US20150225548A1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
US20150225548A1
US20150225548A1 US14/420,196 US201314420196A US2015225548A1 US 20150225548 A1 US20150225548 A1 US 20150225548A1 US 201314420196 A US201314420196 A US 201314420196A US 2015225548 A1 US2015225548 A1 US 2015225548A1
Authority
US
United States
Prior art keywords
thermoplastic resin
sizing agent
polyurethane
resin composition
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/420,196
Inventor
Toshihiro Tai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Polymer Ltd
Original Assignee
Daicel Polymer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50067999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150225548(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daicel Polymer Ltd filed Critical Daicel Polymer Ltd
Assigned to DAICEL POLYMER LTD. reassignment DAICEL POLYMER LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAI, TOSHIHIRO
Publication of US20150225548A1 publication Critical patent/US20150225548A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a thermoplastic resin composition capable of providing a molded article having good electromagnetic shielding property and mechanical strength, a production method thereof, and a molded article obtained from the composition described above.
  • Resin compositions in which carbon fibers or metal-coated carbon fibers are blended with a thermoplastic resin for obtaining an electromagnetic shielding property, are known.
  • the carbon fibers are used in a state in which they are bundled using a sizing agent in terms of a handling property.
  • JP-B 4505081 describes an invention of an aromatic polycarbonate resin composition containing (A) 100 parts by weight of a specific aromatic polycarbonate, and (B) 3 to 100 parts by weight of carbon fibers, which contain an organic substance (a sizing agent) having at least one of a urethane resin and an epoxy resin in a deposition amount of 1 to 8% by weight.
  • Example (paragraph number 0061) Examples of a sizing agent are listed in paragraph 0027, and it is described that, in Example (paragraph number 0061), carbon fibers are subjected to a bundling treatment with either a mixture of an epoxy compound and a urethane compound, or an epoxy compound.
  • JP-A 2006-45385 describes an invention of an electromagnetic wave-shielding thermoplastic resin composition. It is described that, in paragraph number 0017, metal-coated carbon fibers, which are bundled by various sizing agents, are used, and, in paragraph number 0020, an epoxy resin and a urethane resin are preferable as the sizing agent.
  • Example (paragraph number 0036), an aqueous emulsion of a urethane resin is used as the sizing agent.
  • the present invention provides a thermoplastic resin composition capable of providing a molded article having particularly high electromagnetic shielding property by using a specific sizing agent, a production method thereof, and a molded article obtained from the resin composition.
  • thermoplastic resin composition containing:
  • thermoplastic resin containing a polycarbonate resin (A) 50 to 95% by mass of a thermoplastic resin containing a polycarbonate resin
  • the sizing agent containing the polyurethane has a tensile elongation (JIS K-7113) of 500% or more.
  • the present invention also relates to a method for producing the thermoplastic resin composition described above, containing the step of:
  • thermoplastic resin containing a polycarbonate resin with a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, wherein the component (B) is contained as the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane.
  • the present invention also relates to a method for producing the thermoplastic resin composition described above, containing the step of:
  • thermoplastic resin containing a polycarbonate resin with a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, wherein
  • the component (B) is contained in the state in which the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane, is loosened.
  • the present invention also relates to a molded article obtained by molding the thermoplastic resin composition described above.
  • the present invention also relates to the molded article described above used for a product required to have an electromagnetic shielding property, a product containing the molded article described above and being required to have an electromagnetic shielding property, or use of the molded article described above for a product, which is required to have an electromagnetic shielding property.
  • thermoplastic resin composition of the present invention have an excellent electromagnetic shielding property.
  • FIG. 1 is a schematic view showing a dispersion state of carbon fibers in a molded article obtained from a composition of the present invention.
  • FIG. 2 is a schematic view showing a dispersion state of carbon fibers in a molded article obtained from a composition of a prior art.
  • the component (A) used in the present invention may be a polycarbonate resin alone or a mixture of the polycarbonate resin and another thermoplastic resin.
  • the polycarbonate resin is a known one.
  • a resin obtained by reacting a bivalent phenol with a carbonate ester in a melting method can be used, and resins described in JP-B 4505081 and JP-A 2006-45385 can also be used.
  • the other thermoplastic resin may include styrene resins (polystyrene, an AS resin, an ASB resin, and the like), olefin resins such as polyethylene or polypropylene, polyphenylene sulfide resins, polymethacrylate, polyamide resins, polyester resins, polysulfone resins (PSF), polyacetal, polyether ether ketone (PEEK), polyether imide (PEI), polyether sulfone (PES), polyamide imide (PAI), polyimide (PI), and the like.
  • styrene resins polystyrene, an AS resin, an ASB resin, and the like
  • olefin resins such as polyethylene or polypropylene
  • polyphenylene sulfide resins polymethacrylate
  • polyamide resins polyester resins
  • PEEK polysulfone resins
  • PEEK polyether imide
  • PES polyether sulfone
  • the content of the polycarbonate resin is preferably from 50 to 95% by mass, more preferably from 70 to 90% by mass.
  • the component (B) is a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, or carbon fibers in the state in which the carbon fiber bundle described above is loosened.
  • the carbon fiber bundle which is bundled by the sizing agent containing the polyurethane, is used as a raw material for the production, when melt-kneaded with the component (A), the bundle turns into the carbon fibers in the state in which the carbon fiber bundle described above is loosened.
  • Carbon fibers are known one. Pitch carbon fiber and PAN carbon fiber can be used, and, for example, carbon fibers described in JP-B 4505081 and JP-A 2006-45385 can be used.
  • the sizing agent containing the polyurethane has a tensile elongation (JIS K 7113) of 500% or more, preferably 700% or more.
  • products can be used which are selected from products of VONDIC (trade name), VONDIC (trade name) 2200 series, Hydran (trade name) HW series, Hydran AP series, Hydran ADS, and Hydran (trade name) CP series, which are commercially available from DIC Corporation, and satisfy the tensile elongation described above.
  • the component (B) can be produced by coating the carbon fiber bundle with an emulsion including the sizing agent containing the polyurethane, and drying it.
  • the component (B) it is preferable to contain the sizing agent, which contains the polyurethane, in an amount of 0.1 to 10 parts by mass, based on 100 parts by mass of the carbon fibers, more preferably 1 to 5 parts by mass.
  • the content ratio of the component (A) and the component (B) is:
  • component (A) in the case of the component (A), from 50 to 95% by mass, preferably from 60 to 90% by mass, more preferably from 65 to 80% by mass;
  • component (B) in the case of the component (B), from 5 to 50% by mass, preferably from 10 to 40% by mass, more preferably from 20 to 35% by mass.
  • composition of the present invention may contain, within a range where the problems of the present invention can be solved, various organic or inorganic fillers, thermal stabilizers, light-stabilizers, antistatic agents, antioxidants, flame retardants, mold-releasing agents, foaming agents, antibacterials, nucleating agents, coloring agents, plasticizers, and the like.
  • composition of the present invention can be produced by adopting
  • thermoplastic resin containing the polycarbonate resin with the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane;
  • thermoplastic resin containing the polycarbonate resin with the carbon fiber bundle, which bundled by the sizing agent containing the polyurethane.
  • the component (B) is contained as the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane.
  • the component (B) is. contained in the state in which the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane, is loosened.
  • Methods in which the components are mixed in a mixer can be applied to the production method (I).
  • melt-kneading is performed in a melt-kneader (a single screw extruder, a vent-type twin screw extruder, or the like), and pelletizing is performed in a pelletizing device (a pelletizer, or the like) can be applied to the production method (II).
  • the molded article of the present invention obtained by molding the thermoplastic resin composition described above in a mold processing machine into a desired shape.
  • the molded article, obtained from the resin composition of the present invention, has an electromagnetic shielding property higher than that of a prior art product. The reason can be thought as described below. Referring to FIG. 1 and FIG. 2 , the explanation is made.
  • FIG. 1 it can be assumed that when the composition of the present invention is melt-kneaded, carbon fibers 1 exist in the state in which they are intertwined with each other (the state in which they attracted to each other) by the action of the sizing agent 2 , because the sizing agent having a tensile elongation of 500% or more is used. Therefore, it can be considered that the carbon fibers 1 exist in a high density, and thus the electromagnetic shielding property is enhanced when formed into a molded article.
  • An arrow in FIG. 1 shows a passage showing conductivity caused by contact of the carbon fibers with each other.
  • the sizing agent 2 has no elongation enough to intertwine the carbon fibers 1 with each other (enough to attract them to each other) and the carbon fibers 1 exist in the state in which they are dispersed from each other (the state of the low dispersion density), and thus the electromagnetic shielding property is low when formed into a molded article, because the sizing agent whose tensile elongation level is not particularly considered (a sizing agent having a tensile elongation remarkably lower than that of the sizing agent used in the component (B) in the present invention) is used.
  • the molded article of the present invention can be used as a product which is required to have the electromagnetic shielding property, and is preferable, for example, as housings of various electric and electronic instruments generating electromagnetic waves, and the like.
  • Carbon fibers (CF) (T700SC-24K-50E manufactured by Toray Industries, Inc.) were washed with acetone, and dried.
  • PC polycarbonate resin
  • TEX 30 twin screw extruder manufactured by The Japan Steel Works, LTD.
  • 2260 NE a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation 1940 NE: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation HW-920: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation HW-930: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
  • AP-30 a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation AP-40 F: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
  • UWS-145 a self-emulsifying type polyurethane emulsion manufactured by Sanyokasei Co., Ltd
  • CP-7060 a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
  • the sizing agents in Examples are distinguished from the sizing agents in Comparative Example in the tensile elongation.
  • a flow starting temperature and a stress at breaking point are shown in Table 1 in order to specifically show polyurethane used in each emulsion, but they are not necessary to exhibit the effects of the present invention.
  • a near field electric field/magnetic field shielding property was determined in a KEC method within a frequency range of 0.1 MHz to 100 MHz. The higher the numeric value, the better the electromagnetic shielding property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

To provide a thermoplastic resin composition capable of providing a molded article having a good electromagnetic shielding property. A thermoplastic resin composition containing: (A) 50 to 95% by mass of a thermoplastic resin containing a polycarbonate resin; and (B) 5 to 50% by mass of a carbon fiber bundle which is bundled by a sizing agent containing polyurethane, or of carbon fibers in the state in which the carbon fiber bundle is loosened, wherein the sizing agent containing the polyurethane has a tensile elongation (JIS K-7113) of 500% or more.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a thermoplastic resin composition capable of providing a molded article having good electromagnetic shielding property and mechanical strength, a production method thereof, and a molded article obtained from the composition described above.
  • BACKGROUND OF THE INVENTION
  • Resin compositions, in which carbon fibers or metal-coated carbon fibers are blended with a thermoplastic resin for obtaining an electromagnetic shielding property, are known.
  • The carbon fibers are used in a state in which they are bundled using a sizing agent in terms of a handling property.
  • JP-B 4505081 describes an invention of an aromatic polycarbonate resin composition containing (A) 100 parts by weight of a specific aromatic polycarbonate, and (B) 3 to 100 parts by weight of carbon fibers, which contain an organic substance (a sizing agent) having at least one of a urethane resin and an epoxy resin in a deposition amount of 1 to 8% by weight.
  • Examples of a sizing agent are listed in paragraph 0027, and it is described that, in Example (paragraph number 0061), carbon fibers are subjected to a bundling treatment with either a mixture of an epoxy compound and a urethane compound, or an epoxy compound.
  • JP-A 2006-45385 describes an invention of an electromagnetic wave-shielding thermoplastic resin composition. It is described that, in paragraph number 0017, metal-coated carbon fibers, which are bundled by various sizing agents, are used, and, in paragraph number 0020, an epoxy resin and a urethane resin are preferable as the sizing agent.
  • In Example (paragraph number 0036), an aqueous emulsion of a urethane resin is used as the sizing agent.
  • SUMMARY OF THE INVENTION
  • The present invention provides a thermoplastic resin composition capable of providing a molded article having particularly high electromagnetic shielding property by using a specific sizing agent, a production method thereof, and a molded article obtained from the resin composition.
  • The present invention provides a thermoplastic resin composition containing:
  • (A) 50 to 95% by mass of a thermoplastic resin containing a polycarbonate resin; and
  • (B) 5 to 50% by mass of a carbon fiber bundle which is bundled by a sizing agent containing polyurethane, or of carbon fibers in the state in which the carbon fiber bundle is loosened, wherein
  • the sizing agent containing the polyurethane has a tensile elongation (JIS K-7113) of 500% or more.
  • The present invention also relates to a method for producing the thermoplastic resin composition described above, containing the step of:
  • mixing a thermoplastic resin containing a polycarbonate resin with a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, wherein the component (B) is contained as the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane.
  • The present invention also relates to a method for producing the thermoplastic resin composition described above, containing the step of:
  • melt-kneading a thermoplastic resin containing a polycarbonate resin with a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, wherein
  • the component (B) is contained in the state in which the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane, is loosened.
  • The present invention also relates to a molded article obtained by molding the thermoplastic resin composition described above.
  • The present invention also relates to the molded article described above used for a product required to have an electromagnetic shielding property, a product containing the molded article described above and being required to have an electromagnetic shielding property, or use of the molded article described above for a product, which is required to have an electromagnetic shielding property.
  • Molded articles obtained from the thermoplastic resin composition of the present invention have an excellent electromagnetic shielding property.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic view showing a dispersion state of carbon fibers in a molded article obtained from a composition of the present invention.
  • FIG. 2 is a schematic view showing a dispersion state of carbon fibers in a molded article obtained from a composition of a prior art.
  • DETAILED DESCRIPTION OF THE INVENTION Thermoplastic Resin Composition
  • The component (A) used in the present invention may be a polycarbonate resin alone or a mixture of the polycarbonate resin and another thermoplastic resin.
  • The polycarbonate resin is a known one. For example, a resin obtained by reacting a bivalent phenol with a carbonate ester in a melting method can be used, and resins described in JP-B 4505081 and JP-A 2006-45385 can also be used.
  • The other thermoplastic resin may include styrene resins (polystyrene, an AS resin, an ASB resin, and the like), olefin resins such as polyethylene or polypropylene, polyphenylene sulfide resins, polymethacrylate, polyamide resins, polyester resins, polysulfone resins (PSF), polyacetal, polyether ether ketone (PEEK), polyether imide (PEI), polyether sulfone (PES), polyamide imide (PAI), polyimide (PI), and the like.
  • When the component (A) is the mixture of the polycarbonate resin and the other thermoplastic resin, the content of the polycarbonate resin is preferably from 50 to 95% by mass, more preferably from 70 to 90% by mass.
  • The component (B) is a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, or carbon fibers in the state in which the carbon fiber bundle described above is loosened.
  • Although the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane, is used as a raw material for the production, when melt-kneaded with the component (A), the bundle turns into the carbon fibers in the state in which the carbon fiber bundle described above is loosened.
  • Carbon fibers are known one. Pitch carbon fiber and PAN carbon fiber can be used, and, for example, carbon fibers described in JP-B 4505081 and JP-A 2006-45385 can be used.
  • The sizing agent containing the polyurethane has a tensile elongation (JIS K 7113) of 500% or more, preferably 700% or more.
  • As such a sizing agent containing the polyurethane, products can be used which are selected from products of VONDIC (trade name), VONDIC (trade name) 2200 series, Hydran (trade name) HW series, Hydran AP series, Hydran ADS, and Hydran (trade name) CP series, which are commercially available from DIC Corporation, and satisfy the tensile elongation described above.
  • The component (B) can be produced by coating the carbon fiber bundle with an emulsion including the sizing agent containing the polyurethane, and drying it.
  • In the component (B), it is preferable to contain the sizing agent, which contains the polyurethane, in an amount of 0.1 to 10 parts by mass, based on 100 parts by mass of the carbon fibers, more preferably 1 to 5 parts by mass.
  • The content ratio of the component (A) and the component (B) is:
  • in the case of the component (A), from 50 to 95% by mass, preferably from 60 to 90% by mass, more preferably from 65 to 80% by mass; and
  • in the case of the component (B), from 5 to 50% by mass, preferably from 10 to 40% by mass, more preferably from 20 to 35% by mass.
  • The composition of the present invention may contain, within a range where the problems of the present invention can be solved, various organic or inorganic fillers, thermal stabilizers, light-stabilizers, antistatic agents, antioxidants, flame retardants, mold-releasing agents, foaming agents, antibacterials, nucleating agents, coloring agents, plasticizers, and the like.
  • <Method for Producing Thermoplastic Resin Composition>
  • The composition of the present invention can be produced by adopting
  • (I) a production method containing the step of mixing the thermoplastic resin containing the polycarbonate resin with the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane; or
  • (II) a production method containing the step of melt-kneading the thermoplastic resin containing the polycarbonate resin with the carbon fiber bundle, which bundled by the sizing agent containing the polyurethane.
  • In the thermoplastic resin composition, obtained by adopting the production method (I), the component (B) is contained as the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane.
  • In the thermoplastic resin composition, obtained by adopting the production method (II), the component (B) is. contained in the state in which the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane, is loosened.
  • Methods in which the components are mixed in a mixer (a tumbler, a V-blender, a Henschel mixer, a Nauta mixer, a ribbon mixer, a mechanochemical apparatus, an extrusion mixer, or the like) can be applied to the production method (I).
  • Methods in which after pre-mixing is performed using the method described above, melt-kneading is performed in a melt-kneader (a single screw extruder, a vent-type twin screw extruder, or the like), and pelletizing is performed in a pelletizing device (a pelletizer, or the like) can be applied to the production method (II).
  • <Molded Article>
  • The molded article of the present invention obtained by molding the thermoplastic resin composition described above in a mold processing machine into a desired shape.
  • The molded article, obtained from the resin composition of the present invention, has an electromagnetic shielding property higher than that of a prior art product. The reason can be thought as described below. Referring to FIG. 1 and FIG. 2, the explanation is made.
  • As shown in FIG. 1, it can be assumed that when the composition of the present invention is melt-kneaded, carbon fibers 1 exist in the state in which they are intertwined with each other (the state in which they attracted to each other) by the action of the sizing agent 2, because the sizing agent having a tensile elongation of 500% or more is used. Therefore, it can be considered that the carbon fibers 1 exist in a high density, and thus the electromagnetic shielding property is enhanced when formed into a molded article. An arrow in FIG. 1 shows a passage showing conductivity caused by contact of the carbon fibers with each other.
  • On the other hand, as shown in FIG. 2, it can be considered that in the composition of the prior art, the sizing agent 2 has no elongation enough to intertwine the carbon fibers 1 with each other (enough to attract them to each other) and the carbon fibers 1 exist in the state in which they are dispersed from each other (the state of the low dispersion density), and thus the electromagnetic shielding property is low when formed into a molded article, because the sizing agent whose tensile elongation level is not particularly considered (a sizing agent having a tensile elongation remarkably lower than that of the sizing agent used in the component (B) in the present invention) is used.
  • The molded article of the present invention can be used as a product which is required to have the electromagnetic shielding property, and is preferable, for example, as housings of various electric and electronic instruments generating electromagnetic waves, and the like.
  • EXAMPLES Examples and Comparative Examples
  • Carbon fibers (CF) (T700SC-24K-50E manufactured by Toray Industries, Inc.) were washed with acetone, and dried.
  • Next, 100 parts by mass of the carbon fibers were coated with a sizing agent (emulsion type) shown in Table 1, and then they were dried in an oven at 100° C. for 3 hours. After that, the fibers were cut into a length of 4 mm, which were used as the component (B).
  • Using a polycarbonate resin (PC) (Iupilon H 3000 F manufactured by Mitsubishi Engineering-Plastics Corporation) as the component (A), and the carbon fiber bundles as the component (B), they were kneaded in a twin screw extruder (TEX 30 manufactured by The Japan Steel Works, LTD.), and the kneaded product was supplied to a pelletizer, thereby obtaining pellets of the composition.
  • Using the obtained pellets, injection molding was performed under conditions described below to obtain a square plate of 120 mm×120 mm×2 mm.
  • Injection molding machine: Type: SH 100-NIV manufactured by Sumitomo Heavy Industries Co., Ltd.
    Injection speed: 8.5 cm/second
    Screw cross-section of screw: 10.2 cm2
    Gate size: 2 mm×7 mm (the minimum cross-section=0.14 cm2)
    Injection rate: 86.7 cm3/second
    Gate passing line speed: 619 cm/sec
  • <Sizing Agent Used> (Sizing Agent in Example)
  • 2260 NE: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
    1940 NE: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
    HW-920: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
    HW-930: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
  • (Sizing Agent in Comparative Example)
  • AP-30: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
    AP-40 F: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
    UWS-145: a self-emulsifying type polyurethane emulsion manufactured by Sanyokasei Co., Ltd
    CP-7060: a self-emulsifying type polyurethane emulsion manufactured by DIC Corporation
  • The sizing agents in Examples are distinguished from the sizing agents in Comparative Example in the tensile elongation. A flow starting temperature and a stress at breaking point are shown in Table 1 in order to specifically show polyurethane used in each emulsion, but they are not necessary to exhibit the effects of the present invention.
  • <Measurement of sizing agent>
  • (1) Flow starting temperature (° C.): Measurement was performed in accordance with JIS K-7210.
  • (2) Stress at breaking point (MPa): A sizing agent was coated on a glass plate, which was dried at 100° C. for 3 hours to produce a coating film having a thickness of 50 microns. The measurement was performed in accordance with JIS K-7113.
  • (3) Tensile elongation (%): A sizing agent was coated on a glass plate, which was dried at 100° C. for 3 hours to produce a coating film having a thickness of 50 microns. The measurement was performed in accordance with JIS K-7113.
  • <Measurement of Composition (Molded Article)> (1) Electromagnetic Shielding Effect (KEC Method/Electric Field Wave, Magnetic Field Wave)
  • Using an MA 8602 B measuring device, manufactured by ANRITSU, a near field electric field/magnetic field shielding property was determined in a KEC method within a frequency range of 0.1 MHz to 100 MHz. The higher the numeric value, the better the electromagnetic shielding property.
  • (2) Tensile Strength
  • Using an ISO dumbbell test piece having a thickness of 4 mm, a tensile test was performed in accordance with ISO 527, thereby determining a tensile strength.
  • (3) Bending Strength (MPa)
  • Using an ISO dumbbell test piece having a thickness of 4 mm, a bending test was performed in accordance with ISO 178, thereby determining a bending strength.
  • TABLE 1
    Sizing agent Composition
    Flow starting Stress at Tensile Electromagnetic Tensile Bending
    temperature breaking elongation shielding strength strength
    Product (° C.) point (MPa) (%) property (MPa) (MPa)
    Example 1 2260NE 175 18 660 16.9 118 166
    2 1940NE 135 25 730 17.3 113 158
    3 HW-920 120 4 1000 18.1 124 180
    4 HW-930 170 2.5 600 19.7 123 175
    Comparative 1 AP-30 105 36 30 10.4 128 187
    Example 2 AP-40F 110 22 30 11.6 131 191
    3 UWS-145 115 21 400 12.4 131 189
    4 CP-7060 194 34 266 15.0 119 167
  • As apparent from the comparison of Examples with Comparative Examples, it was confirmed that the electromagnetic shielding property of the molded article was clearly different depending on the difference of the tensile elongation of the sizing agent contained in the component (B). From those results, it can be considered that when the composition of the present invention is used, the high electromagnetic shielding property is exhibited by the action mechanism as shown in FIG. 1.

Claims (10)

1. A thermoplastic resin composition comprising:
(A) 50 to 95% by mass of a thermoplastic resin containing a polycarbonate resin; and
(B) 5 to 50% by mass of a carbon fiber bundle which is bundled by a sizing agent containing polyurethane, or of carbon fibers in the state in which the carbon fiber bundle is loosened, wherein
the sizing agent containing the polyurethane has a tensile elongation (JIS K-7113) of 500% or more.
2. The thermoplastic resin composition according to claim 1, wherein the component (B) contains the sizing agent, which contains the polyurethane, in an amount of 0.1 to 10 parts by mass based on 100 parts by mass of the carbon fibers.
3. The thermoplastic resin composition according to claim 1, wherein the component (A) is a mixture of the polycarbonate resin and a thermoplastic resin selected from the group consisting of a styrene resin, an olefin resin, a polymethacrylate resin, and a polyester resin, and the polycarbonate resin is contained in a content of 50 to 95% by mass in the mixture.
4. A method of producing the thermoplastic resin composition according to claim 1, comprising the step of:
mixing a thermoplastic resin containing a polycarbonate resin with a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, wherein
the component (B) is contained as the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane.
5. A method for producing a thermoplastic resin composition according to claim 1, comprising the step of:
melt-kneading a thermoplastic resin containing a polycarbonate resin with a carbon fiber bundle, which is bundled by a sizing agent containing polyurethane, wherein
the component (B) is contained in the state in which the carbon fiber bundle, which is bundled by the sizing agent containing the polyurethane, is loosened.
6. A molded article comprising the thermoplastic resin composition according to claim 1.
7. A molded article obtained by molding the thermoplastic resin composition according to claim 1.
8. The molded article according to claim 7, which is used for a product required to have an electromagnetic shielding property.
9. A product comprising the molded article according to claim 6 and being required to have an electromagnetic shielding property.
10. Use of the molded article according to claim 6 for a product required to have an electromagnetic shielding property.
US14/420,196 2012-08-06 2013-08-01 Thermoplastic resin composition Abandoned US20150225548A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-174178 2012-08-06
JP2012174178A JP6059903B2 (en) 2012-08-06 2012-08-06 Thermoplastic resin composition
PCT/JP2013/070859 WO2014024768A1 (en) 2012-08-06 2013-08-01 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
US20150225548A1 true US20150225548A1 (en) 2015-08-13

Family

ID=50067999

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/420,196 Abandoned US20150225548A1 (en) 2012-08-06 2013-08-01 Thermoplastic resin composition

Country Status (5)

Country Link
US (1) US20150225548A1 (en)
EP (1) EP2881437A4 (en)
JP (1) JP6059903B2 (en)
TW (1) TWI583737B (en)
WO (1) WO2014024768A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057022A (en) * 2010-09-08 2012-03-22 Daicel Polymer Ltd Flame-retardant resin composition
WO2013027708A1 (en) * 2011-08-22 2013-02-28 三菱レイヨン株式会社 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370652B2 (en) * 1999-02-18 2009-11-25 東レ株式会社 Sizing agent and chopped carbon fiber treated with the sizing agent
JP4216409B2 (en) 1999-06-17 2009-01-28 三菱レイヨン株式会社 Carbon fiber sizing agent, carbon fiber sizing method, sized carbon fiber, sheet-like material using the carbon fiber, and fiber-reinforced composite material
JP4505081B2 (en) 1999-08-12 2010-07-14 帝人化成株式会社 Aromatic polycarbonate resin composition
JP4365502B2 (en) 2000-02-02 2009-11-18 東邦テナックス株式会社 Continuous production method of carbon fiber chopped strands
JP4270810B2 (en) * 2002-06-03 2009-06-03 三菱レイヨン株式会社 Manufacturing method of chopped carbon fiber bundle
JP4278969B2 (en) * 2002-12-13 2009-06-17 三菱レイヨン株式会社 Carbon fiber bundle, chopped carbon fiber bundle and carbon fiber reinforced resin composition for fiber reinforced resin exhibiting high conductivity
JP4278970B2 (en) * 2002-12-16 2009-06-17 三菱レイヨン株式会社 Carbon fiber bundle and chopped carbon fiber bundle for fiber reinforced resin and carbon fiber reinforced resin composition exhibiting high mechanical properties and low electrical conductivity
JP2004244531A (en) 2003-02-14 2004-09-02 Toho Tenax Co Ltd Carbon fiber chopped strand for thermoplastic resin and fiber reinforced composite material
JP2005150461A (en) * 2003-11-17 2005-06-09 Yuka Denshi Co Ltd Wave absorber
JP2005260214A (en) * 2004-02-12 2005-09-22 Toray Ind Inc Electromagnetic wave shield material, stereo structure, electromagnetic wave shield property interior material, and image display device
JP4674066B2 (en) 2004-08-05 2011-04-20 帝人化成株式会社 Electromagnetic wave shielding thermoplastic resin composition
JP2007231441A (en) 2006-02-28 2007-09-13 Teijin Techno Products Ltd Carbon fiber strand for reinforcing thermoplastic resin
JP2008150485A (en) * 2006-12-18 2008-07-03 Toray Ind Inc Fiber-reinforced resin composition for molding and fiber-reinforced resin molded article
JP2010062571A (en) * 2009-09-14 2010-03-18 Mitsubishi Engineering Plastics Corp Resin composition for shielding electromagnetic wave and molded form
KR101754064B1 (en) * 2012-11-26 2017-07-05 미쯔비시 케미컬 주식회사 Chopped carbon fiber bundles and method for producing chopped carbon fiber bundles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057022A (en) * 2010-09-08 2012-03-22 Daicel Polymer Ltd Flame-retardant resin composition
WO2013027708A1 (en) * 2011-08-22 2013-02-28 三菱レイヨン株式会社 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
US20140256855A1 (en) * 2011-08-22 2014-09-11 Mitsubishi Rayon Co., Ltd. Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle applied with sizing agent, sheet-like article comprising carbon fiber bundle...

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
English machine translation of Sugiura et al. (JP 2004-011030); translated 11/8/16. *
English machine translation of Sugiura et al. (JP 2004-197230); generated 4/4/16. *
English machine translation of Tai (JP 2012-57022); generated 10/16/17. *

Also Published As

Publication number Publication date
JP6059903B2 (en) 2017-01-11
WO2014024768A1 (en) 2014-02-13
EP2881437A4 (en) 2016-03-23
TWI583737B (en) 2017-05-21
JP2014031482A (en) 2014-02-20
TW201412869A (en) 2014-04-01
EP2881437A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
CN103534312B (en) Not halogen-containing flame retardant resistance and high rigidity poly carbonate resin composition
KR100790424B1 (en) Electromagnetic wave shielding thermoplastic resin composition and plastic article
KR102473439B1 (en) Polyphenylene sulfide resin composition, method for preparing the same and injection molded article prepared therefrom
EP2709851B1 (en) Resin composition for laser direct structuring, resin-molded article, and method for manufacturing molded article with plated layer
CN104159971B (en) Resin composition for laser direct structuring, resin molded article, and method for manufacturing molded resin article with plated layer
KR102060848B1 (en) Resin composition for laser direct structuring, resin molded article, and method for manufacturing molded resin article with plated layer
US20150065628A1 (en) Composite molding material, surface-treated glass wood, and method for manufacturing composite molding material
KR20140126292A (en) Production method for conductive resin composition, and conductive resin composition
CN104136537B (en) Resin composition for laser direct structuring, resin molded article, and method for manufacturing molded resin article with plated layer
JP4971544B2 (en) Polycarbonate resin composition and molded product
JP2012236944A (en) Fiber/resin composite composition pellet for shielding electromagnetic waves, resin composition for shielding electromagnetic waves and molded article thereof
CN112625405B (en) Low-smoke density halogen-free flame-retardant reinforced PBT/PET compound and preparation method and application thereof
EP2989166B1 (en) Flame retardant composition and molded article including the same
CN101307173A (en) Glass fibre reinforced halogen-free fire retardant PBT composite material and method for preparing same
TWI646152B (en) Resin composition
JP7025604B1 (en) Method for manufacturing resin composition, molded product and plated molded product
US20150225548A1 (en) Thermoplastic resin composition
JP4674066B2 (en) Electromagnetic wave shielding thermoplastic resin composition
EP4431550A1 (en) Pellets, molded article, and method for producing pellets
JP2012241086A (en) Carbon fiber-reinforced thermoplastic resin composition, method for producing the composition, and injection molded article
JP2002179924A (en) Manufacturing method of molding material and manufacturing method of molding
JP2002179900A (en) Thermoplastic resin composition for shielding electromagnetic wave and electromagnetic wave shielding article
KR102058913B1 (en) Polycarbonate resin composition and molded article comprising the same
CN104693740A (en) Modified PC / PET alloy and preparation method thereof
JPH07242808A (en) Resin composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAICEL POLYMER LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAI, TOSHIHIRO;REEL/FRAME:034909/0355

Effective date: 20150128

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION