 2. After preparing the liquid, the water dispersion of the polyurethane resin as the component (C) was mixed with the water dispersion of the sizing agent not containing the component (C) to obtain a water dispersion of the sizing agent. Other than that was carried out similarly to Example 1, the carbon fiber sizing process was performed, the carbon fiber bundle which the sizing agent adhered was obtained, and the sheet-like material and woven fabric which used this were produced and evaluated. The results are shown in Table 1 or Table 2.
  • Example 18 The sizing treatment of the carbon fiber was performed using the aqueous dispersion of the sizing agent obtained in Example 3, and the adhesion amount of the sizing agent was set to 1.6% by mass. Other than that was carried out similarly to Example 1, obtained the carbon fiber bundle to which the sizing agent adhered, and produced and evaluated the sheet-like material and woven fabric using this. The results are shown in Table 2.
  • Example 19 The sizing treatment of the carbon fiber was performed using the aqueous dispersion of the sizing agent obtained in Example 3, and the adhesion amount of the sizing agent was set to 0.8% by mass. Other than that was carried out similarly to Example 1, obtained the carbon fiber bundle to which the sizing agent adhered, and produced and evaluated the sheet-like material and woven fabric using this. The results are shown in Table 2.
  • Example 20 The carbon fiber bundle to be sized was treated as in the following 2-2, and the sizing treatment of the carbon fiber bundle was performed using the aqueous dispersion of the sizing agent obtained in Example 1. Other than that was carried out similarly to Example 1, the carbon fiber bundle to which the sizing agent adhered was obtained, and the evaluation similar to Example 1 was performed about the carbon fiber bundle to which the sizing agent adhered. The results are shown in Table 2.
  • Pyrofil TRH50 (product name, manufactured by Mitsubishi Rayon Co., Ltd., 18,000 filaments, strand strength 5,600 MPa, strand elastic modulus 256 GPa, fiber density 1.82 g / m 3 ) is used as a carbon fiber bundle with no sizing agent attached. Using.
  • the tensile strength of the pultruded product obtained in 5-1 above was measured in accordance with “The Tensile Test Method Using Fixing Expansion Material” of the Japan Society of Civil Engineers. The tensile strength was converted to a fiber volume content of 100% using the fiber volume content Vf of the obtained pultruded product. The results are shown in Table 2. The fiber volume content (%) of the pultruded product was obtained using the following formula.
  • Fiber volume content Vf of pultruded molded product Vf (fiber bundle weight ⁇ number of inputs / fiber density) ⁇ [(extracted molded product outer diameter ⁇ 2) 2 ⁇ 3.1416] ⁇ 100
  • the outer diameter of the pultruded product was measured by measuring the outer diameter in the direction perpendicular to the longitudinal direction of the pultruded product at six locations using a micrometer, and using the average value. Further, the fiber basis weight in the above formula was obtained by measuring 12 fiber bundles out of 34 carbon fiber bundles inputted, and using the average value.
  • the fiber density is the fiber density of Pyrofil TRH50.
  • Example 21 The carbon fiber bundle to be sized was treated as the above 2-2, and the sizing treatment of the carbon fiber was performed using the aqueous dispersion of the sizing agent obtained in Example 2. Other than that was carried out similarly to Example 1, the carbon fiber bundle to which the sizing agent adhered was obtained, and the same evaluation as Example 1 was implemented about the carbon fiber bundle to which the sizing agent adhered. In addition, a pultruded composite material was prepared and evaluated in the same manner as in Example 20 using the obtained carbon fiber bundle to which the sizing agent was adhered. The results are shown in Table 2.
  • Example 22 The carbon fiber bundle to be sized was treated as the above 2-2, and the sizing treatment of the carbon fiber was performed using the aqueous dispersion of the sizing agent obtained in Example 3. Other than that was carried out similarly to Example 1, the carbon fiber bundle to which the sizing agent adhered was obtained, and the same evaluation as Example 1 was implemented about the carbon fiber bundle to which the sizing agent adhered. In addition, a pultruded composite material was prepared and evaluated in the same manner as in Example 20 using the obtained carbon fiber bundle to which the sizing agent was adhered. The results are shown in Table 2.
  • Example 23 The carbon fiber bundle to be sized was treated as the above 2-2, and the sizing treatment of the carbon fiber was performed using the aqueous dispersion of the sizing agent obtained in Example 12. Other than that was carried out similarly to Example 1, the carbon fiber bundle to which the sizing agent adhered was obtained, and the same evaluation as Example 1 was implemented about the carbon fiber bundle to which the sizing agent adhered. In addition, a pultruded composite material was prepared and evaluated in the same manner as in Example 20 using the obtained carbon fiber bundle to which the sizing agent was adhered. The results are shown in Table 2.
  • Example 24 The carbon fiber bundle to be sized was treated as the above 2-2, and the sizing treatment of the carbon fiber was performed using the aqueous dispersion of the sizing agent obtained in Example 13. Other than that was carried out similarly to Example 1, the carbon fiber bundle to which the sizing agent adhered was obtained, and the same evaluation as Example 1 was implemented about the carbon fiber bundle to which the sizing agent adhered. In addition, a pultruded composite material was prepared and evaluated in the same manner as in Example 20 using the obtained carbon fiber bundle to which the sizing agent was adhered. The results are shown in Table 2.
  • Tables 1 to 3 The components shown in Tables 1 to 3 are detailed in Table 4, respectively. Catalog values were adopted for the tensile elongation and glass transition temperature (Tg) of the cured product of urethane acrylate oligomer, and the particle diameter of the polyurethane emulsion, the tensile strength of the dry film, the tensile elongation of the dry film, and the glass transition temperature.
  • Tg tensile elongation and glass transition temperature
  • A1 to A2 and E1 to E3 in Table 3 are synthetic products obtained by the following procedure, respectively.
  • the half ester component effective as the component (A) is 1/2, and the remaining 1/2 is an unreacted product and a diester product.
  • the blending amounts of A1 to A2 shown in Tables 1 to 3 represent the total amount of the half ester component, the unreacted product, and the diester product. Therefore, the amount of the active ingredient as a half ester is 1 ⁇ 2 of the blending amount shown in Tables 1 to 3. That is, when calculating the content of the component (A) in the sizing agent, a value that is half the blending amount of A1 and A2 shown in the table is used.
  • the amount of all sizing components includes not only the blending amount of the half ester component but also the blending amounts of the unreacted product and the diester product. That is, in order to calculate the amount of all sizing components, the values of the blending amounts of A1 and A2 shown in the table are used.
  • A2 Addition of 86 parts by mass of acrylic acid, 1 part by mass of hydroquinone, and 1 part by mass of lithium chloride to 1000 parts by mass of bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, product name: JER834).
  • PO propylene oxide
  • Newpol BP-3P product name
  • PO product name: New Pole BP-3P, manufactured by Sanyo Chemical Industries, Ltd.
  • the carbon fiber bundles when the sizing agents of Examples 1 to 24 were applied had no fuzz in the process from the hot air drying treatment after the sizing treatment to the bobbin, and no winding around the roll.
  • the process passability is very stable, and the molded product (one-way carbon fiber sheet composite, woven fabric composite, pultruded composite) produced using this carbon fiber bundle, It had good physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 樹脂を用いて複合化した際の機械物性向上効果に優れる炭素繊維束を得ることができる炭素繊維用サイジング剤とその水分散液、ならびに炭素繊維束、炭素繊維束を有するシート状物、複合材を提供する。分子中に複数個のエポキシ基を有するエポキシ化合物と不飽和一塩基酸とのエステルであって分子中に少なくとも1つのエポキシ基を有する化合物A、硬化物の引張伸び率が40%以上の2官能タイプのウレタンアクリレートオリゴマーB、乾燥皮膜引張伸び率が350%以上900%以下であるポリウレタン樹脂Cを含む炭素繊維用サイジング剤であって、A~Cの含有量が明細書に記載される条件を満足する。このサイジング剤が分散した水分散液。このサイジング剤を0.6質量%以上3.0質量%以下で含む炭素繊維束。この炭素繊維束を含むシート状物、引抜成型複合材。このシート状物を含む複合材。

Description

炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材
 本発明は、炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材に関する。
 炭素繊維は、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂などの樹脂(以下、マトリックス樹脂と表記する)と複合化した後、成形してなる炭素繊維強化複合材料として幅広い分野にわたって使用されている。
 炭素繊維強化組成物の製造方法としては、強化材としての繊維にマトリックス樹脂を含浸させる方法が一般的である。繊維にマトリックス樹脂を含浸させる方法としては、離型紙上にマトリックス樹脂を薄く塗布し、その上に繊維を一方向に並べるプリプレグ法や、マトリックス樹脂浴中に繊維を通過させるディッピング法等がある。
 また、成型方法としては、シート状物を積層してオートクレーブを用いて加圧化で熱硬化させる方法や、1本~数百本の炭素繊維束を引き揃えて、マトリックス樹脂を含浸させた後、ダイスや金型等を通じてマトリックス樹脂を硬化させる引き抜き成型、さらには織物やシート状物などの繊維基材に常温で樹脂を含浸し、そのまま硬化させるハンドレイアップ法などが知られている。
 炭素繊維を強化材として用い、該炭素繊維とマトリックス樹脂により形成される炭素繊維強化複合材料は、軽量でかつ強度および弾性率などに優れている。このような複合材料は、スポーツ・レジャー用品の構成部品や、車輌・航空宇宙用機材、エネルギー・土木建築用の産業資材等の材料として幅広い分野にわたってその用途開発が進められている。そのため、強化材としての炭素繊維に対する高性能化の要望は非常に強い。
 特に、車輌・航空宇宙用途における構造材料や産業資材として適用される炭素繊維では、高強度化・高弾性率化を目的とする開発が進められている。このような構造材料や産業資材の用途の複合材料には、その繊維長手方向の引張強度を高いレベルで保有することが求められるが、上述した引き抜き成形や、ハンドレイアップ法において、炭素繊維フィラメントの配向乱れや蛇行が生じることにより、炭素繊維強化複合材料としての引張強度などの機械物性が発現され難くなるという課題があった。
 また、一般的に炭素繊維は、直径が5~8μm程度のフィラメントであり、この単繊維が数千~数万本単位でまとまった形態(以下、「炭素繊維束」と表記する)で用いられる。炭素繊維は、それ自体は伸度が小さくかつ脆い性質を有するため、機械的摩擦等によって毛羽が発生しやすく、複合材料の製造工程において毛羽、糸切れが発生しやすい。そのため、毛羽生抑制等を目的として、炭素繊維に各種サイズ剤を付与してサイジング処理を施す場合が多い。また一般的に、炭素繊維は該炭素繊維束を織機により加工した織物などの形態で用いられる。品質の高い炭素繊維強化複合材料を工業的に安定に製造するためには、繊維にマトリックス樹脂を含浸させる工程において、炭素繊維束へのマトリックス樹脂の含浸が、容易に、そして完全に行なわれるようにすることが必要である。しかしながら、炭素繊維は、そのままの状態ではマトリックス樹脂に対する濡れ性に乏しく、マトリックス樹脂が含浸しにくい。そのため、得られる繊維強化複合材料の品質が充分に満足できるものとなりにくい。これを改善する目的としても、炭素繊維へのサイジング処理が有効である。
 すなわち、炭素繊維の取り扱い性を向上させるとともに、マトリックス樹脂に対する濡れ性を向上させ、さらには炭素繊維強化複合材料としての引張強度などの機械物性を高レベルで発現させる、といった品質向上を目的として、炭素繊維にサイジング剤による処理を施すのである。
 特許文献1には、ポリグリシジルエーテル類などを用いるサイジング剤(以下「サイジング剤1」という。)が提案され、特許文献2および特許文献3には、エポキシ樹脂と、不飽和二塩基酸とビスフェノール類のアルキレンオキシド付加物との縮合物と、単環フェノール及び多環フェノール類から選ばれるフェノール類のアルキレンオキシド付加物とを必須成分とするサイジング剤(以下「サイジング剤2」という。)が提案されている。
 サイジング剤1は、含浸性や界面接着力に優れるが、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂などのラジカル重合系樹脂に対する接着性が良好とはいえない。
 また、サイジング剤2は、マトリックス樹脂、特に不飽和ポリエステル樹脂との接着性向上が期待でき、また、エポキシ樹脂をマトリックス樹脂として用いた場合、繊維強化複合材料の物性を維持できる。しかし、ラジカル重合系樹脂に対する接着性は、良好とはいえない。
 特許文献4には、エポキシ基を1つ以上含有するエステル樹脂、ウレタンアクリレート、アニオン系乳化剤、および少量のノニオン系乳化剤からなるサイジング剤(以下「サイジング剤3」という。)が提案されている。
 サイジング剤3は、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂などのラジカル重合系樹脂に対する接着性に優れ、エポキシ樹脂をマトリックス樹脂とする複合材料と同等の性能を提供可能なものである。また、エポキシ樹脂との適合性も良いこともあり、広範囲の熱硬化性樹脂との組み合わせた複合材料で優れた機械的強度を発現可能とするものである。
 しかし、このサイジング剤は、炭素繊維強化複合材料の強度低下の原因となる成型加工時の炭素繊維フィラメントの配向乱れや蛇行を抑制する効果が良好とはいえない。
 また、特許文献5および特許文献6には、ポリウレタン樹脂を含むサイジング剤(以下「サイジング剤4」という。)が提案されている。ポリウレタン樹脂のような高分子化合物を含むことで、成形加工時の炭素繊維フィラメントの配向乱れや蛇行といった現象の抑制に有効ではあるものの、サイジング剤4は、実質的にポリウレタン樹脂を100%使用しており、サイジング剤の乾燥皮膜の軟化温度を50~150℃とするような熱可塑性樹脂強化用に設計がなされているために、ラジカル重合系樹脂を用いる複合材のように室温付近で樹脂含浸作業が行われる場合、樹脂含浸性に劣る。
 このように、炭素繊維強化複合材料の強度低下の原因となる、樹脂含浸不良や、成型加工時の炭素繊維フィラメントの配向乱れや蛇行の抑制に対して有効なサイジング剤はこれまで見出されていなかった。
特公昭57-15229号公報 特開昭53-52796号公報 特開平7-197381号公報 特開2008-95241号公報 特開2007-231441号公報 特開2007-131959号公報
 本発明は、上記事情に鑑みてなされたものであって、サイジング処理工程通過性に優れ、サイジング剤が均一に付着されるとともに、樹脂、特にラジカル重合系樹脂を用いて複合化した際の機械物性向上効果に優れる炭素繊維束を得ることができる炭素繊維用サイジング剤およびサイジング剤の水分散液を提供することを目的とする。また、複合材の機械物性向上効果に優れた炭素繊維束、ならびに炭素繊維束を有するシート状物、さらには機械物性に優れた炭素繊維強化複合材、特には引抜成型複合材を提供することを目的とする。
 本発明により、
 分子中に複数個のエポキシ基を有するエポキシ化合物と不飽和一塩基酸とのエステルであって、分子中に少なくとも1つのエポキシ基を有する化合物(A)と、
硬化物の引張伸び率が40%以上の2官能タイプのウレタンアクリレートオリゴマー(B)と、
乾燥皮膜の引張伸び率が350%以上900%以下であるポリウレタン樹脂(C)とを含有し、
前記化合物(A)と前記ウレタンアクリレートオリゴマー(B)との含有量の質量比が、ウレタンアクリレートオリゴマー(B)/化合物(A)の比として、1/3以上2/1以下であり、
全サイジング成分中に占める前記化合物(A)および前記ウレタンアクリレートオリゴマー(B)の合計量の割合が20質量%以上であり、
かつ全サイジング成分中に占める前記ポリウレタン樹脂(C)の割合が、5質量%以上50質量%以下である炭素繊維用サイジング剤が提供される。
 本発明の炭素繊維用サイジング剤は、前記ポリウレタン樹脂(C)の乾燥皮膜の引張強度が10MPa以上50MPa以下であることが好ましい。
 本発明の炭素繊維用サイジング剤は、前記ポリウレタン樹脂(C)のガラス転移温度が-50℃以上35℃以下であることが好ましい。
 また本発明により、
前記炭素繊維用サイジング剤が水中に分散した水分散液であって、水分散液中のサイジング剤の分散粒子の平均粒子径が0.3μm以下である炭素繊維サイジング剤の水分散液が提供される。
 また本発明により、
前記炭素繊維用サイジング剤が付着した炭素繊維からなる炭素繊維束(すなわち、炭素繊維用サイジング剤が付着した炭素繊維束)であって、該サイジング剤の付着量が0.6質量%以上3.0質量%以下である炭素繊維束が提供される。
 あるいはまた本発明により、前記炭素繊維用サイジング剤の水分散液で処理された、該サイジング剤が付着した炭素繊維からなる炭素繊維束であって、サイジング剤の付着量が0.6質量%以上3.0質量%以下である炭素繊維束が提供される。
 さらに本発明により、前記炭素繊維束を含むシート状物、このシート状物を含む複合材、前記炭素繊維束を含む引抜成型複合材が提供される。
 本発明によれば、サイジング処理工程通過性に優れ、サイジング剤が均一に付着されるとともに、樹脂、特にラジカル重合系樹脂を用いて複合化した際の機械物性向上効果に優れる炭素繊維束を得ることができる炭素繊維用サイジング剤およびサイジング剤の水分散液が提供される。また、複合材の機械物性向上効果に優れた炭素繊維束、ならびに炭素繊維束を有するシート状物、さらには機械物性に優れた炭素繊維強化複合材、特には引抜成型複合材が提供される。
 本発明によれば、炭素繊維束の形状を固定化することで、炭素繊維束の直進保持性を維持し易くなり、それによって引抜き成型やフィラメントワインディング成型における樹脂含浸工程での樹脂ピックアップの最適化が容易となること、樹脂を含浸させた後のトウ形状の安定化が著しく向上すること、ハンドレイアップ成型における織物の型崩れ、目ずれが生じ難くなることの効果により、成型物の強度発現性が著しく向上した炭素繊維束および該炭素繊維を有するシート状物を得ることができる。
炭素繊維束から引抜成形複合材を製造する成形工程を説明するための図である。
 <炭素繊維用サイジング剤>
 本発明の炭素繊維用サイジング剤は以下に詳述する(A)~(C)の成分を含む。このサイジング剤は、各成分を適宜混合することにより得ることができる。
 ・(A)成分:分子中に複数個のエポキシ基を有するエポキシ化合物と不飽和一塩基酸とのエステルであって、分子中に少なくとも1つのエポキシ基を有する化合物(A)
 本発明の炭素繊維用サイジング剤に含まれる(A)成分は、分子中に少なくとも1つのエポキシ基を有することが必要である。なお、エポキシ基とは、本願発明では、環骨格が2個の炭素原子と1個の炭素原子とから構成される3員環をその構造中に有する基を意味する。
 (分子中に少なくとも1つのエポキシ基を有する化合物(A))
 本発明の炭素繊維用サイジング剤に含まれる(A)成分に含まれるエポキシ基としては、例えば、下記式(e1)で表される基、下記式(e2)で表される基(グリシジル基)、その他の環式脂肪族エポキシ基などが挙げられる。その他の環式脂肪族エポキシ基としては、前記3員環と、単環または多環式の脂肪族環とで形成される環状構造をその構造中に有する基が挙げられ、たとえば下記式(e3)~(e5)で表される基が例示できる。
Figure JPOXMLDOC01-appb-C000001
 (分子中に複数個のエポキシ基を有するエポキシ化合物)
 本発明の炭素繊維用サイジング剤に含まれる(A)成分において、エステルを形成する分子中に複数個のエポキシ基を有するエポキシ化合物としては、特に限定されず、たとえばビスフェノール類のエポキシ化合物、ビスフェノール類のアルキレンオキシド付加エポキシ化合物、水素化ビスフェノール類のエポキシ化合物、水素化ビスフェノール類のアルキレンオキシド付加エポキシ化合物等が挙げられる。これらビスフェノール類としては、特に限定されるものではなく、ビスフェノールF型、ビスフェノールA型、ビスフェノールS型などの化合物が挙げられる。ビスフェノール類のエポキシ化合物以外のフェノールノボラック型、クレゾールノボラック型、ジフェニル型、ジシクロペンタジエン型、ナフタレン骨格型などのエポキシ樹脂を用いることもできる。また、直鎖脂肪族系骨格を有するものであっても良い。
 (不飽和一塩基酸)
 本発明の炭素繊維用サイジング剤に含まれる(A)成分において、エステルを形成する不飽和一塩基酸としては、特に限定はなく、一つの不飽和基と一つのカルボキシル基を有する化合物であれば良い。不飽和基としては、特に限定はないが、嵩高くないこと、形成されるエステルの主鎖の剛直性を低下させないことから、ビニル基あるいはプロペニル基が好ましく、より好ましくは、ビニル基である。特に好ましいのは、アクリル酸またはメタクリル酸である。すなわち、(A)成分は、前記エポキシ化合物とアクリル酸またはメタクリル酸とのエステルであることが好ましい。
 本発明の炭素繊維用サイジング剤に含まれる(A)成分は、エポキシ基を複数個有する化合物と不飽和一塩基酸とを反応させて得られるエステルであり、この反応においては、エポキシ基を複数個有する化合物のエポキシ基のうち、少なくとも1つのエポキシ基が未反応のまま残留し、少なくとも1つのエポキシ基が不飽和一塩基酸によって開環し、不飽和基を有する、いわゆるハーフエステルが形成される。かかる(A)成分は、分子中に、エポキシ基を複数個有する化合物に由来するエポキシ基と、不飽和一塩基酸に由来する不飽和基(たとえばアクリル酸に由来するCH=CH-COO-)とを有しており、これによって、炭素繊維表面と樹脂分子の間でのカップリング機能を発揮し、炭素繊維と樹脂との間の界面接着性を大きく向上させる。特に、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂などのラジカル重合系樹脂と炭素繊維とを強力に結合させることができ、優れた界面接着性を発現させることができる。
 特に、界面接着性を発現させることに優れることから、分子の両末端にエポキシ基を有する化合物と、不飽和一塩基酸とのエステルであって、分子主鎖の片方の端部に不飽和基を有し、他方の端部にエポキシ基をそれぞれ有する化合物が好ましい。(A)成分としてこのような化合物を用いることにより、ラジカル重合系樹脂と炭素繊維とを強力に結合させることができ、優れた界面接着性を発現させることができる。この分子の両末端にエポキシ基を有する化合物としては、特に、ビスフェノール類のジエポキシ化合物およびビスフェノール類のアルキレンオキシド付加ジエポキシ化合物のいずれか一方または両方が好ましい。すなわち、(A)成分は、ビスフェノール類のジエポキシ化合物及びビスフェノール類のアルキレンオキシド付加ジエポキシ化合物のいずれか一方又は両方と、不飽和一塩基酸とのエステルであって、分子主鎖の片方の端部に不飽和基を有し、他方の端部にエポキシ基をそれぞれ有する化合物であることが好ましい。本発明において、(A)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ・(B)成分:2官能タイプのウレタンアクリレートオリゴマー(B)
 本発明の炭素繊維用サイジング剤に含まれる(B)成分は、マトリックス樹脂と炭素繊維との界面に、柔軟性に優れた界面相を形成する効果を有する。これにより、マトリックス樹脂と炭素繊維との間の界面接着性が向上する。また、繊維強化複合材料用のマトリックス樹脂として、ビニルエステル樹脂、不飽和ポリエステル樹脂等のラジカル重合系樹脂が使用される場合、それらの樹脂には靭性の低いものが多く、界面相の柔軟化に起因する高靭性化により、飛躍的に界面接着性が向上する。
 また、サイジング剤が付着した炭素繊維とマトリックス樹脂との複合化の際、炭素繊維表面のサイジング剤成分が、マトリックス樹脂へと拡散し、特に界面付近のマトリックス樹脂中に、サイジング剤成分を高濃度に含む領域が形成される。この領域は、複合材料の機械特性に影響を及ぼす。そして、(B)成分は、アクリレートオリゴマーであることから、繊維強化複合材料を形成する際、マトリックス樹脂の硬化反応に組み込まれることとなり、界面相とマトリックス樹脂相との一体化が図られる。そのため、この(B)成分を含むことにより、ラジカル重合系樹脂をマトリックス樹脂とする場合であっても、繊維強化複合材料の機械的特性を、エポキシ樹脂をマトリックス樹脂とする場合と同等なレベルにすることができる。
 本発明の炭素繊維用サイジング剤に含まれる(B)成分は、以下の測定方法で求めた硬化物の引張伸び率が40%以上である必要があり、上記界面相の高靭性化の効果に優れることから、この引張伸び率が45%以上であることがより好ましく、50%以上がより好ましい。引張伸び率(%)の上限としては、界面近傍樹脂の弾性率の大幅な低減を考慮すると、900%以下が好ましく、700%以下がより好ましい。
 また、本発明の炭素繊維用サイジング剤に含まれる(B)成分は2官能である必要がある。3官能以上のタイプであると、架橋密度が高くなりすぎ、充分な高靭性化が発現しない。一方、1官能タイプでは、マトリックス樹脂との架橋反応が片側のみとなり、充分な高靭性化の効果が得ることができない。
 さらに、界面相の靭性向上効果が大きいことから、60℃での粘度が5,000mPa・s以上であり、その硬化物の引張強度が6MPa以上のものが好ましい。粘度が大きいことは、そのオリゴマーの分子量が大きいこと、またはオリゴマー分子間の凝集力が大きいことを示す。分子量が大きい場合、あるいは分子間の凝集力が大きい場合、(B)成分が、マトリックス樹脂へと拡散することなく、炭素繊維表面とマトリックス樹脂との界面相に偏在し、結果、界面相の効果的な柔軟化が成しえるので好ましい。なお、硬化物の引張強度および引張伸び率は以下の方法で求めることができる。
 ウレタンアクリレートオリゴマー(B)97gと、硬化剤(2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)3gの混合物をガラス板上に塗布し、厚み100μmの皮膜を得る。その皮膜を、オゾンタイプランプ(80W/cm)を使って、皮膜から10cm離れた位置から紫外線を5秒間照射して硬化する。
 硬化した皮膜を用いて、JIS K7127に準拠(試験片タイプ5)し、引張り速度300mm/minで引張強度および引張伸び率を測定する。
 (B)成分の60℃での粘度は、10,000mPa・s以上がより好ましく、20,000mPa・s以上がさらに好ましい。粘度の上限としては、60℃で固形状でないほうが、サイジング剤の調製やサイジング剤の経時安定性の面から優れている。なお、(B)成分の粘度はB型粘度計で測定できる。
 本発明の炭素繊維用サイジング剤に含まれる(B)成分の硬化物のガラス転移温度(Tg)は、-5℃以上が好ましく、5℃以上がより好ましい。硬化物のTgが-5℃以上であれば、界面相により適正な柔軟化が図れるのみならず、破断に至る応力の値も大きくなり、そのため、より強固な界面相が形成でき、上記効果が向上する。つまり、界面相は、強化繊維を支える機能があり、柔軟化を適度に抑えることによって複合材料の機械的特性を良好に保つことが容易となる。硬化物のTgの上限としては、柔軟成分としての機能を考慮すると、100℃以下が好ましく、80℃以下がより好ましい。
 (ウレタンアクリレートオリゴマーの硬化物のTgの測定)
 硬化物のTgは、引張伸び率の測定と同じ方法で得られた硬化皮膜を試験片として、粘弾性測定装置(UBM社製、製品名:Rheogel E4000)を用いて、2℃/分の割合で昇温させ、試験片の動的粘弾性および損失正接を測定し、損失正接のピーク温度(tanδMAX)から求めることができる。
 本発明において、「ウレタンアクリレートオリゴマー」とは、分子内にウレタン結合とアクリロイル基(CH=CH-CO-)とを有する化合物である。ウレタンアクリレートオリゴマーの構造は、その構造中に芳香族基を有する芳香族系のものと、芳香族基を有さない脂肪族系のものとに大別できる。本発明に用いるウレタンアクリレートオリゴマーの構造は特に限定されず、芳香族系であってもよく、脂肪族系であってもよい。硬化物の引張伸び率と引張強度のバランスが良好であることから、脂肪族系であることが好ましい。
 本発明の炭素繊維用サイジング剤に含まれる(B)成分としては、市販のウレタンアクリレートオリゴマーを利用してもよく、かかるウレタンアクリレートオリゴマーとしては、たとえばサートマー社製のCN-965、CN-981、CN-9178、CN-9788、CN-9893、CN-971、CN-973、CN-9782、共栄社化学製のUF-8001、新中村化学工業社製のUA-122P等が挙げられる(いずれも製品名)。
本発明において、(B)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 [(A)成分および(B)成分の含有量]
 本発明のサイジング剤においては、(A)成分と(B)成分との含有量の比(質量比)が、(B)成分/(A)成分=1/3~2/1の範囲内であることが必要である。
(B)成分の含有量が、(A)成分の含有量の1/3未満であると、界面相の柔軟化・高靭性化が不充分となり、一方、2/1を越えると、(A)成分の機能である良接着性発現効果が阻害され、炭素繊維の、マトリックス樹脂との接着性向上効果が充分に得られない。
 (A)成分と(B)成分との含有量の比は、(B)成分/(A)成分=1/2~3/2であることが好ましく、2/3~1/1がより好ましい。
 また、本発明のサイジング剤においては、全サイジング成分中に占める(A)成分および(B)成分の合計量の割合が20質量%以上であることが必要である。20質量%未満では、この2つの成分の機能が充分に発揮されず、本発明の効果が得られない。
 ここで、「全サイジング成分」とは、当該サイジング剤に含まれる成分のうち、サイジング処理後に炭素繊維に付与される全成分の合計量であり、たとえば水や有機溶剤等の、サイジング後に除去される成分は含まれない有効成分を表す。すなわち、「全サイジング成分」は、上述した(A)成分および(B)成分、後述する(C)成分と、任意成分として後述する(D)成分および(E)成分、ならびにその他の成分との合計量として求めることができる。
 (A)成分および(B)成分の合計量の割合は、全サイジング成分中、25質量%以上が好ましく、30質量%以上がより好ましい。
 ・(C)成分:ポリウレタン樹脂(C)
 本発明の炭素繊維用サイジング剤は(C)成分を必須成分とするものである。(C)成分はポリウレタン樹脂であり、これによって炭素繊維束の形状を固定化し易くなる。炭素繊維束の形状が固定化され、直進保持性が維持し易くなることで、引抜成型やフィラメントワインディング成型のおける樹脂含浸工程での樹脂ピックアップの最適化が容易となること、樹脂を含浸させた後のトウ形状の安定化が著しく向上すること、織物の型崩れ、目ずれが生じ難くなることの効果により、成型物での炭素繊維単繊維の配向荒れ、蛇行が抑制され、成型物の強度発現性を著しく向上させることができる。また、(C)成分は、上述した(B)成分と同様に、マトリックス樹脂と炭素繊維との界面に、柔軟かつ強靭な界面相を形成する効果を有する。
(C)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の炭素繊維用サイジング剤に含まれる(C)成分は、乾燥皮膜の引張伸び率が350%以上900%以下である必要がある。乾燥皮膜の引張伸び率が、この範囲内であれば、上述した炭素繊維束の形状を固定化させ、直進保持性を維持する効果が十分に得られるとともに、またマトリックス樹脂と炭素繊維との界面において強靭な界面相を形成することができる。また、この範囲内であれば、炭素繊維束の形状を固定化させ、直進保持性を維持する効果が十分に得られやすくサイジング処理工程から炭素繊維束の巻き取り工程にいたる迄の間や、あるいは製織工程などの加工処理の間の、炭素繊維束の収束性が保たれ、結果として炭素繊維フィラメントの配向乱れや蛇行の抑制ができ易くなり、良好な工程通過性が得られやすくなる。前述の観点から(C)成分は、乾燥皮膜の引張伸び率が420%以上750%以下がより好ましく、引張伸び率は450%以上650%以下がさらに好ましい。
 本発明の炭素繊維用サイジング剤に含まれる(C)成分は、乾燥皮膜の引張強度が10MPa以上50MPa以下であることが好ましい。10MPa以上であれば、上述した炭素繊維束の形状を固定化させ、直進保持性を維持する効果が得られ易く、またマトリックス樹脂と炭素繊維との界面において強靭な界面相を形成でき易い。一方、50MPa以下であれば、炭素繊維表面においてサイジング剤の付着斑が生じ難く、サイジング処理後の炭素繊維の巻き取り工程や成型加工工程において、良好な工程通過性が得られやすくなる。(C)成分の乾燥皮膜の引張強度は15MPa以上40MPa以下がより好ましく、20MPa以上35MPa以下がさらに好ましい。なお、乾燥皮膜の引張伸び率は、例えば以下の方法で求めることができる。
 ポリウレタン樹脂をガラス板上に塗布し、皮膜作成条件は、予備乾燥として室温で15時間、本乾燥として80℃で6時間加熱し、さらにその後、120℃で20分間加熱処理を行い、厚み500μmの皮膜を得て、JIS K7127に準拠し、引張り速度300mm/minで引張強度および引張伸び率を測定する。
 本発明の炭素繊維用サイジング剤に含まれる(C)成分は、ガラス転移温度(Tg)が-50℃以上35℃以下であることが好ましい。-50℃以上であれば、上述した炭素繊維束の形状を固定化させる効果が得られ易く、またマトリックス樹脂と炭素繊維との界面において強靭な界面相を形成でき易い。一方、35℃以下であれば、炭素繊維表面においてサイジング剤の付着斑が生じ難く、サイジング処理後の炭素繊維の巻き取り工程や成型加工工程において、良好な工程通過性が得られやすくなる。(C)成分の乾燥皮膜のTgは-35℃以上30℃以下が好ましく、-20℃以上20℃以下がより好ましい。なお、(C)成分のTgは、動的粘弾性測定装置によって測定することができる。
 本発明の炭素繊維用サイジング剤では、全サイジング成分中に占める(C)成分の割合は5質量%以上50質量%以下である。5質量%以上であれば、上述した炭素繊維束の形状を固定化させる効果が得られ易い。50質量%以下であれば、(C)成分による炭素繊維束の形状固定化が良好になりやすく、良好な取り扱い性や、マトリックス樹脂の含浸性が得られ易い。全サイジング成分中に占める(C)成分の割合は、10質量%以上45質量%以下であることが好ましく、更に好ましくは15質量%以上40質量%以下である。
 ・成分E:ビスフェノール類のアルキレンオキシド付加物とジカルボン酸化合物とのエステルであって酸価が50以上であるエステル化合物(E)
 本発明の炭素繊維用サイジング剤は、上述した(A)成分、(B)成分および(C)成分に加えて、さらに、(E)成分を含有することが好ましい。
 本発明の炭素繊維用サイジング剤に加えることができるビスフェノール類のアルキレンオキシド付加物とジカルボン酸化合物とのエステル(酸価が50以上)は、分子量が1000程度で、分子の一方の末端にカルボキシル基を有する化合物を主要構成成分としていることが好ましい。このような(E)成分は、マトリックス樹脂、特にエポキシ樹脂やビニルエステル樹脂と優れた相溶性を示す。そのため、サイジング処理された炭素繊維の樹脂に対する濡れ性が向上し、樹脂含浸性がさらに向上する。
 本発明の炭素繊維用サイジング剤に加えることができる(E)成分を形成する「ビスフェノール類のアルキレンオキシド付加物」としては、ビスフェノール類1モルに対して、エチレンオキシド又はプロピレンオキシドを2~4モル付加したものであるのが好ましい。ビスフェノール類1モルに対するエチレンオキシド又はプロピレンオキシドの付加量が4モル以下であると、ビスフェノール類が本来有する分子鎖の剛直性を損なうことなく、マトリックス樹脂との親和性を良好にすることが容易である。より好ましくは、ビスフェノール類にエチレンオキシド又はプロピレンオキシドを2モル付加したものである。ビスフェノール類のアルキレンオキシド付加物は、1種単独でもよく、また複数の化合物を混合したものであってもよい。
 ビスフェノール類のアルキレンオキシド付加物とエステルを形成する「ジカルボン酸化合物」は、炭素数が4~6の脂肪族化合物であるのが好ましい。ジカルボン酸化合物として芳香族化合物を用いると、得られるエステル化合物の融点が相対的に高く、マトリックス樹脂との溶解性が相対的に劣る傾向がある。よって芳香族化合物と比較して脂肪族化合物のほうが、良好な濡れ性を発現させる観点から好ましい。一方、炭素数が6以下の脂肪族化合物をジカルボン酸化合物として用いると、得られるエステル化合物の剛直性を損なうことなく、マトリックス樹脂との親和性を良好にすることが容易である。
 ジカルボン酸化合物としては、たとえばフマル酸、マレイン酸、メチルフマル酸、メチルマレイン酸、エチルフマル酸、エチルマレイン酸、グルタコン酸、イタコン酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸などが挙げられる。
 本発明の炭素繊維用サイジング剤に加えることができる(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。本発明において、(E)成分の含有量は、(A)成分と(B)成分との合計に対して、2.0質量倍以下であることが好ましい。この比が2倍以下であると、(A)成分のエポキシ基と(E)成分の酸性基(カルボキシ基等)との間の相互作用によって(A)成分と炭素繊維表面との間の相互作用が阻害されることを容易に防止でき、その結果、(A)成分の、炭素繊維とマトリックス樹脂とのカップリング機能が容易に発揮され、接着性を良好にすることが容易である。この比は、1.75以下がさらに好ましく、1.55以下が最も好ましい。この比の下限値は、特に制限はないが、サイジング処理された炭素繊維の樹脂に対する濡れ性、樹脂含浸性を向上させる(E)成分による効果を発揮させるためには、0.2以上が好ましく、0.4以上がより好ましい。
 ・(D)成分:界面活性剤(D)
 本発明のサイジング剤は、さらに、(D)成分を含有することが好ましい。
 本発明の炭素繊維用サイジング剤に含まれる(D)成分は、上述した(A)成分、(B)成分および(C成分)、任意成分としての(E)成分、およびその他の成分を水に分散させるために用いるものである。(D)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の炭素繊維用サイジング剤に含まれる(D)成分としては、ノニオン系界面活性剤、アニオン系界面活性剤が挙げられる。ノニオン系界面活性剤としては、例えば脂肪族ノニオン、フェノール系ノニオンなどの界面活性剤を利用することができる。脂肪族ノニオン系界面活性剤としては、高級アルコールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、グリセロールの脂肪酸エステル、ソルビトールおよびソルビタンの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステルなどが挙げられる。フェノール系ノニオン界面活性剤としては、アルキルフェノール系ノニオン、多環フェノール系ノニオンなどが挙げられる。
 また、エチレンオキサイド付加物としては、ポリエチレンオキサイド鎖中の一部にプロピレンオキサイドユニットをランダムあるいはブロック状に具備させたタイプのものが好適である。
脂肪酸エチレンオキサイド付加物や多価アルコール脂肪酸エステルエチレンオキサイド付加物としては、モノエステルタイプ、ジエステルタイプ、トリエステルタイプ、テトラエステルタイプなどのノニオン系界面活性剤を使用できる。
 本発明の炭素繊維用サイジング剤に含まれる(D)成分として、アンモニウムイオンを対イオンとして有するアニオン系界面活性剤(D-1)成分、および後述するノニオン系界面活性剤(D-2)成分を同時に含有することが好ましい。
 前記アンモニウムイオンを対イオンとして有するアニオン系界面活性剤(D-1)成分は、疎水基と、対イオンとしてアンモニウムイオンを有することにより、本発明の炭素繊維用サイジング剤を水分散液とした際の安定性と、炭素繊維表面の樹脂に対する濡れ性を向上させる。また、(D-2)成分は、(D-1)成分のアンモニウムイオンと、(A)成分のエポキシ基との反応活性を抑制する効果を有する。そのため、(D-1)成分と(D-2)成分とを適量含有することにより(含有量については後に詳述する)、各種マトリックス樹脂の含浸性がさらに向上し、また、サイジング剤で処理された炭素繊維の硬さの経時変化を非常に小さくすることができる。
 (D-1)成分としては、特に限定はなく、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩などを挙げることができる。この中でも、硫酸エステル塩、スルホン酸塩は、(A)成分や(B)成分を乳化させる能力に特に優れるのでさらに好ましい。
 前記硫酸エステル塩としては、高級アルコール硫酸エステル塩、高級アルキルポリエチレングリコールエーテル硫酸エステル塩、アルキルベンゼンポリエチレングリコールエーテル硫酸エステル塩、多環フェニルエーテルポリエチレングリコールエーテル硫酸エステル塩、硫酸化脂肪酸エステル塩などが挙げられる。又、高級アルキルポリエチレングリコールエーテル硫酸エステル塩、アルキルベンゼンポリエチレングリコールエーテル硫酸エステル塩、多環フェニルエーテルポリエチレングリコールエーテル硫酸エステル塩におけるポリエチレンオキサイド鎖中の一部に、プロピレンオキサイドユニットをランダム又はブロック状に含有したものも用いることもできる。
 前記スルホン酸塩としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、多環フェニルエーテルスルホン酸塩、アルキルスルホン酸塩、α-オレフィンスルホン酸塩、α-スルホン化脂肪酸塩、ジアルキルスルホコハク酸塩などが挙げられる。
 特に、下記式(1)または(2)で表される疎水基を有するアニオン系界面活性剤が(D-1)成分としてさらに好ましく用いられる。
Figure JPOXMLDOC01-appb-C000002
 炭素繊維強化複合材料においては、炭素繊維とマトリックス樹脂との複合化により、優れた機械物性を発現することが望まれるので、マトリックス樹脂には、剛直性の点から、芳香族骨格を有するものが主に用いられ、炭素繊維用サイジング剤には、芳香族骨格を有する化合物を主成分として用いられることが多い。式(1)または(2)で表される疎水基は、芳香族系物質との親和性が高いため、(D-1)成分として、式(1)または(2)で表される疎水基を有するアニオン系界面活性剤を炭素繊維用サイジング剤に含有することにより、乳化状態が安定し、貯蔵性、炭素繊維製造時の製造・工程で良い結果をもたらす。また、サイジング剤とマトリックス樹脂との相溶性が向上し、本発明の効果、特に機械物性向上効果がさらに向上する。
 また、式(1)または(2)で表される疎水基を有するアニオン系界面活性剤は、外因性内分泌撹乱物質誘導体の拡散を防止する観点から、ノニルフェノール系や、オクチルフェノール系といった比較的長いアルキル基を有するフェノール基を有するアニオン系界面活性剤の使用を避けることが望まれてきていることからも好ましい。
 式(1)、(2)中、Rは、水素原子または炭素数1~3の1価の鎖状炭化水素基であり、水素原子または炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がさらに好ましく、外因性内分泌撹乱物質誘導体の観点から、水素原子がより好ましい。RおよびRは、水素原子または炭素数1~3の1価の鎖状炭化水素基であり、それぞれ同一であってもよく、異なっていてもよい。RおよびRの鎖状炭化水素基としては、Rの鎖状炭化水素基と同じものが挙げられる。Rは2価の脂肪族系炭化水素基であり、たとえば炭素数1~10の直鎖状または分岐状のアルキレン基等が挙げられる。mは正の整数を表し、1~3の整数が好ましく、1または2がより好ましい。mが3以下であれば、疎水基自体が嵩高い構造となることを容易に防ぐことができ、(A)成分や(B)成分、マトリックス樹脂との親和性、相溶性を良好にすることが容易である。その結果、乳化の安定性、樹脂含浸性、さらには繊維強化複合材料の機械物性等を良好にすることが容易である。下付き文字mが付された括弧内の基は、疎水基部の分子の嵩高さの点から、ベンジル基(RおよびRの両方が水素原子である基)あるいはスチレン基(RおよびRの一方が水素原子、他方がメチル基である基)であることが好ましい。また、mが2以上である場合、つまり下付き文字mが付された括弧内の基が複数存在する場合、それらの基は同じであってもよく、異なっていてもよい。
 また、(D)成分あるいは(D-1)成分としては市販品を用いることができる。ノニオン系界面活性剤としては、例えば日本乳化剤株式会社製の「ニューコール707」、「ニューコール723」、「ニューコール707-F」などが挙げられる。アニオン系界面活性剤((D-1)成分)としては、例えば日本乳化剤株式会社製の「ニューコール707-SF」、「ニューコール723-SF」、第一工業製薬株式会社製の「ハイテノールNF-13」、「ハイテノールNF-17」などが挙げられる(いずれも製品名)。
 (D-2)成分としては、特に限定はされないが、特に、反応活性低下作用が非常に優れることから、脂肪族系ノニオン系界面活性剤が好ましい。脂肪族ノニオン系界面活性剤としては、高級アルコールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、グリセロールの脂肪酸エステル、ソルビトールおよびソルビタンの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステルなどが挙げられる。これらエチレンオキサイド付加物においては、ポリエチレンオキサイド鎖中の一部にプロピレンオキサイドユニットをランダムあるいはブロック状に含有したタイプも好適に用いられる。
 高級アルコールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物としては、これらのポリエチレンオキサイド鎖中の一部にプロピレンオキサイドユニットをランダム又はブロック状に含有したものがより好ましい。なぜならば、これらはアンモニウムイオンのエポキシ基に対する反応活性を低下させる能力が優れているためである。脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物としては、モノエステルタイプのもの、ジエステルタイプさらにはトリエステル、テトラエステルタイプのものなども利用できる。
 また、(D-2)成分も市販品を用いることができ、例えば青木油脂株式会社製の「ファインサーフFON180E06(製品名)」が挙げられる。
 (D)成分の含有量は、サイジング剤が水中に分散した水分散液の安定性やサイジング剤のサイジング効果を勘案して適宜決定することができるが、目安としてサイズ剤100質量%中、5~30質量%が好ましく、10~25質量%がより好ましい。界面活性剤の含有量が5質量%以上であれば、サイジング剤が水中に分散した水分散液の安定性を良好にすることが容易であり、30質量%以下であれば、サイジング剤の効果を発現させることが容易である。
 ((D-1)成分および(D-2)成分の含有量)
 本発明のサイジング剤は、(D-1)成分と(D-2)成分とを含有する場合、(D-1)成分と(D-2)成分との含有量の比(質量比)が、(D-2)成分/(D-1)成分=1/10~1/5の範囲内であることが好ましい。
この比がこの範囲であると、(A)成分のエポキシ基に対する(D)成分由来のアンモニウムイオンの反応活性を容易に抑制でき、サイジング剤を付着させた炭素繊維の硬さの経時変化を著しく抑制することができ、また、水等を媒体としてサイジング剤を乳化させた際の乳化安定性や、サイジング処理された炭素繊維表面の、樹脂に対する濡れ性が向上するので好ましい。
 また、本発明のサイジング剤においては、(D-1)成分と(D-2)成分とを含有する場合には、全サイジング成分中に占める(D-1)成分および(D-2)成分の合計量の割合が10~25質量%であることが好ましい。上記範囲内であると、サイジング剤液の乳化安定性が非常によく、サイジング剤の効果を発揮することが容易である。(D-1)成分および(D-2)成分の合計量の更に好ましい下限値は13質量%であり、更に好ましい上限値は20質量%である。
 <炭素繊維用サイジング剤の水分散液>
 本発明の炭素繊維用サイジング剤の水分散液は、各成分を常法により混合、撹拌(乳化、水分散化)することにより1つの炭素繊維用サイジング剤の水分散液として得ることができ、あるいは別々に処理されて複数種の水分散液となったものを混合して1つの水分散液を得ることもできる。
 また、本発明の炭素繊維用サイジング剤の水分散液中のサイジング剤濃度(不揮発成分の濃度)、すなわちサイジング用水分散液中の揮発成分(サイジング後に乾燥除去される水など)以外の成分の濃度は、水が連続相として存在する濃度範囲であれば問題なく、通常10~50質量%程度の濃度になるように調整する。サイジング用水分散液の調製段階で濃度を10質量%未満としても問題はないが、サイジング用水分散液中の水の占める割合が大きくなり、サイジング用水分散液の調製から使用(炭素繊維のサイジング処理)までの間の運搬・保管などの面で不経済となる場合がある。そのため、サイジング用水分散液を使用する(炭素繊維のサイジング処理する)に際して、所望のサイズ剤付着量となるように、サイジング用水分散液を0.1~10質量%程度の低濃度水性液に希釈して、炭素繊維にサイズ剤を付着させる方法が一般的である。
 本発明の炭素繊維用サイジング剤の水分散液における分散粒子の体積基準の平均粒子径は、0.3μm以下とすることが好ましい。0.3μm以下であれば、炭素繊維用サイズ剤の水分散液の貯蔵安定性および炭素繊維用サイズ剤の水分散液の経時安定性を容易に確保できる。さらに、炭素繊維表面においてサイジング剤の付着斑が発生することを容易に防止でき、炭素繊維の耐擦過性を良好に維持することが容易であるので、サイジング処理後の炭素繊維の巻き取り工程や成型加工工程における毛羽発生が容易に防止でき、好ましい。なお、平均粒子径の下限には特に制限はない。なお、平均粒子径は、例えば、レーザー回折/散乱式の粒度分布測定装置で測定される。
また、本サイズ剤は溶剤に分散させても良い。
 (ポリウレタン(C)成分の水分散液)
 (C)成分としてポリウレタン樹脂を水分散体としたものを用いる場合、ポリウレタン樹脂の分散粒子の体積基準の平均粒子径は、0.2μm以下とすることが好ましい。ポリウレタン樹脂の分散粒子の体積基準の平均粒子径が0.2μm以下であれば、炭素繊維表面においてサイジング剤の付着斑の発生を容易に防止でき、炭素繊維の耐擦過性を良好に維持することが容易であるので、サイジング処理後の炭素繊維の巻き取り工程や成型加工工程における毛羽発生を容易に防止でき、好ましい。なお、平均粒子径の下限には特に制限はない。なお、平均粒子径は、例えば、レーザー回折/散乱式の粒度分布測定装置で測定される。
 ポリウレタン(C)成分の水分散液に使用するポリウレタン樹脂としては、各社からウレタン樹脂を水分散体とした製品が多く市販されており、上述したように、乾燥皮膜の引張伸び率が350%以上900%以下であるポリウレタン樹脂が水分散化され、水分散液におけるポリウレタン樹脂の粒子の体積基準の平均粒子径が、0.2μm以下であるものを選択することができる。例えば、三洋化成工業株式会社の「ユーコートUWS-145」、松本油脂製薬株式会社の「KP-2820」、第一工業製薬株式会社の「スーパーフレックス150HS」、「スーパーフレックス470」などが挙げられる(いずれも製品名)。また、乾燥皮膜の引張伸び率が上記範囲にあるポリウレタン水分散液として、三洋化成工業株式会社の「パーマリンUA-368」(製品名)が挙げられる。
 <炭素繊維用サイジング剤が付着した炭素繊維束(サイジング処理炭素繊維)>
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束に好適に用いることができる炭素繊維束は、ピッチ、レーヨンあるいはポリアクリロニトリルなどのいずれの原料物質から得られたものであってよく、高強度タイプ(低弾性率炭素繊維)、中高弾性炭素繊維又は超高弾性炭素繊維のいずれでもよい。炭素繊維用サイジング剤を付着させる方法は、例えば、ローラー浸漬法、ローラー接触法によりサイジング剤の分散液を炭素繊維に付着させ、乾燥する方法や、スプレーで直接炭素繊維束に吹き付ける方法によって行うことができるが、生産性、均一付着性の観点においては、ローラー浸漬法が好ましい。
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束におけるサイジング剤の付着量は、炭素繊維とサイジング剤の合計質量に対して0.6質量%以上3.0質量%以下であることが好ましく、1.0質量%以上2.4質量%以下であることがより好ましい。サイズ剤の付着量が0.6質量%以上であれば、炭素繊維表面全体をサイズ剤で覆いつくすことが容易になる。また、炭素繊維強化複合材料を製造する際にサイジング処理炭素繊維とマトリックス樹脂を混合させたときに、上述した界面樹脂層による柔軟性や靭性等の機能発現性を存分に発揮させることができる。一方、サイズ剤の付着量が3.0質量%以下であれば、炭素繊維表面にサイズ剤が多く堆積してサイジング処理炭素繊維が硬くなる結果としてサイジング処理炭素繊維の取り扱い性やマトリックス樹脂の含浸性が低下することを、容易に抑制できる。
 また、サイズ剤の付着量が上記範囲内であれば、炭素繊維強化複合材料において、マトリックス樹脂から界面樹脂層を介してサイジング処理炭素繊維に伝わる応力の伝達に不具合が生じて機械的特性が低下することを抑制できる。また、サイズ剤の付着量が上記範囲内であれば、炭素繊維の集束性や耐耐擦過性が優れたものになるとともに、マトリックス樹脂に対する濡れ性やマトリックス樹脂との間の界面接着力を十分に向上し、得られる炭素繊維強化複合材料に良好な力学的特性が備えられるようになる。
 なお、サイジング処理される炭素繊維のフィラメント数、繊維径、表面皺などにより炭素繊維束の集束性は変化する。本発明においては、サイジング剤における各成分の割合を調節したり、或いはサイジング剤の付着量を調節することによって、好適なカンチレバー値の範囲となるようにすることができる。サイジング剤の付着量は、サイジング処理におけるサイジング剤水分散液のサイジング剤濃度の調整や、絞り量調整によって調節することができる。
 (炭素繊維用サイジング剤が付着した炭素繊維束のサイジング剤付着量の測定)
 炭素繊維用サイジング剤が付着した炭素繊維束を秤量(W1)し、50リットル/分の窒素気流中、温度450℃に設定したマッフル炉(ヤマト科学株式会社製FP410)に15分間静置し、炭素繊維束に付着したサイジング剤を完全に熱分解させる。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)して、次式: 
サイジング剤の付着量(質量%)=[W1(g)-W2(g)]/[W1(g)]×100
より付着量を求める。
 炭素繊維用サイジング剤が付着した炭素繊維束の25℃におけるカンチレバー値は、200mm以上400mm以下であることが好ましい。25℃におけるカンチレバー値が200mm以上400mm以下にあると、該炭素繊維束からなる一方向強化織物を用いた各種成型加工の作業環境においても該織物の型崩れが生じにくく、例えば一方向強化織物に樹脂を含浸して得られる炭素繊維強化樹脂組成物を作成する際の作業環境に依らず、炭素繊維の直進性が保たれ易く、該炭素繊維強化樹脂組成物から得られる成型物(炭素繊維強化樹脂複合材料)の機械物性が、良好な力学的特性を示すものとなる。400mm以下であれば、該炭素繊維束の集束性が適度に保つことができ、該炭素繊維束の取り扱い性を良好にし、マトリックス樹脂の含浸性を良好にすることが容易である。25℃におけるカンチレバー値は、220mm以上380mm以下が好ましく、更に好ましくは240mm以上360mm以下である。
 本発明における炭素繊維用サイジング剤が付着した炭素繊維束の25℃におけるカンチレバー値は、以下の方法にて測定する。
 (炭素繊維束のカンチレバー値の測定)
 (手順1)サイジング剤が付着した炭素繊維束をボビンに巻き取る前に、長さ80cm程度に切断し、この炭素繊維束に0.04g/Texのおもりを取り付けて、25℃の空気雰囲気下で1時間吊り下げる。次に、この炭素繊維束の両端10cm程度を切断し、長さ70cm程度の試験用炭素繊維束を得る。試験用炭素繊維束は10本用意する。このとき、炭素繊維束の形状を崩さないように注意して作業を行う。
 (手順2)測定は25℃の空気雰囲気下で行う。水平面と、該水平面の一端(直線状)から下方に向かって傾斜する、傾斜角度が45度の斜面とを有する測定台の、前記水平面上に前記試験用炭素繊維束を載せ、該試験用炭素繊維束の端部(直線状)を前記斜面と前記水平面との境界線Aにあわせる。該試験用炭素繊維束の上に押さえ板を載せ、該押さえ板の端部(直線状)を前記境界線Aに合わせる。
 (手順3)次に押さえ板を斜面に向かう水平方向に2cm/秒の速さで移動させて、前記試験用炭素繊維束の端部が斜面と接触した時点で押さえ板の移動を停止させる。
 (手順4)手順3における押さえ板の移動距離を数値xとする。
 (手順5)次に試験用炭素繊維束を表裏かつ両端の位置を反転させて、手順2から4と同じ手順で移動距離yを得る。
 (手順6)数値xと数値yの平均値を炭素繊維束1本のカンチレバー値とし、さらに手順2から手順5の測定数を10回とした単純平均値をカンチレバー値とする。
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束は、上記サイジング剤が付与されていることによって、機械的摩擦などによる毛羽などが発生しにくく、また、樹脂の含浸性や接着性にも優れる。また、サイジング剤が前記(A)成分とともに(B)成分、(C)成分を含有することにより、本発明の炭素繊維用サイジング剤が付着した炭素繊維束とマトリックス樹脂とを複合化して炭素繊維強化樹脂組成物を製造した場合に、該炭素繊維強化樹脂組成物を用いて得られる成型物(繊維強化複合材料)の機械物性が、良好な力学的特性を示すものとなる。
 また、特に、上記サイジング剤が(E)成分を含有する場合、マトリックス樹脂と優れた相溶性を示す。そのため、サイジング処理された炭素繊維の樹脂に対する濡れ性が向上し、樹脂含浸性がさらに向上する。
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束は、製織等々の工程通過性に優れ、織布、一方向配列シートのシート状物に好適に加工することができる。特に製織においては、通常、炭素繊維は擦過により毛羽立ちやすいが、本発明の炭素繊維用サイジング剤が付着した炭素繊維束は、上記サイジング剤により著しく毛羽立ちを抑えることが可能となっている。また、引き抜き成形やフィラメントワインディング成形といったダイレクト成形にも好適である。前記炭素繊維束をテープ状に収束した形態とすることが容易であり、この場合は特に、液状樹脂で満たされた樹脂バスに浸漬させる工程で、樹脂のピックアップ量の制御が容易となり、加工工程後半での過剰樹脂の除去工程が簡略化でき、さらに繊維束内におけるフィラメントの乱れを小さくすることが可能となり、その結果成形品の機械的性能を高くすることが可能となる。
 <シート状物>
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束を含むシート状物は、上述したサイジング剤で処理された炭素繊維束を用いたことを特徴とするものであり、織布、一方向配列シート、不織布、マット等、これらを組み合わせたものが挙げられる。前記シート状物は、前記炭素繊維用サイジング剤が付着した炭素繊維束からなってもよいし、他の要素を含んでもよい。
 本発明のシート状物として、本発明の炭素繊維用サイジング剤が付着した炭素繊維束を一方向に引き揃えられたものが挙げられる。そのようなシート状物としては、単に一方向に一定間隔で引き揃えたもの、あるいはシート状物の幅方向にさらに緯糸を配する、あるいは前記緯糸として熱融着性繊維を用いて熱融着させて固定したもの、あるいは熱融着性のウェブあるいはネットをシート状物の表面に配する等の手段によりシート状物としたもの等が含まれる。特に本発明においては、本発明の炭素繊維用サイジング剤が付着した炭素繊維束を一方向に配列してなるシート状物が、(a)一方向に引き揃えた炭素繊維のシート状物の少なくとも一方の面に、炭素繊維と直行する方向に熱融着性繊維を所定の間隔で配置し熱融着したもの(以下、シート状物aという。)、あるいは(b)一方向に引き揃えた炭素繊維のシート状物の少なくとも一方の表面に、熱可塑性樹脂からなるあるいは熱可塑性樹脂で被覆されたネット状支持体、ウェブ状支持体などの融着性繊維布を熱融着したもの(以下、シート状物bという。)であることが好ましい。
 (シート状物a)
 シート状物aは、上記炭素繊維束を一方向に引き揃えシート状とし、強化繊維(炭素繊維)の巾方向に熱融着性繊維を配置し、加熱し、炭素繊維と熱融着することにより製造される。熱融着性繊維を配置する間隔は、3mm以上150mm以下が好ましく、より好ましくは3mm以上15mm以下である。配置する間隔が3mm以上であれば、シート状物の取り扱い性が良好であるとともに、炭素繊維の拘束が好適になり樹脂の含浸性を良好にすることが容易であり、また、150mm以下であれば、シート状物としての取り扱い性を良好にすることが容易である。
 (シート状物b)
 シート状物bは、炭素繊維束を一方向に引き揃え、シート状とし、その少なくとも一方の表面に室温以上の温度で溶融し接着性を示す熱可塑性樹脂あるいは熱可塑性樹脂で被覆されたネット状支持体、ウェブ状支持体などの熱融着性繊維布を熱融着することにより製造される。ネット状支持体のネットの目開きは、樹脂含浸性の観点からは広い方が好ましく目開き部分の多角形の一辺が1mm以上、その目開き面積が10mm以上のものが好ましい。一辺が2.5mm以上で、目開き面積が15mm以上であればより好ましい。一方、炭素繊維のほつれ防止、裁断時の取り扱い性の観点からは、目開きは小さい方が好ましく、一辺が20mm以下で目開き面積が500mm以下であることが好ましい。
 ウェブ状支持体とは、短繊維あるいは長繊維の絡み合ったシート状物である。ネット状あるいはウェブ状支持体の目付は、得られる成形物の機械特性、特に層間剪断強度保持及びシート状物の樹脂含浸性の点から、20g/m以下が好ましい。
 (織物)
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束からなるシート状物は、さらに本発明の炭素繊維用サイジング剤が付着した炭素繊維束を織糸として用いた織物であっても良い。前記織物は橋梁、橋脚、建造物の柱等の補強用シート材用途にも用いられ得る。前記織物の織り組織は特に限定はされず、平織り、綾織り、朱子織りの他、これら原組織を変化させたものでもよい。また、緯、経糸共に本発明の炭素繊維用サイジング剤が付着した炭素繊維束でもよく、また他の炭素繊維(束)あるいは炭素繊維以外の繊維(束)との混織でもよい。炭素繊維以外の繊維としては、ガラス繊維、チラノ繊維、SiC繊維などの無機繊維、アラミド、ポリエステル、ポリプロピレン、ポリアミド、アクリル、ポリイミド、ビニロンなどの有機繊維などがある。
 なかでも、取り扱い性、樹脂含浸性を良好にする為に、本発明の炭素繊維用サイジング剤が付着した炭素繊維(束)を経糸として、経糸より低い引張弾性率の繊維を緯糸とする織物が好ましい。経糸より低い引張弾性率の繊維を緯糸として用いた場合には、経糸が長手方向に蛇行しにくく、補強用シートとして織物を用いた場合十分に強度を発現できるので好ましい。
 さらに、炭素繊維以外の繊維は、2種以上からなる複合繊維でもよい。特に融点差が50℃以上ある2種の繊維からなる複合系は特に優れている。高融点繊維は本来の緯糸として機能し、一方、低融点繊維は製織後に経糸と緯糸とを一体化し優れた取り扱い性を付与する。
 炭素繊維以外の繊維は、補強用シートとしての強度発現性の観点から、緯線は細い方が好ましく、1m当たりの質量が0.1g以下のものが望ましい。緯糸間隔は3~15mmが望ましい。間隔が3mm以上の場合、経糸の長手方向における蛇行を抑制することが容易であり、良好な強度発現性を容易に得ることができる。一方、間隔が15mm以下の場合、シート状物としての取り扱い性を良好にすることが容易である。より好ましい緯線の間隔は4mm以上10mm以下である。
 (炭素繊維強化樹脂組成物、シート状物を含む複合材)
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束および本発明のシート状物は、マトリックス樹脂と複合化され、一方向プリプレグ、クロスプリプレグ、トウプレグ、短繊維強化樹脂含浸シート、短繊維マット強化樹脂含浸シートなどの形態で、炭素繊維強化樹脂組成物を構成することができる。マトリックス樹脂としては、特に限定されるものではないが、例えば、エポキシ樹脂、ラジカル重合系樹脂であるアクリル樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、熱可塑性アクリル樹脂、さらにはフェノール樹脂などが挙げられる。
 炭素繊維強化樹脂組成物は、本発明の炭素繊維用サイジング剤が付着した炭素繊維束もしくは本発明のシート状物に、上記マトリックス樹脂を含浸させることにより製造できる。このような炭素繊維強化樹脂組成物の製造方法としては、通常行われている方法を採用することができる。例えば、ホットメルト法、溶剤法、シラップ法、又はシートモールドコンパウンド(SMC)などに用いられる増粘樹脂法などの方法を挙げることができる。
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束もしくは本発明のシート状物を用いた炭素繊維強化樹脂組成物は、前記サイジング処理炭素繊維が強化材として用いられているため、マトリックス樹脂として、エポキシ樹脂やアクリル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などのラジカル重合系樹脂、さらにはフェノール樹脂などとの含浸性に優れ、炭素繊維とマトリックス樹脂の界面接着力が強く、良好な力学的特性を示すものとすることができる。
 <炭素繊維束を含む引抜成型複合材>
 本発明の炭素繊維用サイジング剤が付着した炭素繊維束を用いた引抜成型複合材は、棒状材、あるいは板状材として、どちらでも使用することができる。棒状材は、炭素繊維束にマトリックス樹脂を含浸した後、ダイスまたは金型を用いて成形し、その後加熱硬化させることにより製造することができる。また、板状材についても、炭素繊維束にマトリックス樹脂を含浸した後、金型を用いて成形し、加熱硬化させることにより製造することができる。マトリックス樹脂としては、特に限定されるものではないが、例えば、エポキシ樹脂、ラジカル重合系樹脂であるアクリル樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、熱可塑性アクリル樹脂、さらにはフェノール樹脂などが挙げられる。
 なお、引抜成型複合材やシート状物を含む複合材が、熱硬化性マトリックス樹脂を含むことが好ましい。また引抜成型複合材の引張強度が5000MPa以上6000MPa以下であることが好ましい。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれによって限定されるものではない。
 (水分散液中の分散粒子の平均粒子径)
 炭素繊維用サイジング剤の水分散液平均粒子径は、濃厚系粒径アナライザー(大塚電子株式会社製、製品名:FPAR-1000)によって測定した。
 (サイジング処理工程通過性)
 後述する熱風乾燥処理からボビンに巻き取るまでの工程において、毛羽の発生が無く、工程間のロールへの繊維の巻き付きが無い場合を○、毛羽の発生が有る、あるいは工程間のロールへの繊維の巻き付きがある場合を×としてサイジング処理工程通過性を評価した。
 (表面状態の観察)
 また、本発明の炭素繊維用サイジング剤が付着した炭素繊維の表面状態を走査型電子顕微鏡(日本電子株式会社製、製品名:JEOL JSM-6390)を用いて、加速電圧5kV、倍率2500倍で観察した。サイジング剤の付着斑が観察されない場合を○、サイジング剤の付着斑が観察された場合を×で評価した。
 (一方向のシート状物の作成)
 本発明のサイジング剤が付着した炭素繊維束を2.5mm間隔300mm巾で、目板及び櫛を用いて一方向に引き揃え、その両表面にガラス繊維(引張弾性率72.5GPa)と低融点ナイロン繊維(マルチフィラメント、融点125℃)の交絡糸(0.03g/m)を片面当たり25mm間隔(シートとしては12.5mm間隔で両表面に交互に緯線は配置される)で配置して熱プレスにより180℃で熱融着させることにより一方向のシート状物とした。
 (一方向シート状物の剛軟度測定:45°カンチレバー法)
 前記一方向のシート状物から、幅(炭素繊維束の繊維軸方向に垂直な方向)の寸法を約2.5cm(前記サイジング剤が付着した炭素繊維束が6本含まれるように)、長さ(繊維軸方向)の寸法を約15cmとして、5枚採取し、試験片としたこと以外は、JIS L1096に記載される剛軟性試験A法(45°カンチレバー法)に従って、前記一方向シート状物の剛軟度を測定した。なお、JIS L1096に記載される剛軟性試験A法(45°カンチレバー法)に記載されているような試料横方向の測定は行わない。
 (一方向シート状物の複合材の作成)
 前記一方向のシート状物に、エポキシ樹脂(コニシ社製、製品名:E2500S)の主剤と硬化剤とを、主剤100質量部、硬化剤50質量部の比率で混合したものを含浸させ、室温にて7日間、静置状態で硬化させて一方向のシート状物の複合材を得た。
 (一方向シート状物の複合材の引張強度評価)
 前記複合材を用いて、JIS A 1191(試験片形状A形)に準拠して、引張強度を測定した。引張強度は、得られた一方向のシート状物の複合材の繊維体積含有率Vfを用いて、繊維体積含有率100%に換算した。なお、一方向のシート状物の複合材の繊維体積含有率Vfは下記式: 
一方向のシート状物の複合材の繊維体積含有率(Vf)
=一方向のシート状物の理論厚み(mm)÷一方向のシート状物の複合材から得た試験片の厚み(mm)
=[一方向のシート状物の目付(g/m)÷炭素繊維束の密度(g/m)]÷一方向のシート状物の複合材から得た試験片の厚み(mm)
を用いて得た。
 (織布の作成)
 本発明のサイジング剤が付着した炭素繊維束を使用し、緯糸(5本/インチ(2.54cm))と、経糸(5本/インチ(2.54cm))で炭素繊維目付315g/mの平織クロス(織布)を織成した。
 (織布の樹脂含浸性評価と織布複合材の作成)
 前記織布を、幅300mm、長さ300mmの大きさで5枚ずつ二組切り出し、液状のビニルエステル樹脂VE1を一方の組の5枚に、また不飽和ポリエステル樹脂UP1をもう一方の組の5枚に塗布することにより樹脂を含浸させた。繊維体積含有率(Vf)は40%程度であった。ここで、VE1およびUP1はそれぞれ下記のものである。
「VE1」:ネオポール8260(製品名。日本ユピカ社製)と、パーメックN(製品名。日本油脂株式会社製)と、6質量%ナフテン酸コバルト液とを、ネオポール8260/パーメックN/6質量%ナフテン酸コバルト=100/1/0.5(質量比)で混合したもの。
「UP1」:ユピカ4521PT(製品名。日本ユピカ社製)と、パーメックN(製品名。日本油脂株式会社製)とを、ユピカ4521PT/パーメックN=100/1(質量比)で混合したもの。
 このとき、上記織布へ樹脂を塗布する工程での樹脂含浸性について、樹脂液を織布表層に塗布した際の、樹脂の織布への入り込みの速さと、表層における泡立ち(樹脂と織布内の空気との置換により表層に泡が出てくる)とを観察し、◎:泡立ちが非常に多く、樹脂吸い込みが非常に早い、○:泡立ちがあり、樹脂吸い込み良好、×:泡立ちがあまりなく、樹脂吸い込み緩慢、の基準で評価した。
 樹脂含浸性の評価を行った後の樹脂を含浸させた織布を5枚重ね、下記に示す硬化条件での加熱を行うことにより樹脂を硬化させ、厚さ2mm程度の織布の複合材を作製した。
「VE1の硬化条件」:60℃で2時間、次いで80℃で2時間、次いで120℃で2時間加熱した。
「UP1の硬化条件」:室温で1晩放置し、次いで60℃で2時間、次いで80℃で2時間、次いで120℃で2時間加熱した。
 なお、織布複合材の繊維体積含有率Vfは、前述の、一方向シート状物複合材と同様の手法で算出できる。
 (織布複合材の曲げ強度測定)
 前記織布複合材について、積層板の機械的特性の一般的な評価法であるASTM-D-790に準拠して曲げ試験を行い、曲げ強度を求めた。ここで、織物積層板の評価は、圧子と試験片のサンプルとの間にフィルムを入れ、応力集中による破壊が生じないように実施した。
 [実施例1]
 (1.サイジング剤の調製)
 ミキサー(特殊機化工業(株)製、製品名:ハイビスディスパーミックス、ホモミキサー仕様:型式3D-5型)を用い、以下の手順で、転相乳化することでサイジング剤を調製した。
 (C)成分としては、表1の実施例1の欄(各成分の詳細は表4に示す)に示した水分散体の状態にある(C)成分を、120℃、2時間乾燥し、水分を蒸発除去したものを用いた。
 表1の実施例1の欄に示す種類と配合量の、(D)成分以外の成分を、120℃にてプラネタリーミキサーとホモミキサーで混練、混合した。その後、混練しながら90℃とし、引き続き、(D)成分の水溶液を少量ずつ添加した。この工程で、内容物の粘度は徐々に上昇した。(D)成分の水溶液を全て投入した後、10分間、混練しながら60℃とした。次に、脱イオン水を少量ずつ滴下して転相点を通過した後、滴下する水量を増加した。最終的にサイジング剤濃度40質量%程度のサイジング剤水分散液を得た。なお、表1~3において、サイジング剤の組成は質量部で示してある。ただし、水分散体もしくは水溶液の形態で入手した成分については、水を除いた質量部を示してある。
 (2-1.サイジング処理炭素繊維の製造)
 以下の手順で炭素繊維用サイジング剤が付着した炭素繊維を製造した。内部に浸漬ローラーを有する浸漬槽内に、上記サイジング剤の水分散液を満たし、該水分散液中に、サイジング剤を付与していない炭素繊維束(三菱レイヨン株式会社製、製品名:パイロフィルTR50S、フィラメント数12000本、ストランド強度5,000MPa、ストランド弾性率242GPa、繊維密度1.81g/cm)を浸漬した。その後、熱風乾燥することによってサイジング剤が付着した炭素繊維束を得た。なお、炭素繊維束はボビンに巻き取った。この際、熱風乾燥処理からボビンに巻き取るまでの工程の観察し、サイジング処理工程通過性の評価を行ったところ、毛羽・巻き付きともに発生がなく、非常に安定していた。また、サイジング剤の炭素繊維への付着量、及びサイジング剤が付着した炭素繊維束のカンチレバー値を、上記した方法により測定した。その結果を表1に示す。なお、上記したようにカンチレバー値測定用の炭素繊維束は、ボビンに巻き取る前に採取した。
 また、炭素繊維用サイジング剤が付着した炭素繊維の表面状態の観察からは、サイジング剤の付着斑は観察されなかった。その結果を表1に示す。
 (3-1.一方向のシート状物)
 上記2-1で得たサイジング剤が付着した炭素繊維束を2.5mm間隔300mm巾で、目板及び櫛を用いて一方向に引き揃え、その両表面にガラス繊維(引張弾性率72.5GPa)と低融点ナイロン繊維(マルチフィラメント、融点125℃)の交絡糸(0.03g/m)を片面当たり25mm間隔(シートとしては12.5mm間隔で両表面に交互に緯線は配置される)で配置して熱プレスにより180℃で熱融着させることにより一方向のシート状物を得た。また、得られた一方向シート状物の剛軟度を、上記した方法により測定した。その結果を表1に示す。
 (3-2.一方向のシート状物とエポキシ樹脂との複合材)
 後述する室温硬化型エポキシ樹脂EP1を調製し、上記3-1で得た一方向のシート状物に含浸させ、室温にて7日間、静置状態で硬化させて一方向のシート状物の複合材を得た。なお、室温硬化型エポキシ樹脂EP1は、エポキシ樹脂(コニシ社製、製品名:E2500S)の主剤と硬化剤とを、主剤100質量部、硬化剤50質量部の比率で混合したものである。
 さらに、得られた一方向のシート状物の複合材について、前述の一方向のシート状物の複合材の引張強度評価を行った。その結果を表1に示す。
 (4-1.織布の作製)
 上記2-1で得たサイジング剤が付着した炭素繊維束を使用し、緯糸(5本/インチ(2.54cm))と、経糸(5本/インチ(2.54cm))で炭素繊維目付315g/mの平織クロス(織布)を織成した。
 (4-2.織布とラジカル重合系樹脂との複合材)
 上記4-1で得た織布を、幅300mm、長さ300mmの大きさで5枚ずつ二組切り出し、液状のビニルエステル樹脂VE1を一方の組の5枚に、また不飽和ポリエステル樹脂UP1をもう一方の組の5枚に塗布することにより樹脂を含浸させた。繊維体積含有率(Vf)は40%程度であった。ここで、VE1およびUP1は前述のものである。
このとき、上記織布へ樹脂を塗布する工程での樹脂含浸性について、前述の基準で評価したところ、泡立ちがあり、樹脂吸い込みは良好であった。その結果を「樹脂含浸性」として表1に示す。
 樹脂含浸性の評価を行った後の樹脂を含浸させた織布を5枚重ね、下記に示す硬化条件での加熱を行うことにより樹脂を硬化させ、厚さ2mm程度の織布の複合材を作製した。
「VE1の硬化条件」:60℃で2時間、次いで80℃で2時間、次いで120℃で2時間加熱した。
「UP1の硬化条件」:室温で1晩放置し、次いで60℃で2時間、次いで80℃で2時間、次いで120℃で2時間加熱した。
 なお、織布複合材の繊維体積含有率Vfは、前述の一方向シート状物複合材と同様の手法で算出した。
 (4-3.織布とラジカル重合系樹脂との複合材の曲げ強度評価)
 上記4-2で得た織布とラジカル重合系樹脂との複合材について、前述の織布の複合材の曲げ強度評価を行った。その結果を表1に示す。
 [実施例2]
 (C)成分を表1の実施例2の欄に示したものとした以外は、実施例1と同様の方法でサイジング剤の水分散液を調製し、これを用いた炭素繊維のサイジング処理を行い、サイジング剤が付着した炭素繊維束を得、これを用いたシート状物、及び織布の作成、評価を実施した。なお、(C)成分は、実施例1同様、水分散体の状態で入手したものを、乾燥して用いた。結果を表1に示す。
 [実施例3~17]
 各例において、(C)成分としてポリウレタン樹脂が水分散化されたものをそのまま使用した。すなわち、表1もしくは表2の実施例3~17の欄にそれぞれに示したサイズ剤の組成の内、(C)成分以外の成分を用いて実施例1と同様の方法でサイジング剤の水分散液を調製した後、この(C)成分を含まないサイジング剤の水分散液に、(C)成分としてポリウレタン樹脂が水分散化されたものを混合して、サイジング剤水分散液を得た。それ以外は実施例1と同様にして、炭素繊維のサイジング処理を行い、サイジング剤が付着した炭素繊維束を得、これを用いたシート状物、及び織布の作成、評価を実施した。結果を表1もしくは表2に示す。
 [実施例18]
 実施例3で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行い、サイジング剤の付着量を1.6質量%とした。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、これを用いたシート状物、及び織布の作成、評価を実施した。結果を表2に示す。
 [実施例19]
 実施例3で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行い、サイジング剤の付着量を0.8質量%とした。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、これを用いたシート状物、及び織布の作成、評価を実施した。結果を表2に示す。
 [実施例20]
 サイジング処理する炭素繊維束を下記2-2のものとし、実施例1で得たサイジング剤の水分散液を用いて炭素繊維束のサイジング処理を行った。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、サイジング剤が付着した炭素繊維束について、実施例1と同様の評価を行った。結果を表2に示す。
 (2-2.サイジング剤が付着していない炭素繊維束)
 サイジング剤が付着していない炭素繊維束として、パイロフィルTRH50(製品名、三菱レイヨン株式会社製、フィラメント数18000本、ストランド強度5,600MPa、ストランド弾性率256GPa、繊維密度1.82g/m)を用いた。
 (5-1.引抜成型複合材)
 上記2-2のサイジング剤が付着していない炭素繊維束に前記サイジング剤を付着させた炭素繊維束34本(投入本数:34本)を使用し、図1に示したような成形工程により、引抜成形を実施して引抜成型複合材を得た。サイジング剤が付着した炭素繊維束Fはそれぞれクリール1から巻き出し、ガイドロール2を介してシート状に配列された。その後、サイジング剤が付着した炭素繊維束Fをレジンバス3内において後述する熱硬化性樹脂EP2に浸漬し、同樹脂を付着させてから、ガイドバー4により擦過させて同樹脂をサイジング剤が付着した炭素繊維束Fに含浸させると共に、過剰の樹脂をある程度除去した。更に、プレートに多数の貫通孔5aが形成された孔あきガイド5の各孔5aにそれぞれ一本のサイジング剤が付着した炭素繊維束Fを通過させ、過剰の樹脂をある程度絞り取ってから、直径6mmの円形断面をなす引抜通路6aをもつ引抜成形用金型6へと導入し、最終的に過剰な樹脂を除去した。引抜成形用金型6の金型温度は200℃、成形速度は0.25m/分とした。
 ここで、引抜成型に用いた熱硬化性樹脂EP2は下記のものである。
「EP2」:主剤(ナガセケムテック社製、製品名:XNR6830)と、硬化剤(ナガセケムテック社製、製品名:XNH6830(M))と、内部離型剤(AXEL社製、製品名:モールドウィズINT-1846N2)とを、主剤/硬化剤/内部離型剤=100/100/0.75の質量比で混合したもの。
 (5-2.引抜成型複合材の引張強度評価)
 上記5-1で得られた引抜成型物の引張強度を土木学会の「定着用膨張材を用いた引張試験方法」に従って測定を実施した。引張強度は、得られた引抜成型物の繊維体積含有率Vfを用いて、繊維体積含有率100%に換算した。その結果を表2に示す。なお、引抜成型物の繊維体積含有率(%)は下記式を用いて得た。
引抜成型物の繊維体積含有率Vf=(繊維束目付け×投入本数÷繊維密度)÷[(引抜成型物外径÷2)×3.1416]×100
なお、引抜成型物外径は、引抜成型物の長手方向に垂直な方向の外径を、マイクロメーターを用い、6ヶ所測定し、その平均値を用いた。また、上式中の繊維束目付は投入した炭素繊維束34本の内の12本の繊維束測定を行い、その平均値を用いた。繊維密度は前記パイロフィルTRH50の繊維密度である。
 [実施例21]
 サイジング処理する炭素繊維束を上記2-2のものとし、実施例2で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行った。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、サイジング剤が付着した炭素繊維束について、実施例1と同様の評価を実施した。また、得られたサイジング剤が付着した炭素繊維束を用いて実施例20と同様に引抜成型複合材の作成、およびその評価を実施した。結果を表2に示す。
 [実施例22]
 サイジング処理する炭素繊維束を上記2-2のものとし、実施例3で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行った。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、サイジング剤が付着した炭素繊維束について、実施例1と同様の評価を実施した。また、得られたサイジング剤が付着した炭素繊維束を用いて実施例20と同様に引抜成型複合材の作成、およびその評価を実施した。結果を表2に示す。
 [実施例23]
 サイジング処理する炭素繊維束を上記2-2のものとし、実施例12で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行った。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、サイジング剤が付着した炭素繊維束について、実施例1と同様の評価を実施した。また、得られたサイジング剤が付着した炭素繊維束を用いて実施例20と同様に引抜成型複合材の作成、およびその評価を実施した。結果を表2に示す。
 [実施例24]
 サイジング処理する炭素繊維束を上記2-2のものとし、実施例13で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行った。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、サイジング剤が付着した炭素繊維束について、実施例1と同様の評価を実施した。また、得られたサイジング剤が付着した炭素繊維束を用いて実施例20と同様に引抜成型複合材の作成、およびその評価を実施した。結果を表2に示す。
 [比較例1~10]
 各例において、サイジング剤の組成を表3の比較例1~10の欄に示したものとし、(C)成分としてポリウレタン樹脂が水分散化されたものをそのまま使用した。すなわち、表3の比較例1~10の欄にそれぞれに示したサイズ剤の組成の内、(C)成分以外の成分を用いて実施例1と同様の方法でサイジング剤の水分散液を調製した後、この(C)成分を含まないサイジング剤の水分散液に、(C)成分としてポリウレタン樹脂が水分散化されたものを混合してサイジング剤水分散液を得た。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、これを用いたシート状物、及び織布の作成、評価を実施した。結果を表3の比較例1~10の欄に示す。
 [比較例11]
 サイジング処理する炭素繊維束を上記2-2のものとし、比較例9で得たサイジング剤の水分散液を用いて炭素繊維のサイジング処理を行った。それ以外は実施例1と同様にして、サイジング剤が付着した炭素繊維束を得、サイジング剤が付着した炭素繊維束について評価を行った。また、得られた本発明のサイジング剤が付着した炭素繊維束を用いて実施例20と同様に引抜成型複合材の作成、およびその評価を実施した。結果を表3に示す。
 表1~3に示す成分はそれぞれ表4に詳細を示すものである。ウレタンアクリレートオリゴマーの硬化物の引張伸び率及びガラス転移温度(Tg)、及びポリウレタンエマルジョンの粒子径、乾燥皮膜の引張り強度、乾燥皮膜の引張り伸び率、及びガラス転移温度についてはカタログ値を採用した。
 表3中のA1~A2およびE1~E3は、より詳細には、それぞれ、下記の手順で得られた合成品である。
 (A)成分、片末端アクリル酸変性ジグリシジルエーテルビスフェノールA
 ここで、A1~A2において、(A)成分として有効なハーフエステル成分は1/2であり、残り1/2は未反応物とジエステル物である。表1~3に示すA1~A2の配合量は、ハーフエステル成分、未反応物およびジエステル物の総量を表している。したがってハーフエステルとしての有効成分量は、表1~3の配合量の1/2である。すなわち、サイジング剤中の(A)成分の含有量を計算する際には、表に示されるA1およびA2の配合量の半分の値を用いる。ただし、全サイジング成分の量には、上記ハーフエステル成分の配合量だけでなく上記未反応物およびジエステル物の配合量も含まれる。すなわち、全サイジング成分の量を計算するためには、表に示されるA1およびA2の配合量の値を用いる。
 A1:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製、製品名:JER828)378質量部に対し、アクリル酸86質量部、ハイドロキノン1質量部、リチウムクロリド1質量部を加え、100℃で加熱反応させて得た、JER828/JER828片末端アクリル変性エポキシ樹脂(ハーフエステル)/JER828両末端アクリル変性エポキシ樹脂(ジエステル)の混合質量比1/2/1の混合物。
 A2:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製、製品名:JER834)1000質量部に対し、アクリル酸86質量部、ハイドロキノン1質量部、リチウムクロリド1質量部を加え、100℃で加熱反応させて得た、JER834/JER834片末端アクリル変性エポキシ樹脂(ハーフエステル)/JER834両末端アクリル変性エポキシ樹脂(ジエステル)の混合質量比1/2/1の混合物。
 (E)成分、ポリエステルの製法
 E1:ビスフェノールA1モル部に対してPO(プロピレンオキサイド)3モル部が付加したビスフェノールAのPO付加物(三洋化成工業株式会社製、製品名:ニューポールBP-3P)800質量部、フマル酸278質量部(アルコール/酸=1/1.2モル比)及びテトライソポプロポキシチタネート1質量部を、ガラス反応容器中、窒素流通下180℃で-0.1MPa(ゲージ圧)まで減圧し水を留去しながら10時間反応させて得た。
 E2:ビスフェノールA1モル部に対してPO3モル部が付加したビスフェノールAのPO付加物(三洋化成工業株式会社製、製品名:ニューポールBP-3P)400質量部、フマル酸139質量部(アルコール/酸=1/1.2モル比)及びテトライソポプロポキシチタネート1質量部を、ガラス反応容器中、窒素流通下180℃で水を留去しながら10時間反応させた。更にビスフェノールA1モル部に対してEO(エチレンオキサイド)10モル部が付加したビスフェノールAのEO付加物(三洋化成工業株式会社製、製品名:ニューポールBPE-100)668質量部を加えて180℃で-0.1MPa(ゲージ圧)まで減圧し水を留去しながら10時間反応させて得た。
 E3:ビスフェノールA1モル部に対してPO3モル部が付加したビスフェノールAのPO付加物(三洋化成工業株式会社製、製品名:ニューポールBP-3P)800質量部、フマル酸232質量部(アルコール/酸=1/1モル比)及びテトライソポプロポキシチタネート1質量部を、ガラス反応容器中、窒素流通下180℃で水を留去しながら10時間反応させた。更にビスフェノールA1モル部に対してEO10モル部が付加したビスフェノールAのEO付加物(三洋化成工業株式会社製、製品名:ニューポールBPE-100)668質量部を加えて180℃で-0.1MPa(ゲージ圧)まで減圧し水を留去しながら10時間反応させて得た。
 上記結果に示すように、実施例1~24のサイジング剤を付与した場合の炭素繊維束は、サイジング処理後の熱風乾燥処理からボビンに巻き取るまでの工程における毛羽立ち、ロールへの巻き付きもなく、工程通過性は非常に安定したものであり、またこの炭素繊維束を用いて作製した成型物(一方向炭素繊維シート状物複合材、織布複合材、引抜成型複合材)は、いずれも、良好な物性を有していた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
1  補強繊維の供給部
2  ガイドロール
3  レジンバス
4  ガイドバー
5  孔あきガイド
6  引抜成形用金型
6a 引抜通路
F  補強繊維(炭素繊維束)

Claims (16)

  1.  分子中に複数個のエポキシ基を有するエポキシ化合物と不飽和一塩基酸とのエステルであって、分子中に少なくとも1つのエポキシ基を有する化合物(A)と、
    硬化物の引張伸び率が40%以上の2官能タイプのウレタンアクリレートオリゴマー(B)と、
    乾燥皮膜の引張伸び率が350%以上900%以下であるポリウレタン樹脂(C)と
    を含有し、
    前記化合物(A)と前記ウレタンアクリレートオリゴマー(B)との含有量の質量比が、ウレタンアクリレートオリゴマー(B)/化合物(A)の比として、1/3以上2/1以下であり、
    全サイジング成分中に占める前記化合物(A)および前記ウレタンアクリレートオリゴマー(B)の合計量の割合が20質量%以上であり、
    かつ全サイジング成分中に占める前記ポリウレタン樹脂(C)の割合が、5質量%以上50質量%以下である炭素繊維用サイジング剤。
  2.  前記ポリウレタン樹脂(C)の乾燥皮膜の引張強度が10MPa以上50MPa以下である請求項1に記載の炭素繊維用サイジング剤。
  3.  前記ポリウレタン樹脂(C)のガラス転移温度が-50℃以上35℃以下である請求項1または2に記載の炭素繊維用サイジング剤。
  4.  ビスフェノール類のアルキレンオキシド付加物とジカルボン酸化合物とのエステルであって、その酸価が50以上であるエステル化合物(E)をさらに含み、
    前記エステル化合物(E)の含有量が、前記化合物(A)および前記ウレタンアクリレートオリゴマー(B)の合計量の2.0質量倍以下である請求項1~3のいずれか一項に記載の炭素繊維用サイジング剤。
  5.  さらに、界面活性剤(D)として、アンモニウムイオンを対イオンとして有するアニオン系界面活性剤(D-1)と、ノニオン系界面活性剤(D-2)とを含有し、
    前記アニオン系界面活性剤(D-1)と前記ノニオン系界面活性剤(D-2)との含有量の質量比が、ノニオン系界面活性剤(D-2)/アニオン系界面活性剤(D-1)の比として、1/10以上1/5以下の範囲内であり、
    全サイジング成分中に占める前記アニオン系界面活性剤(D-1)および前記ノニオン系界面活性剤(D-2)の合計量の割合が10質量%以上25質量%以下である請求項1~4のいずれか一項に記載の炭素繊維用サイジング剤。
  6.  請求項1~5のいずれかに記載の炭素繊維用サイジング剤が水中に分散した水分散液であって、水分散液中のサイジング剤の分散粒子の平均粒子径が0.3μm以下である炭素繊維用サイジング剤の水分散液。
  7.  前記ポリウレタン樹脂(C)成分が、水分散液中の分散粒子の平均粒子径が0.2μm以下であるポリウレタン樹脂の水分散液の形で混合されてなる請求項6に記載の炭素繊維用サイジング剤の水分散液。
  8.  請求項1~5のいずれか一項に記載の炭素繊維用サイジング剤が付着した炭素繊維からなる炭素繊維束であって、該サイジング剤の付着量が0.6質量%以上3.0質量%以下である炭素繊維束。
  9.  請求項6または7に記載の炭素繊維用サイジング剤の水分散液で処理された、該サイジング剤が付着した炭素繊維からなる炭素繊維束であって、サイジング剤の付着量が0.6質量%以上3.0質量%以下である炭素繊維束。
  10.  25℃におけるカンチレバー値が200mm以上400mm以下にある請求項8または9に記載の炭素繊維束。
  11.  請求項8~10のいずれか一項に記載の炭素繊維束を含む引抜成型複合材。
  12.  熱硬化性マトリックス樹脂を含む請求項11に記載の引抜成型複合材。
  13.  引張強度が5000MPa以上6000MPa以下である請求項11または12に記載の引抜成型複合材。
  14.  請求項8~10のいずれか一項に記載の炭素繊維束を含むシート状物。
  15.  請求項14に記載のシート状物を含む複合材。
  16.  熱硬化性マトリックス樹脂を含む請求項15に記載の複合材。
PCT/JP2012/071018 2011-08-22 2012-08-21 炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材 WO2013027708A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/240,161 US9862824B2 (en) 2011-08-22 2012-08-21 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle applied with sizing agent, sheet-like article comprising carbon fiber bundle, and carbon fiber reinforced composite material
JP2012539133A JP5497908B2 (ja) 2011-08-22 2012-08-21 炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材
EP12826136.9A EP2749690B1 (en) 2011-08-22 2012-08-21 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
KR1020137034114A KR101557568B1 (ko) 2011-08-22 2012-08-21 탄소섬유용 사이징제, 그의 수분산액, 사이징제가 부착된 탄소섬유속, 시트상물, 및 탄소섬유 강화 복합재
CN201280040587.8A CN103748281B (zh) 2011-08-22 2012-08-21 碳纤维用上浆剂、其水分散液、附着有上浆剂的碳纤维束、片状物及碳纤维强化复合材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-180696 2011-08-22
JP2011180696 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027708A1 true WO2013027708A1 (ja) 2013-02-28

Family

ID=47746447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071018 WO2013027708A1 (ja) 2011-08-22 2012-08-21 炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材

Country Status (7)

Country Link
US (1) US9862824B2 (ja)
EP (1) EP2749690B1 (ja)
JP (1) JP5497908B2 (ja)
KR (1) KR101557568B1 (ja)
CN (1) CN103748281B (ja)
TW (1) TWI475142B (ja)
WO (1) WO2013027708A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562697A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种用于碳纤维束丝力学性能测试制样的胶液配方
US20150225548A1 (en) * 2012-08-06 2015-08-13 Daicel Polymer Ltd. a corporation Thermoplastic resin composition
JP2016172834A (ja) * 2015-03-18 2016-09-29 三菱レイヨン株式会社 炭素繊維強化熱可塑性プラスチック、電気・電子機器用筐体
JP2017155358A (ja) * 2016-03-01 2017-09-07 日立化成株式会社 炭素繊維シート、複合材料及び複合材料の製造方法
EP3059340A4 (en) * 2013-10-18 2017-09-27 Mitsubishi Gas Chemical Company, Inc. Commingled yarn, method for producing same, and textile
WO2020027126A1 (ja) * 2018-08-02 2020-02-06 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
CN112679717A (zh) * 2020-12-04 2021-04-20 吉林乾仁新材料有限公司 一种多用途自乳化阴离子型不饱和聚酯碳纤维上浆剂的制备方法及其产品和应用
CN115012213A (zh) * 2022-07-08 2022-09-06 陈宗良 芳纶上浆液及制备方法与芳纶复合材料及制备方法
JP7248852B1 (ja) 2022-09-05 2023-03-29 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液
JP7248851B1 (ja) 2022-09-05 2023-03-29 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液
JP7405637B2 (ja) 2019-03-01 2023-12-26 三洋化成工業株式会社 繊維用集束剤、繊維束、繊維製品及び成形体
JP7429268B2 (ja) 2021-08-27 2024-02-07 臺灣塑膠工業股▲ふん▼有限公司 炭素繊維用サイジング剤

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016641B1 (fr) * 2014-01-22 2020-02-21 Arkema France Procede d'impregnation pour un substrat fibreux fonctionnel, sirop monomere liquide pour le procede d'impregnation, sa methode de polymerisation et article structurel obtenu
KR101683345B1 (ko) * 2014-11-08 2016-12-07 주식회사 효성 탄소섬유용 사이징제, 및 이를 이용하여 제조된 탄소섬유
JP5967334B1 (ja) * 2015-01-21 2016-08-10 東レ株式会社 サイジング剤塗布炭素繊維束およびその製造方法、プリプレグおよび炭素繊維強化複合材料
HUE053399T2 (hu) * 2015-11-05 2021-06-28 Mitsubishi Chem Corp Folyamatos szénszálas köteg, lemez formázó vegyület és szálerõsített kompozit anyag, amelyet ennek felhasználásával formázunk
CN106596228B (zh) * 2016-12-30 2023-05-16 哈尔滨天顺化工科技开发有限公司 一种用于评价碳纤维应用物理性能的束纱装置
MX2019008543A (es) * 2017-02-24 2019-09-11 Toray Industries Haz de fibras de carbono recubiertas con encolado, composicion de resina termoplastica, cuerpo moldeado, metodo para la fabricacion del haz de fibras de carbono recubiertas con encolado y metodo para la fabricacion del cuerpo moldeado.
CN106884330B (zh) * 2017-03-24 2019-07-26 东华大学 一种乳液型碳纤维用上浆剂及其制备方法和应用
ES2891979T3 (es) * 2017-08-24 2022-02-01 Byk Chemie Gmbh Composición que comprende fibras de carbono y un agente aditivo
CN111183019B (zh) * 2017-09-28 2022-03-29 可隆工业株式会社 芳纶织物、芳纶织物制备方法、芳纶织物预浸料、芳纶织物/热塑性聚氨酯基体树脂复合物
KR102196283B1 (ko) * 2018-10-29 2020-12-30 한국화학연구원 자가치유성 폴리에스터를 포함한 복합소재, 이를 포함한 실시간 이온 센서, 및 웨어러블 기기
CN110130109A (zh) * 2019-04-17 2019-08-16 镇江市高等专科学校 一种新型碳纤维用上浆剂
CN111748262A (zh) * 2020-06-01 2020-10-09 宁波宏坤交通科技有限公司 一种水性环氧地坪涂料及其制备方法
CN111979775B (zh) * 2020-07-24 2022-05-27 福建创立佳科技有限公司 一种芳纶纤维复合材料用表面上浆剂的制备方法
CN114507990A (zh) * 2020-11-17 2022-05-17 洛阳尖端技术研究院 碳纤维复合装饰膜及其制备方法
CN113355916B (zh) * 2021-06-22 2022-09-06 江苏恒神股份有限公司 碳纤维集束剂、缠绕成型用碳纤维束及其制备方法和应用
US20230087214A1 (en) * 2021-09-22 2023-03-23 Hao-Chia WU Method for splitting carbon fiber tow

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352796A (en) 1976-10-19 1978-05-13 Sanyo Chemical Ind Ltd Surface treating resin composition for carbon fiber and composite carbon fiber material containing said treated fiber
JPS5715229B2 (ja) 1973-10-01 1982-03-29
JPH0441779A (ja) * 1990-06-04 1992-02-12 Asahi Chem Ind Co Ltd サイジングされた炭素繊維
JPH07197381A (ja) 1993-12-28 1995-08-01 Toho Rayon Co Ltd 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JPH09250087A (ja) * 1996-03-11 1997-09-22 Toho Rayon Co Ltd 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JP2002506414A (ja) * 1998-06-04 2002-02-26 オウェンス コーニング コンポジッツ エスピーアールエル 繊維用の高溶解度サイズ剤組成物
JP2005320641A (ja) * 2004-05-06 2005-11-17 Toray Ind Inc サイジング剤、炭素繊維および炭素繊維強化複合材料
JP2007131959A (ja) 2005-11-09 2007-05-31 Teijin Techno Products Ltd 熱可塑性樹脂強化用炭素繊維ストランドの製造方法
JP2007231441A (ja) 2006-02-28 2007-09-13 Teijin Techno Products Ltd 熱可塑性樹脂強化用炭素繊維ストランド
JP2008095241A (ja) 2006-10-12 2008-04-24 Mitsubishi Rayon Co Ltd 炭素繊維用サイジング剤、サイジング処理炭素繊維、シート状物
WO2011092962A1 (ja) * 2010-01-28 2011-08-04 ディーエイチ・マテリアル株式会社 炭素繊維用サイジング剤、炭素繊維、及びその製造方法、ならびに、炭素繊維を含む成形材料及び成形品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541215B2 (ja) 1973-03-08 1980-10-22
US6025073A (en) 1997-06-04 2000-02-15 N.V. Owens-Corning S.A. High solubility size composition for fibers
US6262160B1 (en) 1999-02-10 2001-07-17 Nippon Bee Chemical Co., Ltd Water base adhesion promotor for polypropylene and method for coating to polypropylene materials using the promotor
TW591157B (en) 2001-05-25 2004-06-11 Mitsubishi Rayon Co Sizing agent for carbon fiber, its water dispersing solution, carbon fiber with sizing handling, sheet matter with using the carbon fiber and carbon fiber reinforced composite
CN1261637C (zh) * 2001-07-31 2006-06-28 三菱丽阳株式会社 碳纤维用上浆剂、使用该上浆剂的碳纤维上浆方法、上浆剂处理过的碳纤维和使用该碳纤维的编织物
JP4270810B2 (ja) * 2002-06-03 2009-06-03 三菱レイヨン株式会社 チョップド炭素繊維束の製造方法
US20100280151A1 (en) * 2009-05-04 2010-11-04 Toray Industries, Inc. Toughened fiber reinforced polymer composite with core-shell particles
EP2444438B1 (en) * 2009-06-15 2020-03-18 Zeon Corporation Polymerizable composition, resin molded body, and laminate
CN101736593B (zh) * 2010-01-08 2011-11-30 哈尔滨工业大学 一种碳纤维用水性环氧树脂上浆剂的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715229B2 (ja) 1973-10-01 1982-03-29
JPS5352796A (en) 1976-10-19 1978-05-13 Sanyo Chemical Ind Ltd Surface treating resin composition for carbon fiber and composite carbon fiber material containing said treated fiber
JPH0441779A (ja) * 1990-06-04 1992-02-12 Asahi Chem Ind Co Ltd サイジングされた炭素繊維
JPH07197381A (ja) 1993-12-28 1995-08-01 Toho Rayon Co Ltd 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JPH09250087A (ja) * 1996-03-11 1997-09-22 Toho Rayon Co Ltd 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JP2002506414A (ja) * 1998-06-04 2002-02-26 オウェンス コーニング コンポジッツ エスピーアールエル 繊維用の高溶解度サイズ剤組成物
JP2005320641A (ja) * 2004-05-06 2005-11-17 Toray Ind Inc サイジング剤、炭素繊維および炭素繊維強化複合材料
JP2007131959A (ja) 2005-11-09 2007-05-31 Teijin Techno Products Ltd 熱可塑性樹脂強化用炭素繊維ストランドの製造方法
JP2007231441A (ja) 2006-02-28 2007-09-13 Teijin Techno Products Ltd 熱可塑性樹脂強化用炭素繊維ストランド
JP2008095241A (ja) 2006-10-12 2008-04-24 Mitsubishi Rayon Co Ltd 炭素繊維用サイジング剤、サイジング処理炭素繊維、シート状物
WO2011092962A1 (ja) * 2010-01-28 2011-08-04 ディーエイチ・マテリアル株式会社 炭素繊維用サイジング剤、炭素繊維、及びその製造方法、ならびに、炭素繊維を含む成形材料及び成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749690A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150225548A1 (en) * 2012-08-06 2015-08-13 Daicel Polymer Ltd. a corporation Thermoplastic resin composition
EP3059340A4 (en) * 2013-10-18 2017-09-27 Mitsubishi Gas Chemical Company, Inc. Commingled yarn, method for producing same, and textile
US11236446B2 (en) 2013-10-18 2022-02-01 Mitsubishi Gas Chemical Company, Inc. Commingled yarn, method for manufacturing the commingled yarn, and, weave fabric
CN104562697A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种用于碳纤维束丝力学性能测试制样的胶液配方
JP2016172834A (ja) * 2015-03-18 2016-09-29 三菱レイヨン株式会社 炭素繊維強化熱可塑性プラスチック、電気・電子機器用筐体
JP2017155358A (ja) * 2016-03-01 2017-09-07 日立化成株式会社 炭素繊維シート、複合材料及び複合材料の製造方法
JP7350745B2 (ja) 2018-08-02 2023-09-26 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
WO2020027126A1 (ja) * 2018-08-02 2020-02-06 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
JPWO2020027126A1 (ja) * 2018-08-02 2021-08-10 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
TWI764025B (zh) * 2018-08-02 2022-05-11 日商三洋化成工業股份有限公司 纖維用集束劑組成物、纖維束、纖維製品及複合材料
JP7405637B2 (ja) 2019-03-01 2023-12-26 三洋化成工業株式会社 繊維用集束剤、繊維束、繊維製品及び成形体
CN112679717B (zh) * 2020-12-04 2023-06-27 吉林乾仁新材料有限公司 一种多用途自乳化阴离子型不饱和聚酯碳纤维上浆剂的制备方法及其产品和应用
CN112679717A (zh) * 2020-12-04 2021-04-20 吉林乾仁新材料有限公司 一种多用途自乳化阴离子型不饱和聚酯碳纤维上浆剂的制备方法及其产品和应用
JP7429268B2 (ja) 2021-08-27 2024-02-07 臺灣塑膠工業股▲ふん▼有限公司 炭素繊維用サイジング剤
CN115012213A (zh) * 2022-07-08 2022-09-06 陈宗良 芳纶上浆液及制备方法与芳纶复合材料及制备方法
CN115012213B (zh) * 2022-07-08 2024-05-07 陈宗良 芳纶上浆液及制备方法与芳纶复合材料及制备方法
JP7248852B1 (ja) 2022-09-05 2023-03-29 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液
JP7248851B1 (ja) 2022-09-05 2023-03-29 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液
JP2024035896A (ja) * 2022-09-05 2024-03-15 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液
JP2024035893A (ja) * 2022-09-05 2024-03-15 三洋化成工業株式会社 繊維用集束剤組成物及び繊維用集束剤溶液

Also Published As

Publication number Publication date
CN103748281B (zh) 2016-01-20
EP2749690A4 (en) 2015-04-22
JPWO2013027708A1 (ja) 2015-03-19
CN103748281A (zh) 2014-04-23
US9862824B2 (en) 2018-01-09
KR101557568B1 (ko) 2015-10-05
KR20140012759A (ko) 2014-02-03
US20140256855A1 (en) 2014-09-11
EP2749690B1 (en) 2019-11-06
TWI475142B (zh) 2015-03-01
JP5497908B2 (ja) 2014-05-21
TW201313985A (zh) 2013-04-01
EP2749690A1 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5497908B2 (ja) 炭素繊維用サイジング剤、その水分散液、サイジング剤の付着した炭素繊維束、シート状物、および炭素繊維強化複合材
JP3860169B2 (ja) 炭素繊維用サイジング剤、その水分散液、サイジング処理された炭素繊維、該炭素繊維を使用したシート状物、及び炭素繊維強化複合材料
JP4101750B2 (ja) 炭素繊維用サイズ剤、その水分散液、サイジング処理された炭素繊維、該炭素繊維を使用したシート状物、及び炭素繊維強化複合材料
JP2016160549A (ja) 炭素繊維用サイジング剤、炭素繊維束、シート状基材及び炭素繊維強化複合材
JP4887209B2 (ja) 炭素繊維用サイズ剤、その水分散液、炭素繊維、及び炭素繊維強化複合材料
JP6565937B2 (ja) 連続炭素繊維束、シートモールディングコンパウンドおよびそれを用いて成形する繊維強化複合材料
JP4866701B2 (ja) 炭素繊維用サイジング剤、サイジング処理炭素繊維、シート状物
JPWO2007060833A1 (ja) 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
JP2012246583A (ja) 一方向強化織物とその製造方法、これを用いたプリプレグおよび炭素繊維複合材料
JP4558149B2 (ja) 炭素繊維用サイズ剤、炭素繊維のサイジング方法、サイジング処理された炭素繊維並びにそれを含むシート状物及び繊維強化複合材料
JP2012007280A (ja) 炭素繊維束及びその製造方法、ならびにそれからの成形品
JP2005320641A (ja) サイジング剤、炭素繊維および炭素繊維強化複合材料
JP4058297B2 (ja) 炭素繊維用サイズ剤
JP4887208B2 (ja) 炭素繊維用サイズ剤、その水分散液、炭素繊維、及び炭素繊維強化複合材料
JP2014162999A (ja) 炭素繊維束、およびそれを用いた炭素繊維強化複合材料
JP2020147876A (ja) 炭素繊維用サイジング剤、その水分散液、サイジング剤付着炭素繊維、及び炭素繊維強化複合材料の製造方法。
CN117795153A (zh) 强化纤维用上浆剂及其用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012539133

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14240161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE